
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

8-2020

Beacon Aided Robotics for Martian Cave Mapping Beacon Aided Robotics for Martian Cave Mapping

Ryan Joseph Capozzi

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Aerospace Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/218?utm_source=repository.fit.edu%2Fetd%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages

Beacon Aided Robotics for Martian Cave Mapping

by

Ryan Joseph Capozzi

A thesis submitted to the College of Engineering and Science of

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Aerospace Engineering

Melbourne, Florida

August, 2020

We the undersigned committee hereby approve the attached thesis,

“Beacon Aided Robotics for Martian Cave Mapping.”

by

Ryan Joseph Capozzi

Markus Wilde, Ph.D.

Associate Professor

Aerospace Physics, and Space Sciences

Major Advisor

Hector Gutierrez, Ph.D.

Professor

Mechanical and Civil Engineering

Brian Kish, Ph.D.

Associate Professor

Aerospace, Physics, and Space Sciences

David Fleming, Ph.D.

Associate Professor and Department Head

Aerospace, Physics, and Space Sciences

iii

Abstract

Title: “Beacon Aided Robotics for Martian Cave Mapping”

Author: Ryan Joseph Capozzi

Advisor: Markus Wilde, Ph.D.

At present, lava tubes on the Moon and Mars have been left wholly unexplored. There are

many aspects of subterranean exploration that pose additional challenges over surface

exploration, and one of these issues is in localization. This project seeks to expand upon

the traditional communication beacon that is dropped behind a robotic operator in

subterranean environments and make low cost and low power modifications to increase

their functionality by making robot localization from these beacons possible. This has

been tested with the use of LED beacons that could be easily added to current solutions and

used for localization of the robot in areas that otherwise offer poor options for dead

reckoning or odometry. This thesis presents a low-cost camera array using modern

webcams and explores whether such a system can built with commercial off-the-shelf

parts. The webcams are compared with 10 mm and 18 mm lenses on a Canon T6, and the

system is used to calculate the global position and orientation of the array exclusively

using the visual targets. Using the Robot Operating System (ROS) and OpenCV machine

vision libraries, this project was able to detect the markers at ranges up to 5 m and angles

of 30°. Two versions of the visual beacon system are described and tested. This research

shows that while webcams still do not possess the required sensitivity and resolution for

determining the color of LEDs at range, low cost DSLRs are capable of discerning not only

location, but also the color of markers on such a system at range.

iv

Table of Contents

Table of Contents ... iv

List of Figures ... vi

List of Tables .. viii

Acknowledgement .. ix

Dedication ... x

Chapter 1 Background and Objectives .. 1
Objectives ... 1
Motivation .. 2
Background .. 4
Terrestrial Vs Martian Caves .. 4
Subterranean Mapping Robots .. 6
DARPA’s SubT Challenge .. 8
European Space Agency (ESA) Cave Exploration ... 9
The Robot Operating System (ROS) ... 10
OpenCV .. 11
Pantherbot .. 11
Photogrammetry .. 13
Limitations ... 13

Chapter 2 Theory ... 14
Ad-Hoc Networks .. 14
Network Implementation .. 16
Determining Azimuth and Elevation Angles from Pixel Values 17
The QUEST Algorithm ... 19
Converting from Local to Global Coordinates ... 25

Chapter 3 System Architecture .. 31
Visual Beacon Design .. 31
Camera Array .. 36
Programming Architecture .. 38
Target Tracking Node ... 39

Chapter 4 Experiment Setup .. 43
Preliminary testing .. 43
Primary Experiment ... 44

Chapter 5 Experimental Results and Data Analysis ... 46

Chapter 6 Lessons Learned ... 63

Chapter 7 Conclusion and Future Work ... 65

v

Conclusion .. 65
Future Work .. 66

References ... 68

Appendix A: Setting Up Raspberry Pi Communication Beacons 71
1. Getting Raspbian .. 71
2. Configuring Raspbian .. 71
3. Updating the card and getting B.A.T.M.A.N-adv .. 72

Appendix B: ROS Custom Messages ... 74
LEDPoints.msg .. 74
GlobalPos.msg ... 74
BotPositionQuat.msg ... 75

Appendix C: QUEST Algorithm – C++ ... 76

Appendix D: Beacon Tracking Node – Python ... 85

Appendix E: Local To Global Coordinate Transformation – Python 94

Appendix F: Camera Rectification – Python .. 99

vi

List of Figures

Figure 1: ESA Astronauts training inside a Lava Tube in Lanzarote during

PANGEA 2016 Course. Credit ESA/L.Ricci .. 5
Figure 2: Skylight Entrance into Lava tube: HIRISE: ESP_041380_1775 6
Figure 3: ESA Launching Flyability drone ESA Launching Flyability drone [18] . 10
Figure 4: Pantherbot ... 12
Figure 5: An example MANET network ... 14

Figure 6: Image Coordinates .. 17
Figure 7: 5 Point visual target numbering convention ... 20

Figure 8: Wi Vectors .. 22

Figure 9: Target and Global Coordinate Frames.. 26
Figure 10: Camera and Robot Coordinate Frames ... 29
Figure 11: IDSS Peripheral Docking Target [29] .. 31
Figure 12: V1 Visual Target .. 32

Figure 13: V2 beacon symmetry, all measurements are in mm 33
Figure 14: V1 in plane LED housing ... 34

Figure 15: V1 out of plane housing.. 34
Figure 16: Assembled V2 Visual Target .. 35
Figure 17: V2 LED housing ... 36

Figure 18: Spedal 920 dimensions ... 37
Figure 19: Spedal 920 hexagonal camera array ... 37

Figure 20: Completed Camera Array ... 38
Figure 21: Target Tracking Node ... 39

Figure 22: Image Analysis Workflow - (Top) input image, (Middle) masking

desired color, (Bottom) Image with mask overlay and blob detection 40

Figure 23: Filtered mask of straight on beacon, Numbered in QUEST system 41
Figure 24:Logic for determining color and location of marker 42
Figure 25: Closeup of Visual Beacon V1 .. 43

Figure 26: (Top Left) V1 Beacon - Dark (Top Right) V2 Beacon - dark, (Bottom

Left) V1 beacon bright (Bottom Right) V2 Beacon – Bright, captured with

webcam .. 44

Figure 27: Varying thickness paper for occlusion – (Top Left) housing only, (Top

Center) 1 sheet covering, (Top Right) 2 sheets covering, (Bottom Left) 3

sheets covering, (Bottom Center) 4 sheets covering, (Bottom Right) 5 sheets

covering .. 46
Figure 28: Foam with varying thickness paper for occlusion - (Top Left) foam only,

(Top Center) foam and 1 sheet covering, (Top Right) foam and 2 sheets

covering, (Bottom Left) foam and 3 sheets covering, (Bottom Center) foam

and 4 sheets covering, (Bottom Right) foam and 5 sheets covering 47

vii

Figure 29: V1 Red taken at 2 m, 5 m, and 7 m respectively, taken with webcam ... 48
Figure 30: V2 Beacon - Red. Images taken at 2 m, 5 m and 7 m respectively, taken

with webcam .. 50
Figure 31: Example Camera Rectification Photo... 51

Figure 32: Effect of Camera Rectification on equally weighted system at 1 m: alpha

= 0, 18mm lens ... 52
Figure 33: Effect of varying weights on error at 1 m without camera rectification,

18 mm lens ... 53
Figure 34: Camera Rectification on Best Weighted System at 1m, 18 mm lens 54

Figure 35: Error vs Angle at ranges 1m to 5 m, 18mm lens 55
Figure 36: Measured Angle at Varying Range 18mm lens 55
Figure 37: Effect of Varying Weights at 1 m, 10 mm lens 57

Figure 38: Effect of Varying Weights at 1 m, 10 mm lens 58
Figure 39: Measured at Varying Range 10 mm lens.. 58
Figure 40: Point Combination in 10 mm lens .. 60
Figure 41: Detection of Blue, Green, and Red Beacons respectively at 1 m, images

on the left are taken at 0°, images on the right are taken at 30°. 61

viii

List of Tables

Table 1: Camera Nomenclature ... 18

ix

Acknowledgement

I would like to thank my advisor Dr. Markus Wilde for his guidance and assistance

throughout the production of this work.

I would also like to thank my family and friends; it is their never-ending support and love

that helped me see through the stressful times and helped me to continue to push forward

when things seemed impossible.

For their assistance in this thesis, I would specifically like to thank my brother and sister,

for their assistance in double checking my wiring, and lending me their photography

knowledge and equipment.

Finally, and significantly, I’d like to thank my parents. Their support from day one has

helped me through countless challenges and taught me that hard work and good people can

make all the difference.

x

Dedication

I would like to dedicate this thesis to my grandmother, Pat Tassia. Your support and love

have been immeasurable and helped set me on the path I’m on today. I’m forever grateful

for the “Discover Mars” book you bought me, one of the first space books I’ve ever owned

and for all the articles that helped kindle my fascination with space and engineering.

1

Chapter 1

Background and Objectives

Objectives

The project presented in this thesis modifies visual navigation methods developed

for rendezvous and docking of spacecraft to enable a robot to maintain navigation

and communication within cave systems or lava tubes. By using a five-point

beacon similar to those used on the International Space Station, a robot can find its

position and orientation relative to a beacon defining the origin and axes of a global

coordinate frame. This enables the robot to avoid odometry drift and localizes the

robot in the global frame during its travel through the cave system.

In subterranean robotic exploration, systems which choose to have a base station

outside the environment they are exploring use mesh networks to transmit

information from the robot out of the cave. These networks can consist of many

nodes and are required to maintain communication through dead zones and around

features. This project seeks to augment these systems with a low cost, low draw

visual target. The inclusion of such a target increases the functionality of the

communication beacons by allowing robots to accurately localize without using

wheel odometry or simultaneous localization and mapping.

The objectives of this project are to:

2

1. Test the capability of low-cost commercial off the shelf imaging for use in

beacon tracking as compared against a Digital Single-Lens Reflex camera

(DSLR).

2. Determine the accuracy of a camera system using off-the-shelf image

processing libraries and the established QUEST relative navigation

algorithm in tracking a small self-lit beacon at distances between 1 m and 7

m, at viewing angles between 0° and 30°.

Motivation

The exploration of lava tubes on the Moon and Mars has the potential to both

advance scientific understanding of planets and moons as well as to serve as

relatively safe environments for future explorers to build habitats protected from

planetary weather, meteorites, and radiation [1]. In addition to providing protection

from the elements, caves and lava tubes tend to remain at more stable temperature

and may provide a good source of water ice [2]. These characteristics may permit

the simplification of habitats and provide protection for external support systems.

These same characteristics make caves a potential place to find evidence of

extraterrestrial microbiology [2]. The slow weathering rate of caves on Mars also

means that it may be possible that mineral deposits could survive tens of millions

of years [2]. This would allow scientists to look back to when the planet was both

warmer and wetter, more suitable for harboring life.

Due to skylights being the most common means of entry to Martian lava tubes, so

that a technically challenging vertical entry is required, Martian lava tubes have

been left unexplored. The future exploration of lava tubes faces numerous

challenges, most critically in the areas of navigation and communication for robots.

Without any knowledge of the exact characteristics of extraterrestrial lava tubes,

3

Earth analogues are commonly used to gain insight into what the first robots to

explore these lava tubes will experience. Current Simultaneous Localization and

Mapping (SLAM) technology can be confused by a lack of fine-scale features for

dead-reckoning. Terrestrial lava tubes are challenging for robotic mapping systems

because they may lack these dead-reckoning features, and frequently have floors

covered in fine sand [3]. This fine sand makes breaking traction with the floor

easier and causes low accuracy and increased drift of odometry measurements [3].

These two coupled issues make accurate mapping in lava tubes challenging for

robotic systems.

Many developments in robotics for use in subterranean environments have been

made with funding from mining companies, which have invested significantly into

underground communication and safety systems [4]. The frequent occurrence of

military operations in cave systems and tunnel systems in recent years have

resulted in additional government interest. DARPA’s Subterranean Challenge aims

to create robotic systems that will enable warfighters and first responders to map

and effectively search a variety of underground environments [5].

The problem of communicating underground has been explored by an extensive

body of research, and multi-hop communication networks have been tested both in

cave and mining environments [6]. This project seeks to take advantage of the

communication breadcrumb strategy by augmenting dropped communication

beacons with LEDs target patterns for daisy-chained navigation. The use of low

power LEDs causes power requirement of each communication beacon to increase

marginally, while offering far greater functionality and improving the ability of a

robot to localize itself.

4

Background

Terrestrial Vs Martian Caves

Lava tubes can form one of two ways. The first way occurs when low viscosity

lava flows close to the surface, developing a hard crust that will thicken to create a

roof above the moving lava below. At the end of the eruption, the lava can drain

out, leaving a cavity. The second way for lava tubes to form is by lava being

injected into existing fissures in rock, or into a cavity from previous flows. In this

case, lava expands and leaves a large network of connected galleries as it moves

toward the surface [7]. The creation of lava tubes on both Earth and Mars operates

in the same manner, with gravity having a significant effect on the size of lava

tubes [7]. On Earth, lava tubes can reach nearly 30 m (100ft) across, but on Mars,

due to its lower gravity, there is evidence of lava tubes that reach 250 m (820ft) in

width [8]. Lava tubes on Earth are already being used by ESA astronauts for

training, and their even larger size on other planets makes them strong candidates

for both scientific study and astronaut housing. Figure 1 shows the training of ESA

astronauts during cave training. Training future astronauts in caves exposes them

to geological research they may someday complete on the Moon or Mars.

5

Figure 1: ESA Astronauts training inside a Lava Tube in Lanzarote during PANGEA 2016

Course. Credit ESA/L.Ricci

For all types of lava tubes, entry will occur through a variety of openings. Some

will be quite large, while others will be small and blocked by debris, including

boulders and rock falls. Most candidate entrances are located at the site of a

collapse, so any human or robotic exploration will need to be able to move over

rough terrain to gain entry to the cave itself. Many of the entrances to lava tubes

we see are skylights, as shown in Figure 2 below [9].

