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Abstract 

Aerodynamic Model of the Piper Warrior II Based on Flight Test Data 

By: Nicholas Casciola 

Major Advisor: Brian Kish Ph.D. 

Aerodynamic modeling is an important part of aircraft design and of aircraft testing. 

Generally, this is done through CFD models and Wind Tunnel tests prior to the aircrafts 

first flight but building the models using flight test data is also very important. It is used to 

verify theoretical models generated from the computer and wind tunnel tests. They are 

also useful for building simulators, particularly those in modeling and analyzing airport 

traffic patterns.  

These tests used a Piper Pa-28-161 Warrior II owned by the Florida Tech Flight Test 

Engineering program. It has a 160hp Lycoming engine. The test pilot was Dave Schwarz 

with Nicholas Casciola and Gary Greeman acting as Flight Test Engineers. The tests took 

place on April 27th, 2018 East of the Orlando-Melbourne International Airport (KMLB). 

The stability and control parameters were estimated using least squares, equation error, 

stepwise, and output-error regression methods. These parameters were not accurately 

estimated here due to several reasons. The first being the lack of a filter on several sets of 

input data. The next would be that no initial heading was recorded at the start of each 

maneuver; this means that yaw angle could not be found. The final piece to improve the 

models is to correct for the sensor locations in the aircraft. If the sensors are not over the 

cg of the aircraft, then corrections need to be made to adjust for the inertial effects of the 

moment arm caused by that distance. 
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1 Chapter 1:  

Introduction 

1.1 General: 

These tests are to find the aerodynamic models for the Piper PA-28-161 Warrior II 

through the use of flight tests and the SIDPAC MATLAB files, System IDentification 

Programs for AirCraft. Dave Schwarz was the test pilot for this test and Gary Greenman 

and Nicholas Casciola were the test engineers who built the aerodynamic models. 

Testing was requested by the Flight Test Engineering department at Florida 

Institute of Technology. The testing was for academic purposes and was performed within 

the guidelines and restrictions of the Pilots Operating Handbook for the Piper PA-28-161.  

1.2 Background: 

1.2.1 History of Aerodynamic Modelling 

When aircraft were first being built and developed there was a limited 

understanding of aerodynamics and only the most basic aerodynamic properties could be 

found. William F. Milliken Jr. created one of the first approaches for aerodynamic 

modelling, using frequency response and simple graphical methods to analyze flight data 

and obtain static and dynamic parameters in 1947. In 1951 Harry Greenberg and Marvin 

Shinbrot created a better, more general and rigorous approach to find aerodynamic 

parameters by using transient maneuvers which were based on ordinary and nonlinear 

least squares methods. When more modern computer systems became available in the 

60s and 70s incredible strides in modeling techniques occurred and a new field was born; 

system identification. Conferences and symposiums began to be held based around this 

discipline of system identification. The proceedings from the IFAC Symposia on 

Identification and System Parameter Estimation and the survey paper by K. J. Anström 
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and P. Eykhoff are excellent sources of general system identification information. The first 

of the Symposiums was held in 1967 and have continued every three years since then. 

Many new approaches for the development and application of estimation techniques also 

came about with the advent of better computer systems. Some of the most substantial 

contributions came from Taylor, L. W., Iliff, K. W., Powers, B. G., Mehra, R. K., Stepner, D. 

E., and O. H. Gerlach all contributed to papers that provided theses new approaches. 

Taylor, Iliff, and Powers worked together on one such paper and Mehra and Stepner on 

another. Mehra also wrote one individually as did Gerlach. More complicated challenges 

started to arise as highly maneuverable and unstable aircraft began to appear, but many 

people addressed these challenges and helped create solutions for the difficulties that 

had formed. Based on the work of these people and many others it is possible to 

determine the mathematical structure of; and estimate the parameters of the 

aerodynamic models [4]. 

1.2.2 Types of Aerodynamic Modelling 

There are many ways to perform aerodynamic modelling of aircraft. It can be 

accomplished through flying a full-size aircraft and collecting flight data, building a small-

scale model and using a wind tunnel to gather the data, or using Computational Fluid 

Dynamics to generate a model through computer code. 

Currently one of the most common is to use Computational Fluid Dynamic 

methods otherwise known as CFD. Using CFD methods means that the models can be 

generated before the aircraft is even built. Using CFD codes means that the aircraft does 

not need to be built and the aerodynamic coefficients can be found for a wide variety of 

flight regimes and use cases without the complexity of a wind tunnel or needing to build a 

full-size aircraft. Downsides to CFD methods are that they require a good grasp of the 

software being used which can require extra training, the models can be difficult to 

accurately build, especially with unusual configurations, powerful computers need to be 

used, and finally even the best CFD code can’t accurately model the nonlinearities of real 
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world flight. Altogether this means that while CFD models may be a good first step, 

further aerodynamic modeling is needed to confirm the computer models and fill in the 

edges of the flight envelope [10]. 

Wind tunnels are another common method of calculating aerodynamic models. 

Using data gathered through wind tunnel runs and similar calculation methods as done 

with full size flight models the aerodynamic model of the aircraft can be found. This is a 

common method since it gives accurate data on many real-world situations. 

Unfortunately, this method does require a wind tunnel which can be very large and quite 

costly as well as a physical aircraft model. Wind tunnels also run into an issue with scale, 

unless a full-size wind tunnel, such as the National Full-Scale Aerodynamics Complex at 

NASA Ames, is used [7]. The force and moment calculations need to be corrected for wind 

tunnel use and real-world speed. Density measures may be inaccurate because of this [1]. 

Another issue is mounting of the model in the wind tunnel. Unfortunately, the mount 

needs to be considered as it affects the flow around the model a great deal. This is not an 

easy accomplishment and can also lead to issues with the testing [6]. 

In the end, the most accurate way to find aerodynamic models of an aircraft is 

build and fly it at full size, a process often known as aircraft system identification. This 

does have a few drawbacks. Cost of the full scale aircraft flight tests and danger to the 

pilots as well as those on the ground are the biggest ones, but this is still a very important 

process to use. Benefits of these system identification methods are that they can be 

performed with the rest of the flight testing of a new aircraft. In fact, many of the 

maneuvers used in flight testing are the same needed to gather the data for system 

identification. Use of a full-size aircraft in flight reduces the uncertainties due to the 

supports or scale sizes from the wind tunnel. Nonlinearities being found and analyzed as 

part of the data from wind gusts or other nonlinear portions of flight reality unlike in the 

CFD case. Finally, using flight test methods to build aerodynamic models is also useful 

because you can use it to build the model for an aircraft that never had one calculated 
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when it was designed. Which can help with future modifications to the aircraft or the 

design of new aircraft that borrow main components. In general, the most complete set 

of flight models can be built from flight test data for current or future aircraft, although 

since the methods introduce further costs and risks either CFD or wind tunnel models 

should be used prior to flight tests to ensure the aircraft can fly safely. In this case then, 

aircraft system identification instead takes the purpose of verifying the models developed 

using other methods.  

1.2.3 Purpose of Aerodynamic Modelling 

Aerodynamic modelling is a common part of most modern aircraft design. It allows 

for the flight characteristics of a new aircraft to be analyzed prior to test flying keeping 

early flights safer for the test pilots. It is also important for simulation purposes to train 

new pilots and teach experienced pilots to safely fly new aircraft. All of this, though, 

seems like it would only be useful to new aircraft and not to those that have been flying 

for years, meaning that finding aerodynamic models through flight test methods is 

unnecessary since the use of models are generally just for pre-flight analysis. Nothing 

could be further from the truth though. In reality, aerodynamic modeling through flight 

test methods have huge amounts of uses. It allows verification of CFD and wind tunnel 

models, which can confirm or deny the theoretical performance and controllability of the 

aircraft which is an important step before producing new aircraft for the market. This still 

doesn’t explain why the aerodynamic model of an aircraft that has been built, sold, and 

flown for almost 50 years is needed or useful since simulators can be analyzed for feel by 

pilots who have hundreds to thousands of hours flying the aircraft. The use of analyzing 

the aerodynamic models of an aircraft as old as the Piper Warrior II is that the models can 

be fed into simulators for uses such as analyzing airport traffic patterns to account for 

vortices, both that the aircraft may run into and those that it may produce. This 

knowledge can help the optimization of airport traffic patterns and safety tolerances 

involving the aircraft analyzed [3]. 
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1.3 System Identification Theory 

The basis of system identification theory is to build mathematical models that will 

represent the predicted output from a set of inputs. For aircraft system theory, the inputs 

represent control inputs from the pilot, while the outputs are how the aircraft responds in 

terms of roll, pitch, and yaw. This means that with an accurate mathematical model for an 

aircraft the result of any control movement can be accurately predicted, and pilots can be 

prepared for what the aircraft will do. 

These mathematical models tend to take the form of a set of differential equations 

that relate the input to the output, as per the basis of what system identification is. 

Generally, the inputs can be preset by the experimenter, which means that the outputs 

must be measured. In the case of aircraft flight models the inputs need to be measured as 

well due to the potential variability of input from the pilot. The output at any given time 

should be a function of the input and current aircraft state and flying conditions. These 

mathematical models can be designated as either linear or non-linear [4]. 

1.3.1 Linear [4] 

A linear model is expressed as seen in Equation 1 and Equation 2 below. In these 

models A, B, C, and D are all matrices representing different things. A represents the 

stability or system matrix, B is the control or input matrix, while C and D are 

transformation matrices for the outputs and x0 is the vector of initial conditions for the 

system. The four matrices are all constants for a system. That is, they do not vary with 

time. 

EQUATION 1: 𝒙̇(𝒕) = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕)          𝒙(𝟎) = 𝒙𝟎 

EQUATION 2: 𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝑫𝒖(𝒕) 

These equations are then solved as any differential equations are solved, first a 

homogenous solution is found by solving the system for a zero-input case through the 
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separation of variables. Then the homogenous form of the vector equation gets solved 

through the infinite series in Equation 5. Equation 3 and Equation 4 show the 

homogenous form of Equation 1 and the proposed solution respectively. 

EQUATION 3: 𝒙̇(𝒕) = 𝑨𝒙(𝒕)    𝒙(𝟎) = 𝒙𝟎  

EQUATION 4: 𝒙(𝒕) = 𝒆𝑨𝒕𝒙𝟎  

EQUATION 5: 𝒆𝑨𝒕 = 𝑰 + 𝑨𝒕 +
𝑨𝟐𝒕𝟐

𝟐!
+

𝑨𝟑𝒕𝟑

𝟑!
+ ⋯ 

Solving these gives the linear model of the system under consideration. This is 

done through knowing the time derivative of eAt which can be seen in Equation 6. 

EQUATION 6:
𝒅

𝒅𝒕
𝒆𝑨𝒕 = 𝑨 + 𝑨𝟐𝒕 +

𝑨𝟑𝒕𝟐

𝟐!
+ ⋯ = 𝑨𝒆𝑨𝒕 

Therefore, the proposed solution in Equation 4 satisfies the homogenous 

equation since at t=0, 𝑥(0) = 𝑥0. The linear model in Equation 1 has a forcing function 

𝑩𝒖(𝑡) which can be thought of as a series of impulses and the response can be found 

from the convolution integral shown in Equation 7. 

EQUATION 7: 𝒙(𝒕) = 𝒆𝑨𝒕𝒙𝟎 + ∫ 𝒆𝑨(𝒕−𝝉)𝑩𝒖(𝝉)𝒅𝝉
𝒕

𝟎
 

The part of Equation 7 to the right of the equals sign is the free response to initial 

conditions and the forced response to the input 𝑢(𝑡). The first term is the free response 

and the second term is the forced response. If Equation 7 gets substituted into Equation 2 

then the result is Equation 8. 

EQUATION 8: 𝒚(𝒕) = 𝑪 [𝒆𝑨𝒕𝒙𝟎 + ∫ 𝒆𝑨(𝒕−𝝉)𝑩𝒖(𝝉)𝒅𝝉
𝒕

𝟎
] + 𝑫𝒖(𝒕) 

The next step is to define a new matrix using the Dirac delta function, Equation 9, 

as 𝑮(𝑡) seen in Equation 10. 

EQUATION 9: 𝜹(𝒕) = {
𝟎 𝒇𝒐𝒓 𝒕 ≠ 𝟎
∞ 𝒇𝒐𝒓 𝒕 = 𝟎

 𝒂𝒏𝒅 ∫ 𝜹(𝒕)𝒅𝒕 = 𝟏
∞

−∞
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EQUATION 10: 𝑮(𝒕) = 𝑪𝒆𝑨𝒕𝑩 + 𝑫𝜹(𝒕) 

Then, combining Equation 9 and Equation 10 gives 

EQUATION 11: 𝒚(𝒕) = 𝑪𝒆𝑨𝒕𝒙𝟎 + ∫ 𝑮(𝒕 − 𝝉)𝒖(𝝉)𝒅𝝉
𝒕

𝟎
 

Here 𝑮(𝑡) is the weighting function matrix. When this is solved over a very small 

time step the input vector can be considered constant and the result is seen in Equation 

12 below where 𝑥(𝑖) = 𝑥(𝑖Δ𝑡) 

EQUATION 12: 𝒙(𝒊) = 𝒆𝑨𝚫𝒕𝒙(𝒊 − 𝟏) + [𝑨−𝟏(𝒆𝑨𝚫𝒕 − 𝑰)]𝑩𝒖(𝒊 − 𝟏) 

If the homogenous differential equation, Equation 3, is returned to the potential 

solution is  

EQUATION 13: 𝒙(𝒕) = 𝝃𝒆𝝀𝒕 

With 𝜆 being a scalar and 𝜉 being a vector. This can then be substituted into 

Equation 3 and the result is seen below in Equation 14 and Equation 15.  

EQUATION 14: 𝝀𝝃𝒆𝝀𝒕 = 𝑨𝝃𝒆𝝀𝒕 

EQUATION 15: (𝝀𝑰 − 𝑨)𝝃 = 𝟎 

Then, as long as the determinant of the coefficient matrix is equal to zero then 

there exists a nonzero solution to these equations. That is as long as Equation 16 holds 

than there is a non-trivial solution to the above equation sets. 

EQUATION 16: |𝝀𝑰 − 𝑨| = 𝟎 

The roots of Equation 16 are the eigenvalues for the system and if they are 

distinct then they each have an eigenvector that corresponds to the respective 

eigenvalue. The eigenvalues for these solutions can either be real or imaginary and the 

solution that corresponds to each real eigenvalue or each pair of imaginary eigenvalues is 
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known as a mode and the solution to the homogeneous equation is a sum of the modal 

components. 

EQUATION 17: 𝒙(𝒕) = 𝒄𝟏𝝃𝟏𝒆𝝀𝟏𝒕 + 𝒄𝟐𝝃𝟐𝒆𝝀𝟐𝒕 + ⋯ + 𝒄𝒏𝒔
𝝃𝒏𝒔

𝒆𝝀𝒏𝒔𝒕 

In Equation 17 the scalars 𝑐𝑖, 𝑖 = 1,2, … , 𝑛𝑠 are determined by the initial condition 

from Equation 3, 𝒙(0) = 𝒙𝟎.  

Now, if the forcing function is a sequence of impulses like earlier, then the 

solution for the forcing function inside the convolution integral follows a similar analysis 

to what was just performed. This means that the participation of each mode depends on 

how the forcing function is projected along the eigenvectors. 

If the Laplace transform is applied to Equation 1 and Equation 2 then the results 

are  

EQUATION 18: 𝒔𝒙̃(𝒔) = 𝑨𝒙̃(𝒔) + 𝑩𝒖̃(𝒔) 

and 

EQUATION 19: 𝒚̃(𝒔) = 𝑪𝒙̃(𝒔) + 𝑫𝒖̃(𝒔) 

In these equations the variable s is complex and then the transformed state is seen in 

Equation 20 below. 

EQUATION 20: 𝒙̃(𝒔) = ∫ 𝒙(𝒕)
∞

𝟎
𝒆−𝒔𝒕𝒅𝒕 

This is the same for 𝒚̃(𝑠) and 𝒖̃(𝑠). Then the result is Equation 21 below. 

EQUATION 21: 𝒚̃(𝒔) = [𝑪(𝒔𝑰 − 𝑨)−𝟏𝑩 + 𝑫]𝒖̃(𝒔) = 𝑮(𝒔)𝒖̃(𝒔) 

In Equation 21 the matrix 𝑮(𝑠) is a transfer function matrix where the elements are 

EQUATION 22: [𝑮𝒋𝒌] =
𝒏𝒖𝒎𝒋𝒌(𝒔)

𝒅𝒆𝒏(𝒔)
 𝒇𝒐𝒓 {

𝒋 = 𝟏, 𝟐, … , 𝒏𝒐

𝒌 = 𝟏, 𝟐, … , 𝒏𝒊
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and 𝑛𝑜 and 𝑛𝑖 are the number of outputs, while 𝑛𝑢𝑚𝑗𝑘(𝑠) and 𝑑𝑒𝑛(𝑠) are polynomials in 

s. The denominator polynomial, 𝑑𝑒𝑛(𝑠), is the characteristic polynomial and 𝑛𝑢𝑚𝑗𝑘(𝑠), 

the numerator, corresponds to the transfer function that is the jth output to the kth 

input. If s is set to 𝑠 = 𝑗𝜔 where 𝑗 = √−1 and 𝜔 is angular frequency, then instead of the 

Laplace transform, it becomes the Fourier transform as seen in Equation 23 and Equation 

24 below. 

EQUATION 23: 𝒚̃(𝒋𝝎) = ∫ 𝒚(𝒕)
∞

𝟎
𝒆−𝒋𝝎𝒕𝒅𝒕 

EQUATION 24: 𝒖̃(𝒋𝝎) = ∫ 𝒖(𝒕)
∞

𝟎
𝒆−𝒋𝝎𝒕𝒅𝒕 

Then the transfer function matrix instead becomes the frequency response matrix 

𝑮(𝑗𝜔) which can be determined experimentally. The elements of the matrices 𝑨, 𝑩, 𝑪, 

and 𝑫 from Equation 1 and Equation 2 are model parameters that remain constant. This 

means that they do not depend on the time, the input, their derivatives, or the current 

state. Although, theses matrix parameters can depend on time, that changes Equation 1 

and Equation 2 to instead become Equation 25 and Equation 26 below. 

