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Abstract 
 

Title: Validation of Arterial Distensibility Neural Network Model with Clinical Data 

 

Author: Cassondra Michelle Petersen 

Advisor: Mehmet Kaya, Ph.D. 

Cardiovascular diseases continue to plague the world as the number one killer 

of adults each year. As cardiovascular diseases can start with seemingly no 

symptoms, heart disease has been coined as the silent killer. With the ongoing 

COVID-19 global pandemic, the need for advances in cardiovascular advances has 

become even more prevalent as this virus is known to cause more severe damage to 

those who have underlying cardiovascular problems. These two reasons show the 

dire clinical need for researchers to continue to use novel techniques such as neural 

networks to find new approaches for helping physicians non-invasively and quickly 

add predictive technologies into their routine practices to evaluate a patient’s risk of 

developing any cardiovascular diseases. The cardiovascular system has historically 

been hard to replicate using computational flow fluid dynamic software as it is one 

of the most complex flow systems. Over the years, changes in aortic diameter, blood 

pressure (BP), and arterial compliance have all been identified as indicators of 

cardiovascular diseases in humans. Thus, being able to routinely monitor aortic 
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diameter size can help detect a cardiovascular disease sooner and potentially help 

physicians find meaningful solutions to prevent the progression of these diseases.  

Currently, there is no approved or widely accepted non-invasive neural 

network (NN) technology for determining the risk of developing cardiovascular 

disease in the medical field as there has not been sufficient validation studies of the 

proposed methods presented by researchers. The goal of this study is to validate the 

neural network that is trained using simulated blood pressure and flow data to predict 

aortic systolic and diastolic diameters with clinical data and blood pressure 

waveforms through the use of MATLAB software. Numerical models are performed 

on the clinical blood pressure waveforms to estimate the flow and arterial compliance 

corresponding to the given systolic and diastolic blood pressures. Arterial 

compliance values are then inputted into the neural network, and the targets provide 

the systolic and diastolic aorta diameter predictions. The preliminary validation 

testing results based on human clinical data are discussed and reviewed against 

published clinical data on aortic diameters.   
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Chapter 1  
Introduction 

 

1.1 Motivation 

Cardiovascular diseases (CVD), specifically heart disease, is the leading 

cause of deaths worldwide as it accounts for one out of every four deaths (World 

Health Organization 2020). CVD is even more prevalent in American women as 

heart disease accounts for 1 in 3 deaths (Garcia et al. 2016). The Center for Disease 

Control and Prevention (CDC) reported as of 2018 that every 36 seconds, someone 

in the United States will be killed by a cardiovascular disease (The Center for Disease 

Control 2020). In 2016, 17.6 million people died from CVD alone, with a 14.6 

percent increase in deaths as seen in comparison to data from 2006 (Benjamin et al. 

2019). The most alarming finding regarding CVDs in the United States is that not 

only the life expectancy has stalled, but if there are not advances in preventing CVD 

mortalities in the near future, the life expectancy will begin to decline (Mehta et al. 

2020).  
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Figure 1: Map of deaths due to heart disease in the United States between 2014 to 

2016 (The Center for Disease Control and Prevention, 2019) 

The CDC released an interactive map, seen by Figure 1, to allow people to 

see how prevalent heart diseases are here in the United States as there is an alarming 

increase in deaths in Americans over 35 years old from 2014 to 2016, with statistics 

showing that these numbers are still increasing now in 2021.  

Computational fluid dynamics (CFD) is tough to model in the biomedical 

engineering field as the human body fluid behaviors are highly complex, especially 

the cardiovascular system (Lee 2011). This methodology allows for both researchers 

and physicians to better understand the human body fluid dynamics as well as to use 

this information to determine treatment and prevention for progression of diseases. 



 
 

3 

 

The cardiovascular system is a vast area of research in the medical field as it is crucial 

to slow down the mortality rates for CVDs worldwide. It is necessary to use pre-

processing, mathematical equations, and post-processing to create CFD models on a 

computer regardless of the engineering discipline the model is being developed for 

(Lee 2011). Limitations that have been noticed by many researchers include the lack 

of access to clinical databases that provide all the necessary information from the 

patient’s cardiovascular system such as diameter measurements, blood pressure 

waveforms, and raw variable data as many only publish using mean values observed. 

This makes it difficult to both accurately create a model and further the research to 

predict aortic diameters as the neural network requires a large complete database to 

be trained to the accuracy desired for use in clinical settings.  

With more sophisticated software and advances in computer science, it is now 

possible to make meaningful advances in CFD technologies for the human body. One 

main concern throughout the medical community is with the increasing amount of 

CFD models being published for predicting CVD risks since there is a vast need to 

validate these models before it can be decided there is a clear benefit in funding the 

future research for these models (Damen et al. 2016). This concern in the medical 

community is why this validation study was crucial to show the promising potential 

of this aortic diameter prediction to be utilized in the medical field to determine CVD 

risk.  
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1.2 Background  

Heart disease is a type of disease that will affect the heart structure and 

function, while CVD is any type of disease that will affect the heart or blood vessels 

(Gaziano & Manson 1996). The most common known cause of CVD is 

atherosclerosis, the buildup of fatty plaque in arteries (The Center for Disease 

Control and Prevention, 2021). Risk factors that influence risk of developing a 

cardiovascular disease are smoking, being diagnosed with diabetes mellitus, 

exhibiting signs of hypertension or dyslipidemia, being physically inactive, and 

being obese (Garcia et al. 2016).  

The American Heart Association (AHA) predicts that by 2030, 40.5% of the 

United States population will suffer from one type of CVD, costing the healthcare 

system approximately 1 trillion dollars per year (Tomaselli et al. 2011). The AHA 

committee made their 2020 Health Impact Goal to improve cardiovascular health and 

reduce CVD mortality risk by 20 percent (Lloyd-Jones et al. 2010). It is crucial for 

one to understand their CVD risk better to help prolong their life. Researchers and 

physicians are working hard to better understand trends in CVD mortality and risks 

to aid in the diagnosing and treatment of these heart diseases before they cause 

detrimental damage to their cardiovascular system (Wilson et al. 2017). To help 

improve determining an individual's CVD risk, it is crucial to further development 



 
 

5 

 

into obtaining more accurate information from non-invasive measurements as many 

individuals do not have access to preventative healthcare measures to have invasive 

procedures performed in hospital settings.  

With an ongoing global pandemic due to SARS-CoV-2, there is an even 

larger demand than ever before for non-invasive ways to measure one’s 

cardiovascular baselines. It is prevalent for cardiovascular baselines to be determined 

as this virus has proven to not only attack the respiratory systems of those affected 

but many other organs as well, including the heart (Bansal 2020). This is largely due 

to the fact that the viral spike protein binds to human angiotensin-converting enzyme 

2 receptor which is largely expressed in the heart, lungs, intestinal epithelium, 

vascular endothelium, and kidneys (Clerkin et al. 2020). A study in Germany showed 

that the SARS-Cov-2 virus primary target and secondary co-morbidity factor for the 

three progression phases is the cardiovascular system, with the heart itself being a 

direct target for the viral infection (Böhm et al. 2020). Also, the risk of developing a 

severe case of the SARS-CoV-2 virus if one already has an underlying CVD is much 

higher and accounts for 40 percent of the COVID-19 deaths in hospitals (Bae et al. 

2021).  
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1.3 Feedforward Neural Networks 

Neural networks are computational learning systems that utilize a collection 

of functions to understand inputs and then translate the information into desired 

outputs of another form. A feedforward neural network is the simplest type of 

neural network as it moves information in a forward unidirectional flow from the 

inputs to obtain the desired output (Schmidhuber 2015).  

 

Figure 2: Feedforward neural network architecture 

A feedforward neural network will feed inputs into input layers which then 

lead to hidden layers and finally go through output layers to yield the predicted 

outputs. The input layer is where the inputs are received, the hidden layer is where 

the relationships between the inputs and outputs can be determined, and the output 
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layer is where the outputs of the neural network are computed (Dongare et al. 2012). 

There are also neuron weights that demonstrate the strength of the connection 

between two of the neurons, often ranging between 0 to 1. The activation function is 

utilized in the hidden and output layers to map the summed weighted input to the 

output of the neurons (Dongare et al. 2012). Activation functions will govern the 

initiation of neurons to be activated to impact the strength of the predicted output.  

