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ABSTRACT

Title:

Remote Sensing, Modeling, and Spectroscopic Studies

of Gigantic Jets and Lightning Leaders

Author:

Levi Boggs

Major Advisor:

Hamid K. Rassoul, Ph.D.

This dissertation focuses on four interrelated investigations with the ultimate goal

of better understanding electrical phenomena in the lower and upper atmosphere.

The four investigations utilized observations and data analysis for electrical dis-

charges occurring in the troposphere, such as cloud-to-ground and intracloud dis-

charges, and discharges occurring in the stratosphere/lower ionosphere, known as

gigantic jets. The observations are from ground-based high-speed cameras and

lightning locating systems, space-borne lightning imagers, and remote and in-situ

meteorological instrumentation. Numerical modeling was also performed to study

the lightning associated with gigantic jets by using a stochastic lighting propaga-

tion model. Finally, this dissertation focuses on the design and construction of a

high-speed spectrograph that can be used for studying lightning and transient lu-

minous events. Preliminary observations of lightning leaders using this state-of-art

spectrograph will be presented and analyzed to characterize its performance for

future observation campaigns.
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Chapter 1

Introduction and Scope

This dissertation focuses on the remote sensing and modeling of gigantic jet light-

ning and its parent thunderstorms, as well as high-speed spectroscopy of natural

lightning leaders and return strokes. It combines rigorous data analysis of at-

mospheric and lightning datasets, numerical modeling, and instrumentation con-

struction. In this chapter, the necessary background information to understand

the basics of thunderstorms, lightning, and gigantic jets is presented. In closing,

this chapter will introduce the scientific questions proposed by this research and

how they were addressed for the completion of this dissertation.

1.1 Classic Thunderstorm Charge Structure and

Lightning

Studies have found that thunderstorms commonly exhibit a tripolar thunderstorm

charge structure, with upper positive, middle negative, and lower positive charge

1



[Williams , 1989]. The upper and middle charge regions usually dominate and are

approximately the same size, with the lower charge region being much smaller

in magnitude. An example of this charge structure is shown in Figure 1.1, with

electric field lines overlaid. This figure is an idealized model of a thundercloud

charge structure, with the charge regions shown as flat cylindrical plates. Another

example of a tripolar charge structure is shown in Figure 1.2, which was derived

from very high frequency (VHF) mapping measurements of lightning. Common

altitudes for the upper positive charge region are between 8-12 km altitude, while

the middle negative charge region resides around 6-8 km altitude. The lower

positive charge region, if present, will reside between 4-5 km altitude. This vertical

Figure 1.1: Generalized thunderstorm charge structure with electric field lines
overlaid. The red rectangles represent the upper and lower positive charge regions,
and the blue rectangle represents the middle negative charge region. This figure is
taken from Riousset et al. [2007].

distribution of charges is typical of mid-latitude charge structures, but tropical and
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oceanic thunderstorms can have the upper positive charge region extend to 15 km

altitude or even higher [López et al., 2019]. Also present are screening charge layers

that form on the thundercloud cloud boundaries [Krehbiel et al., 2008; Riousset

et al., 2010b]. These screening layers form due to the conductivity gradient between

the cloud and open air. The cloud acts as a good insulator, with open air being

more conductive, and thus charges attach and accumulate to the cloud boundary.

But, due to the vertical conductivity gradient in the open atmosphere, screening

charge layers at upper altitudes form more quickly than layers at lower altitudes.

Thus, the screening layer at the upper cloud boundary forms the quickest, which

has implications to escaped lightning discharges at cloud top. Typical charge

densities for thundercloud charge regions have been found to be a few tenths to a

few nCm−3 [Winn et al., 1978, 1981; Byrne et al., 1983].

Figure 1.2: Thunderstorm charge structure obtained from VHF lightning mapping
observations. The orange (blue) regions are the positive (negative) charge regions.
This figure taken from Krehbiel et al. [2008].

Due to lightning being an electrical discharge that forms due to thundercloud
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charge, the thunderstorm charge structure plays an important role in forming the

different types of lightning discharges. Although the charge structure described

above is the most common charge structure, the thunderstorm charge structure

can take on different forms, depending on the environment and stage in the thun-

derstorms lifetime. Figure 1.3 shows different types of lightning flashes and their

respective thunderstorm charge structures from modeling studies. Figure 1.3a

shows an intracloud flash (IC) that occurs at low altitudes from a charge structure

called a negative dipole. This flash occurs between a middle negative charge region

Figure 1.3: Fractal model simulations of different types of lightning associated
with different charge structures. The dark gray (light gray) regions represent
positive (negative) charge. The dashed (solid) oval represents areas where graupel
is charged negatively (positively). This figure is taken from Mansell et al. [2010].

and a similar sized lower positive charge region, producing an inverted IC flash,

which transfers negative charge downward (-IC). Figure 1.3b shows a bottom-heavy

dipole charge structure that produces -IC discharges, similar to Figure 1.3a, but

also with negative cloud-to-ground discharges (-CG), which are flashes that initiate

between the middle negative and lower positive charge regions and continue propa-

gating toward ground, transferring negative charge to the surface. Here the upper

positive charge and upper negative screening layer are also present, but the middle
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negative and lower positive charges dominate. Next, is a balanced tripole charge

structure, shown in Figure 1.3c. This has the upper positive, middle negative, and

lower positive charge regions all being similar sized, with a strong upper negative

screening layer. Common discharges from this charge structure are -CG and -IC,

but also with positive intracloud discharges (+IC), which are flashes between the

middle negative and upper positive charge regions. Figure 1.3d shows the classic

tripolar charge structure described in the paragraph above. The middle negative

and upper positive charge regions are similar sized and dominate. Majority of the

lightning is +IC and -CG. These two types of flashes dominate in most thunder-

storms. Finally, Figure 1.3e shows a positive dipole charge structure, with similar

sized upper positive and middle negative charge regions, and a strong negative

screening layer. This produces mostly +IC discharges. These different types of

thundercloud charge structures form due to different meteorological environments,

and it is possible that a single storm can produce many of these charge structures

during its lifetime. But, the duration of each charge structure for a single storm

may be drastically different. The goal of this overview is to demonstrate that

the thunderstorm charge regions, including their size, and location, dictate what

type of lightning flash will occur. This has implications to how upward discharges

known as gigantic jets are produced, which is a focus of this dissertation.

1.2 The Lightning Discharge

The bright flash of light that most people associate with lightning is only a small

part of the entire process of a lightning flash, and is called the lightning return

stroke. Before this, a very hot (thousands of Kelvins), conductive, ionized channel
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[Bazelyan and Raizer , 1998, 2000; Gallimberti et al., 2002; Uman, 2001] is formed

that connects two regions of different electric potentials, allowing the return stroke

to take place. This ionized channel is called a lightning leader. It is formed after

the thunderstorm electric field exceeds a certain threshold [Marshall et al., 1995;

Dwyer et al., 2003; Behnke et al., 2005] and propagates at speeds of 104 m s−1

to 106 m s−1, transferring charge between different charge regions in the cloud, or

between a thundercloud charge region and the ground or the ionosphere. Below,

a detailed description of a -CG discharge is provided.

Figure 1.4: Overview of the cloud-to-ground lightning process.

A -CG discharge occurs between the middle negative charge region in a thun-

dercloud and the ground. This process begins with thundercloud charge being
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generated in the thunderstorm, commonly thought to be from the non-inductive

riming of graupel by supercooled water, which, for the sake of simplicity, forms

a middle negative and upper positive charge region, shown in Figure 1.4a. After

the thundercloud electric field exceeds the breakdown threshold beneath the mid-

dle negative charge region, a negative stepped leader forms, propagating toward

the ground (Figure 1.4b). The negative stepped leader ionizes the air, forming a

thin, hot, conductive path between the cloud and the ground. When the leader

reaches the ground, a bright return stroke occurs, which begins from the ground

and propagates upward to the cloud, neutralizing the charge along the negative

leader channel (Figure 1.4c). This is the bright flash commonly associated with

lightning. The return stroke process results in net negative charge being trans-

ferred from the cloud to the ground (Figure 1.4d). Most -CG flashes have several

return strokes, which are made possible by dart leaders. A dart leader is similar to

a leader, but it is usually not stepped, and is faster than a stepped leader (106 m

s−1 compared to 105 m s−1). After the first return stroke, the dart leader re-ionizes

the conductive path from the previous stroke, shown in Figure 1.4e. When the dart

leader connects with ground, another return stroke ensues. This process usually

repeats a few times for a typical -CG discharge.

1.3 Gigantic Jet Discharges

Gigantic jets (GJs) are a type of transient luminous event (TLE) above thunder-

storms [Pasko, 2010; Liu et al., 2015b]. They are electrical discharges that exit the

tops of thunderstorms and reach 70-90 km altitudes [Pasko et al., 2002; Su et al.,

2003], capable of transferring tens to hundreds of coulombs of charge between the
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thundercloud and the ionosphere [Cummer et al., 2009; Lu et al., 2011; Liu et al.,

2015c]. Figure 1.5 shows images several gigantic jet discharges. Figure 1.5a is

from low-light video footage from citizen scientist Frankie Lucena (reported on in

Boggs et al. [2019]) and 1.5b is from Su et al. [2003]. The color images shown in

1.5c, d are from amateur photographers. GJs are unique in that they are a direct

electrical coupling between the troposphere and lower ionosphere. They usually

last longer than CG discharges, with continuing currents (CC) of up to several

hundred ms.

Figure 1.5: Gigantic jet video observations. a) Black and white low-light video
from Liu et al. [2015c]. b) low-light video from Pasko et al. [2002]. c) a long
exposure color photograph from an amateur photographer in Australia and d) a
long exposure color photograph from a passenger on an airline.

Previous modeling studies have shown that for a normal polarity thunderstorm

that has a classic tripolar charge structure, gigantic jets can be initiated between

the middle negative and upper positive charge regions as a normal intracloud

flash, with the negative leader subsequently escaping the upper positive charge

[Krehbiel et al., 2008; Riousset et al., 2010b]. This is shown in Figure 1.6, which

were simulated using a stochastic fractal lightning model. This formulation is
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consistent with the observed gigantic jets being predominately of negative polarity

and transferring negative charge to the ionosphere [Pasko et al., 2002; Su et al.,

2003; Cummer et al., 2009; Lu et al., 2011; Soula et al., 2011; Huang et al., 2012;

Liu et al., 2015b,c]. In order for the negative leader to escape the cloud, the

upper positive charge must be weakened - likely by mixing with the upper negative

screening charge layer [Krehbiel et al., 2008; Riousset et al., 2010b]. This creates

a charge imbalance between the main thundercloud charge regions, enabling the

leader to escape.

Figure 1.6: Modeling results of gigantic jet storms. a) Positive (negative) charge
and leaders represented with red (blue) colors from Krehbiel et al. [2008]. b)
same color scheme as in a) only with additional screening charge from Riousset
et al. [2010b] The distance scales are listed in kilometer and the charge in a) is in
Coulombs.

The charge structures used in those modeling studies were not formulated from

direct observations of gigantic jet producing convection, but were assumed to re-

semble a classic tripolar charge structure [Krehbiel , 1986; Williams , 1989]. They

featured a wide, weakened upper positive charge region over a similar sized middle
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negative charge region [Krehbiel et al., 2008; Riousset et al., 2010b], augmented by

a small lower positive charge region. The simulations were conducted with the top

boundary set right above the cloud top, and their purpose was to determine if a

lightning leader from a normal intracloud flash could escape the upper charge re-

gion. They did not answer where this leader would propagate once it left the upper

charge and whether it would form a gigantic jet. These studies, however, success-

fully demonstrated that a charge imbalance inside the thundercloud is required for

a leader to escape and provided excellent framework for future studies.

1.4 Scientific Contributions

The research questions considered for the scope of this dissertation are as follows:

1. What is the charge structure of thunderstorms producing gigantic jets and

how are those charge structures formed?

2. Can gigantic jets be detected using space lightning mappers?

3. What instrumentation components are needed to advance our understanding

of gigantic jets and lightning leaders?

4. What features are observed from the spectra of natural lightning leaders?

To answer the first research question, the parent thunderstorms of four gigantic

jet producing systems are analyzed with a S-band radar data combined with very

high frequency and low frequency lightning data. Using this data, the charge struc-

ture of gigantic jet storms is found, along with information about the evolution the

parent storms charge structure before and after the gigantic jets. This charge struc-

ture is then tested with a numerical fractal lightning model. The second research
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question is studied by using data from the Geostationary Lightning Mapper, with

low-light-level ground-based video images of several gigantic jets serving as ground

truth. The third research question involves studying the properties of lightning

leaders and relating them to gigantic jets. These properties are used as guidance

in the construction of an automated high-speed spectroscopy system, to capture

lightning leaders and gigantic jets. The last research question involves analyzing

the data obtained from the high-speed spectrograph, which includes analysis of

lightning stepped leaders, dart leaders, and intracloud leaders.
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Chapter 2

Data and Methodology for

Remote Sensing Lightning and

Thunderstorms

For remote sensing lightning and thunderstorms, several data sets were used in

these studies. This data includes: ground based radar, very high frequency (VHF)

and low frequency (LF) lightning, satellite infrared (IR) and optical, and ground

based video data. For analyzing the storm structure and parent lightning of gi-

gantic jet producing storms, a combination of radar variables was used along with

VHF and LF lightning data. The radar variables aided in characterizing the thun-

derstorm structure and the turbulence and wind shear associated with the storm.

The VHF lightning data allowed the parent lightning of gigantic jets and other

lightning discharges to be mapped three dimensionally, allowing detailed study of

the lightning discharge morphology. This provided information about the charge

structure of the thunderstorm. The LF lightning data provided information about
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the dominant charge regions of the thunderstorm, by studying the dominant polar-

ity of intracloud (IC) and cloud-to-ground (CG) flash rates, as normally electrified

thunderstorms will mostly produce positive IC flashes (moving negative charge

upward between dominant middle negative and upper positive charge regions) and

negative CG flashes (moving negative charge downward from the middle negative

charge region to the ground), which fits the normal tripolar thunderstorm charge

structure. The VHF and LF data also gave information about convective intensity,

by studying the flash rates obtained from this data. The satellite IR data provided

information about the storm top altitudes and aided in identifying overshooting

cloud tops, a common feature among gigantic jet storms. The satellite optical

lightning data provided flash characteristics of the parent lightning of gigantic jets

and other discharges, such as optical energy, flash area, and lateral flash size. The

low-light video camera data provided ground truth for gigantic jet detection, and

allowed correlation with other data sources, such as optical satellite data to aid

in identifying lightning characteristics associated with the gigantic jets. By com-

bining these data sets, a clear picture of the thunderstorm charge structure and

lightning discharge morphologies was accomplished with great detail. This chapter

gives on overview of each of these datasets.

2.1 Weather Surveillance Radar, 1988, Doppler

(WSR-88D)

The radar data used in this analysis was collected from the dual-polarization

Weather Surveillance Radar 88-Doppler (WSR-88D) [Crum and Alberty , 1993]

network. The radar locations used were Melbourne, FL (KMLB), Miami, FL
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(KAMX), and Tulsa, OK (KINX). By analyzing the radar reflectivity, radial ve-

locity, and spectrum width near the upper regions of the thundercloud, insight

into the storm structure near the upper positive charge region was obtained. This

aided in identifying the thundercloud charge structure of gigantic jets and provided

information about the general storm structure, intensity, and evolution.

2.1.1 Reflectivity

Reflectivity (Z ) is a measure of the power scattered back to the radar from a target

[Doviak et al., 2006] . Considering ice has a much lower dielectric constant than

liquid water, ice hydrometeors have lower reflectivity values (< 30 dBZ) when com-

pared to their liquid counterparts. Reflectivity can provide valuable insight into the

structure of a thunderstorm, as updrafts and downdrafts will have an abundance

of large, liquid hydrometeors. These features can be identified by large reflectivity

values (35-60 dBZ). Low reflectivity values at high altitudes (cold temperatures,

< −40 ◦C) can be indicative of frozen hydrometeors. Dual polarization radars

measure a vertical (Z v) and horizontal component (Z h) of reflectivity. These com-

ponents are with respect to the radar, with the horizontal (vertical) component

being parallel (perpendicular) to Earths surface. However, only (Z h) is used when

viewing reflectivity data alone, which is what was analyzed for this study.

2.1.2 Spectrum Width

Spectrum width was used in this study to identify areas of wind shear and turbu-

lence. However, there are five factors that can attribute to large values of spectrum

width [Brewster and Zrnic, 1986; Fang et al., 2004; Doviak et al., 2006]. The equa-

tion for spectral broadening is
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where σv is the total spectrum width, σs is due to wind shear, σt is due to

turbulence, σα is due to antenna motion, σd is due to terminal velocities of different

hydrometeors, and σo is due to the orientations of hydrometeors. From Brewster

and Zrnic [1986], all the terms on the right hand side of the above equation can be

neglected except for σs and σt if the values of spectrum width are large (as was in

this dissertation). Melnikov and Doviak [2009] found that when the total spectrum

width was larger than 4 m s−1 the σs and σt terms dominate. Common values of

large spectrum width for this study were on the order of 10 m s−1 or greater.

Thus, the main contributions for large values of spectrum width were wind shear

and turbulence. Wind shear and turbulent mixing played an important role in

forming discharges that escape the upper regions of the cloud, such as jets and

gigantic jets.

The use of spectrum width data can provide information about mixing near the

upper cloud boundary, which can assist in determining the size and magnitude of

the upper positive charge region. This mixing is especially strong when the storm

is embedded in strong environmental wind shear or around an overshooting cloud

top. For tall thunderstorms, the thundercloud develops a strong upper negative

screening charge on the upper cloud boundary, due to a higher conductivity gradi-

ent [Riousset et al., 2010a]. If this upper negative screening charge gets mixed with

the upper positive charge, the upper positive charge can be reduced. By looking

at patterns of spectrum width near the thundercloud top, one can estimate how

turbulent the environment is at the thundercloud boundary. If spectrum width

shows large values (>8-10 m s−1) in the upper regions of the cloud (within a few
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km of the thundercloud boundary) then strong mixing is likely taking place.

2.1.3 Radial Velocity

The radar can measure the velocities of hydrometeors toward or away from the

radar. When the radial distance from the radar to a group of hydrometeors changes

between two radar pulses, a phase shift takes place. The Doppler radar measures

this phase shift and can estimate the velocity of the hydrometeors in a given radar

sample volume. Radial velocity can be used to estimate storm top divergence and

rotation of a convective system. By looking at the radial velocities near storm top,

divergence can be estimated by adjacent values of incoming and outgoing velocities

along a radial path from the radar and the storm. For the thunderstorms analyzed

in this study, radial velocity differentials, defined as the absolute value of the

maximum outbound minus the maximum inbound radial velocities, were on the

order of 30-50 m s−1.

2.2 Radio Measurements of Lightning

Lightning has been found to emit pulses in the radio spectrum, ranging from

VLF to VHF [MacGorman and Rust , 1998; Uman, 2001; Rakov and Uman, 2003].

