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Abstract 

Title:  1, 2, or 3 in a HAT? How a Human-Agent Team’s Composition Affects 

Trust and Cooperation  

Author: Dan Nguyen 

Advisor: Jessica Wildman, Ph.D. 

Modern advances in technology have enabled a collaborative relationship 

between man and machine. Many industries have adopted these human-agent 

teams, yet human perceptions about technology may prevent them from adopting a 

teammate mentality when interacting with agents. Although many studies have 

researched the issue, few have studied how the human to agent ratio within a team 

influences how the person intends to interact with their agent team members. 

Grounded in the theory of planned behavior (Azjen, 1985), this study elucidates 

how a team’s composition affects the trust of human team members in human-

agent teams and their subsequent intentions to work with their agent team 

members. Using a between-person experimental vignette methodology, 226 online 

participants were assigned to one of six vignette conditions in a survey which 

manipulates the composition of the hypothetical six-person team (agent majority, 

balanced, and human majority) and the role of the agent (leader or subordinate). 

Although few significant findings were produced, notable trends and study 

limitations are discussed to guide future research that examines the effect of team 

composition in human agent teams.  
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Chapter 1: Introduction 

One of humanity’s trademark qualities is a capacity to develop tools in 

order to deal with the continuous challenges that present themselves in an evolving 

society.  As humans continue to advance their understanding of the physical and 

social world in which they live, it has become increasingly clear how vast, deep, 

and ever-changing the mechanics of the everyday systems around them are. Like 

our predecessors before us, the same holds true in current society. Researchers are 

continuing to push and test theory in order to elevate our understanding of the 

interactions that occur around us, resulting in new developments in the many 

various fields of occupation as well as the emergence of new frontiers. However, 

unlike the challenges faced by our predecessors, the demands of the challenges in 

today’s rapidly developing and complex society have begun to push us beyond our 

physical and mental abilities. As a result, humans have opted to reinforce 

themselves with technology (Orlikoswki, 2007). In doing so, humans have enabled 

themselves to tackle harder tasks and more tasks, as well as opened up new 

frontiers beyond previous human accessibility.    

The need for technology itself is not novel. Throughout human history, we 

have always depended on our ability to understand our surroundings in order to 

fashion items that fulfill our needs. What has changed, however, is the nature of 

these needs. Due to changes caused by physical forces (e.g., weather and terrain 

shifts) and societal forces (e.g., collaboration and regulations), the nature of work 

today has become centered on progress (Volti, 2005). This shift from a survival-
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centric society to a development-centric society has equivalently reflected a shift in 

technological use from sustenance to enhancement (Millar, Lockett, & Ladd, 

2018). Indeed, the zeitgeist of the modern day is “smart” - people are using 

technology to make work easier, quicker, and plausible. Paralleling this change in 

utility, the mindset toward technology has gone from tool to teammate (Fiore & 

Wiltshire, 2016). While technology has historically been a means for problem-

fixing, in recent times it has become a means for successful and efficient problem-

solving. Injecting intelligence into technology has transcended its role from an 

object under our dominion to an entity with which we collaborate. Whereas a 

manufacturing company once employed machinery to simply accelerate production 

for its human workers, they have started providing robotic arms to work alongside 

humans during production (Cherubini et al., 2016). Where technology previously 

moved pieces from point A to point B, technology now moves pieces into positions 

for human workers to progress the build of a product (Michalos et al., 2010). As 

technology continues to “get smarter”, many industries beyond manufacturing 

continue to observe an illustrious partnership between man and machine such as the 

military (Jentsch, 2016), the medical field (Rastgarpour & Shanbehzadeh, 2011), 

emergency response/rescue units (Nourbakhsh et al., 2005), aviation (Kumar & 

Thakur, 2012), and sea/space exploration (Fong & Nourbakhsh, 2005).   

The latter of these fields also demonstrates another important implication of 

evolving technologies: the emergence of new opportunities. Developments in 

aviation and sea technologies have enabled humans to explore new frontiers that 
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were physically inaccessible, as well as opened up new opportunities in exploring 

these ventures such as improved reconnaissance and coordination (Olson et al, 

2010; Ranganathan et al., 2010). More and more, people are equipping themselves 

with technological allies in order to access possibilities that were previously 

inconceivable. Space flight teams are often assisted by simulation and planning 

software that guide launches and path trajectories down to the minutiae that 

humans cannot (Marquez, Chang, Beard, Kim, & Karinksi, 2018). Military units 

survey new landscapes using aerial drones that convey perspectives and details 

humans cannot physically observe (Endsley, 2015).  

It is clear then that technology inhabits an important part of our lives, 

especially in the current day and age in which there is more work to do that is 

harder in nature. Relationships with technology have gone from a toolbox utility to 

interdependent cooperation, leading to an increase in the use of human-agent teams 

(Shively et al., 2017).  Yet in spite of their increasing popularity, their 

implementation has been far from flawless. One particular issue that these human-

agent teams (HATs) commonly face is a lack of cooperation from human team 

members (Christoffersen & Wood, 2002; de Visser, Parasuraman, Freedy, Freedy, 

& Weltman, 2006; Leng, Li, & Jain, 2008; Steinfeld et al., 2006). The purpose of 

the current study is to examine how a tangible point of organizational intervention, 

the team’s composition, affects a human team member’s intentions to cooperate 

with their agent team member by elucidating the psychological process driving this 

relationship. Specifically, this study will use an experimental vignette methodology 
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to manipulate the human-agent ratio in a team’s composition and examine an 

individual human team member’s subsequent trust and cooperative behavioral 

intention. By studying the varying trust that a human team member has toward their 

agent team members, and their team as a whole, between different team 

compositions, practitioners and scholars will be able to connect how staffing 

decisions impact a human team member’s cooperation.  
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Chapter 2: Literature Review  

Like the actual application of HATs, research on HATs is spread out across 

multiple disciplines. This is due to the fact that various disciplines study the human 

component (e.g., psychology), the agent component (e.g., engineering paths and 

computer sciences), and the interaction between the two components (e.g., human 

factors). From the human component, human-agent research often draws from the 

traditional human teams literature for frameworks to examine the complex 

interactions between multiple individuals (e.g., IMOI models; Ilgen et al., 

2005),  as well as other lines of research on human affect (e.g., trust; Schaefer, Hill 

& Jentsch, 2018) and cognition (e.g., motivation, Jennings et al., 2014; decision-

making, Parasuraman & Riley, 1997). From the agent component, human-agent 

research is informed by the fields of engineering and computer science to integrate 

the technological capabilities and design (e.g., agent architecture, Cayha & 

Giuliani, 2018; natural language processing, Runck, Manson, Shook, Gini, & 

Jordan 2019). As the field of human factors and ergonomics facilitates the marriage 

of these two areas of research arising from technological advances, research has 

shifted to studying the actual interaction of human and agent into a team context.  

To understand the broader human perspective in a HAT, I first consult the 

vast literature on HATs and synthesize studies which investigates the interaction 

between both human and agent team members. Studying human-agent teams may 

take many forms as it primarily studies either or both the human and agent 

components of the team, but the interest of this study and review lies in the 
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complex, dynamic interactions that unfold as a result of human psychology. 

Focusing on this human-agent interaction narrows the research of interest to 

research which connects to a human attribute and thus, purely agent-focused 

research (e.g., their technical design and development) are unincorporated into this 

review in favor of understanding the teamwork mechanics between human-agent 

team members. Both empirical and theoretical studies were included to provide 

larger insight into both what has been tested and what has been proposed. 

2. 1 Literature Search  

To capture the relevant studies from the various disciplines, the search 

strategy was broken up into two phases: a broad search and a narrow, discipline-

targeted search. The initial broad search was intended to cast a larger net on 

potentially relevant research at large before identifying particular fields which often 

house research on human-agent interaction. To begin the broad search, 

comprehensive search engines (e.g., Google Scholar and the Florida Institute of 

Technology library’s integrated database platform) were searched using the 

entry “human agent teaming review”.  From this, seven reviews were identified 

with four of these reviews broadly summarizing research on HATs (Chakraborti, 

Kambhampati, Schetuz, & Zhang, 2017; Chen & Barnes, 2014; Gao, 2013; 

Jennings et al., 2014) and three of these reviews integrating studies on specific 

topics within HAT research (Anjomshoae, Najjar., Calvaresi, & Främling, 2019; 

Schaefer, Hill, & Jentsch, 2018; Wright, Quinn, Chen, & Barnes, 2014). From 

these, an initial list of studies was created by extracting the citations from these 
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reviews and removing duplicates. The titles and abstracts of these studies were then 

skimmed to manually identify if they fell within the scope of this review. After 

removing articles which were beyond the focus of this review, the remaining 

articles were read and labeled with tags indicating the topics they examined and the 

journal they were published in. A targeted search was then conducted by 

identifying the recurring disciplines from the journals the studies were published in 

and subsequently searching the major databases for those disciplines. To 

encompass the fields of psychology, computer science, engineering, and human 

factors, the databases PsycInfo, ACM Digital Library, IEEE Xplore Digital Library, 

and Advanced Technologies & Aerospace were searched using the keyword human 

agent team*. New articles produced from the targeted search produced were 

additionally read and coded. 

Supplementary Search. After reading the identified reviews and articles 

above, multiple new terms that were similar to human-agent teams arose which 

warranted a supplementary search. The keywords human agent*, human 

autonomy*, human automation*, human machine*, and human robot* were each 

entered alone into the same comprehensive search engines and discipline specific 

databases from the literature search, and then again with every combination of 

keywords team*, interaction, collective, collaboration, and integration. The 

thesaurus function of the databases was also used to find other synonymous 

keywords that may have been missed, however no new terms were identified. After 
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incorporating the results of the supplementary search, the final review consisted of 

82 articles.  

2.2 Human-Agent Teaming 

Human-agent teaming focuses on groups in which humans and intelligent 

technologies work interdependently on tasks to achieve an objective (Chen & 

Barnes, 2014; Russell & Norvig, 2016). Human-agent teams (HATs) are identified 

using similar criteria to defining a team (i.e., there are two or more members whose 

tasks are interdependent and work towards shared goals; Salas, Rosen, Burke, & 

Goodwin, 2009) with the added distinction of having an autonomous machine (i.e., 

an agent) as one or more of its constituent members. These criteria are relatively 

straightforward, however as seen from the literature search process, there is 

abundant terminology for referring to some form of human-technology interaction. 

Although nuances exist between these many terms (e.g., automation, machine, and 

agent), a commonly accepted definition from Russell and Norvig (2009) states that 

agents must be autonomous, observe their environment, and act upon the 

environment.  

Although relatively nascent in use compared to traditional human only 

teams, several industries have begun implementing HATs to increase efficiency 

and access new opportunities. In the military, combat units have been 

supplemented with artificial intelligence to guide attack drones and augment human 

precision and targeting (Endsley, 2015). In emergency response teams, search & 

rescue robots have been deployed to access hazardous environments unsuitable to 
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humans in order to save lives (Nourbakhsh et al., 2005). Specialty manufacturers 

(e.g., aerial, naval, and other large custom machinery producers) have begun 

implementing intelligent robots in conjunction with technicians to craft complex 

mechanical components that require simultaneous actions to consolidate multiple 

steps (e.g., a robotic arm fixes the next piece in the process in place for a mechanic 

to weld; Valente, 2016). Additionally, health-related treatment and prevention 

techniques have seen improved healthcare efficiency from the use of machine-

learning algorithms used in tandem with medical practitioners (Rastgarpour & 

Shanbehzadeh, 2011). Clearly, the partnership between humans and agents 

demonstrates impressive potential for effective performance. What is less clear is 

understanding why and when this potential is fulfilled, compared to instances when 

human-agent teamwork breaks down. To address this, the following sections of the 

review are organized using an input-mediator-output framework similar to the 

IMOI model (Ilgen et al., 2005) to summarize relevant factors as they correspond to 

these phases of a team’s existence (see Figure 1 for a meta-model of the literature). 

2.3 Inputs  

Before the members of a group even interact, multiple existing factors 

within the team will influence its future. These factors that precede the interactions 

within a group are referred to as the inputs to a team (McGrath, 1984). These inputs 

are often properties of both the individuals within a team and the team itself at 

large. Team process models thus often distinguish individual level inputs from 

team level inputs and study them differently in line with multilevel theories 
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(Kozlowski & Klein, 2000). The addition of an agent in HATs changes both 

team level properties and the individual level properties when compared to 

traditional human teams and thus shifts the focus of interests when it comes to 

pinpointing the inputs with the strongest implications for the team’s future. 

Concerning the team at large, research on inputs to HATs have identified a variety 

of characteristics that impact subsequent mediators and outputs. As they relate to 

the human interaction, these team level characteristics can be classified into two 

categories: task characteristics and team characteristics.  

As the purpose of a team is to work together towards a common goal (Salas, 

Rosen, Burke, & Goodwin, 2009), its members’ tasks are housed within a larger 

team objective. The tasks that are assigned within a HAT must consider the 

additional implications of how human team members respond to certain tasks being 

assigned to agent team members. Research on agent task characteristics have 

shown that agents are thought of as less capable (Gombolay, Huang, & Shah, 2015) 

and overridden more (Parasuraman & Riley, 1997) when they are responsible for 

tasks that are perceived to be critical to shaping a team’s outcome. Similarly, 

research on complacency has found that people have a tendency to trust agent team 

members with objective and technical tasks (e.g., computation, processing 

information), but trust them less with subjective tasks (e.g., decision making; 

Gombolay et al., 2015). Yet, this tendency to undervalue agent team members 

concerning higher stake tasks is not always observed when a human team 

member’s task is linked to an agent’s task. When tasks are highly interdependent, 
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human team members are more likely to be cooperative and perceive the computer 

to be similar to themselves (Nass, Fogg, & Moon, 1996). This phenomenon of 

increased performance when bringing human and agent team members closer is 

paralleled in research on task proximity (Gabler, Stahl, Huber, Oguz, & Wolherr, 

2017). Gabler and colleagues (2017) found that an agent's decision-making ability 

was respected and acknowledged in HATs where human team members worked on 

an assembly task before handing it over to an agent team member for placement in 

a warehouse.  

Inputs referring to team characteristics may be thought of as the available 

resources that make up a team (Kozlowski & Bell, 2003) and pinpoint several 

variables unique to HATs which influence the team’s interactions and outcomes. 