6

Figure 2: Skylight Entrance into Lava tube: HIRISE: ESP_041380_1775

Within the lava tubes, one must expect to find fine sand at the bottom, as this has

been observed in Earth’s lava tubes [3]. The terrain will be largely rough and

uneven, gently sloping downhill, though flowing lava does have the ability to leave

smooth floors behind. However, these are all generalizations, and in some

locations on Earth, such as the blocky basaltic lava flows of the Columbia River

Basin, steep slopes and terracing occurs [10].

Subterranean Mapping Robots

The development of robots capable of mapping mines and cave systems is an active

field of research. Carnegie Mellon University has developed a robot that uses

incremental scan matching with a Markov field to create local maps, which later is

combined with lazy data association to better represent the global map. This

system was tested at two mines in Pennsylvania [11]. Currently, research into

subsurface communication has been largely associated with the needs of the mining

7

industry [4]. This, combined with the more controlled structure of mines, have

allowed a body of research to grow in this area. However, there are some

differences between mines and caves, largely in the regularity of distinguishing

features.

For cave mapping, multiple methods have been used, ranging from teleoperation

for areas with controlled lighting and direct supervision, as seen in

SmartCaveDrone, to autonomous systems using multiple robots [12]. In the case of

SmartCaveDrone, the goal was to provide a more efficient method of creating both

3D and 2D maps for use by researchers. It relies on receiving a qualitative map as

initialization, as well as direct human oversight for determining missed branches

and ending the scanning process. Another system proposed by researchers at

Carnegie Mellon University specifically for mapping planetary caves uses a multi-

robot framework to increase redundancy and extend mapping operations. One

suggested method is the use of a “parent” robot that moves many smaller robots,

known as children, to an area that they then map [13].

These multi robot approaches remain reliant on existing SLAM and odometry

methods of localization, and while some relative localization can be done, for

example of the children in relation to the parent robot, it still relies on the parent

robot’s SLAM and odometry measurements to be accurate before deploying

additional robots. The inclusion of a beacon allows such systems to maintain

accuracy regardless of the condition of the surface being traversed or the

availability of suitable dead-reckoning points for SLAM techniques.

Caves and mines also pose challenges for communication systems. Because caves

are non-uniform in density and radio absorption, it is difficult to predict signal

8

propagation and the communication range of a transceiver. The irregularly shaped

walls only add to this challenge and can cause dead zones and other surprising

effects. A group at University of Nevada was able to combat some of these

challenges by using multiple frequencies and breaking up essential and

nonessential communication [6]. A 5.8GHz Wi-Fi mesh network was used

alongside a 915MHz mesh network. Network nodes were deployed as

breadcrumbs to form a trail that could route signals to the base station outside the

cave. The use of breadcrumb style systems is common in subterranean exploration

and varies from simple communication spheres to fully autonomous robots that act

as mobile beacons. In one example, the lead robot “pulls” two other robots, whose

purpose is acting as mobile beacons, using simulated spring damper systems [14].

Experience shows that RF communications in caves face challenges such as

sometimes having better connection from the lead robot directly to the ground

station rather than through the physically nearer nodes of the mesh network [14].

DARPA’s SubT Challenge

In August 2019, DARPA hosted the first stage of the Subterranean Challenge

(SubT), one of the Grand Challenge competitions designed to further technology

that will assist the U.S. military’s strategic and tactical abilities [15]. To succeed in

the SubT Challenge, teams must demonstrate rapidly mapping, navigating and

searching three distinct underground environments. These include tunnel systems,

urban underground, and cave networks. The motivation is to develop robots for use

during time sensitive missions such as for combat or for disaster relief [16].

After the completion of the first challenge in the Systems Track, many teams

discussed the importance of maintaining communication with the robots, as the

9

mines can cause dead spots and multipath effects. As a result, mesh networks were

common. Because there is no pre-existing communication infrastructure in the test

circuit, teams create their own by dropping additional robots or beacons to act as

communication nodes. Team NCTV used pokeball-type “anchorballs” every 100

m, while team Cretsie used small tankbots to develop their communication

network. [16] Communication was a major key to success, and MARBLE, another

team competing in the challenge, said that over the course of a 60 minute run, these

beacon networks may save 10-15 minutes, by eliminating the need for robots to

exit the cave to update the ground station. [17]

European Space Agency (ESA) Cave Exploration

Similarly to NASA, the European Space Agency (ESA) has shown interest in using

robots to map caves on the Moon and Mars. During the CAVES-X1 mission, the

ESA tested a drone that deliberately bumps into the walls of tight sections in the

cave to build a map of the system [18]. This enclosed quadcopter, designed by

Flyability, was equipped with a thermal camera in conjunction with bumping into

the walls to find water in the cave system that was otherwise inaccessible to

researchers. ESA hopes that testing like this will help determine which

technologies will be suitable for mapping of Martian lava tubes. An image of the

Flyability drone in flight can be seen in Figure 3.

10

Figure 3: ESA Launching Flyability drone ESA Launching Flyability drone [18]

The Robot Operating System (ROS)

Due to the necessity of network communication in cave exploration, the Robot

Operating System (ROS) was chosen for this project. ROS is a middleware that

allows individual processes to be created as nodes. A node can be as simple or

complex as is necessary to complete its task and communicates with other nodes

through messages. These can be setup as either publisher/subscriber pairs or as

services. A publisher sends a message over the network, where many subscribers

can receive that information and operate on their own version. There is no

requirement for a node to be exclusively a publisher or subscriber, and for most

systems, a node will be both. In addition, due to its architecture, multiple

computers can all run on the same ROS network, allowing peer to peer

communication between robots and storage of data.

11

ROS also provides package management and currently works on the catkin

platform. Each package can contain multiple nodes, libraries, and datasets. When

creating a project, one or more packages will be created, and nodes will be written

within the new package. Additionally, the ROS framework has extensive support

and prewritten packages to assist developers in applications ranging from imaging

to robot control. The ROS distribution used in this project is ROS Indigo.

OpenCV

OpenCV is an open source computer vision and machine learning library. This

package provides algorithms and infrastructure to assist in computer vision

applications. As such, it can be used to take video, create masks, and stitch photos,

in addition it contains a significant number of computer vision algorithms for

object recognition. OpenCV is a fully developed system, and is used by many

corporations for facial recognition, self-driving vehicles, and robotics [19]. It caters

mostly to real-time vision applications and interfaces with C++, C, Python, and

Java. It works on Windows, Android, and Linux systems and can interface with

ROS using ROS’ vision_opencv toolbox.

Pantherbot

Florida Tech’s Pantherbot is an Adept Powerbot. Initially, this robot was to have a

camera array affixed to the top and driven through a closed course, localizing itself

using this project’s visual beacons. Therefore, its operating system, initially

running Ubuntu 12.04, was updated to Ubuntu 14.04 it to be compatible with ROS

Indigo. After updating the operating system, the most recent version of the ARIA

package was installed, as it allows control of the robot, in conjunction with

12

ROSARIA by commands sent through ROS. The ROSARIA package

communicates with Pantherbot using the ARIA framework through a server housed

within the robot. It allows control of the robot’s primary functions, including the

drivetrain and sensors. Pantherbot has been equipped with a SICK lidar unit, in

addition to bumpers and ultrasonic rangefinders, as well as a pan tilt forward facing

camera. For this project, a webcam array has been developed to provide a full 360°

viewing angle as a means of determining robot pose and orientation regardless of

its current heading, as presented in Chapter 3, System Architecture. To remove

obstructions from the camera view, and because the camera assembly has been

designed to sit on the top plate of the robot, the robotic arm previously mounted

and seen in Figure 4 has been removed.

Figure 4: Pantherbot

13

Photogrammetry

Photogrammetry is the process of finding information about physical objects in the

real world through images or video. There are many photogrammetry algorithms

that are used for the determination of attitude. For this project, the QUEST

algorithm was chosen as the algorithm calculating the attitude and range of the

camera relative to the target due to its lower computation cost and high-speed

solution [20]. Robots operating in caves will be operating for significant portions

of time without access to sunlight or other means of charging, and based on this

assumption, a low computation cost algorithm was chosen. The secondary

advantage of the QUEST algorithm over algorithms such as the TRIAD algorithm

is the lack of limitation on the upper limit of points used on a target. The TRIAD

algorithm limits the beacon to three markers, two in plane and one out of plane.

Limitations

Because this project is using visual beacons and cameras, there are a few

limitations. Due to the size of the visual beacon itself, there is a fixed maximum

range, initially planned for 10 m. Because this is a visual system, occlusion and

scattering due to dust or fog will require an increase in beacon size and intensity of

LEDs used. In addition, a design limitation is that it must avoid being heavily

draining on batteries for the communication system, which sets a theoretical limit

on the available brightness of the design.

14

Chapter 2

Theory

Ad-Hoc Networks

For robotic cave exploration, the size of a cave will almost certainly exceed the

transmission range of the robot-mounted antenna. Therefore, to reliably transmit a

signal from the robot to the base station from any point within the cave requires an

ad-hoc network protocol. An ad-hoc network is one that does not require pre-

existing infrastructure to run. As a result, it must not require a modem or router.

The lack of these two systems means that the network can be more easily deployed

in unknown environments and is robust against failure of individual

communication nodes due to the system’s ability to detect and operate on new

paths.

Figure 5: An example MANET network

In subterranean robotics, mesh networks are the primary method of extending

communication out of a cave. DARPA’s SubT challenge has many of the same

challenges that a robotic system will find when mapping Martian Lava Tubes. In

15

this project, a Mobile Ad-hoc NETwork (MANET) system is used. Teams have

reported that MANET networks are the primary way to communicate with their

robots from outside the cave during a challenge run. These networks are created by

dropping communication beacons as the robot progresses through the cave, and it is

these beacons that this project seeks to augment. MANET networks consist of only

equal peers and do not require a router to control data flow. In addition to using ad-

hoc protocols, these networks are characterized as having limited battery life and

bandwidth, as well as highly mobile nodes, leads to network maps such as in Figure

5. This additional characterization is important for this project, as the robot will be

communicating across many different nodes while exploring a cave system, and the

visual beacons designed in this project are not limited to use by a single robot at a

time. While a significant body of the research published on ad-hoc networking has

been accomplished using simulations, some researchers have established and tested

these networks using low cost computers, primarily Raspberry Pi’s [21]. In

addition, because each node is a fully functioning communication device, these

beacons can be equipped with expanded capabilities through sensors, allowing

them to become a scientific tool themselves. As there is no theoretical limit to the

size of a MANET network, this network could be expanded to allow for multiple

robots and base stations to communicate simultaneously.

There many protocols designed for MANET networks, including BABEL, AODV,

Optimized Link State Routing Protocol (OLSR), BATMAN, and others [21, 22].

These networks can be broken down into proactive, reactive, and hybrid types. In

proactive type, or distance vector type of networking, each node collects routing

information for all destinations in the network and keeps this table current through

exchanging route updates with other nodes. Reactive networks only find routes

when a connection is needed. This has the advantage of less network overhead, but

16

it has higher delay than active methods. Finally, hybrid type networks combine

methods of both proactive and reactive networks. The BATMAN network used in

this project is an example of a proactive network and was chosen because although

active networks have an increased cost of network maintenance, the network itself

has a higher throughput.

Network Implementation

For this project, a BATMAN-adv network is implemented to facilitate

communication between the base station and robot. This is an extension of the

BATMAN protocol, and allows all nodes to appear link-local, so that higher

operating protocols won’t be affected by network changes. The beacons

communicate using a Raspberry Pi 3b+ running Raspbian Buster and are

configured as shown in Appendix A. The base station and robot are equipped with

TP-link USB wireless antennas and configured by running a .sh file on each node.

Every device has been given a unique static IP-address, following the convention of

192.168.1.-/16 for nodes, and 192.168.2.-/16 for robots. This enables a Wireless

Local Area Network (WLAN) to be established between all nodes, even if the robot

moves out of range of the base station itself. BATMAN-adv was chosen in part

because of ease of installation, as it is supported by all modern Linux kernels, and

requires minimal setup. However, some studies have shown that in cases with

highly mobile nodes, other network architectures may outperform the BATMAN

architecture [23].

17

Determining Azimuth and Elevation Angles from Pixel

Values

To determine the angle of the light sources on each target, OpenCV is used. The

blob detection algorithm from OpenCV returns keypoints, from which y and z pixel

values are extracted. These y and z coordinates are then used to calculate the

azimuth (𝛼) and elevation (𝛽) angles with respect to the camera.

The process of determining the azimuth and elevation angles in the camera frame

are included below, with the variables used for depicted in Table 1.

Figure 6: Image Coordinates

18

Table 1: Camera Nomenclature

Variable Correlation

𝑎 Pixel diameter

𝑓 Focal length

𝑁 Number of image pixels in x axis

𝑀 Number of image pixels in y axis

𝜓𝑚𝑎𝑥 Field of view in x axis

𝜃𝑚𝑎𝑥 Field of view in y axis

𝑋𝑐 Y axis pixel coordinate measured from image center

𝑌𝑐 Z axis pixel coordinate measured from image center

𝑋𝑛𝑜𝑟𝑚 Normalized Y axis pixel coordinate measured from image

center

𝑌𝑛𝑜𝑟𝑚 Normalized Z axis pixel coordinate measured from image center

The first step in determining each marker’s position relative to the camera is to

determine the camera’s field of view. The DSLR used in this project is a Canon

T6, and many of the specifications needed for the equations below are available

online. The equations for calculating the camera’s field of view are as follows. [24]

𝑡𝑎𝑛𝛼𝑚𝑎𝑥 =
1

2

(𝑁 𝑎)

𝑓

(1)

𝑡𝑎𝑛𝛽𝑚𝑎𝑥 =
1

2

(𝑀 𝑎)

𝑓

(2)

However, OpenCV’s reference frame is from the top left of an image, and the

angles calculated in this project are relative to the center of the camera image. To

get an accurate angle relative to the camera, it is necessary to shift each point into a

19

central axis. The positive y axis increases as a point moves to the right across the

image which must be flipped to follow the convention used later for the target.

However, the z axis initially points down as intended. This behavior is what causes

equations (3) and (4) to differ.

𝑌𝑐 = 𝑋 −
𝑁

2

(3)

𝑍𝑐 =
𝑀

2
− 𝑌

(4)

These points, now in the desired frame can be normalized before being converted to

the final azimuth and elevation angles.