EQUATION 25: 𝒙̇(𝒕) = 𝑨(𝒕)𝒙(𝒕) + 𝑩(𝒕)𝒖(𝒕)          𝒙(𝒕𝟎) = 𝒙𝟎 

EQUATION 26: 𝒚(𝒕) = 𝑪(𝒕)𝒙(𝒕) + 𝑫(𝒕)𝒖(𝒕) 

Which represent a time varying system rather than the time-invariant system 

previously discussed. Here the solution is seen in Equation 27, where Φ is the state 

transition matrix and is a function of both the time of the input 𝜏 and the time of the 

result t. 

EQUATION 27: 𝒚(𝒕) = 𝑪(𝒕)𝚽(𝒕, 𝒕𝟎)𝒙(𝒕𝟎) + ∫ 𝑪(𝒕)𝚽(𝒕, 𝛕)𝐁(𝛕)𝒖(𝝉)𝒅𝝉 + 𝑫(𝒕)𝒖(𝒕)
𝒕

𝒕𝟎
 

If uncertain disturbances are added to the input and Equation 25 then rather than a 

deterministic model, the system becomes a stochastic one. This means that the inherent 

randomness that exists in any real-world system is accounted for and that the same set of 
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parameters and initial conditions can lead to different results. This changes Equation 25 

and Equation 26 to Equation 28 and Equation 29 and the vector 𝒘(𝑡) is process noise, 

while 𝑩𝑤(𝑡) is the control matrix for the vector 𝒘(𝑡). 

EQUATION 28: 𝒙̇(𝒕) = 𝑨(𝒕)𝒙(𝒕) + 𝑩𝒘(𝒕)𝒘(𝒕)          𝒙(𝒕𝟎) = 𝒙𝟎 

EQUATION 29: 𝒚(𝒕) = 𝑪(𝒕)𝒙(𝒕) + 𝑫(𝒕)𝒖(𝒕) 

Because 𝒘(𝑡) is generally assumed to be white noise identified by its mean and 

covariance matrices as seen below. 

EQUATION 30: 𝑬[𝒘(𝒕)] = 𝟎 

EQUATION 31: 𝑬[𝒘(𝒕𝒊)𝒘𝑻(𝒕𝒋)] = 𝑸(𝒕𝒊)𝜹(𝒕𝒊 − 𝒕𝒋) 

In Equation 30 and Equation 31 while 𝛿(𝑡𝑖 − 𝑡𝑗) is the dirac delta function, 𝐸[ ] is the 

expectation operator. The expectation operator gives the expected value or mean of a 

random variable X, that is  

EQUATION 32: 𝑬(𝑿) = ∫ 𝒙𝒑(𝒙)𝒅𝒙
∞

−∞
 

And 𝑝(𝑥) is the probability density function for X. To finish modeling this stochastic 

system the vector of initial conditions needs to be declared as does the affiliation 

between 𝒙(𝑡0) and 𝒘(𝑡) generally specified as 

EQUATION 33: 𝑬[𝒙(𝒕𝟎)] = 𝒙̅𝟎  

EQUATION 34: 𝑬{[𝒙(𝒕𝟎) − 𝒙̅𝟎][𝒙(𝒕𝟎) − 𝒙̅𝟎]𝑻} = 𝑷𝟎  

EQUATION 35: 𝑬[𝒙(𝒕𝟎)𝒘𝑻(𝒕)] = 𝟎 

With 𝑷0 being a 𝑛𝑠 𝑥 𝑛𝑠 constant error covariance matrix. In the above equations 𝒙̅0 is 

used since the initial condition is the expected value of 𝒙(𝑡0), the stochastic quantity. 

Because a problem arises if the continuous-time formulation for the stochastic system 

used with 𝒘(𝑡), due to 𝒘(𝑡) being a zero-mean random vector for a fixed length of time. 
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In order to avoid this the model should be formed as a discrete time model. That is the 

signals would be sampled at 𝑡0 + 𝑖Δ𝑡, 1, 2, …, with Δ𝑡 between samples being constant, 

then 

EQUATION 36: 𝒙(𝒊) ≡ 𝒙(𝒕𝟎 + 𝒊𝚫𝒕)       𝒊 = 𝟎, 𝟏, 𝟐, …  

Then 𝒖(𝑖) and 𝒘(𝑖) are similarly for the discrete-time state-space stochastic model given 

by Equation 37 and Equation 38. 

EQUATION 37: 𝒙(𝒊) = 𝚽(𝒊 − 𝟏)𝒙(𝒊 − 𝟏) + 𝚪 (𝒊 − 𝟏)𝒖(𝒊 − 𝟏) + 𝚪𝒘(𝒊 − 𝟏)𝒘(𝒊 − 𝟏) 

EQUATION 38: 𝒚(𝒊) = 𝑪(𝒊)𝒙(𝒊) + 𝑫(𝒊)𝒖(𝒊)     𝒊 = 𝟏, 𝟐, …  

1.3.2  Nonlinear [4] 

These prior mathematical concepts are great for linear situations; that is, where 

there is a linear relationship between the input and output. Unfortunately though, the 

real-world is rarely linear. When only restricted conditions are used, then the linear 

models can predict nonlinear responses quite well, but when that type of approximation 

isn’t possible then a nonlinear model must be used instead. In the same stochastic, time-

varying system used previously the new model equations can be seen below. 

EQUATION 39: 𝒙̇(𝒕) = 𝒇[𝒙(𝒕), 𝒖(𝒕), 𝒘(𝒕), 𝒕]    𝒙(𝟎) = 𝒙𝟎 

EQUATION 40: 𝒚(𝒕) = 𝒉[𝒙(𝒕), 𝒖(𝒕)] 

Because these equations are nonlinear, numerical methods such as the fourth-

order Runge-Kutta must be used, as with nonlinear systems in general. A common 

nonparametric representation of these nonlinear systems is the Volterra series. The 

Volterra series can be seen in Equation 41 below 

EQUATION 41: 𝒚(𝒕) = ∑ 𝒚𝒏(𝒕)∞
𝒏=𝟏  

And 𝑦𝑛(𝑡) is defined as 
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EQUATION 42: 𝒚𝟏(𝒕) = ∫ 𝒈𝟏(𝝉𝟏)𝒖(𝒕 − 𝝉𝟏)𝒅𝝉𝟏
𝒕

𝟎
 

EQUATION 43: 𝒚𝟐(𝒕) = ∫ ∫ 𝒈𝟐(𝝉𝟏, 𝝉𝟐)𝒖(𝒕 − 𝝉𝟏)𝒖(𝒕 − 𝝉𝟐)𝒅𝝉𝟏𝒅𝝉𝟐
𝒕

𝟎

𝒕

𝟎
 

EQUATION 44: 𝒚𝒏(𝒕) = ∫ ∫ … ∫ 𝒈𝒏(𝝉𝟏, 𝝉𝟐, … , 𝝉𝒏)𝒖(𝒕 − 𝝉𝟏) … 𝒖(𝒕 − 𝝉𝒏)𝒅𝝉𝟏 … 𝒅𝝉𝒏
𝒕

𝟎

𝒕

𝟎

𝒕

𝟎
 

And the 𝑔1(𝜏1), 𝑔2(𝜏1, 𝜏2), … , 𝑔𝑛(𝜏1, 𝜏2, … , 𝜏𝑛) terms are the impulse responses. This 

means that the Volterra series description of the system is a generalization of the linear 

model through a convolution integral. 

1.3.3 Parameter Estimation and System Identification 

System identification is generally started by performing an experiment with 

inputs specified using theoretical knowledge about the system and the purpose of the 

identification. The model class is also specified using that same theoretical knowledge as 

well as from experimental data. The equivalence of the model and physical system is 

commonly expressed through a scalar cost function which quantifies the relationship 

between the physical system output, z, and the model output, y. 

EQUATION 45: 𝑱 = 𝑱(𝒛, 𝒚) 

And 𝐽 usually consists of a weighted sum of squared differences. The relation 

between 𝑧 and 𝑦 are then expressed through a measurement equation, as seen in 

Equation 46. Here v is the measurement error or measurement noise and is assumed to 

be random. 

EQUATION 46: 𝒛 = 𝒚 + 𝒗 

This noise unfortunately cannot be measured directly but may be assumed or 

estimated using smoothing and filtering techniques. Since finding the best model based 

off of Equation 45 may lead to the consideration of far too many models, instead system 

identification becomes an optimization problem to find a model 𝑀 from a class of models 

that minimizes the cost function 𝐽. These models may often be limited to models that 
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have the same mathematical structure, 𝑀∗, but different parameters in the model, 𝜽. 

That is  

EQUATION 47: 𝑴∗ = {𝑴(𝜽)} 

Then data that is collected when running the experiment is  

EQUATION 48: 𝒁𝑵 = [𝒛(𝟏), 𝒖(𝟏), 𝒛(𝟐), 𝒖(𝟐), … , 𝒛(𝑵), 𝒖(𝑵)] 

And N is the number of data points. After the structure of the model is chosen, system 

identification is just the selection of a value for 𝜽, from the data in 𝒁𝑁 that minimizes 𝐽. 

EQUATION 49: 𝑱 = 𝑱[𝒁𝑵, 𝒀𝑵(𝜽)] 

With 𝒀𝑁(𝜽) being the model outputs depending on the vector 𝜽. Therefore, system 

identification is as simple as model parameter estimation. This allows the exploitation of 

statistical interference methods, primarily estimation theory. The results from this 

process will include the parameter estimates, error bounds, and information used to test 

statistical hypothesis. 

When this method is applied to aircraft the dynamic equations of motion for 

aircraft need to be used. Those equations are a combination of the aircraft mass 𝑚, the 

inertia tensor 𝑰, Euler angles 𝜻 which is the attitude of the aircraft relative to the earth 

axes, the translational and angular velocity vectors, 𝑽 and 𝝎 respectively, for the aircraft 

motion, and the control vector 𝒖. The physical forces from gravity, thrust, and 

aerodynamic forces, 𝑭𝐺 , 𝑭𝑇 , and 𝑭𝐴 respectively, as well as 𝑴𝐴, the aerodynamic 

moments, and 𝑴𝑇, moment due to the thrust, are also included in the equation. To 

include gravitational force kinematic differential equations are added to describe the 

attitude of the aircraft in reference to earth axes as can be seen in Equation 50 and 

Equation 51 below. Since thrust forces and moments are generally found through static 

ground tests and through installation geometry, system identification for aircraft is then 
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simplified to the calculation of the model structure for the aerodynamic forces and 

moments, and the estimation of parameters in those structures using the measured data.  

EQUATION 50: 𝒎𝑽̇ + 𝝎 ∗ 𝒎𝑽 = 𝑭𝑮(𝜻) + 𝑭𝑻 + 𝑭𝑨(𝑽, 𝝎, 𝒖, 𝜽) 

EQUATION 51: 𝑰𝝎̇ + 𝝎 ∗ 𝑰𝝎 = 𝑴𝑻 + 𝑴𝑨(𝑽, 𝝎, 𝒖, 𝜽) 

Then, when Equation 50 and Equation 51 have the output equations added to 

connect the aircraft state and controls to the measured outputs you get,  

EQUATION 52: 𝒙̇(𝒕) = 𝒇[𝒙(𝒕), 𝒖(𝒕), 𝜽]          𝒙(𝟎) = 𝒙𝟎 

EQUATION 53: 𝒚(𝒕) = 𝒉[𝒙(𝒕), 𝒖(𝒕), 𝜽] 

EQUATION 54: 𝒛(𝒊) = 𝒚(𝒊) + 𝒗(𝒊)     𝒊 = 𝟏, 𝟐, … , 𝑵 

Here 𝒙 has the components of 𝑽, 𝝎, and 𝜻. The output vector 𝒚(𝑡) consists of aircraft 

response variables and usually includes state variables. The discrete measured outputs in 

𝑧(𝑖) are tampered by the measurement noise 𝒗(𝑖) as discussed in Equation 46 [4]. 
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2 Chapter 2: 

Test Methods 

2.1 Test Item Description 

The Florida Institute of Technology Flight Test Engineering Piper PA-28-161 Warrior 

II was the aircraft being tested. It is a low-wing, single engine, 4-seat aircraft with a 

maximum gross take-off weight of 2440 lbs. The engine is a 160 HP Lycoming O-320 

engine. It has a reversible control system; that is, the controls move the control surfaces 

and the control surfaces in turn move the controls. Table 1 lists more details about the 

Piper PA-28-161 Warrior II. 

TABLE 1: TEST AIRCRAFT INFORMATION [8][9] 

Aircraft 

Manufacturer Piper Aircraft Inc. 

Model PA-28-161 Warrior II 

Registration Number N618FT 

Max Take-off Weight 2440 lbs. 

Empty Weight 1568.5 lbs. 

Engine 

Make Lycoming 

Model O-320-D3G 

Horsepower 160 hp 

 

The SIDPAC software is a collection of MATLAB files developed by Eugene Morelli. 

It is designed to have aircraft inputs and responses fed into the software and then it gives 

the coefficients used to develop the aerodynamic models through the appropriate use of 

certain files. 
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Data were collected through the use of a Garmin G5 running data though the 

ForeFlight Stratus system and the Florida Institute of Technology Flight Test Engineering 

Department’s Flight Data Box, the “Orange Box.” 

The pilot performed longitudinal column impulse and doublets, lateral/directional 

wheel/pedal impulse and doublets, an all-axes control doublet, a static longitudinal 

stability test, and finally steady heading sideslips. These were performed at several 

different altitudes and airspeeds so that the full flight envelope of the aircraft could be 

extrapolated from the data. 

2.2 Test Objectives 

The objectives of these flight tests were to find the aircraft responses to control 

inputs so that the aerodynamic models of the aircraft could be found. 

2.3 Limitations and Constraints 

As with any flying, weather is always a factor; even more so with flight tests. Luckily 

the weather was relatively calm on the test day in question. Therefore, the tests were not 

adversely affected by the weather. Unfortunately, the aircraft had a slight right roll when 

all the controls were neutral. While this should not affect the model for this specific 

Warrior II, it will mildly affect the model for all Warrior II’s. 

2.4 Test Procedure 

The first step for this flight test was the same as for any flight test, taxi, take-off, 

and a flight to the test location. In this case the test flight was based out of Orlando-

Melbourne International Airport (KMLB). The test location was just off the eastern coast 

of Florida. The route the aircraft flew can be seen in Figure 1 below. Once at the test 

location the following maneuvers were performed at varying altitudes, airspeeds, and flap 

configurations. Table 2 below shows the full set of test configurations. 
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FIGURE 1: TEST RANGE AND HOME AIRPORT FOR THE FLIGHT TEST OF THE PIPER WARRIOR II 
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TABLE 2: TEST CONFIGURATIONS 

 

1000 ft Above Sea Level 

100 kts no flap 110 kts no 

flaps 

80 kts no flaps 85 kts flaps 40 65 kts flaps 40 

Longitudinal 

column Impulse 

and Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 
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3000 ft Above Sea Level 

100 kts no flap 110 kts no 

flaps 

80 kts no flaps 85 kts flaps 40 65 kts flaps 40 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Longitudinal 

Stability 

Static 

Longitudinal 

Stability 
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5000 ft Above Sea Level 

100 kts no flap 110 kts no 

flaps 

80 kts no flaps 85 kts flaps 40 65 kts flaps 40 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Longitudinal 

column 

Impulse and 

Doublet 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Lateral 

Directional 

Inputs: Wheel 

and Pedal 

Impulse and 

Doublets 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Data 

Compatibility 

Maneuver: All 

Axes Control 

Doublet 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 

Static 

Lateral/Directi

onal Stability: 

Steady 

Heading 

Sideslip 
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2.4.1 Longitudinal column impulse and doublet 

The purpose of the impulse was to establish a marker in the data file. The doublet 

maneuver was used to get pitch data for both short and long period modes. This data was 

then run through SIDPAC to find the dimensionless coefficients. 

1. Trim Aircraft 

2. Rapid column impulse at ½ input 

3. Record for 10 seconds 

4. Re-trim 

5. Column doublet, targeting ±.5g 

6. Record for 10 seconds 

2.4.2 Lateral Directional Inputs: Wheel and Pedal Impulse and Doublets 

The purpose of this maneuver was the same as the previous maneuver, but for rolling 

and yawing data instead of pitch data, which is why a pedal doublet was necessary, since 

the lateral and directional motions are coupled, data is needed for both aileron and 

rudder inputs. 

1. Trim Aircraft 

2. Rapid wheel impulse at ½ input to the left 

3. Record for 10 seconds 

4. Rapid wheel impulse at ½ input to the right 

5. Record for 10 seconds 

6. Re-trim 

7. Wheel doublet at ½ input 

8. Record for 10 seconds 

9. Pedal doublet at ½ input 

10. Record for 3 Dutch-Roll cycles or until stable 
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11. Pedal doublet at full input 

12. Record for 3 Dutch-Roll cycles or until stable 

2.4.3 All Axes Control Doublet 

Due to aircraft controls being coupled, an all axis control doublet helps relate the 

effects of one input to the effects of another input. This should provide greater accuracy 

for system identification, especially in a reversible control system like the one on the 

Piper Warrior. 

1. Trim Aircraft 

2. Rapidly apply one after the other 

a. Column doublet targeting ±.5g 

b. Wheel doublet at ½ input 

c. Pedal doublet at ½ input 

3. Record Data for 3 Dutch Roll cycles or until stable 

2.4.4 Static Longitudinal Stability 

Data were gathered to determine static longitudinal stability. Positive static stability 

means an airplane will tend to return to its trim condition following a disturbance. It also 

is an indication of speed stability, where a pilot must push forward on the controls to 

accelerate and pull back to decelerate from the trim condition. 