Like their organizational human counterparts, a HAT may be made up of a variety 

of members who possess diverse characteristics. However, by virtue of its 

definition, a HAT’s composition has the added criterion of containing an agent 

team member. Although this is an obvious statement, what is less apparent is the 

implications it has for the team’s dynamics. Research on the different components 

of a HAT’s composition has empirically studied human-to-agent ratios (Burke & 

Murphy, 2004; Murphy, Burke, Barnes, & Jentsch, 2010), team size (Mendonça, 

Brooks, & Grabowski, 2014), subgroup differences (Robert & You, 2015),  and 

cognitive diversity (Sauer, Felsing, Ranke, & Rüttinger, 2006) , as well as 

additional theoretical consideration (You & Roberts, 2018). Research on the 

human-agent ratio of a team has shown that teams composed of two human team 
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members and one agent team member yield the best results (Burke & Murphy, 

2004; Murphy, Burke, Barnes, & Jentsch, 2010), however these findings are 

derived from analyses of archival field data and limit the causal inferences that can 

be made about the effectiveness of this ratio, especially as it relates to predicting 

any other team processes and emergent states. Although these studies offer 

important evidence into understanding the effect of human-agent composition, 

HAT researchers have called for more theoretically driven empirical studies (Teo, 

Wohleber, Lin, & Reinerman-Jones, 2017).  

The nature of the team, such as its context and operating environment, have 

been found to necessitate certain collaboration and coordination protocols (Neef, 

2006). For example, teams in high octane, adaptive environments such as surgical 

teams and rescue teams may lean towards teamwork oriented collaboration with a 

human in command to effectively respond to rapid changes that may occur 

(Nourbakhsh et al., 2005), while procedural teams such as manufacturing teams 

may lean towards mixed initiative teams where both the human and agent team 

members share control of the team’s tasks (Owan, Garbini, & Devasia, 2017). In a 

similar vein, the design of the team (i.e., human-agent roles, communication 

channels) will also dictate its operations (Chen & Barnes, 2014). Research into 

human-agent roles have found that teams which appropriately allocate the strengths 

of its human and agent team members will perform better in dynamic, constantly 

changing missions (Bradshaw et al., 2008; Goodrich & Schultz, 2008). It is 

preferable for teams in these dynamic environments to remain stable in its 
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operations, with the same team procedures and members in place for multiple 

missions, to fully leverage the resulting team dynamics (Demir, Cooke, & 

Amazeen, 2018).  

The individual level inputs to a HAT may refer to either the characteristics 

of a human team member and the characteristics of an agent team member. 

Beginning with characteristics of human team members, research on traditional 

human teams has identified a large number of individual differences which 

influence a team’s processes and outcomes and generally examine the surface- and 

deep-level traits that its members possess (Lyons & Guznov, 2019). The following 

research on human characteristics in a HAT do not make such a distinction and 

rather broadly identify key individual differences related to technology which 

influence a person’s relationship with their agent team members, such as 

demographics (gender, age), predispositions, and self-efficacy. Demographic 

characteristics are a staple to studies in any social domain, however research on 

classroom technologies has specifically found that men (Dunne, 1998) and younger 

individuals (Czaja & Sharit, 1998) tend to be more comfortable with 

technology.  The preconceived attitudes that one carries also influences how they 

will act towards the targets of these attitudes. The trust an individual in a HAT has 

in their teammates depends on their propensity to trust  (Schaefer, Hill, & Jentsh, 

2018; Singh, Molloy, & Parasuraman, 1993), and propensity to trust automation, 

which has been argued to be different from propensity to trust humans (Nickerson 

& Reilly, 2004). More specifically, a person also holds attitudes towards 
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technology which may increase or decrease the initial trust they have in their agent 

team members (Backonja et al., 2018; Merritt & Ilgen, 2005). A person’s previous 

experiences with technology often shapes this, as well as their confidence to 

successfully operate and interact with technology (de Vries, Midden, & Bouwhuis, 

2003). Although many other individual differences studied from traditional human 

teams have been empirically examined within HATs as well (enough to deserve its 

own review), the three characteristics studied above have shown to be important 

factors which relate a person’s individual differences to the workings of a HAT.  

As agents are the defining piece which distinguishes a HAT from traditional 

human teams, research on the design and characteristics of an agent are abundant 

and stem from many fields. Of these many design considerations, several are more 

prominent when trying to understand the human perspective. First, because the 

agent is a team member, people pull from their interactions with the agent to mold 

their thoughts and attitudes similar to the beginning of any relationship. Research 

has shown that a person is more likely to trust an agent when it expresses more 

human-like qualities, and that negative behaviors resulting from low trust such as 

misuse are reduced when the agent possessed more anthropomorphic traits (de 

Visser et al., 2016; Parasuraman & Riley, 1997). This line of research has drawn 

from research on human-animal teams to identify the psychological components of 

perceiving human characteristics, such as playful behavior and identifiable 

emotions from facial expressions (Billings et al., 2012; Philips et al., 2016). 

Interactions with agents are also influenced by the agent’s appearance beyond 
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invoking varying senses of familiarity or discomfort. The embodiment of the agent 

acts as a direct medium through which human senses interact with the agent, 

consequently affecting how people interpret intentions and desires from an agent’s 

actions (Stowers et al., 2016). However, research is not consistent in regards to the 

importance of tangibility, as agents manifest in studies in varying forms with 

varying results (e.g., physical robots and software rooted within a larger system; 

Parasuraman & Miller, 2004). It is also interesting to note that the appearance of 

physical robots triggers gender role stereotypes. Eyssel & Hegel (2012) found that 

when a robot appeared masculine, people were more likely to assign them to 

stereotypically male roles such as maintenance and repair work, whereas robots 

which appeared feminine were commonly given female tasks such as caregiving 

and service work.  

Research from technical fields (e.g., computer science) has also examined 

the importance of more agent-centric characteristics such as reliability. An agent’s 

reliability is often studied as it predicts the trust that a human team member will 

have towards the agent. Numerous studies have examined this, and found positive 

correlations between reliability and a human team member’s initial trust (Fan et al., 

2008; Hancock et al., 2011, Chiou & Lee, 2016). However, when an agent 

performs at a lower level than expected from its level of reliability, a human team 

member’s trust in the agent will decrease more than it would towards another 

human team member who dropped in performance (de Visser, Pak, & Shaw, 

2018).  
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2.4 Mediators  

Mediators are the means by which a team turns its inputs into outcomes and 

refers to any factor that drives this conversion process (Ilgen et al., 2005). Whereas 

the IPO model of team systems labeled these factors as processes (Hackman & 

Morris, 1975), the IMOI framework extends this term to accompany emergent 

states as well to capture important, non-behavioral mechanisms which also push a 

team towards its output. Compared to traditional human teams, research on HATs 

has focused on how particular emergent states and processes occur differently than 

they do in human teams to underscore the importance of different mediators. 

Although HATs add two new interaction relationships (human-agent and agent-

agent) to the human-human interaction studied in organizational team research, this 

review only focuses on research on human-agent interaction to shed light on the 

human perspective.  

Emergent States. Emergent states that arise from human-agent interactions 

provide insight into understanding when and how human team members act 

differently towards their agent team members because they reveal certain 

psychological mindsets that people develop as they interact with agents. Research 

on cognitive emergent states often studies how human and agent team members 

share understanding and perceive the task environment around them (Goodrich & 

Yi, 2013; Nikolaidis & Shah, 2012; Scheutz, DeLoach, & Adams, 2017). Research 

on team cognition within HATs is a topic of popular interest, with articles in the 

human-agent interaction stream focusing on how shared mental models are 



  18 

 

developed across human team members and agent team members (Fan & Yen, 

2010; Fan et al., 2017; Goodrich & Yi, 2013; Nikolaidis & Shah, 2012; Perelman, 

Evans III, & Schaefer, 2017; Scheutz, DeLoach, & Adams, 2017; Talamadupula, 

Briggs, Chakraborti, Scheutz, & Kambhampati, 2014; Yen et al., 2006). 

Unsurprisingly, a HAT’s shared mental model is more similar when its agent’s 

technology enables them to predict and articulate the needs of their human team 

members (Fan et al., 2017).  

What is less obvious, however, is how the human pieces to this equation 

contribute to this increased convergence in the team’s shared mental model. Fan 

and Yen (2010) found that human team members were able to invest more of their 

cognitive energy into their task instead when agents had these improved planning 

and communication abilities. In a spatial navigation experiment, Perelman, Evans 

III, and Schaefer (2017) further found that human team members were more likely 

to adapt their mental model to match an agent’s input if the agent showed similar 

mental models of the environment and task by suggesting routes similar to the 

human team member. Research on the topic of explicability intersects with this 

phenomenon to further explain how an agent’s suggestion influences a person’s 

willingness to change their own mental model. Specifically, Meszaros, Le Vie, & 

Allen (2018) found that when their agent generated a plan similar to a human team 

member’s plan, that person will be more likely to understand or explain an agent’s 

decision that differs from their own within a moderate margin (roughly 14% 

difference). Although these studies on shared mental models in HATs often found 
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increased team performance as well, research at large has not examined the 

accuracy of these converging mental models.  

Affective emergent states play a vital role in understanding why HATs run 

into the various collaboration issues between its human team members and agent 

team members. Several affective states have been studied including team cohesion 

(Zieba, Polet, Vanderhaegen, & Debernard, 2010), agent attraction (Prada & Paiva, 

2009), and motivation (Krippendorff, 2004), but none more than trust (Schaefer, 

Hill, & Jentsch, 2018). A human team member’s trust in their agent team members 

(popularly abbreviated as H-A trust; Chen & Barnes, 2014) has received special 

attention due to its proximal influence on many team processes such as 

communication (Demir, McNeese, & Cooke, 2016), coordination (Demir et al., 

2018; Gombolay, Huang, & Shah, 2015; Talamadupula, Kambhampati, 

Schermerhorn, Benton, & Scheutz, 2011), and proper usage (Parasuraman & Riley, 

1997). H-A trust has been defined by Lee and See (2004) as “the attitude that an 

agent will help achieve an individual’s goals in a situation characterized by 

uncertainty and vulnerability” (p. 54). The research on human-agent trust is vast 

and has multiple stand-alone reviews (Chen & Barnes, 2014; Lee & See, 2004; 

Madhavan & Wiegmann, 2007; Schaefer, Hill & Jentsch, 2018) and a meta-

analysis (Hancock, et al., 2011) which explore the many relationships between H-A 

trust and its antecedents and consequences.  

From these reviews, several prominent findings emerge which highlight 

important issues in human-agent teaming from the human perspectives. First, 



  20 

 

human team members may initially trust the ability of an agent more than another 

human team member, but they are more sensitive to any actions which violate this 

trust (deVisser, Pak, & Shaw, 2018; Jian, Bisantz, & Drury, 2000). Further research 

on H-A trust violation elaborates on the slope of the subsequent drop in trust 

(deVisser, Pak, & Shaw, 2018), but the sensitive nature of human trust towards 

agents has caught the focus of researchers. A meta-analysis by Hancock and 

colleagues (2011) found that factors related to the agent’s performance (e.g., 

reliability, failure rates) were found to be better predictors of trust than factors 

related to the agent’s traits (e.g., anthropomorphism, personality), which may 

suggest that a human’s trust towards an agent revolves around tasks. Dzindolet and 

colleagues (2001) also found that environmental factors related to the tasks 

connecting the human and agent played an important role in understanding when a 

person’s perceived reliability of an agent differs from their perceived reliability of a 

human, and specifically found that H-A trust was lower when the task was 

perceived to be riskier or more complex.  

Beyond these findings concerning human perception in H-A trust, it is 

worth mentioning that research on H-A trust has also examined other parts of the 

trust process such as trust repair both empirically (de Visser, Pak, & Shaw, 2018) 

and theoretically (Marinaccio, Kohn, Parasuraman, & de Visser, 2015). In sum, the 

overall guiding takeaway for this study from the research on H-A trust is that trust 

is a key affective state which is not only related to a host of outcomes, but other 

team processes as well.  
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Processes. Like all teams, HATs transform their inputs into outputs through 

the activities of its team members (McGrath, 1984; You & Roberts, 2018). Team 

processes are thought to be temporally based as a team’s actions sequentially 

unfold over time (Marks, Mathieu, & Zaccaro, 2001). As its members engage in 

activities to both prepare for a task and execute the task, any given team process 

occurs in either a transition phase or an action phase (Marks, Mathieu, & Zaccaro, 

2001). Transition behaviors in HATs that have been studied include a variety of 

agent-related preparations such as human-agent planning and strategizing (Van 

Diggelen, Neerincx, Peeters, & Schraagen, 2018) and agent maintenance (Hobbs, 

2008). Action behaviors studied in HATs are numerous as well, and include topics 

such as monitoring behaviors (Kaminka, Pynadath, & Tambe, 2002), 

communication (Demir, McNeese, & Cooke, 2017; Tweedale et al., 2008), 

coordination (Shah & Breazel, 2010), situational awareness (Chen et al., 2018), and 

agent usage (Parasuraman & Riley, 1997). While each of these action behaviors 

have been identified as relevant to the operation of a HAT, research on the human 

usage of agents carries significant weight in the discussion of human-agent 

interaction, as the inappropriate use of an agent is commonly cited as the reason for 

collaborative breakdowns in HATs (Christoffersen & Wood, 2002; de Visser, 

Parasuraman, Freedy, Freedy, & Weltman, 2006; Leng, Li, & Jain, 2008; Steinfeld 

et al., 2006). Parasuraman and Riley (1997) identified 4 types of usage behaviors: 

use, misuse, disuse, and abuse. Under this categorization, use refers to behaviors 

where a human correctly employs a machine’s assistance. Misuse refers to 
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behaviors in which automation is allowed to act beyond its intended boundary, and 

can be thought of as an action that over-relies on automation. Meyer and Lee 

(2013) further explained that misuse can be distinguished into actions of 

compliance, in which a human simply accepts input from automation without 

considering its accuracy, and reliance, in which a human actively seeks out the 

automations assistance beyond its intended use. Further research from Wickens, 

Clegg, Vieane, & Sebok (2015) identified the sources of reliance (e.g., 

complacency) and compliance (e.g., automation bias). Disuse is seen as the 

opposite of misuse and refers to any ignoring behaviors which underutilize 

automation as intended. Lastly, abuse refers to human behaviors which bypass or 

defeat the purpose of the automation’s implementation without considering the 

possible repercussions to the humans involved. Examples of abuse include 

intervening (e.g., overriding an automation to do its task for it; Leng, Li, & Jain, 

2008) and disabling (e.g., shutting down an automation; Lee, 2006). It is worth 

noting that research on failures in human-agent collaboration often cites these 

particular examples of intervention and disabling as a recurring problem for HATs 

(Battiste et al., 2018; Beck, Dzindolet, & Pierce, 2007; Christoffersen & Wood, 

2002). 

2.5 Outputs  

The results of interest from a HAT are often the same taskwork and 

teamwork outcomes studied within traditional human teams (Hancock et al., 2011). 

However, several specific differences are worth highlighting. Regarding taskwork 
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outcomes, objective metrics (e.g., efficiency, quality, error rate) for performance at 

the team level may include evaluations of human-agent interactions (Gouman et al., 

2010; McNeese et al., 2018). Not many additional teamwork outcomes are novel to 

HAT research, however the measurement of these outcomes differ from traditional 

human teams due to translating scores between human and agent team members 

(e.g., mental models, Fan et al., 2017; information sharing; Demir et al., 2015). 