For this study, VLF/LF radio data was analyzed from Vaisala’s National Light-

ning Detection Network (NDLN) [Orville, 2008; Cummins and Murphy , 2009] and

Vaisala’s Global Lighting Dataset GLD360 [Said et al., 2013]. The VHF lightning

data was from the Oklahoma Lightning Mapping Array [Rison et al., 1999] and the

Kennedy Space Center Lightning Detection and Ranging (KSC LDAR) network

[Poehler and Lennon, 1979].
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2.2.1 VLF/LF NLDN and GLD360 Data

Two dimensional (latitude, longitude) lightning activity for the contiguous United

States is reported on by the NLDN, which detects VLF and LF electromagnetic

radiation of lightning return strokes and IC pulses [Orville, 2008; Cummins and

Murphy , 2009]. This data provides the latitude, longitude, polarity, and peak cur-

rent of each lightning event. This information is provided by detecting the magnetic

fields associated with the large current transfer of a vertically oriented lightning

channel. The NLDN network was recently upgraded in 2013 with newly deployed

localization algorithms that significantly improved the detection and spatial accu-

racy of IC pulses associated with each lightning flash [Murphy et al., 2014]. The

IC pulses are defined as transient, non-vertical current transfers associated with

an IC flash - typically occurring when the negative or positive leader network

propagates laterally through a horizontally expansive charge region. With this

upgrade, multiple IC pulses can be detected for each discharge that can reveal the

two dimensional spatial structure of a given IC flash. The NLDN network, due

to detection primarily at LF, has a maximum detection range of a few hundred

km from a given set of stations. It has a detection accuracy of about 92% and a

location accuracy of about 300 m [Nag et al., 2011]. The GLD360 detects lightning

in a similar manner to the NLDN, but focuses on the VLF spectrum and detects

lightning from thousands of km. However, it cannot discern IC from CG discharges

and has a lower accuracy than the NLDN. It has a detection accuracy of about

70% and a location accuracy of 2-5 km [Poelman et al., 2013]

By combining the above types of data, the approximate geometry and location

of the main charge regions can be inferred. By analyzing the dominant polarity

of NLDN events and IC/CG events, the general charge structure can be theo-

17



rized. The classic tripolar thunderstorm has upper positive charge around 10-14

km above sea level (asl), middle negative charge around 6-8 km asl, and a small

lower positive charge around 3-4 km asl [Krehbiel , 1986]. For the remainder of this

dissertation, the altitudes will reflect asl. This charge structure will be dominated

by positive IC events and negative CG events. Positive IC events are indicative

of negative charge moving upward (or positive charge moving downward), which

generally represents IC flashes between the middle negative charge and upper pos-

itive charge regions. Negative CG events represents negative charge moving to the

ground from the middle negative charge region. A convective cell with the classic

tripolar charge structure will usually have majority IC lightning events with much

less CG events throughout its lifetime [Prentice and Mackerras , 1977; Mackerras

et al., 1998]. If a convective cell exhibits a much larger percentage of negative CG

events, this could mean: 1) the cell has a very weak upper positive charge and/or

2) the cell has a very strong lower positive charge. If the cell has a weakened

upper positive charge and a strong lower positive charge, the highest field region

in the cloud will often be between the middle negative and lower positive charge

regions, which will initiate a large number of negative CG discharges. Occasionally

a storm can have an anomalous charge structure, such as an inverted tripolar or

bottom heavy dipolar charge structure. The inverted tripolar charge structure has

upper negative charge, middle positive charge, and possibly lower negative charge

[Rust et al., 2005]. The bottom heavy dipolar charge structure will have the same

arrangement as the classic tripolar charge structure, only with an extremely large

lower positive charge [Nag and Rakov , 2009]. In both of these cases, the dominant

NLDN event types will be negative IC and positive CG. For the inverted tripolar

charge structure, negative IC events (negative charge moving downward) represent
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discharges between the upper negative and middle positive charge regions. For the

bottom heavy dipole, negative IC events represent discharges between the middle

negative and lower positive charge regions, similar to negative CG events with the

classic tripolar charge structure only the negative leader is contained inside the

lower positive charge region. Both the inverted tripolar and bottom heavy dipolar

charge structures will exhibit dominant positive CG NLDN events, which is in-

dicative of positive charge moving to ground. Thus, by analyzing the NLDN data,

an emerging picture of the overall charge structure of the storm can be obtained.

For the work presented in this dissertation, the NLDN data provided infor-

mation about lightning discharges from the parent storm of gigantic jets. This

included the polarity, peak current, and 2D location. This information was used

to assess the convective intensity of the thunderstorm, by analyzing the IC and

CG flash rates, determine the dominant charge structure of the storm, and provide

information about the parent lightning of the gigantic jets. The parent gigantic jet

storms had dominant positive IC and negative CG events, indicative of a normal

tripolar charge structure. Also, the parent discharges of the gigantic jets were

associated with positive IC events, suggesting the gigantic jets were of negative

polarity, transferring negative charge upward.

2.2.2 VHF Lightning Mapping Data

Very High Frequency (VHF) lightning locating systems detect VHF pulses emitted

by stepping lightning leaders in the 60 MHz frequency range. They use multiple

detectors spread out in a network (usually tens of km) to detect the VHF emissions.

By using time-of-arrival (TOA) algorithms, they locate VHF pulses spatially in

three dimensions. This allows the discharge morphology and spatial extent of
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each discharge to be analyzed in detail. Using characteristics inherent to how the

VHF networks detects leader breakdown in negative and positive charge regions,

negative and positive charge regions can be located within a thunderstorm [Thomas

et al., 2001; Wiens et al., 2005]. This is done by determining the polarity of

lightning leaders and assuming a lightning leader will propagate in a region of the

opposite polarity. Thus, a negative leader will propagate into positive charge and

visa versa. By inspecting where a discharge (or multiple discharges) propagates,

the general altitude and geometry of the charge regions of the thunderstorm can

be obtained. As a double check, one can compare these results with the NLDN

data to confirm if the storm has a classic tripolar charge structure or something

anomalous. The peak radiated power, leader speed, and processes intrinsic to

how the VHF networks detect leader breakdown can allow negative leaders to be

distinguished from positive leaders.

VHF networks tend to detect negative leaders much better than positive lead-

ers, and may actually only detect the negative recoil leaders traversing along pos-

itive leaders, knowns as K-events [Shao and Krehbiel , 1996; Rison et al., 1999].

Negative leaders radiate an order of magnitude more power than positive leaders

and will generally travel at faster speeds [Thomas et al., 2001]. If a leader exhibits

strong radiated power relative to other leaders of the same flash and travels quickly

(105 m s−1 -106 m s−1) then it is very probable to be of negative polarity. For a

given discharge, a VHF network also detects the VHF emissions from the negative

leader first, followed by the K-events associated with the positive leader. The VHF

source points associated with flash initiation are generally from a negative leader

[Krehbiel et al., 2000]. Considering most discharges will have a small vertical por-

tion (from flash initiation) and then propagate horizontally in large, thin sheets,
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a clear division of charge regions can be obtained. Since the common convective

system has the classic tripolar charge structure, middle negative charge should be

located around 6-8 km and upper positive charge around 10-14 km. The charge

analysis from VHF data will usually support this, and should clearly show this

vertical distribution of charge regions.

2.3 Video Image Data

For part of this study, a low-light level video camera was used to record several

gigantic jets from Tropical Storm Harvey. The camera uses was a Watec 902H

Ultimate, with a CCD of dimensions 768 × 494 pixels with a 12 mm F/1.2 lens.

This results in a horizontal field of view of approximately 32°. The video camera

is located in Cabo Rojo Puerto Rico and is operated by citizen scientist Frankie

Lucena.

2.4 Satellite IR and Optical Data

The satellite data used in these studies were from the Geostationary Operational

Environment Satellite (GOES) 16 instrument. This satellite is operated by a joint

effort from National Aeronautical and Space Agency (NASA) and the National

Oceanic and Atmospheric Administration (NOAA). GOES-16 is in geosynchronous

orbit and positioned at 75.2° West, which provides a field of view centered on the

Americas. Using its Advanced Baseline Imager (ABI), GOES-16 provides high

spatial and temporal resolution imagery of the Earth through 16 spectral bands

at visible and infrared wavelengths. GOES-16 can also detect optical pulses from

lightning with its Geostationary Lightning Mapper (GLM), which is a high-speed
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optical detector.

2.4.1 Advanced Baseline Imager (ABI)

The GOES-16 ABI is a radiometer that senses spectral bands ranging from visible

to infrared portions of the electromagnetic spectrum [Schmit et al., 2017]. For this

study, only the channel 13 clean longwave IR was used (10.33 µm), which provides

measurements of the cloud top temperature. By comparing this with atmospheric

soundings, estimates of cloud top heights can be found. For this band, the nadir

spatial resolution is 2 km, a significant improvement over past GOES instruments.

In terms of time resolution, the ABI can provide a full disk view every 15 minutes,

and the continental U.S. every 5 minutes. Two mesoscale images can be produced

every minute, from a small subset of the ABI field of view, being 1,000 km by

1,000 km. For the work presented in this dissertation, the update times were 15

minutes, due to the thunderstorm being located south of Puerto Rico and away

from the continental U.S.

2.4.2 Geostationary Lightning Mapper

GLM is a staring optical imager that records the transient optical pulses produced

by lightning or other optical phenomena at 500 frames per second. Its high or-

bital altitude enables its charge coupled device (CCD) focal plane to continuously

observe optical activity across the western hemisphere with a relatively consistent

pixel resolution (8 km at nadir increasing to 14 km at the edge of its field of view)

[Goodman et al., 2013]. GLM observes optical emissions through a 1 nm band-

width around the 777.4 nm neutral oxygen emission line (OI). Because lightning

emits strongly at this wavelength [Christian et al., 1989; Walker and Christian,
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2017], lightning events can still be identified against high background radiances

when the sun is overhead. GLM can thus detect lightning at all times of the day

and night.

GLM detections are organized into event, group, and flash features [Goodman

et al., 2013; Rudlosky et al., 2018]. These features describe the recorded lightning

signals on temporal and spatial scales ranging from 1 pixel within 2 ms to tens to

hundreds of pixels over multiple seconds. The features have associated optical ener-

gies, which result from the dissociation, excitation, and subsequent recombination

of atmospheric constituents as they respond to the sudden heating in the lightning

channel [Goodman et al., 2012a]. Events are the smallest unit of detection and

are defined as a single pixel detected above a dynamic threshold. Groups describe

one or more events that occur in adjacent pixels in the same 2 ms frame. Groups

that are close in space and time to one another are clustered into features that

describe individual flashes. The clustering approach used with the GLM data was

built on more than 20 years of space-based lightning detection with LIS and the

Optical Transient Detector (OTD) [Mach et al., 2007]. It uses the same Weighted

Euclidean Distance approach as LIS to distinguish individual flashes, but with the

OTD space and time thresholds to account for the increased size of GLM pixels.

The maximum spatial separation for the radiance-weighted centroids of groups in

the same flash is 16.5 km, while the maximum time difference between groups in

the same flash is 330 ms. Periods of sustained strong optical emission over many

GLM frames raise the dynamic background radiance of a pixel and thus inhibits

continued detection of a pulse [Goodman et al., 2012a, 2013], potentially resulting

in shorter durations of GLM detections of GJ events lasting over several hundreds

of milliseconds.
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Chapter 3

Thunderstorm Charge Structures

Producing Gigantic Jets

3.1 Background

Nearly all gigantic jets have been found to originate in tall (14-18 km altitude),

intense thunderstorms featuring overshooting tops that form in maritime tropical

environments [Pasko et al., 2002; Su et al., 2003; Cummer et al., 2009; Soula

et al., 2011; Huang et al., 2012; Meyer et al., 2013; Lazarus et al., 2015; Liu et al.,

2015c]. There has been one documented case of a gigantic jet emerging from a

low topped (6.5 km altitude) winter thunderstorm over the Mediterranean Sea,

but it also had an overshooting top as the environmental tropopause was near 6

km altitude [Van Der Velde et al., 2010]. When the emerging location of gigantic

jets at the storm top can be accurately determined, they appear to escape from or

near the convective core of the thunderstorm [Su et al., 2003; Cummer et al., 2009;

Huang et al., 2012;Meyer et al., 2013; Lazarus et al., 2015; Liu et al., 2015c]. Often
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gigantic jets occur during or near the end of a convective ‘pulse’, which corresponds

to a period of rapid thunderstorm intensification and very strong updrafts [Soula

et al., 2011; Meyer et al., 2013; Lazarus et al., 2015]. The overshooting tops of

gigantic jet producing storms are associated with strongly divergent anvil level

winds as the updrafts encounter the tropopause [Witt and Nelson, 1991; Brown

and Torgerson, 2003; Wang et al., 2010]. It has also been found that gigantic

jets escape the thundercloud along an axis that marks the center of this divergent

outflow [Lazarus et al., 2015] and their parent storms form in environments with

large horizontal wind speeds near the altitudes of their respective thundercloud

tops [Van Der Velde et al., 2010; Lazarus et al., 2015; Boggs et al., 2016].

Due to the difficulty of gigantic jet observations [Chen et al., 2008] there has

been little observational work completed on understanding the charge structures

of gigantic jet producing thunderstorms. As mentioned in Chapter 1, modeling

studies have indicated that GJs initiate between the upper positive and upper

negative screening layer, leaving the thundercloud top as a negative leader. But,

those modeling studies were formulated from thundercloud charge structure ob-

servations of classic New Mexican thunderstorms, instead of the parent storms of

GJs.

This study reported in this dissertation attempts to identify the most probable

thundercloud charge structure that produces gigantic jets, and aims to determine

how a lightning leader develops after it leaves the thundercloud charge. The charge

structure is directly formulated from lightning and radar data from multiple con-

vective systems that produced multiple gigantic jets. It is then validated by a three

dimensional probabilistic lightning model, with a larger simulation domain than

those used in previous studies to observe where the escaped lightning leader propa-
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gates. Simulations for two other thunderstorm charge structures, which are either

proposed by previous studies or possibly formed during the parent storm of gigan-

tic jets, are also performed to verify the facilitating features of the proposed charge

structure for producing gigantic jets. Finally, this study seeks to understand the

meteorological processes that form this charge structure. The work presented here

has been published in the peer-reviewed journal Nature Scientific Reports [Boggs

et al., 2018].

3.2 Radar and Lightning Observations

To better understand the common thunderstorm features near cloud top during

gigantic jets, base reflectivity, radial velocity, and spectrum width derived from

Weather Surveillance Radar 88-Doppler (WSR-88D) radar scans were analyzed for

four gigantic jet producing thunderstorms (Figure 3.1 and Table 3.1). Reflectivity

is a measure of the power scattered back to the radar from the target, radial

velocity is the inbound/outbound velocity along a radial path extending from the

radar, and spectrum width is a measure of turbulence in a radar bin, with large

spectrum width values being more turbulent [Istok and Doviak , 1986; Kollias et al.,

2001]. The parent thunderstorm dates, approximate times, and locations are listed

in Table 3.1. Some of the storms analyzed here were studied in detail before

concerning their meteorological features and lightning activity indicated by radar

measurements and lightning detection dataMeyer et al. [2013]; Lazarus et al. [2015];

Lu et al. [2011]. Here we focus on analyzing the meteorological and lightning data

that gives information of the temporal and spatial properties of the charge structure

of those storms.
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Figure 3.1: Common features of four gigantic jet producing storms. The top rows of
each panel show horizontal elevation angle scans of base reflectivity, radial velocity,
and spectrum width from the upper regions of the thundercloud (12-15 km). The
bottom rows show vertical cross sections taken along the white lines of each radar
variable from the top row. Radar and lightning data for the (a) Florida storm on
28 September 2010 [Lu et al., 2011] (b) Oklahoma storm on 09 September 2010
[Lu et al., 2011] (c) Florida storm on 03 August 2013 [Liu et al., 2015c; Lazarus
et al., 2015] and (d) Florida storm on 12 September 2014 [Boggs et al., 2016]. VHF
lightning mapping data of the discharge activity in the upper positive charge region
leading to each gigantic jet is shown (when available) as white circles and NLDN
IC events as black circles or black vertical lines. The attempted bolt-from-the-blue
is shown as open white circles [Lu et al., 2011]. The white arrows in column 2 of
each panel denote the direction pointing to the radar. Distance scales are listed in
km.

All storms had reflectivity values greater than 30 dBZ at high altitudes (>12

km) and tall thundercloud tops (Figure 3.1a-d, column 1). Strong horizontally

diverging winds near the thundercloud top were present in all cases (Figure 3.1a-

d, column 2), with radial velocity differentials of 26-55 m s−1 (Table 3.1). The
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Table 3.1: Overview of the gigantic jet storms shown in Figure 3.1. The radial
velocity differential (RV ∆ in m s−1) is defined as the absolute value of the maxi-
mum outbound minus the maximum inbound radial velocities. The radial velocity
differentials and maximum spectrum width (Max SW in m s−1) values were taken
from a radial at storm top passing through the region of largest reflectivity.

Date Time (UTC) Event (location) RV Max SW
09/09/2010 07:28 South OK, USA 38 11
09/28/2010 11:01 Northeast FL, USA 35 10
08/03/2013 04:11 Southeast FL, USA 55 9
09/12/2014 06:59 Southcentral FL, USA 26 11

vertical columns of high reflectivity were collocated with the centers of divergent

outflow. Large values of spectrum width (9-11 m s−1) were horizontally displaced

from and just outside the convective core (Figure 3.1a-d, column 3). These large

values of spectrum width indicate turbulent mixing [Istok and Doviak , 1986] near

the thundercloud top, and are indicators of where upper negative screening charge

may be mixed with upper positive charge [Boggs et al., 2016]. These values are

particularly large, as past studies have shown that spectrum width values greater

than 4 m s−1 are considered turbulent [Melnikov and Doviak , 2009]. Lastly, the

National Lightning Detection Network intracloud (NLDN IC) events and very high

frequency (VHF) lightning sources associated with each gigantic jet were located

near the axis of divergent outflow and near the convective core - except for the

attempted bolt-from-the-blue (discussed in Lu et al. [2011] - open white circles in

Figure 3.1a).

The charge structure producing gigantic jets was found from a combination

of storm data, lightning data, and lightning simulations, but information about

the charge structure was first obtained from re-analyzing available VHF lightning

mapping data at different periods of the storms. The evolution of the VHF inferred

charge structure for the 28 September 2010 Florida gigantic jet was investigated
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at four time periods, each about one minute long (Figure 3.2 and Table 3.2). This

case was chosen as it was closest to the VHF mapping system (about 60 km away).

The details of determining the thundercloud charge are described in section 2.2.2.

This storm underwent a convective surge or pulse near the time of the gigantic

jet, as also identified by Meyer et al. [2013]. The VHF charge analysis times are:

before the convective pulse (pre-pulse), near the beginning of the convective pulse

(initial pulse), near the end of the convective pulse and during the time of the

gigantic jet (final pulse), and after the convective pulse (post-pulse). The specific

time periods analyzed are shown in Table 3.2, and each period corresponds to a

panel in Figure 3.2. A similar analysis was completed for the 09 September 2010

Oklahoma thunderstorm that produced two gigantic jets [Lu et al., 2011; Meyer

et al., 2013] and the 03 August 2013 Florida thunderstorm that produced four

gigantic jets [Liu et al., 2015c; Lazarus et al., 2015], both of which had a charge

structure evolution similar to the 28 September 2010 Florida thunderstorm. Before

the convective pulse the storm had a wide, diffuse upper positive charge region over

a similar sized middle negative charge region (Figure 3.2a). The large horizontal

extent of the upper positive charge is indicated by the large azimuthal variation

of VHF sources (∆X), which was 25.5 km (Table 3.2). The mean altitude of VHF

sources (Z) in the upper positive charge region was 11.5 km altitude. The charge

configuration during this time closely resembled a classic tripolar thunderstorm

charge structure, but with a very small or nonexistent lower positive charge region

as indicated by the lack of VHF sources at lower altitudes. Consistently, there

were only three NLDN reported negative cloud-to-ground discharges in the time

spanning fifteen minutes before the gigantic jet. There was a relatively weak

divergence couplet present at storm top during this time, with a radial velocity
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Figure 3.2: Charge structure evolution for the Florida gigantic jet on 28 September
2010. VHF inferred charge structure for the (a) pre-pulse (b) initial pulse (c) final
pulse (gigantic jet) and (d) post pulse times. The white circles denote upper
positive charge and the black circles denote middle negative charge as inferred
from the VHF mapping system. The attempted bolt-from-the-blue is shown as
open white circles [Lu et al., 2011]. The red vertical lines in (c) denote the edges
of large spectrum width values shown in Figure 3.1a, column 3. Distance scales
are listed in km.
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Table 3.2: Statistics describing the upper positive charge region for the Florida
thunderstorm on 28 September 2010. ∆X represents one standard deviation about
the mean of the VHF sources in the azimuthal direction, and Z represents the
mean altitude of VHF sources.

Time (UTC) ∆ X (km) Z (km)
Pre-Pulse 10:45:27-10:46:30 25.5 11.5
Initial Pulse 10:57:46-10:58:46 5.8 11.7
Final Pulse (GJ) 11:00:30-11:01:35 4.9 13.2
Post-Pulse 11:04:12-11:05:19 12.7 12.9

differential of 29 m s−1 (Figure 3.3, upper left ). During the onset of the convective

pulse, the number of VHF sources in the upper positive charge increased, and the

upper positive charge climbed higher in altitude (Figure 3.2b). The majority of

VHF sources were contained within the relatively narrow reflectivity column (>

30 dBZ). The intensity of the pulse was reflected by the altitude of the 45 dBZ

echo, which reached a local maximum during this time (about 10 km, compared

with 5 km before and after the pulse). The radial velocity differential at storm top

increased to 38 m s−1, shown in Figure 3.3, middle left panel. Near the end of the

convective pulse and during the gigantic jet (Figure 3.2c), the upper positive charge

reached its highest altitude (Z of 13.2 km) and became very narrow, with a ∆X

of 4.9 km. The majority of the VHF sources were confined within the boundaries

of maximum spectrum width (marked as vertical lines in Figure 3.2c) surrounding

the reflectivity column (> 30 dBZ), and there was a significant decrease in the

number of VHF sources. The radial velocity differential at storm top reached its

maximum during this time, with a value of 40 m s−1 (Figure 3.3, right middle

panel). The open white circles shown in Figure 2c were from the ‘attempted bolt-

from-the-blue’ [Lu et al., 2011], which was part of the parent gigantic jet flash.

After the convective pulse, the upper positive charge widened again (∆X of 12.7
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Figure 3.3: Evolution of storm top radial velocity and spectrum width for the
storm on 28 September 2010. Spectrum width (SW) and Storm Relative Velocity
(SRV) along a radial through the largest reflectivity at storm top. The radar bin
numbers on bottom axis do not all begin at the same location, but are centered
around the convective core for each time. The center line represents the center
pixel of reflectivity > 30 dBZ.

km) and began to subside (Z of 12.9 km). However, the radial velocity differential

at storm top remained large (39 m s−1) until the next radar volume scan (four

minutes later), when the radial divergence couplet disappeared altogether.

