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Abstract 

Title:  Developing an Automation Locus of Control Scale 

Author: Maarten Nelson Devon Edwards 

Advisor: Brooke Wheeler, Ph.D. 

The industrial and domestic proliferation of automation is such that it has 

become a core component of the human experience. Both automation design 

paradigms and human performance must be scrutinized in order to ensure the 

safety, security, effectiveness and efficiency of man-machine systems across a 

multitude of domains (Fitts, 1951; Parasuraman, Sheridan, & Wickens, 2000; 

Rasmussen, 1983). Therefore, the purpose of this study was to develop and validate 

a measure for the evaluation of control perceptions in the context of human-

automation interactions. The scale was developed using a deductive approach to 

measure development adapting from Rotter (1966) and Levenson (1973) locus of 

control measures. Results from the solicitation of expert feedback, exploratory 

factor analyses, and a confirmatory factor analysis supported a three-factor scale 

structure, and correlational analysis provided preliminary support for the construct 

validity of the measure. This automation locus of control scale is, therefore, 
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supported as a novel measure for the evaluation of automation control perceptions. 

The evaluation of measure generalizability and use of the measure as a means of 

triangulating automation control perceptions in specific scenarios are 

recommended. 
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Chapter 1 

Introduction 

Problem Statement 

Automation has become an integral part of the human experience. From the 

seemingly menial interaction between a person and their virtual assistant to the 

profound industrial dependency of commercial aviation on complex auto-flight and 

collision avoidance solutions, automation is undeniably prolific. Consequently, our 

understanding of how people interact with their ever-increasing ensemble of 

automated devices is integral to the development and adoption of relevant design 

philosophies, and operational best practices.  

Because the alleviation of human workload is central to the purpose of 

automation, an examination of the way individuals perceive themselves to be in 

control of its usage is paramount to the understanding of the effectiveness and 

efficiency of its usage. As it stands, however, there exists no psychometrically 

rigorous measure for the examination of such perceptions. To this end, locus of 

control, a psychological construct rooted in general expectancy theory, is proposed 

as the basis for a context-specific measure for determining the extent to which an 
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individual perceives their experiences with automation to be the result of their own 

actions or factors that are external to themselves. 

Purpose Statement 

The purpose of this study was to develop and validate a valid and reliable 

empirical measure for locus of control in the context of automation usage for the 

general population of the United States of America. In order to create and validate 

an automation locus of control scale, this study consisted of three major phases. 

Phase 1 consisted of the development of scale items and the preliminary 

determination of factors into which the items may be assigned. In Phase 2, sample 

data attained through the administration of the preliminary scale items was tested 

for internal consistency, and an exploratory factor analysis was conducted. In Phase 

3, a confirmatory factor analysis was used to verify the factor loadings from Phase 

2, and scale validity was established via correlations with measures of related 

constructs. 

Operational Definitions 

The explicit contextual definition of key terms is crucial to the 

interpretation of both the premise and conclusions of this study. Therefore, the 

following terms were operationally defined: 
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Automation 

Parasuraman, Sheridan, and Wickens (2000) defined automation as the use 

of computer hardware or software that can “carry out certain functions that the 

human operator would normally perform” (p. 286). Their definition and subsequent 

discussion supported a broad definition of automation that emphasizes system 

processes rather than physical form. Consequently, their definition of automation 

was adopted for the purposes of this research.  

Locus of Control and Automation Locus of Control 

Theoretically rooted in general expectancy theory, locus of control refers to 

the extent to which an individual perceives their experiences as the result of their 

own actions (Rotter, 1966). Although classically defined in terms of a 

unidimensional spectrum of internality versus externality, context-specific 

measures of locus of control suggest that two dimensions may be insufficient for 

describing the construct in sufficiently rich detail (Levenson, 1973; Özkan & 

Lajunen, 2005). This means that the context of use for a given locus of control 

measure may demand the consideration of a multidimensional locus of control 

measure. 

Given the established influence of context on the dimensional 

characteristics of locus of control as a general construct, automation locus of 



4 

 

 

control was defined as the extent to which an individual perceives the outcomes of 

their experiences with automation as a result of their own actions or some other 

external factor. This was quantified as the aggregate scores for all items on the 

automation locus of control (A-LOC) scale. 

Factor Analysis 

Factor analysis is a formal, empirical process for the determination of the 

number of latent variables being measured by a set of conceptualized scale items 

(DeVellis, 1991). In the exploratory phase, principle axis factoring with a parallel 

analysis was used to objectively determine the probable number of latent factors 

being measured by the initial item set. In the confirmatory phase, a confirmatory 

factor analysis was used to verify the factor structure and factor loadings of the 

exploratory factor analysis and quantify the fit of the proposed model. 

Validity and Reliability 

Validity may be broken down into two major categories, namely internal 

and external validity (Ary, Jacobs, Sorensen, & Razavieh, 2010). Within the 

context of this study, internal validity refers to the extent to which the proposed 

locus of control scale measured the targeted construct based on item content 

validity as assessed by subject matter experts, construct validity as determined by 
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the establishment of a quantitatively supported nomological network, and 

quantitatively supported criterion-related validity (Hinkin, 1998). 

Reliability refers to the extent to which a measure produces consistent 

results from one administration to the other within a given ecological setting (Ary, 

Jacobs, Sorensen, & Razavieh, 2010). In the context of this study, internal scale 

reliability was quantified using Cronbach’s alpha coefficient as a measure of 

internal consistency (DeVellis, 1991; Hinkin, 1998). 

Background 

Given the proliferation of automation in contemporary society, researchers 

have placed considerable effort into investigating human-automation interaction 

and the influence of user perceptions and cognitive processes on the effectiveness 

and efficiency with which automation is used (Barg-Walkow & Rogers, 2016; 

Berberian, Sarrazin, Le Blaye, & Haggard, 2012; Brambilla, et al., 2017). These 

research efforts are often framed with respect to specific ecological contexts, and 

attempt to drive the development of design philosophies and operational policies as 

a means of improving user performance and experiences (Holland, Kochenderfer, 

& Olson, 2013; Sarter, Woods, & Billings, 1997). Consequently, the availability of 

valid and reliable measures of human performance, cognitive processes, and 
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perceptions is integral to conducting scholastically rigorous human-automation 

interaction research. 

Locus of control is a psychological construct that seeks to describe the 

extent to which individuals perceive effective control over their surroundings 

(Rotter, 1966). Rotter (1966) first proposed the construct of locus of control as 

antecedent to the concept of general expectancies in social learning theory. Rotter 

posited that the degree to which an individual expects a given reinforcement 

following an event or behavior is strengthened by the reinforcement itself. This 

expectancy is purported to be reduced should subsequent identical behaviors or 

events fail to be followed by their associated reinforcement. 

Since Rotter (1966) published the internal-external scale for generalized 

expectancies, subsequent researchers have adapted the scale for a variety of settings 

including aviation safety studies (Hunter, 2002) and behavioral studies for risky 

driving (Özkan & Lajunen, 2005). Applications of unaltered and modified versions 

of the instrument have gone on to demonstrate significant correlations between 

locus of control and changes in general expectancies (Rotter, 1966), risky driving 

behavior (Özkan & Lajunen, 2005), and career decision-making self-efficacy 

(Taylor & Pompa, 1990). Consequently, the development of an empirical measure 

of locus of control in the context of human-automation interaction is a prerequisite 
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for the contextually valid investigation of the relationships between the behavior 

and cognitive processes of human operators, and their automated systems. 

Research Questions and Hypotheses 

The primary research questions of this study were: 

1. How many latent factors are being measured by the automation locus of 

control scale? 

2. To what extent is the automation locus of control scale internally 

consistent? 

3. To what extent is the automation locus of control scale a valid context-

specific measure of locus of control? 

The corresponding research hypotheses of this study were: 

1. Automation locus of control items will support a three-factor structure. 

2. The automation locus of control scale is an internally consistent measure. 

3. The automation locus of control scale is a valid context-specific measure for 

locus of control. 
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Potential Significance and Generalizability 

Potential Generalizability 

The intent of this study was to provide a valid and reliable locus of control 

measure that is specific to the context of human-automation interaction. With 

respect to population generalizability, the scale was expected to be a reliable 

measure of automation locus of control most immediately among users of Amazon 

Mechanical Turk. The scale was further expected to provide valid and reliable 

automation locus of control data among other homogeneous target populations as 

well as the general population. With respect to ecological generalizability, the 

proposed scale should be capable of measuring automation locus of control in the 

generic context in which it was conceptualized. It should further allow researchers 

to apply their own context-specific scenarios as required by their own domain-

specific investigations. Finally, the scale will serve as a basis for the further 

generation of specialized automation locus of control measures, such as measures 

of aircraft cockpit automation locus of control and locus of control for users of self-

driving cars. 

Rationale, Potential Implications and Applications, and Benefits 

This study’s theoretical foundation was Rotter’s (1966) discussion of 

general expectancy and locus of control – particularly with respect to its theoretical 

value as a predictor of human behavior. Preceding context-specific locus of control 
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scales demonstrated their ability to provide richer details regarding the factorial 

characteristics and psychometric idiosyncrasies of the contexts in which they were 

developed, and provided a methodological framework for their construction 

(Hunter, 2002; Jones & Wuebker, 1985; Özkan & Lajunen, 2005). Consequently, 

this scale will function as an integral tool for social science and human factors 

researchers by providing a quantitative method for investigating locus of control as 

either a primary or extraneous variable of interest in their analyses of human 

interactions with automated tools across a broad scope of ecological settings. 

Furthermore, the scale provides a base from which researchers may further refine 

items in order to satisfy their own domain constraints.  

Limitations and Delimitations 

Limitations of the proposed study included participants’ abilities to perceive 

their experience with automated tools. Because the broadness of the definition of 

automation included a wide variety of hardware and software, it was possible that 

participants may have provided responses based on a personal interpretation of the 

definition of automation that was not commensurate with the contextual definition 

of the study. 

Because the items of the proposed scale were based on those of previously 

developed locus of control measures, this study was also limited by the item pool 
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from which current measure items were based. Although the preceding locus of 

control measures have been tested for validity and reliability within their own 

settings, the possibility existed that the psychometric properties of those items may 

be limited by the external validity of the studies in which they were conceived. 

Furthermore, the deductive approach to item generation used by this study 

prohibited the synthesis of entirely new items. 

Finally, the study was limited by using a convenience sample of Amazon 

Mechanical Turk workers. This accessible population was not necessarily 

representative of the general population of the United States. Although previous 

studies supported the use of MTurk as a valid and reliable data source (Buhrmester, 

Kwang, & Gosling, 2011; Smith, Roster, Golden, & Albaum, 2016; Walter, 

Seibert, Goering, & O'Boyle Jr, 2018), the use of a convenience sample may have 

introduced sample biases that make it inappropriate to infer conclusions in the 

context of the general population of the United States of America. 

The delimitations of this study include the decision to utilize preceding 

locus of control scales as the source for item generation (Levenson, 1973; Rotter, 

1966) in order to create the A-LOC scale. The deductive process of item generation 

has been demonstrated to produce valid and reliable data without requiring word 

elicitation and word-pairing exercises (Hunter, 2002). Furthermore, the decision to 

generalize the definition of automation allowed for the application of the measure 
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to a broad scope of human-automation interaction contexts, and for reliability and 

validity testing with as few constraints applied to participant sampling as practical. 

Finally, the target population for this study was limited to citizens of the United 

States of America using Amazon MTurk. 

Assumptions 

The primary assumption of this study was that participants were able to 

conceive and apply a general definition of automation for the purpose of providing 

responses to measure items. Although the measure under investigation may 

ultimately be used within specific task domains that will provide specific 

operational definitions or scenarios for automation usage, the development of a 

general automation scale calls for the testing of the scale by way of a general 

definition. 

Where participants did synthesize specific mental representations of 

automation, this study assumed that variances in the mental schemas of individual 

participants will be mediated by the number of participants used in the 

development sample. Finally, this study assumed that participants were able to 

comprehend and operate under the paradigm that automation is defined with 

respect to the functionality a device enables as opposed to the specific form of the 

system providing that functionality.  
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Chapter 2 

Literature Review 

Introduction 

The development of an automation locus of control scale is dependent upon 

the understanding of locus of control as a general construct as well as its adaptation 

to specific contexts. Similarly, the concept of automation and human-automation 

interaction must be examined in order to aid in construct definition, and the 

development of a valid and reliable instrument necessitates a review of scale 

development and testing strategies. Consequently, this chapter presents a review of 

established literature on human-automation interaction, locus of control, and its 

adaptation to specific context domains. Established methodology for the 

development of psychometric measures is also discussed along with the concepts of 

instrument reliability and validity. Finally, the use of crowdsource convenience 

sampling as a method for data collection in a scholarly research setting was 

discussed. 

Human-Automation Interaction 

Automation Design Paradigms 

Automation may be defined as any software or hardware tool that augments 

or replaces human agents for the completion of previously human-executed tasks 
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(Parasuraman & Riley, 1997; Parasuraman, Sheridan, & Wickens, 2000). This 

definition provides a broad framework for the determination of what specific 

hardware or software elements within a given content-domain constitute 

automation based on the consideration of system function rather than form. It 

follows, therefore, that automation may be categorized with respect to its 

functionality, and that these categories may be used as the basis for determining the 

suitability of automated hardware or software solutions for specific applications 

within specific settings (Parasuraman, Sheridan, & Wickens, 2000). 

To this end, Parasuraman, Sheridan, and Wickens (2000) proposed a formal 

model for the division of automation into a system of four major categories, namely 

“1) information acquisition; 2) information analysis; 3) decision and action 

selection; 4) and action implementation” (p. 286). It was further asserted that each 

major category could be divided into a series of levels in order to describe changing 

levels in system autonomy. With respect to decision automation, Level 3, for 

example, describes a design paradigm that is categorized by the provision of a 

narrowed list of decision alternatives to a human operator. In contrast, Level 10 

describes a design paradigm, in which decisions are made and acted upon by the 

system with no interaction with a human operator (Parasuraman, Sheridan, & 

Wickens, 2000). This model, however, is limited in that it does not provide 

guidance on the application of automation levels to any category other than that of 
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decision automation, and it provides no discussion for the choosing of different 

categories and levels of system automation based on their effect on human 

performance. 

Fitts (1951) offered a model for the allocation of tasks based on the 

hypothesized strengths and weaknesses of human and machine components within 

a given system. Fitts’ (1951) List, as it is contemporarily known, asserted that 

humans possess superior sensation and perception capabilities, long-term memory, 

process flexibility, inductive reasoning, and the application of judgement. 

Conversely, machines were asserted to be better at rapid task execution, 

particularly where large forces are required with great precision. Fitts (1951) also 

argued that machines are able to out-perform humans at task repetition, short-term 

data storage, deductive and computational reasoning, and process parallelization. 

Since its inception, Fitts’ (1951) List has been both lauded and challenged in 

research circles (de Winter & Dodou, 2014; Parasuraman, Sheridan, & Wickens, 

2000). De Winter and Dodou’s (2014) review of function allocation theory under 

the Fitts’ List paradigm discussed the challenges associated with a strict application 

of the original list to contemporary human-automation systems. This is due in no 

small portion to the advancement in the capabilities of machines since Fitts’ (1951) 

initial publishing (de Winter & Dodou, 2014). Fitts (1951) is further challenged by 

contemporary considerations of conflicting alternative models that focus on the 
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complementarity of human-machine interactions, and changes in human behavior 

as a result of automated systems. Nonetheless, Fitts (1951) has remained a 

preferred theoretical basis for the examination of human-automation interaction (de 

Winter & Dodou, 2014; Parasuraman, Sheridan, & Wickens, 2000; Pritchett, Kim, 

& Feigh, 2014). 

Another alternative human-automation design paradigm is that of 

automation-focused design.  Under this paradigm, designers implement automated 

solutions with the goal of removing human intervention from as many aspects of 

the system as possible (Parasuraman & Riley, 1997; Parasuraman, Sheridan, & 

Wickens, 2000; Pritchett, Kim, & Feigh, 2014). This approach is purported to be 

motivated by the ease and cost effectiveness of automating tasks (Parasuraman, 

Sheridan, & Wickens, 2000) and is, therefore, blind to changes in user workload 

and task difficulty (Bainbridge, 1982). To this end, Bainbridge (1982) asserted that 

the role of system operators has shifted from that of an active participant to that of 

a system monitor who exercises manual control in the event of a system anomaly. It 

is further asserted that, despite the execution of tasks by the machine-components 

of the system, the responsibility for the operation of the system still lies with the 

operator (Bainbridge, 1982). This approach was reported to constitute considerable 

risk to the maintenance of system performance. Regarding this risk, Strauch (2018) 

posited that placing a human operator in a position of oversight and redundancy 
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over a system that was ultimately designed to out-perform them can contribute to 

considerable declines in overall system performance, given a failure in the 

automated system. 

Human Performance in Human-Automation Interaction 

Each of the aforementioned design paradigms are characterized by the focus 

they placed on human behavior, human performance, and, therefore, system 

performance. Parasuraman and Manzey (2010) established that it is insufficient to 

consider automation as a simple replacement for human intervention. Instead, 

explicit attention must be paid to automation’s influence on human activity as this 

interaction is liable to compromise the performance improvements projections of 

system designers and implementers. Dekker and Woods (2002) explained that these 

changes in human activity are the likely result of the fundamental changing of the 

task itself as a product of the introduction of an automated system. Their 

discussion, framed with respect to system novelty, illustrated the process of user 

adaptation that necessarily preceded the optimization of user performance within a 

new task paradigm under new performance criteria (Dekker & Woods, 2002). 

Accordingly, Strauch (2018) pointed out the value of a multidimensional approach 

to human performance considerations and lauded the efforts of Rasmussen (1983) 

in his examination of human performance in the context of the tasks they must 

perform. 
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Rasmussen’s (1983) discussion of human performance models introduced a 

pioneering framework for the multidimensional consideration of human 

performance in the context of a complex man-machine system, the interpretation of 

information by system operators under different performance paradigms, the 

examination of levels of abstraction in the context of user information processing, 

and the differing roles of qualitative and quantitative models for the evaluation of 

human performance. With respect to the adoption of a multidimensional approach 

to operator performance, Rasmussen (1983) offered three performance levels: skill-

based, rule-based, and knowledge-based. At the skill-based level, users are 

purported to operate based on an autonomous, continuous series of sensory-motor 

patterns that are afforded by an extensive repertoire of prior experiences. At the 

rule-based level, users are asserted to operate based on the conscious application of 

explicitly stored rules or procedures. The selection of applicable rules is argued to 

be based on previous experiences, external instructional sources, or explicit 

problem-solving efforts (Rasmussen, 1983). Both skill-based and rule-based 

performance levels are derived from a feedforward approach to action evaluation. 