Additional research has also examined further attitudinal outcomes such as a 

human team member’s satisfaction with their agent (Yan et al., 2013) and the 

acceptance of their agent (Demir, Cooke, & Amazeen, 2018).  

2.6 Contextual Influences  

Like any team, HATs are also embedded in a larger context which 

constantly influences its inputs, mediators, and outputs. These are especially 

important to the members of a HAT as the higher-level factors (e.g., organizational 

resources and protocol), play an important role in shaping the human-agent 

interaction within the team at any time. Research has identified that training (de 

Visser et al., 2006; Nikolaidis & Shah, 2013), technical support (You & Roberts, 

2018), physical environmental factors (Hancock et al., 2011), and the 

organizational culture surrounding automation (Evers, Maldanado, Brodecki, & 

Hinds, 2008; Wang et al., 2010) may be particularly influential factors in a HAT 

that affect levels of a team’s input, mediators, or outputs, and their relationships to 

one another.  
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Chapter 3: Hypothesis Development 

Although human-agent teams have been implemented across many 

industries, their use has not been without issue. Because of the long-standing status 

of machines as tools rather than teammates, as well as the agent-human dichotomy 

inherent in human-agent teams, humans do not tend to interact with machines in the 

same way they do with other humans (Bradshaw et al., 2008). Namely, people are 

less likely to cooperate with agents (Christoffersen & Wood, 2002; Gombolay et 

al., 2015). This breakdown in teamwork has been a persistent challenge in human-

agent teams that has been documented in the literature for the past two decades 

(Battiste et al., 2018; Beck, Dzindolet, & Pierce, 2007; Christoffersen & Wood, 

2002; Schaeffer, Hill, & Jentsch, 2018).  

The purpose of the current study is to contribute to research on the teaming 

problem in human-agent teams by experimentally examining how one input to 

HATs, the team’s ratio of humans to agents, influences a human’s attitudes and 

behavioral intentions. Although some prior studies have begun studying HAT 

composition, and there may be skepticism about the usefulness of HAT 

composition research since the team’s membership may be dictated by more 

pressing conditions (i.e., task requirements, available resources), this study has 

merits in addressing the teaming problem in HATs. Specifically, this study may 

provide novel insight into how team composition influences an individual’s intent 

to act cooperatively through a theory-driven experimental design elucidating the 

thoughts and attitudes that human team members experience prior to making a 
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decision. Whereas prior research primarily focuses on the attitudes of human team 

members towards their agent team members, this study additionally focuses on how 

team composition influences the attitudes of human team members towards the 

entire team.     

Although a limited number of empirical studies on human-agent team 

composition exists, they are all data-driven approaches derived from observations 

of HATs operating in the same high-stake environment. For example, a field study 

using data from disaster response training by Burke and Murphy (2004) suggests 

that a 2:1 human-to-robot ratio yielded the best results, as teams with two human 

operators performed better than teams with one human operator due to improved 

situational awareness during the rescue task. A follow-up study by Murphy, Burke, 

Barnes, and Jentsch (2010) corroborated this 2 human to 1 robot ratio for being the 

ideal team composition, however this recommendation was specifically derived 

from and intended for high intensity environments such as search and rescue teams 

and military combat teams. This ratio was suggested based on the fact that 

introducing autonomous robots splits the attentional demands of human team 

members and poses increased safety risks that could jeopardize human lives. 

Although these studies offer valuable insight into developing research on HAT 

composition, neither of these two studies developed a-priori hypotheses to test and 

confirm the presence of a natural phenomenon. While these data-driven studies 

have an important place in making sense of natural events and highlighting 

important concerns, the current study will add to these field studies by testing 
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theoretically driven hypotheses related to a HAT’s composition in a controlled, 

experimental study.  

In some cases, the composition of a human-agent team is determined by 

pre-existing factors such as the availability of resources (i.e., funding, number of 

available units) or the nature of the team’s task (i.e., the number of spots, the 

nature/danger of certain actions). Indeed, an empirical study based on data from the 

9/11 attack on the World Trade center by Casper & Murphy (2003) observed that 

different ratios exist for different purposes that correspond to the purpose of a team. 

A transportation ratio refers to the number of humans required to incorporate the 

agent (i.e., the number of people needed to enable the agent’s device or literally lift 

the agent’s device to the task location), while an operation ratio refers to the 

minimum number of humans and agents that are each needed to carry out the task. 

However, not all HATs are bound by a condition which restricts their composition 

(i.e., management/task coordination software; Keen, 1980). A HAT’s composition 

may be restricted by resources, but that does not mean the resulting composition is 

ideal. Decision-makers with the flexibility to staff HATs would thus benefit from 

research exploring the ideal human-to-agent ratio in a team to consider whether or 

not it is worthwhile to invest more resources to achieve that ideal composition. 

In sum, although this study acknowledges the research on HAT composition 

before it and acknowledges that there are situations in which the HAT’s 

composition is restrained by more important circumstances, this study contributes 

the theory-driven research on HAT composition that is missing in the literature to 
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provide suggestions for HATs which have the liberty to make staffing decisions. 

Using Azjen’s theory of planned behavior (1985), this study will examine how a 

HAT’s composition will influence an individual’s intention to cooperatively behave 

with an agent as explained by their attitudes and cognition.  

3.1 Theory of Planned Behavior 

To understand the human perspective of this issue, this study is framed 

using the theory of planned behavior (Azjen, 1985) which states that the subjective 

norms surrounding an action, an individual’s perceived control over the matter, and 

an individual’s attitudes towards an action will determine an individual’s intent to 

carry out a certain action before actually engaging in the action. The theory of 

planned behavior thus emphasizes that a behavioral intention precludes an actual 

behavior itself, and reveals three mechanisms (attitudes, perceived control, and 

subjective norms) that predict this intention. Inputs which affect these mechanisms 

would thus influence a person’s behavioral intention and ultimately, their behavior. 

This study focuses on the attitudinal component to leverage prior research 

highlighting the importance of trust, and posits that team composition, as 

conceptualized through majority/minority categories, may be one such targetable 

input for HATs that would affect the perceptions and intentions of a human team 

member.  

3.2 Behavioral Intention  

Returning to the teaming problem in HATs, it has often been observed that 

human team members in a HAT will not cooperate with their agent team members 
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(Battiste et al., 2018; Beck, Dzindolet, & Pierce, 2007; Christoffersen & Wood, 

2002; Schaeffer, Hill, & Jentsch, 2018). This decision to not work with their agent 

as a teammate can also vary in extremity and range from a lack of 

acknowledgement (i.e., ignoring an agent’s input/action) to counterproductive 

behavior (i.e., acting contrary to the agents input/action, overriding the agent to 

redo its action). However, as research on agent use has shown, a human team 

member may also comply with their agent team member and accept its input 

(Parasuraman & Riley, 1997). Considering both ends of the spectrum, this range of 

behavior is representative of a larger continuum of cooperative behavior. 

Complementary to the literature, which has established that human team 

members do engage in a range of cooperative behaviors, this study examines the 

intention to engage in these behaviors as opposed to the actual display of these 

behaviors themselves. While the behaviors that a human team member exhibits are 

often the outcome of interest, since behaviors are ultimately tied to consequences, 

understanding the behavioral intention that occurs prior to the behavioral can better 

elucidate the actual attitudes and thoughts that a person experiences leading up to 

their behaviors (Sheeran, 2002). Taken one step further, pinpointing factors that 

influence these attitudes and thoughts provides a tangible point of intervention to 

enact change.  Although behaviors themselves are an important outcome of 

ultimate interest, the current COVID-19 pandemic has limited the ability to conduct 

the in-person laboratory research needed to observe actual behavior.  
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Within this study, cooperative behavioral intention refers to the degree that 

an individual human team member plans to productively act in accordance with an 

agent team member’s action. A human team member exhibits higher cooperative 

behavioral intentions when they indicate that they plan to accept their agent team 

member’s input and act accordingly. A human team member exhibiting low 

cooperative behavioral intentions would indicate that they plan to reject their agent 

team member’s input and act counterproductively to their agent team member. A 

human team member exhibiting moderate levels of cooperative behavioral intention 

would indicate that they will ignore their agent team member.  

3.3 Team Composition  

Team composition is a broad term which has traditionally referred to how 

attributes of a team are configured (Levine & Moreland, 1990). Research on team 

composition in human teams have primarily examined the capabilities of team 

members (Cannon-Bowers, Tannenbaum, Salas, & Volpe, 1995) as well as the 

effect of surface-level and deep-level differences between team members (Bell et 

al., 2018). While the KSAO approach may not provide novel insight into the 

interaction between human and agent given the standardized quality of agents (i.e., 

agents are implemented when they are shown to be highly reliable and useful), 

research into the effect of surface level composition has revealed several findings 

that may be important for understanding human-agent team composition. For 

example, the perception of the surface-level characteristics in a team precedes its 

effects, meaning that people in a team vary in the extent that they are attuned to 
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differences (Harrison, Price, Gavin, & Florey, 2002). Research has also shown that 

members of a team will have lower levels of satisfaction when they perceive a 

division based on some characteristic (Jehn & Bezrukova, 2010). This division has 

also been shown to be related to negative team behaviors such as less information 

sharing between the two groups in the team (Lau & Murnighan, 2005). Taken 

together, these findings suggest that human team members pay attention to 

differences in a team along a dividing characteristic that influences how they will 

interact with their team members. This directs focus within team composition to the 

human-agent division in HATs, and in this study specifically, the number of agent 

team members versus the number of human team members. While team 

composition can refer to the make-up of a team’ in terms of any attribute, team 

composition in general is empirically understudied in HATs. Given these two 

considerations, and as a first step into the foray of HAT composition research, this 

study focuses on the most basic type of HAT composition: the ratio of humans to 

agents. That is, the ratio of agent team members to human team members is 

hypothesized to predict the attitudes and thoughts that human team members will 

undergo to direct their behavioral intention.  

Although a continuous metric assessing the ratio of agent team members to 

human team members (i.e., a percentage or decimal) may be more precise in 

pinpointing the effects of team composition, the categorical assessment used in this 

study will lay the initial groundwork to examine team composition. Categorically 

conceptualizing this human-agent ratio also makes experimental manipulation 
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possible by creating a small number of distinct, ecologically valid groups of 

varying team composition. A categorical conceptualization of this human-agent 

ratio also allows for inferences from human teams about how human team 

members process majority-minority characteristics in their team. Future efforts 

using a continuous conceptualization of this human-agent ratio are likely 

warranted, however composition in this study will be conceptualized as the ratio of 

agent team members to human team members. This approach classifies human-

agent teams into three categories accordingly: balanced teams (i.e., equal numbers 

of human team members and agent team members), human majority teams (i.e., 

more human team members than agent team members), and agent majority teams 

(i.e., more agent team members than human team members). 

3.4 Team Composition and Trust Towards the Team 

Although human-agent teams have only recently gained traction, research 

on human behavior towards others who are different has had a long-standing 

history in the social sciences. To understand the level of trust a person has in their 

HAT as a whole, I draw on self-categorization theory (Tajfel, Bilig, Bundy, & 

Flament, 1971) to describe the categorization and identification processes someone 

perceives when placed in a group. Self-categorization theory explains that when 

people are placed into a social group, they have a tendency to classify all the 

members of the group based on observable characteristics (Tajfel, Bilig, Bundy, & 

Flament, 1971). This categorization process is most often done based on salient 

characteristics that differentiate the present individuals and places them into 
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different groups. Subsequently, a person identifies which group they belong to and 

they form a preference to those with whom they share similarities (i.e., an in-

group). Social identity theory (Tajfel & Turner, 1979) further explains that people 

tend to express favoritism towards members of their in-group such as increased 

levels of initial trust, even when they are personally unfamiliar with the individuals 

in their in-group (Navarro-Carillo, Valor-Segura, & Moya, 2018). Applied to a 

HAT, a human team member will interpret the human-agent dichotomy to create a 

human in-group and agent out-group. If trust towards a team is a result of the 

combined trust a person has with each member of the team (Costa & Anderson, 

2011), then a HAT’s composition affects a person’s trust towards their overall team 

because of the varying number of in-group members present. This is likely because 

people tend to associate themselves with positive characteristics (Alicke & 

Gorovun, 2005), and by extension, associate those same positive characteristics to 

those who are similar to themselves (Rand & Wexley, 1975). Thus, if a team is 

composed of more similar individuals, then a person will associate more positive 

characteristics to their team members. In a HAT, if a person believes that humans 

are more trustworthy (Castro-González, Admoni, & Scassellati, 2016), and there 

are more human team members, then the person will trust the team more. Simply 

put, a human team member will trust their team more when there are more human 

team members compared to more agent team members.  

Hypothesis 1: (a) trust towards the team will be lower in agent majority 

teams than trust towards the team in balanced teams and human majority 
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teams, (b) trust towards the team in balanced teams will be higher than 

trust towards the team in agent majority teams, but lower than trust towards 

the team in human majority teams, and (c) trust towards the team in human 

majority teams will be higher than trust towards agents in agent majority 

teams and balanced teams.  

3.5 Team Composition and Trust Towards Agents  

Although the psychological processes that drive a person’s trust towards 

their team (i.e., categorization, identification) are likely still in effect, changing the 

referent of trust from the team to the agent team members introduces an additional 

consideration that should be accounted for when attempting to predict a human 

team member’s trust toward their agent team members. In particular, the interaction 

between two principal mechanisms, categorization processes and majority/minority 

dynamics, must be incorporated to understand the degree to which human team 

members trust their agent team members across different team composition 

categories.  

First, regarding categorization processes, a person also classifies the 

members of a team who are not included in their ingroup into an out-group. In a 

HAT, arguably the most salient distinguishing characteristic between team 

members is that of human versus agent, and therefore a person is likely to observe 

the inherent human-agent dichotomy to form a human in-group and agent out-

group. Although it has been discussed that people tend to express favoritism 

towards members of their in-group (Navarro-Carillo, Valor-Segura, & Moya, 
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2018), the corresponding opposite implication is that members of an out-group are 

often perceived with markedly lower levels of trust (Insko, Schopler, & Sedikides, 

1998; Tajfel & Turner, 1979). Whereas one’s trust towards their team is based on 

the collective trust resulting from the number of in-group members, trust towards 

agent team members is based on attitudes towards outgroup members.  

Second, while an individual may classify themselves into a particular group 

to decide on their ingroup, they cannot control which group constitutes the majority 

of the team. Social identity theory posits that their perceptions of others may be 

driven by two processes related to this majority/minority identification: perceptions 

of threat and assessment of similar others (Tajfel & Wilkes, 1963). Regarding 

perceptions of threat, research has shown that when a person identifies as a member 

of the minority group, the detriments of negative out-group perceptions are 

amplified (Harstone & Augoustinos, 1995). This is often a result of the in-group 

perceiving an increased threat to the value of their input (Hornsey & Hogg, 

2000).  In other words, whenever majority/minority groups are perceived to exist, 

the extent to which an individual’s negative perceptions toward outgroup members 

will increase is based on whether they identify as part of the majority group. 