The neural network utilized for this thesis has 1 input layer containing 2 

neurons, 1 hidden layer containing 10 neurons, and 1 output layer containing 2 

neurons which can be seen in Figure 2. The 10 hidden neurons are 10 different 1st-

order polynomial equations for the input and outputs and are used to obtain multiple 

representations of arterial compliance predictions prior to giving the predicted aortic 

diameters. Further details of the neural network will be discussed in the following 

section.  

The neural network computes data in 4 simple steps: multiplying the weights 

and inputs, adding in the biases, performing activation functions, and obtaining the 

output signal. The inputs first get multiplied by the assigned weights. Next, the 

temporary products found from the input layer is added to the respective biases to 

produce the next temporary product. After the temporary product is created the 

activation functions are utilized to rescale the products and turn the weighted sum 

into the output signals.  
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1.4 Blood Pressure Waveform 

Blood pressure (BP) plays a significant role in determining CVD risk in 

patients and is a major contributing factor during cardiovascular events (Asia Pacific 

Cohort Studies 2003). Blood pressure is the pressure exerted on the artery by the 

blood as it moves through the body. The two main values observed in blood pressure 

are the systolic and diastolic blood pressures. Systolic blood pressure (SBP) is the 

pressure in the artery when the heart beats, while diastolic blood pressure (DBP) is 

the pressure in the artery when the heart rests. Historically, diastolic blood pressure 

was initially thought to have a stronger correlation with CVD risk as this was seen 

in earlier clinical trials, but more recently research has shifted to show that systolic 

blood pressure is actually a better indicator for CVD risk (Kengne et al. 2009).  

 

Figure 3: Aortic pressure waveform of a healthy, normotensive subject (Van Varik et 

al. 2012) 

The simplified, normal aortic blood pressure waveform of a human is seen in 

Figure 3. The waveform begins with the onset, which is the initiation of the pressure 
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waveform on the left most portion of the wave. The first peak seen to the left is the 

inflection point, which is crucial for determining the compliance of the aorta (Segers 

et al. 2007). The next peak to the right is the systolic peak and is clearly indicated by 

the highest point in the waveform. The final peak on the pressure waveform is the 

diastolic peak. In between the systolic and diastolic peaks is a downward notch, this 

notch is known as the dicrotic notch.  

The standard blood pressure for a normal, healthy adult is approximately less 

than or equal to 120 over 80 millimeters of mercury (mmHg), where 120 mmHg is 

the systolic blood pressure and 80 is the diastolic blood pressure (Staessen et al. 

2017). Fluctuations in blood pressure can be caused by variables such as genetic 

predispositions to hypertension, advancing age, increased sodium intake, sleep 

apnea, consumption of alcohol, and mental stress (Oparil et al. 2018).  

 

1.5 Inflection Point 

The inflection point is an indicator of arterial stiffness in blood vessels and is 

seen by the leftmost peak in the blood pressure waveform (Narayan et al. 2013). As 

the inflection point is clearly visible in healthy, normotensive humans, it is an 

important indicator of potential CVDs if the waveform does not clearly depict this 

point or peak. If a blood pressure waveform has an inflection point that arrives earlier 
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and in a shorter amount of time than normal, the person either has atherosclerosis or 

another CVD that affects the diameter of the arteries. 

 

1.6 Three-Element Windkessel Model 

The Three-Element Windkessel model, created by Frank Windkessel, can be 

used to estimate the total arterial compliance from non-linear blood pressure and flow 

in one lumped model (Westerhof et al. 2009). The Windkessel effect is widely 

accepted for use in the medical field to model the shape of the arterial blood pressure 

waveform, in this case the aorta.  

 

Figure 4: Three-Element Windkessel Model developed by Westerhof 

As seen by Figure 4, Q(t) represents the blood flow, Zc is the characteristic 

impedance, P(t) is the aortic blood pressure, C(P) is arterial compliance, and R is the 

peripheral resistance. The Three-Element Windkessel model has C(P) and R in a 

parallel arrangement with Zc in series with them.  
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The governing equation for the given Three-Element Windkessel model by 

Westerhof is: 

 P(t) + [R*C(P)] * 
𝑑𝑃(𝑡)

𝑑𝑡
 = (R + Zc) * Q(t) + [Zc*R*C(P)] * 

𝑑𝑄(𝑡)

𝑑𝑡
 (1) 

To utilize this model, it is necessary to obtain the values of the stroke volume, 

compliance, characteristic impedance, and peripheral resistance values from the 

aorta. This model assumes that the compliance of the aorta can be modeled as a 

continuous, steady flow regardless of the heart being in systole or diastole (Kaya et 

al. 2018).  

 

1.7 Arterial Compliance and Distensibility 

Clinical studies have shown that arterial compliance is associated with, one 

of the most common CVD, hypertension which shows that there is a clinical need to 

know this value when determining one’s risk of developing hypertension or any other 

CVD (Kaya et al. 2018). Arterial compliance is defined as the change in the geometry 

of the arteries in relation to a change in blood pressure, while the arterial distensibility 

is the fractional change in artery area in relations to a change in blood pressure 

(Glasser et al. 1997). 
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Arterial compliance is inversely related to vascular stiffness. If a person is of 

advanced age, has atherosclerosis formation, and other CVDs their compliance will 

decrease. Arterial distensibility allows for stress on the arterial wall to be determined. 

If there is a decrease in distensibility, the arterial wall is at risk of damage. 

Monitoring changes in compliance and distensibility is crucial in the prevention and 

treatment of life-threatening cardiovascular events that can stem from CVDs.  

 

1.8 Clinical Importance of Aortic Diameter 

The diameter of the aorta is larger in men than women and will increase as 

the person ages (Mao et al. 2009). Research has shown that the widening of the aorta 

has been linked to numerous CVD risk factors and may increase the risk of the patient 

undergoing cardiovascular events (Qazi et al. 2017, Laughlin et al. 2011, Chuang et 

al. 2018). The pressure-diameter changes in the human aorta are non-linear so larger 

changes are expected to occur at decreased pressures, while smaller changes are 

expected during increased pressures (Murgo et al. 1981). These results depict that 

the change in the aortic diameter can be a promising factor for determining their risk 

of developing a CVD in the future. Patients with dilated, larger diameters than the 

normal range, aortas have been linked to be at a higher risk of developing CVDs than 

those who exhibit less dilation (Paul et al. 2020).  
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The average aorta systolic and diastolic diameters for healthy, normotensive 

adults 18 to 75 was observed to be between 16 to 23 and 15 to 22 cm respectively 

(Länne et al. 1992, Stefanadis et al. 1995). These findings agree with the 

cardiovascular physiology as the systolic diameter of the aorta should always be 

larger than the diastolic diameter of the aorta. As this study aims to observe the aorta 

systolic and diastolic diameters, it can be concluded that the predicted diameters must 

be no smaller than 15 cm and no larger than 23 cm to remain physiologically possible 

in the adult human aorta.   

 

1.9 Project Scope 

It is more important than ever before to strive to continue advances towards 

non-invasive cardiovascular medical devices to allow for fast, low cost, and accurate 

monitoring of CVD risk throughout their life. By creating a new method for 

predicting aortic diameters, it will allow for easier evaluation of changes in the 

cardiovascular system non-invasively. This will allow for physicians to more 

effectively monitor those who may be at an increased risk of developing CVD. 

Physicians will also be able to continue to make advances in preventing those with 

low to moderate risk of developing CVD to stay under control for a longer time 

without the need for medical interventions. Ultimately this predictive software could 

be utilized by physicians in an outpatient, clinical setting which could reduce the 
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financial burden posed to patients to undergo invasive cardiac procedures for 

diagnosis of CVDs in the future.  

Currently, there is no non-invasive, low-cost, or fast way to measure aortic 

diameters in an average clinical setting. The only way to measure aortic diameters 

would be to undergo a non-invasive procedure in a hospital setting, which can be 

extremely costly. Creating a non-invasive way to predict aortic diameters will not 

only save patients time and money, but help physicians create a baseline for their 

patients so that they can monitor changes in their patient’s cardiovascular system to 

help prevent them from developing CVDs that can shorten their life expectancy 

significantly.  
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Chapter 2  
Materials and Methods 

 

2.1 Experimental Overview 

 

Figure 5: Brief flow chart of experiment 

The overall experimental process is depicted by Figure 5. The details of the 

experimental steps are explained in the following subsections.  

