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Extension of the Generalized Hebbian Algorithm for
Principal Component Extraction

Fredric M. Ham and Inho Kim

Electrical Engineering Program, Florida Institute ofTechnology, Melbourne, FL 3290 1-6988

ABSTRACT

Principal component analysis (PCA) plays an important role in various areas. In many applications it is necessary to
adaptively compute the principal components ofthe input data. Over the past several years, there have been numerous neural
network approaches to athptively extract principal components for PCA. One of the most popular learning rules for training
a single-layer linear network for principal component extraction is Sanger's generalized Hebbian algorithm (GHA). We have
extended the GHA (EGHA) by including a positive-definite symmetric weighting matrix in the representation error-cost
function that is used to derive the learning rule to train the network. The EGHA presents the opportunity to place different
weighting factors on the principal component representation errors. Specifically, if prior knowledge is available pertaining to
the variances of each term of the input vector, this statistical inlonnalion can be incorporated into the weighting matrix. We
have shown that by using a weighted representation error-cost function, where the weighting matrix is diagonal with the
reciprocals of the standard deviations of the input on the diagonal, more accurate results can be obtained using the EGHA
over the GHA.

Keywords: principal component analysis, neural network, extended generalized Hebbian algorithm, weighling matrix.

1. INTRODUCTION

1.1 Statement of the Problem

Principal component analysis (PCA)1 has many applications, e.g., data compression and coding (decoding, athptive beam-
forming, high resolution spectral analysis (frequency estimation), and pattern recognition, to name a few 1-5,22. 23, 26

times it is necessary to adaptively determine principal components. That is, there may not be enough data available to
estimate the covariance matrix of the input thta, and then compute the eigenvalues and eigenvectors of the resulting matrix.
Instead an athptive method is needed to compute the principal eigenvectors associated with the inputs, as the data are
processed. There have been many neural network architectures and training algorithms developed for adaptive estimation of
principal eigenvectors 6-14,

24, 25, 27-32 e of the most well known is the Generalized Hebbian Algorithm (GHA) for training a
single-layer neural network consisting of linear processing elements 17 The network can estimate as many principal
eigenvectors as desired. The standard approach that is used to develop the GHA learning rule involves using a quadratic,
representation-error formulation of a cost (energy) function that is minimized over the weight space. Many times the results
obtained using the GHA are not accurate enough, therefore, it is desirable to improve the algorithm.

The GHA has been extended (EGHA), i.e., instead of a standard (non-weighted) quadratic representation error cost
function, a weighted error function is used 13,21, 22 That is, the cost function now has a positive-definite symmetric weighting
matrix included. The resulting symmetric subspace learning mie now has terms in the gradient expression that can not be
discarded, as is the case with the GHA. The terms that are discarded in the GHA must be retained in the EGHA unless the
weighting matrix in the cost function is the identity matrix. When the weighling matrix in the EGHA is set to the identity
matrix, the GHA can be recovered. When the symmetry is broken on the appropriate terms leading to the EGHA, more
accurate results can be obtained. In particular, a distinct advantage of the EGHA is that a priori information can be taken
into account that enhances the capability and accuracy of the learning algorithm. More specifically, if we have prior
knowledge of the variance of each term in the stochastic input vector to the network, we can take advantage of this

PCA is also known as the Hotellmg transform in digital image processing and the Karhunen-Loeve transformation in communication
theory.
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information using the EGHA and improve the results, i.e., improved accuracy of the principal eigenvectors. Thisis
essentially allowing "customized" learning rate parameters to be used for the extraction of each principal component. This
capability is not available in the standard GHA. The approach that is taken here first extends the Karhunen-Oja symmetric
subspace algorithm (KOSSA), i.e., the EKOSSA, and then from these results the EGHA is developed.