However, this is not the only way that majority/minority identification influences a 

person’s perceptions, as they also assess how similar they are to other members of a 

group. When a person identifies themselves as part of the minority group, they will 

perceive themselves as less similar to their team which underscores a “them” 

mentality (Tajfel & Billic, 1974). In other words, identifying as part of the minority 
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group highlights the differences between an individual and their team members in 

such a way that they will perceive their outgroup team members in the majority to 

be a separate party that is less trustworthy.  

Considering the interaction between outgroup categorization alongside 

majority/minority grouping bears important implications for the attitudes that a 

person has towards other groups present in a team. Depending on whether human 

team members (a person's ingroup) are the majority or minority, a person will differ 

in the degree to which they trust their agent team members (the out-group). For 

agent majority teams, human team members are likely to show lower levels of trust 

towards their agent team members (the majority outgroup) because the agents team 

members are their own separate group (low similarity) whose activities are a bigger 

input to the team (high threat). Although human team members in a human 

majority team may still hold negative perceptions of agent team members, a human 

team member will identify as part of the majority group and thus do not perceive 

the agent team members difference between themselves and their agent team 

members (high similarity) or perceive the input of their agent team member(s) to be 

as threatening to their contributions (low threat). As a result, individuals in a human 

majority team will likely show higher levels of trust towards their agent team 

members than individuals in an agent majority team. Lastly, whereas the previous 

team compositions are marked by majority/minority categorizations, balanced 

teams observe an equal number of human team members and agent team members. 

Although the human-agent dichotomy still exists, the effect of categorization is not 
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exacerbated by majority/minority dynamics. In short, human team members in a 

balanced team will not perceive the intergroup context which filters changes in 

perception towards outgroup members and are likely to show higher levels of trust 

towards their agent team members than individuals in both agent majority teams 

and human majority teams.  

Hypothesis 2: (a) trust towards agents in agent majority teams will be lower 

than trust towards agents in balanced teams and human majority teams, (b) 

trust towards agents in human majority teams will be higher than trust 

towards agents in agent majority teams, but lower than trust towards agents 

in balanced teams, and (c) trust towards agents in balanced teams will be 

higher than trust towards agents in agent majority teams and human 

majority teams.  

3.6. Agent Role and Trust Towards Agents 

Although previous empirical research has examined HATs in which the 

agent is the leader (e.g., RoboLeader; Chen & Barnes, 2014), few studies have 

compared how team processes, emergent states, and outcomes differ when the 

agent team member is the leader compared to when the agent team member is a 

subordinate. Prior research from the leadership literature suggests that a person’s 

perceptions of their leader are tangled with their perceptions of other roles ascribed 

to them. In particular, research on women in leadership has often found that women 

are rated as less effective leaders (Grossman, Eckel, Komai, & Zhan, 2019). This 

can be explained by role congruity theory, which states that people are disliked 
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more when they do not exhibit attributes that are socially characteristic of someone 

in their role, and this prejudice can be exacerbated when the characteristics of two 

roles are incompatible. (Eagly & Karau, 2002). For example, a woman leader fills 

the gender role of a woman (which is associated with helping and supportiveness) 

and the organizational role of a leader (which is associated with commanding and 

assertiveness) and is thus caught in a no-win situation as exhibiting characteristics 

of either side will be perceived as a failure to act within one of her roles.  

Role congruity theory has a parallel implication for the role of agents in a 

HAT team. Stemming from their origins as a tool rather than teammate, the role of 

an agent is perceived to be supportive and supplementary to a human during a task 

(Lyons, Mahoney, Wynne, & Roebke, 2018). However, automation is continuing to 

technologically advance to enable agents to fill the role of a teammate or leader 

(Ososky, Schuster, Philips, & Jentsch, 2013). In situations where the agent is a 

leader, role congruity theory suggests that human team members will view an agent 

leader to be inappropriate because they are not serving as they were intended to as 

the team’s supporting technological component. As research has shown that human 

team members often hold negative attitudes towards agent team members that fail 

to perform their role (Lyons et al., 2018), they are also likely to show lower levels 

of trust towards the agents when an agent is the leader. 

Hypothesis 3: Trust will be lower when an agent is the leader than when the 

agents are all subordinates. 
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3.7 Trust Towards Agents and Cooperative Behavioral Intention  

The next phase of the attitudinal process links an individual’s formed 

attitudes to their plan of action. Prior research on trust in both traditional human 

relationships (Lewicki, Tomilson, & Gillespie, 2006; Mayer & Davis, 1995) and 

human-agent interactions (Hancock et al., 2011) have established the importance of 

trust in predicting a person’s behavioral intention. In uncertain environments, trust 

plays an important role in the decisions a person makes (Park, Jenkins, & Jiang, 

2008). The spirit of this tendency is also recurrent in the human-agent trust 

literature, as shown by empirical research (de Visser et al., 2016; Hancock et al., 

2011) as well as recent theoretical proposals which posit that people act to varying 

levels of cooperation with their agents depending on their trust in the agents (de 

Visser, Pak, & Shaw, 2018; You & Roberts, 2018). 

Given the importance of trust in predicting behavioral intent from both 

fields of literature, the present study assesses the relationship between an 

individual’s trust and their behavioral intention to establish this link with the 

context of this study. In addition to corroborating prior research, assessing this 

relationship within this study’s scenarios will provide evidence indicating whether 

a person’s trust towards their agent team members does predict their cooperative 

behavioral intention exists.  

Hypothesis 4: An individual’s trust towards agent team members will 

positively predict their cooperative behavioral intention.  
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Piecing together the relationships above reflects the overall attitudinal 

process within the theory of planned behavior through which a HAT’s composition 

and agent team members’ roles ultimately affect an individual’s intention to 

cooperate with their agent team members. Combining these theories and 

argumentation would indicate that trust is the primary vehicle that describes how 

HATs of varying compositions and agent roles influence the intentions of its 

human team members to cooperate with their agent team members. As the 

composition of a HAT and its agents’ roles affect the level of trust an individual 

human team member will have towards their agent, and trust serves as the basis 

upon which an individual plan their decisions:  

Hypothesis 5: An individual’s trust towards agent team members mediates 

the relationship between (a) team composition and the individual’s 

cooperative behavioral intention as well as (b) agent roles and the 

individual’s cooperative behavioral intention.  
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Chapter 4: Methods  

This study used an experimental vignette methodology to manipulate a 

HAT’s composition and the role of the agent team members in different written 

scenarios to understand how a human team member will plan to act based on their 

perceptions of the scenarios. Although vignette paradigms, especially those with a 

sentence-based format, are often criticized for their low external validity (Hughes 

& Huby, 2002), and seen as an artificial recreation of its true dynamic environment 

with low generalizability (Roehling, 1999), a well-designed written vignette can 

still provide data with a sufficient level of external validity. In addition to 

improving causal inference through a true, randomized experiment that is 

unfeasible for HAT field studies with pre-composed teams, vignettes hold a 

relevant and important role in understanding decision-making and judgment 

(Aguinis & Bradley, 2014; Rossi & Nock, 1982).  Incorporating the 

recommendations from decision points provided by Aguinis & Bradley (2014) to 

guide the design of a vignette study (see Table 1), this study employed a between-

subjects experimental design using a sentence-based vignette paradigm set in a 

futuristic military operation employing robot soldiers.  
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4.1 Participants  

Based on a-priori power analyses of the hypotheses (see Table 2 for results 

of the full power analysis), 226 participants were recruited using CloudResearch. 

Some researchers have criticized the use of crowdsourcing platforms as a source of 

data, citing inter-related sample issues such as a small worker population, super-

Table 1 

Vignette decision points from Aguinis & Bradley (2014) 

Decision Point Study Decision Rationale 

1. Deciding whether EVM is a 

suitable approach 
Yes 

Manipulation, outcome is 

behavioral intention, 

circumstance limitationsa 

2. Choosing the type of EVM Paper people studies 

Capture decision making 

processes with explicit 

processes and outcomes  

3. Choosing the type of 

research design 
Between-person design Study length 

4. Choosing the level of 

immersion 
Futuristic scenario Circumstantial limitationsa 

5. Specifying the number and 

levels of the manipulated 

factors 

3 (Composition) x 2 

(Role) 

Theoretically driven 

variable decisions 

6. Choosing the number of 

vignettes 
6 

Combination of 

manipulated variables are 

orthogonal and not 

unrealistic 

7. Specifying the sample and 

number of participants 
226 MTurk Workers 

A-priori power analyses, 

sample access 

8. Choosing the setting and 

timing for administration 

Single session virtual 

survey 
Standard survey procedure 

9. Choosing the best method 

for analyzing the data 

ANOVA/Regression 

Frameworks 
See proposed analyses 

Note. Aguinis & Bradley (2014) provide a 10th decision point related to presenting results which was not 

applicable during this proposal phase, but will be integrated in the final manuscript. at the time of this study, 

the social distancing practices used to combat the COVID-19 pandemic limits laboratory access and 

technological ability.  
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workers completing the majority of tasks, and the over-exposure of workers to the 

same measures (Stewart et al., 2015). In addition to these sample issues, recent 

concerns have grown about the use of repeated workers and automation polluting a 

study’s data (Litman, 2018). However, in spite of the recent scares stemming from 

these various threats to the quality data collection, there is evidence that they are 

not as pervasive as many researchers believe they are (Sprouse, 2011; Tapped Out 

or Barely Tapped: Debunking Common Issues With MTurk’s Participant Pool, 

n.d). There are also multiple methods of quality control to detect artificial survey 

data and insufficient effort responding which ameliorate these concerns. 

Accordingly, data cleansing procedures were used to filter out poor data (e.g., 

attention checks, manipulation checks, survey time cutoffs).  

 

 

  

Table 2 

A-priori power analyses  

Hypothesis  Analysis  Sample Size Needed 

1 
One-Way Analysis of Covariance 

(ANCOVA)  
175 

2/3 
Two-Way Analysis of Covariance 

(ANCOVA) 
226 

4 Linear Regression 46 

5 
Mediation (Bootstrapping approach, 

PROCESS) 
N/A 

Note. All power analyses are based on α = .05 and effect size of 0.3 (moderate).  
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To be included in the study, participants had to meet three criteria. First, the 

participant must be a legally consenting adult (i.e., be 18+ years of age). Second, 

the participant must be located in the United States. Although the influence of 

culture and other international differences might be interesting for future studies, it 

is beyond the scope of this initial study. Lastly, the participant must have military 

experience. Because the setting of the vignette describes military scenarios, it is 

important that the participants possess military experience that they may draw on. 

Restricting the sample to individuals with military experience will also ensure that 

responses are rooted in the shared framework of military training, as opposed to the 

wide variety that would be observed from civilian responses.  

The final sample consisted of 217 CloudResearch workers with military 

experience. Workers averaged 40.66 years of age (SD = 13.23), of which 72.4% 

identified as men (27.6% women, 0% non-binary or other) and 61.3% identified as 

White (17.5% Black, 7.4% Asian, 17.5% Latinx, 5.1% other). It is worth noting 

that this final sample falls 9 participants short of the proposed sample identified by 

a-priori power analyses (226) due to an error that is currently unspecified (though 

posited to be a cleaning or screening error resulting from Qualtrics’ data exporting 

procedure). I will continue investigating and exploring these 9 lost data points at a 

later time, and reconduct all analyses accordingly.  

4.2 Procedure  

To simulate a HAT, written vignettes describing military scenarios were 

used to describe a team composed of both human team members and agent team 
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members (see Appendix A for the vignettes). The military context was also chosen 

for its relevance to the current intentions of the U.S. army to integrate agent team 

members into its future operations (U.S. Army, 2020). Because modern technology 

has yet to fully develop robot soldiers and perfect their implementation, the 

vignettes situated the participant in a future military operation decades from now to 

enhance the believability of the scenario and the believability that technology has 

been improved to near perfect reliability. This futuristic context thus had the added 

purpose of controlling for perceptions of reliability, which research has shown to 

highly influence a person’s trust (Fan et al., 2008).  

As this study uses a between-persons design in order to study mutually 

exclusive conditions (i.e., a HAT can only have one of the three team composition 

levels; Atzmüller & Steiner, 2010), participants were randomly assigned to one of 

six manipulated conditions resulting from the combinations of the agent’s role 

(leader or subordinate) and the team composition (agent majority, balanced, or 

human majority; see Table 3 for a synopsis of the experimental conditions).  

 

Table 3 

Experimental Conditions  

 

Agent 

Leader 

Agent Majority 
 

Balanced 
 

Human Majority 

Agent is the leader 

Participant and 2 agents 

are subordinates 

Agent is the leader 

Participant, 1 agent, 

and 1 human are 

subordinates 

Agent is the leader 

Participant and 2 

humans are 

subordinates 

Agent 

Subordinate 

Participant is the leader 

3 agents are 

subordinates 

Participant is the leader 

2 Agents and 1 human 

are subordinates 

Participant is the leader 

1 agent and 2 humans 

are subordinates 
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Apart from experimental manipulations, there were no differences in 

vignettes across conditions. Within each condition, participants read a vignette 

consisting of three scenarios with surveys placed between scenarios to measure the 

appropriate constructs. The first scenario explained the situation to the participant 

and provided context about the hypothetical combat mission and their hypothetical 

team members. Following this, the second scenario detailed the beginning of the 

mission and described a movement situation in which the team must work together 

to reach their destination. Finally, the third scenario described a hypothetical 

combat situation in which they confronted enemy soldiers in a firefight. By having 

separate scenarios for the various situations, the vignette formed a progressive, 

changing story that is more reflective of the scenarios it depicts to increase the 

participant’s involvement (Pierce & Aguinis, 1997). Multiple scenarios which 

mirror the process of the natural experience they depict have also been shown to 

elicit more natural behaviors from the participant when compared to a single 

scenario (Hughes & Huby, 2002). Stringing the three vignettes together also 

allowed for an aggregation of behavioral intentions across multiple instances. In 

vignette studies, a participant’s behavioral intentions are captured through the 

hypothetical decisions they make following a vignette (Rossi & Peters, 1982). 

Multiple vignettes thus allowed for behavioral intentions to be averaged across the 

different contexts, increasing its reliability. Although not a formal part of the 

hypotheses, the varying scenarios contained in the three vignettes also enable 
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additional exploratory analyses to examine differences across the task contexts 

represented in each vignette.  

4.3 Measures  

Participants took four surveys throughout reading the vignettes. The first 

survey, taken after the context scenario, measured the participant’s initial 

perceptions of the team prior to engaging in any fictional actions. The second and 

third surveys occurred after the movement and combat scenarios respectively. The 

study concluded with the fourth survey which measured individual differences such 

as demographics and relevant control variables identified from prior research. 