 

2.2 Creating a Clinical Blood Pressure vs. Time Database 

2.2.1 Mendeley Clinical Blood Pressure vs. Time Waveform Collection 

Clinical data was sought out to build a database of continuous arterial 

pressure data using Mendeley to aid in finding arterial blood pressure waveforms to 
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digitize. Mendeley is a free tool that is accessible on the web that helps researchers 

organize and collect research articles for academic research purposes (Holt et al. 

2011). 37 blood pressure versus time waveform plots of healthy, normotensive 

human subjects were collected for re-digitization through the use of Mendeley to 

create a database for the validation study. Mendeley allowed for the 37 clinical blood 

pressure plots from healthy human subjects to be found quickly from 17 reference 

articles by searching the online database for central aortic pressure waveforms.  

The first blood pressure waveform was collected from the Williams et al. 

paper. The second and third reference papers both provided 4 waveforms to be 

collected for digitization (O'Rourke & Adji 2008, Nichols 2005). The fourth 

reference paper collected from Mendeley provided 2 blood pressure waveforms for 

use in digitization (O'Rourke & Seward 2006). A fifth article provided 6 waveforms 

for digitization (O'Rourke & Hashimoto 2007). The sixth and seventh references both 

provided one useful waveform for digitization (Nichols et al. 2013, Smith et al. 

2004). The eighth reference paper provided 2 more blood pressure waveforms for 

creating the database (Lowe et al. 2009). The ninth article, written by Townsend et 

al. in 2016, provided 3 additional waveforms for digitization and the tenth reference 

paper by Elvan-Taşpinar et al. yielded one additional waveform. An eleventh and 

twelfth reference article gave 2 and 4 waveforms respectively for the database 

construction (Lim et al. 2009, Afzal et al. 2014). The thirteenth through sixteenth 
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reference papers all yielded 1 additional blood pressure waveform to the database 

(Subherwal et al. 2010, Matthys et al. 2007, Hrušková et al. 2015, Townsend et al. 

2015). The last reference article, written by Tomoaki Murakami, provided the final 

2 blood pressure waveforms needed to complete the database for the validation study.  

 

2.2.2 Digitizing Blood Pressure Waveforms 

After collecting the 37 datasets, the WebPlotDigitizer version 4.4 tool 

available by automeris.io was used to create the database of pressure and time data 

for each waveform graph. The WebPlotDigitizer is a free, online software that allows 

researchers to reverse engineer images to extract the numerical data that is necessary 

for conducting research studies (Marin et al 2017).  

The WebPlotDigitizer tool allowed for time and pressure data to be collected 

via the use of the scatter plot tool for the validation study. This software allowed for 

the clinical database to be constructed with numerical time and blood pressure data 

prior to being run through the MATLAB code necessary for the aorta diameter 

prediction modeling. To utilize this tool, the waveforms axes needed to be clearly 

identified and labeled. Figure 6 depicts how the WebPlotDigitizer tool was utilized 

to extract the tabular pressure and time data for the given clinical blood pressure 

waveform.  
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Figure 6: Example of Digitizing a Blood Pressure Waveform  Using the 

WebPlotDigitizer Tool 

To utilize the MATLAB code, the pressure needs to be mmHg. The one 

waveform collected had pressure in kilopascals (KPa) would first need to be 

converted into mmHg once digitizing occurred to accurately predict the normalized 

flow and compliance for the neural network. The data also needed to be collected in 

seconds, thus all the waveforms in milliseconds (ms) needed to be converted into 

seconds after digitization as well.  

 

2.2.3 Computation of Blood Flow From Blood Pressure 

Blood flow data from the aorta needed to be estimated as the database created 

did not have this information readily available. Westerhof et al. published a study 

that allows for wave reflection to be determined from uncalibrated blood pressure 
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alone, allowing for blood flow in the aorta to be estimated. Blood flow data is 

necessary to calculate arterial compliance as without flow in the aorta there would 

be no change in diameter or movement of blood being observed.  

Waveform separation analysis is the gold standard for assessing wave 

reflections in the heart (Segers et al. 2007). The waveform analysis is performed by 

breaking down the blood pressure waveform into its forward and backward 

pressures. A normalized flow method was utilized based on the findings of 

Westerhof et. al to calculate human aorta wave reflection through the use of 

assuming a triangular shaped flow wave as well as the actual measured blood 

pressure (Westerhof et al. 2006).  

By manipulating the governing equation of the Three-Element Windkessel 

model, as seen in equation 1, the unknowns needed to estimate blood flow and 

arterial compliance from the given blood pressure waveforms can be calculated.  

The peripheral resistance of the Three-Element Windkessel model is 

calculated using the equation: 

 R = 
𝑀𝑒𝑎𝑛 ( 𝑃(𝑡) )

𝑀𝑒𝑎𝑛 ( 𝑄(𝑡) )
 (2) 

Peripheral resistance must be found to depict the resistance of blood flow 

through the aortic artery given the blood pressure waveform. The peripheral 

resistance calculated using equation 2 allows for the characteristic impedance to now 
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be found from the frequency domain. This furthers the process needed to obtain the 

aortic blood flow, as it is impossible to determine the arterial compliance in the aorta 

without it.  

The characteristic impedance of the Three-Element Windkessel model is also 

able to be calculated using the equation: 

 Zc = |
𝑃(𝑡)

𝑄(𝑡)
| (3) 

After the characteristic impedances are found for the waveform using 

equation 3, additional coding manipulation is performed to obtain the maximum 

value for Zc that is not an outlier by using the MATLAB built in functions “mean” 

and “isoutlier”.  

Once the maximum characteristic impedance is found for the waveform, the 

aortic blood flow can be calculated using the equation: 

 Qa(t) = P(t) – Zc * Q(t) (4) 

The aortic blood flow found using equation 4 is necessary to calculate the 

arterial compliance of the blood pressure waveform. Arterial compliance requires 

blood flow as the artery will not distend if there is no blood pumping through it.  

The inflection point was calculated in regard to the pressure by the equation: 
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 I(t) = 
𝑑2𝑃(𝑡)

𝑑𝑡2  (5) 

The shoulder point was then calculated in regard to the inflection point by the 

equation: 

 S(t) = 
𝑑2𝐼(𝑡)

𝑑𝑡2  (6) 

To ensure that the timing of the reflected waves from the pressure waveform 

analysis agree, the inflection point, seen by equation 5, and shoulder point, seen by 

equation 6, need to be verified to match when transposed on each other. The 

inflection and shoulder points correspond to the automated algorithm when the 

second derivative and fourth derivative crosses zero on the x-axis respectively 

(Segers et al. 2007). These characteristic points on the waveform are found using the 

MATLAB built in function “gradient”.  

The upward slope of the flow wave is found by taking the time derivative of 

the blood pressure waveform and multiplying it by the time required to reach the 

median between the inflection and shoulder points. This will allow for the derivative 

of the blood pressure slope to be taken from the onset to the systolic peak to give the 

forward flow of the aorta.  

The downward slope of the flow wave is found by taking the negative time 

derivative and multiplying it by the time required to go from the shoulder point, the 

diastolic peak to the offset of the blood pressure wave and subtracting the time 
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required to hit the shoulder point. This will allow for the derivative of the blood 

pressure downward slope to give the backward flow of the aorta.  

 

2.2.4 Computation of Arterial Compliance From Blood Pressure and 

Blood Flow 

The digitized data is then run through MATLAB to compute the arterial 

compliance as seen in the Kaya et. al paper based on the findings of a compliance-

pressure loop (Kaya et al. 2018). This compliance-pressure loop utilizes the Three-

Element Windkessel model as well as compliance to display how compliance affects 

the diameter and blood pressure of the aorta.  

This method can be utilized now as the database made now has pressure and 

generated flow data.  

 Arterial compliance is computed using the following equation: 

 C(P) = aeb*P(t) (7) 

 C(P) is the arterial compliance, a and b are constants defined by the 

Windkessel model, and P(t) is the aortic pressure (Li & Zhu 1994). The constants a 

and b are the numerical solutions to equation 1 and indicate where the root mean 

square error between the actual pressure and the predicted pressure are minimized.   
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Equation 7 allows for arterial blood pressure compliance to be modeled as a 

nonlinear pressure dependent element of the aorta. This computation of arterial 

compliance allows for the stiffening of arteries to be accounted for while it is under 

pressure to better represent the normal cardiovascular physiology.  