The use of feedback to evaluate the effectiveness of control inputs occurs as part of 

the knowledge-based level of human performance. At this level, it was argued that 

users employ an explicit expression of goals, and a thorough analysis of the task 

environment in order to adjust to unfamiliar situations. Rasmussen (1983) further 
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asserted that this level is characterized by the use of explicit mental models as a 

cognitive representation of the “internal structure of the system,” (p. 259). These 

models are argued to be based on several levels of abstraction that describe a 

spectrum of user perceptions ranging from the evaluation of the physical form of 

the system to the general functional purpose of the system. Rasmussen’s (1983) 

discussion of reasons and causes, and levels of abstraction is fundamentally 

grounded in the assertion that human attentional capabilities are limited. To this 

end, Rasmussen (1983) stated the following: 

An effective way to counteract limitations of attention seems to be to 

modify the basis of mental data processing – the mental model of the causal 

structure – to fit it to the specific task in a way which optimizes the transfer 

of previous results and minimizes the need for new information. The 

efficiency of human cognitive processes seems to depend upon an extensive 

use of model transformations together with a simultaneous updating of the 

mental models in all categories with new input information, an updating 

which may be performed below the level of conscious attention and control. 

(p. 261) 

Rasmussen’s (1983) multidimensional approach to human performance evaluation 

and attentional processing provided a theoretical basis for the evaluation of 
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variations of human cognitive processes given changes in system design and 

operational paradigms. Rasmussen’s comments paralleled general expectancy 

theory by way of the establishment of a relationship between cognitive processes 

and historic experiences, and the effect of this relationship on operator 

performance. 

With respect information processing, Rasmussen (1983) offered three major 

categories: signals, signs, and symbols. These categories were characterized by the 

manner in which information is processed as opposed to the actual form of the 

information itself. These categories were argued to be commensurate with the 

performance level in which the user is operating. At the skill-based performance 

level, information is purported to be interpreted as a series of signals – “continuous 

quantitative indicators of the time-space behavior of the environment,” (p. 206) that 

are devoid of any meaning, and act only to guide autonomous user processes 

(Rasmussen, 1983). At the rule-based performance level, information is processed 

as signs – a series of cues used for the application and modification of rules. It is 

not until the knowledge-based performance level that information is perceived as a 

series of symbols – meaningful sets of information that allow for the conscious 

evaluation of environmental and system characteristics in order to make predictions 

in unfamiliar situations (Rasmussen, 1983). Therefore, it is reasonable to expect 

that changes in operator control perceptions could affect information processing, 
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particularly when operating at skill-based or rule-based levels where expectancies 

based on previous experiences may have a significant influence on operator 

performance. 

Rasmussen (1983) concluded that the effective design of man-machine 

systems depends heavily upon a design philosophy that emphasizes man-machine 

system communication with respect to nature of the task. The framing of tasks with 

respect to user mental processes as opposed to system requirements was also 

recommended. Finally, Rasmussen (1983) recommended the use of qualitative 

comparisons to evaluate differences between projected and actual usage strategies 

of systems in the design-phase. Conversely, quantitative evaluation methods should 

be employed to “verify the internal consistency” (p. 265) of established cognitive 

models (Rasmussen, 1983). In the context of the current study, Rasmussen’s (1983) 

discussion provided an extensive qualitative framework for the evaluation of 

human-automation interaction. Furthermore, Rasmussen’s discussion on the use of 

quantitative measures of human performance justified the development of measures 

for the purpose of verifying observable performance effects based on qualitatively 

synthesized hypotheses. 

Quantitative Evaluations of Human-Automation Interactions 

Berberian, Sarrazin, Le Blaye, and Haggard (2012) investigated the 

relationships between intentional binding and aircraft cockpit automation level, and 
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cockpit automation level and human agency. In the context of their study, 

intentional binding, an implicit measure of control perceptions, was defined as the 

variance in an individual’s perception of the delay between an action and an 

outcome based on their perceived control of the action. Increased control 

perceptions result in perceptions of shorter intervals, whereas decreased control 

perceptions result in perceptions of increased intervals. Human agency, an explicit 

measure of perceived control, was described as “a clear feeling that we control our 

own actions and can thus produce effects in the external environment” (Berberian, 

Sarrazin, Le Blaye, & Haggard, 2012, p. 1). Agency was measured based on the 

subjective verbal reports of participants. The study utilized 13 participants, 4 of 

whom were females, from the Office National d'Etudes et de Recherches 

Aérospatiales. The mean age was 32 years. Participants were asked to perform a 

number of simulated collision avoidance tasks for each automation level – referred 

to as a trial block. Within each block, participants were asked to report the 

perceived delay between a command engagement point and a resolution 

confirmation indication. At the end of each block, participants were asked to 

provide explicit verbal feedback on their perceived level of control within each trial 

block. With respect to the relationship between intentional binding and automation 

level, the results of a 4x3 ANOVA produced a significant main effect (F (3,36) = 

26.154; p < .01, ηp
2 = .69), and post-hoc analysis suggested that, as automation 
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level increased, interval estimates increased as an implicit indicator of a gradual 

decrease in agency. With respect to the relationship between automation level and 

explicit judgements of agency, the results of a repeated measures ANOVA 

suggested a significant effect (F (3,36) = 46.204; p < .01, ηp
2 = .79), and post-hoc 

analysis showed that, as automation levels increased, explicitly-stated perceptions 

of control decreased. Finally, correlations between explicit expressions of agency 

and intentional binding supported the conclusion that intentional binding can be 

considered an implicit indicator of human agency (r = -0.84, SD = 0.105, t (12) = -

28.821, p < .001). The demonstrated relationship between agency and automation 

level gives credence to the continued development of quantitative measures of 

operator control perceptions in the context of human-automation interaction. 

Although Berberian, Sarrazin, Le Blaye, and Haggard (2012) demonstrated the 

feasibility of intentional binding as a measure of control perceptions, the addition 

of a robust validated self-reporting measure stands to increase investigators’ ability 

to triangulate their measurements and observations. Such a measure, however, 

requires a core construct that is grounded in control perception theory, and offers a 

framework for the development of robust psychological measures. 

A Model of Human-Automation Interaction and Control Perceptions 

The relatively broad general definition of automation (Parasuraman & 

Riley, 1997; Parasuraman, Sheridan, & Wickens, 2000) allows researchers to 
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explore automation both as a general technological concept, and as a context-

specific phenomenon without the need to stray from or stretch the grounding theory 

of the construct. The function-centered definition of automation lends itself to a 

function-centered classification of its many forms (Parasuraman, Sheridan, & 

Wickens, 2000), the generalized discussion of its design paradigms (Fitts, 1951), 

and the generalized evaluation and discussion of system-wide performance 

particularly when a human operator is a part of that system (Parasuraman & 

Manzey, 2010; Rasmussen, 1983; Strauch, 2018). 

The existing literature supported a conceptual model, illustrated in Figure 1, 

that describes the progression from system goals to desirable system performance 

via the independent but interacting processes of automation design and operator 

behavior. The model suggests that, operator behavior is influenced both by the 

system goals and the automation design, and both automation design and operator 

behavior influence system performance. The findings of Berberian, Sarrazin, Le 

Blaye, and Haggard (2012) supported the consideration of a mediating effect of 

operator control perceptions. In the context of the current study, such an effect is 

proposed to function as shown in Figure 2. Note now that the diagram implies the 

supported hypothesis that control perceptions can be calibrated by way of system 

design as a means of influencing operator performance (Berberian, Sarrazin, Le 

Blaye, & Haggard, 2012; James & Rotter, 1958; Phares, 1957). 
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Locus of Control 

Foundations of Locus of Control 

Locus of control is a psychological construct that describes the extent to 

which individuals perceive their experiences as primarily influenced by their 

actions, known as an internal locus of control, or by factors beyond their control, 

known as an external locus of control (Rotter, 1966). In order to create an 

instrument that quantitatively measured general locus of control, Rotter’s general 

internal-external (I-E) locus of control scale was the result of factor and item 

analyses on Phares’ (1957) instrument for the measurement of generalized 

expectancies. The resultant 60-item scale was further refined due to high 

correlations (r = [-.35, -.40]) of some of the items to measures of social desirability. 

The final 29-item I-E scale was distributed to a sample (n = 400), and biserial item 

correlations for the instrument were determined. Internal consistency estimates 

were found to be stable, 1-month test-retest reliability was found to be consistent 

between two different samples, and the new correlation to the Marlow-Crowne 

social desirability scale was significantly reduced (r = [-.07, -.35]). Based on the 

findings of his and other supporting studies, Rotter (1966) concluded that locus of 

control varies both between different individuals and between different situations 

experienced by a single individual. 
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Rotter’s work on social learning theory, general expectancies and locus of 

control set the foundation for the widely accepted unidimensional locus of control 

construct that forms the core of an expanse of control perceptions investigations. 

Lefcourt’s (1966) discussion of the underlying theory of the internality-externality 

construct illustrated the substantial contrast between its foundation in expectancy 

theory and the motivationally-driven constructs that preceded it. In so doing, 

Lefcourt highlighted the applicability of locus of control to situations well beyond 

those in which survival or success formed the core of a subject’s cognitive 

processes. Of note was Lefcourt’s references to preceding investigations of general 

expectancies that demonstrated the significant effect of task structure on changes in 

expectancies. These investigations included but were not limited to James and 

Rotter (1958), and Phares (1957) both of which investigated the effect of stated 

sources of success, skill verses chance, on changes of expectancies for an otherwise 

controlled reinforcement. That is to say that, in either case, reinforcement stimuli 

were fixed by the experimenters. The manipulation of experiment instructions to 

suggest that either chance or skill determined task outcome resulted in changes in 

participants’ locus of control. The studies, therefore, supported the ability to alter 

locus of control based on task parameters, and demonstrated how those alterations 

in control perceptions elicited changes in participant behavior. 
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Factor Structure of Locus of Control 

Noting the growing popularity of the construct, Rotter (1975) sought to 

clarify the foundations of the theory, and address trends in literature that did not 

seem consistent with the core construct. This included a discussion of the growing 

body of research that debated the factor structure of locus of control. At its 

inception, the Rotter general internal-external locus of control (I-E) instrument was 

built around a unidimensional conceptualization of the locus of control construct. 

Rotter explained that, in the case of the general I-E instrument, the decision to 

adopt a unidimensional model was made based on the superior explained variance 

statistic produced by factor analyses performed on sample data (Rotter, 1975). 

Rotter does not, however, purport a single-factor solution to be the correct answer. 

Rather, Rotter’s discussion cautioned against experimenter attempts to ratify a 

single unidimensional or multidimensional model. Drawing parallels to the 

construct of dependency, Rotter supported the subdivision of this construct into 

latent factors and noted the tendency of factor structures to vary as a result of the 

sample data from which they were developed. 

Having established that sub-dimensional structure for the locus of control 

construct is subject to the interpretation of the instrument by one’s development 

sample, it remains prudent to examine the factor structures of existing 

multidimensional measures as a means of targeting a probable number of factors 
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that, although suited the context of use for the measure, may be grounded in wider 

construct theory. Lefcourt, Von Baeyer, Ware and Cox (1979) and Özkan and 

Lajunen (2005), for example, illustrated complex multidimensional scale structures 

that were conceptualized for the purpose of measuring locus of control in markedly 

different research domains. Where Lefcourt, Von Baeyer, Ware and Cox’s factor 

structure was design to enable the measurements of “goal specific” (p. 288) locus 

of control across major subscales of achievement and affiliation, Özkan and 

Lajunen (2005) aimed to measure locus of control in the text of accident causation 

perceptions. As such, the factor structure of their instrument was divided into 

subscales for perceptions of causation by the driver, other drivers, the vehicle and 

environment, and fate. Although both scales share the core thread of internality-

externality, the underlying factor structure of the traffic locus of control measure is 

heavily tailored to its context of use. 

By contrast, there are a number of studies that support a common three-

factor structure for locus of control measurement across a number of domains 

including the evaluation of locus of control among adult educators (Kourmousi, 

Xythali, & Koutras, 2015), in the context of social activism (Levenson & Miller, 

1976), and in the context of health perceptions (Ross, Ross, Short, & Cataldo, 

2015). In general, the common three-factor structure consists of an Internal 

subscale that measures the extent to which an individual perceives their experiences 
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to be the result of their own actions, a Powerful Others subscale that measures the 

extent to which an individual perceives their experiences to be the result of the will 

or actions of some influential or powerful individual, and a Chance subscale that 

measures the extent to which an individual perceives their experiences to be the 

result of random probabilities or fate. Based on the repeated appearance of this 

subscale structure among established measures, it is reasonable to expect a novel, 

context-specific measure to adopt a similar factor structure. 

Quantitative Investigations of Locus of Control 

In furtherance of Rotter’s (1966) assertion that locus of control can act as a 

viable predictor of human behavior, there is a substantial body of knowledge that 

explores the relationships between locus of control and other variables. These 

investigations may be general in both context and using a general instrument 

(Rotter, 1966), specific in context and using a general instrument (Oğuz & Sariçam, 

2016; Thompson, 2010), or specific in context and using a context-specific 

instrument (Chittaro, 2014; Hunter, 2002; Özkan & Lajunen, 2005; Ross, Ross, 

Short, & Cataldo, 2015). At any rate, empirical investigations of locus of control 

have considered locus of control as either an independent variable wherein changes 

in other dependent variables were observed as an effect of changes in locus of 

control, or as a dependent variable where manipulations of some other independent 

variable are correlated to a change in reported locus of control. 
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Oğuz and Sariçam (2016) investigated the relationship between locus of 

control and critical thinking disposition in pre-service teachers. Although no 

explicit description of a target population was provided, an appropriate target 

population can be inferred to be pre-service teachers in Kütahya, Turkey, based on 

the sample. The accessible population consisted of students of the Dumlupinar 

University, Faculty of Education. They used a convenience sample of 347 

participants, of whom 203 were female. The ages of participants ranged from 17 to 

24 with an average age of 20.4. With respect to grade level, the sample consisted of 

first-years (n = 188) and seniors (n = 159). Respondents were asked to complete the 

Rotter Internal-External Locus of Control Scale (1966), the Critical Thinking 

Dispositions Scale (Sosu, 2013), and a personological information form. The 

relationship between locus control and critical thinking disposition was analyzed 

via Spearman’s correlation. Oğuz and Sariçam (2016) found a negative relationship 

(r = -.44, p < .01) between locus of control scores and critical decision-making 

dispositions. Furthermore, the statistically significant results of the regression 

model (B = -.46, p < .01) suggest that locus of control scores may be used to predict 

critical decision-making disposition scores. 

Thompson (2010) investigated the relationship between locus of control and 

decision-making styles. The target population of the study was business managers 

of for-profit business in the United States. The accessible population consisted of 
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members of an e-mail marketing database that was used for the solicitation of 

participants. The study estimated that approximately 200,000 eligible participants 

were contacted. The study attained 237 participants, who provided responses to the 

Rotter I-E instrument and the Decision-Making Inventory. Thompson found no 

significant relationship between decision-making style and locus of control. This 

conclusion is supported by the lack of statistical significance across hypotheses that 

attempted to determine the relationship between locus of control and analytical 

decision style (r = .025, p = .705, n = 237), locus of control and conceptual 

decision style (r = -.112, p = .085, n = 237) , locus of control and directive decision 

style (r = .109, p = .095, n = 237), and locus of control and behavioral decision 

style (r = -.025, p = .705, n = 237). Although the relationship between locus of 

control and decision-making style was found to be insignificant in this context, the 

investigation of an updated or contextually specific scale for locus of control was 

cited as an area of interest for future research. Furthermore, the importance of the 

understanding of personal preferences and cognitive processes as a means of 

ensuring optimal decision-making performance was supported. 

Özkan and Lajunen (2005) sought to develop and implement a locus of 

control scale for evaluating factors associated with risky driving behaviors. Having 

discussed the potential shortcomings of generalized scales for measuring locus of 

control in specialized contexts, Özkan and Lajunen proposed a multidimensional 
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traffic locus of control scale (T-LOC). The scale consisted of 16 prompts that each 

represented the cause of an accident. Using a 5-point Likert scale, participants were 

asked to indicate the degree to which they believed the accident to be possible, 

given their own driving styles. The scale was distributed as a part of a study 

questionnaire that also contained the Driver Behavior Questionnaire instrument and 

a request for demographic data. The scale was distributed to a sample of students 

from the Middle East Technical University where n = 348. Results of the 

hierarchical regression suggested that the Self subscale of the T-LOC instrument 

was a predictor of the total number of accidents (β = 0.17, p < .001), the number of 

active accidents (β = 0.18, p < .001), the total number of offences (β = 0.11, p < 

.05), aggressive violations(β = 0.19, p < .001) , ordinary violations (β = 0.26, p < 

.001), and errors (β = 0.24, p < .001) . Consequently, Özkan and Lajunen concluded 

that an internal locus of control orientation predicted reported driver behavior and 

demonstrated the value of a specialized locus of control scaled for inferring 

contextually relevant conclusions using the factor structure of a multidimensional 

instrument. 

Hunter (2002) investigated locus of control in the context of aviation safety 

and developed a scale that measured the internality-externality of pilots based on 

instrument items that were framed in the context of aviation safety. This scale was 

a modification of the Jones and Wuebker (1985) Safety LOC scale. Hunter 
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hypothesized that pilots with an internal safety locus control orientation were less 

likely to be involved in an accident. The investigation solicited participation from 

visitors of a Federal Aviation Administration website over 6 months. The study 

received 477 responses. The internal-external subscales were negatively correlated 

(r = -.419, p < .001), and a comparison of the mean scores of the subscales 

supported the assertion that pilots would score significantly higher on the internal 

subscale than the external subscale (t = 69.1, df = 476, p < .001). Furthermore, 

correlation of the combined locus of control scores and the Hazardous Events Scale 

scores support the hypothesis that pilots with more internal locus of control 

orientations were less likely to have been involved in a hazardous event (r = -0.162, 

n = 170, p < .05). Consequently, the study supported the use of locus of control as a 

possible predictor for identifying pilots who are more likely to be involved in a 

hazardous event. 

Where the preceding studies have examined locus control as a predictor of 

human behavior, Chittaro (2014) examined the effect of persuasive play on locus of 

control. Although a description of the target population was not provided, it can be 

inferred that the author intended for the study to be generalizable to passengers of 

commercial airlines. The study recruited 24 participants, 11 of whom were female. 

Participant ages ranged from 19 to 55 with a mean age of 30.5. Participants were 

asked to complete a modified version of Hunter’s (2002) Aviation Safety Locus of 
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Control Scale, a risk perception instrument, a brace position knowledge test, and a 

demographics form. Participants were then asked to play a computer game that 

provided interactive instruction on how to assume the brace position required by 

emergency landing on commercial aircraft. The knowledge test, locus of control 

instrument, and risk perception instrument were re-administered following 

completion of the game. Chittaro (2014) found statistical significance in the 

differences between pre-intervention and post-intervention measures of internal 

locus of control scores (F(1,23) = 17.05, p < .001) and external locus of control 

scores (F(1,23) = 7.58, p = .01). The findings suggest that persuasion play can have 

a significant effect on aviation safety locus of control. The lack of a control group, 

however, means that there was no way to verify that the treatment did indeed 

produce the effect. Nonetheless, the findings demonstrate that locus of control is 

not fixed, and that it can change based on external factors. 