𝑌𝑛𝑜𝑟𝑚 = 𝑌 −
𝑁

2

(5)

𝑍𝑛𝑜𝑟𝑚 =
𝑀

2
− 𝑍

(6)

𝛼 =
2𝑌𝑛𝑜𝑟𝑚

𝑁

(7)

𝛽 =
2𝑍𝑛𝑜𝑟𝑚

𝑀

(8)

The QUEST Algorithm

The QUaternion ESTimator (QUEST) Algorithm is commonly used for

determining the orientation of a chaser spacecraft with respect to a five-point target.

Traditionally the chaser is the spacecraft actively docking, and the target is placed

on the passive spacecraft. An example of this is docking with the International

Space Station. The ISS docking adapter has markings that allow for visual attitude

determination, similarly to this project, and the docking spacecraft is denoted as the

chaser. For this project, the target is depicted in Figure 7 below, and the robot

20

plays the role of the chaser. Because the QUEST Algorithm calculates the

orientation of the chaser in quaternions, it bypasses some of the limitations of using

Euler angles, namely the singularity that occurs when the second Euler angle aligns

the first and third rotation axes. The first step in calculating the position of the

robot relative to the target is to find the range to the target. This is done using the

Inverse Perspective Method [25, 26, 27].

Figure 7: 5 Point visual target numbering convention

A five-point target has a set of three markers along the vertical axis, and a set of

three markers along the horizontal axis. Both sets can be used in the Inverse

Perspective Method to derive a range value. In the algorithm developed for this

project, the range value generated is the average of the vertical and horizontal

values. Following the QUEST algorithm numbering in Figure 7, the horizontal

marker set is comprised of 2, 1, and 3, and the vertical set of points 4, 1, and 5. For

the QUEST algorithm, the subscript i ranges from 1 to 5. The following equations

1

2

3

5

y

z

x

4

21

(9) - (13) make up the unit vector 𝒓̂𝒊, the direction vector from the camera to point i

on the target.

𝒓̂𝑖(1) = − cos(𝛼𝑖) cos(𝛽𝑖) (9)

𝒓̂𝑖(2) = − sin(𝛼𝑖) (10)

𝒓̂𝒊(3) = − cos(𝛼𝑖) sin(𝛽𝑖) (11)

In the above equations, 𝛼𝑖 is the azimuth angle of the ith source from the chaser’s

camera along the -Y direction, and 𝛽𝑖 is the elevation angle of each source from the

camera along the – Z direction.

After finding the unit vectors to each of the targets, the dot product is used to find

the cosine of the angle between each pair of vectors in the set.

𝑐𝑜𝑠𝜃12 = 𝒓̂𝟏 ⋅ 𝒓̂𝟐 (12)

𝑐𝑜𝑠𝜃23 = 𝒓̂𝟐 ⋅ 𝒓̂𝟑 (13)

𝑐𝑜𝑠𝜃13 = 𝒓̂𝟏 ⋅ 𝒓̂𝟑 (14)

Given known lij, the distance from marker i to marker j in target space, the coupled

non-linear equations below can be used to determine the range from the camera to

each source. The range from the camera to source i is denoted by Ri, and 𝜃𝑖𝑗 is the

angle between unit vectors 𝒓̂𝒊 and 𝒓̂𝒋. Equations (15) through (17) below are solved

together using the Newton Raphson method.

𝑙12
2 = 𝑅1

2 + 𝑅2
2 − 2𝑅1𝑅2𝑐𝑜𝑠𝜃12 (15)

𝑙23
2 = 𝑅2

2 + 𝑅3
2 − 2𝑅2𝑅3𝑐𝑜𝑠𝜃23 (16)

22

𝑙13
2 = 𝑅1

2 + 𝑅3
2 − 2𝑅1𝑅3𝑐𝑜𝑠𝜃13 (17)

The vectors 𝒘𝒊 are the vectors from the lateral markers 𝑖 to the center marker,

expressed in the camera frame. Therefore, 𝒘𝒊 is calculated by as in equation (18).

The vector 𝐯𝐢is the vector between marker 1 and i. This vector is in the target

frame and is known from the geometry of the target itself. The vectors 𝒘𝒊 and 𝐯𝐢

represent the same vectors, with 𝐯𝐢 representing them in the target frame and 𝒘𝒊

representing them in the camera frame.

Figure 8: Wi Vectors

𝒘̅𝒊 = 𝑅1 ∗ 𝒓̂𝟏 − 𝑅𝑖+1 ∗ 𝒓̂𝒊+𝟏 (18)

After calculating the 𝒘𝒊 vectors, it is possible to begin solving the QUEST

algorithm. Using a set of n vector measurements made in the spacecraft frame,

denoted as 𝒘𝒊 and 𝐯𝐢 vector measurements made in the target frame, a least squares

1
2

3

5

𝒘𝟏

4

𝒘𝟐

23

estimate of the robot’s attitude can be determined by finding the direction cosine

matrix A which minimizes the quadratic cost function J(A).

𝐽(𝐴) =
1

2
∑ 𝑎𝑖‖𝒘𝒊 − 𝑨𝐯𝐢‖

𝑛

𝑖=1

(19)

The loss function can be scaled without affecting the determination of the optimal

A matrix. In the above function, 𝑎𝑖 is a positive weight assigned to each

measurement. Because scaling the loss function does not affect the determination

of the direction cosine matrix, ai can be constrained by the following.

∑ 𝑎𝑖 = 1

𝑛

𝑖=1

(20)

Because the error corresponding to each element is unknown, and there were 4

measurements taken for each calculation of the QUEST algorithm, 𝑎𝑖 was tuned to

account for accuracy difference between horizontal and vertical measurements, as

discussed in Chapter 5. The cost function 𝐽(𝑨) is next transformed to be expressed

as a function 𝑔(𝑨) to be maximized, as seen in equation (21) below.

𝑔(𝑨) = 1 − 𝐽(𝑨) (21)

This is then expressed in quaternion form, denoted by 𝜇:

𝜇(𝒒) = 𝑔(𝑨(𝒒)) (22)

24

The goal now is to maximize the 𝜇 function. It can be shown that the quaternion

that maximizes this function follows the below form:

𝜇(𝒒̅) = 𝒒𝑇𝑲𝒒 (23)

The solution of K has the following parts:

𝜎 = ∑ 𝑎𝑖𝒘𝒊
𝑻𝒗𝒊

𝑛

𝑖=1

(24)

𝑆 = ∑ 𝑎𝑖(𝒘𝒊𝒗𝑖
𝑇 − 𝒗𝒊𝒘𝒊

𝑻)

𝑛

𝑖=1

(25)

𝒛̅ = ∑ 𝑎𝑖(𝒘𝒊 × 𝒗𝑖)

𝑛

𝑖=1

(26)

𝑲 = [
𝑺 − 𝜎 ∗ 𝑰𝟑𝒙𝟑 𝒛

𝒛𝑇 𝜎
]

(27)

Using the Gibbs vector corresponding to the quaternion can avoid using more

computationally complex methods and leads to a solution accurate to the second

order of the measurement error. These vectors have a singularity at 180°, and

because this is outside the viewing angle of the camera, such a singularity is not a

concern in this project. As noted by Schuster, 𝜆𝑚𝑎𝑥, is close to 1, which permits

the simplification of the Gibbs vector to:

𝒈 = [(1 + 𝜎)𝑰𝟑𝒙𝟑 − 𝑺]−1𝒛 (28)

Which expressed as a quaternion is

25

𝒒 =
1

√1 + ‖𝒈‖2
[
𝒈
1

]
(29)

Converting from Local to Global Coordinates

After receiving range and attitude data of the camera with respect to a target from

the QUEST algorithm, the target’s LED color and the camera number are

incorporated to convert the camera’s attitude and position in the target frame to the

robot’s position in the global frame. This is achieved by using a sequence of three

homogeneous transformation matrices. Each homogeneous transformation matrix

has the form shown in (30).

𝑻 = [
𝑹3𝑥3 𝒍1𝑥3

0 ⋯ 1
]

(30)

Each homogeneous transformation matrix is made up of two parts, a rotation matrix

R and a translational offset vector l. The matrix R rotates the current coordinate

system such that its axes align with the coordinate system of the next frame, and l

describes the vector between the origins of the two systems in the current frame. In

this project, the first matrix, T1, rotates and translates from the global frame into the

target frame. Each visual beacon consists of 4 targets, denoted by 4 different color

LEDs.

26

Figure 9: Target and Global Coordinate Frames

For the purposes of this project, the blue target has been defined as the X axis of

the global frame. As shown in Figure 9, the beacon maintains the convention of

having the Z axis point downward. Rotating clockwise, the green, red, and yellow

targets are offset by
𝜋

2
, 𝜋, and

3𝜋

2
 radians respectively. In addition, each target has a

translational offset denoted by the vector lt. The distance from the front of marker

1, the out of plane marker, of each target and the beacon is 140 mm. This distance

is denoted as dt. In calculating lt, 𝜃 is the same angle used in the rotation matrix,

and is calculated as shown by equation (31). The rotation between target and

beacon coordinates occurs about the Z axis, and its rotation matrix is as follows in

(32).

Xg

Yg

Zg

Xt

Zt

Yt

lt

27

𝒍𝒕(𝜃) = [
𝑑𝑡 ∗ cos (𝜃)
𝑑𝑡 ∗ sin (𝜃)

0

]

(31)

𝑹𝒛(𝜃) = [
cos (𝜃) −sin (𝜃) 0
sin (𝜃) cos (𝜃) 0

0 0 1

]

(32)

𝑻𝟏 = [

cos(𝜃) − sin(𝜃) 0 dt ∗ cos(𝜃)

sin(𝜃) cos (𝜃) 0 dt ∗ sin (𝜃)
0 0 1 0
0 0 0 1

]

(33)

The second transformation matrix uses the calculated quaternion orientation of the

camera to generate a direction cosine matrix. The calculated range from the target

is also received and denoted dc. Given that the quaternion follows the convention

in (34), the direction cosine matrix can be calculated for any quaternion by using

equation (35). The quaternion has two components, a vector consisting of the X,

Y, and Z axis components, and a scalar. The X, Y, and Z values form the vector

component, and the w component is a scalar that defines the amount of rotation

about the vector part. [28]

𝒒 = [

𝑞𝑤

𝑞𝑥

𝑞𝑦

𝑞𝑧

]

(34)

𝑨(𝒒) = [

(𝑞𝑤
2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2) 2(𝑞𝑥𝑞𝑦 + 𝑞𝑤𝑞𝑧) 2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦)

2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑧) (𝑞𝑤
2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2) 2(𝑞𝑦𝑞𝑧 + 𝑞𝑤𝑞𝑥)

2(𝑞𝑥𝑞𝑧 + 𝑞𝑤𝑞𝑦) 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥) (𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2)

]

(35)

Calculating the offset vector is more involved than in T1 and is completed using the

following transformation. The direction cosine matrix A(q) transforms the vector

between the target to the camera (hence along −𝒓̂1) from the camera coordinates

into target coordinates.

28

𝒍𝒄 = 𝑨(𝑞) ∗ (−𝑅1 ∗ 𝒓̂𝟏) (36)

This information allows for the construction of the second transformation matrix as

in (37).

𝑻𝟐 = [
𝑨(𝒒) 𝒍𝑐

0 ⋯ 1
]

(37)

The final homogeneous transformation matrix is between the camera and the robot.

It takes into account the number of cameras in the sensor, for the purposes of this

project the sensor consists of 6 cameras. Following the same convention as the

camera, the x axis of the robot points forward, and the z axis points down. As a

result, when calculating the rotation between the camera, whose X axis points

directly backward, and the robot, whose X axis faces directly forward, the angle 𝜃

must be rotated by 𝜋. By following the same convention as when calculating T1,

the calculation of the final matrix is trivial. Using a hexagonal camera array, 𝜃

increments from 0 to 2𝜋 by the following equation. The camera number, C, has a

range from 0 to N-1, where N is the number of cameras in the array – for this

project N is equal to 6, but can be changed as needed.

𝜃𝑐 = 𝐶 ∗
(𝑁 − 2) ∗

𝜋

2

𝑁
+ 𝜋

(38)

𝑹𝑧(𝜃) = [
cos (𝜃) −sin (𝜃) 0

sin (𝜃) cos (𝜃) 0
0 0 1

]

(39)

29

As 𝒍𝑟 is the vector between the origin of the camera frame and the robot frame, and

the cameras are assembled such that they are facing directly out from the center of

the robot, 𝒍𝑥 is only in the positive X direction. This is due to the camera’s

reference frame having its X axis pointing directly out the back of the camera.

Figure 10: Camera and Robot Coordinate Frames

In this case, the distance from the front of the camera to the center of the array is

200 mm.

𝑻3 = [

cos(𝜃) − sin(𝜃) 0 darray

sin(𝜃) cos (𝜃) 0 0
0 0 1 0
0 0 0 1

]

(40)

It is assumed that the center of the camera array is located at the center of the robot,

however, if this were not the case, a modification of the T3 matrix to accommodate

additional transformations would be necessary.

Xr

Yr

Zr

Xc

Yc

Zc

30

Finally, to convert the robot’s location to the global frame, the three homogeneous

transformation matrices must be multiplied together. To retrieve the position of the

robot, the l vector can be retrieved from 𝑻𝟏
𝟑, and the robot’s heading can be

returned using the rotation matrix. This matrix can then be converted to yaw, pitch,

roll, or back into a quaternion definition.

𝑻𝟑
𝟏 = 𝑻𝟏𝑻𝟐𝑻𝟑 (41)

31

Chapter 3

System Architecture

The physical system consists primarily of two main subsystems: the visual

navigation targets and the camera system. Each target consists of 5 LEDs in a

standard pattern, shown in Figure 16. The LEDs used in each target area single

color, and 4 targets are arranged with a 90° rotation to create a full 360° beacon.

The sides of the beacons are differentiated by using 4 different color LEDs. The

second system is a set of webcams that are arranged such that they form a 360°

field of view around the robot itself.

Visual Beacon Design

The five point visual target adapts a design commonly used for visual docking

targets for spacecraft rendezvous systems. A similar system is used on the

International Space Station’s International Docking System Standard (IDSS). In

this standard, the peripheral docking targets are located in the ring around the

tunnel and are of a 4 point design depicted in Figure 11.