 

2.2.5 Resampling and Padding Arterial Compliance Data 

Compliance is calculated for each waveform in the database and then put into 

an array for use in the neural network. The arterial compliance, pressure, and time 

are then resampled to 1000Hz using the built in MATLAB “interpl” to be compatible 

with the neural network requirements. The arterial compliance data then needed to 

be padded to a [2 x 3325] matrix size to satisfy the input size requirements for the 

neural network.  

 

2.3 Creating a Neural Network Model From HaeMod Group 

2.3.1 Simulate Blood Pressure, Blood Flow, and Aortic Diameters 

The Deep Learning Toolbox in MATLAB was utilized to train a simple 

feedforward neural network to predict the systolic and diastolic aortic diameters. A 

feedforward neural network is the simplest type of artificial neural network as the 

information only moves in one direction from the input (Schmidhuber 2015).  
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This neural network, seen in Figure 2, was created using simulated blood 

pressure, blood flow, and cross-sectional area data from the open sourced HaeMod 

database created by the HaeMod Group (Willemet et al. 2015).  

The cross-sectional area data from the HaeMod Group is converted into aortic 

diameters using equation 8.  

 A = πr2 (8) 

The trained feedforward neural network was then utilized to predict the aortic 

systolic and diastolic diameters given the blood pressure data collected in the clinical 

database.  

 

2.3.2 Creating Neural Network Model Input and Outputs 

The inputs for the neural network accept data in the size of 2 by N double 

array. N refers to the number of test datasets. The neural network uses the computed 

arterial compliance data as the input. The first input corresponds to the systolic 

arterial compliance and the second input corresponds to the diastolic arterial 

compliance. The units for the input are 1/mmHg.  

The outputs, or targets, for the neural network give data in the size of 2 by N 

as well. The first output corresponds to the systolic aortic diameter and the second 
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output corresponds to the diastolic aortic diameter, respectively. The units for the 

output diameters are meters (m).  

The feedforward neural network is executed using a variety of weights and 

functions. The input layer weights are a [10 x 2] matrix with the first column being 

the systolic weights and the second column being the diastolic weights. The hidden 

layer weights are a [2 x 10] matrix with the first row being the input systolic weights 

and the second row being the input diastolic weights.  

The first step of the neural network is to perform element by element 

multiplication of the input weights by the input systolic and diastolic arterial 

compliances computed for the waveforms in the database. This is seen by equation 

9. This equation is then repeated for the remaining 9 pairs of weights by changing 

the 1 in the IW portion for each pair i.e. (IW(2, : ). * C(P)(1, : ) for the second pair). 

 IW(1, : ). * C(P)(1, : ) = Temporary_product_0 (9) 

The second step is to add the first bias, a [10 x 1] matrix, to the 

temporary_product_0 found in equation 9 to compute the temporary product from 

the input layer of the neural network. This is seen in equation 10.  

 Temporary_product_1 = Temporary_product_0 + bias_1 (10) 

After the temporary product from the input layer is computed it is run through 

the first activation sigmoid equation to gives the value between the first and second 
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temporary products to rescale Temporary_product_1 without changing the overall 

size of the matrix. The sigmoid equation used in the input layer is seen in equation 

11.  

 Temporary_product = 
1

1+ 𝑒𝑥𝑝−𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦_𝑝𝑟𝑜𝑑𝑢𝑐𝑡_1 (11) 

The third step of the neural network is to multiply the hidden layer weights 

by the temporary products from the input layer. This is performed by equation 12 for 

the systolic predictions and equation 13 for the diastolic predictions.  

 Temporary_product_2_1 = LW(1, : ). * Temporary_product(: , 1) (12) 

 Temporary_product_2_2 = LW(2, : ). * Temporary_product(:, 2 ) (13) 

The fourth step is to add the hidden layer bias or second bias to each result 

from the hidden layer to produce the initial outputs. The second bias is a [2 x 1] 

matrix. This is seen in equation 14 for the systolic diameter outputs and equation 15 

for the diastolic diameter outputs.  

 Systolic_outputs = Temporary_product_2_1 + bias_2(1) (14) 

 Diastolic_outputs = Temporary_product_2_2 + bias_2(2) (15) 

The fifth step of the neural network in this case is to apply the activation 

function for the hidden layer, which in this case is a linear function, thus the value 

does not change as seen in equation 16.  
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 Linear equation: y = x (16) 

As there were no changes with the activation function, the neural network is 

now completed. This will allow for the predicted systolic and diastolic diameters to 

be computed. 

The neural network training, validation, and testing were sampled at 50, 20, 

and 30 percent respectively for a total of 3,325 samples. 

 

Figure 7: Regression Plots From Neural Network Model 

The neural network yielded a mean squared error (MSE) of 7.55820e-6, 

7.51369e-6, and 7.69041e-6 for the training, validation, and testing, respectively. 

The extremely small MSE means that at least the first 2 decimals are correctly 
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predicted. The R value for training data was 2.59110e-1, for validation data was 

2.76139e-1, and for testing data was 2.52969e-1, which can be seen by Figure 7. This 

depicts that there is not much correlation as the predictions are non-linear, which is 

expected as the cardiovascular system is not a linear function.  

 

2.4 Validated Clinical Data 

A simple linear model was created using validation studies of clinical data by 

taking in both the systolic pressure and diastolic pressure to predict the aortic systolic 

and diastolic diameters, respectively.  

To utilize the clinical data, digitization of the arterial pressure was performed 

using the blob detector and line detection functions in the WebPlotDigitizer, seen in 

Figure 8.  
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Figure 8: Example of Using the WebPlotDigitizer Blob Detector Tool to Digitize the 

Clinical Arterial Blood Pressure vs. Aortic Diameter Data 

Once the clinical data was digitized the MATLAB built in function “fitlm” 

will be utilized to return a linear regression model of the responses of diameter data, 

fit to the data matrix of blood pressure collected from the clinical database.  

For the first study, a simple linear model is generated from the clinical data 

reported by Stefanadis et. al for both systolic and diastolic blood pressure (Stefanadis 

et al. 1995). In the second validation paper by Länne et. al, the linear model will take 

in average aorta blood pressure and then be used to predict the systolic and diastolic 

diameters respectively, as the reference study did not separate the mean pressures 

observed in the age groups by systolic and diastolic pressure but rather as just blood 

pressure in general (Länne et al. 1992).  
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2.5 Statistical Analysis Between Clinical Data and Predicted 

Data 

Results are collected to compare the validation study diameters against the 

predicted neural network diameters to determine if the neural network performs well 

at predicting the systolic and diastolic arterial diameters or not. This was performed 

by using built in MATLAB functions to perform correlation analysis, normality tests, 

Kruskal-Wallis ANOVA analysis as well as excel to perform Bland-Altman analysis 

of the data.  

The correlation analysis was performed using the MATLAB function “corr” 

with the spearman correlation specified as the cardiovascular system is non-linear. 

Correlation analysis was conducted to determine if the neural network predicted 

aortic diameters that were strongly related to the reference validation aortic diameters 

observed.  

To determine which type of ANOVA test could be performed on the 

predicted systolic and diastolic diameter model data, normality plots were to be 

constructed and analyzed again. If the population is normally distributed, then the 

one-way ANOVA test is utilized, if the population is non-normally distributed then 

the Kruskal-Wallis test is necessary. The one-way ANOVA is performed using the 

MATLAB function “anova1” and the Kruskal-Wallis ANOVA is performed using 

the MATLAB function “kruskalwallis”. The p-value of the ANOVA would allow 



 
 

31 

 

for one to determine if the null hypothesis should be rejected or not as it will show 

the probability of getting a result as extreme as the one observed in the plot (Hecke 

2011).  

The normality tests were performed using the MATLAB function “histfit” 

with the normal distribution. This allowed for the normal density function to be fitted 

to the data to see if the data collected was from a normal or non-normal population 

based on the presence of a bell curve or skewed curve being observed in the 

histogram.  