Related Constructs 

In order to establish the nomological network required to assert the 

construct validity of the proposed scale, constructs related to locus of control must 

be examined. To this end, Skinner (1966) established locus of control as one in a 

substantial collection of established constructs, all of which relate to the concept of 

control. This collection is purported to include constructs of efficacy, agency, and 

autonomy. Similarly, Galvin, Rendel, Collins, and Johnson (2018) discussed the 
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social learning and general expectancies theories that gave rise to the generalized 

locus of control construct, and asserted positive correlations between locus of 

control and measures of self-esteem and intrinsic task motivation. These assertions 

were supported by Johnson, Rosen and Levy (2008), and Kourmousi, Xythali and 

Koutras (2015) who both observed positive relationships between locus of control 

and self-esteem. Similarly, Ng, Sorensen and Eby (2006) observed a positive 

relationship between locus of control and intrinsic task motivation. With regard to 

discriminant constructs, Kalnback and Hinsz (1999) investigated the relationship 

between locus of control and goal commitment. Based on the statistical 

insignificance of their results, their findings supported the assertion that locus of 

control and goal commitment are not related constructs. Similarly, the relationship 

between decision-making style and locus of control has been investigated on 

numerous occasions with no support for a significant relationship between the two 

constructs (Hornaday & Curran, 1987; Thompson, 2010). It is, therefore, 

reasonable to expect a self-report measure of control perceptions to correlate 

significantly with self-esteem and intrinsic task motivation. Conversely, it is 

expected that locus of control will not correlate significantly with measures of goal 

commitment, and decision-making style. 

Per the guidance of DeVellis (1991), the aim of establishing criterion-

related validity is to demonstrate an empirical relationship with an established 



35 

 

 

criterion variable. Accordingly, the discussion of the nomological network of locus 

of control by Galvin et al. (2018) highlighted Lilly and Virick’s (2006) 

demonstration of the relationship between work locus of control and trust 

perceptions. Lilly and Virick (2006) found a statistically significant positive 

correlation between locus of control and organizational trust (b = .43, p < .001). 

Similarly, the findings of correlations between locus of control scores and 

interpersonal trust demonstrated strong positive correlations between measures for 

a cross-sectional sample of husbands and wives as part of a nonverbal 

communications study (Sabatelli, Buck, & Dreyer, 1983). The findings of these 

studies support the use of trust as a criterion variable for control perceptions, and 

suggest that locus of control and trust have a significant, positive relationship such 

that, as locus of control become more internal, measures of trust should increase. 

A Model of the Measurement of Locus of Control 

In this section, the locus of control construct was defined around the 

variability of expectancies based on the relationship between the occurrence of a 

reinforcement and the perceived proximity of a subject’s actions to the cause of that 

reinforcement. The established malleability of locus of control based on continued 

experiences across contexts supports the use of locus of control as probable 

determinant of human behavior that is capable of being calibrated (Lefcourt, 1966; 

Rotter, 1966). Analysis of the factor structure of locus of control is established to 
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be sensitive to the perceptions of a given sample (Rotter, 1975); however, some 

consistency has been observed in the development of three-factor general and 

context-specific measures of the construct (Levenson, 1973; Ross, Ross, Short, & 

Cataldo, 2015). The numerous empirical studies that explore locus of control as 

both an independent variable (Hunter, 2002; Oğuz & Sariçam, 2016; Özkan & 

Lajunen, 2005) and a dependent variable (Chittaro, 2014) supported the 

development of a conceptual model, illustrated in Figure 3. The model illustrates 

the potential role of an automation locus of control measure as a means of 

observing locus of control perceptions that mediate the interaction between 

automation design and operator behavior. Note the introduction of a feedback loop 

that would allow for the evaluation, interpretation, recalibration and reevaluation of 

operator control perceptions in the interest of optimal system performance. 

Scale Development 

The development of a valid and reliable psychometric measure is dependent 

on a systematic approach to item generation, refinement and testing. In the initial 

phases of scale development, Downing (2006) called for the explicit establishment 

of a content definition as the foundation for all other development tasks. Framed 

with respect to the development of achievement tests, Downing (2006) stressed the 

importance of defining the content domain and construct of a given test as 

necessary prerequisites for the establishment of valid inferences based on test 
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administration. Similarly, DeVellis (1991) and Hinkin (1998) advocated for the 

establishment of the content domain and thorough understanding of the construct 

under investigation as integral first steps in the scale development process. 

After defining the construct and establishing of the content domain of the 

proposed measure, there are several recorded methods for item generation 

illustrated in the literature. Hinkin (1998) described two approaches to item 

generation, namely the deductive approach and the inductive approach. Hinkin’s 

(1998) deductive approach to item generation is a process whereby the existing 

body of knowledge regarding the target construct is substantial enough to enable 

the synthesis of an initial item-pool. This strategy is evident in the development of 

the Hunter (2002) Aviation Safety Locus of Control Scale, and the Spector (1988) 

Work Locus of Control Scale. Conversely, the inductive approach to item 

development was described as an approach whereby the novelty of the proposed 

measure and its associated construct precluded the development of an initial item-

pool based on established theory alone. Instead, researchers are required to solicit 

the input of a sample in order to form the basis for item-development. This process 

is evident in Cremer’s (2015) development of a Perception of Airport Sustainability 

Scale, and Jian, Bisantz, Drury and Linas’ (2000) development of the Checklist for 

Trust between People and Automation. 



38 

 

 

Having developed an initial item pool, Hinkin (1998) called for the 

evaluation of the content validity of the items. This process was purported to allow 

for the reduction of the initial item pool based on the relevance of each item to the 

established construct definition. To accomplish this, Hinkin (1998) proposed 

several strategies. Firstly, Hinkin (1998) suggested the distribution of the initial 

item pool to a sample. Respondents would be provided with a set of scale items 

along with a definition. It would then be the task of the respondents to rate the 

extent to which each item corresponds to a single definition. The process would be 

repeated for all items and all definitions. Alternatively, Hinkin (1998) proposed the 

examination of the “proportion of the respondents who assign an item to its 

intended construct,” and “the degree to which each rater assigned an item to its 

intended construct” (p. 111). Finally, Hinkin (1998) suggested an item sorting task 

where respondents would assign items to their associated definitions or to a 

category indicative of their being unsuitable for any of the provided definitions. 

Prior to dispersion to a development sample, DeVellis (1991) encouraged the 

consideration of validation items in order to control for the confounding effect of 

respondent biases and motivations. For example, DeVellis (1991) suggested the 

inclusion of a social desirability measure to test for the influence of respondents’ 

motivation to respond in a manner factored by society on their responses to the 

proposed measure. 
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The development and construct validation of the initial item-pool is 

typically followed by distribution of the pool to a development sample. This 

process involves consideration of the target population, for which the scale is 

intended, as well as the number of participants required for the acquisition of valid 

development feedback (DeVellis, 1991). With respect to sample size, DeVellis 

(1991) suggested that, although the determination of absolute sample minimums 

has been the subject of debate, a sample size of 300 is regarded as adequate in order 

to mitigate for confounding variances between subjects. Hinkin (1998) suggested 

that 10 participant responses per item is considered desirable, particularly 

considering the effect of sample size on exploratory and confirmatory factor 

analysis results. However, Hinkin (1998) also noted that samples as small as 150 

may be adequate for maintaining exploratory factor analysis accuracy given 

appropriately strong item intercorrelations. 

Factor Analysis 

Rooted in the theory of the common factor model, factor analysis is a 

statistical procedure for the investigation of the relationship between a set of 

indicators and one or more latent variables (Brown, 2006; DeVellis, 1991). 

Accordingly, Brown (2006) established that the common factor model asserted that 

“each indicator is a linear function of one or more common factors and one unique 
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factor,”  (p. 13) and that factor analysis itself discriminates the common variance 

and unique variance of each indicator in relation to the latent variable. 

Exploratory Factor Analysis is a data-driven strategy that allows for the 

establishment of factor loadings free of a priori specifications regarding the number 

of latent factors (Brown, 2006). This is the preferred exploratory method for the 

initial establishment of the number of latent factors measured by an item-pool, and 

to quantify the meaningfulness of each item in the context of the latent factors 

(Brown, 2006; DeVellis, 1991). Prior to the completion of an exploratory factor 

analysis, Hinkin (1998) suggested an initial analysis of the inter-item correlations 

and the deletion of any item with a correlation of less than .4. This functioned to 

ensure the domain commonality of the proposed items prior to the instigation of 

latent factors and factor loadings (Hinkin, 1998). 

Confirmatory factor analysis is a theory-based, benchmark-driven approach 

to investigating the relationship between indicators and latent factors. Brown 

(2006) explained that, unlike the exploratory factor analysis approach, the number 

of factors, factor loading patterns, and factor-indicator independence or covariance 

parameters may all be determined on an a priori basis in order to produce a sample 

correlation matrix. Confirmatory factor analyses are, therefore, used in scale 
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development as a means of validating the factor structure of a measure based on 

preceding development processes (Brown, 2006; DeVellis, 1991; Hinkin, 1998). 

Validity and Reliability 

Although historical discussions of validity are centered around the 

assessment of the extent to which an instrument truly measures its targeted 

construct, Ary, Jacobs, Sorensen and Razavieh (2010) pointed out that recent 

explanations of validity are more so focused on “the interpretation and meaning of 

the scores derived from [an] instrument,” as opposed to the instrument itself (p. 

225). It was argued, therefore, that the concept of validity in the context of the 

testing of hypothetical constructs referred to the extent to which the results of a 

measure that are based on the operational definition of a given construct may be 

used to make inferences based on the more abstract conceptual definition of the 

investigated construct (Ary, Jacobs, Sorensen, & Razavieh, 2010). In order to 

demonstrate the validity of a proposed measure, Hinkin (1998) called for the 

demonstration of convergent validity, discriminant validity, and criterion-related 

validity. Convergent validity refers to the extent to which the proposed measure 

correlates with similar constructs; discriminant validity refers to the extent to which 

the proposed measure fails to correlate with dissimilar constructs; and criterion-

related validity refers to the extent to which the proposed measure correlates with 

other theoretically correlated variables (Hinkin, 1998). 
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Ary, Jacobs, Sorensen, and Razavieh (2010) defined reliability as a 

reference to the consistency of the results produced by a given measure. From a 

theoretical perspective, this refers to the evaluation and management of random and 

systematic errors of measurement and functions as a necessary prerequisite to any 

assertions of measure validity (Ary, Jacobs, Sorensen, & Razavieh, 2010). 

Quantitative reliability testing may be parsed into three major categories: test-

retest, equivalent forms, and internal consistency (Ary, Jacobs, Sorensen, & 

Razavieh, 2010). Where test-retest and equivalent forms strategies require multiple 

instrument administrations to a static sample, internal-consistency measures 

achieve adequately rigorous quantitative results in a single measure administration 

(Ary, Jacobs, Sorensen, & Razavieh, 2010). In the context of scale development, 

Hinkin (1998) suggested the use of Cronbach’s (1951) coefficient alpha as the 

preferred measure of internal consistency. A minimum alpha coefficient of .7 was 

suggested as an indicator of adequate coverage of the construct to which the item is 

claimed to be related (Churchill, 1979; Hinkin, 1998). 

Context-Specific Locus of Control Scale Development 

Spector (1988) developed the Work Locus of Control scale in order to 

quantify the extent to which individuals perceived their experiences in a 

professional work environment as the results of their actions. The study utilized six 

independent samples in order to narrow the initial 49-item pool down to a final set 
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of 16 scale items that were tested for consistency and reliability. The initial 49-item 

pool was created via “a conceptual analysis of the locus of control construct and 

how it relates to work behavior” (Spector, 1988, p. 336). Based on the results of the 

distribution of this pool to the first independent sample of participants, the pool was 

reduced based on the following criteria: “acceptable item-total correlations, lack of 

correlation with social desirability” (Spector, 1988, p. 336), and the balancing of 

internal and external subscale items. Table 1 shows the results of sample testing for 

each of the six testing scenarios. Based on the findings shown in Table 1, Spector 

(1988) concluded that that the Work Locus of Control Scale was a “viable” (p. 339) 

context-specific measure of locus of control. Although the exact details of 

Spector’s (1988) development process were not reported, the use of a deductive 

approach to item generation could be inferred. Results of the correlational analyses 

for construct validity demonstrated the ability to develop a context-specific 

measure for locus of control that more closely correlates to context-specific 

criterion measures than general measures of locus of control. 

Bradley and Sparks (2002) developed a locus of control measure for service 

situations. In defining their context-specific locus of control construct, Bradley and 

Sparks (2002) adopted the traditional internal-external dichotomy of the original 

Rotter (1966) measure. Within this dichotomy, multiple facets were established. To 

this end, Bradley and Sparks (2002) offered the following: 
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Thus, within the domain, we proposed that customers’ sense of control 

could be derived from perceptions of (a) their abilities to manage the 

service encounter, (b) the interpersonal influence strategies they select, 

and/or (c) the amount of effort they invest in the encounter. Similarly, 

within the external domain, we proposed that control over service could be 

perceived to reside in (a) management personnel, philosophy, and practices; 

(b) the skills and attitudes of the service staff; and/or (c) luck and chance 

events. (p. 315) 

Bradley and Sparks’ (2002) division of locus of control into three facets provided 

theoretical grounding for the expectation of multiple latent factors in the context of 

the proposed scale. Scale development began with the initial conceptualization of a 

70-item pool based on input from three focus groups and the consideration of 

existing locus of control measures. Examination of the pool for content 

distinctiveness and face validity saw the reduction of the pool to 48 items – 24 

items for each internal and external, and 8 items per facet. Thereafter, the study was 

divided into three phases. In the first stage, data was collected from 265 

participants and a principle components factor analysis was used to determine the 

factor loadings of the 24-item pool. Results of the analysis suggested that the scale 

had three construct dimensions – “internal, powerful others…, and luck or chance” 

(Bradley & Sparks, 2002, p. 316). Initial evaluations of concurrent validity were 
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enabled via investigations of participant pre-purchase research behavior, responses 

to positive word-of-mouth, and the tendency for participants to examine multiple 

service alternatives in search of superior service. Having further refined the item-

pool to 14 items, data was collected from an independent set of 302 participants 

and subjected to a confirmatory factor analysis. Results suggested good 

discriminant validity among the three Service Locus of Control subscales and 

demonstrated model superiority to a two-factor or single-factor model. Further 

investigations of the concurrent validity of the scale were enabled via correlations 

of subscales to the Search Benefits Scale (Srinivasan & Ratchford, 1991). Based on 

significant correlations to the Powerful Others (r = .28, p < .01) and Internal (r = 

.23, p < .01) subscales, Bradley and Sparks (2002) concluded that the Service 

Locus of Control scale could be used as a component measure for the investigation 

of consumer preservice search behaviors. The third and final part of the study was 

dedicated to further validation testing of the measure. For this stage, 205 

participants provided responses to the Service Locus of Control Scale, the Rotter 

(1966) I-E Scale, the Busseri, Lefcourt, and Kerton (1998) Consumer Locus of 

Control Scale, the Lambert (1980) Consumer Powerlessness Scale, the Murray 

(1991) Non-Search Purpose Tendency Scale, and the Crosby and Stephens (1987) 

Generalized Satisfaction Scale. Results of this phase supported the factor structure 

confirmed in the second research phase and demonstrated superior relationships to 
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theoretically related constructs than general locus of control measures. Thus, 

Bradley and Sparks (2002) demonstrated the feasibility of a multidimensional 

factor solution for locus of control that is better suited to measurements of control 

perceptions within the context of their development. 

Crowdsourced Convenience Samples 

Commonly discussed in the context of the research process at large, 

“external validity refers to the extent to which the findings of a study can be 

generalized to other subjects, settings, and treatments” (Ary, Jacobs, Sorensen, & 

Razavieh, 2010, p. 292). This concept is crucial to the scientific method as it 

illustrates the process of making conclusions about a comparatively large target 

population based on an observed treatment effect within a comparatively small 

representative sample (Ary, Jacobs, Sorensen, & Razavieh, 2010; Ferguson, 2004). 

In the context of scale development, assurance of the generalizability of the scale to 

the target population is accomplished via explicit consideration of the 

representativeness of the samples used throughout its development (DeVellis, 

1991; Hinkin, 1998). Consequently, sampling strategy constitutes a significant 

concern for scale development efforts. 

Under ideal circumstances, population-based probability sampling is 

regarded as the gold standard for sampling strategies based on its theoretical ability 
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to manage the confounding effects of demographic factors (Ary, Jacobs, Sorensen, 

& Razavieh, 2010; Bornstein, Jager, & Putnick, 2013; Jager, Putnick, & Bornstein, 

2017). Population-based probability samples, however, have been noted to be 

impractical on the bases of extensive cost and resource requirements (Bornstein, 

Jager, & Putnick, 2013; Landers & Behrend, 2015). Consequently, crowdsourced 

convenience samples are offered as a practical alternative for the acquisition of 

sample data (Chandler & Shapiro, 2016; Landers & Behrend, 2015). One of the 

main resources for the solicitation of crowdsource sample data is Amazon 

Mechanical Turk (MTurk) – a web-based crowdsource labor platform that has, over 

the years, been used to enable the collection of substantial quantities of data from 

workers on the platform (Chandler & Shapiro, 2016). 

Although lauded for its ability to provide vast quantities of sample data, the 

representativeness, integrity, and, therefore, validity of MTurk sample data has 

been challenged with good reason (Landers & Behrend, 2015). Chandler and 

Shapiro (2016) illustrated several challenges with regard to the collection of data 

via Amazon MTurk including potential limitations regarding the representativeness 

of the sample, character misrepresentation, malingering, and the familiarization of 

practiced participants with research procedures and established measures. With 

respect to the mitigation of character misrepresentation, Wessling, Huber and 

Netzer (2017) called for the use of a pre-screening strategy in order to determine 
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participant eligibility. Chandler and Shapiro (2016), however, illustrated the 

importance of presentation in the implementation of a pre-screening procedure by 

depicting the increase in desirable responses once workers were made aware that 

the pre-screening procedure was, in fact, to determine participant eligibility in a 

following study. With respect to subject inattentiveness, Fleischer, Mead and 

Huang (2015) called for the communication of the gravity of the study to the 

worker as a means of inspiring attentiveness. Chandler and Shapiro (2016), 

however, suggested the active approach of considering workers’ task acceptance 

ratios as an indicator of attentiveness. This, they postulated, was a superior method 

to the implementation of attentiveness prompts – a strategy with which experienced 

workers are assumed to be familiar (Chandler & Shapiro, 2016). 