1.2 Overview of Principal Component Analysis (PCA)

PCA is a statisrical method that determines an optimal linear transformation y Wx for a given input vector x,
considered to be a zero-mean, wide-sense stationary, vector-stochastic process 15, 16, 19 The matrix W is comprised of

orthonormal eigenvectors associated with the input covariance matrix C =E[xxT . Specifically, the rows of W are the

principal eigenvectors associated with C, . PCA transforms a large amount of correlated data into a set of statistically

decorrelated components (principal components), i.e., PCA projects the input data from an n-dimensional space onto an m-
dimensional output space, typically m<<n. The output space has a covariance matrix that is diagonal. The goal of the PCA is

to find directions or the principal eigenvectors w1 ,w2 , • , Wm•

Let

1 i2 •• • i
n

T
xi yi

w=
21

W22

•. W2 =
w2T x2 nxl Y2 mx1 (1)

Wmi Wm2 • • Wmn
Wm xn Ym

The first m eigenvectors {w1 ,w2 ,• • ' , Wm } of C, are considered the m principal eigenvectors of C . These can be found

from the standard eigenvalue problem

cxwj = 2jWi for j 1, 2 , • . . , n (2)

where A1 � '2 • 2 � 0 . These eigenvalues are ordered from the largest to the smallest. The principal eigenvector

Wi corresponds to the largest eigenvalue , and w2 corresponds to the second largest eigenvalue '2 so on. If it is
assumed that we are interested in thejth principal component, and we let ybe the weighted linear combination of the elements
of the data input vector x, then we can write

Y3 WijXi + W2jX2 + .. . + W1X (3)

The scalar component (i.e., the th principal component) .yj is considered a stochastic variable with an associated variance
given by

E[y12
2 T

(4)

We require w3to be ofunit length, i.e.,

=
II w1 =1 (5)

where II • 112 is the L2-norm (or Euclidean norm). Having determined the eigenvalue A, the eigenvector w3 can be found

from
(C — 231)w3 = 0 (6)

T
Pre-multiplyrng both sides of(6) by w3 gives

(C —
211)w3 = W1T CW1

— = — =0 (7)

(8)

For j = 1, a2 = 2 is the largest eigenvalue of C, (the largest variance), and w1=
[w1 1w12

.WJf is the first

principal eigenvector corresponding to the largest eigenvalue 2 of the input data. The vector w1 indicates the direction in
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the vector space associated with the largest variance. Therefore the linear transfonnation y =Wx yields an output y which
is the vector of principal components. Figure 1 shows PCA in a 2-dimensional vector space. The first principal component
has the largest variance and retains the maximum information associated the inputs. In other words, the first principal
component has the minimum projection error associate with it

1 2 1 2 1
E(w1) = —IIeI = —IIx-xI = —(x -w1y1)T(x- w1y1)2 12 211

2 2

x2 first principal
eigenvector, w1

'' xl

second principal
eigenvector, w 2

Figure 1: Geometrical interpretation of PCA.

2. PAST WORK

2.1 Oja's Learning Rule for Estimating a Single Principal Component (Normalized Hebbian Learning Algorithm)

Oja 18 proposed a single linear processing unit described by the equation y1 1T see Fig. 2. The purpose of the

learning algorithm is to find the first principal eigenvector w1 = [w11 w12 w1, 1T • Starting with the representation-error

vector defined as e = x —i , we assume the length ofthe weighting vector is 1, i.e.,

wTwi = Wi i: = i (9)

From the linear transfonnation y1 = W1TX and the estimate of x, i.e., i W1 y1 , an energy function is formulated as
follows

(10)

y1=w1Tx

Figure 2: Oja's single neuron model.

