Document Type

Conference Proceeding

Publication Title

Proceedings of SPIE - the International Society for Optical Engineering

Abstract

Malicious nodes are mounting increasingly sophisticated attacking operations on the Mobile Ad Hoc Networks (MANETs). This is mainly because the IP-based MANETs are vulnerable to attacks by various malicious nodes. However, the defense against malicious attack can be improved when a new layer of network architecture can be developed to separate true IP address from disclosing to the malicious nodes. In this paper, we propose a new algorithm to improve the defense against malicious attack (IDMA) that is based on a recently developed Assignment Router Identify Protocol (ARIP) for the clustering-based MANET management. In the ARIP protocol, we design the ARIP architecture based on the new Identity instead of the vulnerable IP addresses to provide the required security that is embedded seamlessly into the overall network architecture. We make full use of ARIP's special property to monitor gateway forward packets by Reply Request Route Packets (RREP) without additional intrusion detection layer. We name this new algorithm IDMA because of its inherent capability to improve the defense against malicious attacks. Through IDMA, a watching algorithm can be established so as to counterattack the malicious node in the routing path when it unusually drops up packets. We provide analysis examples for IDMA for the defense against a malicious node that disrupts the route discovery by impersonating the destination, or by responding with state of corrupted routing information, or by disseminating forged control traffic. The IDMA algorithm is able to counterattack the malicious node in the cases when the node lunch DoS attack by broadcast a large number of route requests, or make Target traffic congestion by delivering huge mount of data; or spoof the IP addresses and send forge packets with a fake ID to the same Target causing traffic congestion at that destination. We have implemented IDMA algorism using the GloMoSim simulator and have demonstrated its performance under a variety of operational conditions.

DOI

10.1117/12.783063

Publication Date

4-3-2008

Share

COinS