The Bland Altman Analysis was used to show the agreement between the 

reference validation aortic diameters and the neural network predicted aortic 

diameters. Bland Altman Analysis plots are the simplest way to evaluate bias in the 

mean differences as well as estimate the 95 percent agreement interval between two 

quantitative methods of measurement (Giavarina 2015). The actual Bland Altman 

Analysis plot will depict the difference between the paired measurements on the y-

axis and the average of the two measurements on the x-axis. Giavarina explains that 

a Bland Altman Analysis plot should contain at least 95 percent of the data points 

within ±2 standard deviations. 
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Chapter 3  
Results and Discussion  

 

3.1 Neural Network Reference Data Results 

 

Figure 9: Stem plot of the neural network predicted systolic aortic diameter for each 

reference data set 
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Figure 10: Stem plot of the neural network predicted diastolic aortic diameter for 

each reference data set 

Figure 9 andFigure 10 show that the neural network predicted the aorta 

systolic diameters to fall between 17 to 22 cm and the aorta diastolic diameters fall 

between 16 to 20 cm respectively. These values fall within the normal range of aorta 

diameters seen in healthy adults. The mean systolic diameter and pressure predicted 

by the neural network was 19.23 cm at 91.94 mmHg. The mean diastolic diameter 

and pressure predicted by the neural network was at 20.09 cm and 146.31 mmHg. 

 

3.2 First Validation Study Trial 1 Results 

The following results will be based on the findings of the research article, by 

Stefandis et al., “Pressure-Diameter Relation of the Human Aorta”. 
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Predicted Diameter Linear Models based on figure 5 in the Stefanadis et. al 

paper of the A, B, C graphs of pressure versus aortic diameter at different regression 

values for the systolic and diastolic diameters, respectively. The graphs are of the 

diameter and pressure values observed in a subject at 09:15 for Graph A, 09:45 for 

Graph B, and 10:15 for Graph C. Each Graph has the correlation values for the 

systolic and diastolic diameters given above the graphs as well.   

The linear models were found using the MATLAB function “fitlm”.  

 Systolic Model A: y = 2.0201e-05x + 0.017977 (17) 

 Diastolic Model A: y = 5.1121e-05x + 0.014568 (18) 

For graph A, at regression values of 0.94 and 0.95, the systolic linear model 

created is seen by equation 17 and the diastolic linear model created is seen by 

equation 18. The systolic model has a mean squared error (MSE) of 1.0650e-08 and 

a R2 value of 0.8882. The diastolic model for graph A had an MSE of 2.2196e-08 

and R2 value 0.9052.  

 Systolic Model B: y = 2.0772e-05x + 0.01785 (19) 

 Diastolic Model B: y = 5.3986e-05x + 0.014268 (20) 

For graph B, at regression values of 0.94 and 0.93, the systolic linear model 

created is seen by equation 19 and the diastolic linear model created is seen by 
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equation 20  .The systolic model yielded a MSE of 1.2096e-08 and R2 value of .8909. 

The diastolic model for graph B yielded a MSE of 3.794e-08 and R2 value of .08722.  

 Systolic Model C: y = 1.8552e-05x + 0.018205 (21) 

 Diastolic Model C: y = 4.7161e-05x + 0.014877 (22) 

For graph C, at regression values of 0.95 and 0.94, the systolic linear model 

created is seen by equation 21 and the diastolic linear model created is seen by 

equation 22. The systolic model gave a MSE of 8.457e-09 and R2 value of .9089. 

They diastolic model gave a MSE of 3.0350e-08 and R2 value of 0.8602. These 

results show that the linear models created had very little error and strong correlation 

of the data.   

 

Figure 11: Stem plot of reference systolic diameter predictions based on linear model 

A 
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Figure 12: Stem plot of reference diastolic diameter predictions based on linear model 

A 

 

Figure 13: Stem plot of reference systolic diameter predictions based on linear model 

B 
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Figure 14: Stem plot of reference diastolic diameter predictions based on linear model 

B 

 

Figure 15: Stem plot of reference systolic diameter predictions based on linear model 

C 
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Figure 16: Stem plot of reference diastolic diameter predictions based on linear model 

C 

As seen by Figures Figure 11, Figure 13, and Figure 15 all the systolic 

diameter predictions for the linear models fall between 19 to 21 cm, which is seen in 

the validation data for healthy adult aortic diameter ranges. However, for Figures 

Figure 12, Figure 14, and Figure 16 all the diastolic diameter predictions have a 

larger range as well as a very clear outlier for data set 17. The diastolic values range 

from 16 to 20 cm, except for the one outlier in each model. The outlier is between 12 

to 13 cm, which is clinically abnormal for an adult human aorta. This outlier may be 

that the data came from a younger subject who has a smaller heart than the other 

subjects or the prediction may not work well for that waveform observed.  
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To get a better understanding of how the neural network model predictions 

compared to the validation study scatter plots of the neural network predicted 

diameters versus the validation diameters were plotted to see the correlation.  

 

Figure 17: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A 

 

Figure 18: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A 
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For Model A, the systolic correlation against the predicted diameters was 

0.2169 and the diastolic correlation against the predicted diameters was 0.03545 as 

seen by Figure 17 and Figure 18, respectively. These results show that there is low 

to moderate correlation between the systolic diameters predicted by the neural 

network compared to the validated reference diameters from the Stefanadis et. al 

study but there is very poor correlation between the diastolic diameter predictions. 

This shows that the neural network is a poor predictor of diastolic aortic diameter but 

could potentially be used for systolic aortic diameter predictions once further testing 

is conducted. 

 

Figure 19: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B 
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Figure 20: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B 

 

Figure 21: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph C 
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Figure 22: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B 

For Model B and C, the systolic correlation against the predicted diameters 

were also 0.2169 and the diastolic correlation against the predicted diameters were 

0.03545, which was the same as seen in Model A as seen by Figure 19, Figure 

20,Figure 21, and Figure 22. These results also show that there is moderate 

correlation between the systolic diameters predicted by the neural network compared 

to the validated reference diameters from the Stefanadis et. al study but there is very 

poor correlation between the diastolic diameter predictions. These exact same values 

for correlation can be explained by the fact that the graphs referenced have very little 

difference between the values observed and the validation study was only conducted 

on one human subject, thus one would not expect there to be any change in the 

diameters observed in one subject in small time variances of 30 minutes. 
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Next, the spearman correlation function was performed on the 6 linear models 

(A, B, C) that have a systolic and diastolic model as discussed above. The spearman 

correlations were found to be the same for all the systolic models as well as the same 

for all the diastolic models as well. The MATLAB function “corr” was utilized to 

give the correlation between the reference predictions from the linear models and the 

neural network predicted diameters. For the systolic models, the spearman 

correlation was -0.5664 and the diastolic models had a spearman correlation of 

0.1932. This shows that the neural network and reference data have a moderate 

negative correlation for systolic predictions but a low positive correlation for the 

diastolic predictions. These results help solidify the results from before that the 

neural network may be able to predict systolic aorta diameter after more validation 

studies are performed on a larger database.  

 

Figure 23: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph A 
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Figure 24: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph B 

 

Figure 25: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph C 

Figure 23, Figure 24, and Figure 25 show that the distributions for the systolic 

diameter predictions are skewed right. This means that the distribution ranges are not 



 
 

45 

 

normal, thus the Kruskal-Wallis ANOVA test is the appropriate test to perform on 

the systolic predicted data.  

 

Figure 26: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph A 

 

Figure 27: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph B 
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Figure 28: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph C 

Figure 26, Figure 27, and Figure 28 show that the distributions for the 

diastolic diameter predictions are skewed left. This also means that the distribution 

ranges are not normal, thus the Kruskal-Wallis ANOVA test is the appropriate test 

to perform on the diastolic predicted data as well. 
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Figure 29: Graph of Kruskal-Wallis ANOVA test for reference systolic aorta 

diameters 

 

Figure 30: Kruskal-Wallis ANOVA test for reference systolic aorta diameters table 

data 

Figure 29 shows that there are 2 finite outliers observed from the reference 

systolic diameter models. Figure 30 shows that the p value for the systolic models is 

0.1542. This means that the null hypothesis is not rejected at a 10% significance 

level, meaning that there is strong evidence to show that the results are not random 

and there is not a statistically significant difference. This means that the data comes 

from different populations with the same distribution of aorta systolic diameters. 
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Since the p value is larger than the significance level tested at these outliers would 

not impact the conclusions drawn for this data. 

 

Figure 31: Graph of Kruskal-Wallis ANOVA test for reference diastolic aorta 

diameters 

 

Figure 32: Kruskal-Wallis ANOVA test for reference diastolic aorta diameters table 

data 

Figure 31 shows that there are 3 finite outliers observed from the reference 

diastolic diameter models as well. This makes sense as 2 outliers were observed from 

the systolic models as well and it was already observed that there was a major outlier 
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seen between 12 and 13 cm so it makes sense that there would be an extra outlier 

with the diastolic diameters. Figure 32 shows that the p value for the systolic models 

is 0.5461. This means that the null hypothesis is not rejected at a 10% significance 

level, meaning that there is strong evidence to show that the results are not random 

and come from different populations with the same distribution of aorta diastolic 

diameters. Since the p value is larger than the significance level tested at these 

outliers would not impact the conclusions drawn for this data. 

