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ABSTRACT

Principal component analysis (PCA) plays an important role in various areas. In many applications it is necessary to
adaptively compute the principal components of the input data. Over the past several years, there have been numerous neural
network approaches to adaptively extract principal components for PCA. One of the most popular learning rules for training
a single-layer linear network for principal component extraction is Sanger’s generalized Hebbian algorithm (GHA). We have
extended the GHA (EGHA) by including a positive-definite symmetric weighting matrix in the representation error-cost
function that is used to derive the learning rule to train the network. The EGHA presents the opportunity to place different
weighting factors on the principal component representation errors. Specifically, if prior knowledge is available pertaining to
the variances of each term of the input vector, this statistical information can be incorporated into the weighting matrix. We
have shown that by using a weighted representation error-cost function, where the weighting matrix is diagonal with the
reciprocals of the standard deviations of the input on the diagonal, more accurate results can be obtained using the EGHA
over the GHA.

Keywords: principal component analysis, neural network, extended generalized Hebbian algorithm, weighting matrix .

1. INTRODUCTION
1.1 Statement of the Problem

Principal component analysis (PCA)®" has many applications, e.g., data compression and coding (decoding), adaptive beam-
forming, high resolution spectral analysis (frequency estimation), and pattern recognition, to name a few > * > % Many
times it is necessary to adaptively determine principal components. That is, there may not be enough data available to
estimate the covariance matrix of the input data, and then compute the eigenvalues and eigenvectors of the resulting matrix.
Instead an adaptive method is needed to compute the principal eigenvectors associated with the inputs, as the data are
processed. There have been many neural network architectures and training algorithms developed for adaptive estimation of
principal eigenvectors '*2* 2252 One of the most well known is the Generalized Hebbian Algorithm (GHA) for training a
single-layer neural network consisting of linear processing elements '’. The network can estimate as many principal
eigenvectors as desired. The standard approach that is used to develop the GHA learning rule involves using a quadratic,
representation-error formulation of a cost (energy) function that is minimized over the weight space. Many times the results
obtained using the GHA are not accurate enough, therefore, it is desirable to improve the algorithm.

The GHA has been extended (EGHA), i.e., instead of a standard (non-weighted) quadratic representation error cost
function, a weighted error function is used '>*" %, That is, the cost function now has a positive-definite symmetric weighting
matrix included. The resulting symmetric subspace learning rule now has terms in the gradient expression that can not be
discarded, as is the case with the GHA. The terms that are discarded in the GHA must be retained in the EGHA unless the
weighting matrix in the cost function is the identity matrix. When the weighting matrix in the EGHA is set to the identity
matrix, the GHA can be recovered. When the symmetry is broken on the appropriate terms leading to the EGHA, more
accurate results can be obtained. In particular, a distinct advantage of the EGHA is that a priori information can be taken
into account that enhances the capability and accuracy of the learning algorithm. More specifically, if we have prior
knowledge of the variance of each term in the stochastic input vector to the network, we can take advantage of this

() PCA is also known as the Hotelling transform in digital image processing and the Karhunen-Loeve transformation in communication
theory.
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information using the EGHA and improve the results, ie., improved accuracy of the principal eigenvectors. This is
essentially allowing "customized" learning rate parameters to be used for the extraction of each principal component. This
capability is not available in the standard GHA. The approach that is taken here first extends the Karhunen-Oja symmetric
subspace algorithm (KOSSA), i.e., the EKOSSA, and then from these results the EGHA is developed.

1.2 Overview of Principal Component Analysis (PCA)

PCA is a statistical method that determines an optimal linear transformation y = Wx for a given input vector x,
considered to be a zero-mean, wide-sense stationary, vector-stochastic process 15,1619 The matrix W is comprised of

orthonormal eigenvectors associated with the input covariance matrix C, = E[xx”]. Specifically, the rows of W are the

principal eigenvectors associated with C.. PCA transforms a large amount of correlated data into a set of statistically

decorrelated components (principal components), i.e., PCA projects the input data from an n-dimensional space onto an m-
dimensional output space, typically m<<n. The output space has a covariance matrix that is diagonal. The goal of the PCA is

to find directions or the principal eigenvectors W, , W, -+, W _ .