Although individual differences are typically captured at the beginning of a study, 

this study captured them at the conclusion of the experiment because measures of 

multiple agent-related attitudes and preconceptions are included which may prime 

the participant if the measures are presented before reading the vignettes. Details 

about the measures used in this study are described below (see Appendix B for the 

full measures).  

Trust (team). Trust towards the team was captured in the first three surveys 

using eight items from two subscales in Wildman and colleagues’ (in development) 

trust measure. Items from this subscale were adapted to shift the referent to the 

team. Participants were instructed to rate the extent they have felt statements about 

their team using a 1 (Not At All) to 5 (Very Much So) scale. The trust in competence 

subscale contained 4 items which measure an individual’s trust in their team’s 

ability to perform, and included statements such as “Certain that your team will 
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perform well?” and “Confident in your team’s ability to complete a task?”. The 

trust in intent subscale contained 4 items which measured an individual’s trust in 

the team’s social conscience, and included statements such as “Positive that your 

team will try and do what is best for everyone?” and “Convinced that you can rely 

on your team to try their hardest?”. This measure demonstrated high internal 

reliability (α = .94).  

Additionally, a single-item measure asked participants to indicate how 

much they trusted their team from 1 (Distrust Very Much) to 5 (Trust Very Much) 

will be used. This single-item measure will be used for exploratory analyses rather 

than analyzing the hypotheses, and was intended to be a direct method of 

measuring trust in a reflective approach (i.e., asking about trust itself; Coltman, 

Devinney, Midget, & Venaik, 2008). 

Trust (agents). An individual’s trust towards their agent team members 

was captured in the first three surveys using both a validated scale and a sub-group 

measure. General trust towards the participant’s agent team members was captured 

using Körber (2018)’s trust in automation scale. Because this study used a vignette 

methodology, items that required the participant to reflect on observed events were 

dropped (e.g., “I was able to understand why things happened”, “The system state 

was always clear to me”). Three items remained and were adapted to fit the 

scenarios in the vignette, such as “I trust the [robot soldier(s)] [in this situation]”. 

Participants were instructed to rate their agreement with these statements from 1 
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(Strongly Disagree) to 5 (Strongly Agree). This measure demonstrated high internal 

reliability (α = .90).  

In addition to the three-item trust measure adapted from Körber (2018), a 

sub-group measure of trust was used in the first three surveys. Because this study 

examines the differences in how a human team member interacts with other human 

team members compared to agent team members, this subgroup measure instructed 

participants to rate the degree to which they trust their leader (if applicable), the 

human team members, and agent team members from 1 (Distrust Very Much) to 5 

(Trust Very Much). A true network-style rating of each team member separately 

was considered, however, because the study captures one person’s perception of a 

scenario rather than the perceptions of all individuals in a team, a network of team 

member ratings cannot be captured. Furthermore, network measures assess as many 

of the individual relationships between dyads within a team as possible. Within the 

context of the vignette, participants would not be able to distinguish ratings 

between the individual members of their team (e.g., agent one versus agent two, 

human one versus human two). As such, individual ratings would not provide 

meaningfully interpretable data for a network analysis. The individual rating for the 

agent members of a team (i.e., a subordinate robot soldier or a robot soldier leader) 

were additionally used a single-item measure of trust towards agents for 

supplemental analysis. 

Cooperative behavioral intention. In line with the purpose of an 

experimental vignette methodology, the participants' responses to the movement 
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and combat scenarios within a vignette were used to measure their behavioral 

intention to cooperate with the agent(s) in their team. In each scenario, participants 

were asked questions about how they would interact with each of their team 

members in general and when they dissented from the participants opinion. Each 

question contained three behavioral choices which were designed to indicate an 

intent to counteract the target team member, ignore the target team member, or 

cooperate with the target team member. Cooperative behavioral intention was thus 

measured continuously using a three-point scale reflecting the degree of 

cooperative intent conceptualized in this study, and demonstrated low internal 

reliability (α = .55).  

Controls. Prior research on human-agent interaction has found several 

proximal influences which have been known to affect a person’s trust towards both 

other human team members and other agent team members (Nickerson & Riley, 

2004; Schaefer, Hill, & Jentsch, 2018). Two relevant constructs, propensity to trust 

and attitudes toward artificial intelligence, were measured in the individual 

differences survey at the end of the study to avoid priming the participant’s 

responses.  

Propensity to trust. Research from the trust literature has shown that some 

individuals are more likely to naturally trust other people to a higher degree (Mayer 

& Davis, 1999). This study accounts for this by measuring the participant’s 

propensity to trust with Mayer & Davis’s (1999) 8 item scale. Participants were 

instructed to rate their agreement with statements such as “One should be very 
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cautious with strangers” and “Most people can be counted on to do what they say 

they will do” from 1 (Strongly Disagree) to 5 (Strongly Agree). This measure 

demonstrated low internal reliability (α = .64).  

Attitude towards artificial intelligence. In a similar vein, research has 

shown that individuals hold varying predispositions towards automation (Nickerson 

& Reilly, 2004). This study specifically used a four-item measure from Backonja 

and colleagues (2018) to capture the participant’s attitude towards artificial 

intelligence (A.I.). Although distinctions have been made between various terms 

for machine teammates within the literature (Chen & Barnes, 2014), one definition 

of A.I. (Russell & Norvig, 2016) aligns well with the major criteria for identifying 

an agent (i.e., technology, able to independently perform tasks, interacts with a task 

environment). Participants were presented with Russell & Norvig’s definition of 

A.I. in the instructions, then rate their agreement with statements such as “I would 

feel anxious if I was given a job or task where I had to use [AI].” using a 1 

(Strongly Disagree) to 5 (Strongly Agree) scale. This measure demonstrated 

moderate internal reliability (α = .76).  
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Chapter 5: Results 

 To examine hypothesis 1a, 1b, and 1c, two ANCOVAs were run to 

determine the effect of team composition on trust towards the team after controlling 

for propensity to trust and attitudes towards A.I. Two separate ANCOVAs were 

conducted for each control variable due to the high correlation found between the 

control variables (r = .62, p < .001; see Table 4). First, controlling for propensity to 

trust, there was no significant difference in trust towards the team using the multi-

item measure between the three types of team composition, F(2, 213) = 2.44,  p = 

.09, partial η2 = .02.  Second, controlling for attitudes towards A.I., there was no 

significant difference in trust towards the team using the multi-item measure 

between the three types of team composition, F(2, 213) = 2.82, p =.06, partial η2 = 

.03. Based on these results, hypotheses 1a, 1b, and 1c were not supported. The 

relationship between team composition and trust towards the team was also 

analyzed using the single-item measure of team trust. After controlling for 

propensity to trust, there were no significant differences in trust towards the team 

using the single-item measure between the three types of composition, F(2, 213) = 

2.75,  p = .07, partial η2 = .03. After controlling for attitudes towards A.I., there 

was a significant difference in trust towards the team using the single-item measure 

between the three types of composition, F(2, 213) = 3.27,  p =.04, partial η2 = .03. 

Pairwise comparisons indicated that trust towards the team using the single-item 

measure was significantly greater for participants in human majority teams (M = 

4.30) than participants in agent majority teams (M = 3.98). However, there was no  



   

 

5
2
 

Table 4 

Descriptive Statistics and Correlations 

Variable   M SD 1 2 3 4 5 6 7 8 9 10 

1. Trust towards Team (Scale) 3.93 0.66 —          

2. Trust towards Team (Single) 4.13 0.75  .69* —         

3. Trust towards Agents (Scale) 3.80 0.76  .67*  .66* —        

4. Trust towards Agents (Single) 3.29 1.50  .31*  .34*  .46* —       

5. Cooperative Behavioral 

Intention 
2.14 0.52 -.03 -.01  .07 -.23* —      

6. Propensity to Trust 3.61 0.60  .16*  .22*  .42  .11  .14* —     

7. Attitudes Towards A.I. 3.59 0.72  .02 -.01  .13 -.06  .03  .62* —    

8. Military Experience   8.03 6.69  .07  .02 -.02  .02 -.05 -.04  .02 —   

9. Automation Experience   3.04 1.32 -.08  .16*  .17*  .06  .13  .53*  .37* -.07 —  

10. Age 40.66 0.79   .17*  .09  .05  .10 -.08 -.13 -.09   .28* -.35* — 

* p < .05 
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significant difference in trust towards the team using the single-item measure 

between balanced teams (M = 4.12) and agent majority teams, nor balanced teams 

and human majority teams. Based on the single item measure of trust towards the 

team, hypothesis 1c was supported, but hypothesis 1a and 1b were not 

supported. To account for potential effects related to an individual’s experience, 

further ANCOVAs were conducted to control for age, military experience, and 

automation experience using both the scale and single-item measure of trust 

towards the team. After controlling for the effects of military experience, there was 

a significant difference in trust towards the team using the single-item measure 

between the three types of composition F(2, 214) = 3.11,  p = .047, partial η2 = .03. 

Pairwise comparisons indicated that trust towards the team using the single-item 

measure was significantly greater for participants in human majority teams (M = 

4.07) than participants in agent majority teams (M = 3.79). However, there was no 

significant difference in trust towards the team using the single-item measure 

between balanced teams (M = 3.95) and agent majority teams, nor balanced teams 

and human majority teams. Concerning age and automation experience however, 

no significant relationships were detected using either the scale or single-item 

measure of trust towards the team.  

  



  54 

 

To examine hypotheses 2a-2c and hypothesis 3, two-way ANCOVAs were 

conducted to examine the effects of team composition and agent role on trust 

towards agents while controlling for attitudes towards A.I. and propensity to trust. 

First, after controlling for propensity to trust, there was a significant two-way 

interaction between team composition and agent role on trust towards agents, F(2, 

210) = 4.43, p = .01, partial η2 = .04. Analyses of simple main effects for team 

composition and agent role were then assessed to examine the effects of each 

independent variable at levels of the other independent variable. There was no 

significant effect of agent role on trust towards agents between human majority 

teams (M = 3.85), balanced teams (M = 3.80), or agent majority teams (M = 3.72). 

There was also no significant effect of team composition on trust towards agents 

when the agent was the leader (M = 3.70) compared to when the agent was a 

subordinate (M = 3.88). Although no significant simple main effects were found, it 

is worth noting that the differences between the six conditions trended in a similar 

direction as predicted in the hypotheses. Namely, trust towards agents was higher 

when the agents were subordinates for balanced and human majority teams, 

whereas trust towards agents was higher than an agent was the leader for agent 

majority teams (see Figure 2). 
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Second, after controlling for attitudes towards A.I., there was a significant 

two-way interaction between team composition and agent role on trust towards 

agents, F(2, 210) = 4.17, p = .02, partial η2 = .04. Thus, analyses of simple main 

effects for team composition and agent role were performed for each independent 

variable separately. There was no significant effect of agent role on trust towards 

agents in human majority teams (M = 3.81), balanced teams (M = 3.83), or agent 

majority teams (M = 3.74). There was also no significant effect of team 

composition on trust towards agents when the agent was the leader (M = 3.70) 

compared to when the agent was a subordinate (M = 3.88). Based on these results, 

hypotheses 2a, 2b, 2c, and 3 were unsupported. Similarly to the factorial ANCOVA 
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controlling for propensity to trust, the differences between the six conditions 

trended in a similar direction to the hypotheses. Specifically, trust towards agents 

was higher when the agents were subordinates for balanced and human majority 

teams, whereas trust towards agents was higher than an agent was the leader for 

agent majority teams (see Figure 3). To account for potential effects related to an 

individual’s experience, further ANCOVAs were conducted to control for age, 

military experience, and automation experience using both the scale and single-

item measure of trust towards the team. Similarly to the results above, significant 

interaction effects were found for age (F(2, 210) = 4.52, p = .01, partial η2 = .04), 

military experience (F(2, 214) = 4.37, p = .01, partial η2 = .04) and automation 

experience (F(2, 216) = 4.31, p = .02, partial η2 = .04), however no significant 

simple effects were found for any of these experience related control variables.  
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 To examine hypothesis 4, a linear regression was conducted using 

trust towards agents to predict cooperative behavioral intention towards agents. The 

control variables, propensity to trust and attitudes towards A.I., were entered into 

the regression in the first step. The predictor, trust towards agents (scale), was 

entered into the second step. Results showed that trust towards agents did not 

significantly predict cooperative behavioral intention towards agents, R2 = .023, b = 

.005, F (2, 212) = 1.67, p = .18. This regression was conducted again using the 

single-item measure of trust towards agents taken from the subgroup measure, 

however results did not show that the single-item measure of trust towards agents 

predicted cooperative behavioral intention towards agents, R2 = .023, b = .008, F (2, 

212) = 1.67, p = .18. To account for potential effects related to an individual’s 
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experience, additional linear regressions were conducted to control for age, military 

experience, and automation experience. However, no significant relationship was 

found between trust towards agents and cooperative behavioral intention towards 

agents for any of these regressions.  

 To examine hypothesis 5a and 5b, two mediation models were used to 

examine the indirect effects of team composition and agent role on cooperative 

behavioral intention through trust towards agents (see Table 4). First, regarding 

team composition, a mediation model was performed using a bootstrapping 

approach in the PROCESS macro for SPSS (Hayes, 2009). Unstandardized indirect 

effects were computed for 5,000 bootstrapped samples using a 95% confidence 

interval. Results showed that were no significant total (p = .55) and direct (p = .91) 

effects of team composition on cooperative behavioral intention. Additionally, 

there was no indirect effect of team composition on cooperation behavioral 

intention through trust towards agents as indicated by the 95% confidence interval 

(-.013 to .008), b < -.001. Second, regarding agent role, the same mediation 

framework was performed using a bootstrapping approach in the PROCESS macro 

for SPSS. Unstandardized indirect effects were computed for 5,000 bootstrapped 

samples using a 95% confidence interval. Although results showed that both total 

(p < .001) and direct (p < .001) effects of team composition on cooperative 

behavioral intention were significant, evidence of a mediation model is inferred 

from indirect effects, which was not significant as indicated by the 95% confidence 
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interval (-.001 to .057), b = .016. Thus, neither hypotheses 5a nor 5b were 

supported.  

5.1 Exploratory Analyses  

 The current study presented the opportunity to explore several additional 

analyses with potential to guide future research. First, the relationship between 

team composition and an individual’s trust towards agents was examined within 

each scenario to explore whether additional task-based or environment-based 

factors affect a person’s psychological processes. To examine the relationship 

between trust towards agents within each scenario while controlling for the effects 

of propensity to trust and attitudes towards A.I., six separate one-way ANCOVAs 

were conducted. Controlling for propensity to trust, there was no significant 

difference in trust towards agents within the context scenario (F (2,212) = 1.40, p = 

.25, partial η2 = .01), within the movement scenario (F (2,212) = .12, p = 0.89, 

partial η2 < .01), or the combat scenario (F (2,212) = .02, p = 0.98, partial η2 < 

.01).  Controlling for attitudes towards A.I., there was no significant difference in 

trust towards agents within the context scenario (F (2,213) = .69, p = 0.5, partial η2 

= .01), within the movement scenario (F (2,213) = 0.44, p = 0.64, partial η2 < .01), 

or the combat scenario (F (2,213) = 0.04, p = 0.96, partial η2 < .01). Based on these 

results, there is no evidence that the relationship between team composition and 

trust towards agents varies depending on the environmental context. 