 

Figure 33: Bland Altman analysis of the predicted systolic diameter data 
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Figure 34: Bland Altman analysis of the predicted diastolic diameter data 

    These Bland Altman graphs show that only 3 data points fall outside of the 95% 

limits of agreement in both the systolic or diastolic plots as seen by Figure 33 and 

Figure 34 respectively. Both figures show a large linear spread, which allows one to 

conclude that there is no clear bias seen in the data. These graphs also show that there 

is strong agreement in both plots as 97.3% of the data are contained in the limits of 

agreement. This allows one to conclude that there is a both a clear relationship as 

well as no bias between the predicted and reference diameter data collected for both 

systolic and diastolic diameter data. 
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3.3 First Validation Study Trial 2 Results 

Using the same figure 5 in the Stefanadis et. al paper, the clear outlier in data 

set 17 was removed to determine if the correlations for the diastolic diameters would 

improve. 

The linear models were again found using the MATLAB function “fitlm”.  

 Systolic Model A: y = 2.0201e-05x + 0.00017402 (23) 

 Diastolic Model A: y = 5.1121e-05x + 0.014568 (24) 

For graph A at regression values of 0.94 and 0.95, the systolic linear model 

created is seen by equation 23 and the diastolic linear model created is seen by 

equation 24. The systolic model has a MSE of 1.0650e-08 and a R value of 0.8882. 

The diastolic model for graph A had an MSE of 2.2196e-08 and a R2 value of 0.9052.  

 Systolic Model B: y = 2.0772e-05x + 0.01785 (25) 

 Diastolic Model B: y = 5.3986e-05x + 0.014268 (26) 

For graph B at regression values of 0.94 and 0.93, the systolic linear model 

created is seen by equation 25 and the diastolic linear model created is seen by 

equation 26. the systolic model yielded a MSE of 1.2096e-08 and R2 value 0.8909. 

The diastolic model for graph B yielded a MSE of 3.3795e-08 and R2 value of 

.08722.  
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 Systolic Model C: y = 1.8552e-05 + 0.018205 (27) 

 Diastolic Model C: y = 4.7161e-05x + 0.014877 (28) 

For graph C, at regression values of 0.95 and 0.94, the systolic linear model 

created is seen by equation 27 and the diastolic linear model created is seen by 

equation 28. The systolic model gave a MSE of 8.4567e-09 and R2 value of .9089. 

They diastolic model gave a MSE of 3.0350e-08 and R2 value of 0.8602. These 

results show that the linear models created had very little error and strong correlation 

of the data. 

 

Figure 35: Stem plot of reference systolic diameter predictions based off the linear 

model A in the first validation study with the outlier removed 
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Figure 36: Stem plot of reference diastolic diameter predictions based off the linear 

model A in the first validation study with the outlier removed 

 

Figure 37: Stem plot of reference systolic diameter predictions based off the linear 

model B in the first validation study with the outlier removed 
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Figure 38: Stem plot of reference diastolic diameter predictions based off the linear 

model B in the first validation study with the outlier removed 

 

Figure 39: Stem plot of reference systolic diameter predictions based off the linear 

model C in the first validation study with the outlier removed 
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Figure 40: Stem plot of reference diastolic diameter predictions based off the linear 

model C in the first validation study with the outlier removed 

As seen by Figure 35, Figure 37, and Figure 39 all the systolic diameter 

predictions for the linear models fall between 19 to 21 cm, which again is seen in the 

validation data for healthy adult aortic diameter ranges. Now for Figure 36, Figure 

38, and Figure 40 all the diastolic diameter predictions have a larger range from 16 

to 20 cm and there is no clear outlier being observed from the remaining 36 data sets.  

Now with the outlier removed, scatter plots are utilized to get a better 

understanding of how the neural network model predicts compared to the validation 

study. The scatter plots are of the neural network predicted diameters versus the 

validation diameters were constructed to see the correlation between the systolic and 

diastolic values.  
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Figure 41: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A with outlier removed 

 

Figure 42: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A with outlier removed 
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For Model A, the systolic predicted diameters correlation was found to have 

a R2 value of 0.2076, as seen by Figure 41, which was slightly lower than the previous 

run with the outlier as it yielded a R2 value of 0.2169. The diastolic correlation 

against the predicted diameters was observed to have a R2 value of .01464, as seen 

by Figure 42, which was much lower than previously observed with the outlier as it 

had a R2 value 0.03545. These results show that there is low to moderate correlation 

between the systolic diameters predicted by the neural network compared to the 

validated reference diameters from the Stefanadis et. al study but there is very poor 

correlation between the diastolic diameter predictions. This shows that the neural 

network is a poor predictor of diastolic aortic diameter but could potentially be used 

for systolic aortic diameter predictions once further testing is conducted. 

 

Figure 43: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B with outlier removed 
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Figure 44: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B with outlier removed 

 

Figure 45: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph C with outlier removed 
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Figure 46: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph C with outlier removed 

For Model B and C, the systolic correlation against the predicted diameters 

were also 0.2076 and the diastolic correlation against the predicted diameters were 

0.01464, which was the same as seen in Model A as seen by Figure 43, Figure 44, 

Figure 45 and Figure 46. These results also show that there is now less of a moderate 

correlation between the systolic diameters predicted by the neural network compared 

to the validated reference diameters from the Stefanadis et. al study and there is even 

lower poor correlation between the diastolic diameter predictions. These findings 

were surprising as the hope was that by removing the outlier, that the diastolic 

correlations would have been more positive. These exact same values for correlation 

can again be explained by the fact that the graphs referenced have very little 

difference between the values observed and the validation study was only conducted 



 
 

60 

 

on one human subject, thus one would not expect there to be any change in the 

diameters observed in one subject in small time variances of 30 minutes. 

Next, the spearman correlation function was performed on the 6 linear models 

(A, B, C) as each model has a systolic and diastolic model. The spearman correlations 

were found to be the same for all the systolic models as well as the same for all the 

diastolic models as well. The MATLAB function “corr” was utilized to give the 

correlation between the reference predictions from the linear models and the neural 

network predicted diameters. For the systolic models, the spearman correlation was 

-0.5483, which was again slightly lower than previously observed with the outlier 

included as its spearman correlation was -0.5664. The diastolic models had a 

spearman correlation of 0.1475 which again was lower than previously observed as 

its spearman correlation was 0.1932. This shows that the neural network and 

reference data have a lower moderate negative correlation for systolic predictions but 

an even lower positive correlation for the diastolic predictions. These lower than 

anticipated results show the need to perform further testing of the neural network to 

determine if it may be able to predict systolic aorta diameter after more validation 

studies are performed on a larger database.  
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Figure 47: Graph of Kruskal-Wallis ANOVA test for reference systolic aorta 

diameters with outlier removed 

 

Figure 48: Kruskal-Wallis ANOVA test for reference systolic aorta diameters table 

data with outlier removed 

Figure 47 shows that there are 2 finite outliers observed from the reference 

systolic diameter models. Figure 48 shows that the p value for the systolic models is 

0.1515. This means that the null hypothesis is not rejected at a 10% significance 

level, meaning that there is strong evidence to show that the results are not random 

and there is not a statistically significant difference. This means that the data comes 

from different populations with the same distribution of aorta systolic diameters. To 

compare these results to the previous results that included the outlier, the p value was 
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0.1542 which is slightly higher but does not change the conclusion that these results 

come from different populations with the same distribution of aorta systolic 

diameters. Since the p value is larger than the significance level tested at these 

outliers would not impact the conclusions drawn for this data. 

 

Figure 49: Graph of Kruskal-Wallis ANOVA test for reference diastolic aorta 

diameters with outlier removed 

 

Figure 50: Kruskal-Wallis ANOVA test for reference systolic aorta diameters table 

data with outlier removed 

Figure 49 shows that there are 2 finite outliers observed from the reference 

diastolic diameter models as well now that the outlier was removed. Figure 50 shows 



 
 

63 

 

that the p value for the systolic models is 0.5227. This means that the null hypothesis 

is not rejected at a 10% significance level, meaning that there is strong evidence to 

show that the results are not random and come from different populations with the 

same distribution of aorta diastolic diameters. To compare these results to the 

previous results that included the outlier, the p value was 0.5461 which is again 

slightly higher but does not change the conclusion that these results come from 

different populations with the same distribution of aorta diastolic diameters as well. 