1. Trim Aircraft 

2. Decelerate 15 kts using aft column input. Do not change power or re-trim  

3. Stabilize in 5 kt increments and record stick force 

4. Relax and return to trim speed 

5. Re-trim 

6. Accelerate 15 kts using forward column input. Do not change power or re-trim 

7. Stabilize in 5 kt increments and record stick force 

8. Relax and return to trim speed 
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2.4.5 Static Lateral-Directional Stability, Steady Heading Sideslip 

Data were gathered to determine static lateral-directional stability. Directional 

stability (or weathercock stability) is the airplane’s tendency to return its trim sideslip 

angle (which should be 𝛽 = 0) following a disturbance. Static lateral stability is the 

tendency of the airplane to return to the trim bank angle following a disturbance. Unlike 

longitudinal modes, lateral-directional modes are coupled. 

1. Trim Aircraft 

2. Nose Right SHSS 

a. Do not adjust power 

b. Descend as needed to maintain speed 

c. Stabilize in 1/3 pedal increments 

d. Hold for 5 seconds 

3. Nose Left SHSS 

a. Do not adjust power 

b. Descend as needed to maintain speed 

c. Stabilize in 1/3 pedal increments 

d. Hold for 5 seconds 

2.5 Data Reduction Procedure 

After the test flight was performed and the data were gathered, the data had to be 

analyzed. This was done using Dr. Eugene Morelli’s MATLAB SIDPAC program. To use this 

complicated program, the data needs to be first loaded from excel. There are many was 

to do this. It can be done manually or with automated commands as part of a larger 

MATLAB script. Once all the data has been loaded in and assigned to the correct variables 

in SIDPAC, the discontinuous data from the flight data should be smoothed using a 

SIDPAC script ‘smoo.m’ which smooths out data taken at discrete time intervals and 

makes it into more of a continuous input. This helps the accuracy of the parameter 
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estimates. The next step is to calculate the force and moment coefficients using 

‘compfc.m’ and ‘compmc.m’ respectively, and then assign the values calculated to the 

‘fdata’ array used by SIDPAC. Next the regressor matrix for equation-error parameter 

estimation needs to be assembled which for a longitudinal maneuver uses the angle-of-

attack (alpha), the non-dimensional pitch rate (qhat), and the elevator input to solve. 

Next smoothed trim values need to be found, and then removed from the regressors. 

These are the smoothed values at the start of the time measurement. This is done to help 

adjust for messy data at the beginning of the data collection window. If the data is already 

really clean and smooth at the start, then this step doesn’t really do anything, but it is 

relatively simple and always a good idea to perform. The next step is to prepare the 

regressor matrix for use in ‘lesq.m’, which performs a least squares regression on the 

matrix, which requires a constant regressor for the bias term. Then the z-force coefficient 

stability and control derivatives are calculated using ‘lesq.m’. Once these are calculated 

the parameter error bounds need to be calculated which is done using ‘r_colores.m’ and 

then they can be displayed using ‘model_disp.m’. Next, stepwise regression needs to be 

performed for the pitching moment coefficient. Part of this is to add a nonlinear cross 

term, angle of attack*elevator angle, and then see what regressors should be added or 

removed for the stepwise regression using ‘swr.m’. As part of this step the regressors get 

added and removed by the user and a regressor should be kept only if it decreases fit 

error, increases R2 value, and decreases the partial squared error. Then make sure that 

the only parameters included are those for the selected regressors. Then, again calculate 

and show the error bounds like before. Then the dimensional stability and control 

derivatives need to be estimated using time-domain output-error estimation methods, 

this is begun with ‘nldyn.m’ to set up the data for the output-error (oe) estimation. The 

initial parameter values need to be found, but these come from the equation error 

solution found before. Now, the estimation is begun using ‘oe.m’ and the model file 

‘nldyn.m’ which is dynamic and so changes each time. This step takes a bit of time since it 

has to run through several iterations to get as accurate a result as possible. Now the 
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estimated parameter error bounds are corrected using ‘m_colores.m’ and the results can 

be viewed. The final piece of this estimation is to check the prediction capability by using 

the data from another maneuver and the output-error model found before. 
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3 Chapter 3: 

Results 

 

The data gathered were run through SIDPAC to build aerodynamic models through 

parameter estimation, which allows the force and moment coefficients to be calculated 

for a variety of maneuvers and flight conditions in both the longitudinal axis and the 

lateral axis. Positive inputs correspond to up elevator, right rudder, and right aileron. 

Figure 2 shows the inputs and outputs from the test maneuver, in this case a control 

column doublet at 5000 ft and 100 kts. As can be seen the elevator was trimmed at about 

3.5 degrees up and was pulled to almost 6 degrees and then the push only needed to 

drop a few degrees to apply the doublet according to the response motion. This data has 

been smoothed out to allow for better calculations of the models and the moment 

coefficients, but it has not been filtered in any way. The variables az and q are of 

particular interest since they are used the most on the following plots. Az is the 

acceleration in g’s in the z-direction, and q is the pitch rate in degrees per second. 



27 
 

 
 

 

FIGURE 2: FLIGHT TEST DATA FOR 5000 FT COLUMN DOUBLET 

In Figure 3, the force and moment coefficients for longitudinal maneuvers such as 

the column doublet can be seen. This is the data for the 5000ft column doublet. This data 

comes from part of the standard aerodynamic equations and were solved along with the 

Cl and Cd equations. Here you can see the effect of the smoothing done on the measured 

flight test data in the previous steps. Force and moment coefficients are important since 

they are a major part of the model formulation. 
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FIGURE 3: FLIGHT TEST DATA Z-FORCE AND PITCHING MOMENT NON-DIMENSIONAL COEFFICIENTS 

The next step is to formulate the equation-error regression matrix. These are the 

values that are directly being used to calculate the model parameters. In this case the 

values used are angle of attack (alpha), non-dimensional pitch rate (qhat), and elevator 

angle again. This is because the control inputs are what directly change the motion of the 

aircraft and therefore are incredibly important in parameter estimation. The regressors 

can be seen in Figure 4 below. 
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FIGURE 4: REGRESSORS FOR THE EQUATION-ERROR PARAMETER ESTIMATION 

From these regressors equation-error parameter estimation can be performed. 

Table 3 below shows the results of the Z-force parameter estimation. 

TABLE 3: Z-FORCE PARAMETER ESTIMATION 

Parameter Estimate Std. Error % Error 95% Confidence 

Interval 

CZa -4.997e+00 1.116e+00 22.3 [-7.230, -2.764] 

CZq -2.946e+01 1.021e+01 34.7 [-49.884, -9.029] 

CZde -1.128e+00 1.614e+00 143.1 [-4.356, 2.101] 

CZo 7.108e-01 2.807e-02 3.9 [0.655, 0.767] 
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As can be seen, the percent error for each parameter is decently low for all but 

CZde, which is the Coefficient of Z-force from the change in elevator angle, but even then, 

the 95% confidence interval is pretty small. Figure 5 shows the plot of the prediction from 

the regression model compared to the flight data as well as the residual between the two. 

It can be seen that although the percent error in the parameters was decently large the 

model compared to the flight data wasn’t drastically inaccurate.  

 

 

FIGURE 5: EQUATION-ERROR PARAMETER ESTIMATION RESULTS 

Now the next step is to perform the estimation for the pitching moment 

coefficient which is performed though the use of step-wise regression. This allows for the 

addition and removal of regressors to ensure that they do not harm the overall model fit. 

Each parameter can be seen below, but in the overall model fit the first parameter has 

been left out because it did not change the R2 value very much and showed other signs of 
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damaging the overall model, the direct plot of the model being one of these. Table 4 

shows the estimates and change from the addition of each parameter for the pitching 

moment coefficient. In the end result though the model was the best when parameter 1 

was removed. 

TABLE 4: STEP-WISE REGRESSION FOR THE PITCHING MOMENT COEFFICIENT 

Parameter Estimate Fit Error R2 Partial Squared 

Error 

1 -6.9740e+03 83.03% 32.21% 1.5519e+04 

2 -1.5862e+04 81.70% 44.93% 1.5101e+04 

3 9.7539e+02 81.76% 35.38% 1.5187e+04 

4 -5.8894e+05 56.70% 69.19% 7.8211e+03 

 

So, then the projected model can be seen in Figure 6 below. It can be seen that 

the model matches the flight data pretty well even if it is not exact, this plot fits better 

than it did with parameter 1 included. The residual between the flight data and equation-

error model can be seen as well and other than a couple points is also not too major. 
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FIGURE 6: PITCHING MOMENT COEFFICIENT MODEL PLOTTED OVER FLIGHT DATA 

Table 5 below shows the value of the estimates as well as the associated percent error, 

standard error and 95% confidence interval. This shows that each of the parameters are 

very large for this model, even though the z-force models were much smaller. 

TABLE 5: PITCHING MOMENT ESTIMATED PARAMETERS 

Parameter Estimate Std. Error % 

Error 

95% Confidence 

Interval 

Cma -3.395e+04 9.689e+03 28.5 [-53326.423, -

14570.162] 

Cmq 1.367e+04 1.915e+03 14.0 [9841.450, 17502.690] 

Cmde -6.644e+05 7.394e+04 11.1 [-812239.891, -

516484.018] 

Cmo -1.237e+01 1.1112e+01 89.9 [-34.611, 9.875] 
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So now output-error in the time domain is needed. This uses the previous steps as 

a starting point and solves for overall parameter estimation. It essentially refines the 

models to better fit the flight data. This model fits a set of new flight data, it is mostly the 

same as before but q, the pitch rate in radians per second, is also included. This can be 

seen in Figure 7 below. 

 

FIGURE 7: OUPUT-ERROR TIME DOMAIN MODELING FLIGHT DATA 

The output-error method is an iterative method that runs through many revisions trying 

to get convergence on the model. For this data it ran for approximately 72 seconds. The 

end model can be seen and compared to the flight data below in Figure 8. 
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FIGURE 8: OUTPUT-ERROR PARAMETER ESTIMATION MODEL VS. FLIGHT DATA 

The accuracy of the model can be seen here. In general, the model is decent, but 

the pitch rate shows almost no prediction at all in the model. This may be caused by many 

different things. The most likely is that none of the data was corrected for the location of 

the sensors. This causes issues since all the forces and moments act through the Center of 

Gravity (CG) of the aircraft so if the sensor locations are not over the CG then the data 

ends up being inaccurate. Another source of error is that which also causes the errors 

seen in previous steps, which is that much of the flight data has no filter on it. This causes 

an enormous amount of scatter in the data readings and in fact can be seen in the angle-

of-attack (alpha) in Figure 8 above. The flight data shows that both the pitch rate and the 

z-axis acceleration levels off to a constant after the maneuver ends at approximately the 3 

second mark. The angle-of-attack though does not. This should not happen, if anything 

the angle of attack should level out before or at the same time as the others. Especially 

since the angle of attack is a measure of the relative wind axis. If the aircraft is not 

changing pitch, then alpha should not be changing either unless the aircraft is hit by gusts 

or turbulence. But in the plot above the change in alpha is too consistent to be caused by 
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random irregular events like gusts and turbulence. This leads to the conclusion that the 

lack of filtering and use of smoothing causes the oscillation in alpha and leads to a 

degraded model, building the model without smoothing the data led to a much worse 

estimation. 

TABLE 6: PARAMETER ESTIMATION RESULTS 

Parameter Estimate Std. Error %Error 95% Confidence Interval 

CZa -4.520e+00 2.083e+00 46.1 [-8.685, -0.355] 

CZq 3.578e+01 1.847e+01 51.6 [-1.163, 72.725] 

CZde -3.522e+00 9.119e-01 25.9 [-5.346, -1.698] 

CZo -4.495e-01 5.545e-02 12.3 [-0.560, -.0339] 

Cma -3.859e+04 1.342e+04 34.8 [-65423.706, -11752.094] 

Cmq 1.987e+04 4.839e+05 2434.8 [-947905.765, 987653.328] 

Cmde 1.642e+04 1.077e+04 65.6 [-5115.984, 37958.824] 

Cmo 6.836e+02 3.876e+02 56.7 [-91.496, 1458.735] 

azo 1.973e+00 2.946e-02 1.5 [1.915, 2.032] 

 

The results of the poor model estimate for the pitch rate q can be seen very 

obviously in the % Error for the parameter Cmq, in this case it is 2434.8% seen in Table 6 

above. This is an insanely high error, and means that it is still completely unknown, which 

makes sense with the plot of the model in Figure 8 that was looked at earlier. Again, 

filtered data would probably help clean these models up and hopefully give a true model 

for the longitudinal movement of the Piper Warrior II. 

Once the longitudinal model has been found, the lateral model needs to be 

computed. This is performed using the same steps as in the longitudinal model, but the 

effects of multiple control inputs, both aileron and rudder, as well as both rolling and 

yawing moment. In Figure 9 below the control inputs and outputs can be seen. Lateral 



36 
 

 
 

movements of the aircraft are influenced by both rudder inputs and aileron inputs and 

measured in yaw angle, roll angle, and sideslip angle. 

 

FIGURE 9: LATERAL FLIGHT TEST DATA 

Like before, all this data has been smoothed to build better models. Here it can 

be seen that the primary control input was a rudder doublet. While the aileron also 

moved, it is less defined as the maximum and minimum are not the same, nor are they 

applied for the same amount of time. Instead these are likely just the result of the 

aircrafts motion during the doublet. In fact, the rudder input clearly shows a maximum for 

about half a second then a minimum for the same length of time. This would correspond 

to a full input in one direction, then a full input in the other. 
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FIGURE 10: Y-FORCE AND ROLLING MOMENT COEFFICIENTS FOR LATERAL MANEUVER 

The non-dimensional coefficients in Figure 10 above are the key to the lateral 

models. It can be seen that the Y-force coefficient has a decently smooth curve, but the 

rolling moment has much sharper peaks and valleys. Now that the Y-force and rolling 

moment coefficients have been calculated the regressor matrix for least squares 

regression needed to be built. These regressors are shown in Figure 11 seen below. 
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FIGURE 11: EQUATION ERROR REGRESSORS FOR LATERAL MODEL 

Using the regressors seen in Figure 11 the Y-Force parameter estimates are 

calculated using a least-squares equation-error regression. The results can be seen below 

in  

Table 7. Note the high percent error on the Y-Force coefficient from the side slip 

angle Beta (CYb). The model result can be seen in Figure 12 below; the model matches 

the flight data pretty well, which means that the high percent error in  

Table 7 for CYb just means that its effect on the model may be drastically 

different than that shown. On the other hand, though, since both the estimate and the 

standard error are so small, CYb probably doesn’t affect the model very much. 
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TABLE 7: Y-FORCE PARAMETER ESTIMATION 

Parameter Estimate Std. Error % Error 95% Confidence 

Interval 

CYb 7.267e-02 1.247e-01 171.7 [-0.177, 0.322] 

CYp 4.059e+00 7.171e-01 17.7 [2.625, 5.494] 

CYdr -7.242e-02 3.066e-02 42.3 [-0.134, -0.011] 

CYda -2.019e-01 8.468e-02 41.9 [-0.371, -0.033] 

CYo 8.163e-03 2.217e-03 27.2 [0.004, 0.013] 

 

 

FIGURE 12:Y-FORCE EQUATION-ERROR PARAMETER ESTIMATION MODEL 

So according to the comparison plot the Y-Force model is very accurate with low 

residuals across most of it. This means that the next step is to move onto the rolling and 

yawing moment models. First the rolling moment coefficient parameters are determined 
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through step-wise regression. The results of which can be seen in Table 8 below and the 

model plot can be seen in Figure 13 below. 

TABLE 8: STEP-WISE REGRESSION FOR ROLLING MOMENT LATERAL MANEUVER 

Parameter Estimate Fit Error R2 Partial Squared 

Error 

1 5.6994e+02 88.88% 21.62% 3.5998e+03 

2 2.8557e+03 76.54% 42.11% 2.6864e+03 

3 -3.1145e+02 56.85% 68.19% 1.5191e+03 

4 -1.6575e+02 56.71% 68.48% 1.5239e+03 

5 -3.1493e+02 53.42% 72.15% 1.3756e+03 

 

When the model was built, the 4th parameter was left out of the model. This is 

because during the step-wise regression the 4th parameter showed very minor 

improvements on the overall model and showed that it was a superfluous parameter that 

just complicated and obfuscated the model. 
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FIGURE 13: ROLLING MOMENT MODEL USING STEP-WISE REGRESSION 

Since the 4th parameter was removed from the step-wise regression the 

parameters of the rolling moment model can be seen in Table 9 below. It should be noted 

that although the percent error for each parameter is much less overall than previously, 

the model is less accurate to the flight data. This means that the effect the parameters 

have on the model are much more accurately predicted than for the Y-force coefficient 

model. 

TABLE 9: ROLLING MOMENT PARAMETER ESTIMATION RESULTS 

Parameter Estimate Std. Error %Error 95% Confidence 

Interval 

Crb 5.699e+02 8.481e+01 14.9 [400.330, 739.554] 

Crp 2.856e+03 9.979e+02 34.9 [859.962, 4851.385] 

Crdr -3.115e+02 8.339e+01 26.8 [-478.236, -144.664] 

Crda -2.839e+02 1.866e+02 65.7 [-657.073, 89.368] 
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Cro 1.160e+01 5.011 e+00 43.2 [1.581, 21.627] 

 

Now that the rolling moment model has been found the Yawing moment can also 

be calculated. This model is solved much the same way as the rolling moment model, but 

only taking into consideration yaw, rather than roll. This model uses the same inputs as 

the rolling moment model and as before the 4th parameter was left out of the final model 

due to the low improvements and the fact that it had a high correlation with the third 

parameter and therefore should have been left out of the model formulation. 

