
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

6-2004

Quantifying software maintainability on re-engineered translation Quantifying software maintainability on re-engineered translation

of FORTRAN to C++ code of FORTRAN to C++ code

Zane Grey Tomlinson Jr.

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Software Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F665&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=repository.fit.edu%2Fetd%2F665&utm_medium=PDF&utm_campaign=PDFCoverPages

Quantifying Software Maintainability on Re-Engineered Translation of
FORTRAN to C++ Code

by

Zane Grey Tomlinson, Jr.

A thesis
submitted to the

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Software Engineering

Melbourne, Florida
July 2004

 iii

ABSTRACT

TITLE: Quantifying Software Maintainability on Re-Engineered Translation

of FORTRAN to C++ Code

AUTHOR: Zane Grey Tomlinson, Jr.
MAJOR ADVISOR: Rhoda Baggs Koss, Ph.D.

Due to the expanding existence of old software, legacy systems, and
obsolete platforms with many industries, software re-engineering has become a
widespread methodology that assists engineers and software practitioners with
translating inflexible, unsupportable legacy software into maintainable software.
Many companies today are investing in a variety of re-engineering techniques
such as translation of source code to new code structures and target platforms to
ensure future software maintenance can be performed in an efficient and effective
manner. With sound re-engineering principles, the application of these techniques
leverage the knowledge and previous engineering endeavors to mitigate risks and
provide adequate performance to ensure that code attributes retain the
functionality of the legacy systems while improving software quality.

In this thesis, an evaluation will be made: What effect does the re-
engineering legacy system software have on quality characteristics, with respect to
maintainability? The research focuses on determining if a re-engineered
methodology of translating FORTRAN to C++ resulting code using an in-house
developed translator, can truly re-engineer legacy procedural source code into
maintainable object-oriented source code. Based on the metric data and analysis,
key measurement results of the empirical data will interpret the translated code to
ascertain whether it accurately reflects factors that influence software quality and
maintainability. By addressing maintainability and using a set of metrics tailored to
assess the criteria, a determination will be made based on the empirical evidence
to support the alternative hypothesis that the re-engineered translation of
FORTRAN to C++ source code has produced maintainable software. A high-level
set of characteristics evaluated in this research include measures quantifying
class-related software quality attributes of analyzability, changeability, stability and
testability, which include a number of metrics attributes as size, structure,
complexity, cohesion and coupling, with emphasis placed on areas of object-
oriented characteristics.

The results of this thesis indicate that the re-engineered effort to translate

FORTRAN to C++ source code did exhibit maintainable characteristics on the
basis that a majority of the metrics examined correlated with high “Maintainability”
standards. It is therefore recommended that based on this interpretation of data,
opportunities to use the translator in the future for re-engineering efforts should be
retained and implemented.

 iv

Table of Contents

List of Figures .. . vi

List of Tables ... vii

Acknowledgement ... ix

CHAPTER 1 ...1

Introduction ...1
1.1 Overview ...1
1.2 Objective of the Thesis..3
1.3 Breadth of Research and Related Work4
1.4 Purpose...5
1.5 Organization..5

CHAPTER 2 ...7

Approach ...7
2.1 Legacy System Background Data...............................7
2.2 Thesis Research Methodology....................................8
2.3 Research Focus ..10
2.4 Metrics Analysis ..10

CHAPTER 3 ...11

System Description...11
3.1 FORTRAN to C++ Translator Description.................11
3.2 Process Overview ...11

3.2.1 Translator Process ..12
3.2.2 Restructure Algorithm ...12
3.2.3 Slicer Algorithm ...12
3.2.4 Solution Algorithm ...13

CHAPTER 4 ..14

Metrics Identification ...14
4.1 Overview ...14
4.2 Structure..14
4.3 ISO Model 9126 ..15
4.4 Object-Oriented C++ Characteristics16
4.5 Metric Identification ...17

4.5.1 Cyclomatic Complexity..17
4.5.2 Number of Label References18
4.5.3 Number of Exits...19
4.5.4 Number of Goto Statements19
4.5.5 Depth of Inheritance (DIT)...20
4.5.6 Number of Children (NOC)..20
4.5.7 Weighted Methods per Class (WMC)........................21

 v

4.5.8 Response for a Class (RFC)22
4.5.9 Lack of Cohesion in Methods (LCOM)22
4.5.10 Coupling Between Object Classes (CBO)23

CHAPTER 5 ...25

Metric Generation and Data Collection...25
5.1 Cyclomatic Complexity..26
5.2 Number of Label References27
5.3 Number of Exits...28
5.4 Number of Goto Statements29
5.5 Depth of Inheritance (DIT)...30
5.6 Number of Children (NOC)..31
5.7 Weighted Methods per Class (WMC)........................31
5.8 Response for a Class (RFC)32
5.9 Lack of Cohesion in Methods (LCOM)32
5.10 Coupling Between Object Classes (CBO).................33

CHAPTER 6 ...34

Interpretation of Results..34
6.1 Summary of CSCI Metric Data Results34
6.2 Interpretation of the Six CSCI Maintainability

 Characteristics...37
6.2.1 CSCI Maintainability General Results38

6.3 Overall Synthesis of Maintainability of the
 Translated C++ Code39

CHAPTER 7 ...40

Conclusions ..40
7.1 Translator’s Effectiveness with Providing
 Maintainable Object-Oriented Code40
7.2 Future Work ..41

List of References...42

APPENDIX A..45

Metric Measurement Data per CSCI...45
Class Data per CSCI ..48

 vi

List of Figures

Figure 2-1 Analysis and Evaluation Methodology9

Figure 5-1 CSCI Average Complexity Data..26
Figure 5-2 CSCI Number of Label Reference Data................................26
Figure 5-3 Number of Exits Data per CSCI ..27
Figure 5-4 Average Complexity Data per CSCI27
Figure 5-5 Number of Exits Data per CSCI ...28
Figure 5-6 Percent Change in Number of Exits per CSCI28
Figure 5-7 Number of Goto Statement Data per CSCI29
Figure 5-8 Percent Change in Number of Goto Statements per CSCI ..29
Figure 5-9 Depth of Inheritance Data per CSCI #1-330
Figure 5-10 Depth of Inheritance Data per CSCI #4-630
Figure 5-11 Number of Children Data per CSCI31
Figure 5-12 Weighted Methods per Class Data31
Figure 5-13 Response for a Class Data per CSCI32
Figure 5-14 Lack of Cohesion in Methods Data per CSCI32
Figure 5-15 Coupling Between Object Classes Data per CSCI33

 vii

List of Tables

Table 1-1 Problems Associated with the Maintenance of

Legacy Systems..1
Table 1-2 Approaches to Maintaining Legacy Systems (Historically)2
Table 1-3 Classes of Structural Measures ..3
Table 1-4 Software Topics Related to this Research and Thesis5

Table 2-1 Obsolescence Problems Presented by the Cybers8

Table 4-1 ISO 9126 Model Maintainability Sub-Characteristics............16
Table 4-2 Maintainability Measurement Profile17
Table 4-3 Complexity Evaluation Criteria..18
Table 4-4 Label Reference Evaluation Criteria19
Table 4-5 Number of Exits Evaluation Criteria19
Table 4-6 Number of Goto Statements Evaluation Criteria...................20
Table 4-7 Depth of Inheritance Evaluation Criteria20
Table 4-8 Number of Children Evaluation Criteria21
Table 4-9 Weighted Methods per Class Evaluation Criteria21
Table 4-10 Response for a Class Evaluation Criteria22
Table 4-11 Lack of Cohesion Evaluation Criteria....................................23
Table 4-12 Coupling Between Object Classes Evaluation Criteria24

Table 5-1 Legacy Computer Software Configuration Items25

Table 6-1 Quality Assessment Rating Table for CSCI #134
Table 6-2 Quality Assessment Rating Table for CSCI #235
Table 6-3 Quality Assessment Rating Table for CSCI #335
Table 6-4 Quality Assessment Rating Table for CSCI #436
Table 6-5 Quality Assessment Rating Table for CSCI #536
Table 6-6 Quality Assessment Rating Table for CSCI #637
Table 6-7 Metric Descriptive Statistics for each CSCI #1-637
Table 6-8 Overall Synthesis of Maintainability of the Translated

C++ Code..39

Table 7-1 Conclusive Statements For Maintainability of

Translated CSCIs..40

Table A-1 CSCI Average Complexity Data..45
Table A-2 CSCI Number of Label Reference Data................................45
Table A-3 CSCI Number of Exits Data ..45
Table A-4 CSCI Number of Goto Statement Data.................................46
Table A-5 CSCI Depth of Inheritance Data ...46
Table A-6 CSCI Number of Children Data...46
Table A-7 CSCI Weighted Methods per Class Data..............................46

 viii

Table A-8 CSCI Response for a Class Data ...47
Table A-9 CSCI Lack of Cohesion in Methods Data47
Table A-10 CSCI Coupling Between Object Classes Data47
Table A-11 CSCI #1 Class Data..48
Table A-12 CSCI #2 Class Data..48
Table A-13 CSCI #3 Class Data..49
Table A-14 CSCI #4 Class Data..49
Table A-15 CSCI #5 Class Data..49
Table A-16 CSCI #6 Class Data..50
Table A-17 CSCI #1-6 Quality Criteria Rating Composite.......................50

 ix

Acknowledgement

 I extend my sincere gratitude and appreciation to many people who made
this masters thesis possible. Special thanks are due to my Major Advisor, Rhoda
Baggs Koss, Ph.D., whose help, stimulating suggestions and encouragement
helped me during the research and writing of this thesis. I would also like to
acknowledge, with much appreciation, my examining committee, Walter P. Bond,
Ph.D. and Michael D. Shaw, Ph.D. for their valuable suggestions and critique.