Since the p value is larger than the significance level tested at these outliers would 

not impact the conclusions drawn for this data. 

 

Figure 51: Bland Altman analysis of the predicted systolic diameter data with outlier 

removed 
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Figure 52: Bland Altman analysis of the predicted diastolic diameter data with outlier 

removed 

These Bland Altman graphs again show that only 3 data points fall outside of 

the 95% limits of agreement in both the systolic or diastolic plots as seen by Figure 

33 and Figure 34 as well as Figure 51 and Figure 52, respectively for Stefanadis et. al 

study. Both figures show a large linear spread, which allows one to conclude that 

there is no clear bias seen in the data. These graphs also show that there is strong 

agreement in both plots as 97.3% of the data are contained in the limits of agreement. 

This allows one to conclude that there certainly is both a clear relationship as well as 

no bias between the predicted and reference diameter data collected for both systolic 

and diastolic diameter data. 
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3.4 Second Validation Study Results 

The following results will be based on the findings of the research article, by 

Länne et al., “Diameter and Compliance in the Male Human Abdominal Aorta: 

Influence of Age and Aortic Aneurysm”. As observed during validation testing with 

study 1, the outlier dataset 17 was not used for this validation testing either.  

Predicted Diameter Linear Models were created by using figure 4 in the 

Länne et. al paper using the WebPlotDigitizer to extract arterial pressure and aortic 

diameter measurements for 3 mean age groups: A- 25 years, B- 51 years, C- 70 years. 

One thing to note is that the figure does not allow for diastolic and systolic diameters 

to be seen but rather the mean aortic diameter only. Thus, there will only be 3 linear 

models of general mean diameter seen and not systolic and diastolic diameter.  

The linear models were again found using the MATLAB function “fitlm”.  

 Diameter model A:  y = 2.016e-05x + 0.014935 (29) 

For graph A, mean 25 years, the average diameter linear model created is 

seen by equation 29. The diameter model has a MSE of 4.3450e-08 and a R2 value 

of 0.9430.  

 Diameter Model B: y = 1.066e-05x + 0.016902 (30) 
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For graph B, mean 51 years, the average diameter linear model created is seen 

by equation 30. The diameter model has a MSE of 4.0087e-09 and a R2 value of 

0.9761.  

 Diameter Model C: y = 7.1246e-06x + 0.020309 (31) 

For graph C, mean 70 years, the average diameter linear model created is seen 

by equation 31. The diameter model has a MSE of 4.6900e-09 and a R2 value of 

0.9400. These results also show that there is both minimal error and strong 

correlation of the data.  

 

Figure 53: Stem plot of reference systolic diameter predictions based off the linear 

model A, mean 25 years, in the second validation study 
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Figure 54: Stem plot of reference diastolic diameter predictions based off the linear 

model A, mean 25 years, in the second validation study 

    As seen by Figure 53, the reference systolic diameter predictions based on the 

mean age group of 25 years range from 16 to 18 cm. In Figure 54, the reference 

diastolic diameter predictions that are based on the mean age group of 25 years 

ranges from 16 to 17 cm.  

 

Figure 55: Stem plot of reference systolic diameter predictions based off the linear 

model B, mean 51 years, in the second validation study 
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Figure 56: Stem plot of reference diastolic diameter predictions based off the linear 

model B, mean 51 years, in the second validation study 

As seen by Figure 55, the reference systolic diameter predictions based on 

the mean age group of 51 years range from 17 to 18 cm. In Figure 56, the reference 

diastolic diameter predictions that are based on the mean age group of 51 years 

ranges from 17 to 18 cm. 
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Figure 57: Stem plot of reference systolic diameter predictions based off the linear 

model C, mean 70 years, in the second validation study 

 

Figure 58: Stem plot of reference diastolic diameter predictions based off the linear 

model C, mean 70 years, in the second validation study 

As seen by Figure 57, the reference systolic diameter predictions based on 

the mean age group of 70 years range from 20 to 21 cm. In Figure 58, the reference 
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diastolic diameter predictions that are based on the mean age group of 70 years 

ranges from 20 to 21 cm as well. 

As seen by Figure 53, Figure 55, and Figure 57 the systolic diameter 

predictions for the linear models ranges increase as the mean age increases. This 

physiologically makes sense as humans age their aortic diameters will increase as the 

heart grows as the human grows. The same observation can be made regarding the 

diastolic diameter predictions for the linear models as seen by Figure 54, Figure 56, 

and Figure 58. It can also be noted that the diastolic diameters should be smaller in 

size than the systolic diameters, which is what is observed in all 3 linear model’s data 

as well as in the validation testing performed using study 1.  

Next, to get a better understanding of how the neural network model 

predictions compared to the validation study scatter plots of the neural network 

predicted diameters versus the validation diameters were plotted to see the 

correlation.  
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Figure 59: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A for mean 25 years 

 

Figure 60: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph A for mean 25 years 

For Model A, the systolic correlation against the predicted diameters was 

0.1792 and the diastolic correlation against the predicted diameters was 0.008543 as 
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seen by Figure 59 and Figure 60, respectively. These results show that there is low 

correlation between the systolic diameters predicted by the neural network compared 

to the validated reference diameters from the Stefanadis et. al study but there is 

practically no correlation between the diastolic diameter predictions. This shows that 

the neural network is again a poor predictor of diastolic aortic diameter but could 

potentially be used for systolic aortic diameter predictions once further testing is 

conducted, though the correlation is low.  

 

Figure 61: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B for mean 51 years 
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Figure 62: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph B for mean 51 years 

 

Figure 63: Scatter plot of the systolic diameter predictions from the proposed neural 

network versus the reference diameter from graph C for mean 70 years 
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Figure 64: Scatter plot of the diastolic diameter predictions from the proposed neural 

network versus the reference diameter from graph C for mean 70 years 

For Model B and C, the systolic correlation against the predicted diameters 

were also 0.1792 and the diastolic correlation against the predicted diameters were 

0.008543, which was the same as seen in Model A as seen by Figure 61, Figure 62, 

Figure 63, and Figure 64. These results also show that there is low correlation 

between the systolic diameters predicted by the neural network compared to the 

validated reference diameters from the Länne et. al study but there is very poor to no 

correlation between the diastolic diameter predictions. These exact same values for 

correlation can be explained by the fact that the linear models were created using the 

same MATLAB function and reference database, so the predictions are very similar 

in range and have the same distribution of data just at higher diameter values as the 

mean age group increased.  
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Next, the spearman correlation function was performed on the 6 linear models 

(A, B, C) that have a systolic and diastolic model as discussed above. The spearman 

correlations were found to be the same for all the systolic models as well as the same 

for all the diastolic models as well. The MATLAB function “corr” was utilized to 

give the correlation between the reference predictions from the linear models and the 

neural network predicted diameters. For the systolic models, the spearman 

correlation was -0.4898 and the diastolic models had a spearman correlation of 

0.1156 This shows that the neural network and reference data have a moderate 

negative correlation for systolic predictions but a low positive correlation for the 

diastolic predictions. These results again help solidify the results from study 1 that 

the neural network may be able to predict systolic aorta diameter after more 

validation studies are performed on a larger database.  

 

Figure 65: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph A for mean 25 years 
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Figure 66: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph B for mean 51 years 

 

Figure 67: Normal distribution plot of the systolic diameter predictions from the 

proposed neural network from graph C for mean 70 years 

Figure 65, Figure 66, and Figure 67 show that the distributions for the systolic 

diameter predictions are skewed right. This means that the distribution ranges are not 

normal, thus the Kruskal-Wallis ANOVA test is the appropriate test to perform on 

the systolic predicted data.  
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Figure 68: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph A for mean 25 years 

 

Figure 69: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph B for mean 51 years 
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Figure 70: Normal distribution plot of the diastolic diameter predictions from the 

proposed neural network from graph C for mean 70 years 

Figures Figure 68, Figure 69, and Figure 70 show that the distributions for the 

diastolic diameter predictions are skewed left. This also means that the distribution 

ranges are not normal, thus the Kruskal-Wallis ANOVA test is the appropriate test 

to perform on the diastolic predicted data as well. 
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Figure 71: Graph of Kruskal-Wallis ANOVA test for reference systolic aorta 

diameters 

 

Figure 72: Kruskal-Wallis ANOVA test for reference systolic aorta diameters table 

data 

Figure 71 shows that there are 2 finite outliers observed from the reference 

systolic diameter models and they were very close in range, so they appear on top of 

each other. Figure 72 shows that the p value for the systolic models is 1.63528e-20. 