Using this energy function, a continuous-time (analog) learning rule can be developed using the method of steepest descent
as

dw = -pV1E(w1) (11)

Next we need to compute the gradient of(10) with respect to w1 ,i.e.,

276
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VE(w1) = = [(x -w1y1)T(x-
wiyi)1

(12)

By applying the following general results (for appropriately dimensionedA, B,andC)

----tr[BAC] = BTCT
ÔÁ (13)

_tr[BATC]= CB
E3A

and the appropriate chain rule, we obtain the gradient of E(w ) as

vvE()=(-2xy +2wy12)=-xy1 +y12 (14)

Therefore, Oja's continuous-time learning nile for a single neuron is given by
dw
_j:L /4Yi(x -w1y1) (15)

where y1 = • Thediscrete-time version of (15) is given by

Wi (k + 1) = Wi(k) — pV13,E(w) = Wi(k) +py (k){x(k) — w1(k)y1 (k)} (16)

where y1 (k) = w1T(k)x(k) ,and k is the discrete-time index. The scalar form of Oja's discrete-time learning rule in (16)

is given by

w13(k + 1) = w11(k) + /&'i (k){x3(k) —w13(k)y1(k)} (17)

where j = 1, 2, • • , m , and p = p(k) > 0 is the learning rate. Note that the y1(k)x1(k) term in (17) is the typical

Hebbian co-occurrence term22

Oja' s learning nile converges to the weight vector w1 ,which is the first principal eigenvector of C for the zero-

mean input vector x, and y1 is the first principal component. It is also true that w maximizes the variance of the output y1.
Therefore, the single linear neuron trained by the Hebbian learning in (17) is a principal component analyzer of the input
signal.

2.3 Karhunen-Oja Symmetric Subspace Learning Rule for Extraction of Multiple Principal Components

Karhunen and Oja'9'2° proposed a single-layer neural network with m linear processing units described by the transformation

y = Wx, see Fig. 3. The purpose of this architecture is to extract several principal components, y, y2, 'j', where
m<<n. The learning rule can be derived by first formulating an energy function given by

E(W) = 111 e (18)

where e is the representation error given by

e=x-i=x--WTy=x-WTWx (19)

Therefore, the energy function can be written as

E(W)= --ll e = eTe = —xTWTW)(x — WTWx) (20)

= 1(xTx -2TWT Wx + XTWTWWTWX) (21)
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xl

x3

Figure 3: Neural architecture for multiple principal component extraction.

Using this energy function, a conthrnous-time (analog) learning rule can be developed as

dW = -pVwE(W) (22)

The gradient of (20) must be computed, i.e.,

VE(W)= äE(W) = [!(XTX_ 2xTWTWx+xTWTVTWx)l (23)
ow W[2 ]

By applying the general results in (13), (14) and

_tr[BATCA] = tr[BATCAI] = CAB + (BATC)T = CAB + CTABT (24)
E3A

the gradient in (22) is

VE(W) = .[— 2(2WxxT) + (2WxxTWTW + 2WWTWxxT)]

= WxxT + WXXTWTW WxxT + WWTWxxT (25)

However, the last two terms will approach zero very quickly because WWT j jrnxrn Therefore, continuous-time

learning rule is given by i= 1u(WxxT —WxxTWTW) (26)

The discrete-time learning of (26) is given by

W(k +1) = W(k) + p(k){W(k)x(k)xT (k) — W(k)x(k)xT(k)WT(k)W(k)} (27)

= W(k) + (k)W(k)x(k)x(k)T {I —WT(k)W(k)} (28)
The learning rule given in (28) is known as the Karhunen-Oja symmetric subspace algorithm (KOSSA).

The scalar form of the KOSSA can be derived from (28) as follows. The second term on the right side of (28) can
be wriuen as (excluding the learning rate parameter and dropping the dependence on k).

W(k)x(k)xT (k) — W(k)x(k)xT (k)WT (k)W(k)

1' T m
= WX _[xTw1 XT3vmI W2 =y1(/c) x(k)— Whf(k)yh(k) (29)

h=l
T T

WmX Wm

for I = 1, 2, .'., m and j = 1, 2, •, n. Therefore, the scalar form of the KOSSA can be written as
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w (k + 1) = w (k) + p(k)y (k)[x1 (k) - Whi (k)yh (k)] (30)

where the learning rate is given by

p(k)= 1
(31)

+IIy(k)Il
p(k —1)

where p(O) = 2 ' for k =1, 2, 3, • . . , and the forgetting factor is 0 � a � 1 . If m = 1, the KOSSA reduces to
II y(O) 112

Oja's single neuron learning rule. An interesting aspect of the KOSSA is the rows of the weight matrix W do not converge

to the actual principal eigenvectors of C but they do converge to some linear combination of the first m principal

eigenvectors of C . Therefore, the neural network is able to learn the sub-space spanned by the first m principal

eigenvectors.