 Especially, I would like to give my special thanks to my wife, Tami, whose
support and patient love enabled me to complete this work.

 1

CHAPTER 1

UIntroduction

1.1 Overview

Software engineering and the art of re-engineering legacy systems has
become a significant factor in today’s organizations. With the continual
widespread advances in technology, many companies are having to make crucial
decisions, such as whether to spend money on sustaining older systems by relying
on interim fixes until a feasible time at which to upgrade or replace systems
become an essential business objective. Key motivators include cost, schedule
and performance, with emphasis on overall reliability and functional correctness.
As systems mature, the maintenance of legacy systems provides many notable
problems, over and above regular maintenance, which drives cost higher.
Examples are included below in Table 1-1.

Item # Description
1 Technology obsolescence

2 The systems have often been modified several times by different
programs

3 Lack of supporting documentation. The modifications are often
made over a long period of time, with minimal or no documentation

4 The systems are expensive to maintain and have inherent levels of
higher risk based on increasing failures

5 Loss of expertise with maintaining the system
Table 1-1 Problems Associated with the Maintenance of Legacy Systems

When these problems become ever present and the system becomes too
expensive or too complicated to maintain, renovation of the technology needs to
occur. Various approaches are identified in Table 1-2.

 2

Item # Description

1 Throw out the old system and buy new commercial off-the-shelf
product

2 Design and develop a new system in-house from scratch

3 Perform a make-shift re-engineering effort (combination of legacy
and new code)

4 Use software re-engineering principles to convert old systems to
new versions, which leverage the past knowledge, cost and time

Table 1-2 Approaches to Maintaining Legacy Systems (Historically)

 Of the four approaches listed above, this thesis will focus on the fourth
approach and the use of software re-engineering principles, also referenced by
(Trifu and Dragos) as software renovation, to effectively leverage previous
knowledge, functionality, requirements and technologies. It is hoped this will yield
a software solution that advances both object-oriented software restructuring and
overall maintainability considerations. A key concept with software re-engineering
is the approach provides the basis for changes in software systems without
changing the functionality (Sommerville). This has triggered a plethora of research
with the objective of leveraging the business value of legacy software systems into
supportable environments through re-engineering. There are two essential
advantages to re-engineering compared to developing new software. The
advantages are reduced risk (problems with development, staffing and
specification in new software) and reduced costs (the cost of re-engineering is
often significantly less than the costs of developing new software) (Gyllenspetz
and Tajti; Sommerville).

In this thesis, a business decision will be made to assess the feasibility of
re-engineering existing software code, while maintaining its functionality and
improving its software quality attributes and properties. The focus of this thesis will
be to apply sound software re-engineering principles by investigating and
measuring the maintainability of re-engineered source code translated with a
translation tool. The translator tool under investigation converts source code from
procedural code (FORTRAN) to object-oriented code (C++). The objective of the
research is to assess the re-engineering effort to ensure resolution of the
supportability concerns with an obsolete system, with the intention of making the
source code more understandable and easier to maintain. Key identification of
measurement data (metrics) will provide the basis for assessment and analysis.
Detailed investigation of the re-engineered FORTRAN to C++ code investigation
will determine if the translator is a feasible tool for translating a procedural
language into an object-oriented language by validating whether the software
changes increase maintainability and produce a more understandable and
modular program.

 3

The measurement and evaluation of internal software attributes has played
a major role with the improvement of software quality and overall improvements as
described in the Software Engineering Institute’s Capability Maturity Model (CMM)
(Pritchett). From a measurement perspective, specific software quality attributes
must be defined to quantify and accurately represent meaning to a user. However,
as Pritchett (117) noted, many traditional measures may not be appropriate for
object-oriented software and do not address the structural aspects of code. In
addition, others have annotated this concern about object-oriented metrics, noting
no widespread agreement on which metrics are of value when assessing object-
oriented systems (Fenton).

Therefore, given the lack of suitability of traditional measures for use in
assessing object-oriented software, this thesis will base the metrics generation
data from proposed newer measures identified by Chidamber and Kemerer (4-19)
and validated by Pritchett (121-125), whose results concluded that the following
object-oriented metrics were validated as being predictors of fault-prone classes:
Depth of Inheritance (DIT), Number of Children (NOC), Weighted Methods per
Class (WMC), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM)
and Coupling Between Object Classes (CBO). Significant importance is placed
upon ensuring these metrics provide the substance and granularity to effectively
assess the quality attributes of the code under investigation.

Key use of these metrics will generate an effective measurement of internal
product attributes by measuring the structural properties of the software. Fenton
and Pfleeger (280-319) describe several distinct classes of structural measures,
control-flow, information and data-flow and data structure summarized in Table 1-
3. It is widely believed that well-designed software is characterized by desirable
internal structure attributes and the measurements of these attributes may provide
important indicators of key external attributes, such as maintainability, testability,
re-usability and even reliability (Fenton and Pfleeger).

Item # Description

1 Control Flow – addresses the sequence in which instructions are
executed in a program

2 Data Flow – follows the trail of a data item as it is created or
handled by a program

3 Data Structure – is the organization of the data itself, independent
of the program

Table 1-3 Classes of Structural Measures

1.2 Objective of the Thesis

The primary focus of the thesis investigation, from a software re-
engineering perspective, of whether an in-house FORTRAN to C++ translator is a
feasible tool to utilize during a re-engineering effort. This would require that

 4

obsolete FORTRAN code be re-engineered to object-oriented C++ code to
eliminate supportability and maintainability concerns.

The thesis includes determining the effect of translated code on the quality
(maintainability) of the resulting code. The investigation will focus on an in-depth
evaluation and analysis of the re-engineered source code to determine if it yields
maintainable source code.

Based on this representation, this thesis will evaluate measurement data
and interpret the results to determine if the code accurately reflects factors that
influence the software quality attributes supporting maintainability. The high level
characteristics used are analyzability, changeability, stability and testability. The
measurement objective will provide the data required to ascertain if the re-
engineered code is maintainable based on the resultant data. The null and
alternative hypotheses are listed below.

Null Hypothesis: The re-engineered translation of FORTRAN to C++

source code has produced low software maintainability characteristics and
therefore should not be used to address the supportability issues of the legacy
system until improvements are made in the translator to yield higher software
maintainability results.

Alternative Hypothesis: The re-engineered translation of FORTRAN to

C++ source code has produced high software maintainability characteristics and
therefore is recommended that the translation efforts proceed to mitigate the
supportability problems of the legacy system.

1.3 Breadth of Research and Related Work

A key objective of software engineering is to improve the quality of the
software, while validating from a measurement perspective; specific software
product attributes that meet the customer and user needs. A number of
researchers and practitioners have continued to evolve software engineering,
focusing on guiding re-engineering processes with the main objective of achieving
target quality software attributes and transforming unsupportable code to
maintainable, cost effective code solutions. There continues to be an increase in
industry focusing on new techniques and tools to enhance legacy system’s
software and minimize rework and cost. The related work is referenced
throughout the thesis and spans a variety of topics as shown in Table 1-4.

 5

Description References

Object-Oriented Software
Engineering

Berard; Chidamber, Darcy and Kemerer;
Chidamber and Kemerer; Trifu and
Dragos; Whittaker; Eliens; Fenton and
Pfleeger; Preiss; Pressman; Sommerville;
Whittaker

Software Maintainability Metrics

Daly et al.; Martin; Morris; Pritchett;
Rosenberg; Welker and Oman;
International Standards Organization; De
Marco; Fenton and Pfleeger; Pressman;
Sommerville

Software Migration to Object-
Oriented Software

Patil, et al.; Zou and Kontogiannis

Software Re-Engineering Berg; Gyllenspetz and Tajti; The Au;
Tahvildari and Kontogiannis; Pressman

FORTRAN and C++ Language Cary, et al.; Headington; Preiss;
Sedgewick; Stroustrup

Table 1-4 Software Topics Related to this Research and Thesis

1.4 Purpose

The purpose of this thesis work is to identify, through data analysis, if the
use of an in-house translator tool will be prudent to re-engineer an obsolete
system’s software to new “target” software architecture. The thesis is aimed at
comparing the maintainability of the existing base-lined FORTRAN source code
with the translated source C++ code. An analysis on a number of attributes
software quality metrics (analyzability, changeability, stability and testability) of the
re-engineered translated source code is performed. The outcome of the results
will be used to make a recommendation on whether to proceed with the use of the
translation tool based on the success in producing maintainable source code for
future sustainable activities or pursue other engineering approaches to solve the
supportability problems.

1.5 Organization

This section provides an overview of the content of this thesis.

Chapter two describes the approach used to solve the problem. A brief
history of the project, methodology, research focus and overview of the metrics
software analysis is included.

Chapter three provides a system description of the translation tool, its
functionality, data process flows and conceptual overview. The re-engineered

 6

approach is summarized to depict how the translation tool translates FORTRAN
procedural code to C++ object-oriented code.

Chapter four identifies the metrics identification and generation used for
analysis and provides insight into the validity and scope of each metric specific to
measurable software quality attributes.

Chapter five identifies the metrics generation and the collected data and
analysis with descriptions and details regarding metric and quantitative
assessments.

Chapter six provides the interpretation of results through comparative
analysis of software quality metric maintainability attributes (analyzability,
changeability, stability and testability) of the re-engineered translated source.

