Florida Institute of Technology

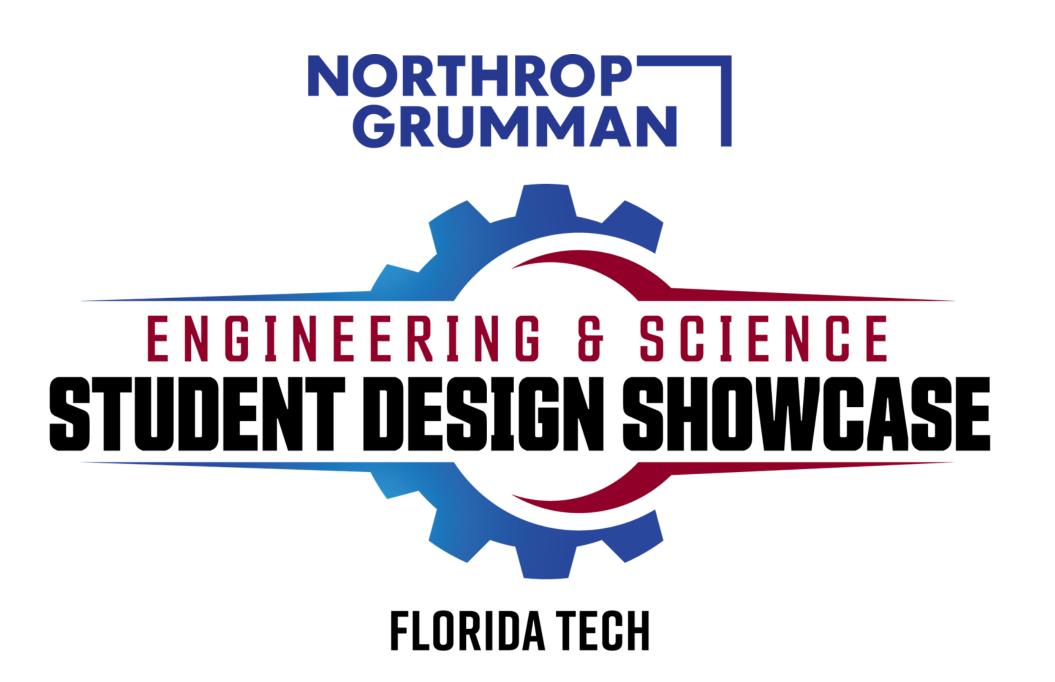
Scholarship Repository @ Florida Tech

Aerospace, Physics, and Space Science Student Department of Aerospace, Physics, and Space Publications Sciences

4-19-2024

Modeling an Extra Planet's Effects on Earth

Emily Simpson Florida Institute of Technology


Follow this and additional works at: https://repository.fit.edu/apss_student

Part of the Other Astrophysics and Astronomy Commons, and the The Sun and the Solar System Commons

Recommended Citation

Simpson, Emily, "Modeling an Extra Planet's Effects on Earth" (2024). *Aerospace, Physics, and Space Science Student Publications*. 34. https://repository.fit.edu/apss_student/34

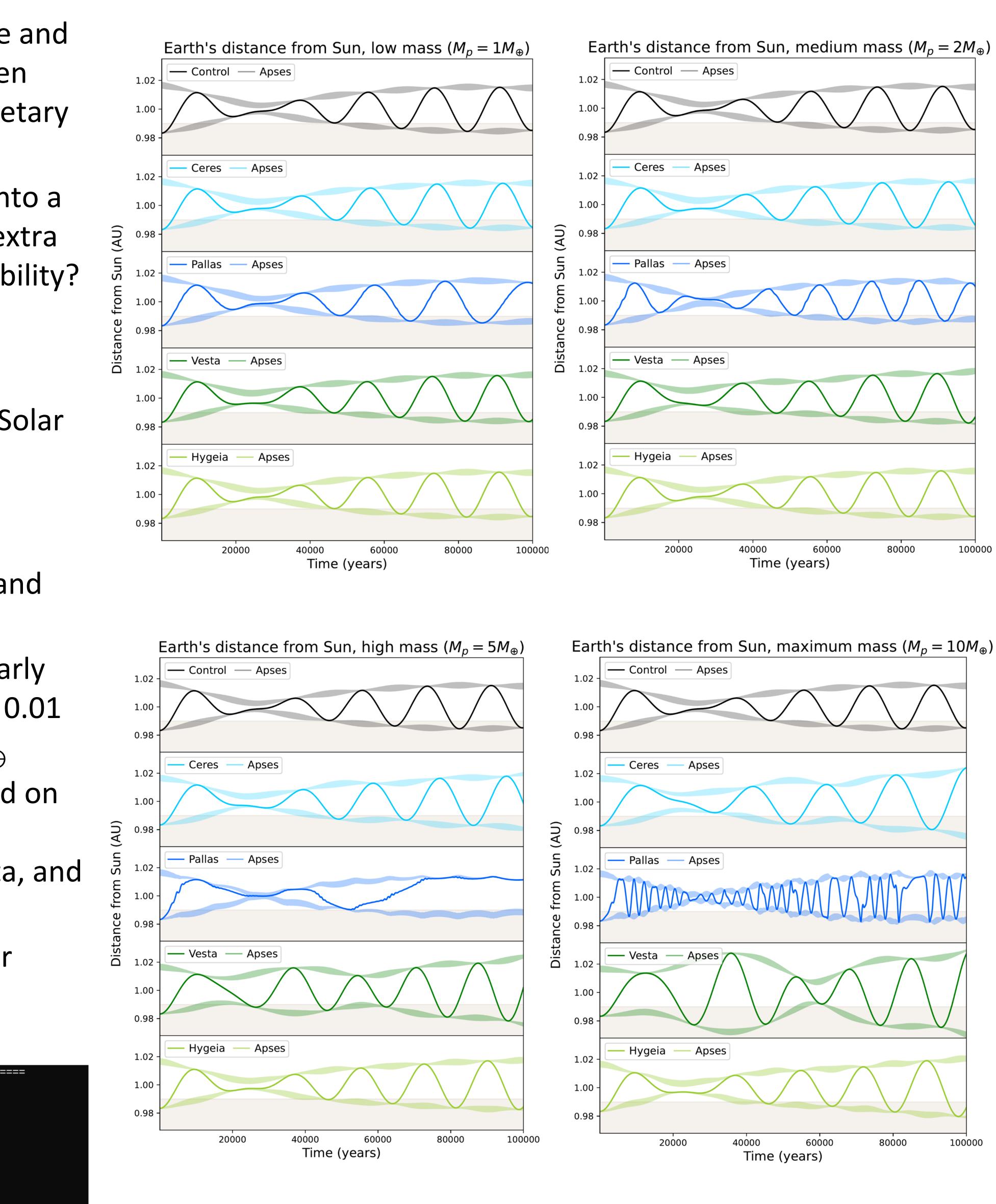
This Poster is brought to you for free and open access by the Department of Aerospace, Physics, and Space Sciences at Scholarship Repository @ Florida Tech. It has been accepted for inclusion in Aerospace, Physics, and Space Science Student Publications by an authorized administrator of Scholarship Repository @ Florida Tech. For more information, please contact kheifner@fit.edu.