Empirical Investigations of External Generalizability 

In order to quantify the extent to which crowdsourced convenience samples 

can contribute to academic research fields, it is imperative that investigations that 

compare data collected on crowdsourced platforms with more traditional laboratory 

and field data be conducted. To this end, Buhrmester, Kwang and Gosling (2011) 

investigated the relationship between data collected via Amazon MTurk and 

traditional data collection methods. The results suggested that the MTurk sample 

produced good coefficient alpha and test-retest reliability coefficients. 

Consequently, it was concluded that the MTurk sample either met or exceeded 
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psychometric property criteria regardless of compensation amounts, and that 

MTurk was a valid source of academic sample data (Buhrmester, Kwang, & 

Gosling, 2011). 

Similarly, Walter Seibert, Goering and O’Boyle (2018) evaluated the 

convergence of data collected from online data panels and conventional data 

sources. Results of the study were based on 90 independent samples and 32,121 

participants. Analysis of the effect sizes of the two major data sources showed no 

statistically significant difference between the data solicitation methods thereby 

supporting the notion of converging external validity among the online and 

conventional sampling strategies (Walter, Seibert, Goering, & O'Boyle Jr, 2018). 

Sample reliability was established via the comparison of online panel data to a prior 

reliability generalization study. Results of the comparisons supported adequate 

internal consistency of the online data sources. Consequently, Walter, Seibert, 

Goering, and O’Boyle (2018) supported the use of online panel data as a viable 

data source with demonstrated convergence with conventional sampling strategies. 

Finally, Smith, Roster, Golden, and Albaum (2016) investigated the 

differences in demographics, survey-taking experience and data quality between 

MTurk sample data, and data from an unspecified general household panel via the 

Qualtrics online survey platform. Where the aforementioned studies supported the 
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use of online panels and crowdsource sampling as a viable substitute for more 

traditional laboratory and field data, Smith, Roster, Golden, and Albaum (2016) 

found significant differences in data convergence in the context of their 

performance criteria and demographics analyses. The results of the study showed 

that the exact source of crowdsourced samples can have a significant effect on data 

generalizability, particularly where the inclusion of non-US respondents – which 

make up the majority of the MTurk respondent pool – is concerned (Smith, Roster, 

Golden, & Albaum, 2016). 

Conclusion 

Research regarding automation design paradigms established a multilevel 

approach to automation design, and illustrated that automation is defined less with 

respect to its physical form, and more with respect to its functional capabilities, and 

the degree to which a given system interacts with the user (Parasuraman, Sheridan, 

& Wickens, 2000). Regarding the determination of what functions should be 

automated, the literature offered a user-centered task allocation approach that 

emphasized the importance of differentiating the specific strengths of humans 

versus machines (Fitts, 1951), and an automation-centered approach that sought to 

automate as many tasks as possible (Parasuraman & Riley, 1997; Parasuraman, 

Sheridan, & Wickens, 2000; Pritchett, Kim, & Feigh, 2014). The latter of these 

approaches were established to constitute considerable risk to system performance 
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particularly given the failure of an automated system component (Strauch, 2018). 

With respect to the evaluation of performance in the context of human-automation 

interaction, multidimensional approaches to human performance, attentional 

processing, and automation perception are offered (Rasmussen, 1983). 

Furthermore, the consideration of both qualitative and quantitative approaches to 

human performance researcher was suggested. Where qualitative approaches were 

purported to be of value to the synthesis of general concepts and hypotheses, 

quantitative approaches were offered as a means of validating said hypotheses 

(Rasmussen, 1983). 

Context specific measures of locus of control have been developed in order 

to investigate the relationship between locus of control and other variables within 

specific context domains (Bradley & Sparks, 2002; Hunter, 2002; Jones & 

Wuebker, 1985; Özkan & Lajunen, 2005; Spector, 1988). Context-specific 

investigations of locus of control also enriched the multidimensional structure of 

the general locus of control construct, and supported the increased value of context-

specific scales as predictors of human behavior within specific settings (Bradley & 

Sparks, 2002; Özkan & Lajunen, 2005). Where previous studies established 

context-specific measures of locus of control as viable indicators of human 

behavior within those contexts, no such measures exist in the context of human-

automation interaction. Therefore, the conceptualization and testing of a 
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quantitative measure for automation locus of control is a critical next step that will 

provide a valid and reliable method for the establishment of automation locus of 

control as a predictor of human behavior within a human-automation interaction 

setting. 
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Chapter 3 

Methodology 

Population and Sample 

Population 

The target population for this study was defined as members of the general 

public in the United States. As of 2018, the United States Census Bureau (2019) 

estimated the total population of the United States of America to be 327,167,434 

people (166,038,755 females). The median age was reported at 38.2 years, 36.9 

years for males and 39.5 years for females (United States Census Bureau, 2019). 

For the purpose of this study, the accessible population was defined as workers of 

Amazon MTurk who are over the age of 18 years. Although no precise figure is 

known, the total number of registered MTurk users has been reported as being in 

excess of 500,000 with a probable US worker-base of approximately 15,000 users 

as of 2016 (Chandler & Shapiro, 2016). 

Sample 

For each research phase, the study used a crowdsource convenience sample 

of workers on Amazon MTurk. Participants were recruited via the MTurk human 

intelligence tasks (HIT) system, which provides monetary incentives for the 

completion of tasks requiring a human agent. In order to allow for the assessment 
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of the ecological and population generalizability of the proposed study, 

demographic and relevant professional information were collected. These 

parameters included age, gender, ethnicity, country of origin, and highest education 

achieved. 

Procedures 

Phase 1: Item Generation 

Phase 1 of this study consisted of the deductive synthesis of a preliminary 

item pool based on a review of established locus of control scales (Hinkin, 1998). 

Scale items were compiled into a master database along with a record of their study 

origin, context-of-use, and the dimension and latent factor that they were purported 

to measure. These items were then reframed such that the context of the item was 

shifted to that of human-automation interaction while the factor to which each item 

relates was maintained to the greatest degree possible. This process was consistent 

with the approach of Hunter (2002) in the development of his aviation safety locus 

of control measure. Once a preliminary list of items was generated, the full list was 

reviewed by three subject matter experts for face and content validity (Jones & 

Wuebker, 1985). Experts were tasked with sorting the preliminary item pool based 

on a predetermined set of anticipated factor groupings. This task provided expert 

support for the number of factors to be expected (Hinkin, 1998). Items not assigned 
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to any anticipated factor were placed in their own category and considered for 

deletion from the development pool. 

Phase 2: Reliability and Factor Analysis 

Following item generation, inspection and preliminary grouping, the item-

pool was administered as a single instrument to a sample of Amazon MTurk 

workers. Based on the approaches of DeVellis (1991), Hinkin (1998), and Zygmont 

and Smith (2014), an item-to-respondent ratio of 1:10 was suggested as the ideal 

standard for determining the appropriate sample size for an exploratory factor 

analysis for scale development purposes. However, sample sizes as low as 150 

participants have been noted to provide reliable factor analysis results given strong 

inter-item correlations (Hinkin, 1998). Similarly item-to-response ratios as low as 

1:4 (Hinkin, 1998) to 1:5 (Zygmont & Smith, 2014) have been suggested as 

adequate criteria for the determination of sample size. In an effort to ensure the 

robustness of the analysis and provide a reasonable margin for the removal of 

outliers and inattentive responses, a sample size of 600 participants was targeted for 

this phase of scale development. Workers were not required to be MTurk Masters; 

however, they were required to be in the United States of America, and task 

visibility was set to “Hidden” to prevent viewing of the task by unqualified 

candidates. 
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Following data collection, the data were screened for inattentive and 

ineligible responses. Screening for participant attentiveness consisted of the 

removal of duplicate Google Form submissions based on participants’ worker IDs. 

If the ID appeared more than once within the dataset, all responses associated with 

that worker ID were removed. The data were also screened for excessive yea-

saying and nay-saying by checking the number of identical A-LOC measure item 

responses from an individual participant. If a response consisted of more than 55 

identical responses out of 57 items not including the automation experience 

question, participant inattentiveness was assumed due to their insensitivity to the 

conceptually opposing items of the measure, and their response was removed. 

Erroneous responses to demographic data prompts were also considered as a 

criterion for assumed participant inattentiveness. If, for example, a participant 

entered their age in the field requesting the participant’s country of origin, the 

response was removed. Removals due to inattentiveness were also processes based 

on participants’ non-adherence to questionnaire instructions. This included any 

communication by the participant regarding the non-provision of a questionnaire 

completion code via the MTurk HIT form, the Google Form, or email; the entering 

of an invalid worker ID as determined via a comparison of the Google Form data 

and the MTurk results output; or the submission of any Google Form that did not 

also have a matching MTurk HIT completion record. Checks for participant 
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eligibility were conducted based on reported age and country of origin. If a 

participant reported either an age of less than 18 years or country of origin other 

than the United States of America or its territories, their responses were removed 

from the dataset. Univariate and multivariate outliers were then removed, and 

descriptive statistics for sample demographics were calculated in SPSS Release 

26.0.0.0. Initial scale reliability and item-total correlations were determined using 

SPSS, and any item with an item-total correlation of less than .4 was excluded from 

further analysis. Items were also excluded on the basis of expert suggestions, so 

long as the item suggested for removal had an initial item-total correlation of less 

than .5. A parallel analysis was then conducted within SPSS using the rawpar.sps 

program developed by O’Connor (2000). The script was configured for the use of 

the principle axis factoring method on 5000 parallel datasets based on permutations 

of the raw dataset. The decision to compute parallel datasets based on permutations 

of raw data was made in order to produce a model that was more robust against 

violations of assumptions of sample normality (O'Connor, 2000). The results of this 

analysis were used to determine the number of factors to be retained during the 

principle axis factoring procedure. 

An exploratory factor analysis using the principle axis factoring method 

with direct oblimin rotation was then performed. The Kaiser-Meyer-Olkin Measure 

and Sample Adequacy and Bartlett’s Test for Sphericity were calculated in order to 
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determine the dataset’s suitability for analysis via factor analysis, and the number 

of significant factors was cross-checked via an application of Kaiser’s eigenvalue 

rule and an inspection of the scree plot (DeVellis, 1991; Hinkin, 1998; Tabachnick 

& Fidell, 2013). Items were then removed based on weak loadings (<.4), loading to 

the incorrect factor, or ambiguous cross-loadings (Hinkin, 1998). Once weak, 

incorrectly loaded, and cross-loaded items were removed, item removals continued 

based on the content of the item, and the item’s contribution to the explained 

variance of the subscale and the measure. The factor analysis was re-run after the 

removal of each item. 

Phase 3: Confirmatory Factor Analysis and Validity Testing 

Based on the approach of Hinkin (1998), a minimum sample size of 200 

was suggested for the performance of a confirmatory factor analysis. In order to 

determine the appropriate minimum sample size for the correlational analyses 

required for the establishment of construct validity, an a priori power analysis was 

conducted using G*Power 3.1.9.2. The test family was set to Exact, the statistical 

test was set to Correlation: Bivariate normal model, and a priori was selected as the 

power analysis type. The analysis assumed two-tailed tests throughout the validity 

testing phase where  H1 was set to .3,  error probability was set at .05, power was 

set at .9, and  H0 was set to 0. The power analysis determined that a minimum 

sample size of 112 participants was necessary for correlational analyses. In order to 
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enhance the robustness of the model and account for the removal of inattentive 

responses, ineligible responses and outliers, a sample size of 400 was targeted for 

this phase. The MTurk parameters remained the same as in Phase 2; however, an 

additional qualification was created in order to exclude workers who had completed 

Phase 2 from partaking in the study again. This assured two independent samples 

between the two data collection phases. 

For this stage of the development process, the reduced item pool if 17 items 

(Table 10) was distributed along with a collection of published instruments (see 

Validation Measures below) for use in determining the construct validity of the 

proposed measure (Hinkin, 1998). Tests for convergent validity were enabled via 

the distribution of the Rotter (1966) general I-E scale, the Rosenberg (1965) self-

esteem scale, and the Dishman and Ickes (1981) self-motivation inventory. Tests 

for discriminant validity were enabled by comparison to the decision style 

inventory (Rowe & Mason, 1987), and criterion-related validity was tested using 

the trust in automation scale (Jian, Bisantz, & Drury, 2000). 

Following Phase 3 data collection, the data were screened for inattentive 

and ineligible responses. Screening for participant attentiveness consisted of the 

removal of duplicate Google Form submissions based on participants’ worker IDs. 

If the ID appeared more than once within the dataset, all responses associated with 
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that worker ID were removed. Two explicit attention checks were included in this 

phase. These checks consisted of prompts that direct the participant to select a 

specific response (e.g. “While completing surveys about automation perceptions, 

please select strongly agree in response to this question”). If the participant did not 

respond appropriately to either of these checks, the participant’s response was 

removed from the dataset. The data were also screened for excessive yea-saying 

and nay-saying by checking the number of identical A-LOC measure item 

responses from an individual participant. If a response consisted of more than 16 

identical responses out of 18 items not including the automation experience 

question, participant inattentiveness was assumed due to their insensitivity to the 

conceptually opposing items of the measure, and their response was removed. 

Erroneous responses to demographic data prompts were also considered as a 

criterion for assumed participant inattentiveness. If, for example, a participant 

entered their age in the field requesting the participant’s country of origin, the 

response was removed. Removals due to inattentiveness were also processes based 

on participants’ non-adherence to questionnaire instructions. This included any 

communication by the participant regarding the non-provision of a questionnaire 

completion code via the MTurk HIT form, the Google Form, or email; the entering 

of an invalid worker ID as determined via a comparison of the Google Form data 

and the MTurk results output; or the submission of any Google Form that did not 
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also have a matching MTurk HIT completion record. Checks for participant 

eligibility were conducted based on reported age and country of origin. If a 

participant reported either an age of less than 18 years or country of origin other 

than the United States of America or its territories, their responses were removed 

from the dataset. Both univariate and multivariate outliers were then removed and 

descriptive statistics were calculated in SPSS. Parallel analysis and principle axis 

factoring procedures were repeated as a means of verifying the factor structure 

observed in Phase 2. Subsequently, a three-factor model, based on the verified 

results of the Phase 2 analysis, was developed in AMOS 26 with Internal, Powerful 

Others, and Chance as the three factors, and a confirmatory factor analysis was 

performed to assess model fit. Criteria for the determination of adequate model fit 

were determined based on Hooper, Coughlan and Mullen (2008). Accordingly, an 

insignificant chi-squared statistic was desirable but not expected. Other measures of 

fit included in this analysis were root mean squared error of approximation 

(RMSEA), the comparative fit index (CFI), and the root mean square residual 

(RMR). Linear correlations between the proposed measure and the validation scales 

were then tested, and internal consistency was tested using Cronbach’s alpha for 

both the A-LOC measures and its subscales. All correlational and reliability testing 

was completed in SPSS. 
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Validation Measures 

The following scales were included in the Phase 3 data collection for the 

purposes of determining A-LOC validity. 

Rotter (1966) General I-E Scale. Rotter’s (1966) general locus of control 

scale is a 29-item, forced-choice, unidimensional measure for the determination of 

general locus of control orientation. Each item consisted of a pair of prompts from 

which the participant was required to choose one based on their agreement with 

either prompt. Disregarding items that were designed for the purpose of preventing 

the discovery of the purpose of the scale by participants, it was possible for 

participants to score zero to 23 points, where higher scores depicted a more 

external locus of control orientation. 

Rosenberg (1965) Self-Esteem Measure. The Rosenberg (1965) is a 10-

item, unidimensional Guttman scale that functions as a general measure of self-

esteem based on the extent to which a respondent agrees or disagrees with a given 

scale item. Possible scores range from 10 to 40 points, where higher scores indicate 

higher self-esteem. 

Dishman and Ickes (1981) Self-Motivation Inventory. The self-motivation 

inventory (Dishman & Ickes, 1981) is a 40-item multidimensional measure that 

uses Likert scaling to quantify respondent self-motivation. Based on 19 positively 
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keyed items and 20 negatively keyed items, possible scores range from 40 to 200, 

where higher scores depict higher self-motivation. 

Decision-Style Inventory (Rowe & Mason, 1987). The decision-style 

inventory is a 20-item measure for the determination of how respondents perceive, 

understand, and respond to stimuli. These responses, termed decision styles, are 

divided into four major categories: directive, analytical, conceptual, and behavioral. 

Respondents with a directive decision style are practically oriented with 

preferences for data specificity and structure. Respondents with an analytical style 

prefer intensive data analysis in order to optimize solutions to problems. 

Respondents with a conceptual style have broad, creative tendencies with reliance 

on intuition and emotion. Respondents with a behavioral style are primarily 

socially oriented. A given respondent may have more than one decision style, but 

the order of dominance is determined by scores assigned to each category. It is, 

therefore, possible to score a maximum of 160 for a given style, and a minimum of 

20, with higher scores indicating increased dominance of that style. 

Trust in Automation Scale (Jian, Bisantz, & Drury, 2000). The trust in 

automation scale is a 12-item, Likert-type scale that quantifies the level of trust that 

a person has in an automated system. Accounting for the negative coding of five 

items, possible scores range from 12 to 84, where higher scores indicate higher 

levels of trust in automation. 
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Human Subjects Research 

Prior to conducting this research, an exemption application was submitted 

to the Institution Review Board, which systematically reviewed the study so as to 

ensure that the study was both safe and ethical for human participants. It was 

anticipated that participants were exposed to no greater risk than that of day-to-day 

life. Participation was voluntary, and participants were permitted to withdraw from 

the study at any time. Because participants were Amazon MTurk workers, they had 

the choice to accept the survey tasks, and they were compensated. Each participant 

was paid USD $0.25 as compensation for their time and effort. Data ownership 

resides with the participants, and members of the research team did not collect 

personally identifying information as a part of the study, thus all participants 

remained anonymous. Should a participant have decided that he or she no longer 

wished to be a part of the study, the data collected was excluded from the dataset 

and destroyed.  
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Chapter 4 

Results 

The following chapter provides the results of the analyses conducted for 

each of the study’s three phases. In Phase 1, a formal construct definition was 

established, and items were generated based on the items of existing locus of 

control scales. In Phase 2, tests for initial item reliability and factor structure were 

conducted. The initial item pool was then reduced in order to produce a usable 

instrument. In Phase 3, the factor structure observed in Phase 2 was verified, a 

confirmatory factor analysis was used to assess model fit, and construct validation 

was conducted via correlational analyses. 

Phase 1: Construct Definition and Item Generation 

The purpose of this phase was to define the construct of automation locus of 

control, develop an initial hypothesis regarding the structure of its underlying 

factors, and generate an initial pool based on the items of established locus of 

control scales. Automation locus of control was defined as the extent to which 

operators perceive the outcomes of their use of automation as the result of their 

own actions or of influences external to themselves. This definition was primarily 

based on Rotter’s (1966) general definition of locus of control, which emphasized 

the relationship between a subject’s perception of the cause of a specific 
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experience, and the occurrence of that experience in the context of the actions of 

the subject. Based on the multi-dimensional structure of existing locus of control 

scales (Levenson, 1973; Özkan & Lajunen, 2005), a multidimensional factor 

structure consisting of three major three factors was considered. Each factor would 

be measured by a subscale such that items grouped on the Internal subscale 

measured the extent to which an individual perceived their experiences as the result 

of their own actions. Items grouped to the Powerful Others subscale measured the 

extent to which an individual perceived their experiences as the result of influences 

of the system itself or the designers of the system. Items grouped to the Chance 

subscale measured the extent to which individuals perceived their experiences with 

automation as the result of chance irrespective of their actions, or the influences of 

the system or its designers. 