Let

T

Wy, Wy o Wy, w, X B4
T

Wy Wy, W w x y

21 2 2 2 2 1
W=\ . : =17 |leR™ x=| 7 |eR™, y=|"" |eR™ (1)

T

wml wm2 o wmn wm xn ym

The first m eigenvectors {w,,w,,---,w,} of C, are considered the m principal eigenvectors of C, . These can be found
from the standard eigenvalue problem

Cow, = /ljwj for j=1,2,---,n 0}
where A, 2 A, 2+ > 4, 2 0. These eigenvalues are ordered from the largest to the smallest. The principal eigenvector

w, corresponds to the largest eigenvalue A,, and w, corresponds to the second largest eigenvalue A,, and so on. If itis

assumed that we are interested in the j principal component, and we let y,be the weighted linear combination of the elements
of the data input vector x, then we can write

Y =W X H Wy X, e bW, X 3)
The scalar component (i.e., the j* principal component) y; is considered a stochastic variable with an associated variance
given by
2 2 T
Ely,'1=0," =w, Cow, @)
We require w;to be of unit length, i.e.,
T, 2 _
wiw, =|w, |, =1 £
where || e ||, is the L,-norm (or Euclidean norm). Having determined the eigenvalue A4 ;» the eigenvector w; can be found
from
(C, ——zljl)wj =0 6)
Pre-multiplying both sides of (6) by W, gives
T T T
w (C,-ADw, =w Cw —-Aw, wj—ayf—/lj-0 )
. 2 _
Lo, =4 ®)

For j=1, Gylz =], is the largest cigenvalue of C, (the largest variance), and W, =[w,,w,,---w,,]" is the first
principal eigenvector corresponding to the largest eigenvalue A, of the input data. The vector W, indicates the direction in
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the vector space associated with the largest variance. Therefore the linear transformation y = WX yields an output y which
is the vector of principal components. Figure 1 shows PCA in a 2-dimensional vector space. The first principal component
has the largest variance and retains the maximum information associated the inputs. In other words, the first principal
component has the minimum projection error associate with it.

X. e
472 first principal
eigenvector, w,

second principal
eigenvector, w ,

Figure 1: Geometrical interpretation of PCA.

2. PAST WORK

2.1  Oja’s Learning Rule for Estimating a Single Principal Component (Normalized Hebbian Learning Algorithm)

Oja '® proposed a single linear processing unit described by the equation y, = wITx , see Fig. 2. The purpose of the
learning algorithm is to find the first principal eigenvector w, =[w,, W, --- w,,, 1" . Starting with the representation-error
vector defined as € = X — X , we assume the length of the weighting vector is 1, i.e.,

wiw, =| w, ”2 =1 ©®

From the linear transformation y, = wITx and the estimate of x, i.e, X =W,,, an energy function is formulated as
follows

1 1 - 1
Bow) = e} = 5= = 20w (v mi) o)

=w T
YW, X

Figure 2: Oja’s single neuron model.

Using this energy function, a continuous-time (analog) learning rule can be developed using the method of steepest descent
as

s — ¥, EOv) an

Next we need to compute the gradient of (10) with respect to W, , i.e.,
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oE(w o |1
VWIE(wl)=—a—(uT‘)=—671[5(x—w1yl)T(x—w1yl)} (12)

By applying the following general results (for appropriately dimensioned 4, B, and C)
0
~_ #[BAC]=B"C"
oA