Chapter seven includes the conclusions drawn from the present work and
suggestions for future work.

 7

CHAPTER 2

UApproach U

2.1 Legacy System Background Data

Cyber 860 computers were introduced in the mid-1970's. The Air Force
currently operates and maintains the Cyber computer systems network at the
Cape Canaveral Air Force Station. The Data Processing System function consists
of a Cyber 860 mainframe providing the majority of the data processing during pre-
launch; launch countdown and post-launch phases of the Eastern Range
operations. The processed data for the operations on the Eastern Range are sent
to the Range Operations Control Center via a network for utilization by the Range
Safety/Range Control Subsystem (RS/RCS) processors. The Cyber 860
mainframes are water-cooled and are utilized seven days per week on a 24-hour
per day basis. The data processed by the Cyber mainframes are stored on a bank
of 13 Cyber 885-12 disk drives with each drive equipped with two spindles that
turn a disk for data storage.

An outside vendor currently supports the Cyber hardware system. After
fiscal year 2006, support could potentially be impacted by the retirement of some
of the key personnel that currently support the Cyber. The Cyber should be
maintainable for a few years after fiscal year 2006, but the costs could rise
significantly, due to loss of expertise and degradation of the Cyber System and the
facility systems where the system resides.

While the software applications that run on these computers have matured
over the years, the cost to maintain the hardware has been increasing based on
maintenance and repair data. There are several factors complicating maintenance
of the current system, most of which can be attributed to system obsolescence or
quickly approaching obsolescence. An additional impact of continued utilization of
Cyber programs is in Table 2-1.

 8

Item # Description

1 New systems will require programs that translate data products used by
the Cyber programs.

2 The Cybers are difficult to network and require proprietary or special
interfaces for all input/output requirements.

3
The Cyber Networking Operating System (NOS) has been locally
customized for security and other requirements, making an upgrade
extremely risky.

4 The Cyber hardware requires high annual maintenance costs.
Table 2-1 Obsolescence Problems Presented by the Cybers

2.2 Thesis Research Methodology

To meet the objectives in the thesis, a case study is used as the research
technique where key factors are identified that affect the outcome of an activity.
The thesis follows a tailored scientific method to design, collect measurements,
analyze and interpret data. Figure 2-1 depicts the analysis and methodology.

The steps identified are as follows:

• Understand the purpose of the measurement (metric) and ensure the
validation can be performed or the metric has been validated in previous
work.

• Identify the data needed to answer the problem statement, along with the

data collection tools and techniques to be used.

• Identify the metrics and measurements used to correlate benchmarks for
future analysis and interpretation.

• Gather the data on the translated FORTRAN to C++ code based on

maintainability metrics. The translated software will be base-lined to
establish an initial benchmark.

• Identify variables, controls and techniques to analyze the data. Analysis is

performed to evaluate maintainability criteria of the translated C++ source
code.

• Finalize, interpret and present the results. Discovery of results to

determine whether the resulting code from the translator is easily
maintained and can continue to evolve without referring to the original
code.

 9

Figure 2-1 Analysis and Evaluation Methodology

QUALITY
SOFTWARE

ATTRIBUTES
EVALUATION

IS
TRANSLATED C++
SOURCE CODE
MAINTAINABLE ?

ALTERNATIVE
HYPOTHESIS

YESNO

RE-ENGINEERED
SOURCE CODE

MAINTAINABILITY
COMPLEXITY

METRICS

ASSESS
MAINTAINABILITY
FORTRAN CODE

FORTRAN TO C++
TRANSLATOR

METRIC
IDENTIFICATION

METRIC GENERATION
DATA COLLECTION

NULL
HYPOTHESIS

QUALITY
SOFTWARE

ATTRIBUTES

QUALITY
SOFTWARE

ATTRIBUTES
EVALUATION

IS
TRANSLATED C++
SOURCE CODE
MAINTAINABLE ?

ALTERNATIVE
HYPOTHESIS
ALTERNATIVE
HYPOTHESIS

YESNO

RE-ENGINEERED
SOURCE CODE

MAINTAINABILITY
COMPLEXITY

METRICS

MAINTAINABILITY
COMPLEXITY

METRICS

ASSESS
MAINTAINABILITY
FORTRAN CODE

FORTRAN TO C++
TRANSLATOR

FORTRAN TO C++
TRANSLATOR

METRIC
IDENTIFICATION

METRIC
IDENTIFICATION

METRIC GENERATION
DATA COLLECTION

METRIC GENERATION
DATA COLLECTION

NULL
HYPOTHESIS

NULL
HYPOTHESIS

 10

2.3 Research Focus

The focus of this research will be to determine whether re-engineering
software via automatic translation is an effective approach for meeting defined
internal quality attribute standards. The over-riding desired quality objective under
evaluation is software quality as it pertains to maintainability. The framework used
in this thesis for identifying a methodology for assessing various software quality
attributes was tailored from two sources, ISO 9126 model and object-oriented
metrics applications (Pritchett and Chidamber, et al.). Based on this tailored
framework, a Maintainability Measurement Profile Table is presented in Chapter 4
for identifying key software quality attributes and software structural attributes.
This framework will be used during the analysis to help identify if the
maintainability is improved significantly after the re-engineering approach and if it
meets industry standards associated with object-oriented code.

2.4 Metrics Analysis

Metrics analysis will provide a useful mechanism for assessing the
maintainability of the translated code and is the basis for the recommendation on
whether to continue to utilize the translator to re-engineer legacy systems to solve
supportability problems.

The thesis will look at various software metric measurements for specific
properties associated with the translated source code to predict characteristics that
have been measured. One example is the use of quantitative complexity metrics,
which play an important role with evaluating the effectiveness of re-engineering
software systems and the complexity of an entity of a system. To further evaluate
this objective, a suite of traditional and object-oriented metrics will be used to
measure areas regarding the object structure that reflect complexity of classes and
methods and their interactions of class entities. Metrics chosen will support the
facilitation of evaluation and fulfill the resolution of the thesis objective for making
decisions about whether the software re-engineering effort using the translator will
produce maintainable source code. All metrics are listed and further explained in
Chapter 4.

 11

CHAPTER 3

USystem DescriptionU

3.1 FORTRAN to C++ Translator Description

Source code translation is used when conversion is made between
different programming languages (Gyllenspetz et al.). Translators are tools that
convert source code from one programming language to another. If the languages
are at the same level of abstraction the most common is that the new code is less
readable, but if the new language is at a higher level of abstraction and the
conversion is successful, the tool can produce a more understandable and
modular program (Berg).

ITT Corporation Systems Division is currently completing the development
of a FORTRAN to C++ Translator. The translator is a software tool that translates
FORTRAN source code to C++ source code. It is intended for those who wish to
convert their FORTRAN code to C++, to yield reproducible results, which are
repeatable, verifiable and maintainable.

The tool is a unique translator that takes advantage of a C++ object-
oriented environment. Global data blocks are translated into classes and then
individual subroutines are assigned to classes, which minimize the number of
public variables and methods. The translator was designed to produce code that
is optimized for maintainability and compatibility. The power of the translator is in
its ability to restructure, slice and optimize code. During the restructuring, the
translator replaces unstructured FORTRAN with equivalent structured FORTRAN
and eliminates unnecessary Goto statements. The translator also slices
FORTRAN modules into smaller modules to reduce module size and complexity.
The primary function of the translator is to move applications from a FORTRAN to
a maintainable C++ environment by automatic software conversion rather than by
expensive, labor intensive re-engineering or re-writing efforts.

3.2 Process Overview

Based on ITT’s documentation (ITT System Division), the translator
incorporates three key algorithmic components. In the process, each of the global
data blocks is translated into classes, which initially contain only data members.
The restructure and slicer algorithms are designed so that all modules are reduced

 12

to a low complexity before being assigned to classes by the solution algorithm. A
brief description of the translator process and translator algorithms is listed below.

3.2.1 Translator Process

The FORTRAN to C++ translator was developed to reside on a personal
computer running Microsoft Windows and developed using Microsoft Visual C++
version 6.0. A procedural FORTRAN Computer Software Configuration Item
(CSCI) is translated by running the translator on the CSCI. The translator
generates the corresponding C++ source files (cpp and .h) for the CSCI which
contains a complete listing of all classes in alphabetical order with hyperlinks to the
detailed class descriptions showing all member subroutines with their calling
sequences, class data variables, as well as referencing modules and modules
referenced. The class descriptions also contain any original FORTRAN comments
describing the module. The documentation also provides a calling tree.

After a CSCI has been translated, it can then be compiled and linked on
the personal computer. The CSCI is linked with various support libraries that
complement the translator by providing FORTRAN intrinsic functions, input/output
(I/O) functions and Cyber emulation code.

The final step in the translation process involves manual translation of any
formatted I/O statements that were too complex for the translator to interpret.
When the translator encounters a formatted I/O statement that cannot be
translated, it inserts code to generate a message box so that if the translated
program is run, a message box appears indicating that manual translation is
required for a particular section of code. The message box specifies the name of
the module where manual translation is required and displays the original
FORTRAN I/O statement.

3.2.2 Restructure Algorithm

The source code-restructuring algorithm re-writes the non-structured
FORTRAN source code into equivalent structured FORTRAN. The translator
employs restructuring designed specifically to translate Cyber FORTRAN which
employs many extensions to American National Standards Institute (ANSI)
standard FORTRAN and local extensions.