The relationship between trust towards agents and an individual’s 

cooperative behavioral intention was also examined within the movement scenario 
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and combat scenario using linear regression. This relationship could not be 

examined within the context scenario since participants did not respond to scenario-

based questions measuring cooperative behavioral intention until after the 

movement scenario. A simple linear regression was calculated to predict an 

individual’s cooperative behavioral intention based on their trust towards agents 

within the movement scenario, with propensity to trust and attitudes towards A.I. 

entered into the first step. Results indicated that trust towards agents did not predict 

cooperative behavioral intentions within the movement scenario, R2 = .045, b = 

.002, t(2, 214) = .03 p  = .98. The same regression framework was used to predict 

an individual’s cooperative behavioral intention based on their trust towards agents 

within the combat scenario. Results indicated that trust towards agents did not 

predict cooperative behavioral intentions within the combat scenario, R2 < .01, b = -

.01, t(2, 214) = -1.34, p  = .89. Based on these results, there is no evidence that the 

relationship between trust towards agents and cooperative behavioral intention 

varies depending on the environmental context.  

Lastly, Wildman and colleagues’ (in development) scale that was used to 

measure an individual’s trust towards their team contains two sub-dimensions: trust 

in competence and trust in integrity. Future research may benefit from analyses 

comparing differences in specific sub-facets of team trust, and expand upon prior 

research findings that human team members often trust automation with technical 

tasks, but not decision-making tasks (Dzindolet et al., 2001). Four separate one-

way ANCOVAs were conducted to examine the relationship between team 
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composition and the two sub-dimensions of team trust while accounting for two 

control variables. When controlling for propensity to trust, there was no significant 

difference between the three types of team composition for an individual’s trust in 

their team’s competence (F (2, 213) = 2.24, p = .11, partial η2 = .02) or integrity (F 

(2, 213) = 2.24, p = .11, partial η2 = .02). When controlling for attitudes towards 

A.I., there was no significant difference between the three types of team 

composition for an individual’s trust in their team’s competence ( F (2, 213) = 2.56, 

p = .08, partial η2 = .02) or integrity (F (2, 213) = 2.61 p = .08, partial η2 = .02). 

Based on these results, team composition does not differentially predict an 

individual’s trust in their team’s competence compared to their trust in the team’s 

integrity.   
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Chapter 6: Discussion 

 The present study found few pieces of conclusive evidence regarding the 

effect of team composition or agent roles on the attitudes and behavioral intentions 

that human team members hold towards their agent team members in HATs. 

Although a few significant findings were found from hypothesis and exploratory 

analyses, several theoretical and methodological limitations of the current study 

may be culprits that hindered the detection of significant relationships. Several of 

these limitations bear particular relevance to certain hypotheses as they pertain to 

its focal variables, and are respectively interpreted and discussed for each 

hypothesis below.  

Hypothesis 1 posited that trust towards the team differed between the three 

types of team composition, and was partially supported. Although no significant 

differences were found between balanced teams and other team composition types, 

individuals in human majority teams trusted the team significantly more than 

individuals in agent majority teams. This difference may indeed suggest that human 

team members perceive their team differently depending on the whether the 

majority of the team is composed of human team members or agent team members. 

Theoretically, the categorical approach taken to conceptualize team composition in 

this study may have been too simplistic. Although the essence of the three 

categories of team composition used in this study was a good foothold for 

beginning research into team composition, it may not have been comprehensive 

enough to capture the qualities that would make team composition a relevant 
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predictor of trust and behavioral intention. Social identity theory (Tajfel & Turner, 

1979) and research on group dynamics (Hornsey & Hogg, 2000; Insko, Schopler, & 

Sedikides, 1998; Navarro-Carillo, Valor-Segura, & Moya, 2018) pinpoint the 

importance of identifying with an in-groups versus out-group, which is captured 

with the categorical approach to composition used in this study, the rationale for 

hypothesis 1 depended on a continuous representation of the number of in-group 

members in a group. Specifically, the theoretical reason underlying the predictions 

made in hypothesis 1 was formed on the basis that the bigger an individual’s in-

group was in a group, the more they would trust the group as a whole. Thus, this 

hypothesis may be more suitably tested using a continuous form of team 

composition with varying in-group sizes (i.e. differing numbers of human team 

members). However, it is worth noting that the trust scores still trended in the 

predicted direction and were marginally significant when using the trust towards 

team scale (p = .06). This may suggest issues with the study’s power, and it may be 

that this relationship would have been significant with a higher sample size. 

 Hypothesis 2 posited that an individual’s trust towards agents differed 

between the three types of team composition. Although this prediction was not 

supported, theoretical and methodological limitations of the current study may 

explain why evidence of this relationship could not be detected. In terms of 

theoretical limitations, the rationale linking team composition and trust towards 

agents depended on outgroup perception. More importantly, in addition to actually 

identifying members of one’s in-group, an individual must actually process and 
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detect the existence of an outgroup. The argumentation for the relationship between 

team composition and trust towards agents is based on theory describing an “us” 

versus “them” mentality as explained by group identification and emphasized by 

majority/minority dynamics. If this polarity is not perceived, then these underlying 

reasons which might drive differences in trust towards agents may not occur. 

Although this in-group/out-group divide should be seemingly obvious in a HAT, 

the methodological limitations of a vignette study may hinder this. Whereas human 

team members in a real-world HAT must actually interact with agent team 

members through their technological medium, and thus register noticeable 

differences between themselves and their agent team member, participants in this 

vignette study must fictitiously envision the robot soldiers in this team. Aside from 

stating that there are robot soldiers in this hypothetical mixed team, there are no 

additional cues which would hone the participant into processing the human-agent 

divide in the team.  It is conceivable that a participant might not psychologically 

register in-group/out-group categories because of the ambiguous nature of written 

vignettes which leave room for interpretation, at which point the theoretical 

underpinning of hypothesis 2 would not hold. Additionally, there may be multiple 

measurement issues in regards to capturing trust towards agents (which are 

discussed in further depth below in the limitations section). Although the 

interaction effects found in this analysis were not hypothesized, it provides a 

fascinating opportunity for future research to understand why the relationship 

between agent role and team composition differed for agent majority teams.  
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 Hypothesis 3 predicted that an individual’s trust towards agents would be 

lower when an agent was the leader compared to when the agents were all 

subordinates. The results of this study did not support hypothesis 3. In addition to 

the measurement issues in capturing trust towards agents, one alternative 

explanation as to why a relationship between agent roles and trust towards agents 

was not found may be due to the confounds of team composition. A significant 

interaction effect was found between team composition and agent role on trust 

towards agents in the factorial ANCOVA conducted, but no simple main effects or 

main effects were found. Balanced and human majority teams had other human 

team member subordinates, and it is unclear what effect this might have on the 

perceptions of participants who were the team leader. It is possible that participant 

leaders in these scenarios were influenced by the presence of other human team 

members, however it is unclear how this influence might manifest. Thus, in 

addition to issues with measuring trust towards agents, team composition may 

confound the effect of agent roles due to added human subordinates in the balanced 

and human majority conditions.  

Based on prior research, hypothesis 4 posited that an individual’s trust 

towards agents predicted their cooperative behavioral intention towards agents. 

Given the established nature of this relationship from the literature on trust in 

HATs, it was surprising that this hypothesis was unsupported. However, this may 

lend further support to the measurement concerns regarding trust towards agents 

and cooperative behavioral intention.  
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To address the teaming problem in HATs, hypothesis 5 posited that the 

relationship between team composition and cooperative behavioral intention, as 

well as agent role and cooperative behavioral intention, were both explained by an 

individual’s trust towards agents. This mediation model was not supported. In the 

same vein, it is likely that these indirect effects could not be detected for the 

reasons listed for the above hypotheses, just as it is likely that none of the 

exploratory analyses yielded significant findings due to these same constraints.  

6.1 Limitations  

In addition to the specific limitations pertaining to the hypotheses, several 

theoretical, methodological, and sample limitations of the study as a whole may 

further explain the lack of significant findings. At large, the study is grounded in 

the theory of planned behavior (Azjen, 1985), which posits that attitudes, perceived 

control, and subjective norms are the three factors that predict an individual’s 

behavioral intention. Of these three factors, this study solely examines the 

attitudinal component of the theory by focusing on how trust predicts cooperative 

behavioral intention. Although the hypotheses in this study did not provide 

evidence that team composition affects cooperative behavioral intention through 

trust, Azjen (1985) states that the components of the theory are not necessarily 

isolated predictors of behavioral intention, and thus perceived control and 

subjective norms may also influence an individual’s trust. For example, an 

organization may provide cues about the trustworthiness of the agent through 

formal (e.g., training) or informal (e.g., socialized beliefs) means. Accounting for 
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these components of the theory may improve the ability to isolate the relationship 

between team composition, trust, and cooperative behavioral intention, as well as 

offer alternative mediation models using perceived control and subjective norms to 

elucidate a relationship between team composition and cooperative behavioral 

intention. Another theoretical issue that likely requires further investigation 

concerns the time that it takes for the relationships in the study to form. Research 

on the development of trust in automation states that trust is adjusted after being 

exposed to a stimulus, and thus trust is temporally calibrated (Schaeffer, Hill, & 

Jentsch, 2018). Although it is unclear how long it takes for trust to adjust based on 

the stimulus in question, it may be that the cross-sectional nature of this study does 

not capture trust at the appropriate time to measure trust as it is calibrated to the 

stimulus in question (e.g., the scenarios).  

Methodological limitations present multiple important issues that likely 

limited the ability to detect a relationship. A prominent methodological issue 

relates to the inherent limitations of a written vignette methodology for HAT 

research. To date, no written, experimental vignette study of HATs exists, as 

experimental research frequently opts to test laboratory trials involving a real agent 

that a participant interacts with. Subsequently, findings from the literature are based 

on data in which human team members in a HAT interact with their agent team to 

actually conduct a task. Although written vignette methodologies provide for 

highly controlled experiments through careful and deliberate manipulations of 

independent variables in question, it is likely that participants engaging in an 
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imaginary scenario are missing out on experiences that require actual interaction 

with an agent team member. Without actually interacting with an agent, a human 

team member may be limited in their ability to fully infer and develop attitudes 

towards the agents, and subsequently act on these formed attitudes. Aguinis and 

Bradley (2014) state that it is important that participants are sufficiently immersed 

within a vignette to react as they would in actual scenarios that the vignettes mimic. 

This criteria is difficult to meet, as it is challenging to provide a sufficient level of 

immersion for HATs using a written vignette methodology.  It may also be the case 

that the “perfect reliability” controlled for across all vignettes is different from the 

high levels of reliability which we observe in current tech. Prior experimental 

research has made inferences based on data using real, current technology which is 

imperfect. Although this perfect reliability controls for the influence of reliability 

on the relationships in this study, it is possible that introducing perfect reliability to 

HAT research operates on a different paradigm than current research as it removes 

perceptions of variability in performance that trust in automation research has 

heavily focused on (deVisser, Pak, & Shaw, 2018).  

The lack of actual agent interaction in a vignette study provides additional 

measurement issues. First, regarding the measurement of trust towards agents, the 

original scale developed and validated by Körber (2018) was significantly adapted. 

Specifically, fifteen items were dropped from the original scale as they required the 

participant to draw on experiences with the agent (e.g. “I was always able to 

understand why things happened”). Although the scale demonstrated high 
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reliability (α = .90), the shortened scale has not been validated and it is uncertain 

how many of the dropped items were core to the purpose of the scale. This also 

prompts questions as to whether reading a statement about an agent’s action is 

sufficiently comparable to observing the agent’s action itself. For example, can an 

individual reading a sentence stating their agent team member is failing to win its 

fights comparably process the same information as an individual watching their 

agent team member lose in combat? Based on prior research into trust and 

reliability which manipulate the details of these failures to see how human team 

members react, there may be more nuance to an instance of failure than just 

identifying a state of success versus failure (deVisser, Pak, & Shaw, 2018). Lastly, 

trust towards agents may be a new construct that is distinct from trust towards 

automation. As the premise of the agents in a human-agent team is that agents act 

as team members, capturing trust towards agent team members may require 

measures which reflect this mindset and move beyond items about reliability, and 

towards items similar to human-human trust (i.e., relationship-focused).  

The reliability and validity of the cooperative behavioral intention measures 

are also suspect, as it is captured through the simulated response options provided 

to the participant for the context of this vignette. The items indicating cooperative 

behavioral intention demonstrated low reliability (α = .55). Although the three 

response options provided consistently represented the same range of cooperative 

behaviors for each behavioral intention item (e.g., counteracting, ignoring, and 

cooperating), the validity of these items as a composite indication of cooperative 
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behavioral intention warrants further evaluation. Specifically, it is worth 

considering whether or not these behaviors actually map onto a continuous 

spectrum. It may be the case that each of these various behaviors should be viewed 

as an individual outcome, and thus should each be individually predicted. 

Additionally, because cooperative behavioral intention is inferred on a scale of one 

to three, there is a limit to the variance in cooperative intent that can be expressed. 

A participant thus cannot express different levels of counteracting behavior and 

cooperative behavior, as they are limited to simply indicating counteractive intent 

(coded as one) or cooperative intent (coded as three) without nuance at the extreme 

ends. Additionally, cooperative behavioral intent was inferred by averaging all 

items within a vignette (i.e. across all scenarios), however it may be the case that 

these observations should not be equally weighted. For example, it is unclear 

whether choosing to deter from a robot’s soldier’s suggested path is equally 

representative of low cooperative intention as choosing to overriding a robot soldier 

during a fight. Accurately capturing cooperative behavioral intention may require 

deeper investigation into what cooperation really means beyond these three points 

of alignment (e.g. counteracting, ignoring, cooperating).  

Lastly, two sampling limitations which may have affected analyses are 

worth noting. First, variances between the six conditions in this study were not 

equal for trust towards agents, which fails the assumption of homogeneity of 

variance required of ANCOVA analyses and affects hypotheses 2 and 3. Second, 

the sampling population was broad given the specificity of the scenario. The 
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vignettes describe an infantry combat scenario, however the sample was taken from 

any individuals with military experience from any branch. It would have been ideal 

to sample from individuals with boots-on-the-ground experience, however the 

sample pool for this would have been small and implausible to obtain a sufficient 

sample size within a reasonable time.  

6.2 Future Research  

 Although the present study did not provide evidence regarding the effect of 

team composition, it should not be interpreted as a deterrent from future research 

on team composition in HATs. Research on team composition may be viable in 

addressing the teaming problem in HATs. Within the vein of this study, multiple 

limitations were identified and thus multiple suggestions for future research arise. 