13)
0 T
—tr[BA"C]1=CB
oA
and the appropriate chain rule, we obtain the gradient of E(w,) as
1 2 2
Vo Hom)=- (20, +2m) ) ==X, W) a4
Therefore, Oja’s continuous-time learning rule for a single neuron is given by
dw
'—d?l: .uyl(x’wly1) s)

where y, = w,Tx . The discrete-time version of (15) is given by
wi(k +1) = wi (k) — uV,, E(wy) = w(k) + 191 (k) {x(k) — wi (k)1 (k)} (16)

where y,(k)=w IT(k)x(k) , and k is the discrete-time index. The scalar form of Oja’s discrete-time learning rule in (16)
is given by

wy, (k+1) = w, (k) + @, (k) {x (k) — wy (k) y, (k) } an
where j=1, 2, ---, m, and g = p(k) > O isthe leamingrate. ~ Note that the y,(k)x (k) term in (17) is the typical
Hebbian co-occurrence term =.

Oja’s learning rule converges to the weight vector wy, which is the first principal eigenvector of C, for the zero-

mean input vector x, and , is the first principal component. It is also true that w maximizes the variance of the output ).
Therefore, the single linear neuron trained by the Hebbian learning in (17) is a principal component analyzer of the input

signal.
2.3 Karhunen-Oja Symmetric Subspace Learning Rule for Extraction of Multiple Principal Components

Karhunen and Oja '*%° proposed a single-layer neural network with m linear processing units described by the transformation
y=Wx, see Fig. 3. The purpose of this architecture is to extract several principal components, Y, V""", Vp » where
m<<n. The learning rule can be derived by first formulating an energy function given by

1
EW)=_]el, a8)
where e is the representation error given by

e=x-X=x-W'y=x-W'Wx (19)

Therefore, the energy function can be written as
EW) = -;-|| el}=eme- ST =TT - W) 0
- —;-(xfx—szWTWerxTWTWWTWx) 1)
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Figure 3: Neural architecture for multiple principal component extraction.

Using this energy function, a continuous-time (analog) learning rule can be developed as

dw
= H#VwEW) @2)
The gradient of (20) must be computed, i.e.,
V,EW)= EW) _ —(?—[-l—(xTx - 2x"WTWx + xTWTWWTWx)} (23)
ow oW | 2
By applying the general results in (13), (14) and
a%tr[BATCA] = é%tr[BATCAI 1=CAB + (BATC )T =CAB + CT AB” 249

the gradient in (22) is
V,EW)= %[— 22WxT) + QW WTW + 2WW W)

= -Wxx" + Wxx"WW —Wxx" + WW Wxx" 25)
However, the last two terms will approach zero very quickly because WWT — I eR™™ . Therefore, continuous-time
learning rule is given by

W W™ —Wx W) 26)

di

The discrete-time learning of (26) is given by t
W (k +1) = W (k) + () (k)x(k)x" (k) = W (k)x(k)x" (k)W (k)W (k)} @7
=W (k) + p(kYW (k) x(k)x (k) {1 - W (k)W (k)} 28)

The learning rule given in (28) is known as the Karhunen-Oja symmetric subspace algorithm (KOSSA).

The scalar form of the KOSSA can be derived from (28) as follows. The second term on the right side of (28) can
be written as (excluding the learning rate parameter and dropping the dependence on k).

W (k)x(k)xT (k) - W (k)x(k)xT ()W T (k)W (k)

wlTx w{
T T m
|2 Xt —xTw; xTwy o xTw,]™2 =y,~(k)[x,~<k>—th,-(k)yh(k> 29)
: : h=1
w,ﬁx wﬁ

fori=1,2,--,mand j=1, 2, ---, n. Therefore, the scalar form of the KOSSA can be written as
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w, ke +1) = w, (k) + k), (R, (K) — 3w, (), ()] G0y

where the learning rate is given by

1
plk) = —— G
————+ || y®) |
(k-1 | y() I2
where 1(0) = _ ,for k=1, 2,3, ---, and the forgetting factor is 0 < o <1. If m = 1, the KOSSA reduces to
| ¥(0) I3

Oja’s single neuron learning rule. An interesting aspect of the KOSSA is the rows of the weight matrix W do not converge
to the actual principal eigenvectors of C,, but they do converge to some linear combination of the first m principal

eigenvectors of C_. Therefore, the neural network is able to learn the sub-space spanned by the first m principal
eigenvectors.