A deductive approach to item generation was used in which the items of 

published locus of control scales were reframed to fit the context of the automation 

locus of control construct. Origin scales were chosen based on their documented 

merit as valid and reliable measures of locus of control, the generalizability of their 

verbiage based on their context of use, and the latent factor structure of each 

instrument. To this end, the Rotter (1966) general locus of control measure was 

selected for its notoriety as the foundation of the construct and its measurement, 

and the Levenson (1973) multidimensional locus of control measure was chosen on 
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the basis of its empirically supported multidimensional factor structure (Presson, 

Clark, & Benassi, 1997). Initial item generation based on the items of the 

aforementioned measures resulted in the creation of 57 items that were designed 

with the intent of capturing a unidimensional measure of internality verses 

externality (Rotter, 1966), and a multi-factor structure consisting of three distinct 

latent factors: internal, powerful others, and chance (Levenson, 1973). 

Following initial development, scale items were distributed to three subject-

matter experts. These experts were all current professors of the Florida Institute of 

Technology with professional and educational backgrounds in human factors, 

aerospace engineering, or industrial-organization psychology. Results of the item 

sorting task produced relatively consistent item groupings with respect to Internal, 

and Chance items. Some variation was observed among proposed Powerful Others 

items that was likely due to variations in experts’ conceptualization of the 

multidimensional structure of the locus of control construct. The list of proposed 

items, and results of the item sorting task are available in Table 2. 

Phase 2: Reliability Testing and Exploratory Factor Analysis 

The purpose of this phase was to examine the initial reliability of the 

proposed item-set, establish a preliminary factor structure that is consistent with 
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both established theory and the collected data, and to reduce the size of the initial 

item-pool to that of a practical scale for use in subsequent analyses. 

Data Screening and Demographics 

For this initial phase, 600 responses were collected from workers of 

Amazon MTurk from May 15, 2019 to May 17, 2019. As an assurance of data 

quality, responses were screened and cleaned prior to any further analyses 

(Tabachnick & Fidell, 2013). Checks for duplicate responses determined that that 

10 participants had submitted the instrument twice. These 20 cases were removed. 

Subsequent checks for inattentive responding were also conducted resulting in the 

removal of a further 98 responses. Finally, screening for ineligible participants 

based on age and country of origin resulted in the removal of 18 responses. 

Following the removal responses from inattentive and ineligible participants, 464 

responses remained. 

The handling of outliers followed the guidance of Tabachnick and Fidell 

(2013) with the removal of both univariate (12) and multivariate (41) outliers. A 

univariate outlier was defined as any case for which a response to a single scale 

item differed from the mean response to that item by greater than 3.29 standard 

deviations. A multivariate outlier was defined as any case for which the combined 

responses of all scale items produced a significant Mahalanobis Distance (p < 
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.001). Following the removal of all outliers, a final dataset of 411 responses 

remained. This produced an item-to-response ratio of 1:7.2. By virtue of total size 

and item-to-response ratio, the resultant sample was determined to be adequate for 

factor analysis (Hinkin, 1998; Zygmont & Smith, 2014), and was used for all 

remaining Phase 2 analyses. Demographic statistics for the sample are available in 

Table 3. The data consisted of responses from 207 (50.4%) males and 204 (49.6%) 

females. Respondents’ ages ranged from 19 years to 81 years with an average age 

of 38 years, and a standard deviation of 12.1 years. With respect to race and 

ethnicity, the majority of participants identified as Caucasian/White (N = 331). The 

remainder of the sample consisted of 25 respondents who identified as African 

American/Black, 24 who identified as Latin American/Hispanic, 23 who identified 

as Asian, two who identified as American Indian, five who identified as mixed 

race, and one participant who specified neither a race nor ethnicity. Regarding the 

educational background of the sample, 93 respondents indicated having completed 

their high school diploma/GED, 63 indicated having completed an associate’s 

degree, approximately half of the participants reported having completed their 

bachelor’s degree (N = 194), 49 indicated having completed a master’s degree, and 

seven indicated having completed a philosophical doctorate. The remaining five 

participants reported partial completion of a college degree, completion of 
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vocational training or trade school, and completion of other professional degree 

programs. 

In order to ensure adequate understanding of the study’s definition of 

automation by participants, respondents were asked to indicate their experience 

with automation based on a list of automated systems at varying capability levels 

(see item 1 in the Appendix). Results suggested that the use of 

autocorrect/predictive text was the most common form of automation experience 

among respondents (N = 327) followed by automated navigation aids (N = 305), 

motion-activated lighting (N = 301), low-level kettle/coffee-maker automation (N = 

291), auto-curated media (N = 265), and sunlight-sensitive lighting (N = 188). 

Experience with production robotics and self-driving cars was limited among the 

sample with system usage being reported by 52 participants and 30 participants 

respectively. The full statistical output for automation experience is available in 

Table 3. 

Initial Reliability Testing and Item Reduction 

As a preliminary measure of internal consistency, Cronbach’s alpha was 

calculated based on responses to all items in the preliminary item pool. The initial 

Cronbach’s alpha for the measure was  =  Corrected item-total correlations 

were also determined, and items with item-total correlations, r < .4 were removed 
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from the item pool (Clark & Watson, 1995; Hinkin, 1998). Based on this criterion, 

21 items were removed from the initial pool (Table 4). Further reduction of the 

pool was accomplished through the removal of items that were recommended for 

removal by at least one subject-matter expert, and that also had item-total 

correlations of r < .5, or were suggested for removal by all three subject-matter 

experts. Based on these criteria a further five items were excluded from the pool. 

Consequently, 31 items remained to be subjected to factor analysis procedures. 

Exploratory Factor Analysis 

The exploratory factor analysis determined the number of factors to be 

retained for the preliminary construction of subscales based on sample data and a 

priori theory, to determine which of the proposed items loaded to which factor, and 

to enable further reduction of the item-pool based on the factor loadings. Results of 

the parallel analysis supported the retention of four factors based on raw data 

eigenvalues that were greater than the 95th percentile of the random dataset (Table 5 

and Figure 4). Following the parallel analysis, principle axis factoring was used to 

further examine the number of factors to be retained, examine item groupings based 

on retained factors, and enable decisions on item retention. Results of the Kaiser-

Meyer-Olkin measure of sampling adequacy produced a value of .95, and Bartlett’s 

test of sphericity produced 2 = 8230.4, df = 465, p < .001. These results suggested 
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that the current dataset was suitable for factor extraction (Table 6). Results of the 

initial factor analysis were consistent with the findings of the parallel analysis 

insofar as the retention of four factors was supported based on Kaiser’s eigenvalue 

rule, and the structure of the scree plot (Table 7, Table 8, Figure 5). 

Given the consistent support for the retention of four factors, item 

groupings based on those factors were determined via the interpretation of the 

pattern matrix. This initial pattern matrix, provided in Table 9, demonstrated a 

number of ambiguous and weak item loadings that marginally supported the 

extraction of the fourth factor, but gave little merit of its retention based on theory. 

Decisions for item removal were made based on weak item loadings (<.4), or cross 

loadings for which a single factor failed to load at double the factor loading of any 

other factor. Items that did not load to the desired latent factor were also removed. 

The analysis was repeated after the removal of each item, and, once items with 

weak loadings or ambiguous cross-loadings were removed, three latent factors 

remained. Item reduction continued based on the content of each item, and the 

impact of the removal of that item on the total explained variance of the resultant 

measure. The resultant pattern matrix of the final item-set is available in Table 10. 

The factor structure of the item-set was supported by the eigenvalues and loadings 

depicted in Table 11 and Table 12, the scree plot depicted in Figure 6, and the post-

reduction parallel analyses matrix and sequence plot depicted in Table 13 and 
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Figure 7 respectively. Total explained variance for the measure at this stage was 

62% with Internal, Powerful Others and Chance subscales producing explained 

variances of 12%, 10% and 40% respectively. 

Phase 3: Confirmatory Factor Analysis and Validity Testing 

The purpose of this phase was to examine the reliability of the instrument, 

verify the factor structure observed in the Phase 2 factor analysis, assess the fit of 

the exploratory factor model by way of a confirmatory factor analysis, and 

established the construct validity of the proposed instrument by way of correlations 

for convergent, divergent and criterion-related validity. 

Data Screening and Demographics 

For this phase, 431 initial responses were collected from workers of 

Amazon MTurk between May 30, 2019 and June 2, 2019. Responses were subject, 

as they were in Phase 2, to screening for respondent ineligibility and inattentiveness 

(Tabachnick & Fidell, 2013). Checks for duplicate responses determined that that 

five participants had submitted the instrument twice. These 10 cases were removed. 

Subsequent checks for inattentive responding were also conducted resulting in the 

removal of a further 152 responses. Finally, screening for ineligible participants 

based on country of origin resulted in the removal of 11 responses. The removal of 

inattentive and ineligible responses resulted in the retention of 258 cases prior to 
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the removal of outliers. Outlier removal followed identical procedures to those of 

Phase 2. Following the removal of all outliers, a final dataset of 246 responses 

remained. This produced an item-to-response ratio of 1:14.5. By virtue of total size 

and item-to-response ratio  (Hinkin, 1998; Zygmont & Smith, 2014), the resultant 

sample was determined to be adequate for factor analysis. 

Full demographic data for the sample are provided in Table 14. The data 

consisted of responses from 102 (41.5%) males and 144 (58.5%) females. 

Respondents’ ages ranged from 19 years to 74 years with an average age of 38 

years, and a standard deviation of 12.7 years. With respect to race and ethnicity, the 

majority of participants identified as Caucasian/White (N = 196). The remainder of 

the sample consisted of 17 respondents who identified as African American/Black, 

14 who identified as Latin American/Hispanic, 12 who identified as Asian, one 

who identified as Eurasian, four who identified as mixed race, and two participants 

who identified as Middle Eastern. Regarding the educational background of the 

sample, 54 participants indicated having completed their high school 

diploma/GED, 35 indicated having completed an associate’s degree, 116 reported 

having completed their bachelor’s degree, 32 indicated having completed a 

master’s degree, and six indicated having completed a philosophical doctorate. The 

remaining three participants reported partial completion of a college degree, and 

completion of other professional degree programs.  
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An in Phase 2, respondents were asked to indicate their experience with 

automation based on a list of automated systems at varying capability levels (Table 

14). Results suggested that the use of autocorrect/predictive text was the most 

common form of automation experience among respondents (N = 220) followed by 

automated navigation aids (N = 214), motion-activated lighting (N = 208), low-

level kettle/coffee-maker automation (N = 191), auto-curated media (N = 189), and 

sunlight-sensitive lighting (N = 110). Experience with production robotics and self-

driving cars was limited among the sample with usage being reported by 20 

participants and 16 participants respectively. 

Reliability Testing and Exploratory Factor Analysis 

As measure of internal consistency, Cronbach’s alpha was calculated based 

on responses to the reduced item pool. The overall Cronbach’s alpha for the current 

measure was  =  Subscale internal reliability was determined to be 

 =   =  and  =  for Internal, Powerful Others, and Chance subscales 

respectively. Following the reliability analyses, a parallel analysis was conducted to 

verify the factor structure observed in Phase 2. Results of the analysis (Table 15, 

Figure 8) supported the retention of three factors based on raw data eigenvalues 

that were greater than the 95th percentile of the random dataset. Principal axis 

factoring with a direct oblimin rotation was also repeated to further verify the 
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number of factors to be retained, as well as the factors to which each item had 

loaded. Results of the Kaiser-Meyer-Olkin measure of sampling adequacy 

produced a value of .87, and Bartlett’s test of sphericity produced 2 = 2127.3, df = 

136, p < .001. These results suggested that the current dataset was suitable for 

factor extraction (Table 16). Results of the initial factor analysis were consistent 

with the findings of the parallel analysis and the Phase 2 exploratory analysis 

insofar as the retention of three factors was supported based on Kaiser’s eigenvalue 

rule, and the structure of the scree plot (Table 17, Table 18, Figure 9). The pattern 

matrix was also consistent with the Phase 2 findings regarding which item loaded 

to which factor (Table 19). 

Confirmatory Factor Analysis 

In order to assess the fit of the proposed measure, a confirmatory factor 

analysis using the maximum likelihood estimation (Tabachnick & Fidell, 2013) 

was conducted based on the three-factor model established in Phase 2 and verified 

by the secondary factor analysis performed in Phase 3. This model, depicted in 

Figure 10, grouped individual scale items to latent factors on an a priori basis in a 

manner commensurate with the principal axis pattern matrices in Table 13 and 

Table 19. Results of the confirmatory factor analysis produced 2 = 251.6, df = 116, 
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p < .001. Results for other metrics of model fit were RMSEA = .07, CFI = .94, 

RMR = .05.  

Validity Testing 

A correlational analysis was conducted to determine the relationship 

between the proposed automation locus of control scale and its subscales, and the 

battery of validation scales. Accordingly, means, standard deviations, alpha 

reliabilities and inter-subscale correlations for the automation locus of control scale 

are provided in Table 21. The analysis showed significant subscale-total 

correlations, and significant correlations between the Internal subscale, and 

Powerful Others and Chance subscales. The relationship between Powerful Others 

and Chance was not significant. 

Hypothesis Testing 

In order to test the convergent, divergent and discriminant validity of the 

measure, the following hypotheses were developed: 

H10: There is no significant relationship between total automation locus of 

control scores and general locus of control scores. 

H1A: There is a significant relationship between total automation locus of 

control scores and general locus of control scores. 
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H20: There is no significant relationship between total automation locus of 

control scores and self-esteem scores. 

H2A: There is a significant relationship between total automation locus of 

control scores and self-esteem scores. 

H30: There is no significant relationship between total automation locus of 

control scores and self-motivation scores. 

H3A: There is a significant relationship between total automation locus of 

control scores and self-motivation scores. 

H40: There is no significant relationship between total automation locus of 

control scores and directive decision style scores. 

H4A: There is a significant relationship between total automation locus of 

control scores and directive decision style scores. 

H50: There is no significant relationship between total automation locus of 

control scores and analytical decision style scores. 

H5A: There is a significant relationship between total automation locus of 

control scores and analytical decision style scores. 
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H60: There is no significant relationship between total automation locus of 

control scores and conceptual decision style scores. 

H6A: There is a significant relationship between total automation locus of 

control scores and conceptual decision style scores. 

H70: There is no significant relationship between total automation locus of 

control scores and behavioral decision style scores. 

H7A: There is a significant relationship between total automation locus of 

control scores and behavioral decision style scores. 

H80: There is no significant relationship between total automation locus of 

control scores and trust in automation scores. 

H8A: There is a significant positive relationship between total automation 

locus of control scores and trust in automation scores. 

With respect to the establishment of convergent validity, Hypothesis 1 

tested the relationship between automation locus of control and a measure of 

general locus of control. Correlational analyses produced a significant relationship 

between total automation locus of control scores and general locus of control (r = -

.185, p = .004). Because the scores of the general locus of control increase as 

respondent orientations become more external, the apparent inverse relationship 
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between the two measures was expected. The null hypothesis, H10, was rejected. 

Likewise, Hypothesis 2 determined the relationship between automation locus of 

control and self-esteem. The relationship between the total automation locus of 

control score and the self-esteem measure was positive and significant (r = .187, p 

= .003). Therefore, the null hypothesis, H20, was rejected. Finally, Hypothesis 3 

tested the relationship between automation locus of control and self-motivation. 

Results of the correlational analysis were positive and significant (r = .279 p < 

.001). The null hypothesis, H30, was rejected. 

With respect to discriminant validity, Hypothesis 4 examined the 

relationship between automation locus of control and directive decision style 

scores. The results of the analysis were not significant (r = -.095, p = .138). 

Therefore, the null hypothesis, H40, was accepted. Hypothesis 5 examined the 

relationship between automation locus of control and analytical decision style 

scores. Results of the correlational analysis were positive and significant (r = .233, 

p < .001). Therefore, the null hypothesis, H50, was rejected. Hypothesis 6 tested the 

relationship between automation locus of control and conceptual decision style 

scores. Results of the analysis were insignificant (r = -.012, p = .854). 

Consequently, the null hypothesis, H60, was accepted. Finally, hypothesis 7 

examined the relationship between automation locus of control and behavioral 
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decision style scores. Results of the analysis were insignificant (r = -.111, p = 

.083). Therefore, the null hypothesis, H70, was accepted. 

Regarding the establishment of criterion-related validity, hypothesis 8 

investigated the relationship between automation locus of control scores and trust 

in automation. Results of the correlational analysis supported a significant positive 

relationship (r =.183, p = .004). Therefore, the null hypothesis, H80 was rejected.  
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Chapter 5 

Conclusion 

Overview 

Given the extent to which automation has become a normal and, in cases, 

integral part of personal and professional life, the analysis of human-automation 

interaction remains a prerequisite for its informed design, and safe, effective and 

efficient use (Fitts, 1951; Parasuraman & Manzey, 2010; Rasmussen, 1983). This 

includes the analysis of control perceptions as a probable indicator or determinant 

of operator performance (Berberian, Sarrazin, Le Blaye, & Haggard, 2012). To this 

end, locus of control was offered as an established construct for the determination 

of the outcome expectancies of system users. Rooted in general expectancy theory, 

locus of control was chosen for its established nomological network, its prolific use 

as an indicator of human control perceptions, and its hypothesized value as a 

predictor of human behavior (Lefcourt, 1966; Rotter, 1966; Rotter, 1975). The 

applicability of locus of control to human-automation interaction evaluation was 

further bolstered by the demonstrated ability to both inductively and deductively 

develop and deploy context-specific locus of control measures based on refined 

construct definitions and factor structures within a specific content domain (Hunter, 

2002; Lefcourt, Von Baeyer, Ware, & Cox, 1979; Ross, Ross, Short, & Cataldo, 
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2015; Özkan & Lajunen, 2005). Therefore, the purpose of this study was to develop 

and validate a locus of control measure that could quantify operators’ locus of 

control in the context of human-automation interaction. This measure was proposed 

as an additional method for analyzing control perceptions as an indicator and 

modifier of human behavior and, thus, system performance. 

Discussion and Interpretation 

The item pool, derived in similar fashion to the development of Hunter’s 

(2002) aviation safety locus of control scale, was based on the items of the Rotter 

(1966) general I-E measure and the Levenson (1973) multidimensional locus of 

control measure. The a priori targeting of three latent factors, based on Levenson’s 

multidimensional measure, resulted in the development of 57 initial items that were 

designed to conform with established conceptual definitions for Internal, Powerful 

Others, and External subscales (Table 2). Preliminary support for a three-factor 

structure was demonstrated via the subject-matter expert feedback. Although there 

was some variation as to the exact composition of factor groupings for the initial 

pool, all subject-matter experts made use of all three available factor groups. 