2.1 Sanger's Learning Rule: Generalized Hebbian Algorithm (GRA)

Sanger's GHA allows the first m "true" principal eigenvectors to be determined. The GHA can be derived from the
KOSSA 19 Starting with (29) (dropping the dependence on k)

wj
T

WxxT _WXXTWTW = TW = _T '2 (32)

We want to "break" the synunetry of outer product yyT in (33). This can be accomplished by only retaining the lower

triangular portion of the symmetric matrix i.e., we want to apply the operator LT[ (where LT[ • ] selects the

lower triangular portion ofthe matrix). Apply this operator to yy in (33) we obtain

YiYi Y1Y2 • •
Y1Ym Wf YiYi 0 • . . 0 wi'

LT Y2Yi Y2Y2 • ' Y2Ym
w:r

Y2Y1 Y2Y2
•• ?

YmY1 YmY2 •
YmYm 3i YmY1 YmY2 '

YmYm

yiyiwr Wj

= y2(yiwr+y24) w
Yi(k)[Xf(k)_ whj(k)yh(k)]

(33)

Ym ()11Wj + Y24 + . . + YmW) W

Therefore, the scalar form of the GHA can be written as

w (k +1) =w (k) + (k)y1 (k)[x (k) — Whi (k)yh (k)1 (34)

Comparing this scalar form of the GHA to the scalar form of KOSSA, we see the only difference is the upper limit of the
summation. This algorithm is considered a detector of orthogonal features which encodes mutually independent aspects of
the information contained in the large amount of input thta
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3. NEW APPROACH

3.1 Derivation of the Extended Karhunen-Oja Symmetric Subspace Algorithm (EKOSSA) and the Extended GHA
(EGHA)

In this section, the extended KOSSA (EKOSSA) is first derived, and from this result the extended GHA (EGHA) follows.
We introduce a real positive definite, symmetric weighting matrix S. in the energy function given (18) as follows

E(W)=---eTSe (35)

where e E 9nx1 is the representation error, andS , S > 0 and ST S . The representation error can be written as

e=x—I=x---WTWx (36)
where i = WTy, , = Wx . Therefore, the energy function can be written as

E(W) = !eTSe = !(XT xTWTW)S(x -WTWx) (37)

Using this energy function, a continuous-time (analog) learning rule can be developed using a steepest descent approach
given by f= -1uVE(W) (38)

where

VE(W) = —-—E(W) = xTSWTWx- xTWTWSx + xTWTWSWTWx1 (39)aw WL2 J
By applying the general results in (13) and the appropriate chain rule in (24), we can write the gradient ofE() as

VWE(W) = .[- 2WSxxT 2WxxTS + 2WxxTWTWS + 2WSWTWxxT]

=- WxxTS + WxxTWTWS - WSXXT + WSWTWxxT

=[- WxxT + WxxTWTWIS - WSXXT + WSWTWXXT (40)
if S = I in (40), this leads to the same results shown in (28). Therefore, the EKOSSA is a more general result than the
KOSSA. However, if S I , the terms that were discarded in (25) must be retained in (40), and the discrete-time learning
rule is given by

W(k + 1) = W(k) — p(k)VE(W)
part I

= W(k) + p(k)[W(k)x(k)xT (k)S(k) —W(k)x(k)xT(k)WT (k)W(k)S(k)

+ W(k)S(k)x(k)xT (k) — W(k)S(k)WT(k)W(k)x(k)xT (k)]
part II

= W(k) + p(k){W(k)x(k)xT (k)[I —WT(k)W(k)]S(k) + W(k)S(k)[I —WT(k)W(k)]x(k)xT (k)} (41)
Equation (41) is the vector-matrix form of the extended KOSSA (EKOSSA). Now by defining