This means that the null hypothesis is rejected at a 1% significance level, meaning 
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that there is strong evidence to show that the results come from different populations 

with the different distribution of aorta diastolic diameters. This makes sense as the 

aortic diameter sizes largely vary between mean age groups with 25 years having the 

smallest aortic diameter sizes and 70 years having the largest aortic diameter sizes. 

Since the p value is much smaller than the significance level tested at these outliers 

would not impact the conclusions drawn for this data as there would still be a clear 

difference between the population diameters at different ages. 

 

Figure 73: Graph of Kruskal-Wallis ANOVA test for reference diastolic aorta 

diameters 
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Figure 74: Kruskal-Wallis ANOVA test for reference diastolic aorta diameters table 

data 

Figure 73 shows that there are also 2 finite outliers observed from the 

reference diastolic diameter models, but this time one was a lower outlier, and one 

was a higher outlier. Figure 74 shows that the p value for the systolic models is 

2.21367e-21. This again means that the null hypothesis is rejected at a 1% 

significance level, meaning that there is strong evidence to show that the results come 

from different populations with the different distribution of aorta diastolic diameters. 

This also makes sense as the aortic diameter sizes largely vary between mean age 

groups with 25 years having the smallest aortic diameter sizes and 70 years having 

the largest aortic diameter sizes. Since the p value is also much smaller than the 

significance level tested at these outliers would not impact the conclusions drawn for 

this data as there would still be a clear difference between the population diameters 

at different ages. 
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Figure 75: Bland Altman analysis of the predicted diameter data for mean 25 years 

 

Figure 76: Bland Altman analysis of the predicted diameter data for mean 51 years 
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Figure 77: Bland Altman analysis of the predicted diameter data for mean 70 years 

Figure 75 and Figure 77 show that only 1 data point falls outside of the 95% 

limits and Figure 76 shows that only 2 data points falls outside of the 95% limits of 

agreement. These plots clearly show that over 95% of the data is encompassed in the 

limits of agreement and have a large linear spread, allowing a conclusion that there 

is no clear bias seen in the data for the mean age range of 25, 51, or 70 years. These 

plots also allow one to conclude that there is both a clear relationship as well as no 

bias between the predicted and reference diameter data collected for all mean age 

ranges studied by the Länne et. al study. 
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3.5 Uncertainty Analysis 

One reason as to why the predicted diameter values do not strongly correlate 

with the validation data is that the neural network was created using the open sourced 

HaeMod database to simulate various aortic pressure and flow data. The HaeMod 

database was utilized as it is very difficult to find a large database that collects all the 

reference variables that are needed to evaluate cardiovascular system precisely. The 

HaeMod database, which is free to use, allows for researchers to infer the physiology 

behind the cardiovascular system through analysis of the pulse wave morphology 

simulations. This database allows for researchers to openly research new advances 

in understanding cardiovascular risk without costing them money to perform 

expensive and invasive clinical trials on human subjects. As this is simulated data, 

not clinically collected data, this physiological difference could account for the 

differences in the predicted values versus the reference values observed for aortic 

systolic and diastolic diameters.  

Another reason that the predicted aorta diameter values did not strongly 

correlate with the reference values may be related to the method of obtaining 

reference blood pressure waveforms from previously published clinical journals. The 

waveforms were re-digitized into tabular data of pressure (mmHg) and time (s) using 

the WebPlotDigitizer app. Errors in digitizing could have arisen from both computer 

and human error. The computer takes the background color chosen and attempts to 
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match the waveform using the step with interpolation function there is some room 

for error as the data points are not always placed directly in the center of the 

waveform as one would expect. This is where the human error can form as the 

researcher then has to slowly move through the waveform and either add, delete, or 

move data points to help obtain the proper waveform desired. As the human eye is 

not perfectly precise, this could lead to slightly inaccurate waveform readings to be 

extrapolated, which may contribute to the predictions not correlating strongly with 

the reference data.  

An additional reason for the weaker correlations observed from the neural 

network could be from only using healthy, normotensive humans to use in the clinical 

database that was created. As the healthy, normotensive population is not an accurate 

representation of the entire human race population, this could account for the 

discrepancies between the predicted and reference diameters. The simulated data in 

the neural network was trained using a wide range of pressure and flow models while 

the reference database was constructed using only healthy subjects. This difference 

may have influenced the resulting moderate correlation observed between the 

predictions and reference data as only the control population was validated.  

One reason that the first validation study could have negatively influenced 

the correlation study of the predicted versus reference aortic diameters is that this 

study was published using only one subject. As one subject does not accurately depict 



 
 

86 

 

an entire population, in this case healthy individuals with no cardiovascular diseases, 

the results could be skewed to not correlate with the targeted population we built the 

database around. This could easily be a contributing factor to the less strongly 

associated correlation that was observed between both the systolic and diastolic aorta 

diameter predictions.  

On the other hand, the second validation study found did not present raw 

values but rather the mean pressure and diameter values for men. Clearly, this study 

does not account for female aorta pressure and diameter relationships, which our 

database contains, which can help explain some of the correlation uncertainties 

observed from the neural network. Additionally, only having mean values graphs of 

overall aorta diameters means that the digitization of the observed curves did not 

provide exact measurements for systolic and diastolic pressure and flow in the male 

aorta at different ages, but only the general idea observed for the study. This 

discrepancy can also explain the lower correlation value observed between the 

predicted and reference values for both diastolic and systolic aortic diameters as the 

study did not provide clear data for systolic and diastolic diameters but rather just the 

mean diameter as a whole.  

    To utilize the validation data, a linear model was created to predict the systolic and 

diastolic aortic diameters as it would encompass a large portion of the pressure data 

observed in human blood pressure observations. The human cardiovascular blood 
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pressure is not a linear model, thus this computation method could lead to the 

extremes observed to be ignored in the predictions, thus decreasing the correlation 

observed between the prediction and the reference diameter values for both the 

systolic and diastolic aorta. Though the linear model would allow for most of the 

blood pressure measurements to be utilized in the prediction of systolic and diastolic 

aortic diameters, there may be unintentional bias from the extreme values that would 

be exhibited by the true nonlinear relationship that is observed in the human 

cardiovascular system.  
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Chapter 4  
Conclusions and Future Work  

 

4.1 Conclusion 

As the results for the correlation between the predicted systolic and reference 

systolic values showed moderate correlation, it appears that continuing to build upon 

the research database could prove to be beneficial for the medical world. Since 

research has shown that systolic blood pressure is a better indicator for CVD risk 

than diastolic blood pressure, the results of this validation study gives hope that this 

neural network model may be good for determining if someone is at a higher risk of 

developing a CVD in the upcoming years.  

 With further validation training and testing, that the neural network can be 

useful in a clinical setting to predict systolic aortic diameter size to evaluate the risk 

of developing a CVD. This is demonstrated through the study as the systolic diameter 

correlation gave moderate correlations in regard to the clinical validation data 

published by the Länne and Stefanadis articles. This finding along with the previous 

research could help shift further studies into evaluating the systolic pressure and 

diameters to help determine CVD risk and help doctors prescribe preventative 

treatments before the person develops a life-threatening CVD. As there is still no 

widely accepted non-invasive tool to measure aortic diameter in a clinical setting, 
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there is an urgent need to continue novel methods and research to help physicians 

slow down the global rate of CVD mortality.  

 

4.2 Future Work 

In the future, a larger clinical database that contains age, sex, blood pressure, 

blood flow, as well as aortic systolic and diastolic diameters should be constructed. 

This should be done by collaborating with a clinical laboratory or hospital to create 

a larger database of clinical pressure and flow data to continue to train the neural 

network. This collaboration would be conducted in hopes of obtaining stronger 

correlations between both systolic and diastolic aorta diameter values. The database 

should include subjects that better represent the entire human population of either a 

certain region or of the global population instead of just the control group. This will 

allow for the neural network to be trained using real, clinical data as opposed to the 

simulated pressure and flow data.  
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