Figure 11: IDSS Peripheral Docking Target [29]

32

Each target is 3d printed along with a housing for each LED. Four LEDs are

arranged in a plane with a fifth out of plane LED. In the V1 design, all LEDs are

affixed to the end of 5 equal length 45mm arms. In the V2 version, to allow better

vision at higher rotation angles, four in plane markers are equally offset from the

center of the beacon, as shown in Figure 13 below. The out of plane marker is

46mm forward of the in-plane LEDs.

Figure 12: V1 Visual Target

33

Figure 13: V2 beacon symmetry, all measurements are in mm

There were two versions tested following the same convention, one with LEDs

facing parallel to their respective arms and one such that all LEDs faced out toward

the camera. This was done to test the impact of the orientation of the lights as well

as different housing methods. In the first version, with the lights parallel to each

arm, two different housings were created, one for each of the in-plane markers and

one for the out of plane marker.

34

Figure 14: V1 in plane LED housing

Figure 15: V1 out of plane housing

In the second version, each LED was rotated to face the camera using an elbow

attached to another standard base. An elbow was used for ease of assembly and

35

was friction fit to both the base and LED housing. For this design, due to the

uniform orientation, the V1 out of plane housing seen in Figure 15 was modified

for easier assembly as well as space for a thicker piece of foam to diffuse the light.

The length of each arm on this base was increased from 45 mm per side to 60 mm,

with an additional 10mm per side being added by the elbow. This was done as a

result of testing the V1 housing and finding that despite being large enough for the

webcam to detect, the intensity of the LEDs caused the center LED to blind the

camera enough that side LEDs became nearly invisible. In addition, this second

version’s larger side length and marker gives higher accuracy and visual acuity at

range.

Figure 16: Assembled V2 Visual Target

36

Figure 17: V2 LED housing

Camera Array

Two webcams were tested for the array and weighed against one another for cost.

The Spedal 920 and the Logitech C270. Both stream in HD, however the Spedal is

more expensive, but comes with a 120° diagonal field of view as opposed to the

Logitech’s 60° field of view. As a result a completed sensor array using the Spedal

920 webcam was more compact. Due to the geometry of the cameras a blind spot

is unavoidable, as is some visual overlap. Using a hexagon, as shown in Figure 19

of the Spedal camera below, the blind spot between cameras was reduced to 507

mm from the center of the array to the overlap between visual frames. The Spedal

920’s dimensions are highlighted in Figure 18.

37

Figure 18: Spedal 920 dimensions

Figure 19: Spedal 920 hexagonal camera array

38

Due to the Logitech’s smaller field of view it required nearly twice as many

cameras to create a full view and to take advantage of the lower unit cost an

actuation system would be required. In practice, the array was built using closed

cell foam, and each camera affixed by cutting a hole in the foam just large enough

to fit the tongue generally used for attaching the camera to the top of a screen.

Figure 20: Completed Camera Array

Programming Architecture

Three separate ROS nodes were written for this project, each consisting of an

individual program. These nodes each handle a specific aspect of localizing the

robot, and are broken up as follows, one node handles the QUEST algorithm, a

second runs the target tracking algorithm, and a third converts from the target’s

reference frame to the global reference frame. Three custom message types

accompany these nodes to send pertinent information between each aspect of the

system. The LEDPoints message consists of information coming from the target

tracking node, including the camera’s number in the array, LED positions, and

LED color. The LEDPoints message follows the QUEST algorithm numbering

convention, previously depicted in Figure 7. The LED color identifies the side of

the beacon that the robot is currently on, and the camera number allows for post-

39

QUEST rotation of the direction of heading of the robot. The second message,

BotPositionQuat, transmits the unit vector of the range from the camera to the

center marker, R1 – the range from the center marker to the camera, and the

quaternion that defines the orientation of the camera frame in the target frame. The

final message, GlobalPos, defines the robot’s position in the global frame. This

includes the roll, pitch, and yaw of the robot and its global Cartesian coordinates.

Target Tracking Node

The target tracking node takes in the camera number and camera input, and outputs

the LEDPoints message. This node follows the logic in Figure 21 determine the

location of each marker as azimuth and elevation angles in the camera frame.

Figure 21: Target Tracking Node

Once implemented, the logic translates to the set of images in Figure 22.

Get
Frame
from

Camera

Convert
Image to

HSV

Mask
Image for

each
color

Run Blob
Detection

Publish
Message

40

Figure 22: Image Analysis Workflow - (Top) input image, (Middle) masking desired color,

(Bottom) Image with mask overlay and blob detection

41

Between the blob detection and message publishing, a few operations need to

occur. First, the program must check if there are 5 blobs within the expected pixel

range. If no target is in view, the camera is not presently facing a beacon. For

example, in the red frame, there may be 2 blobs detected from background or light

from that target reflecting toward the camera, but as the robot is facing the green

target, 5 blobs will be visible. Because only two blobs are detected on the red

frame, these will not be published to the LEDPoints message, and are ignored.

Only the coordinates of the 5 markers detected in the green frame will be

published.

Figure 23: Filtered mask of straight on beacon, Numbered in QUEST system

After determining which side of the beacon the camera is on, the markers must be

sorted to follow the QUEST Convention. Sorting occurs as follows: the marker

with the greatest elevation is marker 4, and the lowest elevation is marker 5. The

42

three remaining markers, from least to greatest azimuth are 2,1, and 3. This is

illustrated in Figure 23. The simpleblobdetect algorithm returns the keypoint type,

which contains information not required for this project such as blob size and

angle. Therefore, before sorting the points, x and y pixel values are extracted the

returned keypoints. These pixel values are sorted, normalized, and converted using

field of view and focal length to azimuth and elevation angles. Both azimuth and

elevation angles have been calculated in radians to maintain a consistent unit base

across ROS nodes.

Figure 24:Logic for determining color and location of marker

43

Chapter 4

Experiment Setup

Preliminary testing

A number of different tests were conducted to determine the ability of a webcam to

pick up on the visual beacon. The test cases were designed to be of increasing

difficulty. The first test utilized a webcam in a controlled environment to detect not

just the brightness of the LED but to actually sense its color. In this test the beacon

was placed 150 mm from the webcam and images were taken of each color for use

in determining threshold values, intensity requirements, and filtering needs. This

was done in both ambient light as well as in darkness.

Figure 25: Closeup of Visual Beacon V1

The second experiment positions the webcam at 2 m, 5 m and 10 m from the target

and takes images with both the lights on and off to determine whether a low-cost

webcam can be used for beacons at this range. This was done twice, once for each

beacon and was replicated with a DSLR camera with a 18 mm lens, 6400 ISO and

44

5.4 mm aperture. Shutter time was 1/60 of a second and remained unchanged

between light and dark rooms.

Figure 26: (Top Left) V1 Beacon - Dark (Top Right) V2 Beacon - dark, (Bottom Left) V1

beacon bright (Bottom Right) V2 Beacon – Bright, captured with webcam

Primary Experiment

The primary experiment is conducted to determine the accuracy of the visual-

beacon system at various ranges. When conducting the experiment, a reference

measurement is first taken of both range from LED 1 on the target as well as the

angle of the beacon with respect to the camera. Then the lights are turned off and

45

an image taken. Measurements were taken from 0° to 30° in 5° increments and

range was varied from 1 m to 5 m in 1 m increments. This allows for an accurate

representation of the accuracy of the project in various configurations. All images

were taken on the V2 beacon with a Canon T6 DSLR camera with a wide-angle

lens. The images were taken with the same specifications as in preliminary testing,

1/60 sec shutter speed, 6400 ISO, and 18 mm lens.

46

Chapter 5

Experimental Results and Data Analysis

From the tests done in initial experiment, it was quickly discovered that though

using OpenCV makes it trivial to detect the brightest points in an image and

similarly simple to detect the color of an object given controlled lighting, the low

cost webcam has difficulty in not becoming overexposed by the LEDs, and

therefore losing all color information. In addition, these webcams are incompatible

with OpenCV’s and other camera utilities’ controls, including exposure control,

and as a result, cannot be forced to underexpose the rest of the picture to retain the

color of the LEDs. Therefore, tests were run with varying level of intentional

occlusion of the LED, including using semi-opaque foam and colored printer paper

to reduce the harshness of the LEDs themselves. The effects of covering the front

of the housing with various thicknesses of paper is highlighted in Figure 27.

Figure 27: Varying thickness paper for occlusion – (Top Left) housing only, (Top Center) 1

sheet covering, (Top Right) 2 sheets covering, (Bottom Left) 3 sheets covering, (Bottom

Center) 4 sheets covering, (Bottom Right) 5 sheets covering

47

Because the paper alone leaves a very bright spot over the LED itself, the semi-

opaque foam was added to better disperse the light coming from the LEDs before

reaching the paper. The effect of the foam is displayed in Figure 28. The foam

helped reduce the sharpness of the LED, making the marker larger. These tests

were run only in the V1 front housing, and lessons learned from V1 were applied to

the V2 housing. With the later inclusion of a dimmer, a single piece of colored

paper was used in V2 for occlusion in conjunction with the semi-opaque foam.

Figure 28: Foam with varying thickness paper for occlusion - (Top Left) foam only, (Top

Center) foam and 1 sheet covering, (Top Right) foam and 2 sheets covering, (Bottom Left)

foam and 3 sheets covering, (Bottom Center) foam and 4 sheets covering, (Bottom Right) foam

and 5 sheets covering

In the second experiment, it became apparent that the V1 target was inferior to the

V2 when comparing side marker visibility. At only 5 m, the webcam had difficulty

seeing the beacons, and at 7 m they became indiscernible from the background.

Furthermore, despite being tuned for visibility at very close range, the LEDs still

became overexposed by the webcam, and determining LED color became

impossible. While it was possible to determine the locations of LEDs at 2 m,

48

distinguishing color for the in-plane LEDs was challenging, and upon increasing

the range to 5 m, the webcam could no longer distinguish between colors at all. At

7 m the webcam’s resolution was too low to successfully differentiate between the

different markers on the target.

Figure 29: V1 Red taken at 2 m, 5 m, and 7 m respectively, taken with webcam

49

When testing the V2 target in the second experiment, it became clear that the

greater size and equal brightness across all LEDs in a target provides drastically

increased acuity. This is the case for both the webcam and the DSLR, though the

DSLR’s greater sensitivity was able to pick up the V1 beacon as well. This

difference becomes apparent when viewing the V2 beacon. During this test, the

webcam is more than capable of detecting the target, however, it is unable to

distinguish color accurately, and as distance increases, it quickly becomes unable to

differentiate between the markers themselves.

50

Figure 30: V2 Beacon - Red. Images taken at 2 m, 5 m and 7 m respectively, taken with

webcam

Camera rectification was tested with varying numbers of references images, of

which an example is included in Figure 31. These image sets, taken with an 18mm

lens, varied from 46 input images to 299 images. Not every image was a successful

51

match, and as a result the number of images interpreted in this step was somewhat

lower.

Figure 31: Example Camera Rectification Photo

The results of different camera rectification steps on an equally weighted QUEST

system (a = 0.25,0.25,0.25,0.25) at 1 m can be seen in Figure 32 below. The

equally weighted system causes the measured angle to be significantly less than the

actual angle, and the camera rectification does little to assist this step. Setting

alpha equal to 0 in the calibration function causes the removal of some pixels near

the corners of the image.

52

Figure 32: Effect of Camera Rectification on equally weighted system at 1 m: alpha = 0, 18mm

lens

Modifying the weights of the horizontal and vertical measurements in the QUEST

algorithm was significantly more successful in reducing the error between the

actual and measured angle of the target. Figure 33 shows the effect of different

weights without camera rectification at 1 m.

-2

-1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30C
al

cu
la

te
d

 A
n

gl
e

(d
eg

re
es

)

True Angle (Degrees)

Effect of Camera Rectification: alpha = 0

No Camera Rectification 46 image Rectification, alpha = 0

129 Image Rectification, alpha = 0 226 Image Rectification, alpha = 0

299 Image Rectification alpha = 0

53

Figure 33: Effect of varying weights on error at 1 m without camera rectification, 18 mm lens

Percent error was calculated using equation (42).

%𝐸𝑟𝑟𝑜𝑟 =
|𝑇𝑟𝑢𝑒 𝐴𝑛𝑔𝑙𝑒 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐴𝑛𝑔𝑙𝑒|

𝑇𝑟𝑢𝑒 𝐴𝑛𝑔𝑙𝑒
∗ 100

(42)

The lowest error was achieved by lowering the weights of the horizontal

measurements to 0.05, and increasing the vertical measurement weights to 0.45.

After finding the weights that gave the lowest measurement error, the camera

rectification was again attempted, with much better results than for the equally

weighted system. Using the 226 image camera rectification with an alpha of one,

which avoids the deletion of pixels near the edge of the image for rectification

purposes further increased accuracy. The inclusion of the image rectification on

the weighted system lowered the measured error at 1 m from 30% to 14%. Figure

34 shows the effect of adding the camera rectification from a 226 image

rectification set on the accuracy of the system.

0

20

40

60

80

100

120

5 10 15 20 25 30

%
 E

rr
o

r

True Angle (Degrees)

Effect of Varying Weights at 1 m

[0.25,0.25,0.25,0.25] [0.2,0.2,0.3,0.3] [0.15,0.15,0.35,0.35]

[0.1,0.1,0.4,0.4] [0.05,0.05,0.45,0.45] [0.3,0.3,0.2,0.2]

54

Figure 34: Camera Rectification on Best Weighted System at 1m, 18 mm lens

The error profile remains the same as what is experienced by the weighted system,

with 5° true angle having a higher error than all other angles. However, the

rectification on an already weighted system significantly lowers the error in the

system at all tested angles.