3.3 Probabilistic Lightning Simulations

Simulations using a three dimensional probabilistic lightning model [Krehbiel et al.,

2008; Riousset et al., 2010b] were performed in conjunction with the data analysis
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discussed above in order to find the charge structure of gigantic jet producing

storms (Figure 3.4). Three charge structures were tested and simulations for each

charge structure were run a total of ten times to find the discharge patterns that

were most prevalent for each charge structure, so outliers were not reported on. If

the discharge reaches the top boundary of the simulation domain, it is categorized

as a possible gigantic jet. It should be noted that the model does not simulate

the temporal evolution of the discharges, but the spatial characteristics of the

discharges are simulated, similar to previous studies [Mansell et al., 2002; Riousset

et al., 2007; Krehbiel et al., 2008; Riousset et al., 2010b].

The three dimensional probabilistic fractal model used has been described in

detail in other studies [Riousset et al., 2007; Krehbiel et al., 2008; Riousset et al.,

2010b]. The simulations presented here used equidistant grid points of 400 m in the

x, y, z directions and used open boundaries [Riousset et al., 2007] over a perfectly

electrically conducting flat ground plane with zero potential. Simulations with a

smaller or larger grid size gave similar results. When a smaller (larger) grid size

was used, the net amount of negative charge needed to form an escaped leader

was less (more). This is due to the leader trees with fine resolution being able to

occupy the regions of thundercloud charge better than the leader trees with coarse

resolution, which resulted in more charge on the leader tree for the fine resolution

cases (this effect of the grid resolution was noted previously by Mansell et al.

[2002]). The simulation also uses an internal channel field of 1.0 kVm−1 to account

for leader resistivity [Williams and Heckman, 2012], which is similar in magnitude

to other lightning modeling studies [Mansell et al., 2002]. The internal electric

field is assumed to scale with neutral density as N
N0

, as it has been shown that the

reduced electric field in the channel formed after streamer-to-leader transitions is

33



Figure 3.4: Modeling results of potential gigantic jets. (a-c) Simulated discharge
trees overlaid on Gaussian thunderstorm charge structures. Positive (negative)
charges and leaders are colored in red (blue). Charge amounts are in Coulombs.
‘X’s denote location of discharge initiation. Electric field magnitude and the di-
rection of -E near the upper positive charge region before the flash (d-f) and as
the discharge escapes the cloud (g-i). Simplified charge distributions are overlaid
as rectangles. Distance scales are listed in km. Z denotes height above ground and
X denotes horizontal distance.
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about the same at 20 km and 40 km altitudes (Figure 16 of da Silva and Pasko

[2013]), but it should be noted that the scaling law of the leader channel field has

not been well studied. A larger vertical domain was also used (30 km altitude)

compared to previous simulations of gigantic jets [Krehbiel et al., 2008; Riousset

et al., 2010b]. The upper terminal altitude was chosen because the model can

only simulate a conducting leader channel, and the gigantic jet is predominantly

composed of leaders below this altitude [da Silva and Pasko, 2013].

The constraints to determine the amount of charge in each region were (1) the

leader discharge is initiated at the location where the electric field exceeds by 1-

10% of the threshold value of the ambient field for leader initiation (about 200 kV

m−1 at ground pressure) [Marshall et al., 1995; Dwyer , 2003; Behnke et al., 2005;

Williams , 2006] (2) the charge densities must be less than the maximum values

found from observations [Winn et al., 1978, 1981; Byrne et al., 1983; Marshall and

Rust , 1991] (a few tenths to a few nCm−3), and (3) the charge structures must have

the minimum amount of net negative charge in the thundercloud for a negative

leader to escape. The minimum amount of net negative charge is chosen because

any additional amount of negative charge would always produce an escaped leader.

This results in net charges of -65 C for Figure 3.4a, -55 C for Figure 3.4d, and -40

C for Figure 3.4g. The minimum amount of net negative charge is different for

each charge structure due to the different charge region geometries.

Two charge structures feature narrow upper positive charge (Figure 3.4a,d),

but one has a distribution of upper negative screening charge around the top of

the upper positive charge (Figure 3.4a). The charge structure with upper negative

screening charge is considered because it is probable that upper negative screening

charge exists around the highest cloud tops of convective cells that produce negative
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gigantic jets. Considering the relaxation time at storm top is very short (about 15

s at 15 km altitude [MacGorman and Rust , 1998; Riousset et al., 2010b]), negative

screening charge can form quickly at high storm tops. But, the strong storm top

diverging winds should push away the screening charge from the center axis of the

convective core, which would make a ‘hole’ in the upper negative screening charge.

In nature this screening charge is likely not perfectly symmetric, but for the sake

of simplicity, perfect axial symmetry is assumed. The altitudes and dimensions

of the upper positive and middle negative charge regions in Figure 3.4a,d are

set according to the lightning and radar data in the previous section during the

time of the gigantic jets. A charge structure with a wide upper positive charge

region, similar to previous modeling studies of escaped leaders [Krehbiel et al.,

2008; Riousset et al., 2010b] is also considered (Figure 3.4g), which models the

charge structure shown by Figure 3.2a,d. Lower positive charge is likely very small

immediately preceding and during gigantic jets [Meyer et al., 2013; Boggs et al.,

2016], as shown in Figure 3.2 and discussed above, and therefore are not included

in the charge structures. However, simulations with lower positive charge were also

completed, and the results indicate that the inclusion of the small lower positive

charge does not change the conclusions of this study. Considering the convective

systems producing gigantic jets are very wide (about 40 - 60 km for the storms

presented here), the lateral cloud edges are far from the parent GJ flash, so the

lateral screening charges are not included in the simulations.

The discharge patterns shown in Figure 3.4a,d closely resemble the parent light-

ning both inside and outside the thunderstorms producing gigantic jets. Within

the confines of the cloud, the parent lightning has little lateral extension inside

the upper positive charge region, which is consistent with the observations of the
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initial in-cloud discharge activity of gigantic jets [Lu et al., 2011], as also shown

by Figure 3.2c. Upon exiting the thundercloud, the discharges escape as negative

leaders extending upward above the convective core, similar to observations [Su

et al., 2003; Cummer et al., 2009; Huang et al., 2012; Meyer et al., 2013; Liu et al.,

2015c; Lazarus et al., 2015]. Finally, the discharges reach the upper boundary of

the simulation domains. All ten (100%) simulations for each charge structure pro-

duced results closely resembling the discharge patterns presented in Figure 3.4a,d,

demonstrating the effectiveness of these charge structures to produce upward neg-

ative leaders with the capability to form gigantic jets.

The discharges simulated with a wide upper positive charge region (Figure

3.4g) have large lateral extension and significant branching inside the upper pos-

itive charge region. The negative leader network in the upper positive charge

extends significantly farther horizontally than the positive leader network in the

middle negative charge, which contrasts with the initiating lightning observed by

VHF sensors for gigantic jets [Lu et al., 2011]. When the discharge exits the upper

positive charge, it bends significantly and terminates on the lateral boundary of

the simulation domain. This is the dominant discharge pattern for this charge

structure, with seven out of ten (70%) simulations giving such a discharge pattern.

This indicates that this charge structure is conducive to propagating discharges

laterally above the cloud instead of directly upward, possibly turning into a bolt-

from-the-blue. The other three simulations (30%) did reach the top boundary

of the simulation domain, but the discharge still showed significant bending, ter-

minating near the upper corners of the domain. The charge structure shown by

Figure 3.4g also often produced multiple leaders exiting the upper positive charge,

contrary to observations of gigantic jets.
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Figure 3.4b,e,h shows the direction of -E overlaid on the thundercloud charge

structure and discharge trees as the negative leaders exit the upper charge regions

(note: in order to clearly show the direction of -E at every point the length of

the arrow does not scale with its magnitude). We choose to show -E because its

direction shows where a negative leader is most likely to propagate. The colored

lines in these panels correspond to Figure 3.4c,f,i and denote paths to calculate

scaled electric potential (discussed below). In Figure 3.4b,e, -E above the upper

charge points toward the vertical symmetry axis (Distance = 10 km), and then

upward, constraining the escaped negative leaders to propagate directly upward

above the thundercloud. For the charge structure with wide upper positive charge

(Figure 3.4h), -E points outward from the vertical symmetry axis, encouraging the

escaped negative leader to propagate laterally above the cloud.

Profiles of scaled electric potential (φscaled) above the upper charge regions is

shown in Figure 3.4c,f,i, with the paths indicated by the colored lines in Figure

3.4b,e,h. Since the lightning propagation threshold field is linearly dependent on

air density [Marshall et al., 1995; Dwyer , 2003; Behnke et al., 2005; Williams ,

2006], the potential along each path is normalized to ground pressure to allow for

meaningful comparisons of leader propagation along different paths. This scaled

potential is calculated by

φscaled =

∫
path

−N0

N
E · dl (3.1)

with all paths beginning at the box marked A and ending at the corresponding

boxed letter, with N (N0) the density at a given altitude (ground). Each path

was 10 km in length. The path from A → B is plotted twice in panels c,f,i for

ease of viewing. For the charge structure with narrow upper positive charge and
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upper negative screening charge (Figure 3.4a), two minima in φscaled exist along

the lateral paths of A → F and A → D (Figure 3.4c). Considering the escaping

leader is of negative polarity, it propagates towards increasing potential. Thus,

the escaping leader avoids the lateral paths (A → F and A → D). The diagonal

paths (A → E, A → C) and the vertical path (A → B) have large values of φscaled,

so the negative leader travels in the upward direction. But, the largest potential

difference occurs along the vertical path (A → B), which prompts the escaped

negative leader to propagate along the vertical symmetry axis. Figure 3.4f shows

the scaled potential profile for the charge structure with narrow upper positive

charge. The variation of φscaled along each path is similar to the previous case, but

the vertical and diagonal paths have a smaller potential difference when compared

to the charge structure of Figure 3.4a. The escaped negative leader still propagates

along the vertical symmetry axis where the largest potential difference is.

The charge structure with wide upper positive charge has a scaled potential

profile above the cloud (Figure 3.4i) that is significantly different from the charge

structures with narrow upper positive charge. The largest directional derivative

and largest potential difference occur for the lateral paths (A → F , A → D).

Thus, the escaping negative leader propagates in the lateral direction above the

cloud, instead of upward. Also, notice that the vertical and horizontal paths have

a narrower spread of values in φscaled for this charge structure, compared with the

other two cases, which increases the probability for the escaped leader to propagate

in a random direction. However, the largest potential differences are along the

lateral directions producing a dominant discharge pattern that extends laterally

above the cloud.

Considering the amount of net charge is different among the three cases, addi-
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Figure 3.5: Simulations with different net charge amounts. (a) Same as Figure
3.4a except with a net charge of -40 C. (b) Same as Figure 3.4g only with a net
charge of -65 C.

tional simulations were completed for the charge structures of Figure 3.4a,g, only

with the net charge amounts switched (Figure 3.5) to investigate the effect of net

charge on the discharge leader discharge tree. The charge structure in Figure 3.5a

does not produce any escaped negative leaders out of the additional ten simula-

tions, forming positive IC discharges for every simulation. For the charge structure

in Figure 3.5b, the escaped negative leader terminates on the lateral boundary of

the simulation domain. This is the dominant discharge pattern for this charge

structure, which occurs for seven (70%) of the simulations and is similar to the

charge structure presented in Figure 3.4g. From the results shown in Figure 3.4

and 3.5, wide, weakened upper positive charge can produce escaped leaders at a

smaller amount of net charge than narrow, weakened upper positive charge, but

those escaped leaders propagate in the lateral direction once they escape. Narrow,

weakened upper positive charge requires more net negative charge for a leader to

escape, but once a negative leader escapes, it will propagate upward. This is also
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true when there is more net negative charge than shown in Figure 3.4a,d. Thus,

whether a successfully escaped leader will propagate upward, not laterally, to po-

tentially form a gigantic jet is primarily determined by the geometry of the charge

structure and not by the amount of net charge.

3.4 Discussion

The charge structures in Figure 3.4a,d both formed upward negative leaders that

reaches the top of the simulation domain. An approach for investigating if the

escaped leader will develop into a gigantic jet is to determine if the leader tip is

able to reach the jump altitude, hjump. The jump altitude is the altitude from

which the streamers preceding the leader tip can extend all the way to the lower

ionosphere. The jump altitude depends on the leader tip potential, and a larger

leader tip potential gives a lower jump altitude. The ionospheric potential is about

250-300 kV [Uman, 1974; Markson, 1976], and is much smaller than the potential

of the escaped leaders. The absolute value of the leader tip potential is 24 MV

(Figure 3.4a) and 18 MV (Figure 3.4d) when it reaches the top boundary of the

simulation domain. Figure 3.4d of da Silva and Pasko [2013] indicates these values

correspond to jump altitudes of 42 km and 45 km, respectively, if the streamer

zone of a negative leader consists of negative streamers only. This means if the

simulated leaders cease propagating upward, a negative jet is formed. It is possible

the leaders continue propagating upward, and if their potentials are not reduced

significantly when the leaders reach 42 km or 45 km, a gigantic jet will be formed.

In addition, as discussed by Liu et al. [2015c,a], the streamer zone of a negative

leader may consist of both positive and negative streamers, so the jump altitudes
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for the two leaders in Figure 3.4a,d can be potentially lower.

Due to the short time scale of screening charge formation at high altitudes

[MacGorman and Rust , 1998; Riousset et al., 2010b], the upper negative screening

charge can approach the magnitude of the upper positive charge [Riousset et al.,

2010b], indicating the negative screening charge in Figure 3.4a could potentially

be much stronger. Simulations indicate (not shown) that when the upper negative

screening charge in Figure 3.4a is doubled to -50 C, the absolute value of the leader

tip is about 60 MV when the ascending negative leader reaches the top boundary

of the simulation (30 km altitude), which corresponds to a jump altitude of about

36 km (for negative streamers). This is similar to the jump altitudes of the last

two gigantic jets produced by tropical depression Dorian [Liu et al., 2015c], which

were about 35 km. Other things being equal under the constraints on the amount

of charge in each region discussed in the previous section, the charge structure in

Figure 3.4a can allow accumulation of more net negative charge in the system,

making it potentially easier to produce gigantic jets for this charge structure.

The wide, weakened upper positive charge structure (Figure 3.4g) has a leader

network above the cloud that extends significantly in the lateral direction. This

charge structure assumes relatively uniform mixing of the upper negative screening

charge throughout the entire volume of the upper positive charge, with a fully

symmetrical configuration of the charge regions. Such a perfect symmetry likely

does not occur in nature. A similar charge structure to that in Figure 3.4g but

with laterally displaced, weakened upper positive charge has been shown to produce

bolt-from-the-blue discharges (BFB) [Boggs et al., 2016], and the leader network

shown in Figure 3.4g resembles a bolt-from-the-blue discharge, consistent with that

study.
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Figure 3.6: Conceptual illustration showing the formation of the gigantic jet charge
structure. Plus’s (+) and minuses (−) indicate positive and negative charge, the
green arrows represent the updraft, and the gray arrows the wind flow near cloud
top. The horizontal orange line is the tropopause.

The charge structure producing negative gigantic jets seems to be a result of

the convective pulse. Before the convective pulse, the thunderstorm is in a quasi-

steady state, with a dominant dipolar charge structure consisting of upper positive

and middle negative charge, with a relatively strong upper negative screening layer

(Figure 3.6, Pre-Pulse). During the onset of the convective pulse, an intense up-

draft produces strong storm top divergence and turbulence at cloud top. This is

supported by the large radial velocity differentials and spectrum width values in

Figure 3.3, with the maximum spectrum width values located on the outer edge

of the convective core (convective core as defined by reflectivity > 30 dBZ). We

theorize that the diverging winds push the negative screening charge away from

the center axis of the highest cloud tops, and large turbulent eddies form around

the convective core mixing negative screening charge with upper positive charge,

weakening the upper positive charge. This process is shown in Figure 3.6 (middle

two panels). But, during the initial-pulse, the strong updraft continuously replen-

ishes upper positive charge (large charging current), reducing the charge imbalance

between the upper positive and middle negative charge. Near the end of the pulse
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(Figure 3.6, Final-Pulse) the updraft has weakened (small charging current), but

the storm top turbulence persists for a couple of minutes, mixing negative screening

charge with upper positive charge. During this time, the largest charge imbalance

exists in the thundercloud, providing an ideal time to initiate a GJ. This process

may explain how the narrow upper positive charge region found in Figure 3.2c is

formed. After the convective pulse, the intense updraft collapses, and the storm

top divergence and storm top mixing subsides, returning to the quasi-steady state

from the Pre-Pulse stage. The upper positive charge widens again and the charge

imbalance between the upper positive and middle negative charge decreases.

This hypothesis is supported by the electrical measurements made at high alti-

tudes by U-2 airplanes above thunderstorms with high cloud tops [Vonnegut et al.,

1966; Blakeslee et al., 1989]. These measurements show the vertical component

of the electric field becomes increasingly positive as the airplane passes above

the highest cloud tops of the thunderstorm. This suggests (for a normal polarity

storm) the upper negative screening charge is being pushed to the sides of the

overshooting top, creating a ‘hole’ in the screening charge layer, which reveals the

upper positive charge (see Figure 9 of Vonnegut et al. [1966]). Mixing of upper

negative screening charge with upper positive charge near high cloud tops has been

hypothesized before, from observations of anomalous VHF activity in the upper

regions of thunderstorms [Krehbiel et al., 2000; Bruning et al., 2010; Emersic et al.,

2011; Calhoun et al., 2013; MacGorman et al., 2017]. The authors of those studies

speculated that this was caused by the upper negative screening layer being folded

into the top of the thunderstorm [Emersic et al., 2011; Calhoun et al., 2013; Mac-

Gorman et al., 2017]. This motion near cloud top is similar to the entrainment

studies described by Blyth et al. [1988] and Stith [1992].
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The findings reported here suggest that convective pulses creating overshooting

tops are a primary driver in creating the charge structures that produce negative

gigantic jets. However, convective pulses and overshooting tops are commonly

found in supercell and multicell convection throughout the mid-latitudes, where

gigantic jet observations are infrequent. The question is then: why are there not

more gigantic jet observations from mid-latitude convection where intense updrafts

and overshooting tops are commonplace? The answer to this question is likely re-

lated to the differences between the charge structures of mid-latitude and maritime

tropical convection that have intense, pulsating updrafts that produce overshooting

tops. The analysis reported here indicates that maritime tropical convection with

overshooting tops that produce gigantic jets exhibit charge structures similar to the

normal tripolar configuration with upper positive charge, middle negative charge,

and possibly augmented by a small lower positive charge. This is supported by

the dominant positive IC and negative CG discharges from gigantic jet producing

storms [Meyer et al., 2013; Lazarus et al., 2015; Liu et al., 2015c] and detailed VHF

mapping of topical maritime thunderstorms located near Columbia [López et al.,

2019]. In contrast, the charge structures in supercell convection have been found

to be very complex, with anywhere from three to twelve charge regions existing si-

multaneously. These charge regions are often adjacent to each other, which results

in small intracloud flashes that occur at very high rates, with total flash rates in

supercell convection often reaching several hundred per minute [MacGorman et al.,

2008; Bruning et al., 2010; Calhoun et al., 2013; Wiens et al., 2005]. Total flash

rates from gigantic jet producing convection have been found to be an order of

magnitude lower [Meyer et al., 2013; Lazarus et al., 2015; Liu et al., 2015c] or even

less. Mid-latitude supercell and multicell convection often have anomalous charge
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structures that have huge areas of middle/lower positive charge [Lang et al., 2004;

Tessendorf et al., 2007; Weiss et al., 2008]. These storms exhibit large percentages

of positive CG discharges (50-100% compared with < 10% for normal convection

[Orville, 1994]) and IC discharges between the middle negative and middle/lower

positive charge regions (-IC). The middle/lower positive charge often participates

in the majority of discharges, so few discharges take place in the upper parts of the

thundercloud. Thus, for mid-latitude supercell and multicell convection that have

intense updrafts and overshooting tops, other forms of discharges often win the

competition to neutralize charge, rather than the normal positive IC flash that is

associated with the initiation of gigantic jets [Krehbiel et al., 2008; Riousset et al.,

2010b; Lu et al., 2011].
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Chapter 4

Satellite and Video Observations

of Gigantic Jets

4.1 Background

Typical ground-based observations of GJs are made by using low-light-level video

cameras. This observation method is not ideal for monitoring GJ activity, as the

camera must have a clear view of the region above thunderclouds. An optimal view-

ing condition is often unavailable during potential GJ producing storms, because

those storm systems (tropical systems at low latitudes) are normally accompanied

by substantial areas of stratiform clouds.