3.2.3 Slicer Algorithm

The slicer algorithm locates statements within modules to be sliced. A
maximum and a minimum complexity threshold constant for a module are used to
control the granularity of module slices. The translator loads the complexity
thresholds from a directive file and uses an algorithm to approximate McCabe’s
complexity algorithm. Any module with a complexity exceeding the maximum
threshold is a candidate for slicing. As modules are sliced, the modules created
from the slices are appended to the array of modules so that the number of
modules grows as modules are sliced. The complexity data presented in this

 13

thesis is averaged over the class and sub-class modules and is applicable not only
to how the translator functions but is also used as a data point for the overall
structure and complexity of the translated code. The values depicted are
averaged values over the entire class structure.

3.2.4 Solution Algorithm

The solution algorithm assigns modules to classes derived from global data
blocks, for example, FORTRAN COMMON blocks. The solution algorithm
recursively calls itself to ensure that all modules called from the module, which are
assignable have been assigned before the module itself is assigned.

 14

CHAPTER 4

UMetrics Identification

4.1 Overview

One of the most important steps in the assessment of software quality is
the collection of data. The data that is collected has to be useful to develop the
findings presented in this thesis. The data collected is based on the legacy
procedural FORTRAN code and the translated C++ code, with emphasis on the
latter. The analysis provided within this thesis is based on an analysis of code
metrics through manual investigation, evaluation and comparison. The
interpretation and comparison of identified data provides key insight into resolving
the objective of this thesis through the effective validation of the results.

As indicated by DeMarco, “you cannot control what you cannot measure”.
Software characteristics continue to be promoted by many practitioners as an
important consideration with classifying how effective attributes of software impact
the desired outcome of the code. As new development and re-engineering
technologies become more abundant, a shift in focus from functional properties to
non-functional properties is taking on an enhanced interest. Specifically, a non-
functional property addresses aspects related to the reliability, compatibility, cost,
ease of use, maintenance, maintainability and so forth. Many models have been
used in the past, similar to Welker and Oman, which emphasize quantifying
software maintainability through prediction variables and maintainability indexes.
Evidence suggests through the breadth of research that meaningful metrics should
be viewed as a “whole” with other metric relationships and dependency of these
relationships based on the scope and depth of the research required.

4.2 Structure

One important focus on the analysis will be to evaluate software structure.
Structure plays an important role on how well a product is maintained and
measures the structure of the software used to implement the algorithm (Fenton et
al.). For example, in this thesis an evaluation of control flow, data flow
(hierarchical) and data structure (modular) will be used to extract measurement
criteria. The data collected will focus on these three aspects of structural
complexity, each playing a crucial role. A brief summary of each is described
below:

 15

• Control flow - addresses the sequence in which the instructions are

executed in program. This aspect of structure reflects the iterative and
looping nature of programs. For example, where lines of code metric
counts an instruction just once, control flow measures more visible the fact
that an instruction may be executed many times as the program is actually
run.

• Data flow - follows the trail of a data item as it is created or handled by a

program. Many times, the transactions applied to data are more complex
than the instructions that implement them. Data-flow measures depict the
behavior of the data as it interacts with the program. As noted by Patil, et
al. minimizing data flow interaction complies with principles of information
hiding and encapsulation by keeping data flows within boundaries (for
example, a class and its associated methods).

• Data structure - is the organization of the data itself, independent of the

program. When data elements are arranged as lists, queues, stacks or
other well-defined structures, the algorithms for creating, modifying or
deleting them are more likely to be well defined. The structure of the data
tells us a great deal about the difficulty involved in writing and maintaining
programs to handle data and with defining test cases for verifying that the
programs are correct.

4.3 ISO 9126 Model

The International Standards Organization published a standard, ISO 9126
Model (International Standards Organization) for measuring software quality that
defines quality as a combination of six characteristics. They are: functionality,
reliability, usability, efficiency, maintainability and portability. To bind the software
characteristic scope of the thesis, the focus will be on the maintainability attribute
that according to Pressman (93) “relates to the ease with which a program can be
corrected if an error is encountered, adapted if its environment changes or
enhanced if the customer desires a change in requirements.” The attribute is
comprised of the sub-characteristics, which are analyzability, changeability,
stability and testability identified in Table 4-1.

 16

Table 4-1 ISO 9126 Model Maintainability Sub-Characteristics

4.4 Object-Oriented C++ Characteristics

In addition to the ISO 9126 model, re-engineering efforts today are
changing the programming paradigm to take advantage of modern software design
principles, particularly Tobject-oriented designT. An important aspect of this thesis
research will also be to consider and evaluate the impact the translation of the
FORTRAN to C++ code has from an object-oriented perspective. The software
are considered to fully evaluate the measurability of the translated code. As noted
in related documentation, Berard emphasized object-oriented technology yields
higher productivity and required fewer engineers to accomplish work as compared
to traditional software structures. Based on this ascertion, this thesis elects to
evaluate the translated code with object-oriented metrics and attributes.

Based on the structural attributes, ISO 9126 Model Maintainability sub-
characteristics and object-oriented characteristics an overall maintainability profile
chart, Table 4-2, identifies a number of Quality Metric Criteria. The data from the
respective Quality Metric Criteria will be compiled quantitatively to derive a
resultant output that can be further decomposed and analyzed to yield results
regarding the maintainability of the translated code. Table 4-2 provides a
summary of the metrics used in this thesis to make a determination if the code is
maintainable. The main objective in selecting the criterion is to ensure a well-
represented number of metrics can be assessed to validate the application of a
maintainability “coding standard”.

ISO 9126 Model

Characteristics Sub-
Characteristics Description

Analyzability

Relates to the effort needed for
diagnosis of deficiencies or causes
of failures or for identification of
parts to be modified.

Changeability
/ Reusability

Relates to the effort needed for
modification, fault removal or
environment change.

Stability
Relates to the attributes of software
that bear on the risk of unexpected
effect of modifications.

Maintainability

Testability
Relates to the attributes that bear
on the effort needed for validating
modified software.

 17

The marked boxes identify the applicability of the metric to the respective
data and quality criteria.

Metric Data Quality Criteria Analyzability Changeability

/ Reusability
Stability Testability

Cyclomatic
Complexity x x

Number of Label
References x x x

Number of Exits x x

Traditional
Metrics Suite

Number of Goto
Statements x x x x

Depth of
Inheritance (DIT) x x x x

Number of
Children (NOC) x x x x

Weighted Methods
per Class (WMC) x x x x

Response for a
Class (RFC) x x x x

Lack of Cohesion
in Methods
(LCOM) per Class

x x x x

Object-
Oriented

Metrics Suite

Coupling
(AVG_CBO)
Between Object
Classes per Class

x x x x

Table 4-2 Maintainability Measurement Profile

4.5 Metric Identification

A brief narrative of each Quality Metric Criteria will be discussed in detail
with specific criteria for defining and explaining the applicability of the metric on the
“Maintainability” of the resultant code. It addition, a brief assertion for the metric
will be provided relating to the measure’s ability to predict future results for
software maintainability, along with quality objective guidelines for each metric
respectively.

4.5.1 Cyclomatic Complexity

McCabe’s Cyclomatic complexity measures the complexity of code by
taking into account the decision structure of the code and application of the
algorithms (for example, code that contains loops, if-then-else conditions and so
on). Complexity measurements are used within this thesis based on McCabe’s
Cyclomatic complexity to evaluate complexity factors of the methods in a class for
the re-engineered translated C++ code. The data collected provides an average of
the overall complexity of the individual methods to fully evaluate the complexity of

 18

the class data. McCabe noted that the program complexity be measured by the
cyclomatic number of the program’s flow graph (Fenton et al., 293-294). For a
program with flow graph ‘F’, the cyclomatic number is calculated as: v(F) = e – n +
2; where F has ‘e’ arcs and ‘n’ modes. The cyclomatic number measures the
number of linearly independent paths through ‘F’. This measure is useful when
counting linear independent paths, but it is not at all clear that it defines a complete
picture of program complexity. Empirical evidence has suggested that this metric
has a strong correlation with the number of faults found during the testing of a
software component. The cyclomatic number is a useful indicator of how difficult a
program or module will be to test and maintain. In this context, McCabe has
suggested that, on the basis of empirical evidence, when v exceeds 10 in any one
module, the modularity may be problematic (Fenton et al. 39). This metric is most
often used to measure both analyzability and testability attributes.

To calculate, the average complexity is equal to the sum of the complexity

methods divided by the total number of application methods.

The descriptive summary above leads to the following assertion:
Maintainability of the software decreases as the complexity increases.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-3.

Threshold Data Rating Criteria
Complexity < = 10 Good
11 < = Complexity < = 14 Moderate
Complexity > = 15 Poor

Table 4-3 Complexity Evaluation Criteria

4.5.2 Number of Label References

The number of label references provides an overall structure metric based
on the modularity of the code. Elimination of label references provides an
opportunity to reduce the level of complexity (analyzability) and enhance the
structure to expedite improved changeability and testability. The Label Reference
metric is used to provide size measurement criteria, emphasizing the percentage
of improvement in each class. Since attributes regarding both simplicity and
improved structure improve maintainability, this metric is used to measure both
analyzability, changeability and testability attributes.

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the number of label references
increase.

 19

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-4.

Threshold Data Rating Criteria
Improvement > = 50% Good
25% < = Improvement < = 49% Moderate
Improvement < = 24% Poor

Table 4-4 Label Reference Evaluation Criteria

4.5.3 Number of Exits

The number of exits is a measure of the number of exit statements in a
class. Exit statements increase the risk of instability because of unwanted effects
on program operation. This metric also provides insight into the testability, since
each exit point should be verified during code testing activities.

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the number of exits increase.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-5.