0

5

10

15

20

25

30

35

40

5 10 15 20 25 30

%
 E

rr
o

r

True Angle (Degrees)

Inclusion of Camera Rectification on Best Weighted
System

226 image rectification: alpha = 1 No Camera Rectification

55

Figure 35: Error vs Angle at ranges 1m to 5 m, 18mm lens

Figure 36: Measured Angle at Varying Range 18mm lens

As highlighted in Figure 35, the highest error occurred at 5°, an effect that was

consistent for all ranges tested. As expected from an image-based approach,

increasing the distance between the camera and target also increased the average

error of the system. However, at 2 m and 5 m, the measured angle at 5°

0

100

200

300

400

500

5 10 15 20 25 30

%
 E

rr
o

r

True Angle (degrees)

Error Vs Angle at Varying Range

1m 2m 3m 4m 5m

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30

C
al

cu
la

te
d

 A
n

gl
e

(d
eg

re
es

)

True Angle (degrees)

Measured Angle Vs Range

1m 2m 3m 4m 5m

56

experienced an exceptional amount of error. At 2 m, the measured angle was

0.445°, an error of 91%, and at 5 m the system measured an angle of 27°, an error

of 444% off the actual value.

At 5m the system experiences large error at 5° and is largely incapable of

determining angle relative to the target. The system measures an angle of between

12.88° and 13.8° for actual angles from 10° to 25°, displaying a lack of ability to

find its orientation. However, range calculations at 5m average to 4.885 m, an error

of only 2.3%. The Newton Raphson method used to calculate range is still accurate

for this system at 5 m. Other QUEST methods such as REQUEST, a recursive

QUEST algorithm that considers past elements [26], or a Newton Raphson method

can be used to further refine the calculated angle and further testing with these

methods is needed to improve on measured angles and overcome the errors that

enter the system at 5 m.

When testing the 10 mm lens, similar results were obtained when modifying the

weighting factors of each measurement. As is true for the 18 mm lens case,

reducing the weight of the horizontal measurements reduced the error of the system

considerably. In addition, this also caused the 10 mm lens to have a flatter error

curve than the 18 mm lens when tested at 1 m. The effect lowering the weights of

the horizontal measurements has on the error of the system can be seen in Figure

37.

57

Figure 37: Effect of Varying Weights at 1 m, 10 mm lens

Though the error profile of the 10 mm lens differs slightly from the 18 mm lens, it

still benefits from the same lower weighting factor for the horizontal

measurements. The use of this factor in the 10 mm lens flattens the error curve at

an average of 13.05% at 1 m, however this drops off more quickly as range

increases, leading to multiple markers combining into a single point or having

points being removed from the mesh. Point combination occurred at 4 m after

turning down the erode function to receive data, and to get any data at 5 m, the

close function, used to reduce background noise, was turned off. Even so, the data,

though marginally better than the 18mm lens at 1 m quickly deteriorated, and at 3m

the algorithm calculated its relative rotation at between 10° and 13° for all true

rotation angles greater than 10°. The deterioration in estimation quality is apparent

in Figure 39.

0

20

40

60

80

100

120

140

160

180

5 10 15 20 25 30

%
 E

rr
o

r

True Angle (Degrees)

Effect of Varying Weights at 1m

[0.25,0.25,0.25,0.25] [0.2,0.2,0.3,0.3] [0.15,0.15,0.35,0.35]

[0.1,0.1,0.4,0.4] [0.05,0.05,0.45,0.45] [0.3,0.3,0.2,0.2]

58

Figure 38: Effect of Varying Weights at 1 m, 10 mm lens

Figure 39: Measured at Varying Range 10 mm lens

-10

-5

0

5

10

15

20

25

30

0 5 10 15 20 25 30M
ea

su
re

d
 A

n
gl

e
(D

eg
re

es
)

True Angle (Degrees)

Effect of Varying Weights at 1 m - 10 mm lens

[0.25,0.25,0.25,0.25] [0.2,0.2,0.3,0.3] [0.15,0.15,0.35,0.35]

[0.1,0.1,0.4,0.4] [0.05,0.05,0.45,0.45] [0.3,0.3,0.2,0.2]

-50

-40

-30

-20

-10

0

10

20

30

0 5 10 15 20 25 30

M
ea

su
re

d
 A

n
gl

e
(D

eg
re

es
)

True Angle (Degrees)

Measured Angle Vs Range

1m 2m 3m 4m 5m

59

Combined points occur when the created mesh merges two markers. This causes

the simpleblobdetect algorithm to only detect four markers instead of five and thus

causes the system to not transmit the azimuth and elevation angles for the markers.

This effect occurs earlier in the 10 mm lens than the 18 mm, where the issue did

not occur during testing up to 5 m. In the 10 mm lens, this began at 3 m, and an

example of the combination is shown in Figure 40. This occurred at 30° in both the

3 m and 4 m image sets, and at 5 meters point loss took place in both 25° and 30°

photos. The points that were removed or not detected belonged to the bottom and

right markers.

60

Figure 40: Point Combination in 10 mm lens

All four colors could be tracked by the beacon tracking node. Images showing the

recognition of blue, green and red LEDs are below for completeness.

61

Figure 41: Detection of Blue, Green, and Red Beacons respectively at 1 m, images on the left

are taken at 0°, images on the right are taken at 30°.

Communication was tested using two Raspberry Pi’s runing the .sh file outlined in

Appendix A. However, due to limitations in the test environment, the Pi’s could

not be powered far enough away to cause signal dropping in a residential

environment. These tests were run in an apartment, and the signal was able to

maintain a connection from one end of the apartment to the other, including

traveling through a residential wall. As a result, further tests were not performed,

but the test run highlights that in a line of sight situation such as is experienced in

this project, the limiting factor to a combined beacon’s range is the LED targets or

62

camera resolution. To increase the effective range of the localization system, either

the side length of the target or the focal length of the lens can be increased. In one

test, a Raspberry Pi lidar unit was attached and its data sent through the network to

“base station” PC using ROS. This further shows that a low cost beacon can be

augmented using a set of LED targets to provide both localization and

communication. Increased accuracy of localization can then be achieved without

removing the beacons, and instead improved through the deployment of better

cameras and processing techniques.

63

Chapter 6

Lessons Learned

OpenCV provided many functions essential to this project, including the InRange

function, used to eliminate objects of the wrong color, and simpleblobdetect, both

of which were easily implemented in Python. Tuning the InRange function was

difficult for the webcam, especially between the yellow and green targets due to the

webcam’s sensor. This process was much easier and significantly more effective

when using the Canon DSLR. In addition, the 18 megapixels of the camera was

larger than the available resolution of the screen, and as a result the images needed

to be scaled by 50 percent to make them manageable which still caused the images

to be beyond screen dimensions. Having such large images led to long calculation

time for camera rectification steps, and some of the resolution was lost in scaling

the images.

Despite camera rectification, the error in the horizontal measurements was

significantly higher than the vertical counterparts. This persisted regardless of the

number of images used in rectification and appears to be in part from the dilation

and erosion of the mask. The most significant effect of this is the joining of points

in Figure 40, but other images show the stretching of the blobs after the dilation

and erosion steps. One tested solution was using erosion inside a for loop as long

as the blob size was outside a predefined range. However, this had no effect on

reducing the error of the system.

In the physical system, it was discovered that the LEDs were far too bright on their

own and needed to be dimmed. Potentiometers were used for this purpose due to

availability, but electronic LED drivers (buckpucks) would be more effective for

64

tuning the LED brightness as well as regulating current to each target.

Furthermore, the LEDs used do not emit the same amount of light from their sides

as through the top. This was a major fault of the V1 design, as without additional

dimming on the out-of-plane LED, no amount of occlusion was able to equalize the

brightness between in-plane and out-of-plane markers. The shape of housing for in-

plane markers used in the V1 design also caused significant shedding of light out

the top and back, which was able to be picked up by the cameras, as well as causing

the target to appear to have square lights. These housings were difficult to size

properly and were difficult to seat such that the in-plane markers were equidistant

from the center of the target.

65

Chapter 7

Conclusion and Future Work

Conclusion

Though low-cost webcams have increased dramatically in resolution, and function

well in well-lit environments, they are not sensitive enough for this application.

Their resolution limits their effective range. In addition, though they can pick out

light spots and would be sufficient for sub 1 m filtering by color, this adds little to a

robot’s own capabilities. As range increases beyond 1 m the sensor is easily

overexposed. Also, because the webcams used had limited controllability from

OpenCV and other Linux utilities, their exposure could not be manually limited.

These webcams do have the potential to be used at the ranges tested in some

applications if the only necessary filtering criteria is brightness.

The Canon T6 has an 18-megapixel sensor, and by using manual mode, consistent

camera settings can be achieved. This sensor had no issues in capturing the

markers at range, both with an 18mm and 10mm lenses. As the angle exceeded 30°

there were events where the accepted values for the mask would connect, leading to

the blob detect algorithm connecting two markers into a single blob. This is the

limiting factor to the range, and more advanced masking and mask cleaning logic

would allow a drastic increase in the effective range of the system. The maximum

effective angle for this system may be increased in further iterations by increasing

the offset of in-plane markers or shortening the arm on which the out-of-plane

marker sits. Increasing the length of arm for the in-plane markers would have the

further advantage of increasing the maximum range and decreasing the error of the

system.

66

Because the Newton Raphson method was effective in calculating the range of the

system at 5 m to approximately 2%, the system shows promise for use in longer

ranges. In its current configuration, the 18mm lens still gives plenty of resolution

to separate the markers at greater ranges than 5 m. However, the QUEST algorithm

stumbles in calculating the attitude of the robot at this range, and further

improvements are needed to increase the effective range of this project.

Additionally, improvements and additional logic used in creating the mesh from

which blob detect determines the location of the markers would increase maximum

range, which would especially affect the 10 mm lens, and allow the 18 mm lens to

be used at much greater distance. Furthermore, more precise mesh making, would

expect to see some improvement in both attitude and range determination.

Future Work

Due to the use of ROS, any node can be swapped out easily for another system

without modification to the whole. As a result, further testing into any subsystem

of this project is possible. However, the most logical next step is in more

accurately detecting the angles to each target. Though the method used above was

successful in detecting and calculating the range and angle of such a target, as well

as passing such information to a localization node, additional tuning to the QUEST

algorithm through a Newton Raphson solver or other QUEST method would

increase the attitude accuracy. An additional option would be the use of another 3-

axis attitude determination algorithm, such as the Fast Optimal Attitude Matrix

(FOAM) method. The limiting factor for such a system is the amount of resources

available to the robot itself, and the tradeoff between accuracy, speed, and power

should be considered as well. The current method of determining the global

coordinates of the robot from the quaternion given by the QUEST algorithm

67

utilizes homogeneous transformation matrices, and in the future, this system could

be extended to additional beacons by way of additional transformation matrices.

68

References

[1] S. Clark, "No place like lava tubes for Martian "cavenauts"," New scientist,

vol. 206, no. 2757, p. 12, 2010.

[2] R. J. Léveillé and S. Datta, "Lava tubes and basaltic caves as astrobiological

targets on Earth and Mars: A review," Planetary and Space Science, vol. 58,

no. 4, pp. 592-598, 2010.

[3] X. Huaang, J. Yang, M. Storrie-Lombardi, G. Lyzenga and C. M. Clark,

"Multi-robot Mapping of Lava Tubes," in Field and Service Robotics,

Springer International Publishing Switzerland, 2016, pp. 471-486.

[4] M. D. Bedford and G. A. Kennedy, "Modeling Natural Microwave

Propagation in Natural Caves Passages," IEEE Transactions on Antennas

and Propagation, vol. 62, no. 12, pp. 6463-6471, 2014.

[5] DARPA, "DARPA Seeks Tools to Capture Underground Worlds in 3D,"

DARPA, 7 March 2019. [Online]. Available: https://www.darpa.mil/news-

events/2019-03-07. [Accessed 4 May 2020].

[6] F. Mascarich, H. Nguyen, T. Dang, S. Khattak, C. Papachristos and K.

Alexis, "A Self-Deployed Multi-Channel Wireless Communications System

for Subterranean Robots," in IEEE Aerospace conference 2020, Big Sky,

Montana, USA, 2020.

[7] A. Heward, "Lava tubes as hidden sites for future human habitats on the

Moon and Mars," 29 September 2017. [Online]. Available: phys.org.

[8] R. Pozzobon, "Lava tubes: the hidden sites for future human habitats on the

Moon and Mars," 24 September 2017. [Online]. Available:

https://www.europlanet-society.org/lava-tubes-the-hidden-sites-for-future-

human-habitats-on-the-moon-and-mars/. [Accessed 13 January 2020].

[9] "Possible Skylight on a Lava Tube Northeast of Arsia Mons," 21 August

2009. [Online]. Available: https://www.uahirise.org/ESP_014380_1775.

[Accessed 20 July 2020].

[10] J. J. Banfield, C. S. Edwards, D. R. Montgomery and B. D. Brand, "The dual

nature of the martian crust: Young lavas and old clastic materials," Icarus,

vol. 222, no. 1, pp. 188-199, 2013.

[11] D. Ferguson, A. Morris, D. Hahnel, C. Baker, Z. Omohundro, C. Reverte, S.

Thayer, W. Whittaker, W. Whittaker, W. Burgard and S. Thrun, "An

69

Autonomous Robotic System for Mapping Abandoned Mines," IEEE

Robotics & Automation Magazine, vol. 11, no. 4, pp. 79-91, 2004.

[12] G. Zhang, B. Shang, Y. Chen and H. Moyes, "SmartCaveDrone: 3D

Mapping Using UAV's as Robotic Co-Archaeologiests," in 2017

International Conference on Unmanned Aircraft Systems (ICUAS), Miami,

Fl, USA, 2017.

[13] A. Husain, H. Jones, B. Kannan, U. Wong, T. Pimentel, S. Tang, S. Daftry,

S. Huber and W. L. Whittaker, "Mapping Planetary Caves with an

Autonomous Heterogeneous Robot Team," in 2013 IEEE Aerospace

Conference, Big Sky, MT, USA, 2013.

[14] D. Tardoli, L. Riazuelo, D. Sicignano, C. Rizzo, F. Lera and J. L. Villarroel,

"Ground robotics in tunnels: Keys and lessons learned after 10 years of

research and experiments," Journal of Field Robotics, vol. 36, no. 6, pp.

1074-1101, 2019.

[15] "About DARPA," DARPA, n.d.. [Online]. Available:

https://www.darpa.mil/about-us/about-darpa. [Accessed 20 January 2020].

[16] C. Linder, "A Cave Is No Place for Humans, So DARPA Is Sending In the

Robots," Popular Mechanics, 23 August 2019. [Online]. Available:

https://www.popularmechanics.com/military/research/a28771417/darpa-

subterranean-challenge/. [Accessed 14 November 2019].