TABLE 10: STEP-WISE REGRESSION FOR YAWING MOMENT LATERAL MANEUVER 

Parameter Estimate Fit Error R2 Partial Squared 

Error 

1 7.3389e+00 90.28% 19.03% 2.2964e+02 

2 -4.1035e+02 86.74% 25.55% 2.1245e+02 

3 1.8425e+01 85.27% 28.34% 2.0573e+02 

4 -3.3868e+01 85.19% 28.77% 2.0566e+02 

 

Table 10 and Table 11, above and below, show the step-wise regression and parameter 

estimates. This model shows incredibly high percent errors on the parameters and the 

low R2 value during the step-wise regression leads to one explanation of that. Since the R2 

value is the easiest indication of how well the parameters are going to fit the model, how 

low it was throughout the step-wise regression showed that the parameter estimation 

was unlikely to be accurate.  
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TABLE 11: YAWING MOMENT PARAMETER ESTIMATION RESULTS 

Parameter Estimate Std. Error %Error 95% Confidence 

Interval 

Cnb 9.440e+00 1.081e+01 114.5 [-12.177, 31.057] 

Cnr -4.258e+02 1.433e+02 33.7 [-712.335, -139.223] 

Cndr 2.192e+01 1.106e+01 50.5 [-0.199, 44.041] 

Cno 7.529e-01 4.532e+01 6019.7 [-89.890, 91.396] 

 

The Yawing moment coefficient model can be seen compared to the flight data in 

Figure 14 below. The low accuracy of the model can be easily seen although the general 

trend does follow the overall shape but only in the most general of ways. 

 

FIGURE 14: YAWING MOMENT COEFFICIENT EQUATION-ERROR MODEL 

Although these previous steps had varying levels of success and showed varying 

levels of accuracy, in the end they each are used along with the input and outputs seen in 
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Figure 15 below. While much of this is the same as previous steps, it is important to note 

the plot of the yaw rate (r). The yaw rate shows as a horizontal line at zero. This is 

because during the test flights of the aircraft the heading at the start of the maneuver 

was not recorded and because the only heading data came from a GPS reading any cross 

wind would change the heading that was recorded. So while a magnetic compass will 

show you where the aircraft is pointing but not necessarily where it is going and a GPS 

can do both, what was recorded was the direction the aircraft was flying not necessarily 

where it was pointing. This combined with the lack of a start heading for the maneuver 

made calculation of the yaw rate impossible for this test.  

 

FIGURE 15: OUTPUT-ERROR MODELLING FLIGHT DATA 

Nonetheless, a model was built leaving this data out and can be seen in Figure 16 below. 

Here the model very clearly does not match up to the flight data but again it shows a 

general trend toward what the flight data showed the aircraft doing. 
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FIGURE 16: OUTPUT-ERROR PARAMETER ESTIMATION MODEL 

Table 12 below shows the results of each parameter. It should again be noted 

that the effect of each parameter on the model is fairly accurate other than that of the 

rudder deflection on the yaw, which makes sense since the yaw angle was unknown. 
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TABLE 12: LATERAL PARAMETER ESTIMATION RESULTS 

Parameter Estimate Std. Error %Error 95% Confidence 

Interval 

CYb 7.648e-01 4.628e-01 60.5 [-0.161, 1.691] 

CYp -3.010e-01 8.029e-02 26.7 [-0.462, -0.140] 

CYdr 5.378e-02 3.604e-02 67.0 [-0.018, 0.126] 

CYda 6.5969e+02 2.595e+02 39.5 [137.931, 1175.783] 

CYo -4.349e+02 1.700e+02 39.1 [-774.917, -94.808] 

Crb 5.633e+02 1.373e-09 0.0 [563.322, 563.322] 

Crp 4.184e+01 1.071e+01 25.6 [20.426, 63.248] 

Crdr -1.414e+02 3.508e+01 24.8 [-211.586, -71.260] 

Crda 5.009e+01 1.719e+01 34.3 [15.719, 84.464] 

Cro -6.902e+01 2.478e+01 35.9 [-118.573, -19.465] 

Cnb 7.025e+01 2.961e+01 42.1 [11.041, 129.466] 

Cnp -4.351e+02 1.544e-12 0.0 [-435.053, -435.053] 

Cndr -1.505e+00 1.976e+00 131.3 [-5.457, 2.448] 

Cnbr 2.017e+01 4.798e+00 23.8 [10.574, 29.764] 

Cno -6.467e+00 1.757e+00 27.2 [-9.981, -2.954] 

ayo 6.964e-02 8.425e-03 12.1 [0.053, 0.086] 

 

In summary, longitudinal and lateral-directional models were built from flight test 

data. Not correcting for the sensor location, the lack of a good filter on much of the data, 

and the difficulty in finding yaw angles all impacted the quality of the models. Therefore, 

the derived models are not yet suitable for use in either simulation or design. That being 

said, applying a good filter to the flight test data and correcting for the sensor locations 

should result in better models.   
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4 Conclusion 

4.1 Conclusion 

The purpose of testing the Piper Warrior II was to build an aerodynamic model for 

the flight characteristics of the aircraft. This was accomplished through several different 

maneuvers designed to produce a measurable output from a known control input so that 

the responses could be modeled mathematically. Longitudinal data were recorded using 

column doublets, while lateral data came from pedal doublets. Doublets were used to 

keep a good frequency range so that more accurate models could be built. The models 

showed that further work is needed building upon what was done here. This is for several 

reasons, the first is because the lack of filters led to very messy data and poor models. 

Another reason is because the heading at the start of each maneuver was not recorded 

and therefore the yaw angle and yaw rate could not be calculated. The final and most 

important source of error was that the Garmin G5 data was not corrected for the location 

of the sensor in the aircraft. 

 

4.2 Future Work 

In the future, more work should be done to build better models and gather more 

accurate parameters for the Warrior II. A filter of some sort should be placed over the 

data that does not show smooth lines. For example, the AoA and AoS data were both very 

messy data sets and should have an appropriate filter run over them to better model the 

effects the controls had on them and the effects they had on the controls. Another thing 

that could be done would be to run the calculations in the frequency domain instead of 

the time domain. This may also help to clean up the models a great deal, since real world 

interference is accounted for much better in the frequency domain. The final thing that 

could improve the models is to correct for the location of the sensors. Since neither data 
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source was located at the cg variations in the measurements were introduced and should 

be accounted for. There are several ways to do so but the easiest would be to re-fly the 

tests with the Garmin G5 located over the cg. This would mean that location corrections 

would not be needed. On the other hand, this would cost more since the tests would 

need to be flown again and another Garmin probably acquired, though this would also 

allow for the recording of the heading at the start of each maneuver and the yaw angle 

then measured.   
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6 Appendices 
6.1 Appendix A: SIDPAC MatLab Codes 
6.1.1 deriv.m 

function zd = deriv(z,dt) 
% 
%  DERIV  Smoothed numerical differentiation.   
% 
%  Usage: zd = deriv(z,dt); 
% 
%  Description: 
% 
%    Computes smoothed derivatives of measured time series  
%    by differentiating a local quadratic least-squares fit  
%    to the set of points consisting of each data point  
%    and its four nearest neighboring points.   
% 
%  Input: 
%     
%     z = vector or matrix of measured time series. 
%    dt = sampling interval, sec. 
% 
%  Output: 
% 
%    zd = vector or matrix of smoothed time derivatives. 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      13 Jan  1996 - Created and debugged, EAM. 
%      06 Sept 2001 - Modified to accept row or column 

vectors, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
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%      e.a.morelli@nasa.gov 
% 
[m,n]=size(z); 
zd=zeros(m,n); 
% 
%  Put data in column vectors if necessary, 
%  and set the number of data points. 
% 
if m < n 
  zd=zd'; 
  z=z'; 
  npts=n; 
else 
  npts=m; 
end 
% 
%  Analytic expressions for the derivative of local  
%  polynomial fits to the noisy measured data.   
%  The expressions are different near the endpoints  
%  because there are not enough neighboring points on one 

side. 
% 
zd(1,:)=(-54*z(1,:)+13*z(2,:)+40*z(3,:)+27*z(4,:)... 
         -26*z(5,:))/(70*dt); 
zd(2,:)=(-34*z(1,:)+3*z(2,:)+20*z(3,:)+17*z(4,:)... 
         -6*z(5,:))/(70*dt); 
zd(3:npts-2,:)=(-2.*z(1:npts-4,:)-z(2:npts-3,:)+z(4:npts-

1,:)... 
                +2.*z(5:npts,:))/(10.*dt); 
zd(npts-1,:)=(34*z(npts,:)-3*z(npts-1,:)-20*z(npts-2,:)... 
              -17*z(npts-3,:)+6*z(npts-4,:))/(70*dt); 
zd(npts,:)=(54*z(npts,:)-13*z(npts-1,:)-40*z(npts-2,:)... 
            -27*z(npts-3,:)+26*z(npts-4,:))/(70*dt); 
% 
%  Switch data back to original form, if necessary. 
% 
if m < n 
  zd=zd'; 
  z=z'; 
end 
return 

 

 

6.1.2 smoo.m 

function [zs,fco,rr,b,f,wf,gv,sigab,nseab] = 

smoo(z,t,fcep,lplot,auto) 
% 
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%  SMOO  Optimal global Fourier smoothing.  
% 
%  Usage: [zs,fco,rr,b,f,wf,gv,sigab,nseab] = 

smoo(z,t,fcep,lplot,auto); 
% 
%  Description: 
% 
%    Computes smoothed time series and noise covariance 

matrix 
%    estimates from measured data, using optimal Fourier 

smoothing.   
%    The analyst can select signal cut-off frequency   
%    for the deterministic signal, based on the Lanczos sine 

series 
%    spectrum.  Inputs fcep, lplot, and auto are optional.   
% 
%  Input: 
%     
%       z = vector or matrix of measured time series. 
%       t = time vector. 
%    fcep = cutoff frequency for low pass filtering  
%           of the endpoints, Hz (default = 1). 
%   lplot = plot flag: 
%           = 1 for smoothing plots. 
%           = 0 to skip the plots (default).  
%    auto = flag indicating type of operation: 
%           = 1 for automatic  (no user input required, 

default). 
%           = 0 for manual  (user input required). 
% 
%  Output: 
% 
%      zs = vector or matrix of smoothed time series. 
%     fco = scalar or vector of cutoff frequencies, Hz. 
%      rr = scalar or matrix discrete noise covariance 

estimate. 
%       b = vector or matrix of Fourier sine series 

coefficients  
%           for detrended time series reflected about the 

origin.   
%       f = vector of frequencies for the Fourier  
%           sine series coefficients, Hz. 
%      wf = vector or matrix of filter weights in the 

frequency domain. 
%      gv = vector or matrix of measured time series  
%           with endpoint discontinuities removed.  
%   sigab = vector or matrix frequency-domain model of 
%           the absolute Fourier sine coefficients 
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%           for the deterministic part of the measured time 

series.   
%   nseab = scalar or vector of the constant frequency-domain  
%           model of the absolute Fourier sine coefficients 
%           for the random noise part of the measured time 

series. 
% 

  
% 
%    Calls: 
%      xsmep.m 
%      fsinser.m 
%      mfilt.m 
%      wnfilt.m 
%      compzs.m 
%      rrest.m 
%      freqcut.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%     14 Mar  1993 - Created and debugged, EAM.   
%     01 Aug  1999 - Modified for manual operation, EAM. 
%     18 Jan  2000 - Modified plotting for SID use, EAM. 
%     15 Sept 2000 - Modified to include option for   
%                    automatic Wiener filtering, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[npts,n]=size(z); 
dt=1/round(1/(t(2)-t(1))); 
% 
%  Provide default inputs, if necessary. 
% 
if nargin < 5, 
  auto=1; 
end 
if nargin < 4, 
  lplot=0; 
end 
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if nargin < 3, 
  fcep=1.0; 
end 
if lplot==1 
  Fg2H=figure('Units','normalized',... 
              'Position',[0.492 0.360 0.504 0.556],... 
              'Color',[0.8 0.8 0.8],... 
              'Name','Smoother Plots',... 
              'NumberTitle','off',... 
              'ToolBar','none'); 
end 
% 
%  Smooth the endpoints.  
% 
zsmep=xsmep(z,fcep,dt); 
% 
%  Reflect the time history about the time origin, 
%  and expand in a Fourier sine series.   
% 
[b,f,gv]=fsinser(zsmep,dt); 
% 
%  Manual ideal filtering or automatic Wiener filtering. 
% 
if auto==0 
  wf=mfilt(b,f); 
% 
%  Signal and noise models for the ideal filter. 
% 
  sigab=abs(b).*wf; 
  nseab=ones(size(b)); 
% 
%  Find cut-off frequencies from the filter.   
% 
  fco=freqcut(wf,dt); 
% 
%  Implement the Wiener filter for the manual case.   
%  Compute signal and noise models for the Wiener  
%  filter by normalizing the signal and noise models 
%  so they both equal one at the cut-off frequency. 
% 
  for j=1:n, 
    sigab(:,j)=ones(npts,1)./((f/fco(j)).^3); 
    nseab(:,j)=ones(npts,1); 
    wf(:,j)=(sigab(:,j).^2)./(sigab(:,j).^2+nseab(:,j).^2); 
  end 
else 
  [wf,sigab,nseab]=wnfilt(b); 
% 
%  Find cut-off frequencies from the filters.   
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% 
  fco=freqcut(wf,dt); 
end 
% 
%  Construct the smoothed signals.  
% 
zs=compzs(zsmep,wf,b); 
% 
%  Estimate the noise variances.   
% 
rr=rrest(z,zs); 
if lplot==1, 
  for j=1:n, 
    fprintf(1,'\n\n Plots for Signal # %i\n',j), 
    clf; 
    subplot(3,1,1),plot(t,z(:,j)),ylabel('z'),grid on, 
    subplot(3,1,2),plot(t,zs(:,j)),ylabel('zs'),grid on, 
    subplot(3,1,3),plot(t,z(:,j)-zs(:,j)),ylabel('z-zs'), 
    xlabel('time  (sec)'),grid on, 
    fprintf('\n\n Frequency cut-off at %4.1f Hz ',fco(j)); 
    if n > 1 
      fprintf('for signal # %i\n\n',j); 
    else 
      fprintf('\n\n') 
    end 
    if j < n 
      fprintf('\n Press any key to continue ... '),pause, 
    end 
  end 
  fprintf('\n Press any key to continue ... '),pause, 
  fprintf('\n\n'), 
  close(Fg2H), 
else 
  for j=1:n, 
    fprintf('\n\n Frequency cut-off at %4.1f Hz ',fco(j)); 
    if n > 1 
      fprintf('for signal # %i\n\n',j); 
    else 
      fprintf('\n\n'), 
    end 
  end 
end 
return 

 

6.1.3 compfc.m and compmc.m 

6.1.3.1 compfc.m 
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function [CX,CY,CZ,CD,CYw,CL,CT,phat,qhat,rhat] = 

compfc(fdata,cbar,bspan,sarea) 
% 
%[fdata(:,61),fdata(:,62),fdata(:,63),fdata(:,67),fdata(:,68

),fdata(:,69),fdata(:,70),fdata(:,71),fdata(:,72),fdata(:,73

)]=compfc(fdata) 
% 
%  COMPFC  Computes non-dimensional force coefficients. 
% 
%  Usage: [CX,CY,CZ,CD,CYw,CL,CT,phat,qhat,rhat] = 

compfc(fdata,cbar,bspan,sarea); 
% 
%  Description: 
% 
%    Computes the non-dimensional force coefficients  
%    and non-dimensional angular rates based 
%    on measured flight data from input data array fdata. 
%    Inputs cbar, bspan, and sarea can be omitted if 
%    fdata contains this information.   
% 
%  Input: 
%     
%    fdata = flight data array in standard configuration. 
%     cbar = wing mean aerodynamic chord, ft. 
%    bspan = wing span, ft. 
%    sarea = wing area, ft2. 
% 
%  Output: 
% 
%      CX = non-dimensional body-axis X coefficient. 
%      CY = non-dimensional body-axis Y coefficient. 
%      CZ = non-dimensional body-axis Z coefficient. 
%      CD = non-dimensional stability-axis drag coefficient. 
%     CYw = non-dimensional wind-axis side force 

coefficient. 
%      CL = non-dimensional stability-axis lift coefficient. 
%      CT = non-dimensional thrust coefficient. 
%    phat = non-dimensional roll rate. 
%    qhat = non-dimensional pitch rate. 
%    rhat = non-dimensional yaw rate. 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
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%      13 Jan  2000 - Created and debugged, EAM. 
%      07 Sept 2001 - Modified to include time-varying mass, 

EAM. 
%      12 July 2002 - Made geometry inputs optional, EAM. 
%      15 Sept 2004 - Added error checks for airspeed and 

qbar, EAM. 
%      30 May  2006 - Corrected CD and CL descriptive 

comments, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[npts,n]=size(fdata); 
dtr=pi/180; 
g=32.174; 
if nargin < 4 
  sarea=fdata(1,77); 
end 
if nargin < 3 
  bspan=fdata(1,78); 
end 
if nargin < 2 
  cbar=fdata(1,79); 
end 
if ((sarea <=0) || (bspan <= 0) || (cbar <= 0)) 
  fprintf('\n\n Geometry input error in compfc.m \n\n') 
  return 
end 
if (norm(fdata(:,2))==0) 
  fprintf('\n\n Zero airspeed error in compfc.m \n\n') 
  return 
end 
if (norm(fdata(:,27))==0) 
  fprintf('\n\n Zero qbar error in compfc.m \n\n') 
  return 
end 
qbars=sarea*fdata(:,27); 
mass=fdata(:,48); 
CT=sum(fdata(:,[38:41])')'./qbars; 
CX=g*mass.*fdata(:,11)./qbars - CT; 
CY=g*mass.*fdata(:,12)./qbars; 



58 
 

 
 

CZ=g*mass.*fdata(:,13)./qbars; 
alfa=fdata(:,4)*dtr; 
beta=fdata(:,3)*dtr; 
CD=-CX.*cos(alfa) - CZ.*sin(alfa); 
CL=CX.*sin(alfa) - CZ.*cos(alfa); 
% CDw=CD.*cos(beta) - CY.*sin(beta); 
CYw=CY.*cos(beta) + CD.*sin(beta); 
phat=fdata(:,5)*dtr*bspan./(2*fdata(:,2)); 
qhat=fdata(:,6)*dtr*cbar./(2*fdata(:,2)); 
rhat=fdata(:,7)*dtr*bspan./(2*fdata(:,2)); 
% phat=fdata(:,5)*dtr*bspan./(2*mean(fdata(:,2))); 
% qhat=fdata(:,6)*dtr*cbar./(2*mean(fdata(:,2))); 
% rhat=fdata(:,7)*dtr*bspan./(2*mean(fdata(:,2))); 
return 