Threshold Data Rating Criteria
Improvement > = 50% Good
25% < = Improvement < = 49% Moderate
Improvement < = 24% Poor

Table 4-5 Number of Exits Evaluation Criteria

4.5.4 Number of Goto Statements

The FORTRAN programming language provides Goto statements, which
are undesirable, based on standardized concept of control flow. The Goto
elimination can improve program structure by translating implicit control structures
to explicit control structures like loops and function calls. Similar to label
references and number of exit metrics, the Goto metric emphasizes the
effectiveness of the structure of the code yielding insights into analyzability,
changeability and testability.

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the number of Goto statements is
used in the code.

 20

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-6.

Threshold Data Rating Criteria
Improvement > = 50% Good
25% < = Improvement < = 49% Moderate
Improvement < = 24% Poor

Table 4-6 Number of Goto Statements Evaluation Criteria

4.5.5 Depth of Inheritance (DIT)

The Depth of Inheritance measure is defined to be the level of the
class in an inheritance tree, with the root class being zero. The number of
immediate subclasses provide a measure of how many layers of
inheritance make up a given class hierarchy. The deeper a class is in the
hierarchy, the more likely it will become more complex as it inherits more
methods, which in turn could increase risk of unexpected events during
modifications. This measure is important because changes to the parent
class may impact the descendents, increasing the difficulty of testability
and comprehensibility due to deeply nested functions and inheritance
layers. Deep trees indicate greater design complexity, but also promote
reuse based on inheritance methodologies. Depth of Inheritance is
favorable over breadth with respect to reusability and promotes greater
method sharing. Chidamber and Kemerer note that a recommendation of
Depth of Inheritance of five or less is preferable based on the increase in
complexity of deeper hierarchies.

The descriptive summary above leads to the following assertion:
Maintainability of the software decreases as the DIT increases.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-7.

Threshold Data Rating Criteria
Depth of Inheritance < = 6 Good
7 < = Depth of Inheritance < = 10 Moderate
Depth of Inheritance > = 11 Poor

Table 4-7 Depth of Inheritance Evaluation Criteria

4.5.6 Number of Children (NOC)

The Number of Children is the number of immediate subclasses
subordinate to a class in the hierarchy. This measure is important because a large

 21

number of children may indicate a poor design (improper abstraction) or that the
sub-classes are too complex and therefore more fault prone. However, the greater
number of children also facilitates reuse since inheritance is a form of reuse. If a
large Number of Children is present in the class, additional testing of the methods
of the class will be required. Based on Chidamber and Kemerer, a high NOC
indicates high reuse and an indication of fewer faults within the code.

The descriptive summary above leads to the following assertion:
Maintainability of the software decreases as the number of children increase.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-8.

Threshold Data Rating Criteria
Number of Children < = 10 Good
11 < = Number of Children < = 30 Moderate
Number of Children > = 31 Poor

Table 4-8 Number of Children Evaluation Criteria

4.5.7 Weighted Methods per Class (WMC)

The Weighted Methods per Class is a count of the methods implemented
within a class. This metric is a predictor of the maintainability of the class. A large
number of methods provides for a greater potential impact on its derived classes,
which in turn may be more likely to be application specific, limiting reusability. A
high WMC has been found to lead to more faults and a predictor of stability, time
and effort to maintain the class. In addition, Morris suggested a larger number of
methods per object class is likely to complicate testing due to the increased object
size and complexity. Based on Chidamber and Kemerer, a recommendation is to
have an average of 25 methods with an upper threshold of 40 for user intensive
classes.

To calculate:

WMC = Number of Methods in a Class

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the WMC increases.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-9.

Threshold Data Rating Criteria
Weighted Methods per Class < = 40 Good
41 < = Weighted Methods per Class < = 60 Moderate
Weighted Methods per Class > = 61 Poor

Table 4-9 Weighted Methods Per Class Evaluation Criteria

 22

4.5.8 Response for a Class (RFC)

The Response for a Class is the count of the set of all methods that can be
invoked in response to a message to an object of the class or by some method in
the class. A key attribute of this metric is its ability to assess the complexity of a
class through the number of methods and the amount of interaction with other
classes. This metric also provides insight into stability. As noted by Martin, most
cases that exhibit stability have minimal dependence on other classes and any
change has a large impact, which can lead to fewer changes being made by the
programmer. Additionally, a large RFC has been found to indicate more faults and
have increased complexity. In addition, the testing and debugging of the class
becomes complicated given the increased level of understanding on the part of the
tester. To calculate the response for class is equal to the number of methods in
the class plus the number of remote methods directly called by methods of the
class. This measure counts only the first level of calls outside of the class.

Average RFC = number of methods in a class + number of remote
methods directly called divided by the total number of RFC per object class.

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the RFC increases (Chidamber, et
al.).

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-10.

Threshold Data Rating Criteria

Response For a Class <= corresponding range of
classes referenced in the class

Good

Response For a Class < = double the
corresponding range of classes referenced in the
class

Moderate

Response For a Class < = triple the
corresponding number of classes referenced in
the class

Poor

Table 4-10 Response for a Class Evaluation Criteria

4.5.9 Lack of Cohesion in Methods (LCOM)

Class Cohesion is a measure of the lack of dissimilarity of methods in a
class, in essence, that a class performs more than one function. This measure is
important as high cohesion indicates good class subdivision, whereas low
cohesion increases the complexity and increases the likelihood of faults. Lack of
cohesion indicates the classes’ operations do not operate on the attributes and,

 23

therefore, is a poor abstraction/poorly designed class. Thus, the class is more
likely to contain faults as the operations and attributes have little to do with each
other and the implementation of the class may be complex, further impacting
changeability, testability and code stability. High cohesion (low LCOM) is
desirable, because it promotes encapsulation and indicates high coupling between
methods of a class, as seen in well-defined classes. LCOM is counted as the
percentage of methods that do not access a specific attribute of a class averaged
over all attributes.

The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the LCOM increases.

To calculate, LCOM is counted as the percentage of methods that do not
access a specific attribute averaged over all attributes in the class.

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-11.

Threshold Data Rating
Criteria

LCOM < = .5 Good
.51 < = Lack of Cohesion (LCOM) < = .75 Moderate
Lack of Cohesion (LCOM) > = .76 Poor

Table 4-11 Lack of Cohesion Evaluation Criteria

4.5.10 Average Coupling Between Object Classes (CBO)

Average Coupling Between Object Classes is a count of the number of
other classes to which a class is coupled. High CBO is undesirable and
detrimental to modular design. The goal is to minimize inter-object class coupling
to enhance both modularity and encapsulation, thereby reducing complexity, which
is a highly desirable property as noted by Zou. The larger the coupling, the higher
the sensitivity to changes in other parts of the design and therefore maintenance
regarding analyzability and changeability become more difficult. A higher degree
of coupling between objects is likely to complicate application maintenance
because object interconnections are more complex. The higher the degree of
object independence (for example, the more 'uncoupled' objects are from each
other) the more likely it is that objects are suitable for reuse within the same
applications and the code stability improves. Uncoupled objects should be easier
to augment than those with a high degree of 'uses' dependencies, due to the lower
degree of interaction. Testability is likely to degrade with a more highly coupled
system of objects. Object interaction complexity associated with coupling can lead
to increased error generation during development.

 24

 The descriptive summary above leads to the following assertion: The
maintainability of the software decreases as the average CBO increases.

To calculate, the coupling between object classes is equal to the number of
classes to which a class is coupled and equates to the number of public
references divided by the immediate subclasses within the class hierarchy.

Average CBO = number of public methods / number of sub-classes

Thresholds and guideline criteria for the complexity metric evaluation is
shown in Table 4-12.

Threshold Data Rating
Criteria

Average Coupling Between Object Classes < = the
corresponding range of classes referenced in the class

Good

Average Coupling Between Object Classes < = double the
corresponding range of classes referenced in the class

Moderate

Average Coupling Between Object Classes < = triple the
corresponding range of classes referenced in the class

Poor

Table 4-12 Coupling Between Object Classes Evaluation Criteria

 25

CHAPTER 5

UMetric Generation and Data Collection

The data collected is based on the legacy procedural FORTRAN code and
the translated C++ code, as identified in Table 5-1. Data collection of code metrics
will be extracted based on a set of traditional metrics (for example, cyclomatic
complexity, number of levels, number of local variables, direct call functions,
number of exists, number of label references and number of Goto statements) and
object-oriented metrics, with emphasis on object-oriented techniques (for example,
cohesion, coupling and inheritance). The interpretation and comparison of
identified data shown in Chapter 5 will provide key insight into resolving the
objective of this thesis through the effective validation of the results further
discussed in Chapter 6.