[17] R. Linsenmayer, "Field Report: Lessons From First Leg of DARPA

Subterranean Challenge," Robotics Business Review, 29 August 2019.

[Online]. Available: https://www.roboticsbusinessreview.com/events/field-

report-lessons-from-first-leg-of-darpa-subterranean-challenge/. [Accessed 15

January 2020].

[18] European Space Agency, "Exploring underground with a colliding drone,"

ESA, 22 5 2017. [Online]. Available:

https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/

CAVES_and_Pangaea/Exploring_underground_with_a_colliding_drone.

[Accessed 4 9 2019].

[19] OpenCV team, "About," OpenCV, 2020. [Online]. Available:

https://opencv.org/about/. [Accessed 28 5 2020].

[20] S. Sati and A. El-bareg, "MANET Testbed using Raspberry PIs," I.J.

Wireless and Microwave Technologies, vol. 8, no. 2, pp. 52-63, 2018.

[21] D. Mahajan, "Routing in Mobile Robots," Rochester Institute of Technology,

Rochester, New York, 2016.

[22] F. Zeiger, N. Kraemer and K. Schilling, "Commanding Mobile Robots via

Wireless Ad-Hoc Networks - A Comparison of Four Ad-Hoc Routing

70

Protocol Implementations," in 2008 IEEE International Conference on

Robotics and Automation, Pasadena, California, USA, 2008.

[23] W. Fehse, Automated Rendezvous and Docking of Spacecraft, New York:

Cambridge University Press, 2003.

[24] C. Phillip and R. Dabney, "Solution to the problem of determining the

relative 6 DOF state for spacecraft automated rendezvous and docking," in

SPIE's 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics,

Orlando, Florida, United States, 1995.

[25] I. Y. Bar-Itzhack, "REQUEST - A recursive QUEST algorithm for sequential

attitude determination," Journal of Guidance, Control, and Dynamics, vol.

19, no. 5, pp. 1034-1038, 1996.

[26] M. D. Shuster and S. D. Oh, "Three-Axis Attitude Determination from

Vector Observations," Journal of Guidance and Control, vol. 4, no. 1, pp.

70-77, 1981.

[27] S. M. Kelley and S. P. Cryan, "Navigation and Alignment Aids Concept of

Operations and Supplemental Design Information. Revision A," 2016.

[28] T. Chung, "DARPA Subterranean (SubT) Challenge," DARPA, [Online].

Available: https://www.darpa.mil/program/darpa-subterranean-challenge.

[Accessed 27 September 2019].

[29] DARPA, "Teams CoSTAR and BARCS Take Top Spost in DARPA

Subterranean Challenge Urban Circuit," 27 2 2020. [Online]. Available:

https://www.darpa.mil/news-events/2020-02-27. [Accessed 8 6 2020].

[30] R. A. Kerr, "Rainbow of Martian Minerals Paints Picture of Degradation,"

Science, vol. 305, pp. 770,771, 2004.

71

Appendix A:

Setting Up Raspberry Pi Communication Beacons

 The hardware requirements for setting the communication nodes are a

raspberry pi version 3b+ and a sd card. In this case, a 32gb card was used.

1. Getting Raspbian

Raspbian Buster lite was downloaded from the official source at

https://www.raspberrypi.org/downloads/raspbian/.

Install the .ISO onto the sd card using a second pc. While any .iso writing utility

can be used, balenaEtcher was recommended, and was able to install the iso

without unzipping the download above. https://www.balena.io/etcher/

2. Configuring Raspbian

The wlan0 network will be disabled by default, as well as using the British

keyboard by default. To enable wlan0, it is necessary to first configure the

raspberry pi’s wireless location. While completing, it makes sense to change the

keyboard and language as well.

First, sign into the pi, by default the username is pi, and the password is raspberry.

You may wish to change this later. Then enter the configuration menu using the

command

$sudo raspi-config

Choose the second option, Localization, and set your language in locale, using

space to select and unselect options, choosing the -UT8 version of the language of

choice. Next, change the keyboard layout. For English(US) select other,

English(US), the top option, and finally finish with any options desired in the

keyboard layout.

Finally, to enable wlan0, select the final option “Change Wi-Fi Country.” After

selecting a country, the wlan0 network will automatically be enabled.

https://www.raspberrypi.org/downloads/raspbian/
https://www.balena.io/etcher/

72

3. Updating the card and getting B.A.T.M.A.N-adv

All commands will be run in root, for ease the following command was used:

$ Sudo su

Following this, update the raspberry pi and install B.A.T.M.A.N.

apt-get update -y

apt-get install batctl

Now, create the script for starting the network

nano /root/BATMAN-mesh.sh

The following code will configure the wlan0 network for BATMAN protocol.

sudo modprobe batman-adv

killall wpa_supplicant

sudo ip link set wlan0 down

sudo iwconfig wlan0 mode ad-hoc

sudo iwconfig wln0 essid <NETWORK NAME>

sudo iwconfig wlan0 ap any

sudo iwconfig wlan0 channel 8

sleep 1s

sudo ip link set wlan0 up

sleep 1s

sudo batctl if add wlan0

sleep 1s

sudo ifconfig bat0 up

$sleep 5s

$sudo ifconfig bat0 192.168.1.1/16

Replace <NETWORK NAME> with the desired network name, in the case of this

project, MarsNet. When configuring additional nodes, the ip address must be

changed to another, unused address. In this project, most of the ip address

remained the same following the convention192.168.1.-/16 for nodes, and

192.168.2.-/16 for robots.

Finally, the script must be given execute commands using chmod.

#Chmod 755 mesh.sh

To run the script, cd to root and run mesh.sh

cd root

./mesh.sh

73

Check that all nodes are connected to the desired network using

$sudo iwconifg

Or by checking the connected nodes through

$sudo batctl n

74

Appendix B:

ROS Custom Messages

LEDPoints.msg

message to send the position of one set of LED

##data from OpenCV as well as camera number and led color

float64 LED_1_alpha

float64 LED_1_beta

float64 LED_2_alpha

float64 LED_2_beta

float64 LED_3_alpha

float64 LED_3_beta

float64 LED_4_alpha

float64 LED_4_beta

float64 LED_5_alpha

float64 LED_5_beta

int8 Camera_number

string LED_color

GlobalPos.msg

float64 Yaw

float64 Pitch

float64 Roll

float64 Xpos

float64 Ypos

float64 Zpos

75

BotPositionQuat.msg

Send both Position and orientation of a Robot based on the

Hexagonal Sensor Array

float64 Range

float64 QuatX

float64 QuatY

float64 QuatZ

float64 QuatW

#Unit vector of quest point 1

float64 Unit_Vec1x

float64 Unit_Vec1y

float64 Unit_Vec1z

76

Appendix C:

QUEST Algorithm – C++

/*

A QUEST algorithm for a 5 led beacon array

By Ryan Capozzi

March 20, 2020

*/

//include ROS dependencies

#include <ros/ros.h>

#include <geometry_msgs/Transform.h>

#include <message_filters/subscriber.h>

//include matrix dependencies

#include </usr/include/eigen3/Eigen/Dense>

#include </usr/include/eigen3/Eigen/Eigenvalues>

#include </usr/include/eigen3/Eigen/QR>

#include </usr/include/eigen3/Eigen/SVD>

#include </usr/include/eigen3/Eigen/Geometry>

#include <armadillo>

//include custom Messages

#include "thesis_messages/BotPositionQuat.h"

#include "thesis_messages/LEDPoints.h"

using namespace arma;

using namespace std;

using namespace message_filters;

using namespace std::chrono;

using namespace Eigen;

class QuestALG

{

public:

QuestALG();

void UpdateLocation(const thesis_messages::LEDPoints

&LEDPositions);

77

void GetRange();

void GetQuat();

private:

//PRIVATE ROS VARIABLES

ros::NodeHandle nh;

ros::Publisher pub_;

ros::Subscriber sub_;

// distance between each set of leds along unit vectors

double l12;

double l23 = 140;//138.18;//140;

double l13;

// array for ranges to each LED in Newton Solution (3 leds at a

time)

double NS[3];

//unit vectors to all points (x,y,z)

Vector3d r1;

Vector3d r2;

Vector3d r3;

Vector3d r4;

Vector3d r5;

//ranges to all 5 LEDs

double R1;

double R2;

double R3;

double R4;

double R5;

double Range_to_base;

//returned quaternion

Eigen::Quaterniond q;

//functions required for finding solution to QUEST algorithm

//newton-Raphson solver

void NewtonSolver(double Cr12, double Cr13, double Cr23);

void GetUnitVectors(double LED_1_a, double LED_1_b, double

LED_2_a, double LED_2_b, double LED_3_a, double LED_3_b, double

LED_4_a,

double LED_4_b, double LED_5_a, double LED_5_b);

};

QuestALG::QuestALG():

r1{0,0,0}, r2{0,0,0}, r3{0,0,0}, r4{0,0,0}, r5{0,0,0}

78

{

 l12 = l13 = 83.762;//80.75;//83.762;

 pub_ = nh.advertise

<thesis_messages::BotPositionQuat>("/BotRelLoc",10);

 sub_ = nh.subscribe("/LEDPositions",1,

&QuestALG::UpdateLocation, this);

}

void QuestALG::UpdateLocation(const thesis_messages::LEDPoints

&LEDPositions){

 //create publish messages

 thesis_messages::BotPositionQuat msg;

QuestALG::GetUnitVectors(LEDPositions.LED_1_alpha,LEDPositions.

LED_1_beta,LEDPositions.LED_2_alpha,LEDPositions.LED_2_beta,

LEDPositions.LED_3_alpha,LEDPositions.LED_3_beta,LEDPositions.L

ED_4_alpha,LEDPositions.LED_4_beta,LEDPositions.LED_5_alpha,LED

Positions.LED_5_beta);

 QuestALG::GetRange();

 QuestALG::GetQuat();

 //publish

 double quat[] = {q.w(),q.vec()[0],q.vec()[1],q.vec()[2]};

 msg.Range = R1;

 msg.QuatW = quat[0];

 msg.QuatX = quat[1];

 msg.QuatY = quat[2];

 msg.QuatZ = quat[3];

 msg.Unit_Vec1x = r1[0];

 msg.Unit_Vec1y = r1[1];

 msg.Unit_Vec1z = r1[2];

 pub_.publish(msg);

}

void QuestALG::GetUnitVectors(double LED_1_a, double LED_1_b,

double LED_2_a, double LED_2_b, double LED_3_a, double LED_3_b,

double LED_4_a,

double LED_4_b, double LED_5_a, double LED_5_b)

{

 // calcuate unit vectors needed for both range and

quaternion position functions

 r1 << -cos(LED_1_a)*cos(LED_1_b),

 -sin(LED_1_a),

 -cos(LED_1_a)*sin(LED_1_b);

79

 r2 << -cos(LED_2_a)*cos(LED_2_b),

 -sin(LED_2_a),

 -cos(LED_2_a)*sin(LED_2_b);

 r3 << -cos(LED_3_a)*cos(LED_3_b),

 -sin(LED_3_a),

 -cos(LED_3_a)*sin(LED_3_b);

 r4 << -cos(LED_4_a)*cos(LED_4_b),

 -sin(LED_4_a),

 -cos(LED_4_a)*sin(LED_4_b);

 r5 << -cos(LED_5_a)*cos(LED_5_b),

 -sin(LED_5_a),

 -cos(LED_5_a)*sin(LED_5_b);

 //ROS_INFO_STREAM("Found Unit Vectors");

}

// Get the range from the camera to the beacon

void QuestALG::GetRange(){

 //For first range measurement

 double Cr12 = r1.dot(r2);

 double Cr23 = r2.dot(r3);

 double Cr13 = r1.dot(r3);

 //For second range measurement

 double Cr14 = r1.dot(r4);

 double Cr45 = r4.dot(r5);

 double Cr15 = r1.dot(r5);

 // ROS_INFO_STREAM("Calculated Cosines");

 //call newton solver for fist set of LED's

 NewtonSolver(Cr12,Cr13,Cr23);

 double R1a = NS[0];

 R2 = NS[1];

 R3 = NS[2];

 //call newton solver for second set of LED's

 NewtonSolver(Cr14,Cr15,Cr45);

 // ROS_INFO_STREAM("NewtonSolverComplete");

 double R1b = NS[0];

 R4 = NS[1];

 R5 = NS[2];

 // get better accuracy on distance to out-of-plane led

 R1 = (R1a + R1b)/2;

 ROS_INFO_STREAM("Ranges R1a, R1b");

 ROS_INFO_STREAM(R1a);

80

 ROS_INFO_STREAM(R1b);

 // ROS_INFO_STREAM("GotRange");

}

void QuestALG::NewtonSolver(double Cr12, double Cr13, double

Cr23)

{

 int max_iterations = 10000;

 // initialize (max) error value to check against

 double errorM = -1;

 // error array of R1, R2, and R3

 double earray[] = {-1, -1,-1};

 // Set Maximum error value to be accepted

 double NR_TOLERANCE = 0.000001;

 // set initial guess equal to half desired effective range

(mm)

 Vector3d Xo;

 Xo << 100,500,1000;

 // initialize X

 Vector3d X;

 X=Xo;

 MatrixXd Jac(3,3);

 // initialize non-changing jacobian cells

 Jac(0,2)=Jac(1,0)=Jac(2,1)=0;

 //create jacobian inverse

 MatrixXd Jac_inverse(3,3);

 //define Newton Raphson Function

 Vector3d NRfun(3);

 int iterations = 1;

 MatrixXd Mult_ans(3,3); //initialize output for

multiplication function

 do

 {

 errorM = -1; //reset errorM to -1 -- protect against

false assignment

 //Iterate Newton-Raphson Method

 R1=X(0);

 R2=X(1);

 R3=X(2);

 //calculate Jacobimatrix

 Jac(0,0)=2*R1-2*R2*Cr12;

 Jac(0,1)=2*R2-2*R1*Cr12;

81

 Jac(1,1)=2*R2-2*R3*Cr23;

 Jac(1,2)=2*R3-2*R2*Cr23;

 Jac(2,0)=2*R1-2*R3*Cr13;

 Jac(2,2)=2*R3-2*R1*Cr13;