First, and perhaps most prominently, this study may benefit from in-person 

laboratory experiments for the theoretical and methodological reasons discussed 

above. Given the nature of HATs, and how the HAT literature and its measures are 

built upon laboratory trials in which participants interact with the technological 

embodiment of the agent in some capacity (Hancock et al., 2011), accurately 

capturing the psychological processes that occur during human-agent interaction 

likely requires physical and psychological interaction. A future iteration of this 

study may also benefit from an in-depth examination of open-ended responses to 

the type of hypothetical scenarios used in this study. Using qualitative data can be 

insightful for identifying a trend or phenomenon, or understanding why certain 

events may be unfolding the way that they do (Briner et al., 2011). By exploring 
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themes in open-ended responses to these hypothetical scenarios, future researchers 

may be able to examine how behavioral intentions are formed and how they are 

connected. Doing so may hone future research on predicting cooperation more 

appropriately as it reflects real-world behavioral instances. Similarly, future 

research based on this study’s framework to address the teaming problem would 

benefit from testing the components of this study’s behavioral intention scale 

individually. Returning to literature on automation usage (Parasuraman & Riley, 

1997), which categorically identifies four types of usage behavior, it may be more 

elucidating to treat each type of behavior as its own independent outcome. Rather 

than trying to predict a range of cooperation as inferred by the participants choice, 

separately predicting the occurrence of the specific behaviors (e.g., cooperation, 

ignoring, counteracting) may better align with prior research and provide specific 

actionable implications for addressing the teaming problem in HATs as well. It 

may also be worthwhile for future researchers to parse out high cooperation as well 

based on the appropriateness of the cooperation in line with the distinction between 

use and misuse (Meyer & Lee, 2013).  

 Future research broadly interested in team composition in HATs could also 

benefit from independently examining each of the types of team composition in this 

study. Rather than comparing agent majority, balanced, and human majority teams, 

individually the mechanisms within each team would allow for a more elaborate 

analysis of how an individual processes the team’s context and reacts to agent team 

members (i.e., identifying mediators that are unique to agent majority teams that 
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explain how trust is calibrated). Doing so would also enable a continuous 

examination of each type of team composition on its own, and allow researchers to 

explore how or if the specific type of team composition changes with varying size 

(i.e., comparing agent majority teams with two agents versus 5 agents).  

 Alternatively, if research were to continue using the categorical framework 

of team composition that was conceptualized in this study, the interaction effect 

found in the factorial ANCOVA that tested hypotheses 2 and 3 provides a curious 

opportunity for understanding the nuance between agent role and team composition 

when it comes to predicting a human team member’s trust towards agents. If this 

interaction effect could be replicated, it would provide both practical and 

theoretical information in regard to how certain configurations of a team’s inputs 

(e.g., agent role and team composition) will influence the trust that human team 

members will have towards agents. Future research could study this “humans 

leading humans, agents leading agents” phenomenon with theoretically grounded 

rationale to provide meaningful insight into understanding how team composition 

and agent roles influence the human team members in a HAT. 

Lastly, this study was driven by the theory of planned behavior yet only 

examined the attitudinal piece of the theory to leverage the extensive trust research 

that is established within the literature. Future research interested in addressing the 

teaming problem in HATs should consider the other components of the theory of 

planned behavior, as it is possible that the subjective norms and perceived control 

regarding agent team member interaction would influence the attitudes the 
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individual has towards the agents and towards engaging in specific behaviors with 

the agents. More elaborate models which examine the interplay between these three 

components of the theory of planned behavior, as well as test formal hypotheses 

regarding each individual component, may be needed to uncover the effects of any 

contextual influences of a HAT on a human team members behaviors.  

6.3 Conclusion  

 The present study attempted to address the teaming problem in HATs by 

examining the relationship between team composition, agent roles, trust, and 

cooperative behavioral intention as explained through the theory of planned 

behavior. Although this study did not find any evidence supporting its hypotheses, 

multiple limitations and recommendations for future research should not discourage 

future attempts to study team composition in HATs.  
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Appendix A 

Condition 1 (AI Majority, AI Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 

operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself and three robot soldiers. One of the robot 

soldiers has been designated as the team leader, while you and the other two robot 

soldiers will serve as subordinate team members. On this mission, the team leader 

will make the decisions and is the one responsible for making the team’s plans. 

Your team will need to defeat enemy personnel guarding the base, set explosive 

charges on the aircrafts, detonate them, and escape. Thus, you will need to 

coordinate with your team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of your 

robot soldier leader, two subordinate robot soldiers, and yourself) is dropped off at 

the far edge of a nearby abandoned town which routes into the base. Although no 

civilians inhabit the town, several enemy soldiers have been known to patrol it. 

Your team’s first task is to make your way through the town and to the base.  

Scenario 1 Questions 

[Interaction plan with leader] For this scenario, how would you decide which path 

to take?  

- I would let the robot soldier leader come up with a plan and follow them 

regardless of my thoughts.  

- I would see what plan the robot soldier leader comes up with, but follow 

my own route if I disagree with them.  

- I would come up with my own route and follow it.  
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[Failure interaction with leader] For this scenario, what would you do if your robot 

soldier leader began taking a path you disagree with?  

- I would let the robot soldier leader continue on their path and follow 

them.  

- I would let the robot soldier leader continue on their path, but take my 

own path.  

- I would override the robot soldier leader to reroute the team onto the path 

I believe is best.  

 [Failure interaction with agent teammate] For this scenario, what would you do if a 

subordinate robot soldier began taking a path you disagree with?  

- I would let the robot soldier continue on their path and follow them.  

- I would let the robot soldier continue on their path, but take the path set 

by the leader.  

- I would override the robot soldier to reroute them back onto the path set 

by the leader.   

Scenario 2: Combat  

Your team (consisting of the robot soldier leader, two robot soldiers, and yourself) 

has made it about halfway through the town with no issues. But suddenly, the loud 

crack of a gun breaks the silence! The first bullet whizzes over your team, and in an 

instant your team is engaged in combat with the enemy soldiers. Your team must 

now fight in the town and defeat all enemies to continue forward to the base. 

Although each team member will be generally shooting the enemies while trying to 

stay safe, the team leader may give specific orders regarding combat and combat 

tactics, such as who to attack and where to position yourselves.   

Scenario 2: Questions 

[Interaction plan with team leader] For this scenario, what would you do in 

response to the robot soldier leader’s orders?    

- I would do what the robot soldier leader orders me to do. 

- I would ignore the robot soldier leader’s order and do what I think is 

best.  

- I would override the robot soldier leader to give the orders I think are 

best. 

 

[Failure interaction with team leader] For this scenario, what would you do if you 

noticed your robot soldier leader was failing to defeat enemies? 

- I would let the robot soldier leader continue what it is doing and help 

them with their fight.  
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- I would ignore the robot soldier leader and keep focusing on my own 

fights. 

- I would override the robot soldier leader and fight the robot soldier 

leader’s fights for them.  

 

[Failure interaction with agent teammate] For this scenario, what would you do if 

you noticed a subordinate robot soldier was failing to defeat enemies?  

- I would let the robot soldier continue what it is doing and help them with 

their fight.  

- I would ignore the robot soldier and keep focusing on my own fights. 

- I would override the robot soldier and fight robot soldier’s fights for 

them.  

 

Condition 2 (AI Majority, Participant Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 

operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself and three robot soldiers. You have been 

designated as the team leader, while the other three robot soldiers will serve as 

subordinate team members. On this mission, the team leader will make the 

decisions and is the one responsible for making the team’s plans. Your team will 

need to defeat enemy personnel guarding the base, set explosive charges on the 

aircrafts, detonate them, and escape. Thus, you will need to coordinate with your 

team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of 

yourself and your three robot soldiers) is dropped off at the far edge of a nearby 

abandoned town which routes into the base. Although no civilians inhabit the town, 
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several enemy soldiers have been known to patrol it. Your team’s first task is to 

make your way through the town and to the base.  

Scenario 1 Questions 

[Interaction plan with agents] For this scenario, how would you decide what path to 

take?  

- I would solicit advice from the robot soldiers.  

- I would ignore any input from the robot soldiers.  

- I would give orders to the robot soldiers and expect them to follow it.  

[Failure interaction with agent subordinate] For this scenario, what would you do if 

a robot soldier began taking a different path from your orders?  

- I would let the robot soldier continue on their path and follow them.  

- I would let the robot soldier continue on their path, but take the path I 

ordered.  

- I would override the robot soldier to reroute the team onto the path I 

ordered.  

Scenario 2: Combat  

Your team (consisting of your three robot soldiers and yourself) has made it about 

halfway through the town with no issues. But suddenly, the loud crack of a gun 

breaks the silence! The first bullet whizzes over your team, and in an instant your 

team is engaged in combat with the enemy soldiers. Your team must now fight in 

the town and defeat all enemies to continue forward to the base. Although each 

team member will be generally shooting the enemies while trying to stay safe, the 

team leader may give specific orders regarding combat and combat tactics, such as 

who to attack and where to position yourselves.   

Scenario 2: Questions 

[Interaction plan with agents] For this scenario, how do you interact with your 

robot team members?     

- I would solicit input from the robot soldiers to determine a plan.   

- I would ignore the robot soldiers and come up with my own plan.  

- I would do the opposite of what the robot soldiers suggest to determine a 

plan.   

 

 [Failure interaction with agent subordinate] For this scenario, what would you do 

if you noticed a robot soldier was failing to defeat enemies?  
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- I would let the robot soldier continue what it is doing and help them with 

their fight.  

- I would ignore the robot soldier and keep focusing on my own fights. 

- I would override the robot soldier and fight the robot soldier’s fights for 

them.  

 

 

Condition 3 (Balanced, AI Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 

operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself, another human soldier, and two robot soldiers. 

A robot soldier has been designated as the team leader, while you, the other human 

soldier, and the other robot soldier will serve as subordinate team members. On this 

mission, the team leader will make the decisions and is the one responsible for 

making the team’s plans. Your team will need to defeat enemy personnel guarding 

the base, set explosive charges on the aircrafts, detonate them, and escape. Thus, 

you will need to coordinate with your team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of the 

robot soldier leader, a human soldier, the other robot soldier, and yourself) is 

dropped off at the far edge of a nearby abandoned town which routes into the base. 

Although no civilians inhabit the town, several enemy soldiers have been known to 

patrol it. Your team’s first task is to make your way through the town and to the 

base.  

Scenario 1 Questions 

[Interaction plan with leader] For this scenario, how would you decide which path 

to take?  
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- I would let the robot soldier leader come up with a plan and follow them 

regardless of my thoughts.  

- I would see what plan the robot soldier leader comes up with, but follow 

my own route if I disagree with them.  

- I would come up with my own route and follow it.  

[Failure interaction with leader] For this scenario, what would you do if your robot 

soldier leader began taking a path you disagree with?  

- I would let the robot soldier leader continue on their path and follow 

them.  

- I would let the robot soldier leader continue on their path, but take my 

own path.  

- I would override the robot soldier leader to reroute the team onto the path 

I believe is best.  

 

 [Failure interaction with agent teammate] For this scenario, what would you do if 

the other robot soldier began taking a different path from the team?  

- I would let the other robot soldier continue on their path and follow 

them.  

- I would let the other robot soldier continue on their path, but take the 

path that the robot soldier leader ordered. 

- I would override the other robot soldier to reroute them back onto the 

path that the robot soldier leader ordered. 

 

 [Failure interaction with human teammate] For this scenario, what would you do if 

the human soldier began taking a different path from your robot soldier leader’s 

orders?  

- I would let the human soldier continue on their path and follow them.  

- I would let the human soldier continue on their path, but take the path 

that the robot soldier leader ordered.  

- I would tell the human soldier to reroute back to the path that the robot 

soldier leader ordered.  

Scenario 2: Combat  

Your team (consisting of the robot soldier leader, a human soldier, the other robot 

soldier, and yourself) has made it about halfway through the town with no issues. 

But suddenly, the loud crack of a gun breaks the silence! The first bullet whizzes 

over your team, and in an instant your team is engaged in combat with the enemy 

soldiers. Your team must now fight in the town and defeat all enemies to continue 

forward to the base. Although each team member will be generally shooting the 
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enemies while trying to stay safe, the team leader may give specific orders 

regarding combat and combat tactics, such as who to attack and where to position 

yourselves.   

Scenario 2: Questions 

[Interaction plan with team leader] For this scenario, what would you do in 

response to the robot soldier leader’s orders?    

- I would do what the robot soldier leader orders me to do. 

- I would ignore the robot soldier leader’s order and do what I think is 

best.  

- I would override the robot soldier leader to give the orders I think are 

best. 

 

[Failure interaction with team leader] For this scenario, what would you do if you 

noticed your robot soldier leader was failing to defeat enemies? 

- I would let the robot soldier leader continue what they are doing and help 

them with their fight.  

- I would ignore the robot soldier leader and keep focusing on my own 

fights. 

- I would override the robot soldier leader and fight the robot soldier 

leader’s fights for them.  

 

[Failure interaction with agent teammate] For this scenario, what would you do if 

you noticed the subordinate robot soldier was failing to defeat enemies?  

- I would let the robot soldier continue what they are doing and help them 

with their fight.  

- I would ignore the robot soldier and keep focusing on my own fights. 

- I would override the robot soldier and fight the robot soldier’s fights for 

them.  

 

[Failure interaction with human teammate] For this scenario, what would you do if 

you noticed the subordinate human soldier was failing to defeat enemies?  

- I would let the human soldier continue what they are doing and help 

them with their fight.  

- I would ignore the human soldier and keep focusing on my own fights. 

- I would tell the human soldier to stand down and start fighting the human 

soldier’s fights for them.  
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Condition 4 (Balanced, Participant Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 

operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself, another human soldier, and two robot soldiers. 

You have been designated as the team leader, while the other human soldier and the 

two robot soldiers will serve as subordinate team members. On this mission, the 

team leader will make the decisions and is the one responsible for making the 

team’s plans. Your team will need to defeat enemy personnel guarding the base, set 

explosive charges on the aircrafts, detonate them, and escape. Thus, you will need 

to coordinate with your team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of 

yourself, the human soldier, and the two robot soldiers) is dropped off at the far 

edge of a nearby abandoned town which routes into the base. Although no civilians 

inhabit the town, several enemy soldiers have been known to patrol it. Your team’s 

first task is to make your way through the town and to the base.  

Scenario 1 Questions 

[Interaction plan with agents] For this scenario, how would you decide what path to 

take?  

- I would come up with a plan and give orders for the team to follow.   

- I would see what the robot soldiers do and adjust the orders from there.   

- I would see what the human soldier does and adjust the orders from 

there. 

[Failure interaction with agent subordinate] For this scenario, what would you do if 

a robot soldier began taking a different path from your orders?  

- I would let the robot soldier continue on their path and follow them.  
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- I would let the robot soldier continue on their path, but take my own 

path.  