CSCIs Legacy FORTRAN SLOC per CSCI
CSCI #1 1,814
CSCI #2 1,441
CSCI #3 2,009
CSCI #4 876
CSCI #5 1,940
CSCI #6 2,758

Table 5-1 Legacy Computer Software Configuration Items Listing

 26

5.1 Cyclomatic Complexity

Average Complexity per CSCI

0
10
20
30
40
50
60
70
80

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration
Items

N
um

er
ic

al
 C

om
pl

ex
ity

Average Complexity
Before Slicing

Average Complexity
After Slicing

Figure 5-1 Average Complexity Data per CSCI

Percentage of Complexity Improvement
per CSCI

CSCI #3

CSCI #4

CSCI #6

CSCI #5

CSCI #2

CSCI #1

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

Computer Software Configuration
Items

Pe
rc

en
ta

ge

Percentage of
Change in
Complexity

Figure 5-2 Percent Improvement of CSCI Complexity

 27

5.2 Number of Label References

Total Number of Label References per CSCI

0
200
400
600
800

1000
1200

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration
Items

N
um

be
r L

ab
el

 R
ef

er
en

ce
s

Number of Original Label
References (FORTRAN)
Number of Original Label
References (Translated C++)

Figure 5-3 Number of Label Reference Data per CSCI

Percentage of Change in Label References

CSCI #3

CSCI #5

CSCI #6

CSCI #4

CSCI #2

CSCI #1

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

Computer Software Configuration Items

Pe
rc

en
ta

ge

Percentage of
Change in Label
References

Figure 5-4 Percent Improvement of CSCI Label References

 28

5.3 Number of Exits

Total Number of Exits per CSCI

0
10
20
30
40
50
60
70
80
90

100

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration Items

N
um

be
r o

f E
xi

ts

Number of Exits
(Fortran)

Number of Exits
Translated C++

Figure 5-5 Number of Exits Data per CSCI

Percent of Change in Number of Exits

CSCI #5
CSCI #6

CSCI #4

CSCI #1

CSCI #2

CSCI #3

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Computer Software Configuration Items

Pe
rc

en
ta

ge

Percent of Change in
Number of Exits

Figure 5-6 Percent Change in Number of Exits per CSCI

 29

5.4 Number of Goto Statements

Total Number of Goto Statements per CSCI

0
100
200
300
400
500
600

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration Items

N
um

be
r o

f G
ot

o
St

at
em

en
ts

Number of Goto
Statements FORTRAN

Number of Goto
Statements Translated
C++

Figure 5-7 Number of Goto Statement Data per CSCI

Percent Change in Number of Goto Statements

CSCI #6

CSCI #5

CSCI #4
CSCI #2

CSCI #1

CSCI #3
-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

Computer Software Configuration Items

Pe
rc

en
t o

f C
ha

ng
e

Percent Change in
Number of Goto
Statements

Figure 5-8 Percent Change in Number of Goto Statements per CSCI

 30

5.5 Depth of Inheritance (DIT)

Number of DIT per CSCI

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8

Depth In Tree (DIT)

N
um

be
r o

f C
la

ss
es

CSCI #1
CSCI #2
CSCI #3

Figure 5-9 Number of Depth of Inheritance Data per CSCI #1-3

0

2

4

6

8

10

N
um

be
r o

f C
la

ss
es

0 1 2 3 4 5 6 7
Depth In Tree (DIT)

Number of DIT per CSCI

CSCI #4
CSCI #5
CSCI #6

Figure 5-10 Number of Depth of Inheritance Data per CSCI #4-6

 31

5.6 Number of Children (NOC)

Total Number of Children (NOC) per CSCI

0
5

10
15
20
25
30

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration Items

N
um

be
r o

f C
hi

ld
re

n
(N

O
C

)

Number of Children
(NOC)

Figure 5-11 Number of Children Data per CSCI

5.7 Weighted Methods per Class (WMC)

Number of Weighted Methods per Class
per CSCI

0
20
40
60
80

CSCI #
1

CSCI #
2

CSCI #
3

CSCI #
4

CSCI #
5

CSCI #
6

Computer Software Configuration Items

N
um

be
r o

f W
M

C

pe
r C

la
ss

Number of
Weighted
Methods per
Class per CSCI

Figure 5-12 CSCI Weighted Methods per Class Data

 32

5.8 Response for a Class (RFC)

Response For a Class per CSCI

0
20
40
60
80

100
120
140

CSCI
#1

CSCI
#2

CSCI
#3

CSCI
#4

CSCI
#5

CSCI
#6

Computer Software Configuration
Items

N
um

be
r o

f C
la

ss
es

 R
ef

er
en

ci
ng

O

th
er

 M
et

ho
ds Number of Classes

Referencing Other
Methods
Average Response for a
Class per CSCI

Figure 5-13 Response for a Class Data per CSCI

5.9 Lack of Cohesion in Methods (LCOM)

Total LCOM per CSCI

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

CSCI #1 CSCI #2 CSCI #3 CSCI #4 CSCI #5 CSCI #6

Computer Software Configuration Items

LC
O

M
 V

al
ue

s

LCOM

Figure 5-14 Lack of Cohesion in Methods Data per CSCI

 33

5.10 Coupling Between Object Classes (CBO)

Coupling Between Objects per CSCI

0
10
20
30
40
50
60
70

CSCI #1 CSCI #2 CSCI #3 CSCI #4 CSCI #5 CSCI #6

Computer Software Configuration Items

N
um

be
r o

f C
la

ss
es

Average Coupling
Between Object
Classes per CSCI

Figure 5-15 Coupling Between Object Classes Data per CSCI

 34

CHAPTER 6

UInterpretation of Results

Interpretation of the results is based on the empirical data necessary to
validate the result of the thesis hypothesis. To quantify the complexity and quality
characteristics, the following tables are derived from each respective CSCI
translated code. The data analysis is based on the selected quality characteristics
criteria and quality objective guidelines, to make recommendations based on the
measured metric characteristic value to assess the maintainability of the translated
source code. The six CSCI data are represented on the next several pages.

6.1 Summary of CSCI Metric Data Results

CSCI #1
Quality Metrics For

Re-engineered Source
Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 6.6 Good

Number of Label References Approx. 50%
Improvement 50% Decrease Good

Number of Exits Approx. 50%
Improvement 51% Increase Poor

Number of Goto Statements Approx. 50%
Improvement 12% Increase Poor

Depth of Inheritance (DIT) Low
 6 Good

Number of Children (NOC) Low
 27 Moderate

Weighted Methods per Class
(WMC) Low 44 Moderate

Response for a Class (RFC) Low 11 Good
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) .48 Good

DATA

Coupling (AVG_CBO)
Between Object Classes per
Class

Low 19 Good

OVERALL QUALITY ASSESSMENT RATING Moderate to Good
Table 6-1 Quality Assessment Rating Table for CSCI #1

 35

CSCI #2 Quality Metrics For
Re-engineered Source Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 12 Moderate

Number of Label References Approx. 50%
Improvement 48% Decrease Moderate

Number of Exits Approx. 50%
Improvement 72% Increase Poor

Number of Goto Statements Approx. 50%
Improvement 42% Decrease Moderate

Depth of Inheritance (DIT) Low
 6 Good

Number of Children (NOC) Low
 2 Good

Weighted Methods per Class
(WMC) Low 31 Good

Response for a Class (RFC) Low 144 Poor
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) .50 Good

DATA

Coupling (AVG_CBO) Between
Object Classes per Class Low 5 Moderate

OVERALL QUALITY ASSESSMENT RATING Moderate to Good
Table 6-2 Quality Assessment Rating Table for CSCI #2

CSCI #3 Quality Metrics For
Re-engineered Source Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 13.2 Moderate

Number of Label References Approx. 50%
Improvement 35% Decrease Moderate

Number of Exits Approx. 50%
Improvement 37% Increase Poor

Number of Goto Statements Approx. 50%
Improvement 30% Increase Poor

Depth of Inheritance (DIT) Low
 5 Good

Number of Children (NOC) Low
 15 Moderate

Weighted Methods per Class
(WMC) Low 39 Good

Response for a Class (RFC) Low 15 Moderate
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) .60 Moderate

 DATA

Coupling (AVG_CBO) Between
Object Classes per Class Low 38 Moderate - Poor

OVERALL QUALITY ASSESSMENT RATING Moderate
Table 6-3 Quality Assessment Rating Table for CSCI #3

 36

CSCI #4 Quality Metrics For
Re-engineered Source Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 7.6 Good

Number of Label References Approx. 50%
Improvement 55% Decrease Good

Number of Exits Approx. 50%
Improvement 22% Increase Poor

Number of Goto Statements Approx. 50%
Improvement 45% Decrease Moderate

Depth of Inheritance (DIT) Low
 3 Good

Number of Children (NOC) Low
 4 Good

Weighted Methods per Class
(WMC) Low 22 Good

Response for a Class (RFC) Low 26 Poor
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) .75 Moderate

 DATA

Coupling (AVG_CBO) Between
Object Classes per Class Low 6 Moderate

OVERALL QUALITY ASSESSMENT RATING Moderate to Good
Table 6-4 Quality Assessment Rating Table for CSCI #4

CSCI #5 Quality Metrics For
Re-engineered Source Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 13 Moderate

Number of Label References Approx. 50%
Improvement 64% Decrease Good

Number of Exits Approx. 50%
Improvement 70% Decrease Good

Number of Goto Statements Approx. 50%
Improvement 49% Decrease Moderate

Depth of Inheritance (DIT) Low
 6 Good

Number of Children (NOC) Low
 3 Good

Weighted Methods per Class
(WMC) Low 36 Good

Response for a Class (RFC) Low 37 Poor
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) 0 Good

 DATA

Coupling (AVG_CBO) Between
Object Classes per Class Low 3 Good

OVERALL QUALITY ASSESSMENT RATING Moderate to Good
Table 6-5 Quality Assessment Rating Table for CSCI #5

 37

CSCI #6 Quality Metrics For
Re-engineered Source Code

Quality
Objectives
Guidelines

Measured
Metric

Characteristic
Average Value

Ratings
- Good
- Fair
- Poor

Cyclomatic Complexity Low 12 Moderate

Number of Label References Approx. 50%
Improvement 73% Decrease Good

Number of Exits Approx. 50%
Improvement 73% Decrease Good

Number of Goto Statements Approx. 50%
Improvement 48% Decrease Moderate

Depth of Inheritance (DIT) Low
 6 Good

Number of Children (NOC) Low
 7 Good

Weighted Methods per Class
(WMC) Low 75 Poor

Response for a Class (RFC) Low 29 Poor
Lack of Cohesion in Methods
(LCOM) per Class

LCOM < 1
(Low Value) .71 Moderate

 DATA

Coupling (AVG_CBO) Between
Object Classes per Class Low 65 Poor

OVERALL QUALITY ASSESSMENT RATING Moderate to Good
Table 6-6 Quality Assessment Rating Table for CSCI #6

6.2 Interpretation of the Six CSCI Maintainability Characteristics

Table 6-7 contains the descriptive statistics for each of the metrics
considered regarding Points of Central Tendency.