Regarding the face validity of the items, expert feedback was consistent in the 

suggested removal of items whose wording targeted comprehension of the system 

as opposed to outcome expectancies. 
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The primary objectives of Phase 2 were the examination of the initial 

reliability of the proposed item-set, the establishment of a preliminary factor 

structure consistent with both established theory and collected data, and the 

reduction of the initial item-pool to a practical but theoretically meaningful scale 

for use in subsequent analyses. The high Cronbach’s alpha ( = ) suggested that 

the initial item pool adequately captured the content domain of the automation 

locus of control construct (Churchill, 1979), and demonstrated the high internal 

reliability of the initial item pool. The removal of items with weak item-total 

correlations (r < .4) reduced the size of the item-pool, and eliminated items that did 

not measure the common construct captured by the remaining items. Similarly, the 

removal of items based on the suggestions of subject matter experts and low item-

total correlations (<.5) eliminated items that did not measure the same core 

construct as the rest of the item-pool and supported the face validity of the measure. 

Although the removal criteria were either empirically grounded or based on 

unanimous expert opinion, it should be noted that these procedures precluded the 

examination of factor loadings for these items. Nonetheless, their preliminary 

exclusion was assumed to have a negligible effect on the final factor structure of 

the instrument. Furthermore, removal criteria that combined individual expert 

suggestions with relatively low item-total correlations aligned well with the 
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consistency in observed experts’ suggested removal of items that targeted system 

understanding as opposed to outcome expectancies. 

The results of the parallel analysis and principal axis factoring procedures 

demonstrated consistent initial support for the retention of four latent factors; 

however, the retention of the fourth factor was only marginal across all results. The 

resultant pattern matrix (Table 9) demonstrated weak and ambiguously loading 

items that were not consistent with the grounding theory of the construct. The 

incremental removal of weakly loaded and ambiguously cross-loaded items was, 

therefore, justified (Clark & Watson, 1995; Hinkin, 1998). Following item 

reduction, the exploratory analyses supported a three-factor solution that was 

conceptually consistent with the internal, powerful others, and chance subscales of 

other multidimensional measures of locus of control (Bradley & Sparks, 2002; 

Levenson, 1973; Ross, Ross, Short, & Cataldo, 2015). Although the three-factor 

solution is supported by a number of established scales, it stands to note that the 

emergence of a factor structure is influenced by the characteristics of the sample. It 

is, therefore, not appropriate to assert strict model correctness based data from one 

sample. Rather, the structure is indicative of the differences to which members of 

the sample are sensitive for any given analysis (Rotter, 1975). Although the 

observed thee-factor structure is indicative of the perceptual capabilities of the 

sample, it is plausible that empirical support for a given subscale structure of A-
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LOC may change based on the characteristics of the study sample. Pilots, for 

example, may respond in a pattern that is indicative of perceived differences in the 

influences of individual system designers, aircraft manufacturers, and system 

regulators; whereas, a smartphone user may only perceive their phone at the level 

of the manufacturer branding under which it was sold. This consideration 

notwithstanding, the existing support for a three-dimensional structure based on 

perceived influences of oneself, powerful others, and chance supported the 

adoption of this model as the foundation of the scale. 

Total variance explained (62%) was also deemed adequate based on 

Hinkin’s (1998) 60% acceptance criteria for scale development. Explicit effort was 

required on the part of the researchers to circumvent the insensitivity of purely 

empirical item removal criteria to the construct definition and content domain of 

the measure (Nunnally & Bernstein, 1994). As such, some items that negligibly 

increased explained variance were discarded in favor of items that were more 

conceptually meaningful to the measurement of the construct. This consideration 

was instrumental in the retention of scale items that maximized explained variance 

based on the differences that members of the target population were likely able to 

perceive. Items that attempted to differentiate between the roles of system 

designers and system integrators as distinct elements in automation manufacturing 

were discarded in favor of items that introduced considerations of operator 
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proficiency. Specifically, participants were assumed to be insensitive to the 

differences between “The outcomes of my use of automation are chiefly controlled 

by system designers” and “The outcomes of my use of automation are chiefly 

controlled by system integrators.” Conversely, “The outcomes of my use of 

automation are chiefly controlled by system designers” and “Although I may be a 

proficient user, the outcomes of my use of automation are determined by system 

designers” were determined to be perceivably different based on the introduction of 

elements of operator proficiency. 

The primary objectives of Phase 3 were the determination of the internal 

reliability of A-LOC, the assessment of the fit of the three-factor model using a 

confirmatory factor analysis, and the evaluation of convergent, discriminant, and 

criterion-related validity. By this stage, the A-LOC measure consisted of 17 items 

scored on a Likert-type scale from Strongly Disagree, scored as -2, to Strongly 

Agree, scored as +2. Items on the Powerful Others and Chance subscales were 

reverse scored so that higher overall scale scores indicated more internal 

automation locus of control. A participant’s overall A-LOC score was the summed 

score for all items across all subscales. Subscale scores were also calculated as the 

summed scored for all items within a given subscale. 
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Regarding scale reliability, results of Cronbach’s alpha analyses for both the 

overall measure and all three subscales supported adequate internal consistency 

with subscale Cronbach’s  scores ranging from .76 to .92 and an overall 

Cronbach’s  of .85. These results exceeded the reliability criteria of .7 (Hinkin, 

1998), and provided a good indication that scale items were capturing a similar 

content domain based on the consistency of participants’ responses (Churchill, 

1979). Comparisons of the Phase 2 exploratory factor analysis and the results of 

secondary parallel and principle axis factoring analyses further supported the 

reliability of the factor structure of the scale. Although testing of the factor 

structure across different target populations would best support the external 

generalizability of the three-factor structure, the observed similarities provide good 

initial support for the robustness the factor structure using two independent samples 

from a single target population. 

The suitability of the three-factor model for A-LOC was evaluated via a 

confirmatory factor analysis using a maximum likelihood estimation. Results of the 

analysis produced a significant chi-squared statistic (2 = 251.6, df = 116, p < 

.001), which suggested that the sample covariance matrix differed significantly 

from the estimated population covariance matrix (Tabachnick & Fidell, 2013). 

However, the robustness of the chi-squared test of model fit has been challenged 
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due to its sensitivity to violations in multivariate normality, and over-rejection of 

the null hypothesis due to minute differences between the sample and estimated 

covariance matrices that are inherent in sufficiently large sample sizes (Hooper, 

Coughlan, & Mullen, 2008; Kline, 2011; Tabachnick & Fidell, 2013). 

Consequently, the analysis of alternate measures of model fit is recommended, and 

the examination of the RMSEA, CFI and RMR is supported (Hooper, Coughlan, & 

Mullen, 2008). Analyses of the other measures of model fit, depicted in Table 20, 

generally suggested that the model approached good fit (Hooper, Coughlan, & 

Mullen, 2008). The RMSEA (.07) supported favorable model parsimony and 

suggested good model fit based on a modification of the chi-squared criterion that 

enables the determination of model fit based on reasonable imperfections in the 

comparison of the observed model and the estimated population model (Brown, 

2006; Hooper, Coughlan, & Mullen, 2008). Similarly, the CFI (.93) suggested good 

model fit based on the comparison of the sample covariance matrix and an 

estimated null matrix that assumes uncorrelated latent factors (Hooper, Coughlan, 

& Mullen, 2008). Good model fit was also supported by the RMR (.05), which 

demonstrated that the residuals between the observed covariance matrix and the 

hypothesized covariance matrix were reasonably similar (Hooper, Coughlan, & 

Mullen, 2008). The item loadings of the confirmatory factor analysis (Figure 10) 

supported a strong relationship between individual items within each sub-factor 
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(Clark & Watson, 1995; Hinkin, 1998), and the low covariances between latent 

factors demonstrated that the subscales are likely measuring different elements of 

the overall construct (Nunnally & Bernstein, 1994). Overall, the resultant factor 

structure of the A-LOC measure was empirically supported via exploratory and 

confirmatory analyses and aligned well with the grounding theory of the 

automation locus of control construct. 

The construct validity of the A-LOC measure was divided into individual 

analyses of convergent, divergent and criterion-related validity. With respect to 

convergent validity, significant correlations between A-LOC and its subscales, and 

Rotter’s (1966) general I-E scale, Rosenberg’s (1965) self-esteem measure, and 

Dishman and Ickes’ (1981) self-motivation inventory were expected. Results only 

partially supported the convergent validity of the measure as total A-LOC scores 

supported significant but weak positive correlations for all measures (Table 22). 

However, analysis of the individual subscale scores only supported the convergent 

validity of the Chance subscale for all measures of the convergent test battery. The 

Internal subscale had a weak, significant, positive correlation with the self-

motivation measure, and the Powerful Others subscale was not correlated 

significantly with any convergent measure. Regarding the weak but significant 

correlations between A-LOC subscale scores and convergent validity variables, the 

findings of these analyses are consistent with the weak but statistically significant 
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validity correlations found by Bradley and Sparks (2002) and Hunter (2002). 

However, the development and validation of other published locus of control scales 

demonstrated convergent validity that was supported by Pearson’s correlations with 

absolute values in the range of .4 to .6 (Kourmousi, Xythali, & Koutras, 2015; 

Lindbloom & Faw, 1982). The relative weakness of observed correlations 

notwithstanding, the results of the convergent validity tests provided partial support 

for the convergent validity of the A-LOC measure by virtue of their significance 

and expected directionality. 

Analysis of the A-LOC measure’s discriminant validity was, for the most 

part, supported by the correlational analyses between the overall A-LOC scores, 

and the subscale scores of the decision style inventory (Rowe & Mason, 1987). 

Significant correlations were observed between the total A-LOC score and the 

analytical decision style scores, as well as between directive, analytical and 

behavioral decision style scores, and the A-LOC Chance subscale (Table 22). The 

combination of significant relationships between total scores and Chance subscale 

scores, and the analytical decision style scores are of interest because their positive 

significant correlations support the conceptual convergence of the two scales. 

Consideration of the conceptual definition of the analytical decision style supported 

this relationship because the style denotes an individual who tends to seek 

extensive amounts of information in order to make decisions. By contrast, the 
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comparatively very weak or insignificant subscale correlations of the remaining 

decision styles with total, Internal, Powerful Others, and Chance A-LOC scores are 

indicative of a lack of a conceptual relationship between the two constructs. 

However, the relationships that are significant may suggest a link between decision 

styles and locus of control, particularly where considerations of chance are 

concerned, that is not observable in other domains or outside the paradigm of a 

multidimensional construct. 

Analysis of the criterion-related validity of automation locus of control 

required both statistical significance and the appropriate directionality of the 

relationship between A-LOC scores and trust in automation scores for satisfactory 

support to be considered. With respect to total A-LOC scores and Chance subscale 

scores, the observation of a weak, significant relationship between A-LOC scores 

and trust in automation supported the criterion-related validity of the scale. Much 

like the analysis of convergent validity, however, the relationships between trust in 

automation, and both Internal and Powerful Others subscale scores were not 

significant. It is possible that the observed lack of significance among the A-LOC 

subscales is due to fundamental differences in the perceptions of trust between 

people, and trust between people and machines (Hoff & Bashir, 2015; Lee & 

Moray, 1992). The possibility also exists that the unidimensional measures of locus 
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of control used in the reference studies precluded the observation of significant 

relationships at the level of detail that the A-LOC measure provides. 

Limitations 

This study was limited by the use of Amazon MTurk for the recruitment of 

the samples used for data collection. In general, convenience samples are liable 

introduce unique sample characteristics and biases that limit the generalizability of 

results to the target population from which the data was collected (Ary, Jacobs, 

Sorensen, & Razavieh, 2010). For this study, the use of Amazon MTurk added 

layers of complexity both with respect to assurances of data quality, and the 

achievement of two independent samples. Although there are studies that suggest 

comparable quality between MTurk samples and other convenience samples 

(Buhrmester, Kwang, & Gosling, 2011; Walter, Seibert, Goering, & O'Boyle Jr, 

2018), relying on those results as an assurance of data quality is not advised 

particularly if one’s goal is the generalization of findings beyond the research 

sample. In order to assure the integrity of the data used for this study, explicit 

attention checks, tests for yea-saying and nay-saying, checks for erroneous 

responses to demographic prompts, determinations of non-adherence to survey 

instructions, and checks for participant ineligibility based on age and country of 

origin were used. 
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The use of remote participants also constituted a limitation on the types of 

tests that could be performed as measures of criterion-related validity as there was 

no way to administer and monitor performance tasks such as the MATB-II 

(National Aeronautics and Space Administration, 2016) without sacrificing the 

ability to directly oversee the task. This was also a limitation of the use of remote 

participants for the completion of self-report measures; however, self-report 

measures were determined to have remained within the realm of practicality 

whereas simulated performance tasks did not. 

Normality of the data was another issue in developing the A-LOC scale 

because there are assumptions of normality for confirmatory factor analysis 

procedures, and correlational analyses (Table 23). With respect to the confirmatory 

factor analysis, the maximum likelihood estimation is generally robust against 

deviations from data normality given a sufficiently large (> 2,500) sample size 

(Tabachnick & Fidell, 2013). The comparatively small sample size of 246 

responses, therefore, means that the criteria for robustness on the basis of sample 

size was not satisfied. 

The use of a deductive approach to item generation limited the number and 

variety of items in the initial development pool to contextually shifted recreations 

of existing items. Although this approach was chosen due to its purported ability to 
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reliably generate scale items, the variety of items created is severely limited by the 

development scales that are both available and suitable for reframing. Rotter’s 

(1966) and Levenson’s (1973) scales were chosen as the base from which new 

items were generated based on their public availability and their framing in 

sufficiently general context so that reframing in the context of human-automation 

interaction was feasible. The consideration of more scales that are written in a 

sufficiently general context would have provided a wider variety of source items 

from which factor structures could be derived and scale reduction decisions made. 

Participants’ apparent inability to perceive automation in its day-to-day use 

was also a potential limitation of the study. The lower-than-expected indications of 

experience with typing aids such as autocorrect and predictive text from samples of 

MTurk workers suggested that, although members of that population may engage 

in regular use of automation, their mental models of the technology do not include 

an explicit awareness or understanding of its automated functions. Therefore, it is 

possible that the factor structure and construct validity tests may have been 

influenced by participants’ insensitivity to nuances in contemporary automation 

design. 
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Practical Implications 

In addition to providing modest preliminary support for the construct 

validity of the A-LOC measure, the groundwork laid by this study offers several 

key elements in the development of a valid and reliable control perceptions 

measure for use in a human-automation interactions context. First, the literature 

review established the relationship between control perceptions and operator 

behavior, giving credence to the consideration of locus of control as a variable of 

interest for user-centered evaluations of human-machine system performance. The 

propagation of such an idea is critical to both designers and operators particularly 

in cases where system performance has tangible implications for operational safety 

and security. Second, the formal establishment of a context-specific construct 

definition provided a starting point from which either deductive or inductive 

approaches to scale development may proceed (DeVellis, 1991; Hinkin, 1998; 

Nunnally & Bernstein, 1994). Without this foundation, it is entirely possible to 

stray significantly from the core construct as new scales are developed and existing 

scales are refined or adapted (Rotter, 1975). Third, the establishment of an initial 

item pool, based on a deductive approach to item generation, both demonstrated the 

feasibility of adapting existing measures, and provided a repository of items that 

may be revised, reframed, and revalidated for use in subsequent iterations of this 

measure. This effort also provided additional support for a general three-factor 
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structure (Internal, Powerful Others and Chance) of the locus of control construct 

that is generally robust to changes in context of use, and demonstrated how the 

consideration of subscales can result in the identification of new relationships 

between latent factors and other variables, particularly those that are context 

specific, that would have otherwise been lost in the aggregate scores of a 

unidimensional measure. Finally, the correlational analyses highlighted the 

potential uniqueness of the relationships between the automation locus of control 

construct and other variables. Constructs, such as critical decision-making and 

problem solving, may be considered as alternative measures for the establishment 

of convergent validity that may be more appropriate than a measure of self-esteem. 

Future Research 

In light of the findings of the current study, future research for the 

establishment of the nomological network of automation locus of control is 

proposed, and the evaluation of criterion-related validity through considerations of 

alternate criterion variables and data triangulation methods is suggested. 

Investigations for the establishment of the external generalizability of the measure 

are also strongly encouraged. Finally, the use of the A-LOC measure as a tool for 

the evaluation of operator control perceptions is recommended. 



98 

 

 

Although modest support for the construct validity of the measure was 

observed, these results were based primarily on weak correlations on the Chance 

subscale and the total measure scores. The results of the correlational analyses for 

self-motivation and decision style supported the investigation of measures of 

problem solving and decision-making as possible alternate measures of convergent 

validity. Future investigations could also benefit from the targeting of construct 

validity measures at the subscale level, and via comparisons of the current scale to 

other multidimensional measures of locus of control. 

With respect to criterion related validity, the use of criteria other than 

psychometrics was supported by the literature (Hunter, 2002; Özkan & Lajunen, 

2005). In this respect, the examination of the relationship between A-LOC scores 

and performance metrics derived from an evaluation tool, such as MATB-II 

(National Aeronautics and Space Administration, 2016), could better demonstrate 

the criterion-related validity of the measure. Additional support may be attained via 

the triangulation of A-LOC scores, MATB-II performance metrics, and intentional 

binding (Berberian, Sarrazin, Le Blaye, & Haggard, 2012). 

The external generalizability of the measure depends on its continued 

evaluation across different target populations. It is generally regarded that the 

external validity of any research finding is only as comprehensive as its sample 
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allows (Ary, Jacobs, Sorensen, & Razavieh, 2010), and the effects of sample 

characteristics have been noted to have substantial effect on the factor structure of 

locus of control scales (Rotter, 1975). By extension, the potential influence of 

sample characteristics on the results of tests for factor structure and validity cannot 

be overlooked. Therefore, the evaluation of the current A-LOC measure is 

recommended using other generally accepted academic target populations such as 

college students. 