- I would override the robot soldier to reroute the team onto the path I 

believe is best.  

[Failure interaction with human subordinate] For this scenario, what would you do 

if the other human soldier began taking a different path from the team?  

- I would let the human soldier continue on their path and follow them.  

- I would let the human soldier continue on their path, but take my own 

path.  

- I would tell the human soldier to return to the team’s path.  

Scenario 2: Combat  

Your team (consisting of yourself as the team leader, the human soldier, and the 

two robot soldiers) has made it about halfway through the town with no issues. But 

suddenly, the loud crack of a gun breaks the silence! The first bullet whizzes over 

your team, and in an instant your team is engaged in combat with the enemy 

soldiers. Your team must now fight in the town and defeat all enemies to continue 

forward to the base. Although each team member will be generally shooting the 

enemies while trying to stay safe, the team leader may give specific orders 

regarding combat and combat tactics, such as who to attack and where to position 

yourselves.   

Scenario 2: Questions 

[Interaction plan with agents] For this scenario, how do you interact with your 

robot team members?     

- I would solicit input from the robot soldiers to determine a plan.   

- I would ignore the robot soldiers and come up with my own plan.  

- I would do the opposite of what the robot soldiers suggest to determine a 

plan.   

 

[Interaction plan with humans] For this scenario, how do you interact with your 

human team members?     

- I would solicit input from the human soldiers to determine a plan.   

- I would ignore the human soldiers and come up with my own plan.  

- I would do the opposite of what the human soldiers suggest to determine 

a plan.   

 

 [Failure interaction with agent subordinate] For this scenario, what would you do 

if you noticed a robot soldier was failing to defeat enemies?  



  109 

 

- I would let the robot soldier continue what it is doing and help them with 

their fight.  

- I would ignore the robot soldier and keep focusing on my own fights. 

- I would override the robot soldier and fight the robot soldier’s fights for 

them.  

 

[Failure interaction with human subordinate] For this scenario, what would you do 

if you noticed the human soldier was failing to defeat enemies?  

- I would let the human soldier continue what they are doing and help 

them with their fight.  

- I would ignore the human soldier and keep focusing on my own fights. 

- I would tell the human soldier to stand down and fight the human 

soldier’s fights for them.  

 

Condition 5 (Human Majority, AI Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 

operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself, two human soldiers, and a robot soldier. The 

robot soldier has been designated as the team leader, while you and the other two 

human soldiers will serve as subordinate team members. On this mission, the team 

leader will make the decisions and is the one responsible for making the team’s 

plans. Your team will need to defeat enemy personnel guarding the base, set 

explosive charges on the aircrafts, detonate them, and escape. Thus, you will need 

to coordinate with your team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of the 

robot soldier leader, the two human soldiers, and yourself) is dropped off at the far 

edge of a nearby abandoned town which routes into the base. Although no civilians 
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inhabit the town, several enemy soldiers have been known to patrol it. Your team’s 

first task is to make your way through the town and to the base.  

Scenario 1 Questions 

[Interaction plan with leader] For this scenario, how would you decide which path 

to take?  

- I would let the robot soldier leader come up with a plan and follow them 

regardless of my thoughts.  

- I would see what plan the robot soldier leader comes up with, but follow 

my own route if I disagree with them.  

- I would come up with the own route and follow it.  

[Failure interaction with leader] For this scenario, what would you do if your robot 

soldier leader began taking a path you disagree with?  

- I would let the robot soldier leader continue on their path and follow 

them.  

- I would let the robot soldier leader continue on their path, but take my 

own path.  

- I would override the robot soldier leader to reroute the team onto the path 

I believe is best.  

 

 [Failure interaction with human teammate] For this scenario, what would you do if 

a human soldier began taking a different path from your robot soldier leader’s 

orders?  

- I would let the human soldier continue on their path and follow them.  

- I would let the human soldier continue on their path, but take the path 

that the robot soldier leader ordered.  

- I would tell the human soldier to reroute back to the path that the robot 

soldier leader ordered.  

Scenario 2: Combat  

Your team (consisting of the robot soldier leader, the two human soldiers, and 

yourself) has made it about halfway through the town with no issues. But suddenly, 

the loud crack of a gun breaks the silence! The first bullet whizzes over your team, 

and in an instant your team is engaged in combat with the enemy soldiers. Your 

team must now fight in the town and defeat all enemies to continue forward to the 

base. Although each team member will be generally shooting the enemies while 

trying to stay safe, the team leader may give specific orders regarding combat and 

combat tactics, such as who to attack and where to position yourselves.   
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Scenario 2: Questions 

[Interaction plan with team leader] For this scenario, what would you do in 

response to the robot soldier leader’s orders?    

- I would do what the robot soldier leader orders me to do. 

- I would ignore the robot soldier leader’s order and do what I think is 

best.  

- I would override the robot soldier leader to give the orders I think are 

best. 

 

[Failure interaction with team leader] For this scenario, what would you do if you 

noticed your robot soldier leader was failing to defeat enemies? 

- I would let the robot soldier leader continue what they are doing and help 

them with their fight.  

- I would ignore the robot soldier leader and keep focusing on my own 

fights. 

- I would override the robot soldier leader and fight the robot soldier 

leader’s fights for them.  

 

[Failure interaction with human teammate] For this scenario, what would you do if 

you noticed a human soldier was failing to defeat enemies?  

- I would let the human soldier continue what they are doing and help 

them with their fight.  

- I would ignore the human soldier and keep focusing on my own fights. 

- I would tell the human soldier to stand down and fight the human 

soldier’s fights for them.  

 

Condition 6 (Human Majority, Participant Leader) 

Context 

Imagine that the year is 2050, and you are a soldier who has served in the military 

for the past 10 years. Because of your extensive experience, you have been 

assigned to work in an elite squad for a classified mission. For this mission, you 

will work in a team of 4 to infiltrate an enemy base and destroy new, dangerous 

aircrafts that a hostile organization has been developing. This team leverages new 

advances in AI technology, and is a mix of other human soldiers and autonomous 

robot soldiers. These robot soldiers are designed to perform like human soldiers 

and thus are able to move independently, engage in combat, give orders, and follow 

orders. Although they do not need any manual control, they may be manually 
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operated by any human soldier for any reason as the controllers are intuitive to use. 

Doing so would require your attention to operate the robot soldier though. 

Your team will consist of yourself, two human soldiers, and a robot soldier. You 

have been designated as the team leader, while the robot soldier and the other two 

human soldiers will serve as subordinate team members. On this mission, the team 

leader will make the decisions and is the one responsible for making the team’s 

plans. Your team will need to defeat enemy personnel guarding the base, set 

explosive charges on the aircrafts, detonate them, and escape. Thus, you will need 

to coordinate with your team to complete the objective. 

Scenario 1: Movement  

Because the hostile base cannot be directly accessed, your team (consisting of 

yourself as the team leader, the robot soldier, and the two human soldiers) is 

dropped off at the far edge of a nearby abandoned town which routes into the base. 

Although no civilians inhabit the town, several enemy soldiers have been known to 

patrol it. Your team’s first task is to make your way through the town and to the 

base.  

Scenario 1 Questions 

[Interaction plan with agents] For this scenario, how would you decide what path to 

take?  

- I would come up with a plan and give orders for the team to follow.   

- I would see what the robot soldiers do and adjust the orders from there.   

- I would see what the human soldier does and adjust the orders from 

there. 

[Failure interaction with agent subordinate] For this scenario, what would you do if 

the robot soldier began taking a different path from your orders?  

- I would let the robot soldier continue on the path and follow them.  

- I would let the robot soldier continue on the path, but take my own path.  

- I would override the robot soldier to reroute the team onto the path I 

believe is best.  

[Failure interaction with human subordinate] For this scenario, what would you do 

if a human soldier began taking a different path from the team?  

- I would let the human soldier continue on their path and follow them.  

- I would let the human soldier continue on their path, but take my own 

path.  

- I would tell the human soldier to return to the team’s path.  
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Scenario 2: Combat  

Your team (consisting of yourself as the team leader, the robot soldier, and the two 

human soldiers) has made it about halfway through the town with no issues. But 

suddenly, the loud crack of a gun breaks the silence! The first bullet whizzes over 

your team, and in an instant your team is engaged in combat with the enemy 

soldiers. Your team must now fight in the town and defeat all enemies to continue 

forward to the base. Although each team member will be generally shooting the 

enemies while trying to stay safe, the team leader may give specific orders 

regarding combat and combat tactics, such as who to attack and where to position 

yourselves.   

Scenario 2: Questions 

[Interaction plan with agents] For this scenario, how do you interact with your 

robot team members?     

- I would solicit input from the robot soldiers to determine a plan.   

- I would ignore the robot soldiers and come up with my own plan.  

- I would do the opposite of what the robot soldiers suggest to determine a 

plan.   

 

[Interaction plan with humans] For this scenario, how do you interact with your 

human team members?     

- I would solicit input from the human soldiers to determine a plan.   

- I would ignore the human soldiers and come up with my own plan.  

- I would do the opposite of what the human soldiers suggest to determine 

a plan.   

 

 [Failure interaction with agent subordinate] For this scenario, what would you do 

if you noticed a robot soldier was failing to defeat enemies?  

- I would let the robot soldier continue what it is doing and help them with 

their fight.  

- I would ignore the robot soldier and keep focusing on my own fights. 

- I would override the robot soldier and fight the robot soldier’s fights for 

them.  

 

[Failure interaction with human teammate] For this scenario, what would you do if 

you noticed a human soldier was failing to defeat enemies?  

- I would let the human soldier continue what they are doing and help 

them with their fight.  
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- I would ignore the human soldier and keep focusing on my own fights. 

- I would tell the human soldier to stand down and fight the human 

soldier’s fights for them.  
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Appendix B 

 

TRUST SURVEYS  

Survey 1: presented after Context Vignette 

Survey 2: presented after Movement Vignette 

Survey 3: presented after Combat Vignette 

 

Trust in Team (Surveys 1, 2, 3) 

Adapted from Wildman et al. (in progress).  

 

To what extend do you feel:  

 

Trust in Competence  

1. Assured that your team will make intelligent decisions? 
2. Certain that your team will perform well?  
3. Confident in your team’s ability to complete a task?  
4. Faith that your team can do the task at hand?  

Trust in Intent 

5. Positive that your team will try and do what is best for everyone?  
6. Convinced that you can rely on your team to try their hardest? 
7. Confident that your team will do as they say? 
8. Confident that your team will try to do things that benefit everyone?  

 

Scale 

1 = Not at all 

2 = Only a little 

3 = To some extent  

4 = Rather much  

5 = Very much so  

 

 

Trust in Team Single Item (Surveys 1, 2, 3) 

 

Please indicate how much you trust your team in this scenario.  

 

Scale 

1 = Distrust Very Much  

2 = Distrust Somewhat 

3 = Neither Trust Nor Distrust 

4 = Trust Somewhat 

5 = Trust Very Much 

  



  116 

 

Trust towards Agents (Surveys 1, 2, 3) 

Adapted from Koerber (2018)  

 

For the following statements listed, please indicate how strongly you agree or disagree.  

 

1. I am confident about the [robot soldier(s)]’s capabilities in this situation.  
2. I trust the [robot soldier(s)] in this situation.  
3. I can rely on the [robot soldier(s)] in this situation. 

 

 

Scale 

1 = Strongly Disagree 

2 = Disagree 

3 = Neither Agree Nor disagree 

4 = Agree 

5 = Strongly Agree 

 

Trust Network (Surveys 1, 2, 3) 

Citation? 

 

Please indicate how much you trust each of the following team members in this scenario.  

 

1. (Robot/Human) Team Leader  
2. Human Soldier(s)  

3. Robot Soldier(s) 

 

Scale 

1 = Distrust Very Much  

2 = Distrust Somewhat 

3 = Neither Trust Nor Distrust 

4 = Trust Somewhat 

5 = Trust Very Much 

 

INDIVIDUAL DIFFERENCES SURVEY  

After Survey 3  

In the following set of questions, we ask basic demographics, your past experiences, and 

individual differences. Please answer all the questions truthfully and as you are, not as 

you wish to be.  

 

I identify my gender as:  

1. Male 

2. Female 

3. Non-binary/third gender 

4. Prefer to self-describe _____ 

5. Prefer not to say  
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What is your age, in years? ____ 

 

I identify my race as (check all that apply):  

1. Asian  

2. Black/African 

3. Caucasian 

4. Hispanic or Latinx 

5. Native American/American Indian  

6. Native Hawaiian  

7. Pacific Islander  

8. Prefer to self-identify ____ 

9. Prefer not to say  

 

I identify my religion as:  

1. Christianity  

2. Judaism  

3. Islam 

4. Hinduism 

5. Buddhism 

6. Confucianism  

7. Taoism 

8. None 

9. Prefer to self-describe ____ 

10. Prefer not to say  
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I identify my sexual orientation as:  

1. Straight/Heterosexual  

2. Gay/Lesbian/Homosexual 

3. Bisexual 

4. Prefer to self-describe ____ 

5. Prefer not to say  

Display logic: if 1 or 5 is selected, skip to “In which country were you born?”.  

 

In which country were you born?  

➢ If United States: Which state were you born in?  

 

What is your employment status (check all that apply)?  

1. Employed Full-Time  

2. Employed Part-Time 

3. Self-employed  

4. Student  

 

Are you currently an active or reserve duty member of the military?  

How many years have you served in the military? __ 

 

Propensity to Trust 

Mayer & Davis (1999) 

 

For the following statements listed, please indicate how strongly you agree or disagree.  

 

1. One should be very cautious with strangers.  
2. Most experts tell the truth about the limits of their knowledge.  
3. Most people can be counted on to do what they say they will do.  
4. These days, you must be alert or someone is likely to take advantage of you.  
5. Most salespeople are honest in describing their products.  
6. More repair people will not overcharge people who are ignorant of their specialty.  
7. Most people answer public opinion polls honestly.  
8. Most adults are competent at their job. 

 

Scale 

1 = Strongly Disagree 

2 = Disagree 

3 = Neither Agree Nor disagree 

4 = Agree 

5 = Strongly Agree 
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Attitudes towards [AI]  

Adapted from Backonja, Hall, Painter, Kneale, Lazar, Cakmak… & Demiris (2018).  

 

For the following statements about artificial intelligence, please indicate how strongly you 

agree or disagree. As defined by John McCarthy (1956), artificial intelligence is any form 

of technology (e.g. robots, software, machinery) that is able to perform tasks that normally 

require human intelligence (e.g. decision-making, visual perception, pattern recognition).  

 

1. [AI] are a form of technology that requires careful management.  
2. I would feel anxious if I was given a job or task where I had to use [AI].  
3. I would hate the idea that [AI] were making judgments about things 
4. I feel that if I depend on [AI] too much, something bad might happen. 

 

Scale 

1 = Strongly Disagree 

2 = Disagree 

3 = Neither Agree Nor disagree 

4 = Agree 

5 = Strongly Agree 
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