Combined CSCI
Measurement

Data
Min Max

Mean

Rating

Complexity 6.6 13.2 10.75 Moderate
Label

References
35% Decrease 74% Decrease 54% Decrease Good

Exits 72% Increase 74% Decrease 6% Increase Poor
Goto

Statements
30% Increase 49% Decrease 25% Decrease Moderate

DIT 0 7 6 Good
NOC 3 27 9.67 Good
WMC 22 75 41.17 Good
RFC 11.1 144 43.8 Poor

LCOM .9916 .9979 .50 Good
CBO 5 65.6 22.82 Moderate

Table 6-7 Metric Descriptive Statistics for CSCI 1-6

 38

Table 6-7 shows a central axis for the mass of data to determine the
midpoints and distribution. The mean point of central tendency will be used to
provide a statistical data point during the overall evaluation rating of each metric.

In addition, an overview of the CSCI software quality metrics and

characteristics is discussed below. This criteria and data results compiled in Table
A-17, in addition to descriptive statistics shown in Table 6-7 yield a rating (Good,
Moderate and Poor) on the maintainability of the translated code, taken as a
whole.

6.2.1 CSCI Maintainability General Results

TThe primary analysis technique used in this thesis is to explore a number of
metric measurements and examine focus areas of software quality and object-
oriented characteristics. The following is an overview of general results for the six
CSCIs under investigation.

First, from a software complexity metric standpoint, the empirical data
suggests that the complexity of the translated code significantly improved. The
decision structure of the code improved which minimized complexity factors and
improved modularity of the code. It appears through the data that complexity
improvement will have a positive effect on improving ease of understandability,
analyzability and testability. Overall, maintainability attributes were significantly
exhibited throughout the translated code.

Second, from a Label Reference, Exit and Goto elimination metric
perspective the results were somewhat mixed. There is a significant improvement
with the elimination of label reference that reduced the complexity of the code and
improved structure. However, the elimination of exits and Goto statements on an
average increased. The higher value of exits was expected since the translator
provided enhanced modularity with the increase of sub-classes, thereby improving
both analyzability and testability. But the lack of decrease in the number of Goto
statements showed that while the translator did minimize this use, considerable
improvement could be made. The large number of Goto statements can cause
instability within the code, impacting overall maintainability. Overall, maintainability
attributes were moderately exhibited throughout the translated code.

Third, the empirical results for both Depth of Inheritance and Number of
Children appear to show values within acceptable limits, providing insight that
these objects can inherit the data and methods and have a potential for code
reuse. The modules appeared to be organized into hierarchies that were sensible
with advancing ease of management of the application codes. Both DIT and NOC
showed a good mix of depth and breadth to leverage both objectives. Overall,
maintainability attributes were exhibited throughout the translated code.

 39

Lastly, the results for WMC, RFC, LCOM and CBO are consistent with
results in software engineering that higher coupling and lower cohesion are
detrimental to maintainability. The data indicates that cohesion was positively
emphasized through input and output flow and modularity, providing effective re-
organization of the source code (for example, splitting methods and functions).
Coupling of the translated code was minimized and provided an assurance that a
minimal number of data dependencies between methods improved structure,
analyzability and testability. Although all four metrics showed signs of object-
oriented influence, the measurements showed moderate object-oriented capability
at best with the best improvement in complexity. Overall, maintainability attributes
were moderately exhibited throughout the translated code.

6.3 Overall Synthesis of Maintainability of the Translated C++

Code

Combined CSCI CRITERON Overall Maintainability Rating
Analyzability Moderate
Changeability Good
Stability Moderate
Testability Moderate
Object-oriented techniques Moderate to Good
Synthesis (Overall) Moderate
Table 6-8 Overall Maintainability Synthesis of the Translated C++ Code

 40

CHAPTER 7

UConclusions

7.1 Translator’s Effectiveness with Providing Maintainable

Object-Oriented Code

This thesis proposed a set of metrics for evaluating the maintainability of a
re-engineered translation of FORTRAN to C++ code. It includes the results based
on empirical data during the review and evaluation of metric measurements
regarding the overall maintainability and software quality attributes. The objective
was stated which lead to the resulting alternative hypothesis on how effective the
re-engineered effort using the translator was with producing maintainable code.

There is sufficient evidence based on the results of Chapter 5 and Chapter

6, Section 6.2.1, to conclude that the metrics used show the translated code is
maintainable. The data exhibited a number of software quality characteristics and
taken in the context of “Maintainability”, showed a moderate to good correlation of
maintainability attributes, resulting in the conclusion that the translated FORTRAN
to C++ code meets the intent of supporting maintainable attributes and is indeed
maintainable, as identified in the Alternative Hypothesis. It is therefore
recommended that the translation efforts proceed to mitigate the supportability
problems of the legacy system.

Improved software maintainability is one of the key aspects of the

FORTRAN to C++ translator tool. Table 7-1 provides conclusive statements that
are forthcoming based on the interpretation of the data.

Item # Description

1 The translator did produce object-oriented source code minimizing
the number of public variables and improved stability.

2
The translator reduced the average module complexity and
improved analyzability and changeability by creating smaller, more
manageable modules.

3
The translator eliminated unnecessary label references and Goto
statements, thus improving code structure, understandability and
testability.

4
FORTRAN comments were maintained in the C++ translated
source code that assures an adequate level of original readability
and analyzability is maintained.

Table 7-1 Conclusive Statements For Maintainability of Translated CSCIs

 41

7.2 Future Work

Future extensions of the work presented in this thesis could focus on two
directions. First, further investigation on the use of “other metrics” to support
future developmental activities of the translator in order to optimize object-oriented
and maintainability attributes. This could extend an improvement in the tailored
model and metrics used within this thesis and yield additional design criteria and
software quality characteristics during the future enhancement of the translator.
Second, additional emphasis on relying on automated tools and techniques for
capturing the data and performing the analysis. Commercial-off-the-shelf toolkits
are available in the marketplace and could save substantial time and effort during
the code analysis and metrics interpretation stages.

 42

List of References

Berard, Edward. “Metrics for Object Oriented Software Engineering.” The Object

Agency, Inc. 6 July 2004.

Berg, Martin. “Reverse Engineering PLEX-C code to SDL 10 code.” Lund
Institute of Technology, 1999.

Cary, J. R., et al. “Comparison of C++ and FORTRAN 90 for Object-Oriented

Scientific Programming.” Computer Physics Communications. Los Alamos
National Laboratory.
<www.amath.washington.edu/~lf/software/compcap_fgoscioop.html>

Chidamber, Shyame R., David P. Darcy, and Chris F. Kemerer. “Managerail Use

of Metrics for Object Oriented Software: An Exploratory Analysis.”
University of Pittsburgh, 1997. 28 June 2004.
<www.pitt.edu/~ckemerer/fridaysp.htm>

Chidamber S., and Chris F. Kemerer. “Chidamber & Kemerer Object Oreineted

Metrics Suite.” 28 June 2004.
 <www.aivosto.com/project/help/pm-oo-ck.html>

Daly, John, et al. “An Empricial Study Evaluating Depth of Inheritance on the

Maintainability of Object-Oriented Software.” Department of Computer
Science. University Of Strathclyde, Scotland.

T T

DeMarco, T. UControlling Software Projects: Management, Measurement
Uand Estimation U. New York: Yourdon Press, 1982.

Eliens A. UPrinciples of Object-Oriented Software Development U. Reading:

Addison Wesley, 1994.

Fenton, Norman E., and Shari Lawrence Pfleeger. USoftware Metrics

UA Rigorous & Practical Approach U. 2 P

nd
P ed. Boston: PWS Publishing

Company, 1997.

Gyllenspetz, J., and Steffan Tajti. “Software Re-engineering From

 43

Function-Oriented to Object-Oriented.” Lund University, 2001.

Headington, M. R., and David D. Riley. UData Abstraction and Structures Using

UC++ U. Sudbury: Jones and Barlett, 1997.

International Standards Organization. Software quality ISO model 9126.

ITT Systems Division. FORTRAN to C++ Translator. Colorado Springs. 2004.

Martin, Robert. “OO Design Quality Metrics – An Analysis of Dependencies.”

Illinois, 1994.

McCabe & Associates. UUsing McCabe Test, Version 7.1U. Columbia:

McCabe and Associates, 2001.

Morris, Kenneth, L., “Discussion on Object Oriented Metrics.” 28 June 2004.
 <irb.cs.uni-magdeburg.de/sw-eng/us/oop/morris/shtml>

Patil, Prashant, et al. “Migration of TProcedural T Systems to Network-Centric
 TPlatforms.T” IBM Canada Ltd.

Preiss, B.R. UData Structures and Algorithms with Object-Oriented Design Patterns

Uin C++. UNew York: John Wiley & Sons, 1999.

Pressman, R. USoftware Engineering, A Practioner’s Approach, 4th edU. New York:

McGraw-Hill, 1997.