Q(k) = x(k)xT(k)[I — WT(k)W(k)]S(k) (42)

QT(k) = S(k)[I— WT(k)W(k)]x(k)xT (k) (43)
a simplified form of the EKOSSA can be written as

W(k +1) = W(k) — p(k)W(k)[Q(k) + QT(k)] (44)

The EGHA can now be derived from (41). Part I in (41) can be written as (dropping the dependence on k)

280

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/22/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



wT Si1 Si2 •. ' sin
T

WxxTS WXXTWTWS = [WxxT WxxTWTW]S = {yxT '2
}

Sfl S2
•

S2n
(45)

5n1 5n2
• • • 5nn

Ifwe break the symmetry on the outer product matrix y/ (45) using the lower triangular operator LT[ • 1 we obtain

y1y1 y1y2 . . YYm W S S12 • • •

{yxT _ LT
Y2Y2

• •
Y2Ym S21 S2

YmY1 YmY2 • • ' YmYm W n2 • • nn

y1y1w w' S12
• • • S1

={yxT — y2(y1wT+y2w) w s S2

Ym(Yi' +y2W' +.. '+YmW) w n1 S,2 S,

= yi (k) [xg (k) - Whg(k)yh
(k)sj(k)

(46)

In partIIof (41), ii we break the symmetry on the outer product matrix XXT using the upper triangular operator UT[ •], we
obtain

WS(UT[xxT]) - WSWTW(UT[xxT]) (47)

partl part2

Part 1 in (47) can be written as

WS(UT[xxT 1)

w1 S11 S12 S1 X1X1 X1X2 X1X

W2 21 22 2n 0 x2x2 x2x0 0.
W S,1 n2 S, 0 0

WigSgi X1 X1 W1gSgfXfX2 W1gSgfXfXn
g=1 f=1 g=1 f=1 g=1

EWigS gl W2gSXfX2 W2gSXX
g=1 f=1 g=1 f=1 g=1

WmgSgiX1 X1 WmgSgfXfX2 WmgSgIXfXn
g=1 f=1 g=1 f=1 g=1

= WjgSgfXfXj (48)
f=1 g=1

and part2 can be written as

WSWTW(UT[xxT]) =
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m m m

WhlWhl Wh1Wh2 • . . Wh1Whfl
h=1 h=1 h=1 x1x1 x1x2 • • •

m m m

Wh2Whl Wh2Wh2 • . .
Wh2Whfl

0 x2x2 • • ' X2Xfl

h=1 h=1 h=1 0 0 .
m

:
m

:
m ... 0 XflXfl

WhflWhl WhnWh2 • ' • WhflWhfl
i=1 h=1 h=1

=
[ WjgSgj j WhIWhfXfXJ (49)

g=1 f= h=1
Therefore, combining (48) and (49), part II in (41) can be written as

WS(UT[xxT ]) WSWTW(UT{xxT1)

= E WSXfXJ — [ WjgS ][
WhJWhfXfXJ]

(50)
f=1 g=1 g=1 f=1 h=1

Therefore, from (46) and (50), the scalar form of the EGHA can be written as

w(k + 1) = w,7(k) + p(k){yj(k)[xg(k) -
whg(k)Yh(k)]s(k)

+ E Wjg (k)s(k)xf (k)x (k) - [E Wjg (k)s(k)j Whf(k)whf(kf(k)x1 (k)]} (51)
f=1 g=1 g=1 f=1 h=

ffthe weighting matrix S is diagonal, (5 1) can be simplified as

w (k + 1) =w(k) + p(k) {y (k) [xj (k) - Whj(k)yh(k)]sff (k)

+ Wf (k)sff (k)xf (k)x (k) - [Wjg(k)s(k)1 Whi (k)whf (k)xf (k)x1(k)1} (52)
1=1 g=i ]Lf=1 h1

where the learning rate parameter is given by

i(/c)= ci 2
(53)

+ y(k)
p(k—1)

2

and the forgetting factor must lie in the range 0 � a � 1.