 

6.1.3.2 compmc.m 
function [CX,CY,CZ,CD,CYw,CL,CT,phat,qhat,rhat] = 

compfc(fdata,cbar,bspan,sarea) 
% 
%[fdata(:,61),fdata(:,62),fdata(:,63),fdata(:,67),fdata(:,68)

,fdata(:,69),fdata(:,70),fdata(:,71),fdata(:,72),fdata(:,73)]

=compfc(fdata) 
% 
%  COMPFC  Computes non-dimensional force coefficients. 
% 
%  Usage: [CX,CY,CZ,CD,CYw,CL,CT,phat,qhat,rhat] = 

compfc(fdata,cbar,bspan,sarea); 
% 
%  Description: 
% 
%    Computes the non-dimensional force coefficients  
%    and non-dimensional angular rates based 
%    on measured flight data from input data array fdata. 
%    Inputs cbar, bspan, and sarea can be omitted if 
%    fdata contains this information.   
% 
%  Input: 
%     
%    fdata = flight data array in standard configuration. 
%     cbar = wing mean aerodynamic chord, ft. 
%    bspan = wing span, ft. 
%    sarea = wing area, ft2. 
% 
%  Output: 
% 
%      CX = non-dimensional body-axis X coefficient. 
%      CY = non-dimensional body-axis Y coefficient. 
%      CZ = non-dimensional body-axis Z coefficient. 
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%      CD = non-dimensional stability-axis drag coefficient. 
%     CYw = non-dimensional wind-axis side force coefficient. 
%      CL = non-dimensional stability-axis lift coefficient. 
%      CT = non-dimensional thrust coefficient. 
%    phat = non-dimensional roll rate. 
%    qhat = non-dimensional pitch rate. 
%    rhat = non-dimensional yaw rate. 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      13 Jan  2000 - Created and debugged, EAM. 
%      07 Sept 2001 - Modified to include time-varying mass, 

EAM. 
%      12 July 2002 - Made geometry inputs optional, EAM. 
%      15 Sept 2004 - Added error checks for airspeed and 

qbar, EAM. 
%      30 May  2006 - Corrected CD and CL descriptive 

comments, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[npts,n]=size(fdata); 
dtr=pi/180; 
g=32.174; 
if nargin < 4 
  sarea=fdata(1,77); 
end 
if nargin < 3 
  bspan=fdata(1,78); 
end 
if nargin < 2 
  cbar=fdata(1,79); 
end 
if ((sarea <=0) || (bspan <= 0) || (cbar <= 0)) 
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  fprintf('\n\n Geometry input error in compfc.m \n\n') 
  return 
end 
if (norm(fdata(:,2))==0) 
  fprintf('\n\n Zero airspeed error in compfc.m \n\n') 
  return 
end 
if (norm(fdata(:,27))==0) 
  fprintf('\n\n Zero qbar error in compfc.m \n\n') 
  return 
end 
qbars=sarea*fdata(:,27); 
mass=fdata(:,48); 
CT=sum(fdata(:,[38:41])')'./qbars; 
CX=g*mass.*fdata(:,11)./qbars - CT; 
CY=g*mass.*fdata(:,12)./qbars; 
CZ=g*mass.*fdata(:,13)./qbars; 
alfa=fdata(:,4)*dtr; 
beta=fdata(:,3)*dtr; 
CD=-CX.*cos(alfa) - CZ.*sin(alfa); 
CL=CX.*sin(alfa) - CZ.*cos(alfa); 
% CDw=CD.*cos(beta) - CY.*sin(beta); 
CYw=CY.*cos(beta) + CD.*sin(beta); 
phat=fdata(:,5)*dtr*bspan./(2*fdata(:,2)); 
qhat=fdata(:,6)*dtr*cbar./(2*fdata(:,2)); 
rhat=fdata(:,7)*dtr*bspan./(2*fdata(:,2)); 
% phat=fdata(:,5)*dtr*bspan./(2*mean(fdata(:,2))); 
% qhat=fdata(:,6)*dtr*cbar./(2*mean(fdata(:,2))); 
% rhat=fdata(:,7)*dtr*bspan./(2*mean(fdata(:,2))); 
return 

 

6.1.4 xsmep.m 

function zsmep = xsmep(z,f,dt) 
% 
%  XSMEP  Local endpoint smoothing, excluding the endpoint 

data.   
% 
%  Usage: zsmep = xsmep(z,f,dt); 
% 
%  Description: 
% 
%    Smoothes the endpoints of a measured time 
%    series z using a time convolution implementation 
%    of a low-pass filter with cutoff frequency f for points 
%    adjacent to the endpoints, then extrapolates the 

smoothed 
%    adjacent points to obtain the endpoint estimates.  This 

avoids 
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%    using the endpoints themselves in the smoothing 

operation, which 
%    produces a better result when the endpoints are very 

noisy.   
% 
%  Input: 
%     
%     z = vector or matrix of measured time series. 
%     f = low pass filter cutoff frequency, Hz. 
%    dt = sampling interval, sec. 
% 
%  Output: 
% 
%    zsmep = vector or matrix of measured time series 
%            with smoothed endpoints.   
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      12 Sept 1997 - Created and debugged, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[npts,no]=size(z); 
zsmep=z; 
nmid=round(npts/2.-0.1); 
ffac=pi; 
ft=f + ffac/(nmid*dt); 
w=2.*pi*f; 
wt=2.*pi*ft; 
dw=wt-w; 
h=0*ones(nmid,1); 
ho=f+ft; 
hnorm=ho; 
for i=1:nmid, 
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  h(i)=(pi/(2.*i*dt))*((sin(wt*i*dt)+sin(w*i*dt))/... 
         (pi^2-(dw*i*dt)^2)); 
  hnorm=hnorm + 2.*h(i); 
end 
ho=ho/hnorm; 
h=h/hnorm; 
% 
%  nx is the number of extrapolated adjacent points used 
%  to compute the smoothed endpoints. 
% 
nx=3; 
for i=2:2+nx-1, 
  li=npts-i+1; 
  zsmep(i,:)=ho*z(i,:); 
  zsmep(li,:)=ho*z(li,:); 
% 
%  One sided smoothing used to avoid the endpoints. 
% 
  for k=1:nmid, 
    zsmep(i,:)=zsmep(i,:)+2.*h(k)*z(i+k,:); 
    zsmep(li,:)=zsmep(li,:)+2.*h(k)*z(li-k,:); 
  end 
end 
% 
%  Least squares slope estimation. 
% 
X=[ones(nx,1),dt*[1:nx]']; 
Y=zsmep([2:2+nx-1],:); 
SLPI=X\Y; 
X=[ones(nx,1),dt*[npts-nx:npts-1]']; 
Y=zsmep([npts-nx:npts-1],:); 
SLPL=X\Y; 
% 
%  Extrapolation to estimate the endpoints. 
% 
zsmep(1,:)=SLPI(1,:); 
zsmep(npts,:)=SLPL(1,:) + dt*npts*SLPL(2,:); 
% 
%  Restore the smoothed adjacent points to their original 

values. 
% 
zsmep([2:2+nx-1],:)=z([2:2+nx-1],:); 
zsmep([npts-nx:npts-1],:)=z([npts-nx:npts-1],:); 
return 

 

6.1.5 lesq.m 

function [y,p,crb,s2,xm,sv] = lesq(x,z,svlim,p0,crb0) 
% 
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%  LESQ  Least squares linear regression.   
% 
%  Usage: [y,p,crb,s2,xm,sv] = lesq(x,z,svlim,p0,crb0); 
% 
%  Description: 
% 
%    Computes the least squares estimate of the real 

parameter  
%    vector p, where y=x*p and y matches the measured  
%    quantity z in a least squares sense.  The model output 

y,  
%    the estimated parameter covariance matrix crb, and  
%    the model fit error variance s2, are estimated based on 

the  
%    parameter estimate p.  Inputs specifying the minimum   
%    singular value ratio svlim, prior estimated parameter 

vector p0,  
%    and prior estimated parameter covariance matrix crb0  
%    are optional.  This routine works for real or complex 

data.   
% 
%  Input: 
% 
%      x = matrix of column regressors. 
%      z = measured output vector. 
%  svlim = minimum singular value ratio  
%          for matrix inversion (optional). 
%     p0 = prior parameter vector (optional). 
%   crb0 = prior parameter covariance matrix (optional). 
% 
%  Output: 
% 
%      y = model output vector. 
%      p = vector of parameter estimates. 
%    crb = estimated parameter covariance matrix. 
%     s2 = model fit error variance estimate. 
%     xm = matrix of column vector model terms.   
%     sv = vector of singular values of the information 

matrix. 
% 

  
% 
%    Calls: 
%      misvd.m 
%      cvec.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
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%      7 June 1997 - Created and debugged, EAM. 
%     23 Sept 2000 - Added a priori information options, EAM. 
%     24 Feb  2001 - Corrected comments, EAM. 
%     30 Sept 2001 - Removed unnecessary s20 input, EAM. 
%     20 Sept 2004 - Updated comments, added xm output, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 

  
% 
%  Initialization. 
% 
[npts,np]=size(x); 
xm=x; 
if nargin<3 | isempty(svlim) 
  svlim=eps*npts; 
end 
if svlim <=0 
  svlim=eps*npts; 
end 
% 
%  Standard least squares parameter estimation 
%  using input data only.   
% 
xtx=real(x'*x); 
%xtxi=inv(xtx); 
[xtxi,sv]=misvd(xtx,svlim); 
%p=xtx\real(x'*z); 
p=xtxi*real(x'*z); 
y=x*p; 
% 
%  Real s2 used to remove round-off error. 
% 
s2=real((z-y)'*(z-y))/(npts-np); 
%crb=s2*inv(xtx); 
crb=s2*xtxi; 
% 
%  Modifications for a priori information. 
% 
%  Only implement the modifications for  
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%  a priori information if both p0  
%  and crb0 are input.   
% 
if nargin==5 
% 
%  Check crb0 dimensions. 
% 
  [m,n]=size(crb0); 
  if m~=np | n~=np 
    fprintf('\n Input matrix crb0 has wrong dimensions \n\n') 
    return 
  end 
% 
%  Check for non-singular crb0. 
% 
  if (1/cond(crb0))>0 
% 
%  The value of misvd(crb0) is xtx0/s20, or M0, which  
%  is the a priori information matrix required  
%  in subsequent expressions.  It is therefore not  
%  necessary to explicitly specify s20, the fit error  
%  variance for the a priori parameter estimation 
%  that resulted in p0 and crb0.   
% 
    M0=misvd(crb0); 
  else 
    M0=zeros(np,np); 
  end 
  p0=cvec(p0); 
% 
%  Combined information matrix.  Using summed values  
%  scaled by the model error variance estimate is  
%  equivalent to weighted least squares regression  
%  using a concatenated set of equations.   
% 
  xtxi=misvd(xtx/s2 + M0); 
% 
%  For the a priori information, x'*z = (x'*x)*p. 
% 
  p=xtxi*(real(x'*z)/s2 + M0*p0); 
  y=x*p; 
% 
%  Cramer-Rao bound matrix for the weighted   
%  least squares formulation that includes  
%  the a priori information.   
% 
  crb=xtxi; 
% 
%  Computing a single model error variance for  
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%  the weighted least squares problem does not  
%  make sense, because the model error variances 
%  are different for the two parts of the  
%  weighted least squares problem.  Output s2 
%  is for the x and z data only, ignoring all  
%  a priori information.  
% 
end 
return 

 

6.1.6 r_colores.m 

function [crb,crbo,y,p,sv] = r_colores(x,z,svlim) 
% 
%  R_COLORES  Parameter covariance for colored residuals from 

linear regression. 
% 
%  Usage: [crb,crbo,y,p,sv] = r_colores(x,z,svlim); 
% 
%  Description: 
% 
%    Computes the Cramer-Rao bounds for least squares 

regression 
%    parameter estimation in the time domain, both 

conventionally  
%    and accounting for the actual frequency content of the 

residuals.   
%    The regression model is y=x*p.  The routine also 

computes 
%    the least squares estimate of parameter vector p,  
%    where y=x*p and y matches the measured quantity z  
%    in a least squares sense.  The singular values of the 

information 
%    matrix, which indicate the conditioning of the least 

squares 
%    solution, are placed in output vector sv.   
% 
%  Input: 
%     
%        x = matrix of column regressors. 
%        z = measured output vector. 
%    svlim = minimum singular value ratio for matrix 

inversion (optional). 
% 
%  Output: 
% 
%     crb = corrected Cramer-Rao bounds accounting for 

colored residuals. 
%    crbo = conventional Cramer-Rao bounds. 
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%       y = model output vector. 
%       p = vector of parameter estimates. 
%      sv = vector of singular values of the information 

matrix. 
% 

  
% 
%    Calls: 
%      misvd.m 
%      xcorrs.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      11 Mar 1998 - Created and debugged, EAM. 
%      12 Apr 2001 - Made svlim input optional, EAM. 
%      15 Jun 2002 - Replaced loops with matrix multiply, 

EAM. 
%      09 Aug 2006 - Replaced xcorr.m with xcorrs.m, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[npts,np]=size(x); 
if nargin<3 | isempty(svlim)  
  svlim=eps*npts; 
end 
if svlim <=0 
  svlim=eps*npts; 
end 
xtx=x'*x; 
%xtxi=inv(xtx); 
[xtxi,sv]=misvd(xtx,svlim); 
z=z(:,1); 
p=xtxi*x'*z; 
y=x*p; 
v=z-y; 
s2=(v'*v)/(npts-np); 
crbo=s2*xtxi; 
sen=x; 
% 
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%  Compute a biased estimate of the residual autocorrelation,  
%  because the unbiased calculation has undesirable end 

effects 
%  in the autocorrelation estimate.   
% 
rvv=xcorrs(v,'biased'); 
nmid=npts; 
rvvmat=zeros(npts,npts); 
for k=1:npts, 
  rvvmat(k,:)=rvv(nmid-k+1:nmid-k+npts)'; 
end 
% 
%  Corrected Cramer-Rao bound calculation outer loop. 
% 
%crbsum=zeros(np,np); 
%for i=1:npts, 
% 
%  Inner loop sum. 
% 
%  Use the fact that rvv(i-j)=rvv(j-i), then add one because  
%  the initial rvv vector index is one, not zero. 
% 
%  indx=nmid-i+1; 
%  sumat=rvv([indx:indx+npts-1])'*sen; 
%  crbsum=crbsum + sen(i,:)'*sumat; 
%end 
crb=xtxi'*sen'*rvvmat*sen*xtxi; 
return 

 

 

6.1.7 model_disp.m 

function modelstr = model_disp(p,serr,ip,xnames,pnames) 
% 
%  MODEL_DISP  Displays parameter estimation results.   
% 
%  Usage: modelstr = model_disp(p,serr,ip,xnames,pnames); 
% 
%  Description: 
% 
%    Displays the functional form of the model defined  
%    by inputs p, serr, and ip.  The output string is  
%    stored in the string variable modelstr.  If optional  
%    input xnames is provided, the names of the independent  
%    variables corresponding to the indices in ip  
%    are displayed.  Optional input pnames can be used 
%    to label the parameters.   
% 
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% 
%  Input: 
%     
%       p = parameter vector for ordinary polynomial function 

expansion. 
%    serr = vector of estimated parameter standard errors. 
%      ip = vector of integer indices (optional). 
%  xnames = names of the independent variables (optional). 
%  pnames = names of the parameters (optional). 
% 
% 
%  Output: 
% 
%      modelstr = string containing the analytic model 

expression.   
% 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      17 Feb  2001 - Created and debugged, EAM. 
%      01 Oct  2001 - Removed x matrix input, EAM. 
%      12 Jul  2002 - Upgraded the printed output, EAM. 
%      20 Apr  2004 - Added code to allow xnames to  
%                     be either a char or cell array, EAM. 
%      11 Feb  2006 - Modified for use without the ip input, 

EAM. 
%      06 Aug  2006 - Added pnames input, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
nterms=length(p); 
% 
%  If pnames is input, make sure  
%  the elements are in a character  
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%  array of the correct size. 
% 
if nargin > 4 & ~isempty(pnames) 
  if ~iscell(pnames) 
    pnames=cellstr(pnames); 
  end 
end 
fprintf('\n\n') 
% 
%  Generate and output the model string, only if ip is input. 
% 
if nargin < 3 | isempty(ip) 
% 
%  Print out the headings. 
% 
  fprintf(' Parameter    Estimate     Std Error   %% Error  

95 %% Confidence Interval\n') 
  fprintf(' ---------    --------     ---------   -------  --

----------------------\n') 
% 
%  Find percent errors.  Use the absolute error 
%  if the parameter estimate is zero.   
% 
  perr=zeros(nterms,1); 
  for j=1:nterms, 
    if p(j)~=0 
      perr(j)=100*serr(j)./abs(p(j)); 
    else 
      perr(j)=serr(j); 
    end 
  end 
% 
%  Print out the parameter estimate information 
%  in tabular format.  Use parameter labels, if provided. 
% 
  for k=1:nterms, 
    if nargin < 5 | isempty(pnames) 
      if k < 10 
        fprintf('  p( %1i ) ',k) 
      else 
        fprintf('  p( %2i )',k) 
      end 
    else 
      fprintf(['  ',char(pnames{k})]), 
      nc=length(char(pnames{k}))+2; 
% 
%  Fill in blanks up to 9 characters,  
%  to keep the numbers lined up.  
% 
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      for j=1:9-nc, 
        fprintf(' '), 
      end 
    end 
    if p(k) >= 0.0 
      fprintf(' ') 
    end 
    fprintf(['   %10.3e   %10.3e    %5.1f    [ %8.3f , %8.3f 