Although the current findings called for further investigation of the 

construct validity of the A-LOC measure, the findings also supported the factor 

structure of the scale and provided reasonable preliminary support for the A-LOC 

scale as a measure of automation control perceptions. Consequently, the use of the 

A-LOC measure is suggested to investigate the control perceptions of system 

operators within specific task domains. These include pilot perceptions of cockpit 

automation, medical practitioner control perceptions of automated medical 

equipment, and driver control perceptions of self-driving cars. It is projected that, 

in any of these task domains, the A-LOC measure would serve to support user-

centered investigations of system performance, thereby enabling informed system 

design through detailed considerations of human-automation interaction. 
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Conclusion 

The automation locus of control scale was developed to enable the 

empirical evaluation of the effect of control perceptions on operator behavior in the 

context of human-automation interaction. Established theory, expert feedback, and 

exploratory factor analyses supported a three-factor structure (Internal, Powerful 

Others, and Chance) to measure control perception orientations. Results of a 

confirmatory factor analysis demonstrated good model fit, and correlational 

analyses demonstrated adequate preliminary construct validity for the measure. The 

unexpected lack of statistical significance for the relationships between Internal and 

Powerful Others subscales, and measures for convergent and criterion-related 

validity suggested that the traditional nomological network for locus of control may 

not be generalizable to considerations of automation control perceptions. The 

unexpected significance of the relationship between Chance and overall A-LOC 

scores, and a measure of analytical decision style suggested that measures that 

assess decision-making and critical thinking may correlate significantly with 

automation control perceptions. Nonetheless, the resultant A-LOC scale was 

supported as a novel measure of control perceptions in the context of human-

automation interaction, and its use as a means informing automation design through 

an evaluation of operator behavior was encouraged. 
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Tables 

Table 1. Means, standard deviations, coefficient alphas, and correlations for Work 

Locus of Control (WLCS) 

 Sample 

 1 2 3 4 5 6 

Mean 

Standard Deviation 

Coefficient alpha 

41.7 

9.6 

0.85 

36.8 

9.9 

0.85 

39.2 

11.9 

0.85 

38.0 

9.0 

0.75 

39.4 

9.1 

0.80 

36.9 

9.6 

0.85 

Correlations of WLCS with:       

Job satisfaction -42* 

(82) 

-54* 

(35) 

-62* 

(99) 

-68* 

(256) 

- -43* 

(496) 

Commitment -20 

(84) 

-26 

(39) 

-26* 

(99) 

- - - 

Intention 13 

(83) 

14 

(39) 

35* 

(99) 

38* 

(286) 

13 

(160) 

- 

Autonomy -18 

(83) 

- - - - -10* 

(496) 

Influence -18 

(83) 

-45 

(39) 

-47* 

(98) 

- - - 

Role stress - - - 32* 

(287) 

- - 

Tenure - 08 

(38) 

05 

(95) 

-10 

(52) 

- -07 

(496) 

Consideration - -26 

(37) 

-34* 

(93) 

-34* - - 

Initiating structure - -31 

(38) 

-35* 

(95) 

(52) - - 

Social desirability 005 

(149) 
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General I-E 57* 

(144) 

   55* 

(160) 

49* 

(496) 

Note. *p<0.05. Numbers in parentheses are sample sizes. Decimal points omitted 

in correlations. Reprinted with permission from Spector (1988, p. 338). 

 

Table 2. Phase 1 Initial Item Pool and Subject-Matter Expert Feedback 

Origin 

Scale 
Item 

Factor Group 

1 2 3 NFa 

Rotter 

(1966) 

People's difficulties with automation result from 

deficiencies in their use of the system. 

3    

Rotter 

(1966) 

One of the major reasons automation is ineffective 

is because operators do not take the time to 

understand it. 

3    

Rotter 

(1966) 

Capable people who fail to effectively use their 

automation have failed due to an inappropriate 

application of automation. 

2    

Rotter 

(1966) 

People who can't make effective use of automation 

don't understand how to use it effectively. 

3    

Rotter 

(1966) 

Believing in fate has never turned out as well as 

making decisions and applying a definitive action 

plan to my automation usage. 

1 1  1 

Rotter 

(1966) 

Being successful with automation is a matter of 

your efforts as an operator, luck has little or nothing 

to do with it. 

3    

Rotter 

(1966) 

The average operator maintains influence over 

automated processes. 

2 1   

Rotter 

(1966) 

When I make plans, I am almost certain that I can 

find a way to have automation conform to those 

plans. 

2 1   

Rotter 

(1966) 

In my case, getting what I want out of an automated 

system has little or nothing to do with luck. 

 2 1 1 

Rotter 

(1966) 

Getting automation to do what you want depends on 

operator proficiency, luck has little or nothing to do 

with it. 

2 1   
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Rotter 

(1966) 

By taking an active role in automation observation 

and control, people can better control their 

outcomes. 

2 1   

Rotter 

(1966) 

When it comes to automation, there really is no 

such thing as luck. 

 2 1  

Rotter 

(1966) 

It is impossible for me to believe that the outcomes 

of my use of automation come down to chance or 

luck. 

 1 1 1 

Rotter 

(1966) 

Automation is ineffective because people do not 

effectively apply it to satisfy their needs. 

2 1   

Rotter 

(1966) 

The outcomes of my use of automation are the 

result of my own actions. 

2 1   

Rotter 

(1966) 

In the long run, operators are responsible for poor 

automation performance both individually and 

systematically. 

3    

Rotter 

(1966) 

Most misfortunes with automation are the result of 

a lack of ability, ignorance, or laziness on the part 

of the operator. 

3    

Rotter 

(1966) 

There is a direct connection between my 

understanding of automation, and my performance 

with the system. 

2 1   

Levenson 

(1973) 

My success with automation depends on my ability 

as an operator. 

2 1   

Levenson 

(1973) 

Whether or not I experience difficulty with 

automation is dependent on my proficiency with the 

system. 

2 1   

Levenson 

(1973) 

When I make plans, I manipulate the system to 

conform to my plans. 

2 1   

Levenson 

(1973) 

I determine the outcomes of my experiences with 

automation. 

2 1   

Levenson 

(1973) 

The outcomes of my use of automation are 

determined by my own actions. 

2 1   

Levenson 

(1973) 

Whether or not I experience a malfunction with 

automation is dependent on my proficiency with the 

system. 

2 1   

Rotter 

(1966) 

Automation will always be ineffective no matter 

how much operators try to understand it. 

  1 2 

Rotter 

(1966) 

No matter how hard you try, some automation will 

just be ineffective. 

  1 2 
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Rotter 

(1966) 

Automation will function as it was designed, and 

there is little the average operator can do to 

influence it. 

 2 1  

Rotter 

(1966) 

It is not always wise to plan too far ahead because 

automated processes are unpredictable anyhow. 

 1 1 1 

Rotter 

(1966) 

Many times, we might as well leave the automation 

to do what it will. 

  1 2 

Rotter 

(1966) 

As far as automation oversight is concerned, most 

operators are merely observers to processes that are 

beyond their control or understanding. 

 1 2  

Rotter 

(1966) 

Most people don't realize the extent to which they 

are controlled by their automation. 

 2  1 

Rotter 

(1966) 

Many times, I feel that I have little influence over 

the outcomes of my experiences with automation. 

 1 2  

Rotter 

(1966) 

Sometimes I feel like I don't have enough control 

over automated systems. 

1 1 1  

Rotter 

(1966) 

Most of the time, I can't understand why automation 

behaves the way that it does. 

   3 

Levenson 

(1973) 

The outcomes of my experiences with automation 

are chiefly controlled by the system. 

 2 1  

Levenson 

(1973) 

Getting what I want out of automation requires 

attempts at conforming to the design of the system. 

 3   

Levenson 

(1973) 

In order to have my plans work, I make sure that 

they fit in with the design of the system. 

2 1   

Levenson 

(1973) 

I feel like the outcomes of my use of automation are 

mostly determined by the design of the system. 

 2 1  

Rotter 

(1966) 

The idea that system designers control operator 

experiences is nonsense. 

1 2   

Rotter 

(1966) 

Most people don't realize the extent to which 

system designers play a role in the outcomes of 

people's use of automated systems. 

 2 1  

Rotter 

(1966) 

There's not much use in trying to control 

automation. System designers have already decided 

how it will operate in my use-case. 

 2  1 

Rotter 

(1966) 

Most people don't realize the extent to which they 

are controlled by automation system designers. 

 2  1 

Levenson 

(1973) 

I feel like the outcomes of my use of automation are 

mostly determined by system designers. 

 2 1  
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Levenson 

(1973) 

Although I may be a proficient user, the outcomes 

of my use of automation are determined by system 

designers. 

 2 1  

Levenson 

(1973) 

Whether or not I experience a system malfunction 

depends mostly on the design of the system. 

 2 1  

Levenson 

(1973) 

Although I may be a proficient user, the outcomes 

of my use of automation are determined by system 

implementers. 

 2 1  

Levenson 

(1973) 

The outcomes of my use of automation are chiefly 

controlled by system designers. 

 2 1  

Levenson 

(1973) 

The outcomes of my use of automation are chiefly 

controlled by system integrators. 

 2 1  

Rotter 

(1966) 

Many of the difficulties operators face with 

automation are partly due to bad luck. 

  3  

Rotter 

(1966) 

Without the right amount of luck, one cannot be an 

effective system operator. 

  3  

Rotter 

(1966) 

I have often found that the outcomes of my use of 

automation are mostly down to chance. 

  3  

Rotter 

(1966) 

Being successful with automation has a lot to do 

with being in the right place at the right time. 

  3  

Levenson 

(1973) 

The outcomes of my use of automation are mostly 

controlled by accidental happenings. 

  3  

Levenson 

(1973) 

Often, there is no chance of mitigating the influence 

of bad luck over the outcomes of my use of 

automation. 

  3  

Levenson 

(1973) 

When I have a pleasant outcome with automation, it 

is usually because I get lucky. 

  2 1 

Levenson 

(1973) 

I have often found that what is going to happen will 

happen. 

  2 1 

Levenson 

(1973) 

Whether or not I experience an automation 

malfunction is mostly a matter of luck. 

  3  

Note: Factor group columns indicate the number of experts who assigned an item 

to a given factor group. a. NF = No Factor. 
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Table 3. Phase 2 Demographics and Automation Experience 

Variable 
 

Frequency Percentage 

Sex 
   

 
Male 207 50.36%  
Female 204 49.64% 

Race/Ethnicity 
   

 
African American/Black 25 6.08%  
American Indian 2 0.49%  
Asian 23 5.60%  
Caucasian/White 331 80.54%  
Latin American/Hispanic 24 5.84%  
Mixed Race 5 1.22%  
Unspecified 1 0.24% 

Highest Education Obtained 
  

 
High School Diploma/GED 93 22.63%  
Associate's Degree 63 15.33%  
Bachelor's Degree 194 47.20%  
Master's Degree 49 11.92%  
Philosophical Doctorate 7 1.70%  
Doctor of Jurisprudence 1 0.24%  
Doctor of Medicine 1 0.24%  
Some College 1 0.24%  
Trade School 1 0.24%  
Vocational 

Training/Licensure 

1 0.24% 

Automation Experience 
  

 
Kettle/Coffee-Maker with 

an Automatic Shut-Off 

291 70.80% 

 
Motion-Sensor-Activated 

Lighting 

301 73.24% 

 
Sunlight-Sensitive Lighting 188 45.74%  
Automatic Route Planning 

and Navigation (Google 

Maps/Apple Maps/Waze) 

305 74.21% 

 
Autocorrect/Predictive Text 327 79.56% 
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Auto-curated Media 

(Spotify Suggested 

Music/YouTube 

Recommendations/Netflix 

Recommendations) 

265 64.48% 

 
Production Robotics 52 12.65%  
Self-Driving Cars 30 7.30% 

 

Table 4. Phase 2 Initial Item Reduction 

Item 

Corrected 

Item-Total 

Correlation 

Being successful with automation is a matter of your efforts as an 

operator, luck has little or nothing to do with it. 
.53 

In my case, getting what I want out of an automated system has 

little or nothing to do with luck. 
.54 

Getting automation to do what you want depends on operator 

proficiency, luck has little or nothing to do with it. 
.54 

By taking an active role in automation observation and control, 

people can better control their outcomes. 
.40 

When it comes to automation, there really is no such thing as luck. .47 

The outcomes of my use of automation are the result of my own 

actions. 
.44 

There is a direct connection between my understanding of 

automation, and my performance with the system. 
.42 

My success with automation depends on my ability as an operator. .43 

Whether or not I experience difficulty with automation is 

dependent on my proficiency with the system. 
.46 

The outcomes of my use of automation are determined by my own 

actions. 
.41 

Automation will always be ineffective no matter how much 

operators try to understand it. 
.58 

No matter how hard you try, some automation will just be 

ineffective. 
.55 

It is not always wise to plan too far ahead because automated 

processes are unpredictable anyhow. 
.62 
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As far as automation oversight is concerned, most operators are 

merely observers to processes that are beyond their control or 

understanding. 

.50 

Many times, I feel that I have little influence over the outcomes of 

my experiences with automation. 
.61 

Sometimes I feel like I don't have enough control over automated 

systems. 
.57 

The outcomes of my experiences with automation are chiefly 

controlled by the system. 
.52 

I feel like the outcomes of my use of automation are mostly 

determined by the design of the system. 
.40 

I feel like the outcomes of my use of automation are mostly 

determined by system designers. 
.53 

Although I may be a proficient user, the outcomes of my use of 

automation are determined by system designers. 
.53 

Although I may be a proficient user, the outcomes of my use of 

automation are determined by system implementers. 
.49 

The outcomes of my use of automation are chiefly controlled by 

system designers. 
.53 

The outcomes of my use of automation are chiefly controlled by 

system integrators. 
.51 

Many of the difficulties operators face with automation are partly 

due to bad luck. 
.63 

Without the right amount of luck, one cannot be an effective 

system operator. 
.63 

I have often found that the outcomes of my use of automation are 

mostly down to chance. 
.68 

Being successful with automation has a lot to do with being in the 

right place at the right time. 
.67 

The outcomes of my use of automation are mostly controlled by 

accidental happenings. 
.65 

Often, there is no chance of mitigating the influence of bad luck 

over the outcomes of my use of automation. 
.68 

When I have a pleasant outcome with automation, it is usually 

because I get lucky. 
.67 

Whether or not I experience an automation malfunction is mostly a 

matter of luck. 
.64 

Items Removed Based on Low Item-Total Correlations (r < .4)  

People's difficulties with automation result from deficiencies in 

their use of the system. 
.29 
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One of the major reasons automation is ineffective is because 

operators do not take the time to understand it. 
.40 

Capable people who fail to effectively use their automation have 

failed due to an inappropriate application of automation. 
.13 

People who can't make effective use of automation don't 

understand how to use it effectively. 
.32 

Believing in fate has never turned out as well as making decisions 

and applying a definitive action plan to my automation usage. 
.24 

The average operator maintains influence over automated 

processes. 
.39 

When I make plans, I am almost certain that I can find a way to 

have automation conform to those plans. 
.23 

Automation is ineffective because people do not effectively apply 

it to satisfy their needs. 
.23 

In the long run, operators are responsible for poor automation 

performance both individually and systematically. 
.25 

Most misfortunes with automation are the result of a lack of 

ability, ignorance, or laziness on the part of the operator. 
.35 

When I make plans, I manipulate the system to conform to my 

plans. 
.15 

I determine the outcomes of my experiences with automation. .34 

Whether or not I experience a malfunction with automation is 

dependent on my proficiency with the system. 
.22 

Automation will function as it was designed, and there is little the 

average operator can do to influence it. 
.37 

Most people don't realize the extent to which they are controlled 

by their automation. 
.38 

Getting what I want out of automation requires attempts at 

conforming to the design of the system. 
.20 

In order to have my plans work, I make sure that they fit in with 

the design of the system. 
-.03 

The idea that system designers control operator experiences is 

nonsense. 
.25 

Most people don't realize the extent to which system designers 

play a role in the outcomes of people's use of automated systems. 
.12 

Whether or not I experience a system malfunction depends mostly 

on the design of the system. 
.38 

I have often found that what is going to happen will happen. .38 

Items Removed Based on Expert Suggestions and Low Item-Total 

Correlations (r < .5) 
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It is impossible for me to believe that the outcomes of my use of 

automation come down to chance or luck. 
.41 

Many times, we might as well leave the automation to do what it 

will. 
.41 

Most of the time, I can't understand why automation behaves the 

way that it does. 
.53 

There's not much use in trying to control automation. System 

designers have already decided how it will operate in my use-case. 
.50 

Most people don't realize the extent to which they are controlled 

by automation system designers. 
.46 

 

Table 5. Phase 2 Initial Parallel Analysis Matrix Output 

Factor 

Eigenvalues 

Observed Data 
Generated Data 

Means 95th Percentile 

1 10.67 0.63 0.71 

2 3.79 0.56 0.61 

3 2.55 0.50 0.55 

4 0.67 0.45 0.49 

Note: Only retained factors are presented. Factors are retained if the raw data 

eigenvalue is greater than the 95th percentile eigenvalue for that factor. 

 

Table 6. Phase 2 Initial Kaiser-Meyer-Olkin and Bartlett's Test Results 

Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy 0.95 

Bartlett's Test of Sphericity Approx. Chi-Square 8230.4 

  df 465 

  Sig. .000 

Note: The KMO Measure of Sampling Adequacy and Bartlett’s Test of 

Sphericity indicate the suitability of the sample data for factor extraction. KMO 

values above .6 and significant (p < .05) Bartlett’s test results support the use of 

factor analysis for this dataset. 
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Table 7. Phase 2 Initial Principal Axis Eigenvalues and Explained Variance 

Factor 
Initial Eigenvalues 

Total % of Variance Cumulative % 

1 11.05 36 36 

2 4.25 14 49 

3 2.94 9 59 

4 1.13 4 62 

Note: Only retained factors are presented. Factors are retained if the initial 

eigenvalue is greater than one. Support for the retention of the fourth factor is 

marginal. 

 

Table 8. Phase 2 Initial Principal Axis Extraction Sums of Squared Loadings and 

Explained Variance 

Factor 

Extraction Sums of Squared Loadings 

Rotation 

Sums of 

Squared 

Loadingsa 

Total 
% of 

Variance 
Cumulative % Total 

1 10.67 34 34 9.38 

2 3.79 12 47 1.23 

3 2.55 8 55 6.63 

4 0.67 2 57 5.91 

Note: a. When factors are correlated, sums of squared loadings cannot be added 

to obtain a total variance. 
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Table 9. Phase 2 Initial Principal Axis Pattern Matrix 

Item 
Factor 

1 2 3 4 

Internal     

Being successful with automation is a matter 

of your efforts as an operator, luck has little 

or nothing to do with it. 

 
-.25 

 
-.64 

In my case, getting what I want out of an 

automated system has little or nothing to do 

with luck. 

.24 -.26 
 

-.57 

Getting automation to do what you want 

depends on operator proficiency, luck has 

little or nothing to do with it. 

 
-.24 

 
-.69 

By taking an active role in automation 

observation and control, people can better 

control their outcomes. 

   
-.56 

When it comes to automation, there really is 

no such thing as luck. 

 
-.29 

 
-.51 

The outcomes of my use of automation are 

the result of my own actions. 

   
-.61 

There is a direct connection between my 

understanding of automation, and my 

performance with the system. 

   
-.61 

My success with automation depends on my 

ability as an operator. 

   
-.79 

Whether or not I experience difficulty with 

automation is dependent on my proficiency 

with the system. 

   
-.66 

The outcomes of my use of automation are 

determined by my own actions. 