GJs have also been observed by space-based instruments including the Imager

of Sprites and Upper Atmospheric Lightning (ISUAL) onboard the FORMOSAT-2

satellite [Chen et al., 2008]. The FORMOSAT-2 satellite is in a sun-synchronous

orbit with a mean altitude of approximately 890 km, which corresponds to an or-

bital period of about 102 minutes. ISUAL was designed to provide a limb view
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of the Earth‘s surface around local midnight, and its instrument consists of an

intensified charged coupled device imager, a six-channel spectrophotometer, and

a dual-band array photometer. Tens of GJs were observed during a five year op-

erational period (from 2004 to 2009) [Chou et al., 2010], and have been analyzed

to obtain the information on the discharge processes, electric fields, and streamer

polarities in GJs by Kuo et al. [2009] and Chou et al. [2010]. A global occurrence

rate of 0.01 events per minute was also estimated for GJs [Chen et al., 2008], which

indicates that a space instrument with a larger coverage will detect many more

events. This same issue also exists for other low earth orbit space-based light-

ning observation systems, such as the Lightning Imaging Sensor (LIS) [Christian

et al., 1999]. However, with the establishment of geosynchronous instrumentation

such as the Geostationary Lightning Mapper (GLM) [Rudlosky et al., 2018], new

opportunities are available to detect and observe TLEs and GJs.

This chapter presents the first observations of GJ lightning signatures from a

detector on a geostationary orbiting satellite. The GJs occurred during Tropical

Storm Harvey when it was located approximately 500 km south of Puerto Rico

on 19 August 2017. Low-light-level video footage indicated Harvey produced at

least fourteen GJs, and possibly a few more that cannot easily be identified in

the video. Most of the GJs produced distinguishable signatures in the GLM data.

Unlike typical GLM flashes that radiate discrete optical pulses, GJ flashes contain

long periods of sustained optical emission over a single location and have higher

peak group and flash optical energies. They are different from spider flashes and K-

processes [Peterson et al., 2017b, 2018; Peterson and Rudlosky , 2018] that produce

long periods of sustained emission, because there is a lack of lateral development

between groups in the GJs. Instead, the largest optical energy is located in the
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same GLM pixel in all frames of the GJ. The optical energy of the pixel increases

with time as the GJ discharge propagates upward, reaches its peak when the

upward discharge connects to the ionosphere, and then decreases and fades away.

The work presented in this chapter has been published in the peer reviewed journal

Geophysical Research Letters [Boggs et al., 2019].

4.2 Video Observations

On the evening of 19 August 2017 Tropical Storm Harvey passed approximately

500 km south of Puerto Rico with 35 kt (18 m s−1) sustained surface winds and

a central pressure of 1005 mb [Blake and Zelinsky , 2017]. During its transit south

of the island, the storm underwent a nocturnal convective burst between 0400-

0900 UTC during which the anvil substantially increased in areal extent and the

storm produced more than 25,000 flashes as observed by Vaisala’s GLD360 light-

ning network [Said et al., 2013]. GOES-R infrared satellite (band 13) brightness

temperatures were as low as 190 K, indicating high cloud tops (15-18 km alti-

tude). During this period, a low-light level Watec 902H Ultimate camera system

(768 × 494 pixels, 12 mm F/1.2 lens, 32° horizontal field of view (FOV)) op-

erated by Frankie Lucena in Puerto Rico recorded many TLEs, including sprites,

elves, and fourteen clearly-identifiable GJs. Despite the intense convection, Harvey

was weakening due to the strong northeasterly shear, and later became a tropical

wave. The environment, while unfavorable for storm intensification and hurricane

development, provided an unobstructed view (as seen from Puerto Rico) of the

convective storm tops during the GJ events with the anvil debris displaced away

from the ground-based camera. Most of the early (0400-0700 UTC) GJs occurred
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in association with the deep convection near the storm center, while the last two

(just before 0900 UTC) occurred within a convective region 250 km north of the

center of circulation.

Figure 4.1: Low-light-level images of the 08:46 UTC gigantic jet on 19 August
2017. Frame 1 corresponds to 08:46:02.864 UTC with each successive frame cor-
responding to an additional 33 ms. The dashed white lines denote the width of
the Geostationary Lightning Mapper pixel with the largest optical energy (white
outlined pixel in Figure 4.2). The altitude scale is in kilometers. Note that each
panel of Figure 4.1 has a smaller horizontal FOV (8°) than the camera’s FOV (32°),
and the width of each panel is approximately 30 km. FOV = field of view.

Out of all the recorded GJs, the last two were closest to the camera (< 250 km),

leading to the best video data. Both of them had similar morphologies, and here

we present the video images of the first event only, which occurred at 08:46 UTC.

Figure 4.1 shows low-light level images of this GJ, which is visible for fourteen video

frames (462 ms). The region bounded by the two white dashed lines in Figure 4.1

corresponds to the location of the GLM pixel with the largest optical energy during

the duration of the GJ, and the GJ is primarily contained within this pixel. The
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azimuthal positions of the vertical white lines were calculated using the relative

azimuthal angles of two stars in the video images (Achernar, absolute magnitude

-1.46; and α ret, absolute magnitude -0.17). Achernar is the bright white dot on

the right side of the vertical dashed lines and α ret is out of the FOV in Figure

4.1 . The relative azimuths of the two stars allowed calculation of the azimuth per

pixel in the video images. Then the azimuthal angle between the camera site and

the GJ was calculated using the location of the brightest GLM detection, and this

azimuth was mapped to the video images. Assuming the location error of a GLM

detection is negligible, the uncertainty in the azimuthal positions of the vertical

white lines is 0.2 km, which is from the estimation of the azimuthal angle between

the camera and the high-energy GLM pixel. However, the location error of GLM

detections has been found to be up to a few km. [Buechler et al., 2018].

Frames 1-4 show the ascending discharge before its jump to the ionosphere.

The speed of the GJ during this time increased from 9.1 × 104 m s−1 to 1.8 × 105

m s−1, similar to past GJs [Liu et al., 2015c]. The highest altitude reached before

the jump to the ionosphere is approximately 34 km. The altitude of the GJ was

calculated using the same method described above, only with the elevation angle

instead of the azimuthal angle, which allowed calculation of the elevation angle

per pixel. The altitude was then calculated by using the elevation angle and the

distance from the camera to the brightest GLM pixel. If GLM’s location accuracy

is one half a GLM pixel, the altitude uncertainty is 1.02 km. From frame 4 to 5, the

discharge connects to the ionosphere, and it reaches at least 70 km altitude. Frame

5 is also the brightest video frame, with much of the image saturated. For frames

6-11, the altitude of the visible top is 56 km, with the top and base of the channel

being illuminated the most. The top of the discharge also exhibited a filamentary

51



structure during this time. Frames 12-14 are the final images of the GJ, with only

the base of the channel remaining illuminated, and a maximum altitude of 26 km.

The visible part of the discharge during this time resembles a singular, branchless

structure.

4.3 GLM Observations

The GJ signatures were found in the GLM data by first identifying the GLD360

[Said et al., 2013] events that matched the Global Positioning System (GPS) time

stamp and the azimuth provided by the ground-based video images. Then, the

GLM data was filtered spatially to match the GLD360 detections and temporarily

to match the GPS time stamp of the video images. Most of the GJs from the

video images were found in the GLM data, and the mean GLD360 peak current

for each GJ was 20 kA, with each GJ having on average about three GLD360

detections. GLM observations of the 08:46 UTC GJ are shown in Figures 4.2 and

4.3. Figure 4.2 shows the GLM pixels of the GJ signature overlaid on GOES-

R infrared imagery. Each panel in Figure 4.2 corresponds to a video frame from

Figure 4.1, and shows every GLM detection for the duration of the respective video

frame. The GLM signature of the GJ only lasted for 6 video frames (frames 3-8).

This is likely due to the dynamic detection threshold employed by GLM (discussed

below) [Goodman et al., 2012a, 2013; Bitzer , 2017]. Figure 4.3 is a time series of the

GLM optical energies for the pixels shown in Figure 4.2. The vertical white lines in

Figure 4.3 separate each video frame, and the video frame numbers are indicated

at the top. Note, that because GLM has a much finer time resolution than the

ground-based video frames, many GLM detections exist for a single video frame.
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The pixel outlined in white in Figure 4.2 and 4.3 corresponds to the location of

the area bounded by the two white dashed lines in Figure 4.1. The different color

pixels correspond to different GLM optical energies, which are arbitrarily defined

as < 10 fJ (blue), 10-20 fJ (green), and > 20 fJ (red).

Figure 4.2: Geostationary Lightning Mapper events (colored shapes) overlaid on
GOES-R infrared (channel 13) images for video frames 3-8 of Figure 4.1. The colors
correspond to different optical energies, with large optical energies in red (> 20 fJ),
medium optical energies in green (10-20 fJ), and small optical energies in blue (<
10 fJ). The vertical axis of each panel corresponds to latitude and the horizontal
axis to longitude. The video camera is located to the north (approximately 18°
latitude, -67° longitude). The lines indicate the camera field of view associated
with each panel in Figure 4.1.

The GLM signature of the GJ occurs near the coldest cloud tops (Figure 4.2),

which are around 195 K. In Figure 4.2, frame 3, only two GLM pixels are illu-

minated and they are adjacent to each other, both being of small optical energy

(<10 fJ). Most of the detections come from the pixel outlined in white (Figure 4.3,
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frame 3), which corresponds to the azimuth of the GJ. During frame 4, which is

the last video frame before the GJ jumps to the ionosphere, the GLM detections

with larger optical energies come from the pixel outlined in white.

Figure 4.3: Time series of GLM optical energy for the 08:46 UTC gigantic jet. The
colors correspond to different optical energies, with large optical energies in red
(> 20 fJ), medium optical energies in green (10-20 fJ), and small optical energies
in blue (< 10 fJ). The markers outlined in white correspond to the GLM pixel in
Figure 4.2 that is outlined in white. GLM = Geostationary Lightning Mapper.

When the GJ connects with the ionosphere (frame 5), a maximum in GLM

event detections is observed with a spread of optical energies across a large region

of the cloud top. The largest optical energies (> 20 fJ) are again located in the

pixel outlined in white. Adjacent to this pixel are events with the next highest

optical energies (10-20 fJ). Finally, the remainder of the GLM events are of lower

optical energy (< 10 fJ) and surround the higher optical energy pixels. The optical

energy peaks at the location of the pixel that corresponds to the azimuth of the

GJ (white outlined pixel), then decreases radially outward away from this pixel.

Figure 4.3 shows a drastic spike in the optical energy of the white outlined pixel,

reaching a value approximately 115 fJ, which occurs during the connection between

the upward discharge and the lower ionosphere shown in frame 5 of Figure 4.1.
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Although the optical energies of the surrounding pixels are also increased during

this time period, the optical energy of the pixel outlined in white is increased by

a factor of 20.

After the connection with the ionosphere (frame 5), the number of detections

and their associated optical energies decrease, but the majority of the detections

still come from the pixel outlined in white. Finally, this pixel is the only illuminated

pixel starting midway in frame 7, and then the detections cease during frame 8.

Interestingly, frames 9 and 10 do not appear much dimmer than frame 8 from

the video images (Figure 4.1) and they also appear brighter than frames 1-3, but

they do not have any GLM detections. As mentioned previously, this is most

likely due to the fact that GLM has a dynamic detection threshold, which changes

based upon past detections [Goodman et al., 2013; Bitzer , 2017]. Future analysis

of GLM level 0 data (without the operational ground processing) will need to be

analyzed to verify this. Also, the GJ and cloud top are saturated in frames 4-10 of

the video images (Figure 4.1), so it is impossible to reliably evaluate the relative

optical brightness during these times, so frames 9 and 10 could actually be much

less bright than the preceding frame.

GLM properties for all the distinguishable GJ signatures from Tropical Storm

Harvey are shown in Table 4.1. Also shown are the properties for all other GLM

flashes detected for the day of 19 August 2017, and some properties of oceanic

lightning reported by Rudlosky et al. [2018]. Most of the GLM properties presented

in Table 4.1 are standard data products of GLM [Goodman et al., 2013], except

for maximum series duration and maximum group separation distance. Maximum

series duration is defined as the duration of continuous GLM detection for a flash

and maximum group distance is defined as the farthest lateral distance between

55



Table 4.1: GLM properties of gigantic jet flashes, all other flashes from 19 August
2017, and oceanic flashes from Rudlosky et al. [2018]. Also shown is the mean
peak current (Ipk) from GLD360 detections associated with each GJ. The values
in parentheses to the right of the UTC times are the durations of the visible GJs
obtained from the video images in ms.

Gigantic Jet Flashes
UTC Time Max Series Max Event Flash Flash Max Group Flash GLD360

Duration (ms) energy (fJ) area (km2) energy (fJ) distance (km) duration (s) mean Ipk
4:19:54 (333) 44 21.3 652.5 494.4 10.1 0.486 21
4:21:15 (133) 42 16.7 801.8 828.6 10.1 0.224 52
4:24:46 (300) 168 48.8 726.1 1362.7 12.7 0.708 33
6:12:39 (341) 52 28.9 804.9 862.1 2 1.18 12
6:39:01 (234) 56 16.4 499.7 117.5 3.7 0.044 13
7:01:53 (197) 20 41.2 1179.4 1039.2 2 0.64 18
7:18:33 (234) 18 24.4 1254.3 682.1 2.8 0.886 16
7:25:41 (240) 16 13.7 821.9 225.8 20.4 0.196 21
8:14:38 (267) 24 16.7 502.7 57.9 12.9 0.028 9
8:46:02 (462) 160 112.9 1709.2 3067.2 2.5 0.724 15
8:50:16 (467) 100 28.5 879.8 1030 6.4 0.444 14

Mean: 64 33.6 893.8 887.9 7.8 0.505 20
SD: 55 28.5 359.5 833.1 6 0.364 12

08/19/2017
Mean: 7 23.8 1003.6 377.5 16.8 0.295 -
SD: 10 34.6 609.02 632.6 12.4 0.262 -

Rudlosky
et al. 2018
Mean: - - 570 420 - 0.345 -
SD: - - - - - - -

groups for a flash [Peterson et al., 2017b,a]. Considering most flashes detected from

space based detectors appear as a set of many groups, maximum group distance

is an estimate of the lateral size of the lightning flash [Peterson et al., 2017b]. For

each GLM property in Table 4.1, the mean and standard deviation are included

when possible.

Table 4.1 shows the GJ signatures exhibit longer maximum series and flash

durations, larger maximum event and flash optical energies, and smaller maxi-

mum group distances when compared with other flashes detected by GLM. The

most pronounced difference between the GJ and the other flashes is the maximum

series duration. The mean for GJs is nearly ten times larger than that of the
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other flashes. The GJ flashes also exhibit about two times greater maximum flash

optical energy. The mean maximum group distance for the GJ flashes is about

one half the values for other flashes detected on that day. The mean flash area of

the GJ signatures and other flashes was about the same, but the mean flash area

reported by Rudlosky et al. [2018] was about one half of these values. The study

of Rudlosky et al. [2018] documented the GLM lightning distributions during the

initial 9 months in the operational GOES-East position (December 2017 to August

2018). The discrepancy may be a result of the relatively small sample size of the

flashes from 19 August 2017 (≈ 600,000) compared to the flashes presented in Rud-

losky et al. [2018] (≈ 237,000,000). In summary, the GLM GJ signatures exhibit

long continuous emissions, large optical energies, and short lateral propagation

distances in comparison with other flashes detected by GLM.

4.4 Summary and Discussion

The GJ GLM signatures of long continuous emissions, large optical energies, and

short lateral propagation distances are consistent with the fact that GJs generally

have long continuing current and charge transfer over a relatively long period

of time [Cummer et al., 2009; Liu et al., 2015c]. In contrast, ordinary flashes

observed by space based lightning detectors [Peterson et al., 2017a] often have

short durations of continuous emission and have relatively large group propagation

distances. For flashes observed by GLM on 19 August 2017 that have large optical

energies, they also have large group propagation distances (large lateral flashes).

The GJ flashes typically have their brightest pixel stationary over long periods of

time (multiple GLM frames or tens of ms), while the location of the brightest pixel
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of a typical flash changes rapidly, which is due to the laterally propagating leader

in the horizontally expansive thundercloud charge regions.

The duration of continuous emissions (maximum series duration) should have

been larger for the GJs identified, but due to the dynamic detection threshold em-

ployed by GLM, the later stage of the GJs was often not detected. The dynamic

detection threshold continuously updates the background scene by averaging over

several frames on a pixel-by-pixel basis, and then subtracts the background esti-

mate from the current signal [Goodman et al., 2012a]. If the current signal is larger

than the background estimate, then it is considered to be a detection. This detec-

tion method works well for ordinary lightning, as it emits discrete pulses that last

less than a few GLM frames. However, for GJ lightning the signal lasts for tens of

GLM frames and the peak in optical energy (when connection with the ionosphere

occurs) happens well before the end of the optical emissions of the GJ. Thus, the

background estimates that include the peak in optical energy would significantly

raise the detection threshold, and the signals detected after this will most likely

not be considered detections. In addition, the signals may not have exceeded the

individual pixel threshold for detection. This may explain why no GLM detections

occurred after video frame 8 (Figures 4.1 and 4.2), even though the subsequent

video frames of the GJ (and cloud top) appeared much brighter than the first video

frame with GLM detections (video frame 3).

Other lightning flashes that also exhibit continuous emissions as detected by

space based imagers are cloud-to-ground discharges (CG) with long continuing

current [Bitzer , 2017]. Future work may characterize the GLM detections of con-

tinuing current CG discharges, and compare/contrast this to GJ signatures. Even

if ground-based video observations are unavailable, it may be possible to com-
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bine GLM data with other lightning measurements to distinguish GJs from long

continuing current CGs. For example, lightning detection systems such as the

National Lightning Detection Network do not register a lightning event when the

GJ connects to the ionosphere, but only detect the initial intracloud pulses associ-

ated with the GJ. Thus, if a potential GJ or a continuing current CG is detected

by GLM and it only has associated IC pulses and no CG strokes, it is likely to

be a GJ. Reliably detecting GJs from geostationary orbit could greatly increase

our knowledge of how frequently they occur, where they occur, and what storm

systems produce them. This will also allow comprehensive studies on the meteo-

rological and electrical properties [Meyer et al., 2013; Lazarus et al., 2015; Boggs

et al., 2018] of the parent storms.

As shown in Figures 4.2 and 4.3, the detections with the largest optical energies

come from the pixel outlined in white, which corresponds to the azimuth of the

GJ (dotted lines in Figure 4.1). This is true for every video frame for the duration

of the GJ signature. A possible implication is the large optical energies are being

emitted by the GJ channel above the cloud, or at least the base of it, rather than

the in-cloud lightning leaders associated with the GJ. Interestingly, the cloud top

from frames 4-8 in Figure 4.1 is lit up very bright, similar to the GJ above the cloud,

and the lateral width of the bright cloud top is around 40 km, which corresponds

to multiple GLM pixels. If the bright cloud top was producing the large optical

energies, then GLM would have detected multiple pixels with optical energies > 20

fJ, instead of just one pixel. It would be reasonable that detections of the GJ above

the cloud are optically bright, because there is no cloud to scatter and attenuate

the light. Also, considering GJs are composed of a vertically oriented channel,

localized GLM detection is expected and integration of the emission source along
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the vertical channel will also contribute to increasing the contrast between that

pixel and the surrounding pixels. From the video images (Figure 4.1), the bright

channel segment reaching 26 km altitude in frames 11-14 resembles a bright return

stroke channel. If GLM indeed observes the GJ above the cloud, this would indicate

that at least some portion of the GJ channel emits at the 777.4 nm band. ISUAL

detected GJs also showed some emissions at the 777.4 nm band [Kuo et al., 2009;

Chou et al., 2010], but it is difficult to tell if these emissions were from the GJ or

the lightning inside the cloud. Considering streamers do not emit at this band in

the upper atmosphere [Kanmae et al., 2007, 2010] these results may indicate some

portion of the GJ above the cloud is composed of a leader.
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Chapter 5

Past Studies in Lightning

Spectroscopy

Studies on lightning spectroscopy have been performed for nearly a century, using

slit and slitless spectrographs, and using time-integrated and time-resolved tech-

niques. These past studies focused on cloud-to-ground (CG) discharges, as CG

discharges are primarily oriented vertically and act as their own slit. To create

the spectra, prisms, gratings, or a combination of the two (termed ‘grisms’) were

placed in front of a camera or recording device. The dispersion was usually set

horizontally, as the CG lightning channel was oriented vertically. Many of the first

spectra obtained were from astronomical observatories studying the aurora and

faint stars, with the astronomers pointing their equipment at nearly storms out of

curiosity.

The first photographs of the lightning spectrum were obtained in the early

twentieth century by placing a prism in front of an astronomy telescope [Pick-

ering , 1901]. This spectrum was time-integrated and was slitless, recording the
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lightning spectra between 380-600 nm. Another study similar to Pickering [1901]

was also performed using a time-integrated slitless spectrograph, finding similar

results [Fox , 1903]. These studies were not able to accurately attribute the emis-

sions to specific wavelengths due to not using a slit, as when the emission source

position in a slitless spectrograph changes relative to the spectrograph the spec-

trum is shifted, making it difficult to understand which emission lines belong to

which wavelengths. From the emissions they observed, they assumed certain lines

coincided with the Balmer series of hydrogen. A study published in 1917 [Slipher ,

1917] used a slit for the first time to obtain the spectrum of lightning, and with a

comparison spectrum, was able to make accurate wavelength determinations of the

emission lines. That study concluded the spectrum was consistent with emissions

of spark discharges in dry air, which were obtained from lab experiments. The

first study to capture and correctly identify the H-alpha (Balmer Series) emissions

from lightning was published in 1941 [Israel and Wurm, 1941]. The authors this

time reported on the visible spectra up to 660 nm, allowing them to observe the

strong H-alpha emission at 656.3 nm due to the dissociation of water vapor in the

atmosphere.