2.1 Sanger’s Learning Rule: Generalized Hebbian Algorithm (GHA)

Sanger’s GHA allows the first m “true” principal eigenvectors to be determined. The GHA can be derived from the
KOSSA '°. Starting with (29) (dropping the dependence on k)

wi

. T
Wxx! —wxx"w! W=yxT-nyW=yxT~ny w.z (32)

W
We want to “break” the symmetry of outer product ny i (33). This can be accomplished by only retaining the lower
triangular portion of the symmetric matrix ny , 1.e., we want to apply the operator LT[ ny] (where LT[ e ] selects the

lower triangular portion of the matrix). Apply this operator to ny in (33) we obtain

YW Y2t Wm || Wl w0 0wl

T 0 0 r
w! —LT .)’2:)’1 }’2.}’2 - J’Z.ym w.2 - }’2.)’1 yz_}’z . . w.z
Y YmY2  YmIm )| wh Y Ym¥2  Ym¥m )| wh
T
3484041 W1T
T T T i
T wy + w w
=gl | 220 F) 2 | =350 - Ty ®| 63
=1

T T T
ImWL + oWy +-ooF VW) || W
Therefore, the scalar form of the GHA can be written as

wy(k+1)=w, (k) + u(k)y, (k){xj (k) - iwhj(k)y;. (k)} (34)

Comparing this scalar form of the GHA to the scalar form of KOSSA, we see the only difference is the upper limit of the
summation. This algorithm is considered a detector of orthogonal features which encodes mutually independent aspects of
the information contained in the large amount of input data.
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3. NEW APPROACH

3.1 Derivation of the Extended Karhunen-Oja Symmetric Subspace Algorithm (EKOSSA) and the Extended GHA
(EGHA)

In this section, the extended KOSSA (EKOSSA) is first derived, and from this result the extended GHA (EGHA) follows.
We introduce a real positive definite, symmetric weighting matrix S, in the energy function given (18) as follows

EW)= —;—eTSe (35)

where e € R™' is the representation error, and,§ € R™, § >0 and §” = .. The representation error can be written as
e=x-x=x-WTWx (36)
where X =Wy, y=Wnx . Therefore, the energy function can be written as

1 1
EW)= EeTSe = ~2—(xT ~xX"TWTW) S (x - WTWx) 37)
Using this energy function, a continuous-time (analog) learning rule can be developed using a steepest descent approach
given by
dw
—=-uVy E(W) (38)
dr
where

Vo EW) = E?V—E(W) = %}-[—;— xTSx - x"SWTWx - x"WTWSx + xTWTWSWTWx] 39)
By applying the general results in (13) and the appropriate chain rule in (24), we can write the gradient of E(W) as

V, EW) = %[— WSXxT — WS + 2Wx WIS + 2WSW T Wik |

=—Wxx"S + Wxx"WTWS — WSxx" + WSW TWxx”
=[-WxT + W TwIw 1S - wsxT + wsw TwaeT (40)
If § =1 in (40), this leads to the same results shown in (28). Therefore, the EKOSSA is a more general result than the
KOSSA. However, if .§ # I, the terms that were discarded in (25) must be retained in (40), and the discrete-time learning
rule is given by
Wk +1)=W(k)— u(k)VEW)
part 1

= W (k) + p()IW (k)x(k)xT (k)S (k) ~ W (k)x(k)x" ()W (kYW (k) S(k)
+ W (k)S(k)x(k)x" (k) - W (K)S(k)W" (k)W (k)x(k)x" (k)]
=W (k) + u(){W (k)x(k)x" (k)1 - W' (k)W (k)1S (k) + W (k)S (k)L - W ()W (k)]x(k)x" (k)} (41)
Equation (41) is the vector-matrix form of the extended KOSSA (EKOSSA). Now by defining