]\n'], ... 
             p(k),serr(k),perr(k),p(k)-

2*serr(k),p(k)+2*serr(k)) 
  end 
else 
% 
%  Generate the model string. 
% 
  modelstr=[' y = ']; 
% 
%  Loop over the model terms. 
% 
  for k=1:nterms, 
    indx=ip(k); 
    modelstr=[modelstr,'p(',num2str(k),')']; 
% 
%  The independent variable index is j. 
%  Number of independent variables is nvar. 
% 
    j=0; 
    nvar=0; 
    while indx > 0, 
      j=j+1; 
      ji=round(rem(indx,10)); 
      if ji~=0 
        modelstr=[modelstr,'*x',num2str(j)]; 
        if ji > 1 
          modelstr=[modelstr,'^',num2str(ji)]; 
        end 
      end 
      indx=floor(indx/10); 
    end 
    if j > nvar 
      nvar=j; 
    end 
    if k < nterms 
      modelstr=[modelstr,' + ']; 
    end 
  end 
% 
%  Output the model string. 
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% 
  disp(modelstr) 
  fprintf('\n\n') 
% 
%  Print out the headings. 
% 
  fprintf(' Parameter    Estimate     Std Error   %% Error  

95 %% Confidence Interval   Index\n') 
  fprintf(' ---------    --------     ---------   -------  --

----------------------   -----\n') 
% 
%  Find percent errors.  Use the absolute error 
%  if the parameter estimate is zero.   
% 
  perr=zeros(nterms,1); 
  for j=1:nterms, 
    if p(j)~=0 
      perr(j)=100*serr(j)./abs(p(j)); 
    else 
      perr(j)=serr(j); 
    end 
  end 
% 
%  Print out the parameter estimate information 
%  in tabular format.  Use parameter labels, if provided. 
% 
  for k=1:nterms, 
    if nargin<5 | isempty(pnames) 
      if k < 10 
        fprintf('  p( %1i ) ',k) 
      else 
        fprintf('  p( %2i )',k) 
      end 
    else 
      fprintf(['  ',char(pnames{k})]), 
      nc=length(char(pnames{k}))+2; 
% 
%  Fill in blanks up to 9 characters,  
%  to keep the numbers lined up.  
% 
      for j=1:9-nc, 
        fprintf(' '), 
      end 
    end 
    if p(k) >= 0.0 
      fprintf(' ') 
    end 
    fprintf(['   %10.3e   %10.3e    %5.1f    [ %8.3f , %8.3f 

]',... 
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             '     %',num2str(nvar),'i\n'], ... 
             p(k),serr(k),perr(k),p(k)-

2*serr(k),p(k)+2*serr(k),ip(k)) 
  end 
% 
%  Print out the independent variable names. 
% 
  fprintf('\n\n') 
  if nargin > 3 
    nvar=size(xnames,1); 
    for k=1:nvar, 
      if iscell(xnames) 
        disp([' x',num2str(k),' = ',char(xnames{k})]); 
      else 
        disp([' x',num2str(k),' = ',xnames(k,:)]); 
      end 
    end 
  end 
end 
fprintf('\n') 
return 

 

 

6.1.8 swr.m 

function [y,p,crb,s2,xm,pindx] = swr(x,z,lplot,svlim) 
% 
%  SWR  Stepwise regression. 
% 
%  Usage: [y,p,crb,s2,xm,pindx] = swr(x,z,lplot,svlim); 
% 
%  Description: 
% 
%    Computes interactive stepwise regression estimates  
%    of parameter vector p, estimated parameter covariance  
%    matrix crb, model output y, model fit error variance  
%    estimate s2, and the model regressor matrix xm, using  
%    least squares with matrix inversion based on  
%    singular value decomposition.  The output y is computed  
%    from y=xm*p(pindx).  A constant term is included  
%    automatically in the model as the last column in the  
%    model regressor matrix xm.  Optional input lplot 

controls  
%    plotting, and optional input svlim specifies minimum 

singular  
%    value ratio.  This routine works for real or complex 

data.   
% 
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%  Input: 
% 
%      x = matrix of column regressors. 
%      z = measured output vector. 
%  lplot = plot flag (optional): 
%          = 0 for no plots (default) 
%          = 1 for plots 
%  svlim = minimum singular value ratio  
%          for matrix inversion (optional). 
% 
%  Output: 
% 
%      y = model output vector. 
%      p = vector of parameter estimates. 
%    crb = estimated parameter covariance matrix. 
%     s2 = model fit error variance estimate. 
%     xm = matrix of column regressors retained in the model.   
%  pindx = vector of parameter vector indices for  
%          retained regressors, indicating the columns 
%          of [x,ones(npts,1)] retained in the model.   
% 

  
% 
%    Calls: 
%      corrcoefs.m 
%      lesq.m 
%      regsel.m 
%      pfstat.m 
%      press.m 
%      rms.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      21 July 1996 - Created and debugged, EAM. 
%      08 Sept 2000 - Added plot option and pindx, EAM. 
%      09 May  2001 - Modified plotting for complex numbers, 

EAM. 
%      21 Sept 2004 - Cleaned up code, updated comments, EAM. 
%      10 Jan  2006 - Modified for new version of press.m, 

EAM. 
%      12 July 2006 - Added calls to corrcoefs.m, for complex 

data, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
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% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 

  
% 
%  Initialization. 
% 
[npts,n]=size(x); 
if nargin<4 | isempty(svlim) 
  svlim=eps*npts; 
end 
if svlim <=0 
  svlim=eps*npts; 
end 
if nargin<3 
  lplot=0; 
end 
z=z(:,1); 
z_rms=rms(z); 
t=[1:1:npts]'; 
% 
%  Initialization. 
% 
%  R squared quantities. 
% 
zbar=mean(z); 
R2den=z'*z - npts*zbar*zbar; 
R2=0.0; 
% 
%  Open the output file. 
% 
[fid,message]=fopen('swr.out','w'); 
if fid < 3 
  message, 
  return 
end 
% 
%  F statistic value to retain a single regressor  
%  with 95 percent confidence, including a safety factor of 

5. 
% 
%[Fm,Fv]=fstat(1,npts-2); 
%Fval=5*(Fm+2*sqrt(Fv)); 
% 
%  Conservative constant value. 
% 
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Fval=5*4; 
% 
%  Parameter estimates and associated quantities. 
% 
y=zbar*ones(npts,1); 
np=n+1; 
p=zeros(np,1); 
p(np)=zbar; 
crb=cov(z); 
s2=R2den/(npts-1); 
xm=ones(npts,1); 
plst=zeros(np,1); 
dp=zeros(np,1); 
% 
%  Compute the partial correlation coefficients (parc) with z  
%  for all regressors in x.  Initialize all partial F ratios  
%  (parf) to zero.   
% 
corlm=corrcoefs([x,z]); 
parc=corlm([1:n],np); 
parf=zeros(n,1); 
% 
%  Prediction error quantities. 
% 
sig2max=s2/2.0; 
pse=(z-y)'*(z-y)/npts + 2.0*sig2max/npts; 
prs=press(xm,z); 
% 
%  Regressor selection quantities. 
% 
parin=zeros(n,1); 
nsp=1; 
nr=0; 
% 
%  Stepwise regression loop starts here. 
% 
while nsp~=0  
  plst=p; 
% 
%  Plot the current modeling results. 
% 
  if lplot==1 
    if isreal(z) 
      subplot(2,1,1),plot(t,z,t,y,'--','LineWidth',1.5), 
    else 
      subplot(2,1,1),plot(t,abs(z),t,abs(y),'--

','LineWidth',1.5), 
    end 
    v=get(gca,'Position'); 
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    set(gca,'Position',v + [0.02 0 0 0]); 
    title('Plots for Stepwise Regression Modeling'), 
    grid on,legend('data ','model',0), 
    if isreal(z) 
      subplot(2,1,2),plot(t,z-y,'LineWidth',1.5), 
    else 
      subplot(2,1,2),plot(t,abs(z-y),'LineWidth',1.5), 
    end 
    v=get(gca,'Position'); 
    set(gca,'Position',v + [0.02 0 0 0]); 
    ylabel('residual, z - y'),xlabel('index'), 
    grid on, 
  end 
% 
%  Screen output. 
% 
  fprintf(1,'\n                                                     

Squared '); 
  fprintf(1,'\n       Parameters                      F ratio      

Part. Corr. \n'); 
  fprintf(1,'\n No.    Estimate        Change           In            

Out    \n'); 
  fprintf(1,' ---    --------        ------           --            

---   \n'); 
  fprintf(fid,'\n                                                     

Squared '); 
  fprintf(fid,'\n       Parameters                      F 

ratio      Part. Corr. \n'); 
  fprintf(fid,'\n No.    Estimate        Change           In            

Out    \n'); 
  fprintf(fid,' ---    --------        ------           --            

---   \n'); 
  for j=1:n, 
%  Regressor number. 
    fprintf(1,'%3.0f',j); 
    fprintf(fid,'%3.0f',j); 
%  Parameter estimate. 
    if p(j)<0 
      fprintf(1,'  %11.4e',p(j)); 
      fprintf(fid,'  %11.4e',p(j)); 
    else 
      fprintf(1,'   %11.4e',p(j)); 
      fprintf(fid,'   %11.4e',p(j)); 
    end 
%  Parameter estimate change. 
    if dp(j)<0 
      fprintf(1,'   %11.4e',dp(j)); 
      fprintf(fid,'   %11.4e',dp(j)); 
    else 
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      fprintf(1,'    %11.4e',dp(j)); 
      fprintf(fid,'    %11.4e',dp(j)); 
    end 
%  Partial F ratios and partial correlation coefficients. 
    if parin(j)~=0 
      fprintf(1,'    %11.4e     %8.5f \n',parf(j),0.0); 
      fprintf(fid,'    %11.4e     %8.5f \n',parf(j),0.0); 
    else 
      fprintf(1,'    %11.4e     %8.5f 

\n',0.0,parc(j)*parc(j)); 
      fprintf(fid,'    %11.4e     %8.5f 

\n',0.0,parc(j)*parc(j)); 
    end 
  end 
  fprintf(1,'\n   constant term  = %11.4e     F cut-off value 

= %6.2f \n',... 
          p(np),Fval); 
  fprintf(1,'\n\n   dependent variable rms value = %12.4e 

\n',z_rms); 
  fprintf(1,'\n   fit error  = %13.6e  or %6.2f percent',... 
          sqrt(s2),100*sqrt(s2)/rms(z)); 
  fprintf(1,'\n\n   R squared  = %6.2f %%        PRESS =  

%9.4e',R2,prs);    
  fprintf(1,'\n                                  PSE =  

%9.4e',pse); 
  fprintf(fid,'\n   constant term  = %11.4e     F cut-off 

value = %6.2f \n',... 
          p(np),Fval); 
  fprintf(fid,'\n\n   dependent variable rms value = %12.4e 

\n',z_rms); 
  fprintf(fid,'\n   fit error  = %13.6e  or %6.2f 

percent',... 
          sqrt(s2),100*sqrt(s2)/rms(z)); 
  fprintf(fid,'\n\n   R squared  = %6.2f %%        PRESS =  

%9.4e',R2,prs);    
  fprintf(fid,'\n                                  PSE =  

%9.4e',pse); 
% 
%  Prompt user for more stepwise regression iterations. 
% 
  nsp=input('\n\n   NUMBER OF REGRESSOR TO MOVE (0 to quit) 

'); 
% 
%  Assemble the new regressor matrix. 
% 
  if isempty(nsp) 
    nsp=0; 
  else 
    nsp=round(nsp); 
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    nsp=min(n,max(0,nsp)); 
  end 
  fprintf(fid,'\n\n   SELECTED REGRESSOR TO MOVE = %3i',nsp); 
% 
%  Do calculations unless quit command was given. 
% 
  if nsp > 0 
% 
%  Selected regressor not in the current model -> put it in. 
% 
%    parin(x matrix regressor number) = 1 to include this 

regressor 
%                                     = 0 to exclude this 

regressor 
% 
    if parin(nsp)==0 
      parin(nsp)=1; 
      nr=nr+1; 
    else 
% 
%  Selected regressor in the current model -> take it out. 
% 
      parin(nsp)=0; 
      nr=nr-1; 
    end 
  end 
% 
%  Assemble the regressor matrix when number of the 

regressors 
%  in the model is positive.  The parin vector selects the  
%  regressors from the x matrix for inclusion in the current 

model. 
% 
%    parin(x matrix regressor number) = 1 to include this 

regressor 
%                                     = 0 to exclude this 

regressor 
% 
  if nr > 0 
    xm=[x(:,[find(parin==1)]),ones(npts,1)]; 
% 
%  The number of model terms is nm. 
% 
    [npts,nm]=size(xm); 
% 
%  Least squares parameter estimation. 
% 
    [y,pm,crb,s2]=lesq(xm,z); 
% 
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%  Parameter vector update.  Parameter vector length is 

np=n+1 
%  to accomodate the constant term in the model equation.  
%  Compute partial F ratios for all regressors retained in 

the model. 
% 
    p=zeros(np,1); 
% 
%  Record the estimated parameter for the constant term. 
% 
    p(np)=pm(nm); 
% 
%  Reset the partial F ratios and the partial correlations. 
% 
    parf=zeros(n,1); 
    parc=zeros(n,1); 
% 
%  Condition the measured output on the model regressors. 
% 
    zc=z-y; 
    j=1; 
    for i=1:n, 
      if parin(i)~=0 
% 
%  Regressor is retained in the model -> compute partial F 

ratios. 
% 
        p(i)=pm(j); 
        [xr,xj]=regsel(xm,j); 
        parf(i)=pfstat(xr,xj,z); 
        j=j+1; 
      else 
% 
%  Regressor is omitted from the model -> compute partial 

correlation. 
% 
        x1=lesq(xm,x(:,i)); 
        xc=x(:,i)-x1; 
        corlm=corrcoefs([xc,zc]); 
        parc(i)=corlm(1,2); 
      end 
    end 
    R2=100*(pm'*xm'*z - npts*zbar*zbar)/R2den; 
    pse=(z-y)'*(z-y)/npts + 2.0*sig2max*(nr+1)/npts; 
    prs=press(xm,z); 
  else 
% 
%  No regressors in the model. 
% 



81 
 

 
 

    y=zbar*ones(npts,1); 
    p=zeros(np,1); 
    p(np)=zbar; 
    crb=cov(z); 
    s2=R2den/(npts-1); 
    xm=ones(npts,1); 
    R2=0.0; 
% 
%  Compute the partial correlation coefficient with z  
%  for all regressors in x. 
% 
    corlm=corrcoefs([x,z]); 
    parc=corlm([1:n],np); 
    parf=zeros(np,1); 
% 
%  Compute prediction error quantities. 
% 
    pse=(z-y)'*(z-y)/npts + 2.0*sig2max/npts; 
    prs=press(xm,z); 
  end 
% 
%  Update the parameter change vector. 
% 
  dp=p-plst; 
end 
% 
%  Find the indices of the selected parameters,  
%  and add the constant term.   
% 
pindx=find(parin==1); 
pindx=[pindx;np]; 
fclose(fid); 
return 

 

6.1.9 nldyn_psel.m 

function coe = 

nldyn_psel(fdata,runopt,p0oe,ipoe,ims,imo,imc,x0,u0,poelab) 
% 
%  NLDYN_PSEL  Implements settings in nldyn.m for output-error 

parameter estimation.   
% 
%  Usage: coe = 

nldyn_psel(fdata,runopt,p0oe,ipoe,ims,imo,imc,x0,u0,poelab); 
% 
%  Description: 
% 
%    Initializes and selects the states, outputs, 
%    and dynamic model parameters to be estimated   
%    for output-error parameter estimation using nldyn.m.  
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% 
%  Input: 
%     
%   fdata = flight data array in standard configuration. 
%  runopt = dynamic model flag (optional): 
%           = 1 for longitudinal dynamics (default) 
%           = 2 for lateral dynamics 
%           = 3 for combined longitudinal and lateral dynamics 
%    p0oe = initial values for the estimated  
%           parameter vector poe (optional).   
%    ipoe = index vector indicating which parameters  
%           are to be estimated (optional).   
%     ims = index vector indicating which states  
%           will use measured values (optional). 
%     imo = index vector indicating which model outputs 
%           will be calculated (optional). 
%     imc = index vector indicating which non-dimensional  
%           coefficients will be modeled (optional). 
%      x0 = initial state vector. 
%      u0 = initial control vector. 
%  poelab = labels for the model parameters. 
% 
%  Output: 
% 
%     coe = cell structure: 
%           coe.p0oe   = p0oe   = vector of initial parameter 

values. 
%           coe.ipoe   = ipoe   = index vector to select estimated 

parameters. 
%           coe.ims    = ims    = index vector to select measured 

states. 
%           coe.imo    = imo    = index vector to select model 

outputs. 
%           coe.imc    = imc    = index vector to select non-

dimensional  
%                                 coefficients to be modeled. 
%           coe.x0     = x0     = initial state vector. 
%           coe.u0     = u0     = initial control vector. 
%                                 coefficients to be modeled. 
%           coe.fdata  = fdata  = standard array of measured flight 

data,  
%                                 geometry, and mass/inertia 

properties.   
%           coe.poelab = poelab = labels for the parameters. 
%           coe.ti     = ti     = time index. 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      07 Oct  2001 - Created and debugged, EAM. 
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%      04 Nov  2001 - Removed checks for prior variable 

definitions, EAM. 
%      23 July 2002 - Added acceleration outputs, EAM. 
%      18 Aug  2004 - Updated notation and added imc, EAM. 
%      14 Feb  2006 - Converted the script to a function,  
%                     added lat, lon, and combined options, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular purpose.   
% 
%  Please email bug reports or suggestions for improvements to: 
% 
%      e.a.morelli@nasa.gov 
% 