Optical lightning spectroscopy saw a dramatic increase in studies during the

1960’s and 1970’s [Salanave, 1961; Prueitt , 1963; Uman, 1964; Uman and Orville,

1965; Krider , 1965; Orville, 1968a,b, 1975]. These studies sought to resolve the

spectral features of the components in the lightning flash, which the previous stud-

ies had failed to do. The work in Salanave [1961] published the optical spectrum

of lightning ranging from 400 to 620 nm using a slitless, time-integrated spectro-

graph. This study correctly identified all the dominant spectral emission lines from

lightning in this region, which primarily consisted of singly ionized atomic Nitro-
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gen and Oxygen. Prueitt [1963] was the first to use the spectra of lightning to

estimate physical properties of the lightning channel, studying five return strokes

with a time-integrated spectrograph. From the spectra, the author was able to

estimate the peak temperature of the lightning channel (more detail below). From

here on, much of the work focused on using the results of emission spectroscopy to

determine physical parameters of the lightning channel, such as the temperature

and electron density, and the assumptions needed to carry out this work [Uman,

1964; Uman and Orville, 1965]. The first time-resolved spectroscopy studies on

the lightning channel were performed in Krider [1965] and Orville [1968a]. Krider

[1965] obtained time-resolved spectra by using using filters centered around specific

spectral lines with narrow bandwidth and used photocells to measure the inten-

sity as a function of time. The work in Orville [1968b] used a combination of a

high-speed streaking camera, a grism, and a horizontal slit (shown in Figure 5.1)

to isolate a narrow part of the vertical channel, and gave the first time-resolved

temperature and electron density estimates of a lightning return stroke.

Modern day spectrographs have recently been constructed to image lightning

using a combination of high-speed charge coupled device (CCD) or complementary

metal-oxide semiconductor (CMOS) cameras and gratings/prisms/grisms [Warner

et al., 2011; Qu et al., 2011; Cen et al., 2015; Chang et al., 2017; Walker and

Christian, 2017]. The significant advances in high-speed cameras have led to new

capabilities for imaging the lightning spectrum. Not only are these instruments

very sensitive, allowing dimly lit features to be observed, but the whole lightning

channel can also be recorded while the spectra is time-resolved. Previously, time-

resolved spectra used a slit to capture the spectra of a small channel segment due

to the imaging unit being a rotating drum. With modern high-speed cameras the
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Figure 5.1: High-speed spectroscopy system from Orville [1968a].

imaging unit is a 2D pixel plane with fast update times (a few to hundreds of

microseconds), allowing the camera to capture the entire discharge channel with

fine time resolution.

5.1 Methods for Calculating Lightning Channel

Parameters

As mentioned above, it is possible to estimate lightning channel parameters, such

as temperature and electron density, from the lightning spectra. To estimate the

temperature, this is done by comparing the ratio of intensities of two spectral

lines that are from the same atomic species [Prueitt , 1963; Uman, 1966; Orville,

1968b]. Some intensity ratios as a function of temperature are shown in Figure

5.2 for neutral emission lines. This method has the following assumptions: the
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Figure 5.2: Temperature as a function of intensity ratio for multiple spectral lines.
The spectral line ratios in the legend are wavelengths in nm.

lightning channel is optically thin, the cross-section of the channel has uniform

temperature, and the discrete energy levels of a spectral line used to calculate the

temperature must follow Boltzmann statistics (local thermodynamic equilibrium

or LTE) [Uman, 1966; Walker and Christian, 2019].

For the temperature calculation, under conditions of LTE the atomic energy

levels within an ionization state are populated according to Boltzmann’s statistics:

Nn =
N0gn
B(T )

exp

(
−En

kT

)
(5.1)

where Nn is the number of atoms in energy level n, N0 is the total number of

atoms, En is the excitation energy of the nth level, k is the Boltzmann constant,

T is the electron temperature, gn is the statistical weight of the level, and B(T )

the partition function. With the assumption that the lightning channel is optically

thin, which is the case for neutral and singly ionized Nitrogen and Oxygen [Uman

and Orville, 1965], the intensity of an emission line from a gas per unit volume at

65



uniform temperature and density due to transitions from energy level n to r is

Inr = KNnAnrhνnr (5.2)

where Anr is the Einstein coefficient for transition probability, νnr is the frequency

of the emitted photon, h is Plancks constant, and K is a geometric factor. A similar

equation can be written for a gas with transitions from energy levels m to p

Imp = KNmAmphνmp. (5.3)

By combining equations 5.1 and 5.2, the intensity is written as

Inr = K

[
Ngn
B(T )

exp

(
−En

kT

)]
Anrhνnr. (5.4)

Similarly, equation 5.3 can be written as

Imp = K

[
Ngm
B(T )

exp

(
−Em

kT

)]
Amphνmp. (5.5)

After dividing equation 5.4 by equation 5.5, an expression is found relating the

intensities of two emission lines to the temperature:

Inr
Imp

· Ampνmpgm
Anrνnrgn

= exp

(
Em − En

kT

)
(5.6)

and by solving for T , the following expression is found:

T =
Em − En

kln
[
InrAmpνmpgm
ImpAnrνnrgn

] . (5.7)
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This is the expression to calculate the electron temperature from the lightning

channel, which is only a function of the ratio of the intensities of two spectral lines,

as E,A, g, and ν are constants that can be found in tables from the National Insti-

tute of Standards and Technology (NIST, website: https://www.nist.gov/pml/atomic-

spectra-database). To estimate an accurate temperature, |Em − En| should be

greater than kT [Uman, 1966]. When the spectral resolution of a spectrograph is

not able to separate individual spectral lines for the intensity ratio, as in the case

of multiplets, the following expression is used for the intensity ratio [Walker and

Christian, 2019]:

IT
I3

=
I1 + I2

I3
=

g1A1ν1exp(
−E1

kT
) + g2A2ν2exp(

−E2

kT
) + g3A3ν3exp(

−E3

kT
)

g4A4ν4exp(
−E4

kT
)

. (5.8)

When Equation 5.8 is plotted with intensity as a function of temperature (all over

terms are constant in this equation), a relationship between intensity ratio and

temperature is found (similar to Figure 5.2), which allows estimation of the tem-

perature from spectral measurements. To estimate the uncertainty in temperature,

error propagation is performed on equation 5.7, with Inr

Imp
= R and νmpgm

νnrgn
= G.

T =
Em − En

kln(RGAmp

Anr
)

(5.9)

But, G is assumed to have a much smaller uncertainty than the intensity ratio

and Einstein coefficients, giving an equation of the uncertainty as

δT 2 =

(
∂T

∂R

)2

δR2 +

(
∂T

∂Amp

)2

δA2
mp +

(
∂T

∂Anr

)2

δA2
nr. (5.10)
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By taking each partial derivative of Equation 5.9, which has the form of

∂T

∂X
=

∂

∂X

(
C

ln(aX)

)
→ ∂T

∂X
=

−C

Xln2(aX)
(5.11)

where X is either R, Amp, or Anr and C and a are constants, equation 5.10 can be

written as

δT 2 =

(
−CδR

ln2(aR)R

)2

+

(
−CδAmp

ln2(aAmp)Amp

)2

+

(
−CδAnr

ln2(a/Anr)Anr

)2

. (5.12)

After factoring out the common terms and substituting back in for C and a and

taking the square root, the uncertainty in the temperature is

δT =

(
Em − En

kln2(RGAmp

Anr
)

)√[(δR

R

)2

+

(
δAmp

Amp

)2

+

(
δAnr

Anr

)2
]
. (5.13)

In equation 7.1.2, the uncertainty in temperature is due to the uncertainty in the

intensity ratio (δR) and the uncertainties of the Einstein coefficients (δAmp, δAnr).

Most Einstein coefficients are known to a few percent, which means the uncertainty

in the intensity causes the most uncertainty in a temperature estimate.

5.2 Spectra Derived Temperature of Lightning

Return Strokes

From past studies most of the spectra obtained were from lightning return strokes.

Some of those studies not only reported on the emission features of the return

stroke spectra, but also performed quantitative spectroscopy by calculating the
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return stroke temperature. This was done by using the formulation described in

section 5.1 or similar methodology. The first study to calculate the return stroke

temperature was Prueitt [1963], who estimated the temperature from five return

strokes. This was with a time-integrated, slitless spectrograph, and an example

Figure 5.3: Slitless lightning spectra from Prueitt [1963]. The labeled numbers
represent wavelengths in Angstroms of singly ionized Nitrogen.

spectra is shown in Figure 5.3. The temperature was estimated with the spectral

lines 399.5 nm, 404.1 nm, 443.3 nm, 463.0 nm, and 568.0 nm, which are all singly

ionized Nitrogen. Calculated temperatures ranged from 24,200 K to 28,400 K,

with uncertainties of 400-1,000 K. Considering the spectra were time-integrated,

the reported temperatures represented the average temperature of the return stroke

[Uman, 1964].

The next study to calculate the temperature of lightning return strokes was

Orville [1968b], using the time-resolved spectrograph shown in Figure 5.1. Orville

[1968b] reported on the temperatures of ten return strokes, from a 10 m section
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of the channel, with 5 µs time resolution. An example spectrum from this study

is shown in Figure 5.4. The peak temperatures calculated from this study ranged

from 28,000 K to 31,000 K, with uncertainties of 3,000 to 7,000 K. The largest

temperature calculated was 36,000 K. With the fine time resolution, the evolution

of the return stroke temperature was presented; the return stroke temperatures

were found to decrease quickly, by more than 50% 20 to 50 µs after the onset of

the peak temperature.

From modern day slitless spectrographs, Qu et al. [2011] found the tempera-

tures of three flashes with multiple return strokes ranged from 27,140 K to 33,890

K. The authors did not report which lines they used for the temperature estima-

tion, or what the uncertainty in the temperature calculations were. It was also

not reported what portion of the channel they used or what their time resolution

was. They found that the total intensity of the spectral lines was proportional to

the amplitude of the electric field and the energy transmission of a return stroke.

Walker and Christian [2019] obtained spectra from rocket-triggered lightning with

a slitless spectrograph using a high-speed camera from a flash with multiple re-

turn strokes. The spectra ranged from 380 nm to 870 nm, had time resolution of

1.5 µs, and were derived from a small segment of the channel. The spectra are

shown in Figure 5.5. The peak currents from the flash and return strokes ranged

from 8.1 kA to 17.3 kA. The peak temperatures of the return strokes ranged from

32,000 K to over 40,000 K with uncertainties of 2,000 to 4,000 K, and all of the

strokes showing rapid reduction of the temperature after 5 to 10 µs. This study

concluded that they observed larger peak temperatures than previous studies due

to the smaller integration time (1.5 µs), which was smaller than previous studies

by a factor of two or more. A summary of these studies is presented in Table 5.1.
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Figure 5.4: Return stroke spectra from Orville [1968b].

5.3 Spectrum-Derived Temperature of Lightning

Leaders

Studies reporting on the spectra of lightning leaders have been far fewer in the

literature, especially those that calculate the temperature of the leader channel.

Capturing the lightning leader spectrum is a difficult task, as they are usually much
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Figure 5.5: Top) Triggered lightning spectra from Walker and Christian [2017] for
lower optical wavelengths < 650 nm. (Bottom) Triggered lightning spectra from
Walker and Christian [2017] for upper optical wavelengths > 650 nm.

dimmer than lightning return strokes. The initial stepped lightning leader of a flash

is often the most dim, but if there are multiple return strokes, the preceding dart

leaders can also appear very dim. From the literature, there are only three studies

that estimate the temperature of lightning leaders, with two of those studies from

equipment originating from the 1960’s.
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Table 5.1: Summary of studies reporting on the lightning return stroke channel
temperature.

Study Lines Used
(nm)

Time Reso-
lution (µs)

Temperature
(K)

Uncertainty
(K)

Prueitt [1963] 399.5, 404.1,
443.3, 463.0,
568.0

- 24,200 to
28,400

400 to 1,000

Orville
[1968b]

463.0, 500.0 2 to 5 28,000 to
31,000

3,000 to 7,000

Qu et al.
[2011]

- - 27,000 to
33,000

-

Walker &
Christian
[2019]

648.2, 661.0,
715.7, 777.4

1.5 32,000 to
40,000

2,000 to 4,000

Figure 5.6: Lightning discharge producing the leader spectra in Orville [1968]. The
dashed white box represents the spectrograph field-of-view.
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The first study to report on the spectrum of a lightning stepped leader was

Orville [1968]. The author analyzed a 2 m section of a downward stepped negative

leader, which is shown in Figure 5.6. The equipment used for this study was the

same as that used in Orville [1968a,b] for lightning return strokes (pictured in Fig-

ure 5.1). The leader spectra had 20 µs time resolution, and included wavelengths

from 560 to 660 nm. The leader spectra were analyzed about 220 µs before the

return stroke, and the leader channel was only visible when it made discrete steps.

Five total steps were recorded before the onset of the return stroke, with time

between steps of 31 to 42 µs. This spectrum is shown in Figure 5.7. From the

emissions, spectral lines were observed at 568.0 nm (NII), 594.2 nm (NII), 615.7

nm (NII), and 656.3 nm (H-alpha). Most of the emissions were from singly ionized

Nitrogen except H-alpha, which did not step similar to the other lines, but was

observed continuously. Even though the leader was visible for five steps, the tem-

perature was only calculated from one step due to the weak intensities from the

other steps. The temperature was calculated from the spectral lines of 568.0 nm

and 594.2 nm using the methodology in section 5.1, and was found to be 30,000

K, with uncertainties of 5,000 to 10,000 K. Due to the singly ionized lines getting

dimmer and the neutral lines getting brighter, it was concluded that the leader

channel was cooling as it approached the ground. It was speculated that during

the neutral emissions (OI and NI), the leader channel should have been below

20,000 K. This study also speculated that positive leaders should have cooler tem-

peratures and mostly emit neutral lines, due to positive leaders appearing smooth

and continuous, with little variation in light output.

Another study by Richard Orville, using the same equipment, reported on the

spectra of five dart leaders [Orville, 1975]. The dart leaders were part of a flash
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Figure 5.7: Time resolved spectra for the lightning leader and return stroke re-
ported on in Orville [1968].

that had at least thirteen return strokes. The original stepped leader was too dim

to record, but three of the dart leader spectra were bright enough to calculate the

temperature. A 13 m section of the dart channel was analyzed, and each dart

leader was analyzed for one time step, with time resolution of 9 µs. The spectra

spanned the wavelengths of 390 to 510 nm, and included emissions from 444.7 nm

(NII), 463.0 nm (NII), and 500.1 nm (NII). The spectra is shown in Figure 5.8.

The lines of 444.7 nm and 463.0 nm were used for the temperature calculation,
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Figure 5.8: Time resolved spectra for a lightning dart leader and return stroke
reported on in Orville [1975]. The x-axis values are in nm.

finding an average temperature of 20,000 K with 2,000 K uncertainty. The dart

leader emissions were observed continuously before the return stroke.

Figure 5.9: Leader spectra from the study of Chang et al. [2017].

A study using modern day equipment consisting of a high-speed CCD camera

and grating reported on the spectra of a stepped and dart leader [Chang et al.,

2017]. The spectra were from the wavelength range of 400-1000 nm with 150

µs time resolution. For the stepped leader spectra, ten frames were analyzed,
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Table 5.2: Summary of studies reporting on the lightning leader and dart leader
channel temperature.

Study Lines Used
(nm)

Time Reso-
lution (µs)

Temperature
(K)

Uncertainty
(K)

Orville
[1968d]

568.0, 594.2 20 30,000 5,000 to
10,000

Orville [1975] 444.7, 463.0 9 20,000 2,000
Chang et al.
[2017]

- 150 15,000 (L);
21,000 (DL)

-

and an example spectrum is shown in Figure 5.9. This study did estimate the

temperature of the leader channel, but it did not say what spectral lines were used

for the calculation or what the uncertainties were. They estimated the leader tip

to be 15,000 K and the leader channel to be 14,000 K. For the dart leader, the

average temperature found was 21,000 K. A summary of these studies is presented

in Table 5.2.
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Chapter 6

High-Speed Spectrograph

Construction

6.1 Scientific Instrumentation

The spectroscopy system was assembled and designed in order to observe light-

ning leader and return stroke spectra, as well as spectra from Transient Luminous

Events such as starters, jets, gigantic jets, and sprites. From Chapter 5, it is evi-

dent that the system needed to detect in the wavelength ranges of approximately

450 nm to 950 nm, which would allow capture of several important spectral lines

from lightning leaders and return strokes in order to estimate the lightning channel

temperature and electron density. Spectral lines for the lightning channel return

stroke that have been used for temperature estimation from the literature are 463.0

nm (NII), 500.0 (NII) nm, 568.0 (NII) nm, 594.2 (NII) nm, 648.2 (NII) nm and

661.0 (NII) nm, which are all singly ionized Nitrogen. For lightning leaders, which

primarily radiate neutral Oxygen and Nitrogen, wavelengths used for temperature
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estimation are: 715 nm (OI), 777.4 nm (OI triplet), 794.7 nm (OI), 844.6 nm (OI

triplet), 882.0 nm (OI), and 926.5 nm (OI triplet). To accurately resolve the light-

ning leader and return stroke, time resolutions of spectra needed to be on the order

of tens of microseconds or less. Considering cloud-to-ground (CG) lightning is pri-

marily oriented vertically and appears thin, a slit was not needed to resolve the

discrete spectral lines emitted from the CG discharge channel. But, for TLEs such

as gigantic jets and sprites, which appear as wide, highly branched structures, a

slit is needed to be able to resolve the discrete spectral line emissions. Also, TLEs

appear very dim compared with CG lightning, and often they are very far away.

Because of this, an image intensifier is needed to amplify the light, which allows

the spectra to be recorded. The intensifier is also needed when using the slit, as the

slit blocks a large amount of the incoming light to the camera CMOS detector. For

spectral resolution, the spectrograph needed to be able to resolve closely spaced

spectral lines, and with better spectral resolution the discrete lightning spectral

line emissions could be better resolved. This is especially true for streamer spectra,

which compose parts of gigantic jets and sprites.

From the needs listed above, the spectroscopy system was designed to include

a high-speed camera, a volume phase holographic (VPH) grism, a photocathode

image intensifier, and a vertical slit. Lenses with low f numbers to allow as much

light as possible to the camera were also selected. The high-speed camera chosen

was a Phantom Vision Research V1210, shown in Figure 6.1. The V1210 is a

digital high-speed camera and is capable of recording 12 gigapixels per second

of data with its complementary metal-oxide semiconductor (CMOS) sensor. The

CMOS sensor has a full resolution of 1280 x 800 pixels (horizontal by vertical).

The pixel size is 28 microns allowing high light sensitivity. Each pixel has a bit
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Figure 6.1: Phantom V1210 high-speed camera with lens attached.

depth of 12 bits, achieving 4,096 levels with high dynamic range. The sensor is also

monochrome, with an ISO of 64,000 T, further improving its sensitivity to light.

With the electronic shutter, exposures as fast at 1 microsecond are achievable. At

full pixel resolution, the camera can record 12,000 frames per second (about 80

microsecond time resolution). However, with reduced pixel resolution, the camera

can record over 200,000 frames per second (5 microsecond time resolution). It

has embedded memory of 48 GB, which can be partitioned into smaller segments,

allowing for many high-speed videos to be recorded and saved to this memory. The

camera also has detachable flash memory with 128 GB capacity (shown as the black

rectangle on top of the camera in Figure 6.1). The camera is triggered through

a computer running Vision Research’s Phantom Camera Control (PCC) software.

The software allows the camera to be manually triggered through the press of a

button or through automatic triggering, which will trigger when an arbitrary group

of pixels exceeds an arbitrary intensity threshold. The camera also can accept IRIG
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input from a GPS signal, allowing precise time information. The camera accepts

Figure 6.2: Response for the Phantom V1210 high-speed camera.

standard Nikon lenses out of the box, but also has an attachment that allows it to

accept Canon lenses. When using the Canon lens attachment and a Canon lens,

the lens aperture and focus can be changed remotely through the PCC software.

The spectral response of the camera is shown in Figure 6.2 as the thick black line

for the monochrome version, which is what was used in the spectroscopy system.

The response is strong in the visible wavelengths of 450 nm to 850 nm, with it

decreasing outside of this region.