   
-.75 

Powerful Others     

Automation will always be ineffective no 

matter how much operators try to 

understand it. 

.71 
   

No matter how hard you try, some 

automation will just be ineffective. 

 
.20 0.31 -.28 
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It is not always wise to plan too far ahead 

because automated processes are 

unpredictable anyhow. 

.58 .21 
  

As far as automation oversight is concerned, 

most operators are merely observers to 

processes that are beyond their control or 

understanding. 

.39 
 

.26 
 

Many times, I feel that I have little influence 

over the outcomes of my experiences with 

automation. 

.31 .37 .33 
 

Sometimes I feel like I don't have enough 

control over automated systems. 

.22 .33 .36 
 

The outcomes of my experiences with 

automation are chiefly controlled by the 

system. 

  
.54 

 

I feel like the outcomes of my use of 

automation are mostly determined by the 

design of the system. 

  
.63 

 

I feel like the outcomes of my use of 

automation are mostly determined by system 

designers. 

  
.81 

 

Although I may be a proficient user, the 

outcomes of my use of automation are 

determined by system designers. 

  
.85 

 

Although I may be a proficient user, the 

outcomes of my use of automation are 

determined by system implementers. 

  
.77 

 

The outcomes of my use of automation are 

chiefly controlled by system designers. 

  
.89 

 

The outcomes of my use of automation are 

chiefly controlled by system integrators. 

  
.79 

 

Chance 
    

Many of the difficulties operators face with 

automation are partly due to bad luck. 

.84 
   

Without the right amount of luck, one 

cannot be an effective system operator. 

.89 
   

I have often found that the outcomes of my 

use of automation are mostly down to 

chance. 

.85 
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Being successful with automation has a lot 

to do with being in the right place at the 

right time. 

.79 
   

The outcomes of my use of automation are 

mostly controlled by accidental happenings. 

.93 
   

Often, there is no chance of mitigating the 

influence of bad luck over the outcomes of 

my use of automation. 

.76 
   

When I have a pleasant outcome with 

automation, it is usually because I get lucky. 

.91 
   

Whether or not I experience an automation 

malfunction is mostly a matter of luck. 

.79 
   

 

 

Table 10. Phase 2 Post-Reduction Principal Axis Factoring Pattern Matrix 

Subscale Item 
Factor 

1 2 3 

Internal 
    

 Getting automation to do what you want 

depends on operator proficiency, luck has 

little or nothing to do with it. 

.26 .57 
 

 There is a direct connection between my 

understanding of automation, and my 

performance with the system. 

 
.60 

 

 My success with automation depends on 

my ability as an operator. 

 
.83 

 

 Whether or not I experience difficulty with 

automation is dependent on my proficiency 

with the system. 

 
.67 

 

 The outcomes of my use of automation are 

determined by my own actions. 

 
.73 

 

Powerful 

Others 

    

 The outcomes of my experiences with 

automation are chiefly controlled by the 

system. 

  
.62 
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 I feel like the outcomes of my use of 

automation are mostly determined by the 

design of the system. 

  
.72 

 Although I may be a proficient user, the 

outcomes of my use of automation are 

determined by system designers. 

  
.77 

 The outcomes of my use of automation are 

chiefly controlled by system designers. 

  
.78 

Chance 
    

 Many of the difficulties operators face with 

automation are partly due to bad luck. 

.84 
  

 Without the right amount of luck, one 

cannot be an effective system operator. 

.87 
  

 I have often found that the outcomes of my 

use of automation are mostly down to 

chance. 

.86 
  

 Being successful with automation has a lot 

to do with being in the right place at the 

right time. 

.81 
  

 The outcomes of my use of automation are 

mostly controlled by accidental 

happenings. 

.92 
  

 Often, there is no chance of mitigating the 

influence of bad luck over the outcomes of 

my use of automation. 

.75 
  

 When I have a pleasant outcome with 

automation, it is usually because I get 

lucky. 

.91 
  

 Whether or not I experience an automation 

malfunction is mostly a matter of luck. 

.79 
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Table 11. Phase 2 Post-Reduction Principal Axis Initial Eigenvalues and Explained 

Variance 

Factor 
Initial Eigenvalues 

Total % of Variance Cumulative % 

1 7.14 42 42 

2 2.55 15 57 

3 2.05 12 69 

Note: Only retained factors are presented. Factors are retained if the initial 

eigenvalue is greater than one. 

Table 12. Phase 2 Post-Reduction Principal Axis Extraction Sums of Squared 

Loadings and Explained Variance 

Factor 
Extraction Sums of Squared Loadings 

Rotation Sums of 

Squared Loadingsa 

Total % of Variance Cumulative % Total 

1 6.84 40 40 6.54 

2 2.08 12 52 3.03 

3 1.64 10 62 3.17 

Note: a. When factors are correlated, sums of squared loadings cannot be added 

to obtain a total variance. 

 

Table 13. Phase 2 Post-Reduction Parallel Analysis Matrix 

Factor 

Eigenvalues 

Observed Data 
Generated Data 

Means 95th Percentile 

1 6.81 0. 41 0.49 

2 2.00 0.34 0.40 

3 1.56 0.28 0.33 

Note: Only retained factors are presented. Factors are retained if the raw data 

eigenvalue is greater than the 95th percentile eigenvalue for that factor. 
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Table 14. Phase 3 Demographics and Automation Experience 

Variable  Frequency Percentage 

Sex    

 Male 102 41.46% 
 Female 144 58.54% 

Race/Ethnicity    

 African American/Black 17 6.91% 
 Asian 12 4.88% 
 Caucasian/White 196 79.67% 
 Eurasian 1 0.41% 
 Latin American/Hispanic 14 5.69% 
 Middle Eastern 2 0.81% 
 Mixed Race 4 1.63% 

Highest Education Obtained   

 High School Diploma/GED 54 21.95% 
 Associate's Degree 35 14.23% 
 Bachelor's Degree 116 47.15% 
 Master's Degree 32 13.01% 
 Philosophical Doctorate 6 2.44% 
 Doctor of Chiropractic 1 0.41% 
 Doctor of Jurisprudence 1 0.41% 
 Some College 1 0.41% 

Automation Experience   

 Kettle/Coffee-Maker with an 

Automatic Shut-Off 
191 77.64% 

 Motion-Sensor-Activated 

Lighting 
208 84.55% 

 Sunlight-Sensitive Lighting 110 44.72% 

 
Automatic Route Planning and 

Navigation (Google 

Maps/Apple Maps/Waze) 

214 86.99% 

 Autocorrect/Predictive Text 220 89.43% 

 

Auto-curated Media (Spotify 

Suggested Music/YouTube 

Recommendations/Netflix 

Recommendations) 

189 76.83% 
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 Production Robotics 20 8.13% 
 Self-Driving Cars 16 6.50% 

 

Table 15. Phase 3 Parallel Analysis Matrix 

Factor 

Eigenvalues  

Observed Data 
Generated Data 

Means 95th Percentile 

1 5.23 0.56 0. 67 

2 2.61 0.46 0.53 

3 1.43 0.38 0.44 

Note: Only retained factors are presented. Factors are retained if the raw data 

eigenvalue is higher than the 95th percentile eigenvalue for that factor. 

 

 

Table 16. Phase 3 Kaiser-Meyer-Olkin and Bartlett's Test Results 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.87 

Bartlett's Test of Sphericity Approx. Chi-Square 2127.3 

  df 136 

  Sig. .000 

Note: The KMO Measure of Sampling Adequacy and Bartlett’s Test of 

Sphericity indicate the suitability of the sample data for factor extraction. KMO 

values above .6 and significant (p < .05) Bartlett’s test results support the use of 

factor analysis for this dataset. 
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Table 17. Phase 3 Principal Axis Initial Eigenvalues and Explained Variance 

Factor 
Initial Eigenvalues 

Total % of Variance Cumulative % 

1 5.62 33 33 

2 3.10 18 51 

3 1.97 12 63 

Note: Only retained factors are presented. Factors are retained if the initial 

eigenvalue is greater than one. 

 

Table 18. Phase 3 Principal Axis Extraction Sums of Squared Loadings and 

Explained Variance 

Factor 
Extraction Sums of Squared Loadings 

Rotation Sums of 

Squared Loadingsa 

Total % of Variance Cumulative % Total 

1 5.23 31 31 5.10 

2 2.67 16 46 2.49 

3 1.47 9 55 2.54 

Note: a. When factors are correlated, sums of squared loadings cannot be added 

to obtain a total variance. 

 

Table 19. Phase 3 Principal Axis Pattern Matrix 

Source Item 
Factor 

1 2 3 

Internal 
    

Rotter 

(1966) 

Getting automation to do what you want 

depends on operator proficiency, luck has 

little or nothing to do with it. 

.25 
 

.45 

Rotter 

(1966) 

There is a direct connection between my 

understanding of automation, and my 

performance with the system. 

  
.56 

Levenson 

(1973) 

My success with automation depends on 

my ability as an operator. 

  
.78 
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Levenson 

(1973) 

Whether or not I experience difficulty 

with automation is dependent on my 

proficiency with the system. 

  
.66 

Levenson 

(1973) 

The outcomes of my use of automation 

are determined by my own actions. 

  
.63 

Powerful 

Others 

    

Levenson 

(1973) 

The outcomes of my experiences with 

automation are chiefly controlled by the 

system. 

 
.62 

 

Levenson 

(1973) 

I feel like the outcomes of my use of 

automation are mostly determined by the 

design of the system. 

 
.78 

 

Levenson 

(1973) 

Although I may be a proficient user, the 

outcomes of my use of automation are 

determined by system designers. 

 
.81 

 

Levenson 

(1973) 

The outcomes of my use of automation 

are chiefly controlled by system 

designers. 

 
.79 

 

Chance 
    

Rotter 

(1966) 

Many of the difficulties operators face 

with automation are partly due to bad 

luck. 

.80 
  

Rotter 

(1966) 

Without the right amount of luck, one 

cannot be an effective system operator. 

.85 
  

Rotter 

(1966) 

I have often found that the outcomes of 

my use of automation are mostly down to 

chance. 

.84 
  

Rotter 

(1966) 

Being successful with automation has a 

lot to do with being in the right place at 

the right time. 

.79 
  

Levenson 

(1973) 

The outcomes of my use of automation 

are mostly controlled by accidental 

happenings. 

.78 
  

Levenson 

(1973) 

Often, there is no chance of mitigating 

the influence of bad luck over the 

outcomes of my use of automation. 

.63 
  

Levenson 

(1973) 

When I have a pleasant outcome with 

automation, it is usually because I get 

lucky. 

.83 
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Levenson 

(1973) 

Whether or not I experience an 

automation malfunction is mostly a 

matter of luck. 

.70 
  

 

Table 20. Phase 3 Confirmatory Factor Analysis Fit Statistics for the Three-Factor 

Model of the Automation Locus of Control Measure 

Fit Indices  Result 

Chi-Squared 2 251.6 

 df 116 

 p .000 

Root Mean Square Error of Approximation  .07 

Comparative Fit Index  .93 

Root Mean Square Residual  .05 

 

 

Table 21. Phase 3 Descriptive Statistics, Reliability Statistics, and Inter-Subscale 

and Subscale-Total Correlations 

  
Automation Locus of Control 

Subscale 
 

Internal Powerful 

Others 

Chance Total 

Descriptive and Reliability Statistics  
M 4.03 -1.69 7.57 9.92  
SD 2.94 3.05 5.52 7.92 

 Cronbach's  .76 .84 .92 .85 

Automation Locus of Control Inter-Subscale Correlations 

Internal 
 

1.000 
   

Powerful 

Others 

 
.23** 1.000 

  

Chance 
 

.24** 0.07 1.000 
 

Automation Locus of Control Subscale-Total Correlations 

Total 
 

.63** .52** .81** 1.000 

Note: **. Correlation is significant at the .01 level (2-tailed). 
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Table 22. Phase 3 Validation Correlations 

 
Automation Locus of Control  

Internal Powerful Others Chance Total 

General Locus of Control -.11 .07 -.24** -.19** 

Self-Esteem .09 -.06 .26** .19** 

Self-Motivation .16* -.02 .33** .28** 

Decision-Style Inventory 

(Directive) 
-.004 .003 -.14* .10 

Decision-Style Inventory 

(Analytical) 
.07 -.019 .31** .23** 

Decision-Style Inventory 

(Conceptual) 
-.02 -.09 .04 .01 

Decision-Style Inventory 

(Behavioral) 
-.05 .08 -.18** -.11 

Trust in Automation .08 .07 .18** .18** 

Note: **. Correlation is significant at the .01 level (2-tailed). *. Correlation is 

significant at the .05 level (2-tailed). 

 

Table 23. Phase 3 Tests for Normality 

Measure 
Shapiro-Wilk 

Statistic df Sig. 

Automation Locus of Control (Internal) 0.96 246 .000 

Automation Locus of Control (Powerful Others) 0.96 246 .000 

Automation Locus of Control (Chance) 0.93 246 .000 

Automation Locus of Control (Total) 0.99 246 .129 

General Locus of Control 0.99 246 .083 

Self-Esteem 0.98 246 .001 

Self-Motivation 0.99 246 .112 

Decision Style Inventory (Directive) 0.99 246 .017 

Decision Style Inventory (Analytical) 0.99 246 .195 

Decision Style Inventory (Conceptual) 0.98 246 .003 

Decision Style Inventory (Behavioral) 1.00 246 .560 

Trust in Automation 0.98 246 .000 
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Figures 

 

Figure 1. Conceptual Model for Human-Automation Interaction. 

The model depicts system performance as the combined output of automation 

design and operator behavior based on prescribed system goals, and the influence 

of automation design on operator behavior. 

 

Figure 2. Conceptual Model for the Mediating Effect of Locus of Control on 

Human-Automation Interaction. 

The model depicts system performance as the combined output of automation 

design and operator behavior based on prescribed system goals and illustrates locus 

of control as a mediator between automation design and operator behavior. 
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Figure 3. Conceptual Map for the Measurement of Locus of Control in the Context 

of Human-Automation Interaction. 

The conceptual diagram illustrates the relationships among system goals, 

automation design, operator behavior, and system performance, and shows how an 

automation locus of control (A-LOC) measure could provide feedback for the 

adjustment of automation design. 

 

 

Figure 4. Phase 2 Initial Parallel Analysis Sequence Plot. 

The sequence plot marginally supports the retention of four factors based on the 

number of points above the 95th percentile (percntyl) line. 
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Figure 5. Phase 2 Initial Principal Axis Scree Plot. 

This scree plot marginally supports the retention of four factors based on the 

position of the elbow of the plot. 

 

Figure 6. Phase 2 Post-Reduction Principal Axis Scree Plot. 

This scree plot supports the retention of three factors based on the position of the 

elbow of the plot. 
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Figure 7. Phase 2 Post-Reduction Parallel Analysis Sequence Plot. 

The sequence plot supports the retention of three factors based on the number of 

points above the 95th percentile (percntyl) line. 

 

 

Figure 8. Phase 3 Parallel Analysis Sequence Diagram. 
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This sequence plot supports the retention of three factors based on the number of 

points above the 95th percentile (percntyl) line. 

 

Figure 9. Phase 3 Principal Axis Scree Plot. 

This scree plot supports the retention of three factors based on the position of the 

elbow of the plot. 

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
ig

en
v
al

u
e

Factor Number

Phase 3 Principal Axis Factoring Scree Plot



140 

 

 

 

Figure 10. Phase 3 A-LOC Confirmatory Factor Analysis Results. 

The diagram depicts the mapping of each item of the automation locus of control 

(A-LOC) scale, labeled i1 through ch17, to latent factors. The ovals to the right 

represent the three latent factors (Internal, Powerful Others, and Chance), and the 

circles on the left illustrates the unique variance of each item. Factor loadings are 

displayed on the arrows between the items and their latent factors, while the arrows 

between latent factors represent the covariances between latent factors. 
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Appendix 

This questionnaire attempts to capture control perceptions in the context of 

human automation interaction. In the context of this questionnaire, automation is a 

general term that refers to the use of hardware or software to help or replace a 

human operator for the completion of a task. 

An "operator" or "user" refers to an individual who interacts with the 

system in order to achieve a goal or complete a task. A "system designer" refers to 

any person involved in the creation and development of a system with respect to 

what it can do, and how users are meant to interact with it. 

Low level examples of automation include the automated shut-off feature of 

your coffee-maker or kettle, when exterior lighting automatically turns on as the 

result of the sun setting, or doors that open automatically once a sensor detects 

movement. Mid-level examples of automation include the use of a GPS-enabled 

device for route planning and navigation (Google Maps, Waze, Apple Maps), and 

non-adaptive cruise control. High-level examples of automation include industrial 

assembly-line robotics, and self-driving cars. 

When completing the questions below, try to consider automation in as 

general a sense as you can, and select the option that best matches the degree to 

which you agree or disagree with the statement. Your responses should reflect your 

beliefs on the outcomes of automation usage as it exists today. 

There are no wrong answers. 

1. Check each of the following automation examples that you have experience 

using. 

o Kettle/Coffee-Maker with an Automatic Shut-Off 

o Motion-Sensor-Activated Lighting 

o Sunlight-Sensitive Lighting 

o Automatic Route Planning and Navigation (Google Maps/Apple 

Maps/Waze) 

o Autocorrect/Predictive Text Auto-curated Media (Spotify Suggested 

Music/YouTube Recommendations/Netflix Recommendations) 
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o Production Robotics 

o Self-Driving Cars 

2. Getting automation to do what you want depends on operator proficiency, luck 

has little or nothing to do with it.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

3. There is a direct connection between my understanding of automation, and my 

performance with the system.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

4. My success with automation depends on my ability as an operator.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

5. Whether or not I experience difficulty with automation is dependent on my 

proficiency with the system.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

6. The outcomes of my use of automation are determined by my own actions.  

o Strongly Disagree 

o Disagree 

o Neutral 
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o Agree 

o Strongly Agree 

7. The outcomes of my experiences with automation are chiefly controlled by the 

system.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

8. I feel like the outcomes of my use of automation are mostly determined by the 

design of the system.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

9. Although I may be a proficient user, the outcomes of my use of automation are 

determined by system designers.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

10. The outcomes of my use of automation are chiefly controlled by system 

designers.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

11. Many of the difficulties operators face with automation are partly due to bad 

luck.  

o Strongly Disagree 
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o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

12. Without the right amount of luck, one cannot be an effective system operator.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

13. I have often found that the outcomes of my use of automation are mostly down 

to chance.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

14. Being successful with automation has a lot to do with being in the right place at 

the right time.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

15. The outcomes of my use of automation are mostly controlled by accidental 

happenings.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

16. Often, there is no chance of mitigating the influence of bad luck over the 

outcomes of my use of automation.  
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o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

17. When I have a pleasant outcome with automation, it is usually because I get 

lucky.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 

18. Whether or not I experience an automation malfunction is mostly a matter of 

luck.  

o Strongly Disagree 

o Disagree 

o Neutral 

o Agree 

o Strongly Agree 
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