Introduction

- The orbit of a planet impacts its climate and habitability, and many models have been developed to study the impacts of planetary system structure on climatic evolution.
- If the Asteroid Belt (AB) had accreted into a single planet, what effects would that extra planet have on Earth's orbit and habitability?

Methods

- Simulated the orbital evolution of the Solar System over 100,000 years using the Gravitationally Interacting Rigid Body Integrator (GRIT) [1]
- Extra planet parameters varied: mass and initial conditions
- Mass of planet 5 values based on early Solar System AB mass estimates [2]: 0.01 (current AB mass), 1, 2, 5, and 10 M_{\oplus}
- O Initial conditions 4 trials each, based on the orbital parameters of the 4 most massive asteroids: Ceres, Pallas, Vesta, and Hygeia [3]
- Examine new Earth orbit's potential for habitability, compare to control


			=====Syst	em Summary=====							
#		System name: phaeton_system									
#	Bodies in the	e system:									
#			name	rigidity							
#		body:	Sun	point mass							
#	‡ 1th	body:	Mercury	rigid							
#	‡ 2th	body:	Venus	rigid							
#	‡ 3th	body:	Earth	rigid							
#	‡ 4th	body:	Moon	rigid							
#	‡ 5th	body:	Mars	rigid							
#	t 6th	body:	Phaeton	rigid							
#	‡ 7th	body:	Jupiter	rigid							
#	‡ 8th	body:	Saturn	rigid							
#	\$ 9th	body:	Uranus	rigid							
#	‡ 10th	body:	Neptune	rigid							
#	Coordinates of orbital elements: central										
=	======================================										
#	\$ Scheme: M42										
#	# Step size: 0.001 year										
#	# System will be saved every 1 year in "current_system.json"										
#	# Data output scale: 1 year										
	# Tidal effects: not considered										
#	# General relativity: not considered										
	# Output variables: Hamiltonian axial_tilt axis obliquity orbital_elements position s										
=	======================================										
	# From t0=0.000000 to T=100000.0000000:										
	[======================================	===========	=====>]	50 % \	0:00:11:21 elapsed.					

in velocit

t=50686

Figure 1: Running a simulation using the GRIT N-rigid body integrator package.

Modeling an Extra Planet's Effects on Earth Emily Simpson Faculty Advisor(s): Dr. Howard Chen, Dept. of APSS, Florida Institute of Technology

Figure 2: Earth's distance from the Sun for 4 different AB planet mass estimates and 4 different AB planet initial conditions. The beige areas mark the region outside of the habitable zone, and the transparent segments denote the perihelion (bottom) and aphelion (top) for each orbit.

• Total of 21 simulations run, including 1 control trial of the unaltered Solar System

Results

	$0.01~{ m M}_\oplus$	$1{ m M}_\oplus$	$2~{ m M}_\oplus$	$5~{ m M}_\oplus$	10 ${\sf M}_\oplus$
Control	77%	77%	77%	77%	77%
Ceres	77%	78%	78%	78%	74%
Pallas	77%	79%	78%	91%	80%
Vesta	77%	76%	75%	66%	65%
Hygeia	77%	77%	77%	76%	75%

Table 1: Percent of recorded distances for each

 trial that fell within the cloud-free habitable zone. Green values are lower than the control, and blue values are larger than the control.

- times [4]
- possible
- be much larger [4]

• All Earths stayed within the outer distance limit of the habitable zone (~ 1.67 AU) at all

• All runs also approached closer to the Sun than the cloud-free water loss limit (~0.99 AU) at some point in its orbit, meaning that for all trials, an atmosphere is necessary for the presence of liquid water at its surface [4]

Conclusions

• Many stable configurations of a Solar System with an extra planet that preserve Earth's habitability for at least 100,000 years are

• However, habitable zone limits are highly dependent on atmospheric effects, and with an atmosphere Earth's habitability zone could

• Future work: simulating climate & atmospheric effects with these orbital parameters as initial conditions

References

[1] Renyi Chen et al 2021 ApJ 919 50 [2] Matthew S. Clement et al 2019 AJ 157 38 [3] Lissauer et al 2001 Icarus 154 449 [4] Ravi Kumar Kopparapu et al 2013 ApJ 770 82