To obtain the lightning spectra, a volume phase holographic (VPH) grism was

used, which is a grating between two prisms. The VPH grisms don’t have a physical

grating, but instead they create diffraction by using a thin film with altered indices

of refraction pressed between two plates of glass [Arns et al., 1999]. This allows

a higher throughput, allowing dimmer objects to be captured, and better spectral

resolution. The VPH grating (thin film) is glued between two prisms, allowing
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light to pass straight through the grism to the imaging unit (in this case the high-

speed camera), and the whole system can be pointed at the object of interest. The

specific grism for the high-speed spectroscopy system used in this study has an

approximate spectral range of 500-800 nm for first-order spectra, but this range

can be much larger depending on the source geometry related to the grism. The

grism was blazed at 630 nm, with 1,257 lines/mm. Combined with the Phantom

V1210 high-speed camera, this provides an approximate spectral resolution of 0.5

nm per pixel. The grism is shown in Figure 6.3, placed between a front focusing

lens and the high-speed camera. The VPH grating is seen here, diffracting the

ambient light in the room. The spectral response of the grism is shown in Figure

Figure 6.3: VPH grism in between a front lens (top of image) and high-speed
camera (bottom of image). Here the two prisms of the grism are seen attached
together, with the grating in between producing the colorful diffracted light.
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6.4. For first-order spectra, the highest diffraction efficiency is located between the

wavelengths of 575 and 750 nm, with it falling off outside of this region.

Figure 6.4: Response of the VPH grism.

Figure 6.5: VideoScope VS4-1845-HS-D image intensifier.

The image intensifier used for this study was a Video Scope VS4-1845HS (Fig-

ure 6.5). It has a high quantum efficiency that is sensitive to UV with peak blue
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response. The intensifier is optimized for ultra-high-speed imaging (greater than

100,000 frames per second), with time resolution of about 3 microseconds. It uses

a photocathode to intensify the light, the process of which is shown in Figure

6.6. Photons from a low-light source enter the lens on the left and strike the pho-

tocathode, which is the grey colored plate. This causes electrons to be emitted

from the photocathode plate, which are accelerated toward the microchannel plate

(red plate), which has a higher voltage. When the electrons hit the microchannel

plate, each one causes many electrons to be emitted from it. These electrons are

now accelerated toward a phosphor screen (green) that has an even higher voltage.

When the electrons hit the phosphor screen, photons are emitted that are viewable

through the eyepiece. A computer interface was used to control the intensifier, us-

ing software that was provided by Video Scope. This software allowed the gain

to be controlled, and also the gate timing, which behaves as the frame rate and

controls the time resolution of the images.

Figure 6.6: Diagram of a photocathode image intensifier. The red object is the
microchannel plate and the green object is the phosphor screen.

The spectroscopy system components listed above were configured on the re-

movable tray of the enclosure according to the mission type. For obtaining spectra

of CG lightning leaders and return strokes, only the high-speed camera and grism
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were used, along with a lens attached to the camera. The lenses used were either a

20 mm, 35 mm or 85 mm Nikon lens, or a 50 mm or 85 mm Canon lens. This setup

is shown in Figure 6.7. The grism is placed in front of the camera and is mounted

to the tray by a custom 3D printed piece that bolts to the tray. Also securing the

grism in place is black industrial duct tape. Figure 6.7b shows a top view of the

grism and camera, with a Nikon 35 mm f/1.8 lens attached to the camera. From

experimentation, it was found that placing the camera lens as close as possible to

the grism gave the best spectral resolution. For the setup to record TLEs such as

gigantic jets or sprites, the high-speed camera, intensifier, grism were used, with

the option for a slit. These components were all mounted to the tray, similar to

in Figure 6.7, only when the intensifier was used, it would mount directly to the

front of the high-speed camera, and then the Nikon lens would mount to the front

of the intensifier. Then, the grism would be placed in front of the Nikon lens,

similar to in Figure 6.7. With this setup, the system can record dimly lit spectra,

but the source must be vertically oriented and optically thin, providing sufficient

spectral resolution. This is likely ok for recording the bottom portion of gigantic

jets, which are similar to a CG lightning leader, but not the tops of gigantic jets.

The tops of gigantic jets branch and very wide, similar to sprites. To get sufficient

spectral resolution when obtaining their spectra, a slit is needed in addition to the

components listed above. The slits used were made of glass, oriented vertically,

and had widths of 50 or 100 microns. These slit widths provide spectral resolution

similar to the resolution for CG discharges, about 0.5 nm per pixel. A setup show-

ing the slit incorporated in the spectroscopy system is shown in Figure 6.9. This

figure does not have the intensifier shown, but it would be placed in between the

high-speed camera and the grism. When the slit is used (shown in Figure 6.8), it
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Figure 6.7: a) Side view of the high-speed camera and VPH grism mounted on
the enclosure tray. b) Top view of the front lens of the high-speed camera and the
VPH grism.

is placed between a front collecting lens with a low focal length for a wide field of

view and between a collimating lens, in this case with a focal length of 85 mm. It is

held in place between these two lenses by a custom made, 3D printed component,

shown in Figure 6.9a.

Finally, to record the scene view and the background star map, a low-light

Watec 902B camera was installed on the top of the high-speed spectroscopy enclo-

sure, pointing at the same direction as the high-speed system. The Watec 902B
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Figure 6.8: The optical slit used for the high-speed spectrograph.

Figure 6.9: a) Side view and b) top view of the high-speed spectrograph with slit
installed.

records at 30 frames per second and has a charge coupled device (CCD) sensor

with dimensions 768 × 494 pixels. The pixel size is 8.4 microns horizontally by 9.8

microns vertically. The Watec is also synced to a GPS satellite for precise timing
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information, allowing comparison to the high-speed video. To trigger and record

videos, the software UFO capture is ran with the Watec input going into a PC.

UFO capture has many customizable settings, and allows the Watec videos to be

saved to the computer hard drive.

6.2 Enclosure

To allow for continuous observation in thunderstorm conditions, a high-quality,

sturdy, weatherproof enclosure was needed to house the spectroscopy system. If

the system was put inside an enclosure on a rooftop, with the ability to rotate in

azimuth and elevation, the system would have no limits to its field of view and it

could also be deployed to different locations. It was important that the enclosure

be able to collect data when active thunderstorms were in the area, because the

system needed to be as close as possible to the lightning flash. This would enable

the system to capture dimly lit lightning leaders, which are drastically dimmer

than lightning return strokes, making them difficult to capture. Also, the spectral

lines available to estimate the leader channel temperature, which are primarily

neutral Oxygen and Nitrogen, radiate dimly when compared to the singly ionized

lines. This is especially true for the neutral Oxygen line at 715 nm, which is often

needed for temperature estimation.

To understand the needs of the enclosure that would reliably house the system,

I first assembled the spectroscopy system in the lab. This allowed me to record

the physical dimensions of the system and assess the needed capabilities while the

system was fully operational. The key requirements for the enclosure were:

1. The enclosure needed to house all the spectroscopy system components,
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which included: the Vision Research Phantom V1210 high-speed camera

with flash memory attached (without top handle) and with a lens attached,

the Volume Phase Holographic grism, the Video Scope VS4-1845HS intensi-

fier, and the option for a lens/slit assembly.

2. The enclosure needed to secure the spectroscopy system components when

the system was operational, not allowing the parts to move relative to one

another.

3. The enclosure needed air circulation to prevent the system from overheating.

4. The enclosure needed to have measures to prevent fog and condensation

forming on the front viewing piece.

5. The enclosure needed to be waterproof.

6. The enclosure needed to have a way to efficiently thread cables from the

spectroscopy instrumentation to outside computers and power sources.

7. The enclosure needed to allow easy access to the inside components for trou-

bleshooting and installing/removing the spectroscopy system instruments.

This information was then passed to Geospace Physics Lab undergraduate re-

searcher Matthew Austin, who has a background in aerospace and mechanical engi-

neering. From the requirements listed above, Matthew first designed the enclosure

in Solid Works, which is computer-aided design and computer-aided engineering

software. After Matthew and I agreed upon an enclosure design, we next chose

the material that would serve as the body and frame. We chose 6061 T6 Alu-

minium (Al), which is a heat-treated aerospace grade metal. The 6061 T6 Al is
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very strong, has corrosion resistance, and is easily machinable. It is also about

one-third the weight of stainless steel, making it perfect for our needs. We chose

to make the body one-quarter inch thick, which provided adequate strength but

still kept the enclosure relatively light. After the metal was obtained, it was ma-

chined and welded according to our design specifications. Figure 6.10 shows the

Figure 6.10: Metal frame of the high-speed spectrograph enclosure showing the (a)
front and (b) rear.

enclosure after welding the metal frame together. Present in both of these panels

is the detachable lid, which can be completely removed to allow easy access to the

components of the spectroscopy system. The downward protrusion from the lid on

the side in Figure 6.10b is for a pad-lock, which will be mounted here and on the

opposite side to lock the lid in place. This allows the lid to be securely fastened

during severe storms with gusty winds and also to prevent trespassers from steal-

ing/altering components of the system. Also present in these figures are square

holes for a fan. A similar hole is also on the other side, but located near the rear

of the enclosure. The fans are located on both sides of the enclosure, one at the
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front and one at the rear, to ‘snake’ the air through the enclosure. The front fan

pulls air into the enclosure, and the rear fan blows it out. This allows maximum

air flow through the enclosure, cooling the spectroscopy system and reducing fog

on the viewing window.

Figure 6.11: a) Enclosure with back and top piece removed and tray pulled out.
b) rear piece of the enclosure.

Figure 6.11a shows shows the enclosure with the lid off and the tray pulled

out. The final design of the enclosure featured a removable tray, which allows the

system to be completely removed for troubleshooting and to bring inside the lab

for testing. The tray also has a channel cut into it to allow the spectroscopy system

components to be easily mounted at arbitrary positions along the tray, which is

done by bolting the components to the tray. The camera already had holes in the

bottom of it, allowing easy attachment to the tray, but to securely bolt the other
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components of the system custom parts were 3D printed. The back piece of the

enclosure was also removable (Figure 6.11b), and had to holes cut in it to allow

cables to be passed from outside computers and power sources to the spectroscopy

system inside. We had the back piece slide upwards to be removed, which, when

in place, locked the removable tray into position. Thus, we did not need to bolt

the back piece on, as the grooves at the rear held the back piece securely in place.

To keep the system water proof, plastic ducts were adhered to the outside of the

Figure 6.12: a) Plastic duct covering fan hole. b) Fine mesh screen adhered to
bottom of removable tray for the plastic fan duct.

enclosure over the holes for the fans (Figure 6.12a). The bottom of the ducts were

open, but had a plastic frame that would slide in and out. Fine mesh was adhered

to these plastic frames (Figure 6.12b), as this would prevent small debris and bugs

from entering through the plastic fan ducts.

After the metal frame was assembled, the inside of the enclosure was painted

92



matte black to minimize internal light reflections being detected by the system.

The outside of the enclosure was painted white, to reflect sunlight and help keep

it cool. Next, the fans were installed, along with their control circuit, which was

installed at the rear of the enclosure in a plastic case. The control circuit came with

the fans and it had wires running to each fan, and it was powered with standard

120 V AC. Finally, the front viewing piece was installed, which was siliconed to

Figure 6.13: Front view of the spectrograph.

the front of the enclosure (Figure 6.13). We chose to use clear acrylic for the front

viewing piece, as it has very high transmission from the visible wavelengths we are

interested in. It is also shatter proof, which ensures that if debris strikes it from

high winds, broken shards will not damage the spectroscopy equipment inside.

Black foam was also adhered on the front of the acrylic, except for the circular

hole where the spectroscopy system would view. This reduced external light noise

from entering the system.

Figure 6.14 shows the final enclosure assembled and mounted to the control

motor on the roof of the Olin Physical Science Building at Florida Tech. The
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Figure 6.14: The finished high-speed spectrograph system, with a) right side view
b) front view c) left side view and d) rear view. The Watec low-light camera enclo-
sure is seen mounted on top. The high-speed spectrograph enclosure is mounted
to a Pelco motor, which is then mounted to a metal cart.
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padlock is seen securing the lid, with cables coming from the back, which were

ran down into the Geospace Physics Lab. The low-light Watec camera enclosure is

mounted to the top of the spectroscopy system enclosure, facing the same direction.

This enables the Watec camera to obtain a scene view, and also to record the

background star map. The spectroscopy system is mounted to the heavy duty

motor, which is then mounted to a square metal base with locking wheels to allow

movement if desired. To secure the whole setup, heavy sandbags and cement blocks

were place on and around the square metal base. The tupperware tub inside the

square metal base housed a power-strip, which was used to power the fans inside

the spectroscopy enclosure and also the high-speed camera. The power adapter for

the high-speed camera was put in the black box seen taped to the motor (Figure

6.14d), which was then sealed and made waterproof. Having the adapter there

allowed the system to spin freely in azimuth. The cables from the rear of the

enclosure were bound together with foam casing, which helped the cables to not

tangle when the motor would spin in azimuth or elevation.

6.3 Control System

As shown above in Figure 6.14, the high-speed spectroscopy system enclosure is

attached to a motor, which is used to control the pointing direction of the system,

and can rotate in azimuth and elevation. The motor is a Pelco PT1250P and can

support weights up to 100 lbs, while maintaining reliable rotation rates, and is

powered by 120 V AC (Figure 6.15). We wanted both the capability to control the

motor from both inside GPL and remotely, and this resulted in several modifica-

tions to Pelco’s standard control system circuit. The modified circuit is shown in
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Figure 6.15: Heavy-duty Pelco motor for positioning the high-speed spectrograph.

Figure 6.16. First, we purchased a small motor control box with four buttons on

it (up, down, left, right). These buttons, when properly wired, allowed us to pan

and tilt the motor within GPL, which is useful when monitoring thunderstorms

from the Watec camera display, which was also in GPL. This box was intended to

be used with a smaller motor that is similar to our heavy-duty Pelco PT1250P,

but with an output of 24 V DC instead of 120 V AC from our Pelco motor. Con-

sidering the large Pelco PT1250P operated on 120 V AC, we needed a relay to

modify the 24 V DC output from the motor control box to 120 V AC. This was

done by using a relay box that was sold with the Pelco PT1250P. With the relay

box for the large motor installed along with the wires connecting the motor, relay

box, and motor control box (with the motor control box plugged into 120 V AC

outlet), the motor was controlled from the four buttons on the motor control box

successfully (black boxes in Figure 6.16).
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Figure 6.16: Block diagram of the motor control system.

To allow remote control of the motor system, a Rasperry Pi was used in con-

junction with the motor control box (red boxes in Figure 6.16). Using the General

Purpose Input/Output (GPIO) output bins from the Rasperry Pi, which can be

controlled from code on the Rasperry Pi (see Appendix), in conjunction with an-

other set of relays, the Rasperry Pi was able to control the motor control box - in

place of someone pressing the physical buttons on the motor control box. Another

set of relays was needed to do this, as the output from the GPIO Raspberry Pi

pins is 3-6 V DC, and the motor control box operates at 24 V DC. Figure 6.17

shows the actual hardware described in Figure 6.16.

For remote control, first the user runs the Python code on the Rasperry Pi.

This code can be executed directly by connecting a keyboard and mouse via USB to

the Raspberry Pi, or by remotely connecting to the Raspberry Pi via the internet

(the Raspberry Pi has WiFi and also an ethernet port). In the code, the rotation

rate of the motor in azimuth and elevation was accounted for, and when the user

wants to turn the motor to a desired azimuth and elevation, the code computes

the duration it will turn on each output GPIO pin on the Raspberry Pi. The
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Figure 6.17: Block diagram showing the wiring of the motor control system.

3-6 V DC outputs from the GPIO pins on the Raspberry Pi are connected to the

Raspberry Pi relays - one relay for each direction (up, down, left, right). These

relays step the voltage to 24 V DC. The output from these relays is spliced directly

into the wires in the motor control box that run from the buttons on the front of

the box to the output pins on the rear of the box. Next, the 24 V DC output pins

from the motor control box rear are connected to the H.S. motor relay box, which

takes in the 24 V DC signals and changes it to 120 V AC. Finally, the 120 V AC

signals (one for up, down, left, right) are fed into the H.S. camera motor. When

the motor receives a voltage signal, it will turn in that direction at a constant rate.

Thus, the motor control system was able to be reliable controlled from inside the

GPL, or remotely via an internet connection to the Raspberry Pi. The remote

connection to the Raspberry Pi can be done via a desktop computer or via an SSH
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client smartphone app such as Terminus (https://termius.com/). In the Python

code controlling the motor, a log file was created that was appended to every time

the user executed the code with the azimuth, elevation, and time that the code

was executed.
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Chapter 7

High-Speed Spectroscopy Results

In this chapter, the results from an observational campaign from the summer of

2017 to the fall of 2019 are presented using the high-speed spectrograph discussed

in Chapter 6. The campaign took place in Melbourne, FL and the spectrograph

was located on the roof of the Florida Institute of Technology Olin Physical Sci-

ence building. The lightning spectra presented here were recorded by the high-

speed spectrograph setup used for cloud-to-ground lightning, which consisted of

the Phantom V1210 high-speed camera and the VPH grism. These components

were bolted to the tray as shown in Figure 6.7 and the tray was inserted into the

spectrograph enclosure. To make observations, the front of the spectrograph was

positioned to face a thunderstorm with frequent lightning, and lightning spectra

were saved when the Phantom V1210 high-speed camera was triggered. The trig-

gering was done by using the Phantom Camera Control (PCC) software, which

uses arbitrary pixel area and intensity thresholds to trigger the system. Due to

the system being able to be operated remotely, it was frequently operated from

off-campus, which greatly expanded the detection capability over previous systems.
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The spectra presented here consists of intracloud, stepped, and dart leaders.

The spectral analysis focused on calculating the lightning leader channel tempera-

ture as described in Chapter 5. Considering the temperature analysis consisted of

dimly lit lightning leaders as opposed to bright return strokes, the spectral lines

used for the temperature estimates were 715.0 nm and 777.4 nm, which are both

neutral Oxygen (OI). They have a difference in excitation energy of about 4 eV,

which allows them to provide good estimates of the channel temperature. For

reference, Uman [1966] and Orville [1968b] have found that to obtain reliable tem-

perature estimates, the difference in excitation energy should at least be 1 eV. For

the spectra reported here, the uncertainties were relatively small (7 to 10%) due

to an improvement of the signal-to-noise ratio (SNR) by coherently integrating the

spectra (discussed in the next section).

This observational campaign produced six flashes with intracloud leader spec-

tra, nine stepped leader spectra (from nine flashes), and eighteen dart leader spec-

tra (from seven flashes). The spectra were recorded with a spectral resolution of

0.3 to 0.5 nm/pixel, and with time resolutions of 62 and 200 µs (IC leaders); 16

and 32 µs (stepped leaders); and 16, 32, and 62 µs (dart leaders). For some of the

stepped and dart leaders, spectra of large sections of the visible channel were ob-

tained. By using digital signal processing techniques, temperature estimates were

made for these large sections of the channel (discussed in the next section). Also,

many of the stepped and dart leaders were observed for many subsequent frames

(images), allowing the time evolution of the channel temperature to be analyzed.
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7.1 Analysis Methods

This section describes the digital signal processing techniques to estimate the tem-

perature for the lightning leader spectra. Considering the CG setup of the spec-

trograph was slitless, to estimate the temperature for the whole lightning channel,

digital signal processing techniques were used to correct for the system response,

align the spectra, and improve the SNR of the spectra.

7.1.1 Correcting for System Response

The spectroscopy system has a response associated with it that is not flat, meaning

it detects some wavelengths better than others. Figure 7.1 shows a spectral profile

for a typical lightning spectra, showing intensity as a function of wavelength. The

discrete spectral lines are due to the lightning channel and are seen superimposed

on a large, continuous background emission feature that peaks around wavelength

750 nm. This parabolic shaped continuous background is caused by the spec-

troscopy system preferentially detecting the wavelengths near the center of the

horizontal axis in Figure 7.1. In order to perform accurate intensity measurements

of spectral lines, the system response should known and accounted for.

Figure 7.1: Spectral profile of a raw lightning spectra without correction for the
system response.
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To correct for the response, the discrete spectral emissions due to lightning

were removed by using a hampel median filter. The filter computes the median

of a window composed of the sample ± 3 samples (length = 7). If the sample

is outside the bounds of the median ± c×Median Absolute Deviation (MAD, c

= scaling constant), then it is replaced by the median. This filter is used to

remove outliers, which in this context the spectral lines can be viewed as outliers

superimposed onto the background emission feature. After the hampel outlier

filter, the data is smoothed using a moving average filter with a window length of

7. The result of these filtering procedures is the orange line in Figure 7.2, which

represents the background emission spectrum multiplied with the spectroscopy

system response. Finally, to correct for the system response, the spectrum of the

Figure 7.2: Spectral of Figure 7.1 with the background emission spectra (orange
line) overlaid.

background emission is subtracted from the lightning emission spectrum, and then

the lightning emission spectrum is divided by the background emission spectrum.

This is shown in Figure 7.3. Now the spectral lines have been adjusted for the

system response and the relative spectral line intensities can be estimated. It

should be noted that this method assumes the background emission has a flat

spectral shape (white).
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Figure 7.3: Spectral profile corrected for the system response.