3.2 Simulation Results

Comparison ofthe EGHA with Sanger's GHA

In this section the performance of the EGHA is compared to Sanger's GHA. The speed of convergence and the
overall error performances are compared. In each of the three cases studied, the same input data, initial weighting matrix
W(O), and forgetting factor (o-= 0.9) in the adjustable learning rate parameter were used. In each test it was assumed that we
had prior knowledge of the variance of each term in the stochastic input vector to the network. Four different scenarios were
considered in this comparative analysis: (i) Matlab eigenanalysis, using the "eig" built-in function, (ii) GHA, (iii) EGHA
(S=1), and (iv) EGI{A with a diagonal S matrix. The diagonal elements of the weighting matrix S for scenario (iv) are the
reciprocals of the standard deviations of the input data, i.e., s = ]/o, for I = 1, 2, ,n.
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In the first test case 5000 zero-mean Gaussian 3-dimensional vectors were generated. The respective variances of

the components in the stochastic vector are set at o = 100 , o = 25 and o = 1 The objective is to estimate all three

principal eigenvectors and compare the results to the results computed using the Matlab built-in function "eig." The results
obtained using the Matlab function are considered the "truth" values (i.e., the true principal eigenvectors and eigenvalues),
and the results obtained using the other methods are compared to them. To compute the Matlab results, the covanance matrix
is first estimated from the 5000 random vectors, i.e.,

cx Ix(k)xT(k)= (54)

where N=5000 and
x = [x(l), x(2), . . . , x(N)] (55)

In Table 1, the first column shows the Matlab eigenanalysis results, i.e., computing the eigenvalues and eigenvectors

of C, from (54). The three neural network approaches discussed above, i.e., scenarios (ii), (iii), and (iv), were used next to
determine the principal eigenvectors (and the associated eigenvalues). These results are shown in the next three columns of
Table 1. The eigenvalues for these three cases are estimated according to

A1 var(wTX) (56)

where w is the th principal eigenvector athptively determined using one of the methods and X is given in (55). Table 1

shows that the EGHA with the weighting matrix given by S=thag(1/o ), for i =1, 2, , n , yields the best results even
though more traiiiing epochs were required for convergence. The performance for each scenario is based on the sum of the
absolute values of the errors for each estimated eigenvalue compared to the Matlab results, i.e.,

sum of errors = - (57)

where 41 the 1th eigenvalue computed by using the Matlab built-rn function "eig" and 4YN is the i eigenvalue
estimated by one of the neural network methods.

Table 1. Performance Results for First Experiment. (crj 1 00, o 25, o = 1)

(i) Eigenanalysis:eig(C) [ (ii) GilA [ (iii) EGHA (S=I) [ (iv) EGHA (S=diag(1/a))

2 epochs to converge 2 epochs to converge 14 epochs to converge

V(eigenvectors)=
1.0000 -0.0026
0.0026 1.0000
-0.0002 0.0009

-0.0002
0.0009
-1.0000

WT=
0.9920 0.0564 -0.0134
0.1557 -1.0074 -0.0216
-0.0008 -0.0204 0.9972

w=
0.9807 0. 1200 -0.03 15
0.3181 -0.9898 -0.0384
0.0005 -0.0420 0.9872

WT=
1.0005 -0.0216 -0.0007
0.0476 -1.0000 0.0122
-0.0009 -0.0256 -1.0004

D(eigenvalues)
102.0120 0

0 25.5471
0 0

0
0

1.0177

eigenvalues =
101.0004
26.2369
1.0421

eigenvalues =
100.7516
26.4626
1.1305

eigenvalue =
102.1162
25.6125
1.0219

sum of errors = 1.7312 sum of errors =2.2881 sum of errors = 0.1792

Table 2 shows the test results for the second experiment. The data are generated in the same way as in the first

experiment except the variances used now are: o = 10 , o = 2 and o 1 . All three neural network approaches

required one training epoch to converge. The EGHA with S=thag(1/o) again had the best performance compared to the other
two approaches.
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Table 2. Performance Results for Second Experiment. (a = 10, a =2, o 1)
(i) Eigenanalysis: eig(C) (ii) GHA (ill) EGHA (S=I) (iv) EGHA (S=diag(1/a))