 //ROS_INFO_STREAM("Jacobian Calculated");

 //calculate Function Vector

 NRfun << (pow(R1,2)+pow(R2,2)-2*R1*R2*Cr12 -

pow(l12,2)),

 (pow(R2,2)+pow(R3,2)-2*R2*R3*Cr23 - pow(l23,2)),

 (pow(R1,2)+pow(R3,2)-2*R1*R3*Cr13 - pow(l13,2));

 //ROS_INFO_STREAM("Calcualte Function Vector");

 // ROS_INFO_STREAM("Jac");

 // ROS_INFO_STREAM(Jac);

 Jac_inverse = Jac.inverse();

 X = X - (Jac_inverse * NRfun);

 //calculate maximum error

 for (int i=0;i<=2;i++)

 {

 earray[i] = abs(X(i)-Xo(i));

 if(earray[i] > errorM)

 {

 errorM = earray[i];

 }

 }

 Xo = X;

 iterations++;

 }while(errorM >= NR_TOLERANCE && iterations <=

max_iterations);

 //set NS to final solved ranges

 // ROS_INFO_STREAM("NS Range Solutions");

 for (int i = 0; i <= 2; i++){

 NS[i] = Xo[i];

 // ROS_INFO_STREAM(NS[i]);

82

 }

 // ROS_INFO_STREAM("");

}

void QuestALG::GetQuat(){

 //w - i'th measurement in robot frame (cartesian)

 Vector3d w;

 //v - i'th measurement in reference(beacon) frame

(cartesian)

 MatrixXd B_MV(4,3);

 // B_MV.row(0) << 46,-70,0; //12

 // B_MV.row(1) << 46,70,0; //13

 // B_MV.row(2) << 46,0,70; //14

 // B_MV.row(3) << 46,0,-70; //15

 B_MV.row(0) << 46,-70,0; //12

 B_MV.row(1) << 46,70,0; //13

 B_MV.row(2) << 46,0,70; //14

 B_MV.row(3) << 46,0,-70; //15

 Vector3d v;

 //define sigma

 double sigma = 0;

 //define S

 Matrix3d S = Matrix3d::Zero();

 //define z (vector)

 Vector3d z = Vector3d::Zero();

 //define K

 Matrix4d K = Matrix4d::Zero();

 // define a -- assumed to remain 1

 double a[] = {0.05,0.05,0.45,0.45};

 //calculate summations

 for(int i=0;i<4;i++){

 //calculate v and w vectors

 v = B_MV.row(i);

 v = v/v.norm();

 //set W to r1-r5 unit vectors previously calculated

 switch(i){

 case 0:

 w = R1*r1-R2*r2; //r12

83

 break;

 case 1:

 w= R1*r1-R3*r3; //r13

 break;

 case 2:

 w= R1*r1-R4*r4; //r14

 break;

 case 3:

 w= R1*r1-R5*r5; //r15

 break;

 default:

 ROS_DEBUG_ONCE("GetQuat Error, for(i) out of bounds");

 break;

 }

 w = w/w.norm();

 // ROS_INFO_STREAM("v");

 // ROS_INFO_STREAM(v);

 // ROS_INFO_STREAM("w");

 // ROS_INFO_STREAM(w);

 //calculate sigma

 sigma +=a[i]*w.dot(v);

 //calculate S

 S += a[i]*(w*v.transpose()+ v*w.transpose());

 //calculate z

 z += a[i]*w.cross(v);

 }

 ROS_INFO_STREAM("r1");

 ROS_INFO_STREAM(R1);

 ROS_INFO_STREAM("r2");

 ROS_INFO_STREAM(R2);

 ROS_INFO_STREAM("r3");

 ROS_INFO_STREAM(R3);

 ROS_INFO_STREAM("r4");

 ROS_INFO_STREAM(R4);

 ROS_INFO_STREAM("r5");

 ROS_INFO_STREAM(R5);

 K << (S-sigma*Matrix3d::Identity()), z,

 z.transpose(), sigma;

 ROS_INFO_STREAM("k Matrix");

 ROS_INFO_STREAM(K);

 ROS_INFO_STREAM(K.eigenvalues());

84

 //Gibb's Vector Solution

 MatrixXd p; //intermediate matrix

 Vector3d g;

 p = ((1+sigma)*Matrix3d::Identity()-S);

 g = p.inverse()*z;

 // ROS_INFO_STREAM("P and invP");

 // ROS_INFO_STREAM(p);

 // ROS_INFO_STREAM("");

 // ROS_INFO_STREAM(p.inverse());

 q.vec() = 1/(sqrt(1+g.squaredNorm()))*g;

 q.w() = 1/(sqrt(1+g.squaredNorm()));

}

int main(int argc, char *argv[]){

 //initiate ros node

 ros::init(argc,argv, "QuestAlgorithm");

 //create quest object to run everything

 QuestALG Quest_obj;

 ros::spin();

}

85

Appendix D:

Beacon Tracking Node – Python

#!/usr/bin/env python

import rospy

#import opencv

import cv2

#some python dependencies for this node

import glob, time, argparse

import numpy as np

from operator import itemgetter

from math import atan, tan

import pandas as pd

import csv

#import the LEDPoints message

from thesis_messages.msg import LEDPoints

global testcounter

testcounter = 0

if __name__ == '__main__':

 #CAMERA PARAMETERS

 VisionMod = 1#.28 #corrects for static innacurate range

from camera

 #parameters in mm

 focal_len = 10

 sensorsizex = 22.3

 sensorsizey = 14.9

 pixelpitch = 0.0043

 sensorpixx = 5184

 sensorpixy = 3456

 #read camera settings

 CameraMatrix =

pd.read_csv("/home/ryan/catkin_ws/src/beacon_localization/Camer

aMatrix.csv", header = None)

 mtx = CameraMatrix.to_numpy()

 distarray =

pd.read_csv("/home/ryan/catkin_ws/src/beacon_localization/dista

rray.csv", header = None)

 dist = distarray.to_numpy()

86

 rvecsdf =

pd.read_csv("/home/ryan/catkin_ws/src/beacon_localization/rvecs

.csv", header = None)

 rvecs = rvecsdf.to_numpy()

 tvecsdf =

pd.read_csv("/home/ryan/catkin_ws/src/beacon_localization/tvecs

.csv", header = None)

 tvecs = tvecsdf.to_numpy()

 # print('camera matrix')

 # for row in mtx:

 # print(row)

 # print('dist')

 # for row in dist:

 # print(row)

 # print('rvecs')

 # for row in rvecs:

 # print(row)

 # print('tvecs')

 # for row in tvecs:

 # print(row)

 #ROS Publisher Setup

 rospy.init_node('VisualTargetTracker')

 pub =

rospy.Publisher('/LEDPositions',LEDPoints,queue_size=15)

 # Get the filename from the command line

 files =

glob.glob('/home/ryan/catkin_ws/src/beacon_localization/scripts

/images/5 degree change 1-5m v1/5m/*.JPG')

 files.sort()

 # load the image

 rawimage = cv2.imread(files[0])

 #Resize the image

 scale_percent = 50

 width = int(rawimage.shape[1]*scale_percent/100)

 height = int(rawimage.shape[0]*scale_percent/100)

 dim = (width,height)

 rawimage = cv2.resize(rawimage,dim)

 #parameters in pixels

 height, width, channels = rawimage.shape

87

 #get new optimal camera matrix

 # newcammtx, roi =

cv2.getOptimalNewCameraMatrix(mtx,dist,(width,height),1,(width,

height))

 #crop the image

 # x,y,w,h = roi

 #create windows

 cv2.namedWindow('P-> Previous, N->

Next',cv2.WINDOW_AUTOSIZE)

 cv2.namedWindow('Red',cv2.WINDOW_AUTOSIZE)

 cv2.namedWindow('Green',cv2.WINDOW_AUTOSIZE)

 cv2.namedWindow('Blue',cv2.WINDOW_AUTOSIZE)

 cv2.namedWindow('Yellow',cv2.WINDOW_AUTOSIZE)

 #show all images

 cv2.imshow('Red',rawimage)

 cv2.imshow('Green',rawimage)

 cv2.imshow('Blue',rawimage)

 cv2.imshow('Yellow',rawimage)

 #create thershold values for each color

 minRed = np.array([81,0,96]) #red may need new thresholding

 maxRed = np.array([180,35,255])

 minGreen = np.array([70,64,50])

 maxGreen = np.array([85,143,255])

 minBlue = np.array([84,40,152])

 maxBlue = np.array([180,255,255])

 minYellow = np.array([12,190,45])

 maxYellow = np.array([26,255,255])

 i=0

 while not rospy.is_shutdown():

 cv2.imshow('P-> Previous, N-> Next',rawimage)

 k = cv2.waitKey(1) & 0xFF

 # check next image in folder

 if k == ord('n'):

 i += 1

 rawimage = cv2.imread(files[i%len(files)])

 rawimage = cv2.resize(rawimage,dim)#interpolation =

cv2.INTER_AREA)

 # # undistort image

88

 # rawimage = cv2.undistort(rawimage, mtx, dist,

None)

 # rawimage = rawimage[y:y+h,x:x+w]

 # check previous image in folder

 elif k == ord('p'):

 i -= 1

 rawimage = cv2.imread(files[i%len(files)])

 rawimage = cv2.resize(rawimage,dim)#,interpolation

= cv2.INTER_AREA)

 # undistort image

 # rawimage = cv2.undistort(rawimage, mtx, dist,

None)

 # rawimage = rawimage[y:y+h,x:x+w]

 #convert image to HSV

 verpixels, horpixels, channels = rawimage.shape

 hsvimg = cv2.cvtColor(rawimage,cv2.COLOR_BGR2HSV)

 #create masks for images

 maskR = cv2.inRange(hsvimg,minRed,maxRed)

 maskG = cv2.inRange(hsvimg,minGreen,maxGreen)

 maskB = cv2.inRange(hsvimg,minBlue,maxBlue)

 maskY = cv2.inRange(hsvimg,minYellow,maxYellow)

 #Mask Modification

 kernel =

cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))

 # use closing to remove holes in mask

 maskR = cv2.morphologyEx(maskR,cv2.MORPH_CLOSE,

kernel,iterations=5)

 maskG = cv2.morphologyEx(maskG,cv2.MORPH_CLOSE,

kernel,iterations=5)

 maskB = cv2.morphologyEx(maskB,cv2.MORPH_CLOSE,

kernel,iterations=5)

 maskY = cv2.morphologyEx(maskY,cv2.MORPH_CLOSE,

kernel,iterations=5)

 kernelE =

cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(2,4))

 maskR = cv2.erode(maskR, kernelE, iterations = 4)

 maskG = cv2.erode(maskG, kernelE, iterations = 4)

 maskB = cv2.erode(maskB, kernelE, iterations = 4)

 maskY = cv2.erode(maskY, kernelE, iterations = 4)

89

 # maskY = cv2.morphologyEx(maskY,cv2.MORPH_CLOSE,

kernelE,iterations=2)

 # create composite of masks and original image

 resultR = cv2.bitwise_and(rawimage, rawimage, mask =

maskR)

 resultG = cv2.bitwise_and(rawimage, rawimage, mask =

maskG)

 resultB = cv2.bitwise_and(rawimage, rawimage, mask =

maskB)

 resultY = cv2.bitwise_and(rawimage, rawimage, mask =

maskY)

 #show the result of masking

 # cv2.imshow('Red',resultR)

 # cv2.imshow('Green',resultG)

 # cv2.imshow('Blue',maskB)

 cv2.imshow('MaskTest',maskY)

 #Blob Detector Parameters

 params = cv2.SimpleBlobDetector_Params()

 #filter by blob distance

 params.minDistBetweenBlobs = 2.5

 #filter by min/max area

 params.filterByArea = True

 params.minArea = 2

 params.maxArea = 100000

 #filter by convexity

 params.filterByConvexity = True

 params.minConvexity = 0.0

 #filter by circularity

 params.filterByCircularity = True

 params.minCircularity = 0.0

 #filter by Intertia

 params.filterByInertia = True

 params.minInertiaRatio = 0.0

 #Use the masks for blob detection

 detector = cv2.SimpleBlobDetector_create(params)

 #detection

 Rkeypoints = detector.detect(255-maskR)

 Gkeypoints = detector.detect(255-maskG)

90

 Bkeypoints = detector.detect(255-maskB)

 Ykeypoints = detector.detect(255-maskY)

 #show detected keypoints

 RwithKeypoints =

cv2.drawKeypoints(resultR,Rkeypoints,np.array([]),(0,0,255),cv2

.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 GwithKeypoints =

cv2.drawKeypoints(resultG,Gkeypoints,np.array([]),(0,0,255),cv2

.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 BwithKeypoints =

cv2.drawKeypoints(resultB,Bkeypoints,np.array([]),(0,0,255),cv2

.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 YwithKeypoints =

cv2.drawKeypoints(resultY,Ykeypoints,np.array([]),(0,0,255),cv2

.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)

 cv2.imshow('Red',RwithKeypoints)

 cv2.imshow('Green',GwithKeypoints)

 cv2.imshow('Blue',BwithKeypoints)

 cv2.imshow('Yellow',YwithKeypoints)

 #Determine if a beacon is found, and which side

 j=0

 sourcePosition= [[]]

 cartkeypoint = [0,0]

 kp_size = 0

 color = ''

 if len(Rkeypoints) ==5:

 sourcePosition = cv2.KeyPoint_convert(Rkeypoints)

 color = 'R'

 elif len(Gkeypoints) ==5:

 sourcePosition = cv2.KeyPoint_convert(Gkeypoints)

 color = 'G'

 elif len(Bkeypoints) ==5:

 sourcePosition = cv2.KeyPoint_convert(Bkeypoints)

 color = 'B'

 elif len(Ykeypoints) ==5:

 sourcePosition = cv2.KeyPoint_convert(Ykeypoints)

 color = 'Y'

 if len(sourcePosition)==5:

 #--------------Camera Math--------------

 #calculate horizontal and vertical fields of view

91

 ymaxcam = sensorpixy/2

 xmaxcam = sensorpixx/2

 ymax = verpixels/2 #scaled image

 xmax = horpixels/2

 horFOV = atan(xmaxcam*pixelpitch/focal_len)

 verFOV = atan(ymaxcam*pixelpitch/focal_len)