  
% 
%  Default values are longitudinal. 
% 
if nargin < 2 
  runopt=1; 
end 
% 
%  Initial values for the parameters. 
% 
%    p0oe(1:10)  =  CX parameters 
%    p0oe(11:20) =  CY parameters 
%    p0oe(21:30) =  CZ parameters 
%    p0oe(31:40) =  C1 parameters 
%    p0oe(41:50) =  Cm parameters 
%    p0oe(51:60) =  Cn parameters 
%    p0oe(61:70) =  bias parameters 
% 
if nargin < 3 
%        1  2  3  4  5  6  7  8  9  10 
  p0oe=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CX 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CY 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CZ 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cl 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cm 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cn 
         0, 0, 0, 0, 0, 0, 0, 0, 0, 0]';   % bias 
end 
% 
%  The number of parameters is np. 
% 
np=length(p0oe); 
% 
% 
%  ipoe element = 1 to estimate the corresponding parameter. 
%               = 0 to exclude the corresponding parameter from the 

estimation. 
% 
%  runopt = 1 for longitudinal dynamics 
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%         = 2 for lateral dynamics 
%         = 3 for combined longitudinal and lateral dynamics 
% 
if nargin < 4 
  if runopt==1 
%          1  2  3  4  5  6  7  8  9  10 
    ipoe=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CX 
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CY 
           0, 1, 0, 1, 0, 0, 0, 0, 1, 0,...  % CZ 
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cl 
           0, 1, 1, 1, 0, 0, 0, 0, 1, 0,...  % Cm 
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cn 
           0, 0, 0, 0, 0, 1, 0, 0, 0, 0]';   % bias 
  elseif runopt==2 
%          1  2  3  4  5  6  7  8  9  10 
    ipoe=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CX 
           1, 0, 0, 0, 1, 0, 0, 0, 1, 0,...  % CY 
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CZ 
           1, 1, 1, 1, 1, 0, 0, 0, 1, 0,...  % Cl 
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % Cm 
           1, 1, 1, 1, 1, 0, 0, 0, 1, 0,...  % Cn 
           0, 0, 0, 0, 1, 0, 0, 0, 0, 0]';   % bias 
  else 
%          1  2  3  4  5  6  7  8  9  10 
    ipoe=[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...  % CX 
           1, 0, 0, 0, 1, 0, 0, 0, 1, 0,...  % CY 
           0, 1, 0, 1, 0, 0, 0, 0, 1, 0,...  % CZ 
           1, 1, 1, 1, 1, 0, 0, 0, 1, 0,...  % Cl 
           0, 1, 1, 1, 0, 0, 0, 0, 1, 0,...  % Cm 
           1, 1, 1, 1, 1, 0, 0, 0, 1, 0,...  % Cn 
           0, 0, 0, 0, 1, 1, 0, 0, 0, 0]';   % bias 
  end 
end 
% 
%  Labels for the model parameters. 
% 
if nargin < 10 
  poelab=[ 'CX1 ';'CX2 ';'CX3 ';'CX4 ';'CX5 ';'CX6 ';'CX7 ';'CX8 

';'CX9 ';'CX10';... 
           'CY1 ';'CY2 ';'CY3 ';'CY4 ';'CY5 ';'CY6 ';'CY7 ';'CY8 

';'CY9 ';'CY10';... 
           'CZ1 ';'CZ2 ';'CZ3 ';'CZ4 ';'CZ5 ';'CZ6 ';'CZ7 ';'CZ8 

';'CZ9 ';'CZ10';... 
           'C11 ';'C12 ';'C13 ';'C14 ';'C15 ';'C16 ';'C17 ';'C18 

';'C19 ';'C110';... 
           'Cm1 ';'Cm2 ';'Cm3 ';'Cm4 ';'Cm5 ';'Cm6 ';'Cm7 ';'Cm8 

';'Cm9 ';'Cm10';... 
           'Cn1 ';'Cn2 ';'Cn3 ';'Cn4 ';'Cn5 ';'Cn6 ';'Cn7 ';'Cn8 

';'Cn9 ';'Cn10';... 
           'phib';'theb';'psib';'axb ';'ayb ';'azb ';'pdb ';'qdb 

';'rdb ';'    ']; 
end 
% 
% 
%  ims = 1 to use measured values  
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%          for the corresponding state. 
%      = 0 to use computed model values  
%          for the corresponding state.   
% 
if nargin < 5 
  if runopt==1 
%      x = [   vt, beta, alfa,    p,    q,    r,  phi,  the,  psi] 
    ims=[       1,    1,    0,    1,    0,    1,    1,    1,    1]; 
  elseif runopt==2 
    ims=[       1,    0,    1,    0,    1,    0,    1,    1,    1]; 
  else 
    ims=[       1,    0,    0,    0,    0,    0,    1,    1,    1]; 
  end 
end 
% 
% 
%  imo = 1 to select the corresponding output 
%          to be included in the model output. 
%      = 0 to omit the corresponding output  
%          from the model output.  
% 
if nargin < 6 
  if runopt==1 
%    y = [   vt, beta, alfa,    p,    q,    r,  phi,  the,  psi,   

ax,   ay,   az, pdot, qdot, rdot] 
    imo=[     0,    0,    1,    0,    1,    0,    0,    0,    0,    

0,    0,    1,    0,    0,    0]; 
  elseif runopt==2 
    imo=[     0,    1,    0,    1,    0,    1,    0,    0,    0,    

0,    1,    0,    0,    0,    0]; 
  else 
    imo=[     0,    1,    1,    1,    1,    1,    0,    0,    0,    

0,    1,    1,    0,    0,    0]; 
  end 
end 
% 
%   imc = 1 to use model equations for the 
%           corresponding non-dimensional  
%           aerodynamic coefficient. 
%       = 0 to use measured values for the 
%           corresponding non-dimensional  
%           aerodynamic coefficient. 
% 
if nargin < 7 
  if runopt==1 
%      [ CX or CD,   CY,   CZ or CL,   C1,   Cm,   Cn] 
    imc=[       0,    0,          1,    0,    1,    0]; 
  elseif runopt==2 
    imc=[       0,    1,          0,    1,    0,    1]; 
  else 
    imc=[       0,    1,          1,    1,    1,    1]; 
  end 
end 
% 
%   x0 = initial state vector.   
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% 
%    x = [vt,beta,alfa,p,q,r,phi,the,psi]' 
% 
if nargin < 8 
  x0=[fdata(1,2),fdata(1,[3:10])*pi/180]'; 
end 
% 
%   u0 = initial control vector.   
% 
%    u = [el,ail,rdr]' 
% 
if nargin < 9 
  u0=[fdata(1,[14:16])*pi/180]'; 
end 
% 
%     coe = cell structure: 
%           coe.p0oe   = p0oe   = vector of initial parameter 

values. 
%           coe.ipoe   = ipoe   = index vector to select estimated 

parameters. 
%           coe.ims    = ims    = index vector to select measured 

states. 
%           coe.imo    = imo    = index vector to select model 

outputs. 
%           coe.imc    = imc    = index vector to select non-

dimensional  
%                                 coefficients to be modeled. 
%           coe.x0     = x0     = initial state vector. 
%           coe.u0     = u0     = initial control vector. 
%                                 coefficients to be modeled. 
%           coe.fdata  = fdata  = standard array of measured flight 

data,  
%                                 geometry, and mass/inertia 

properties.   
%           coe.poelab = poelab = labels for the parameters. 
%           coe.ti     = ti     = time index. 
% 
coe.p0oe=p0oe; 
coe.ipoe=ipoe; 
coe.ims=ims; 
coe.imo=imo; 
coe.imc=imc; 
coe.x0=x0; 
coe.u0=u0; 
coe.fdata=fdata; 
coe.poelab=poelab; 
coe.ti=1; 
return 

 

6.1.10 oe.m 

function [y,p,crb,rr] = 

oe(dsname,p0,u,t,x0,c,z,auto,crb0,del,svlim) 
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% 
%  OE  Output-error parameter estimation in the time domain. 
% 
%  Usage: [y,p,crb,rr] = 

oe(dsname,p0,u,t,x0,c,z,auto,crb0,del,svlim); 
% 
%  Description: 
% 
%    Computes the output-error estimate of parameter vector 

p, 
%    the Cramer-Rao bound matrix crb, the discrete noise 
%    covariance matrix rr, and the model output y using 
%    modified Newton-Raphson optimization. 
%    The dynamic system is specified in an m-file or mex-file 
%    named dsname.  Inputs crb0, auto, del, and svlim are 

optional. 
% 
%  Input: 
% 
%  dsname = name of the file that computes the model outputs. 
%      p0 = initial vector of parameter values. 
%       u = input vector or matrix. 
%       t = time vector. 
%      x0 = state vector initial condition. 
%       c = constants passed to dsname. 
%       z = measured output vector or matrix. 
%    auto = flag indicating type of operation: 
%           = 1 for automatic  (no user input required, 

default). 
%           = 0 for manual  (user input required). 
%    crb0 = parameter covariance matrix for p0 (optional). 
%     del = vector of parameter perturbations 
%           in fraction of nominal value (optional). 
%   svlim = minimum singular value ratio for matrix inversion 

(optional). 
% 
%  Output: 
% 
%       y = model output vector or matrix. 
%       p = vector of parameter estimates. 
%     crb = estimated parameter covariance matrix. 
%      rr = discrete measurement noise covariance matrix 

estimate. 
% 

  
% 
%    Calls: 
%      cvec.m 
%      estrr.m 
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%      mnr.m 
%      compcost.m 
%      simplex.m 
%      misvd.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History: 
%     18 Nov  1996 - Created and debugged, EAM. 
%     28 Oct  2000 - Modified to handle p0 row vector, EAM. 
%     29 Oct  2000 - Modified to compute new cost costn 
%                    without re-computing yn, EAM. 
%     22 Nov  2000 - Cleaned up printed output, EAM. 
%     07 Sept 2001 - Re-ordered last three inputs, EAM. 
%     28 Oct  2001 - Added crb0, EAM. 
% 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied 
%  warranty of merchantability or fitness for a particular 

purpose. 
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
% [fid,message]=fopen('oe.out','w'); 
% if fid < 3 
%     message, 
%     return 
% end 
% 
%  Initialization. 
% 
fid = 999; 
iter=1; 
itercnt=0; 
maxitercnt=500; 
[npts,no]=size(z); 
p0=cvec(p0); 
np=length(p0); 
if nargin < 11 | isempty(svlim) 
    svlim=eps*npts; 
end 
if svlim <= 0 
    svlim=eps*npts; 
end 
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if nargin < 10 | isempty(del) 
    del=0.01*ones(np,1); 
end 
if nargin < 9 | isempty(crb0) 
    crb0=zeros(np,np); 
    M0=zeros(np,np); 
else 
    crb0=diag(diag(crb0)); 
    M0=misvd(crb0); 
end 
if nargin < 8 | isempty(auto) 
    auto=1; 
end 
c.count = 0; 
c.plot = 0; 
y=eval([dsname,'(p0,u,t,x0,c)']); 
rr=estrr(y,z); 
pctrr=100*ones(no,1); 
p=p0; 
% 
%  Optimization loop. 
% 
while (iter > 0)&(itercnt < maxitercnt), 
    iter=iter - 1; 
    c.count = c.count + 1; 
    % 
    %  Modified Newton-Raphson. 
    % 
    [infomat,djdp,cost]=mnr(dsname,p,u,t,x0,c,del,y,z,rr); 
    % 
    %  Add the a priori contributions. 
    % 
    infomat=infomat+M0; 
    djdp=djdp-M0*(p-p0); 
    cost=cost+0.5*(p-p0)'*M0*(p-p0); 
    [U,S,V]=svd(infomat); 
%     fprintf(fid,'\n SINGULAR VALUES: \n'); 
    svmax=S(1,1); 
    for j=1:np, 
%         fprintf(fid,'     singular value %3.0f = %13.6e 

\n',j,S(j,j)); 
        if S(j,j)/svmax < svlim 
            S(j,j)=0.0; 
%             fprintf(fid,' SINGULAR VALUE %3.0f DROPPED 

\n',j); 
            fprintf(1,' SINGULAR VALUE %3.0f DROPPED \n',j); 
        else 
            S(j,j)=1/S(j,j); 
        end 
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    end 
    %  crb=inv(infomat); 
    crb=V*S*U'; 
    dp=crb*djdp; 
    pn=p+dp; 
    [costn,yn]=compcost(dsname,pn,u,t,x0,c,z,rr,p0,M0); 
%     fprintf(fid,'\n iteration number %4.0f \n',itercnt); 
    fprintf(1,'\n iteration number %4.0f \n',itercnt); 
%     fprintf(fid,'\n   current cost  = %13.6e \n',cost); 
    fprintf(1,'\n   current cost  = %13.6e \n',cost); 
%     fprintf(fid,'   mnr step cost = %13.6e \n',costn); 
    fprintf(1,'   mnr step cost = %13.6e \n',costn); 
%     fprintf(fid,'\n     parameter      update      std. 

error       djdp    \n'); 
    fprintf(1,'\n     parameter      update      std. error       

djdp    \n'); 
%     fprintf(fid,'     ---------      ------      ----------       

----    \n'); 
    fprintf(1,'     ---------      ------      ----------       

----    \n'); 
    % 
    %  Print out the current data for the estimated 

parameters. 
    %  Line up the numbers accounting for any negative signs. 
    % 
    for j=1:np, 
        if p(j) < 0.0 
%             fprintf(fid,'  %11.4e',p(j)); 
            fprintf(1,'  %11.4e',p(j)); 
        else 
%             fprintf(fid,'   %11.4e',p(j)); 
            fprintf(1,'   %11.4e',p(j)); 
        end 
        if dp(j) < 0.0 
%             fprintf(fid,'  %11.4e',dp(j)); 
            fprintf(1,'  %11.4e',dp(j)); 
        else 
%             fprintf(fid,'   %11.4e',dp(j)); 
            fprintf(1,'   %11.4e',dp(j)); 
        end 
%         fprintf(fid,'   %11.4e',sqrt(crb(j,j))); 
        fprintf(1,'   %11.4e',sqrt(crb(j,j))); 
        if djdp(j) < 0.0 
%             fprintf(fid,'   %11.4e   \n',djdp(j)); 
            fprintf(1,'   %11.4e   \n',djdp(j)); 
        else 
%             fprintf(fid,'    %11.4e   \n',djdp(j)); 
            fprintf(1,'    %11.4e   \n',djdp(j)); 
        end 
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        %    fprintf(fid,'   %11.4e   %11.4e   %11.4e   

%11.4e   \n',... 
        %                     p(j),   dp(j), sqrt(crb(j,j)), 

djdp(j)); 
        %    fprintf(1,'   %11.4e   %11.4e   %11.4e   %11.4e   

\n',... 
        %                     p(j),   dp(j), sqrt(crb(j,j)), 

djdp(j)); 
    end 
%     fprintf(fid,'\n'); 
    fprintf(1,'\n'); 
    % 
    %  If Modified Newton-Raphson diverges, switch to 

simplex. 
    % 
    if abs(costn) > 1.01*abs(cost) 
%         fprintf(fid,'\n MODIFIED NEWTON-RAPHSON DIVERGED -> 

SWITCH TO SIMPLEX \n'); 
        fprintf(1,'\n MODIFIED NEWTON-RAPHSON DIVERGED -> 

SWITCH TO SIMPLEX \n'); 
        

[costn,yn,pn]=simplex(dsname,p,u,t,x0,c,del,z,rr,fid,p0,M0); 
    end 
    % 
    %  Check convergence criteria at decision point (iter=0). 
    % 
    if iter <= 0 

         

         
        % Decide if we want to obey the original (strict) 

convergence 
        % criteria which may never lead to convergence if the 

cost 
        % function is overly sensitive. If we cant converge 

in the first 
        % 50 iterations, relax the criteria. Even with 

relaxation, this 
        % approach is still extremely strict. 
        relaxed_criterion = itercnt > 50; 

         
        if relaxed_criterion 
            kp = sum(abs(dp) < 0.01); %  Parameter estimates 
            kj=abs((costn-cost)/cost) < 0.003; %  Cost. 
        else 
            kp = sum(abs(dp) < 0.0001); %  Parameter 

estimates 
            kj=abs((costn-cost)/cost) < 0.001; %  Cost. 
        end 
        kslp = sum(abs(djdp) < 0.05); % cost gradient. 
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        krr = sum(abs(pctrr) <= 5); %  Discrete noise 

covariance matrix estimate. 

         
        disp(' '); 
        if relaxed_criterion 
            disp('RELAXED CONVERGENCE CRITERIA:'); 
            disp(['KRR: ',int2str(krr),' of ',int2str(no),', 

KP: ',int2str(kp),' of ',int2str(np),', KJ: ',int2str(kj),' 

of 1']); 
        else 
            disp('STRICT CONVERGENCE CRITERIA:'); 
            disp(['KRR: ',int2str(krr),' of ',int2str(no),', 

KP: ',int2str(kp),' of ',int2str(np),', KJ: ',int2str(kj),' 

of 1',', KSLP: ',int2str(kslp),' of ',int2str(np)]); 
        end 
        if 

(krr==no)&&(kj==1)&&((kslp==np)||relaxed_criterion) 

&&((kp==np)||relaxed_criterion) 
%             fprintf(fid,'\n\n CONVERGENCE CRITERIA 

SATISFIED \n'); 
            fprintf(1,'\n\n CONVERGENCE CRITERIA SATISFIED 

\n'); 
        end 
        % 
        %  Manual operation. 
        % 
        if auto~=1 
            % 
            %  Prompt user for more parameter estimation 

iterations. 
            % 
            iter=input(' NUMBER OF ADDITIONAL ITERATIONS (0 

to quit) '); 
            iter=round(iter); 
            if iter > 1000 
                iter=1000; 
            end 
            % 
            %  Prompt user for a dicrete noise covariance 

matrix estimation. 
            % 
            if iter > 0 
                ans=input(' UPDATE THE RR MATRIX ?  (y/n) 

','s'); 
                if (ans=='y')|(ans=='Y') 
                    rrn=estrr(yn,z); 
                    pctrr=100*diag(rrn-rr)./diag(rr); 
                    rr=rrn; 
%                     fprintf(fid,'\n\n'); 
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                    fprintf(1,'\n\n'); 
%                     fprintf(fid,' output   rms error    rr 

inverse   percent change \n'); 
                    fprintf(1,' output   rms error    rr 

inverse   percent change \n'); 
%                     fprintf(fid,' ------   ---------    ---