1 epoch to converge 1 epoch to converge 1 epoch to converge

V(eigenvectors)=
1.0000 -0.0022
0.0022 1.0000

-0.0005 0.0059

-0.0006
0.0059
-1.0000

W=:
0.9949 0.0472 -0.0290

0.1401 -1.0011 -0.1080

-0.0119 -0.1209 0.9952

WT=
0.9862 0.0916 -0.0442

0.2815 -0.9694 -0.2241

-0.0112 -0.2689 0.9575

",=
0.9979 0.0143 -0.0168

0.1628 -0.9797 -0.1983

-0.0127 -0.2400 0.9758

D(eigenvalues) =
10.2012 0

0 2.0438

0 0

0
0

1.0176

eigenvalues =
10.1360
2.0861

1.0396

eigenvalues =
10.0864
2.0804

1.0540

eigenvalues =
10.2119
2.0252

1.0504

sum of errors = 0.1295 sum of errors = 0. 1878 sum of errors = 0.0621

Table 3 shows the test results for the third experiment. Again the data are generated the same as before except the
. 2 2 2 .. . •• ...

variances used now are: o = 1 Ou , °2 -' cr3 = 1 . Case (ii) required 3 training epoch and case (in) required 4

training epochs to converge. Case (iv) required more epochs to converge than the other two cases, specifically 17 epochs,
however, it produced the most accurate results. When a smaller forgetting factor was used (cr= 0.7) for the three different
neural networks, case (iv) required 4 training epochs to converge and was again the most accurate. However, the accuracy
was not as good as that shown in Table 3.

Table 3. Performance Results for Third Experiment. (o 100, o 50,o = 1)

(i) Eigenanalysis: eig(C) (ii) GHA (iii) EGHA (S=I) [ (iv) EGHA (S=diag(11o))
3 epochs to converge 4 epochs to converge 17 epochs to converge

V(eigenvectors)=
1.0000 -0.0055 -0.0002

0.0055 1.0000 0.0006
-0.0002 0.0006 -1.0000

jiT=
0.9682 0.1331 -0.0149

0.2626 -0.9969 -0.0126

-0.0037 -0.0158 0.9869

wr=
0.9286 0.2848 -0.0397

0.5056 -0.9276 -0.0462

-0.0038 -0.0324 0.9553

J1'=
1.0012 -0.0412 0.0049

0.0156 -0.9990 -0.0059

-0.0056 -0.0181 0.9987

D(eigenvalues) =

102.0131 0 0
0 51.0937 0
0 0 1.0177

eigenvalues =
99.2290
52.5267

1.0220

eigenvalues =
101.2304
52.1025

1.1981

eigenvalues =
102.2063
51.1963

1.0189

sum of errors = 4.2214 sum of errors = 1.9719 sum of errors =0.2970

4. CONCLUSIONS
In summary, for the three simulations that were run, both Sanger's GHA and the EGHA with S=J had the fastest
convergence, however, the EGHA with Sdiag(1/o) had the best accuracy. It appears from the results in Table 1 and 3 that
the input data with the larger variances will require more training epochs for convergence. It was demonstrated in one
example that a smaller forgetting factor improved the speed of convergence, but the accuracy of the results declined. One of
the main advantages of the EGHA is that selected error terms can be weighted differently. Depending on prior knowledge of
the input data, the weighting can involve statistical inlonnation relating to the input to the network. This was the case in
scenario (iv) where the weighting matrix was diagonal. The diagonal elements were the reciprocals of the standard
deviations ofthe input data. This EGHA performed the best in the three simulations that were run. Further work will involve
incorporating robustness into the EGHA.
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