Q(k) = x(k)xT ()T ~W T (k)W (k)18 (k) 42)

Q7 (k) = S()I - W7 (k)W (k)]x(k)x" (k) (43)
a simplified form of the EKOSSA can be written as

W (k +1)=W (k) — p(k)W (k)[Qk) + Q7 (k)] a4)

The EGHA can now be derived from (41). PartIin (41) can be written as (dropping the dependence on k)
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T

wy || S11 S12 S1n
Tllsy s
waxT S — W' WIws =[x’ —we WIws = (i — T | "2 p1 73 722 7 as
w,I,; Snl Sn2 Snn

If we break the symmetry on the outer product matrix ny in (45) using the lower triangular operator LT[ o ], we obtain

I N WY W;- S Sz Sin
{yxT _LT Yo Vo) VoV sz }521 S22 S2n
ymyl ymyZ ymym w:; snl Sn2 srm
T T
BB AL W[ Sn S Sin
T T T
= (T — Yarwy +y,w3) W, ) Sn Sy Son
T T T T
ym(ylwl +y2w2 +'“+ymwm) wm Snl Sn2 o snn

(46)

=, (k)i_[xg (5= 3w,y ()3, (k)]sg,(k)

In part II of (41), if we break the symmetry on the outer product matrix xx” using the upper triangular operator UT[ e ], we

obtain
WS(UT[xx" 1) - WSW W (UT[xx" ]) @7)
p;rtl paTiZ
Part 1 in (47) can be written as
WS(UT[xx"])
W, Wy, Wi il S Siz Sl %% XX, XX,
- Wy Wy Wou | S21 S 770 Sy 0 X%, X, X,
. . : . . . . 0 0 :
wml wm2 wmn snl sn2 snn O O xnxn
[ n 2 n n n 7
DS X DD Wi S X X, DD WigSer X X,
g=l f=1g=1 sf=lg=1
n 2 n n n
_| ZWigSaxix, DD WagSer XX, DD Wag Sy XX,
g=1 f=1g=1 f=lg=1
n ) 2 n : n n )
D WmgSgXiXy DD WSy X (X, D2 WngSer X%,
| g=1 f=1g=1 f=1g=1 |
Jj n
=2 WSy XX, 48)
=1 g=1
and part 2 can be written as
wswITw (UT[xxT]) =
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D2 VYRl DWWk D Whi%hn )
h=1 h=1 h=1 XXy XXy XX,
n
Zw’. S thZWhl thzwhz thzwh,, 0 xx XoXp
— €78 | p=1 h=1 h=1 0 0 :
g=1
0 0 x,x,
thnwhl thnwh2 z WinWhn
Lh=1 h=1 h=1 ]
J m
Z WigSg | 20 2 WiWi XX, 49
g=1 F=1 h=1
Therefore, combining (48) and (49), part II in (41) can be written as
WS(UT[xx"]) - WSWTW (UT[xx" ])
J n n J m
= Zzwigsgfxij - [Z wigsgi:||:zzwhjwhfxiji| (50)
f=lg=1 g=1 =t h=l

Therefore, from (46) and (50), the scalar form of the EGHA can be written as

W, (k+1) = w, (k) + u(k){y,»(k)i_[xg(k) - zw (k)y,,(k)]sg,(k)

J n
+ 373w, (k)s, (k)x (), (k) —
f=1g=1
If the weighting matrix S is diagonal, (51) can be simplified as

w, (k+1) = w, (k) + u(k){y, (k)[x,» (k) - iwhj (k)yh(k)}sﬁ (k)

{Z W (k)s (k):":ZJ: i Wy (k)whf (k)xf (k)x (k)}} (€2))

=1 h=1

+ 3w, (6)s 5 (k)x,, (R)x, (k) - [Zw,g(k)s (k)]{iiwh,(k)whf(k)xf(k)x (k)}} s2)
=

f=1h=1
where the learning rate parameter is given by

1
u(k) = (53)

2 e

and the forgetting factor must lie in therange 0 <o <1.