-------   -------------- \n'); 
                    fprintf(1,' ------   ---------    -------

---   -------------- \n'); 
                    % 
                    %  Print out the current data for the 

estimated noise covariance matrix. 
                    %  Line up the numbers accounting for any 

negative signs. 
                    % 
                    for j=1:no, 
%                         fprintf(fid,'  %3.0f    %11.4e   

%11.4e',j, sqrt(rr(j,j)), 1/rr(j,j)); 
                        fprintf(1,'  %3.0f    %11.4e   

%11.4e',j, sqrt(rr(j,j)), 1/rr(j,j)); 
                        if pctrr(j) < 0.0 
%                             fprintf(fid,'   %11.4e   \n', 

pctrr(j)); 
                            fprintf(1,'   %11.4e   \n', 

pctrr(j)); 
                        else 
%                             fprintf(fid,'    %11.4e   \n', 

pctrr(j)); 
                            fprintf(1,'    %11.4e   \n', 

pctrr(j)); 
                        end 
                        %            fprintf(fid,'  %3.0f   

%11.4e   %11.4e    %11.4e   \n',... 
                        %                             j, 

sqrt(rr(j,j)), 1/rr(j,j), pctrr(j)); 
                        %            fprintf(1,'  %3.0f   

%11.4e   %11.4e    %11.4e   \n',... 
                        %                             j, 

sqrt(rr(j,j)), 1/rr(j,j), pctrr(j)); 
                    end 
%                     fprintf(fid,'\n'); 
                    fprintf(1,'\n'); 
                    % 
                    %  Compute the cost for yn and pn. 
                    % 
                    vv=inv(rr); 
                    costn=0.0; 
                    v=z-yn; 
                    % 
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                    %  The operator .' means transpose 

without complex conjugation. 
                    % 
                    for i=1:npts, 
                        costn=costn + 

conj(v(i,:))*vv*v(i,:).'; 
                    end 
                    % 
                    %  Get rid of imaginary round-off error. 
                    % 
                    costn=0.5*real(costn); 
                    % 
                    %  Add the a priori contribution. 
                    % 
                    costn=costn + 0.5*(pn-p0)'*M0*(pn-p0); 
                end 
            end 
        else 
            % 
            %  Automatic operation. 
            % 
            if (kj==1) && 

((kp==np)||relaxed_criterion)&&((kslp==np)||relaxed_criterion

) 
                if (krr~=no) 
                    rrn=estrr(yn,z);  % discrete measurement 

noise covariance matrix estimate 
                    pctrr=100*diag(rrn-rr)./diag(rr); 
                    rr=rrn; 
%                     fprintf(fid,'\n\n'); 
                    fprintf(1,'\n\n'); 
%                     fprintf(fid,' output   rms error    rr 

inverse   percent change \n'); 
                    fprintf(1,' output   rms error    rr 

inverse   percent change \n'); 
%                     fprintf(fid,' ------   ---------    ---

-------   -------------- \n'); 
                    fprintf(1,' ------   ---------    -------

---   -------------- \n'); 
                    % 
                    %  Print out the current data for the 

estimated noise covariance matrix. 
                    %  Line up the numbers accounting for any 

negative signs. 
                    % 
                    for j=1:no, 
%                         fprintf(fid,'  %3.0f    %11.4e   

%11.4e',j, sqrt(rr(j,j)), 1/rr(j,j)); 
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                        fprintf(1,'  %3.0f    %11.4e   

%11.4e',j, sqrt(rr(j,j)), 1/rr(j,j)); 
                        if pctrr(j) < 0.0 
%                             fprintf(fid,'   %11.4e   \n', 

pctrr(j)); 
                            fprintf(1,'   %11.4e   \n', 

pctrr(j)); 
                        else 
%                             fprintf(fid,'    %11.4e   \n', 

pctrr(j)); 
                            fprintf(1,'    %11.4e   \n', 

pctrr(j)); 
                        end 
                        %            fprintf(fid,'  %3.0f   

%11.4e   %11.4e    %11.4e   \n',... 
                        %                             j, 

sqrt(rr(j,j)), 1/rr(j,j), pctrr(j)); 
                        %            fprintf(1,'  %3.0f   

%11.4e   %11.4e    %11.4e   \n',... 
                        %                             j, 

sqrt(rr(j,j)), 1/rr(j,j), pctrr(j)); 
                    end 
%                     fprintf(fid,'\n'); 
                    fprintf(1,'\n'); 
                    % 
                    %  Compute the cost for yn and pn. 
                    % 
                    vv=inv(rr); 
                    costn=0.0; 
                    v=z-yn; 
                    % 
                    %  The operator .' means transpose 

without complex conjugation. 
                    % 
                    for i=1:npts, 
                        costn=costn + 

conj(v(i,:))*vv*v(i,:).'; 
                    end 
                    % 
                    %  Get rid of imaginary round-off error. 
                    % 
                    costn=0.5*real(costn); 
                    % 
                    %  Add the a priori contribution. 
                    % 
                    costn=costn + 0.5*(pn-p0)'*M0*(pn-p0); 
                    iter=5; 
                else 
                    iter=0; 
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                end 
            else 
                iter=2; 
            end 
        end 
    end 
    y=yn; 
    p=pn; 
    cost=costn; 
    itercnt=itercnt + 1; 
end 
rr=estrr(y,z); 
[infomat,djdp,cost]=mnr(dsname,p,u,t,x0,c,del,y,z,rr); 
% 
%  Add the a priori contributions. 
% 
infomat=infomat+M0; 
djdp=djdp-M0*(p-p0); 
cost=cost+0.5*(p-p0)'*M0*(p-p0); 
%crb=inv(infomat); 
crb=misvd(infomat); 
% fclose(fid); 
return 

 

6.1.11 nldyn.m 

function [y,x,accel] = nldyn(p,u,t,x0,c) 
% 
%  NLDYN  Solves the nonlinear aircraft equations of motion 

for output-error parameter estimation.   
% 
%  Usage: [y,x,accel] = nldyn(p,u,t,x0,c); 
% 
%  Description: 
% 
%    Computes the output vector time history  
%    using full nonlinear aircraft dynamics  
%    for output-error parameter estimation.   
% 
%  Input: 
% 
%      p = vector of parameter values. 
%      u = control vector time history = [el,ail,rdr]. 
%      t = time vector. 
%     x0 = initial state vector. 
%      c = cell structure: 
%          c.p0oe   = p0oe   = vector of initial parameter 

values. 
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%          c.ipoe   = ipoe   = index vector to select 

estimated parameters. 
%          c.ims    = ims    = index vector to select 

measured states. 
%          c.imo    = imo    = index vector to select model 

outputs. 
%          c.imc    = imc    = index vector to select non-

dimensional  
%                              coefficients to be modeled. 
%          c.x0     = x0     = initial state vector. 
%          c.u0     = u0     = initial control vector. 
%                              coefficients to be modeled. 
%          c.fdata  = fdata  = standard array of measured 

flight data,  
%                              geometry, and mass/inertia 

properties.   
% 
%  Output: 
% 
%       y = model output vector time history  
%           = [vt,beta,alpha,p,q,r,phi,the,psi]. 
%       x = model state vector time history  
%           = [vt,beta,alpha,p,q,r,phi,the,psi]. 
%   accel = acceleration output vector time history  
%           = [ax,ay,az,pdot,qdot,rdot]. 
% 

  

% 
%    Calls: 
%      nldyn_eqs.m 
%      runk2a.m 
%      adamb3a.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      07 Sept 2001 - Created and debugged, EAM. 
%      14 Oct  2001 - Modified to use numerical integration 

routines, EAM. 
%      23 July 2002 - Incorporated numerical integration and 

output calculation, EAM.   
%      17 May  2004 - Re-defined input c, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
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%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@larc.nasa.gov 
% 

  
% 
%  Initialization. 
% 
ims=c.ims; 
imo=c.imo; 
fdata=c.fdata; 
npts=length(t); 
n=length(x0); 
dtr=pi/180; 
g=32.174; 
% 
%  Compute the state vector time history using  
%  second-order Runge-Kutta or third-order Adams-Bashforth 
%  numerical integration. 
% 
%  The runk2a.m code is a duplication of runk2.m,  
%  except that the acceleration outputs are saved  
%  at each time step.  The same applies to adamb3a.m  
%  and adamb3.m.   
% 
%[x,accel] = runk2a('nldyn_eqs',p,[u,fdata],t,x0,c); 
[x,accel] = adamb3a('nldyn_eqs',p,[u,fdata],t,x0,c); 
% 
%  Compute output vector time histories  
%  according to imo, and substitute measured  
%  state time histories as indicated by ims.   
% 
%  State vector indices in fdata. 
% 
xindx=[2:10]'; 
% 
%  Substitute measured values for states  
%  as indicated by ims. 
% 
msindx=find(ims==1); 
nms=length(msindx); 
if nms > 0 
% 
%  Convert all states to radians, except airspeed. 
% 
  for j=1:nms 
    x(:,msindx(j))=fdata(:,xindx(msindx(j))); 
    if msindx(j)~=1 
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      x(:,msindx(j))=x(:,msindx(j))*dtr; 
    end 
  end 
end 
% 
% 
%  Output equations. 
% 
y=zeros(npts,n+6); 
% 
%  Airspeed. 
% 
y(:,1)=x(:,1); 
% 
%  Sideslip angle. 
% 
y(:,2)=x(:,2); 
% 
%  Angle of attack. 
% 
y(:,3)=x(:,3); 
% 
%  Angular rates.   
% 
y(:,[4:6])=x(:,[4:6]); 
% 
%  Euler angles. 
% 
y(:,[7:9])=x(:,[7:9]); 
% 
%  Translational accelerations. 
% 
y(:,[10:12])=accel(:,[1:3]); 
% 
%  Angular accelerations. 
% 
y(:,[13:15])=accel(:,[4:6]); 
% 
%  Include only the selected model outputs.  
% 
y=y(:,find(imo==1)); 
return 

 

 

6.1.12 m_colores.m 

function [crb,crbo] = m_colores(dsname,p,u,t,x0,c,z,del) 
% 



100 
 

 
 

%  M_COLORES  Vectorized version of colores.m. 
% 
%  Usage: [crb,crbo] = m_colores(dsname,p,u,t,x0,c,z,del); 
% 
%  Description: 
% 
%    Computes the Cramer-Rao bounds for maximum likelihood 
%    estimation both conventionally and accounting for  
%    the actual frequency content of the residuals.   
%    The dynamic system is specified in the file named 

dsname.   
%    Input del is optional.  This routine is vectorized 
%    for increased execution speed.  Results are the same  
%    as for the slower routine, colores.m. 
% 
%  Input: 
%     
%    dsname = name of the file that computes the model 

outputs. 
%         p = vector of parameter values. 
%         u = input vector or matrix. 
%         t = time vector. 
%        x0 = state vector initial condition. 
%         c = constants passed to dsname. 
%         z = measured output vector or matrix. 
%       del = vector of parameter perturbations in  
%             fraction of nominal value (optional). 
% 
%  Output: 
% 
%     crb  = corrected Cramer-Rao bounds accounting for 

colored residuals. 
%     crbo = conventional Cramer-Rao bounds. 
% 

  
% 
%    Calls: 
%      estrr.m 
%      senest.m 
%      misvd.m 
%      xcorrs.m 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      02 Feb 1998 - Created and debugged, EAM. 
%      09 Aug 2006 - Replaced xcorr.m with xcorrs.m, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
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% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
% 
[npts,no]=size(z); 
np=length(p); 
if nargin < 8 
  del=0.01*ones(np,1); 
end 
y=eval([dsname,'(p,u,t,x0,c)']); 
rr=estrr(y,z); 
vv=inv(rr); 
ifd=1; 
dydp=senest(dsname,p,u,t,x0,c,del,no,ifd); 
senmat=zeros(no*npts,np); 
sen=zeros(no,np); 
infomat=zeros(np,np); 
v=z-y; 
% 
%  Compute an unbiased estimate of the residual 

autocorrelation. 
%  Keep only positive lags, since the autocorrelation is an 

even function.   
% 
rvv=xcorrs(v,'unbiased'); 
rvv=rvv([npts:2*npts-1],:); 
rvvmat=zeros(no,no*(2*npts-1)); 
rvvk=zeros(no,no); 
% 
%  Arrange the data as a sequence of matrices and compute the  
%  conventional Cramer-Rao bounds. 
% 
for i=1:npts, 
  io=no*(i-1); 
  for j=1:np, 
    jo=no*(j-1); 
    senmat([io+1:io+no],j)=dydp(i,[jo+1:jo+no])'; 
  end 
  sen=senmat([io+1:io+no],:); 
  senmat([io+1:io+no],:)=vv*senmat([io+1:io+no],:); 
  infomat=infomat + sen'*vv*sen; 
  ipo=no*((npts-1) + (i-1)); 
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  ino=no*((npts-1) - (i-1)); 
  for j=1:no, 
    jo=no*(j-1); 
    rvvk(j,:)=rvv(i,[jo+1:jo+no]); 
  end 
% 
%  Keep only diagonal elements, to be consistent with 
%  the uncorrelated noise processes assumption. 
% 
%  rvvk=diag(diag(rvvk)); 
  rvvmat(:,[ipo+1:ipo+no])=rvvk; 
  rvvmat(:,[ino+1:ino+no])=rvvk; 
end 
crbo=misvd(infomat); 
% 
%  Corrected Cramer-Rao bound calculation outer loop. 
% 
crbsum=zeros(np,np); 
for i=1:npts, 
  io=no*(i-1); 
% 
%  Inner loop sum. 
% 
  ijo=no*((npts-1)-(i-1)); 
  sumat=rvvmat(:,[ijo+1:ijo+no*npts])*senmat; 
  crbsum=crbsum + senmat([io+1:io+no],:)'*sumat; 
end 
crb=crbo'*crbsum*crbo; 
return 

 

 

6.1.13 plotpest.m 

function plotpest(p,serr,xlab,ylab,xtlab,leglab) 
% 
%  PLOTPEST  Plots parameter estimates and 95 percent 

confidence intervals.   
% 
%  Usage: plotpest(p,serr,xlab,ylab,xtlab,leglab); 
% 
% 
%  Description: 
% 
%    Plots parameter estimates p with 95 percent  
%    confidence (2 sigma) error bars based on serr.   
%    Inputs xlab, ylab, xtlab, and leglab are optional.   
% 
%  Input: 
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%     
%        p = vector or matrix of parameter estimates. 
%     serr = vector or matrix of estimated parameter standard 

errors. 
%     xlab = x axis label.  
%     ylab = y axis label.  
%    xtlab = matrix of x axis tick label rows. 
%   leglab = matrix of legend label rows. 
% 
%  Output: 
% 
%    graphics: 
%      2-D plot 
% 
% 

  
% 
%    Calls: 
%      None 
% 
%    Author:  Eugene A. Morelli 
% 
%    History:   
%      02 Mar  2000 - Created and debugged, EAM. 
%      04 May  2001 - Added serr bars and legend, EAM. 
%      06 Mar  2002 - Repaired axis and tick labeling, EAM. 
%      24 July 2002 - Modified for multiple parameter set 

plotting, EAM. 
%      30 Nov  2005 - Corrected spacing for multiple 

parameters, EAM. 
% 
%  Copyright (C) 2006  Eugene A. Morelli 
% 
%  This program carries no warranty, not even the implied  
%  warranty of merchantability or fitness for a particular 

purpose.   
% 
%  Please email bug reports or suggestions for improvements 

to: 
% 
%      e.a.morelli@nasa.gov 
% 
[n,m]=size(p); 
indx=[1:n]'; 
% 
%  For multiple parameter vectors, 
%  plot the parameter estimates over a  
%  width along the abscissa given by spread,  
%  with spacing del.   
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% 
if m > 1 
  indx=indx*ones(1,m); 
  spread=0.22; 
  del=spread/(m-1); 
  for k=2:m, 
    indx(:,k)=indx(:,k-1)+del; 
  end 
  indx=indx-spread/2; 
end 
% 
%  Make a new figure window, if necessary. 
% 
if isempty(get(0,'CurrentFigure')) 
  sid_plot_setup; 
else 
  clf, 
end 
axes('XTick',[1:1:n]') 
color=['b';'g';'m';'c';'k';'y']; 
symbol=['v';'o';'d';'^';'s';'*']; 
hold on, 
% 
%  Draw symbols first. 
% 
for j=1:n, 
  for k=1:m, 
    plot(indx(j,k),p(j,k),[color(k,:),symbol(k,:)],... 
         'MarkerSize',6,'MarkerFaceColor',color(k,:)) 
%    legend('Estimate','2-sigma bound',0) 
  end 
end 
% 
%  Add error bars. 
% 
for j=1:n, 
  for k=1:m, 
    plot([indx(j,k);indx(j,k)],[p(j,k)-

2*serr(j,k);p(j,k)+2*serr(j,k)],'r') 
    plot(indx(j,k),p(j,k)-

2*serr(j,k),'r^',indx(j,k),p(j,k)+2*serr(j,k),'rv','MarkerSiz

e',3) 
  end 
end 
grid on, 
if nargin < 3 
  xlab='Index'; 
end 
if nargin < 4 
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  ylab='Parameter Estimates'; 
end 
% 
%  Use centered integers for the x axis  
%  tick labels if xtlab is not supplied. 
% 
if nargin < 5 
  xtlab=reshape([num2str([1:1:n]),'  ']',3,n)'; 
  xtlab=[' '*ones(n,2),xtlab]; 
end 
if exist('leglab','var') 
  legstr=['legend(''',leglab(1,:)]; 
  if m > 1 
    for k=2:m, 
      legstr=[legstr,''',''',leglab(k,:)]; 
    end 
  end 
  legstr=[legstr,''',0)']; 
  eval(legstr); 
end 
xlabel(xlab); 
ylabel(ylab); 
v=axis; 
axis([0 n+1 v(3) v(4)]); 
set(gca,'XTickLabel',xtlab); 
hold off, 
box on, 
return 
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