7.1.2 Estimating Background Noise and Temperature Un-

certainty

In order to calculate the uncertainty of a temperature estimate, the variation of

the background noise needs to be quantified. As shown in section 5.1 and equation

5.12, the uncertainty in the temperature estimate is

δT =

(
Em − En

kln2(RGAmp

Anr
)

)√[(δR

R

)2

+

(
δAmp

Amp

)2

+

(
δAnr

Anr

)2
]

where En (Em) is the excitation energy on the nth (mth) level, k is the Boltzmann

constant, G = νmpgm
νnrgn

where gn (gm) is the statistical weight of the nth (mth) level

and νnr (νmp ) is the frequency of the emitted photon, R = Inr

Imp
(the ratio of line in-

tensities, and Anr (Amp) is the Einstein coefficients for transition probability. From

this equation, the everything outside of the radical is a constant, meaning that the

uncertainty in temperature is only a function of the error in the intensity ratios

(δR) and the Einstein coefficients (δA). Considering most Einstein coefficients are

known to a few percent, the dominating factor contributing to the temperature

uncertainty is the the error in the intensity ratios. This error results from the vari-

ation of the background noise of the spectra. Thus, if a weakly emitting spectral
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line is barely above the variation of the background noise, then the uncertainty in

the intensity ratio will be large.

Figure 7.4: Spectral profile from Figure 7.3 after coherent integration of five rows.

For the temperature calculations presented here, the standard deviation was

used as an estimator of the variation of the background noise for a spectral profile

with the discrete lightning emission lines removed. This procedure was done for

each row of the spectral image (each row is a spectral profile), resulting in each

row having a single value associated with the variation of the background noise.

These standard deviations were used as the δR term in the above equation. Con-

sidering the temperature estimates used the weakly emitting 715.0 nm emission

line, which is barely above the background noise in Figure 7.3, additional tech-

niques were used to improve the SNR and decrease the temperature uncertainties.

Most of the spectral images contained spectral information for tens to hundreds

of rows (spectral profiles), and these profiles were aligned (see next section) co-

herently integrated (averaged) over an arbitrary number of rows to improve the

SNR. Coherent integration of N rows results in a
√
N improvement in the SNR

[Cochocki and Unbehauen, 1993; Mitra and Kaiser , 1993; Meyr et al., 1997], where

N is the number of rows integrated. For the spectra presented in this dissertation,

N ranged from 5 to 20, resulting in SNR improvements of 2 to 4.5 over that back-
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ground noise. An example of a spectral profile after coherent integration is shown

in Figure 7.4.

7.1.3 Aligning the Spectra

In order to analyze the spectra over an image with many rows (many spectral pro-

files), the analysis is accomplished by aligning the spectral lines from the lightning

emissions. This is needed as the spectroscopy system does not use a slit, so as

the lightning channel moves erratically in front of the camera, the location of the

spectral lines also move across the CMOS sensor, meaning each row will have the

spectrum shifted in relation to the source location. An example of a lightning flash

that is not aligned is shown in Figure 7.5. The alignment is achieved by using a

Figure 7.5: Spectral image of a raw, unaligned lightning flash. The intensity scale
is in arbitrary units.

matched filter, which correlates each row with a ‘template’ of the spectrum. The

template used was the first row of the image that had strong spectral features.
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Figure 7.6: Matched filter output shown in blue. The vertical orange line represents
where the peak of the matched filter output should be to be aligned with the
template of the matched filter.

To align the spectra, first the difference between adjacent pixels for each row of

the image is calculated and the absolute value is taken. Next, the matched filtering

is performed. This involves convolving a flipped version of the ith difference row

with the difference of the template (the first row). The output of this is shown in

Figure 7.6. Considering the length of each row for this example is 1024 samples,

the x-axis in Figure 7.6 goes from 0 to 2048 samples (2 × the row length). If

the spectral lines from the ith row were aligned with the template, then the peak

from the matched filter output would be at the center of the x-axis in Figure 7.6,

which is indicated by the vertical orange line at x-axis = 1024. But, the example

presented in Figure 7.6 shows the peak at x-axis = 1096, meaning this row is shifted

72 pixels (1096-1024). To align this row with the template, the row is shifted 72

pixels to align it with the template. This results in the spectral lines of the ith row

being aligned with the first row of the image. An aligned spectral image is shown

in Figure 7.7. This alignment of the spectral lines over multiple rows allows the

spectra to be coherently integrated as described above in section 7.3.
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Figure 7.7: Spectral image of an aligned lightning flash. The intensity scale is in
arbitrary units.

7.2 Intracloud Leaders

Due to the limitations of past observations (hardware, lack of automation) there

have not been any reported spectra of IC lightning leaders in the literature. From

the observational campaign described in this dissertation, six different IC flashes

were recorded, all producing several frames containing lightning leader spectra.

These flashes were identified as IC because the events had no ground termination

points and the visible lightning leaders were all well above the surface, with some

protruding through the side of the thundercloud. An image showing an example

of the lightning, cloud, and ground is shown in Figure 7.8. Many of the flashes

resembled ‘spider’ lightning from stratiform charge regions, and are thus likely

negative leaders in a stratiform area of positive charge. However, their polarity has

not been confirmed due to lack of GPS synchronized time. The flashes all produced

bright spectra at discrete intervals, filled between with dark sky. These bright
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Figure 7.8: High-speed spectral image of an intracloud flash.

intervals resemble K-changes or recoil events [Winn et al., 2011] from negative

leaders in a stratiform charge region. Considering IC leaders propagate primarily in

the horizontal direction, spectra were only analyzed when the leaders bent upward

(vertically), resulting in clear, reliable spectral lines of the leader. Also, since the

channel segments were small, the captured spectra were aligned and coherently

integrated as described in section 7.1, only integrating over the entire channel

segment. An example of an IC spectra is shown in Figure 7.9. The image in

Figure 7.9a was recorded with a 62 µs exposure. A spectral profile from the red

line in Figure 7.9 is shown in Figure 7.9b. The dominant features are neutral

spectral lines, which are neutral Oxygen (OI) and neutral Nitrogen (NI), as well as

H-alpha at 656.3 nm. As mentioned above, the temperature was calculated using

the lines 715.0 and 777.4 nm, but notice how weak the 715.0 nm line is in Figure

7.9. This was after coherent integration of the short channel segment (several rows
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of pixels), increasing the signal-to-noise ratio. Past equipment was likely unable to

observe this line due to less sensitive equipment and without the ability to perform

digital signal processing [Orville and Salanave, 1970].

Figure 7.9: a) High-speed spectral image of an IC leader. The red bar represents
the location where the spectra in b) was taken. b) Spectra of the IC leader. The
labels are wavelengths in nm.

The evolution of the leader channel temperature for two flashes is shown in

Figure 7.10. These two flashes had the largest number of frames with clear lightning

spectra, and it should be noted that the samples in Figure 7.10 are not consecutive.

As mentioned above, the spectra were emitted at discrete intervals with dark sky

in between. In the top panel of Figure 7.10, the temperature ranges from about

12,000 K to over 18,000 K. The bottom panel shows much hotter temperatures,
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with values ranging from 19,000 K to 25,000 K. This flash was the hottest IC flash

observed during the observational campaign, with temperatures close to those of

CG return strokes [Prueitt , 1963; Orville, 1968a]. Figure 7.11 shows the mean

Figure 7.10: Temperature as a function of sample (spectral image number) for two
IC flashes. Note: the samples are not consecutive in time.

temperature for each of the flashes producing IC leaders recorded by the high-

speed spectrograph. The mean temperatures ranged from approximately 15,000

K to 24,000 K. From all six flashes, the mean temperature was 18,800 K with a

standard deviation of 2,200 K.

7.3 Stepped Leaders

Similar to the observational constraints listed above for IC leaders, stepped leaders

have been difficult to capture in the past. As mentioned in Chapter 5, only two

studies have reported on the optical spectrum of a stepped leader. It is difficult to

get quantitative temperature estimates as stepped leaders strongly radiate neutral
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Figure 7.11: Mean temperatures for all six IC flashes from the observational cam-
paign.

emission lines, similar as the IC leader. Making matters worse, stepped leaders

often have several branches from the main leader channel, and often have more

than one leader channel emerging from the bottom of the cloud simultaneously.

This is a problem for slitless spectrographs, because the spectra from the branch-

Figure 7.12: Spectral image of a downward stepped leader.

es/additional channels overlap, making it very difficult to discern which emissions

belong to which spectral lines. It also artificially inflates the intensity values for
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a spectral line, essentially making accurate temperature estimates impossible. An

example of this is shown Figure 7.12. In this image, it is difficult to observe a

clear spectra at any given row, and the branches from the leader channel overlap

other spectra. However, for the large dataset from the work in this dissertation,

nine stepped leaders were able to be clearly imaged with clear spectral lines. An

example of one of these clear spectra is shown in Figure 7.13. Notice that this

Figure 7.13: Spectral profile of a downward stepped leader.

spectrum closely resembles the spectrum for an IC leader (Figure 7.9b). It also is

very similar to the spectra of triggered lightning return strokes from Walker and

Christian [2017], shown in Figure 5.5 (bottom panel), except without the emission

lines of singly ionized Nitrogen (NII) at 648.2 and 661.0 nm.

From the nine leader spectra, two of them contained clear spectra for a large

portion of the downward stepped leader channel. These spectra were aligned in

accordance to section 7.1, and the number of rows integrated to improve the SNR

was 5. Thus, a coherently integrated spectra was produced every 5 rows for the

length of the leader channel, which for the two flashes presented here, resulted in

about forty data points for each frame. Images of the first flash are shown in Figure

7.14. This stepped leader spectra was observed for three consecutive frames, each

with a duration of 32 µs. The channel segment analyzed was bounded by the
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Figure 7.14: Images of a stepped leader channel that was visible for three frames
(32 µs time resolution). The red lines bound the region used to calculate the leader
channel temperature.

red lines in Figure 7.14. The associated temperature estimates for each frame are

shown in Figure 7.15. The panels in Figure 7.15 show the temperature as a function

of vertical pixel, with the initial and final vertical pixel indicated by the top and

bottom red lines bounding the channel in Figure 7.14. The temperature plots are

relatively smooth and continuous, with little variation for each frame. Each frame

shows the temperature increase with increasing vertical pixel, which corresponds

to a lower altitude in Figure 7.14. Thus, the temperature along the channel at each
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time period (frame) is lowest at the top of the channel and highest at the bottom

of the channel. The mean temperature of the channel also increases with each

frame, with values of 13,600 K, 14,700 K, and finally 16,000 K. The maximum and

minimum temperatures also increase with increasing frame. The last frame (frame

Figure 7.15: Stepped leader channel temperature for the flash in Figure 7.14. The
number to the upper right of the panel indicates the frame number shown in Figure
7.14.

3) occurs right before the return stroke takes place, which means the temperature

of the leader channel increased in time up until the onset of the return stroke. Due

to the sensitive spectrograph settings to capture the dimly lit lightning leader, the
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return stroke saturated the CMOS sensor of the high-speed camera, which did not

allow the associated return stroke temperature to be calculated.

Figure 7.16: Image of a downward stepped leader visible for a single frame (32 µs
time resolution). The red lines bound the temperature shown in Figure 7.17.

The other downward stepped leader with a large portion of a leader channel

spectrum is shown in Figure 7.16. This flash only produced a single frame with

clear spectra for quantitative temperature analysis, and this frame occurred right

before the onset of the return stroke. This image was captured with the same

time exposure as Figure 7.14. Once again, the temperature was calculated for

the region bounded by the horizontal red lines. The temperature as a function of
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vertical pixel is shown in Figure 7.17. Notice, that this stepped leader shows the

opposite behavior to that of other stepped leader, in that the temperature decreases

with decreasing altitude. The mean temperature of the channel is similar to the

other leader, being 15,400 K.

Figure 7.17: Stepped leader channel temperature for the flash in Figure 7.16.

For five of the stepped leaders, enough successive frames of each leader showed

clear spectra to allow the temperature to be calculated as a function of time. These

spectra were not visible for large sections of the leader channel such as Figures

7.14 and 7.16, but small vertical segments of each stepped leader were used to

calculate the leader temperature. These segments were also coherently integrated

to improve the SNR, with the row integrations of around ten for each spectra. The

time-evolved spectra are shown in Figure 7.18. The exposure for each frame was

the same as the stepped leaders in figures above, which was 32 µs. The successive

time steps ranged from four to six frames. All of the stepped leaders show the

temperature increase with time as the leader approaches the ground. Each leader

in Figure 7.18 connects with the ground with the onset of the return stroke at

the end of the last time step. The amount of temperature increase as a function

of time ranges from about 1,000 K for some of the leaders to almost 7,000 K for
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Figure 7.18: Panels showing the time evolution of temperature for five stepped
leaders.
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others.

Finally, Figure 7.19 shows the mean temperature for all the stepped leaders

from this study. The values ranged from approximately 13,000 K to as large

as 24,000 K. The mean temperature across all the leaders was 16,700 K, with a

standard deviation of 3,200 K. This mean is colder than the IC leaders from section

7.2, and both the standard deviation and range is larger than the IC leaders.

Figure 7.19: Mean temperatures for all of the stepped leaders from this study.

7.4 Dart Leaders

Clear dart leader spectra were much easier to obtain than the stepped leader

spectra due to the dart leaders having fewer branches and the dimly lit 715.0 nm

(OI) spectral line was much more visible. For the stepped leaders, the 715.0 nm

(OI) emission line was typically only visible as the leader tip was close to the

ground. An example a dart leader spectra is shown in Figure 7.20. Notice the lack

of branches and overlapping spectra compared with the stepped leader (Figure

7.12). An example of a typical dart leader spectral profile is shown in Figure 7.21.

Notice that this spectrum is very similar to the IC and stepped leader spectra, with
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the neutral Oxygen and Nitrogen emission lines dominating. Out of the eighteen

dart leaders, six of them had clear and unambiguous spectra for large sections of

the dart leader channel. All of the dart leader channels showed similar behavior,

and thus only three dart leaders from the same flash are presented here.

Figure 7.20: Spectral image of a dart leader.

Figure 7.21: Spectral profile of a dart leader.

The first dart leader with clear spectra for a large section of the channel is

shown in Figure 7.22. This dart leader was observed for nine frames, each with
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32 µs resolution. Due to the relatively large speed of the dart leader compared to

the stepped leader, clear propagation and extension of the dart leader channel is

observed with each consecutive frame in Figure 7.22. Similarly as the temperature

estimates for the stepped leaders, the red lines in Figure 7.22 show the bounded

region where the temperature was calculated for the dart leader channel. The

temperature profiles for each frame are shown in Figure 7.23. With the exception of

frames 4 and 5, the temperature increases with increasing vertical pixel (decreasing

altitude), similar to the stepped leader in Figure 7.15. Although, the dart leader

channel at higher altitudes (smaller vertical pixel) cools off with each frame, which

is opposite of the stepped leader in Figure 7.15. This creates a large temperature

contrast between lower and upper altitudes along the dart leader channel, with

minimums of the frames in Figure 7.23 being around 12,000 K and the maximums

around 20,000 K. This information is supported by the time evolution of the dart

leader shown in Figure 7.24. The temperature in Figure 7.24 were created by

averaging over the entire channel for each frame in Figure 7.23. The overall cooling

of the dart channel is reflected by the upper panel in Figure 7.24, with the mean

channel temperature decreasing from 17,000 K to about 14,000 K over the duration

of the dart leader propagation. After this last time step the dart leader connects

with ground and the return stroke ensues. Interestingly, the maximum temperature

along the channel actually has an overall increasing trend as it evolves with time

and the minimum temperature along the channel decreases over time. This means

that as the dart leader propagates toward the ground, the temperature gradient

along the channel increases, and with the hottest temperatures closest to ground

and the coldest temperatures at higher altitudes. This is contrary to the stepped

leader from Figure 7.15, which shows the entire stepped leader channel increasing
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Figure 7.22: Images of a dart leader channel that was visible for nine frames (32 µs
time resolution). The red lines bound the region used to calculate the dart leader
channel temperature.

in temperature as the leader approached the ground, effectively maintaining a

constant temperature gradient across the length of the channel.
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Figure 7.23: Dart leader channel temperature for the flash in Figure 7.22. The
number to the upper right of the panel indicates the frame number shown in Figure
7.22.

The second dart leader of the same flash is shown in Figure 7.25. This dart

leader was only observed for five frames instead of nine over the same spatial

domain, implying it moved faster toward the ground. Figure 7.26 shows similar

features as that observed in Figure 7.23, with the temperature being hottest from

the channel that is nearest the ground (larger vertical pixel). Again, the dart

leader channel shows a smooth increase in temperature along the length of the

123



Figure 7.24: Time evolution of the temperature for the dart leader in Figure 7.22.

channel. The decrease in channel temperature for the upper portion of the channel

(smaller vertical pixel) with increasing frame (time) is also evident. Supporting

this is the time evolution of the leader shown in Figure 7.27. The upper panel

of Figure 7.27 shows the mean temperature of the dart leader channel for each

frame, indicating a decreasing trend as the leader approaches the ground. The

maximum temperature again increases and the minimum decreases with time,
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Figure 7.25: Images of the second dart leader channel from the flash producing the
initial dart leader in Figure 7.22. The red lines bound the region used to calculate
the dart leader channel temperature.

similar to Figure 7.24. However, the minimum temperature has a sharper decrease,

beginning at a temperature of about 18,000 K and ending with a temperature of

about 11,000 K. This is much greater than the decrease in Figure 7.24, which had

a decrease of about 2,000 K over the nine frames of propagation. This means the

temperature gradient along the channel for the second dart leader was even more

drastic than the initial dart leader. Although the maximum temperatures from the

first two dart leaders were about the same, and both mean temperatures decreased

with time, the second dart leader had an overall hotter temperature than the first.

The average temperature over the length of the channel and over all the frames for

the first leader was 14,300 K compared with almost 16,000 K for the second dart

leader.
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Figure 7.26: Dart leader channel temperature for the flash in Figure 7.25. The
number to the upper right of the panel indicates the frame number shown in Figure
7.25.
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Figure 7.27: Time evolution of the temperature for the dart leader in Figure 7.25.

The last dart leader for this flash is shown in Figure 7.28. Notice that this dart

leader only took two frames to connect with the ground, compared to the first and

second dart leaders of nine and five frames. This suggests that each subsequent

dart leader propagates with a faster speed toward the ground. The associated

dart leader channel temperature is shown in Figure 7.29. The initial frame of

this dart leader shows modest temperature values, but this may be due to it just

barely emerging from the cloud. The last frame before the dart leader connects

with ground (frame 2) shows a steady temperature value for a large section of
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Figure 7.28: Images of the last dart leader channel from the flash producing the
initial dart leader in Figure 7.22. The red lines bound the region used to calculate
the dart leader channel temperature.

the channel, with a much hotter temperature than previous dart leaders (around

21,000 K). At the section of the dart leader closest to ground (vertical pixel 320

to 450) there is a an increase in temperature to a local maximum of about 23,000

K before dropping a local minimum of about 18,000 K for the lowest altitude

of the channel. This contrasts the previous two dart leaders, which showed the

maximums of the dart channel being closest to the ground (larger in vertical pixel).

Also different is the dart leader temperature increases in overall temperature from

frame 1 to frame 2, although as mentioned before, this could be due to the initial
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Figure 7.29: Dart leader channel temperature for the flash in Figure 7.28. The
number to the upper right of the panel indicates the frame number shown in Figure
7.28.

frame only capturing a tiny portion of the dart leader channel.

Figure 7.30: Mean temperature for all the dart leaders from this study. The black
box represents the mean along the channel and across all the frames for each dart
leader, with the brackets representing the maximum and minimum temperatures
for each dart leader. The lines connecting each dart leader indicate the dart leaders
were part of the same flash.

Figure 7.30 shows the average, maximum, and minimum temperatures for all
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the dart leaders from this study. The average temperatures ranged from approxi-

mately 15,000 K to 22,000 K. Interestingly, there seems to not be any correlation

between dart leader order of the same flash with temperature. The dart leaders

presented above in Figures 7.22, 7.25, and 7.28 are shown as dart leader numbers

5-7 in Figure 7.30, and thus they show a hotter temperature with each subsequent

dart leader. However, the flashes composing dart leader numbers 1-2, 9-13, and

15-18 show that subsequent dart leaders decrease in temperature. The mean tem-

perature of all the dart leaders is 17,800 K with a standard deviation of 6,600 K.

This mean is between the IC and stepped leader means, but the standard devia-

tion is much larger. This may be due to the sample size being larger for the dart

leaders.

7.5 Summary of Spectroscopy Results

From this observational campaign, the spectra of six IC leaders (six flashes), nine

stepped leaders (nine flashes), and eighteen dart leaders (seven flashes) were stud-

ied. These spectra showed clear emissions lines from neutral Oxygen and Nitrogen

and H-alpha and did not show any singly ionized emission lines. The spectral

profiles of the IC, stepped, and dart leaders all were very similar, and had clear

lines of 715 nm (OI) and 777.4 nm (OI) to be used for temperature calculations.

This study was the first to report on IC leader temperatures, with values ranging

from 12,000 K to 25,000 K. This study also provided the most complete analysis of

stepped and dart leaders, showing the evolution of the leader channel temperatures

as a function of space and time. The uncertainties for the temperature estimates

in this dissertation ranged from 7 to 10%, translating to values of 1,000 to 2,500
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K. The relatively low uncertainties were in part due to digital signal processing

techniques to improve the SNR of the lightning spectral emission lines.