3.2 Simulation Results
Comparison of the EGHA with Sanger’s GHA

In this section the performance of the EGHA is compared to Sanger’s GHA. The speed of convergence and the
overall error performances are compared. In each of the three cases studied, the same input data, initial weighting matrix
W(0), and forgetting factor (o= 0.9) in the adjustable learning rate parameter were used. In each test it was assumed that we
had prior knowledge of the variance of each term in the stochastic input vector to the network. Four different scenarios were
considered in this comparative analysis: (i) Matlab eigenanalysis, using the “eig” built-in function, (ii)) GHA, (iii)) EGHA
(S=I), and (iv) EGHA with a diagonal S matrix. The diagonal elements of the weighting matrix S for scenario (iv) are the

reciprocals of the standard deviations of the input data, i.e., s; = I/o;, for i =1,2,---, n
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In the first test case 5000 zero-mean Gaussian 3-dimensional vectors were generated. The respective variances of
the components in the stochastic vector are setat &> =100, 67 =25 and o2 =1. The objective is to estimate all three

principal eigenvectors and compare the results to the results computed using the Matlab built-in function “eig.” The results
obtained using the Matlab function are considered the “truth” values (i.e., the true principal eigenvectors and eigenvalues),
and the results obtained using the other methods are compared to them. To compute the Matlab results, the covariance matrix
is first estimated from the 5000 random vectors, i.e.,

1Y 1
C =— x’ (k)= —XX7 54
e N;x( »x” (k) - (54)
where N=5000 and
X =[x(1), x(2),--, x(N)] (55)

In Table 1, the first column shows the Matlab eigenanalysis results, i.e., computing the eigenvalues and eigenvectors
of C . from (54). The three neural network approaches discussed above, i.e., scenarios (ii), (iii), and (iv), were used next to

determine the principal eigenvectors (and the associated eigenvalues). These results are shown in the next three columns of
Table 1. The eigenvalues for these three cases are estimated according to

A; =var(w! X) (56)
where W; is the i principal eigenvector adaptively determined using one of the methods and X is given in (55). Table 1

shows that the EGHA with the weighting matrix given by S=diag(1/c; ), for i=1,2,---, 1, yields the best results even

though more training epochs were required for convergence. The performance for each scenario is based on the sum of the
absolute values of the errors for each estimated eigenvalue compared to the Matlab results, i.c.,

n
sum of errors=_ ‘Z,,M - AWV } (57
-

where /'L,M is the i"* eigenvalue computed by using the Matlab built-in function “eig” and &NN is the i eigenvalue
estimated by one of the neural network methods.

Table 1. Performance Results for First Experiment. (0'12 =100, 0"22 =25, 0'% =1)

(i) Eigenanalysis: eig(Cy) (i) GHA (iii) EGHA (S=I) (iv) EGHA (S=diag(1/0y)
2 epochs to converge 2 epochs to converge 14 epochs to converge
V(eigenvectors)= W= W= W=

0.9920 00564 -0.0134 | 09807 0.1200 -0.0315 | 1.0005 -0.0216 -0.0007
ézgggg fﬁggﬁg '33’8892 0.1557 -1.0074 -0.0216 | 03181 -0.9898 -0.0384 | 0.0476 -1.0000 00122
0 00 O | -0.0008 -0.0204 0.9972 | 0.0005 0.0420 0.9872 | -0.0009 -0.0256 -1.0004

i = eigenvalues = eigenvalues = eigenvalue =
])Szl%efzv;l “es)o o | 101.0004 100.7516 102.1162
0 255471 0 26.2369 26.4626 25.6125
0 o 1o177| L0421 1.1305 1.0219
sum of errors = 1.7312 sum of errors = 2.2881 sum of errors = 0.1792