 # print(horFOV)

 # print(verFOV)

 #shift points to center of camera frame

 shiftedkeypoints = [[0,0],[0,0],[0,0],[0,0],[0,0,]]

 for j in range(5):

 shiftedkeypoints[j][0] = xmax -

sourcePosition[j][0]

 shiftedkeypoints[j][1] = sourcePosition[j][1]-

ymax

 #Normalize Keypoints

 normalizedkeypoints =

[[0,0],[0,0],[0,0],[0,0],[0,0,]]

 for j in range(5):

 normalizedkeypoints[j][0] =

shiftedkeypoints[j][0]/xmax

 normalizedkeypoints[j][1] =

shiftedkeypoints[j][1]/ymax

 #convert to azimuth and elevation (rad)

 viewangles = [[0,0],[0,0],[0,0],[0,0],[0,0,]]

 for j in range(5):

 viewangles[j][0]=

atan(normalizedkeypoints[j][0]*xmaxcam*pixelpitch/focal_len)

 viewangles[j][1]=

atan(normalizedkeypoints[j][1]*ymaxcam*pixelpitch/focal_len)

 #Sort Keypoints

 sortedkeypoints = [[0,0],[0,0],[0,0],[0,0],[0,0,]]

 sortingkeypoints = sorted(viewangles, key=lambda x:

x[1])

 #find points 4 and 5

 sortedkeypoints[3] = sortingkeypoints[-1] #final

element in list

 sortedkeypoints[4] = sortingkeypoints[0]

 del sortingkeypoints[-1]

92

 del sortingkeypoints[0]

 #find points 1, 2, and 3

 sortingkeypoints = sorted(sortingkeypoints,

key=lambda x: x[0])

 sortedkeypoints[2] = sortingkeypoints[0]

 sortedkeypoints[1] = sortingkeypoints[-1]

 sortedkeypoints[0] = sortingkeypoints[1]

 if sortedkeypoints[0]!=[0,0]:

 rosmessage = LEDPoints()

 rosmessage.Camera_number = 0

 rosmessage.LED_color = color

 rosmessage.LED_1_alpha = sortedkeypoints[0][0]

 rosmessage.LED_1_beta = sortedkeypoints[0][1]

 rosmessage.LED_2_alpha = sortedkeypoints[1][0]

 rosmessage.LED_2_beta = sortedkeypoints[1][1]

 rosmessage.LED_3_alpha = sortedkeypoints[2][0]

 rosmessage.LED_3_beta = sortedkeypoints[2][1]

 rosmessage.LED_4_alpha = sortedkeypoints[3][0]

 rosmessage.LED_4_beta = sortedkeypoints[3][1]

 rosmessage.LED_5_alpha = sortedkeypoints[4][0]

 rosmessage.LED_5_beta = sortedkeypoints[4][1]

 pub.publish(rosmessage)

 # if testcounter%500 ==0:

 # print(sourcePosition)

 # print(shiftedkeypoints, color)

 # print()

 # print("sorting keypoints")

 # print(sortingkeypoints)

 # print()

 # print("sorted keypoints")

 # print(sortedkeypoints)

 # print()

 # print("Horizontal FOV Is {}".format(horFOV))

 # print("Vertical FOV Is {}".format(verFOV))

 # print("Horizontal scaling factor Is

{}".format(pixscalex))

 # print("Vertical scaling factor Is

{}".format(pixscaley))

93

 testcounter =testcounter +1

94

Appendix E:

Local To Global Coordinate Transformation – Python

#!/usr/bin/env python

import rospy

import message_filters

import math

import numpy as np

#get necessary messages

from thesis_messages.msg import LEDPoints

from thesis_messages.msg import BotPositionQuat

from thesis_messages.msg import GlobalPos

LEDMESSAGE = LEDPoints()

BOTMESSAGE = BotPositionQuat()

def TransformMatrixFromQuat(quatx,quaty,quatz,quatw,lx,ly,lz):

 """Creates a Homogeneous transformation matrix from

quaternion and linear transformation

 inputs, using a direction cosine matrix"""

 #generate direction cosine matrix from quaternion

 q0 = quatw

 q1 = quatx

 q2 = quaty

 q3 = quatz

 cosmatrix = [[(q0**2+q1**2-q2**2-q3**2), 2*(q1*q2-q0*q3),

2*(q1*q3-q0*q2)], [2*(q1*q2-q0*q3), (q0**2-q1**2+q2**2-q3**2),

2*(q2*q3+q0*q1)], [2*(q1*q3+q0*q2), 2*(q2*q3-q0*q1),(q0**2-

q1**2-q2**2+q3**2)]]

 # cosmatrix=[[1,2,3],[4,5,6],[7,8,9]] #for testing only

 HomTransform = [[cosmatrix[0][0], cosmatrix[0][1],

cosmatrix[0][2], lx], [cosmatrix[1][0], cosmatrix[1][1],

cosmatrix[1][2],ly], [cosmatrix[2][0], cosmatrix[2][1],

cosmatrix[2][2],lz],[0,0,0,1]]

 return(HomTransform)

def

TransformMatrixFromRotation(theta_x,theta_y,theta_z,lx,ly,lz):

 """Returns Homogeneous Transformation matrix given rotation

angles(given in Radians) in the x,y,z axes

 and linear transformations"""

95

 RotX = [[1, 0, 0], [0, math.cos(theta_x), -

math.sin(theta_x)], [0, math.sin(theta_x), math.cos(theta_x)]]

#X rotation matrix

 RotY = [[math.cos(theta_y), 0, math.sin(theta_y)], [0, 1,

0], [-math.sin(theta_y), 0, math.cos(theta_y)]] #Y rotation

matrix

 RotZ = [[math.cos(theta_z), -math.sin(theta_z), 0],

[math.sin(theta_z), math.cos(theta_z), 0], [0, 0, 1]] #Z

rotation matrix

 RotMat = RotZ

rotation

 HomTransform = [[RotMat[0][0], RotMat[0][1], RotMat[0][2],

lx], [RotMat[1][0], RotMat[1][1], RotMat[1][2],ly],

[RotMat[2][0], RotMat[2][1], RotMat[2][2],lz],[0,0,0,1]]

 return(HomTransform)

def GetTargetRotation(Color):

 '''takes in LED color and returns z axis rotation from

beacon plane'''

 if Color == 'R':

 return math.pi

 if Color == 'G':

 return math.pi/2

 if Color == 'B':

 return(0)

 if Color == 'Y':

 return 3*math.pi/2

def CameraRotation(Cam_numb,sensor_cameras):

 '''convert camera number to angle around sensor'''

 '''Cam_numb: camera number clockwise around sensor'''

 '''sensor_cameras: number of cameras in sensor'''

 interior_angle = ((sensor_cameras-

2)*math.pi/2)/sensor_cameras + math.pi

 camera_angle = interior_angle*Cam_numb

 return camera_angle

def localtoglobal(LED_data, botquat_data):

 """uses the LEDPoints and BotPositionQuat messages to

convert from local position to global position

 """

 #get useful information from LEDPoints message:

 Camera_number = LED_data.Camera_number

 LED_color = LED_data.LED_color

 #get useful information from BotPositionQuat message:

96

 TargetRange = botquat_data.Range

 #quat is in [w,x,y,z] format

 Quat = [botquat_data.QuatW, botquat_data.QuatX,

botquat_data.QuatY, botquat_data.QuatZ]

 unitVec = [botquat_data.Unit_Vec1x,

botquat_data.Unit_Vec1y, botquat_data. Unit_Vec1z]

 #go from beacon frame to target frame

 lt = 140 #distance from target to center of beacon in mm

 Ct = GetTargetRotation (LED_color)

 T1 =

TransformMatrixFromRotation(0,0,Ct,lt*math.cos(Ct),lt*math.sin(

Ct),0)

 T1np = np.array(T1)

 # print('T1')

 # print(T1np)

 # print('')

 #go from target to camera frame

 #generate direction cosine matrix from quaternion

 q0 = Quat[0]

 q1 = Quat[1]

 q2 = Quat[2]

 q3 = Quat[3]

 cosmatrix = [[(q0**2+q1**2-q2**2-q3**2), 2*(q1*q2-q0*q3),

2*(q1*q3-q0*q2)],

 [2*(q1*q2-q0*q3), (q0**2-q1**2+q2**2-q3**2),

2*(q2*q3+q0*q1)],

 [2*(q1*q3+q0*q2), 2*(q2*q3-q0*q1),(q0**2-q1**2-

q2**2+q3**2)]]

 #find offset

 l2 = TargetRange*(np.array(unitVec))

 print(unitVec)

 print (l2)

 T2 = TransformMatrixFromQuat(q0, q1, q2, q3, l2[0], l2[1],

l2[2])

 T2np = np.array(T2)

 print('T2')

 print(T2np)

 print('')

 #go from camera to robot frame

 l3 = 200 #distance from camera to center of camera array

 camera_angle = CameraRotation(Camera_number,6)

 print(camera_angle)

97

 T3 = TransformMatrixFromRotation(0,0,camera_angle, l3, 0,

0)

 T3np = np.array(T3)

 # print('T3')

 # print(T3np)

 BotinGlobal = np.matmul(np.matmul(T1np,T2np),T3np)

 #calculate orientation as yaw/pitch/roll

 GlobalRotation = BotinGlobal[0:3,0:3] # get rotation matrix

for system

 yaw = math.atan(GlobalRotation[1][0]/GlobalRotation[0][0])

 pitch = math.atan(-

GlobalRotation[2][0]/(math.sqrt(GlobalRotation[2][1]+GlobalRota

tion[2][2])))

 roll = math.atan(GlobalRotation[2][1]/GlobalRotation[2][2])

 #Update Data and Publish - Quaternions not implemented

 # print(BotinGlobal)

 # print('')

 # print('globalrotation')

 # print(GlobalRotation)

 GlobalMessage = GlobalPos()

 GlobalMessage.Xpos = BotinGlobal[0][3]

 GlobalMessage.Ypos = BotinGlobal[1][3]

 GlobalMessage.Zpos = BotinGlobal[2][3]

 GlobalMessage.Yaw = yaw

 GlobalMessage.Pitch = pitch

 GlobalMessage.Roll = roll

 #not implemented

 GlobalMessage.QuatW = 0

 GlobalMessage.QuatX = 0

 GlobalMessage.QuatY = 0

 GlobalMessage.QuatZ = 0

 pub.publish(GlobalMessage)

def testcall(data):

 print(3)

if __name__ == '__main__':

 #initialize ROS node

 rospy.init_node('BotGlobalPosition')

 pub =

rospy.Publisher('/GlobalPosQuat',GlobalPos,queue_size=5)

 #while rosnode is active, do stuff

 while not rospy.is_shutdown():

98

 #subscribe to 2 needed topics

 camera_sub =

message_filters.Subscriber('/LEDPositions',LEDPoints)

 botquat_sub =

message_filters.Subscriber('/BotRelLoc',BotPositionQuat)

 ts =

message_filters.ApproximateTimeSynchronizer([camera_sub,

botquat_sub], 10, 0.5, allow_headerless = True)

 ts.registerCallback(localtoglobal)

 # rospy.Subscriber("LEDPositions",LEDPoints,testcall)

 rospy.spin()

99

Appendix F:

Camera Rectification – Python

#!/usr/bin/env python

import cv2

import numpy as np

import os

import glob

import csv

Defining the dimensions of checkerboard

CHECKERBOARD = (6,8)

square_size = 24.4 #mm

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER,

30, 0.001)

Creating vector to store vectors of 3D points for each

checkerboard image

objpoints = []

Creating vector to store vectors of 2D points for each

checkerboard image

imgpoints = []

Defining the world coordinates for 3D points

objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3),

np.float32)

objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0],

0:CHECKERBOARD[1]].T.reshape(-1, 2)

objp = objp * square_size

prev_img_shape = None

Extracting path of individual image stored in a given

directory

images =

glob.glob('/home/ryan/catkin_ws/src/beacon_localization/scripts

/images/CameraRect/*.JPG')

numimages = len(images)

print("found {} images".format(numimages))

for image in images:

 #scale imge to something more manageable

 img = cv2.imread(image)

 if numimages == len(images):

100

 scale_percent = 50

 width = int(img.shape[1]*scale_percent/100)

 height = int(img.shape[0]*scale_percent/100)

 dim = (width,height)

 img = cv2.resize(img,dim,interpolation = cv2.INTER_AREA)

 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

 # Find the chess board corners

 # If desired number of corners are found in the image then

ret = true

 ret, corners = cv2.findChessboardCorners(gray,

CHECKERBOARD, None)

 if ret == True:

 objpoints.append(objp)

 # refining pixel coordinates for given 2d points.

 corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-

1),criteria)

 imgpoints.append(corners2)

 # Draw and display the corners

 img = cv2.drawChessboardCorners(img, CHECKERBOARD,

corners2,ret)

 cv2.imshow('img',img)

 cv2.waitKey(5)

 print("remaining images : {}".format(numimages))

 numimages = numimages - 1

print('image capture complete')

cv2.destroyAllWindows()

h,w = img.shape[:2]

Performing camera calibration

print('working:calibrateCamera')

ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints,

imgpoints, gray.shape[::-1],None,None)

print("Camera matrix : \n")

print(mtx)

print("dist : \n")

print(dist)

print("rvecs : \n")

101

print(rvecs)

print("tvecs : \n")

print(tvecs)

#print to files

with open("CameraMatrix.csv","w+") as camera_csv:

 csvWriter = csv.writer(camera_csv,delimiter=',')

 csvWriter.writerows(mtx)

with open("distarray.csv","w+") as dist_csv:

 csvWriter = csv.writer(dist_csv,delimiter=',')

 csvWriter.writerows(dist)

with open("rvecs.csv","w+") as rvecs_csv:

 csvWriter = csv.writer(rvecs_csv,delimiter=',')

 csvWriter.writerows(rvecs)

with open("tvecs.csv","w+") as tvecs_csv:

 csvWriter = csv.writer(tvecs_csv,delimiter=',')

 csvWriter.writerows(tvecs)

	Beacon Aided Robotics for Martian Cave Mapping
	tmp.1670941321.pdf.XxBjg