The stepped leader channel temperatures reported here range from approxi-

mately 12,000 K to 24,000 K. These values are lower than the study of Orville

[1968], who found a stepped leader temperature of 30,000 K. However, the uncer-

tainty in that study was relatively large, with values up to 10,000 K. This puts the

temperature of Orville [1968] within range of the leader temperatures here. How-

ever, it should be noted that the study of Orville [1968] used instrumentation that

was novel at the time, but had limitations compared to the modern high-speed

spectrograph built for this dissertation, such as underexposure of images and non-

linear wavelength reaction of the film used to produce the spectra. That study also

only captured a single measurement from a 2 meter section of the leader channel,

which may have contributed to the temperature calculation found in that study to

differ from the temperatures reported in this dissertation. A modern spectroscopic

study of lightning leaders found leader temperatures of the leader tip and channel

to range from 13,000 to 16,000 K [Chang et al., 2017]. These values align with the

temperature estimates found from the work presented here. However, Chang et al.

[2017] found that the stepped leader temperature increased with time and then

decreased with time for the same leader. This is not consistent with the findings of

this dissertation, which found that the leader temperature increased with time for

all the stepped leaders analyzed. Also, for the first time, this dissertation reported

on the leader channel temperature over a long channel segment, finding that the

temperature is hottest for the segment nearest the ground for one leader, while

another showed cooling near the ground. It should be noted that Chang et al.

[2017] used much larger exposures of the leader channel than the results from this
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dissertation (150 µs compared to 32 µs), did not say which emission lines they

used for their calculations, and did not report on the temperature uncertainties in

their calculations. This may explain the differences found between that study and

this dissertation.

This dissertation also presented spectral and temperature characteristics for

several dart leaders belonging to several different flashes. The dart leader temper-

atures from this study ranged from 13,000 K to 24,000 K, similar to stepped lead-

ers. This values encompass the dart leader temperatures reported in the literature

from Orville [1975] and Chang et al. [2017], which found both found values around

20,000 K. This dissertation also reported on the temperature variation along the

dart leader channel and how this channel varies with time and from across multiple

dart leaders of the same flash. For the dart leader channel, Chang et al. [2017]

found similar results of the dart leader channel being hotter in temperature for

the channel section closest to the ground, only they found temperature differences

along the channel of about 100 K for a single frame (200 µs). The work from this

dissertation found temperature differences of up to 7,000 K, significantly greater.

Also, this dissertation was the first to report the evolution of the dart leader chan-

nel for multiple frames and for multiple dart leaders of the same flash. The flashes

with detailed results of large portions of the dart leader channel show that the

average channel temperature decreases with time as the dart leader approaches

the ground, opposite of stepped leaders. But, the overall average temperature of

the dart channel increases with subsequent darts of the same flash.

In summary, these results indicate that IC, stepped, and dart leaders all have

similar temperatures, with mean overall sample values around 16,600 to 18,900

K. Also, for stepped and dart leader channels, the temperature is not uniform
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across the channel, but hotter temperatures are closest to the ground. This has

implications for spectroscopy systems that only observe a small portion of the

leader channel, due to the spectra-derived temperature being altitude dependent.

Also, for negative stepped leaders, the temperature gradient across the channel re-

mains nearly constant, and the mean temperature increases as the stepped leader

approaches the ground. This is different from dart leaders, that have a temper-

ature gradient across the channel that increases with time, and a mean channel

temperature that decreases as the leader approaches the ground.
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Chapter 8

Conclusions

This Chapter summarizes the scientific contributions of the dissertation and pro-

vides suggestions for future work.

8.1 Thunderstorm Charge Structures Producing

Gigantic Jets

Chapter 3 provided rigorous data analysis of gigantic jet producing thunderstorms

and numerical modeling of gigantic jet discharges. The data analysis involved

combining weather radar variables such as base reflectivity, radial velocity, and

spectrum width with low frequency and very high frequency lightning data to

identify common features that lead to gigantic jet formation. This study found

that thunderstorms producing gigantic jets exhibit an intense convective pulse

during the time of the gigantic jet, and this pulse is associated with strong storm

top divergence and storm top mixing as identified by large values of radial velocity
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differential and spectrum width. These features are also associated with a narrow

upper positive charge region during the time of the gigantic jet, as found from VHF

lightning data. This charge structure with narrow upper positive charge was then

used as an input to a stochastic fractal model that simulates lightning discharge

trees. The discharge trees closely matched observations of gigantic jet lightning,

as opposed to charge structures with wide upper positive charge, which were also

simulated. In conclusion, this study found that gigantic jet charge structures

consist of a narrow upper positive charge region above a wide middle negative

charge region and they are a result of an intense convective pulse.

8.2 Satellite and Video Observations of Gigantic

Jets

In Chapter 4, satellite observations from GOES-16 were made of several gigantic

jet discharges that were simultaneously recorded from a ground-based low-light-

level video camera. The satellite instruments used for the study were the Advanced

Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). The ABI

provided infrared (IR) data for cloud top estimates and storm structure informa-

tion, and the GLM recorded the optical emissions (777.4 nm) associated with the

gigantic jets. The gigantic jet lightning exhibited larger peak flash energies, longer

durations of continuous emissions, and smaller lateral propagation distances than

other lightning observed by GLM. The largest optical energies of each gigantic

jet were concentrated in a single GLM pixel throughout the durations the gigantic

jets. The peak in optical energy occurred during the video frame when the gigantic

jet connected with the ionosphere.
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8.3 Quantitative Lightning Spectroscopy

In Chapter 7, spectra of intracloud, stepped, and dart leaders were presented.

These spectra were recorded by a high-speed spectroscopy system that was built

as part of the work for this dissertation. The lightning spectra were recorded at

spectral resolutions of 0.25 nm/pixel and time resolutions ranging from 16 to 200

µs. For some of the stepped and dart leader spectra, large segments of the leader

channel were recorded. Using the spectral lines of 715.0 (OI) and 777.4 nm (OI),

the temperature was calculated for the leader spectra. All of the leader spectra had

mean temperature values ranging from 16,000 to 19,000 K. For stepped and dart

leaders, the temperature was not uniform across the channel, but was hotter for the

channel segment closest to ground. For stepped leaders, the temperature gradient

across the channel was nearly constant, with the mean temperature increasing as

the leader approached ground. This was different from dart leaders, which had a

temperature gradient across the channel that increased and a mean temperature

that decreased as the leader approached the ground.

8.4 Future Work

For the studies completed in this dissertation, meaningful future work would in-

volve extending the GLM observations of gigantic jets to allow for automated de-

tection by GLM. Considering GLM has a large field-of-view (nearly a hemisphere)

and continuous observations during both day and night, it is ideal for monitoring

and detections of gigantic jets. Future work on this topic would involve writing al-

gorithms to automatically detect gigantic jets, such as filtering for detections that

have long continuous emissions and large integrated optical energies of a single
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pixel for a given GLM detected flash. This data could be correlated with other

data, such as LF lightning networks, which would help filter the GLM detections

because gigantic jet lightning should only be assoicated with intracloud events. To

better construct the GLM detection algorithms, larger datasets of ground truth

could be obtained from utilizing all-sky camera networks across the United States.

Another area of future work would involve correlating the lightning leader spec-

tra to other measurements, such as LF and VHF lightning data and ELF magnetic

field data. The LF lighting data would provide the peak current of the flashes and

the polarity, allowing for correlations with the temperature of the lightning lead-

ers. The ELF data would provide the charge moment change, which provides the

amount of charge transferred by a discharge, allowing correlation with the leader

temperature. The electron density of the lightning leaders could also be calculated

and correlated with these measurements. The spectroscopy observations could also

be extended to upward discharges such blue and gigantic jets. The system has the

capability to observe these events with the inclusion of a vertical slit and an image

intensifier. Spectra of these discharges would be novel and never before captured,

and provide insightful information about the plasma nature of these events.
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Appendix A

AILLAE Python Code

Below is the Pythod code to that is loaded onto the Raspberry Pi to control the

heavy-duty pelco motor.
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from	datetime	import	datetime	
import	RPi.GPIO	as	GPIO	
import	time	
	
Vp	=	10.9																															#Rotational	velocity	of	motor	PAN	in	degrees/sec	
Vt	=	3.7																																#Rotational	velocity	of	motor	TILT	in	degrees/sec	
	
GPIO.setmode(GPIO.BOARD)						#Refer	to	GPIO	pins	with	pin	numbers	read	from	board	
																																																																#The	following	initializes	GPIO	pin	outputs	for	each	
direction	
u	=	29																																							#u	=	Up	
GPIO.setup(u,	GPIO.OUT)	
	
d	=	31																																							#d	=	Down	
GPIO.setup(d,	GPIO.OUT)			
	
l	=	32																																							#l	=	left	
GPIO.setup(l,	GPIO.OUT)			
	
r	=	33																																							#r	=	right	
GPIO.setup(r,	GPIO.OUT)			
	
Az	=	0																																							#Initializes	Az	(azimuth	in	degrees)	as	0.	Camera	must	be	pointing		
																																																																								#North	with	motor	turned	fully	counter-clockwise	at	
start	up.	
Alt	=	30																																#Initializes	Alt	(altitude	in	degrees)	as	30	**(Check	average	central		
																																																																								#altitude(*Use	lowest	possible	desired	setting	and	
possibly	make	a	hard	stop	there*))**.	Camera	must	be	at	a	30	degree	tilt	at	start	up.	
	
#Functions--------------------------------------------------------------------	
def	Reset():																																	#Function	to	reset	camera	to	(Alt,Az)=(35,0).	Does	nothing	if	
already	in	this	position.	
								if	(Alt!=30):	
																print('Repositioning	Altitude	to	30	degrees.	\n')	
																Ontime=(int(Alt)-30)/int(Vt)	#Time	to	tilt	down	to	35	degrees	=	degrees	to	tilt	/	rate	of	
tilt	(possibly	add	1	second	to	account	for	error?	What	issues	does	this	cause,	if	any?)	
																GPIO.output(d,	GPIO.HIGH)														#Turn	on	'down'	pin	
																time.sleep(Ontime)	
																GPIO.output(d,	GPIO.LOW)															#Turn	off	'down'	pin	after	waiting	appropriate	time.	
	
								if	(Az!=0):	
																print('Repositioning	Azimuth	to	0	degrees.	\n')	
																Ontime	=	int(Az)	/	int(Vp)																		#Time	to	pan	left	to	North	=	degrees	to	pan	/	rate	
of	pan	(possibly	add	1	second	to	account	for	error?	What	issues	does	this	cause,	if	any?)	
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																GPIO.output(l,	GPIO.HIGH)														#Turn	on	'left'	pin	
																time.sleep(Ontime)	
																GPIO.output(l,	GPIO.LOW)															#Turn	off	'left'	pin	after	waiting	appropriate	time.	
																									
def	Reposition():	
								currenttime	=	[int(datetime.now().year)	,	'-'	,	int(datetime.now().month)	,	'-'	,	
int(datetime.now().day)	,	'	'	,	int(datetime.now().hour)	,	':'	,	int(datetime.now().minute)]	
								position	=	['Alt:	'	,	Alt	,	'											'	,	'Az:	'	,	Az	,	'\n']	
								my_file.write(str(currenttime))	
								my_file.write('										')	
								my_file.write(str(position))	
								my_file.write('\n')	
	
								if	(Alt!=30):	
																Ontime	=	(int(Alt)-30)	/	int(Vt)																	#Time	to	tilt	up	to	desired	altitude	angle.	
																GPIO.output(u,	GPIO.HIGH)														#Turn	on	'up'	pin	
																time.sleep(Ontime)																	
																GPIO.output(u,	GPIO.LOW)															#Turn	off	'up'	pin	after	waiting	appropriate	time.	
																	
								if	(Az!=0):	
																Ontime	=	int(Az)	/	int(Vp)																		#Time	to	pan	right	to	desired	azimuth	angle.	
																GPIO.output(r,	GPIO.HIGH)														#Turn	on	'right'	pin	
																time.sleep(Ontime)																	
																GPIO.output(r,	GPIO.LOW)															#Turn	off	'right'	pin	after	waiting	appropriate	time.	
									
#-----------------------------------------------------------------------------	
																																																																												
print('Welcome	to	AILLAE\'s	RPi	Control	System.	\n')								#add	in	all	possible	commands																																													
	
my_file	=	open("positiondata.txt",	"a")	
w	=	'Start'	
																																																																												
while	(w!='End'):																																								#Allows	user	to	input	End	for	either	Az	or	Alt	in	order	to	
terminate	the	program.	
									
								print('Would	you	like	to	reposition	the	camera	now	or	at	a	later	time?	(Up	to	3	delayed	
commands	may	be	set.)	\n')	
								w	=	raw_input('Enter	\'N\'	for	Now,	\'L\'	for	Later,	or	\'End\'	to	Terminate	Program:	')	
								print('\n')	
	
								if	(w	==	'N'):	
																Altn	=	raw_input('Enter	an	altitude	angle	(in	degrees)	between	30	and	50:	')	
																print('\n')	
																Azn	=	raw_input('Enter	an	azimuth	angle	(in	degrees)	between	0	and	360:	')	
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																print('\n')	
	
																if	((int(Az)>=0)	and	(int(Az)<=360)	and	(int(Alt)>=30)	and	(int(Alt)<=50)):	
																								Reset()	
																								Alt	=	Altn	
																								Az	=	Azn	
																								print('The	camera	will	now	move	to	an	altitude	of	',	Alt,	'	degrees	and	an	azimuth	
of	',	Az,	'degrees...	\n')	
																								Reposition()	
																								print('Repositioning	complete.	\n	\n')	
	
																elif	((int(Az)<0)	or	(int(Az)>360)	or	(int(Alt)<30)	or	(int(Alt)>50)):	
																								print('Invalid	input.	\n',	'Azimuth	must	be	an	integer	between	0	and	360	degrees.	
\n',	'Altitude	must	be	an	integer	between	35	and	50	degrees.	\n',	'Try	again.	\n	\n')	
	
								elif	(w	==	'L'):	
																print('For	delayed	commands,	the	system	must	be	left	alone	until	the	final	command	
has	been	completed.	\n')	
																c	=	raw_input('How	many	delayed	repositioning	commands	would	you	like	to	set?	(3	
Max)	')	
	
																if	((int(c)>3)	or	(int(c)<1)):	
																								print('Invalid	number	of	commands.	Try	again.	\n	\n')	
	
																else:	
																								print('\n	\n',	'Position	1	\n')	
																								time1	=	raw_input('Enter	when	to	execute	Command	1	(Enter	as	YYYY-MM-DD	
HH:MM):	')									#Double	MM	ok?	
																								yr,	mnth,	day,	hr,	minute	=	time1.replace('-',	'	').replace(':',	'	').split()	
																								time1	=	float(yr)	+	float(mnth)/12	+	float(day)/365	+	float(hr)/8760	+	
float(minute)/525600	
																								print('\n')	
																								Alt1	=	raw_input('Enter	an	altitude	angle	(in	degrees)	between	30	and	50:	')	
																								print('\n')	
																								Az1	=	raw_input('Enter	an	azimuth	angle	(in	degrees)	between	0	and	360:	')	
																								print('\n	\n')	
	
																								if	((int(Az1)>=0)	and	(int(Az1)<=360)	and	(int(Alt1)>=30)	and	(int(Alt1)<=50)):	
																																if	(int(c)>1):	
																																								print('\n	\n',	'Position	2	\n')	
																																								time2	=	raw_input('Enter	when	to	execute	Command	2	(Enter	as	YYYY-
MM-DD	HH:MM):	')	
																																								yr,	mnth,	day,	hr,	minute	=	time2.replace('-',	'	').replace(':',	'	').split()	
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																																								time2	=	float(yr)	+	float(mnth)/12	+	float(day)/365	+	float(hr)/8760	+	
float(minute)/525600	
																																								print('\n')	
																																								Alt2	=	raw_input('Enter	an	altitude	angle	(in	degrees)	between	30	and	50:	
')	
																																								print('\n')	
																																								Az2	=	raw_input('Enter	an	azimuth	angle	(in	degrees)	between	0	and	360:	
')	
																																								print('\n	\n')	
	
																																								if	((int(Az2)>=0)	and	(int(Az2)<=360)	and	(int(Alt2)>=30)	and	
(int(Alt2)<=50)):	
																																																if	(int(c)>2):	
																																																								print('\n	\n',	'Position	3	\n')	
																																																								time3	=	raw_input('Enter	when	to	execute	Command	3	(Enter	as	
YYYY-MM-DD	HH:MM):	')	
																																																								yr,	mnth,	day,	hr,	minute	=	time3.replace('-',	'	').replace(':',	'	
').split()	
																																																								time3	=	float(yr)	+	float(mnth)/12	+	float(day)/365	+	
float(hr)/8760	+	float(minute)/525600	
																																																								print('\n')	
																																																								Alt3	=	raw_input('Enter	an	altitude	angle	(in	degrees)	between	
30	and	50:	')	
																																																								print('\n')	
																																																								Az3	=	raw_input('Enter	an	azimuth	angle	(in	degrees)	between	0	
and	360:	')	
																																																								print('\n	\n')	
	
																																																								if	((int(Az3)<0)	or	(int(Az3)>360)	or	(int(Alt3)<30)	or	
(int(Alt3)>50)):	
																																																																print('Invalid	input.	\n',	'Azimuth	must	be	an	integer	
between	0	and	360	degrees.	\n',	'Altitude	must	be	an	integer	between	35	and	50	degrees.	\n',	
'Time	must	be	a	4-digit	number	between	0000	and	2359.	/n',	'Try	again.	\n	\n')	
	
																																								elif	((int(Az2)<0)	or	(int(Az2)>360)	or	(int(Alt2)<30)	or	(int(Alt2)>50)):	
																																																print('Invalid	input.	\n',	'Azimuth	must	be	an	integer	between	0	and	
360	degrees.	\n',	'Altitude	must	be	an	integer	between	35	and	50	degrees.	\n',	'Time	must	be	a	
4-digit	number	between	0000	and	2359.	/n',	'Try	again.	\n	\n')	
	
																								elif	((int(Az1)<0)	or	(int(Az1)>360)	or	(int(Alt1)<30)	or	(int(Alt1)>50)):	
																																print('Invalid	input.	\n',	'Azimuth	must	be	an	integer	between	0	and	360	
degrees.	\n',	'Altitude	must	be	an	integer	between	35	and	50	degrees.	\n',	'Time	must	be	a	4-
digit	number	between	0000	and	2359.	/n',	'Try	again.	\n	\n')	
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																								print('Delayed	commands	are	now	set.	The	system	will	reset	once	the	final	
position	has	been	reached.	\n',	'Awaiting	commands...')	
	
																								nowtime	=	
(float(datetime.now().year))+(float(datetime.now().month)/12)+(float(datetime.now().day)/365
)+(float(datetime.now().hour)/8760)+(float(datetime.now().minute)/525600)	
	
																								if	(int(c)==1):	
																																while	(nowtime<=time1):											
																																								if	(nowtime==time1):	
																																																Reset()	
																																																Alt	=	Alt1	
																																																Az	=	Az1	
																																																Reposition()	
																																																print('Command	1	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								nowtime	=	
(float(datetime.now().year))+(float(datetime.now().month)/12)+(float(datetime.now().day)/365
)+(float(datetime.now().hour)/8760)+(float(datetime.now().minute)/525600)	
	
																								elif	(int(c)==2):	
																																while	(nowtime<=time1)	or	(nowtime<=time2):											
																																								if	(nowtime==time1):	
																																																Reset()	
																																																Alt	=	Alt1	
																																																Az	=	Az1	
																																																Reposition()	
																																																print('Command	1	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								elif	(nowtime==time2):	
																																																Reset()	
																																																Alt	=	Alt2	
																																																Az	=	Az2	
																																																Reposition()	
																																																print('Command	2	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								nowtime	=	
(float(datetime.now().year))+(float(datetime.now().month)/12)+(float(datetime.now().day)/365
)+(float(datetime.now().hour)/8760)+(float(datetime.now().minute)/525600)	
	
																								elif	(int(c)==3):	
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																																while	(nowtime<=time1)	or	(nowtime<=time2)	or	(nowtime<=time3):											
																																								if	(nowtime==time1):	
																																																Reset()	
																																																Alt	=	Alt1	
																																																Az	=	Az1	
																																																Reposition()	
																																																print('Command	1	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								elif	(nowtime==time2):	
																																																Reset()	
																																																Alt	=	Alt2	
																																																Az	=	Az2	
																																																Reposition()	
																																																print('Command	2	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								elif	(nowtime==time3):	
																																																Reset()	
																																																Alt	=	Alt3	
																																																Az	=	Az3	
																																																Reposition()	
																																																print('Command	3	has	been	completed.	\n')	
																																																time.sleep(60)	
	
																																								nowtime	=	
(float(datetime.now().year))+(float(datetime.now().month)/12)+(float(datetime.now().day)/365
)+(float(datetime.now().hour)/8760)+(float(datetime.now().minute)/525600)	
													
																								print('All	delayed	commands	have	been	completed.	\n	\n')	
																									
my_file.close()	
	
print('The	system	has	been	shut	down.')	
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