Table 2 shows the test results for the second experiment. The data are generated in the same way as in the first
experiment except the variances used now are: o} = 10, 0'22 =2 and 67 =1. All three neural network approaches

required one training epoch to converge. The EGHA with S=diag(1/o;) again had the best performance compared to the other
two approaches.
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Table 2. Performance Results for Second Experiment. (o =10, 6 =2, 02 =1)

(i) Eigenanalysis: eig(Cy (ii) GHA (iii) EGHA (S=)) (iv) EGHA (S=diag(1/0;))
1 epoch to converge 1 epoch to converge 1 epoch to converge
V(eigenvectors) = W= W= W=
10000 -0.0022 -0.0006 0.9949 0.0472 -0.0290 0.9862 0.0916 -0.0442 0.9979 0.0143 -0.0168
0'0022 1'0000 0 '00 59 0.1401 -1.0011 -0.1080 0.2815 -0.9694 -0.2241 0.1628 -0.9797 -0.1983
200005 0.0059 -1.0000 -0.0119 -0.1209 0.9952 -0.0112 -0.2689 0.9575 -0.0127 -0.2400 0.9758
. _ eigenvalues = eigenvalues = eigenvalues =
Dietgenvaluss) o | 10.1360 10.0864 10.2119
) 0 20438 0 2.0861 2.0804 2.0252
0 0 10176 1.0396 1.0540 1.0504
sum of errors = 0.1295 sum of errors = 0.1878 sum of errors = 0.0621

Table 3 shows the test results for the third experiment. Again the data are generated the same as before except the

variances used now are: 0'12 =100, 0'22 =50 and 0'32 =1. Case (ii) required 3 training epoch and case (iii) required 4
training epochs to converge. Case (iv) required more epochs to converge than the other two cases, specifically 17 epochs,

however, it produced the most accurate results. When a smaller forgetting factor was used (o = 0.7) for the three different
neural networks, case (iv) required 4 training epochs to converge and was again the most accurate. However, the accuracy

was not as good as that shown in Table 3.

Table 3. Performance Results for Third Experiment. (o = 100, 0'22 =50, 0’32 =1)

(i) Eigenanalysis: eig(Cy (ii) GHA (iii) EGHA (S=]) (iv) EGHA (S=diag(1/5;))
3 epochs to converge 4 epochs to converge 17 epochs to converge
V(eigenvectors)= W= W= W=
1.0000 -0.0055 -0.0002 0.9682 0.1331 -0.0149 0.9286 0.2848 -0.0397 1.0012 -0.0412 0.0049
0'00 55 1'0000 0' 0006 0.2626 -0.9969 -0.0126 0.5056 -0.9276 -0.0462 0.0156 -0.9990 -0.0059
200002 00006 -1.0000 -0.0037 -0.0158 0.9869 | -0.0038 -0.0324 0.9553 -0.0056 -0.0181 0.9987
. _ eigenvalues = eigenvalues = eigenvalues =
%‘ggoel“;’fl“es)o 0 99.2290 101.2304 102.2063
’ 0 51,0937 0 52.5267 52.1025 51.1963
0 0 1.0177 1.0220 1.1981 1.0189
sum of errors = 4.2214 sum of errors = 1.9719 sum of errors = 0.2970

4. CONCLUSIONS

In summary, for the three simulations that were run, both Sanger’s GHA and the EGHA with S=/ had the fastest
convergence, however, the EGHA with S=diag(//c;) had the best accuracy. It appears from the results in Table 1 and 3 that
the input data with the larger variances will require more training epochs for convergence. It was demonstrated in one
example that a smaller forgetting factor improved the speed of convergence, but the accuracy of the results declined. One of
the main advantages of the EGHA is that selected error terms can be weighted differently. Depending on prior knowledge of
the input data, the weighting can involve statistical information relating to the input to the network. This was the case in
scenario (iv) where the weighting matrix was diagonal. The diagonal elements were the reciprocals of the standard
deviations of the input data. This EGHA performed the best in the three simulations that were run. Further work will involve
incorporating robustness into the EGHA.
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