Pritchett, IV, William W. ”An Object-Oriented Metrics Suite for Ada 95.” DCS

Corporation, 2001.

Rosenberg, Linda H. “Applying and Interpreting Object Oriented Metrics.” 28

June 2004.
 <satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html>

Sedgewick, R. UAlgorithms in C++ Part 5: Graph Algorithms, 3 UPU

rd
UPU edU.

Boston: Addison-Wesley, 2002.

Smith, Connie U., and Lloyd G. Williams. UPerformance Solutions A

UPractical Guide to Creating Responsive, Scalable Software U.
Boston: Addison-Wesley, 2002.

Sommerville, Ian. USoftware Engineering, 6 UPU

th
UPU ed U. Reading: Addison Wesley, 2001.

Stroustrup, Bjarne. UThe C++ Progamming Language 3 UPU

rd
UPU ed U. Reading: Addison

Wesley, 1997.

 44

Tahvildari, L., and K.Kontogiannis, “A Software Transformation Framework
for Quality-Driven Object-Oriented Re-engineering.” IBM Canada
Ltd. University of Waterloo.

The Au, Minh. “Java2C Translator.” Monash University, October 1999. 16

September 2003.
<www.cssc.monash.edu.au/hons/projects/1999/Minhthe.Au/titlepage.html>

Trifu, Adrian, and Iulian Dragos. “Strategy Based Eliminatin of Design Flaws in

Object-Oriented Systems.” Program Structures, Germany.

Welker, Kurt D. & Oman, Paul W. "Software Maintainability Metrics Models in

Practice." Journal of Defense Software Engineering 8, 11
(November/December 1995): 19-23. 28 October 2003.
<www.stsc.hill.af.mil/crosstalk/1995/11/Maintain.asp>

Whittaker, James A. UIntroduction to Software EngineeringU. Melbourne: SES

Press, 1998.

Zou, Ying, and Kostas Kontogiannis. “A Framework for Migrating Procedural Code

to Object-Oriented Platforms.” University of Waterloo.

 45

APPENDIX A

UMetric Measurement Data per CSCI

Computer Software
Configuration
Items (CSCI)

Average
Complexity per
Module Before

Slicing
(C++ Code)

Complexity per
Module After Slicing

(C++ Code)

Percentage of
Change in
Complexity

CSCI #1 8.5 6.6 22.35%
CSCI #2 19.1 12.1 36.65%
CSCI #3 23.7 13.2 44.30%
CSCI #4 8.7 7.6 12.64%
CSCI #5 41.1 13 68.37%
CSCI #6 69.8 12 82.81%

Table A-1 CSCI Average Complexity Data

Table A-2 CSCI Number of Label Reference Data

Computer Software

Configuration
Items

Number of Exits
FORTRAN Code

Number of Exits
Translated C++

Code

Percentage of
Change in

Number of Exits
CSCI #1 31 47 -51.61%
CSCI #2 18 31 -72.22%
CSCI #3 48 66 -37.50%
CSCI #4 18 22 -22.22%
CSCI #5 40 12 70.00%
CSCI #6 87 23 73.56%

Table A-3 CSCI Number of Exits Data

Computer Software
Configuration

Items

Number of Original
Label References
FORTRAN Code

Number of Label
References after
Translated C++

Code

Percentage of
Change in

Number of Label
References

CSCI #1 75 37 50.67%
CSCI #2 106 55 48.11%
CSCI #3 213 138 35.21%
CSCI #4 148 66 55.41%
CSCI #5 469 168 64.18%
CSCI #6 983 258 73.75%

 46

Computer Software
Configuration

Items

Number of Original
Goto Statements
FORTRAN Code

Number of Goto
Statements after

Transition
Translated C++

Code

Percentage of
Change in

Number of Goto
Statements

CSCI #1 33 37 -12.12%
CSCI #2 219 126 42.47%
CSCI #3 113 147 -30.09%
CSCI #4 124 68 45.16%
CSCI #5 330 169 48.79%
CSCI #6 506 261 48.42%

Table A-4 CSCI Number of Goto Statement Data

CSCIs DIT = 0 DIT = 1 DIT = 2 DIT = 3 DIT = 4 DIT = 5 DIT = 6 DIT = 7

CSCI #1 0 0 1 2 6 0 18 0
CSCI #2 0 0 1 0 1 0 6 0
CSCI #3 0 0 0 0 2 9 4 0
CSCI #4 1 1 0 2 0 0 0 0
CSCI #5 0 0 0 1 0 0 1 1
CSCI #6 0 0 0 0 0 3 3 1
Table A-5 CSCI Depth of Inheritance Data

Computer Software
Configuration Items

Number of Children
(NOC)

(Immediate
Subclasses) per CSCI

CSCI #1 27
CSCI #2 2
CSCI #3 15
CSCI #4 4
CSCI #5 3
CSCI #6 7

Table A-6 CSCI Number of Children Data

Computer Software
Configuration Items

Number of
Weighted Methods per
Class (WMC) per CSCI

CSCI #1 44
CSCI #2 31
CSCI #3 39
CSCI #4 22
CSCI #5 36
CSCI #6 75

Table A-7 CSCI Weighted Methods per Class Data

 47

Computer Software
Configuration Items

Number of Classes
Referencing Other

Methods

Total Number
Response for a
Class per CSCI

Sub-Classes

Average
Response for

Class per CSCI

CSCI #1 12 133 11
CSCI #2 1 144 144
CSCI #3 9 137 15
CSCI #4 3 80 27
CSCI #5 3 110 37
CSCI #6 5 147 29

Table A-8 CSCI Response for a Class Data

Computer Software
Configuration Items LCOM

CSCI #1 .48
CSCI #2 .50
CSCI #3 .60
CSCI #4 .75
CSCI #5 0
CSCI #6 .71

Table A-9 CSCI Lack of Cohesion in Methods Data

Computer Software
Configuration Items

Total Number of Public
References per Object

Classes

Average
Coupling

Between Object
Classes per CSCI

CSCI #1 505 19
CSCI #2 10 5
CSCI #3 574 38
CSCI #4 24 6
CSCI #5 10 3
CSCI #6 459 66

Table A-10 CSCI Coupling Between Object Classes Data

 48

UClass Data per CSCI

CSCI #1 Sum #

Methods
Public
Methods

Private
Methods

Referenced
Calls

Referencing
Calls

Depth
Inheritance

Variables

1 0 0 0 0 0 3 0
2 1 1 0 0 1 6 12
3 0 0 0 0 0 6 0
4 4 2 2 2 3 6 9
5 2 2 0 0 2 6 6
6 1 1 0 2 1 6 18
7 0 0 0 0 0 6 0
8 0 0 0 0 0 6 0
9 0 0 0 0 0 6 0

10 1 1 0 0 1 6 8
11 1 1 0 0 1 3 5
12 0 0 0 0 0 6 0
13 0 0 0 0 0 6 0
14 0 0 0 0 0 6 0
15 1 1 0 1 1 4 8
16 0 0 0 0 0 6 0
17 4 2 2 1 2 4 7
18 0 0 0 0 0 2 0
19 10 5 5 12 10 4 82
20 12 1 11 15 15 6 51
21 0 0 0 0 0 4 0
22 0 0 0 0 0 6 0
23 0 0 0 0 0 6 0
24 4 1 3 9 5 4 77
25 1 1 0 0 1 4 9
26 0 0 0 0 0 6 0
27 2 1 1 2 2 6 12

Total 44 20 24 44 45 140 304
Average 1.63 0.74 0.89 1.63 1.67 5.19 11.26
Table A-11 CSCI #1 Class Data

CSCI #2

Sub-
Classes

Sum
Number of
Methods

Number of
Public

Methods

Number of
Private

Methods

Number of
Referenced

Calls

Number of
Referencing

Calls

Depth of
Inheritance

Number
of

Variables

1 0 0 0 0 0 2 0
2 31 1 30 65 48 4 322

Total 31 1 30 65 48 6 322
Average 10.33 0.33 10.00 21.67 16.00 2.00 107.33
Table A-12 CSCI #2 Class Data

 49

CSCI #3
Sub-

Classes

Sum
Number of
Methods

Number
of Public
Methods

Number
of Private
Methods

Number of
Referenced

Calls

Number of
Referencing

Calls

Depth of
Inheritance

Number of
Variables

1 1 1 0 1 1 4 1
2 2 1 1 2 2 5 3
3 2 2 0 1 2 6 0
4 0 0 0 0 0 5 0
5 3 3 0 2 3 5 17
6 15 1 14 27 17 6 121
7 3 3 0 1 11 5 11
8 0 0 0 0 0 5 0
9 1 1 0 0 1 6 0

10 0 0 0 0 0 6 0
11 1 1 0 0 1 5 30
12 0 0 0 0 0 4 0
13 11 4 7 15 11 5 98
14 0 0 0 0 0 5 0
15 0 0 0 0 0 5 0

Total 39 17 22 49 49 77 281
Average 2.60 1.13 1.47 3.27 3.27 5.13 18.73

Table A-13 CSCI #3 Class Data

CSCI #4
Sub-

Classes

Sum
Number
Methods

per
Class

Number
of Public
Methods

Number
of

Private
Methods

Number of
Referenced

Calls

Number of
Referencing

Calls

Depth of
Inheritance

Number
of

Variables

1 2 1 1 1 2 1 7
2 9 6 3 11 17 3 49
3 11 1 10 17 10 3 63
4 0 0 0 0 0 0

Total 22 8 14 29 29 7 119
Average 5.5 2 3.5 7.25 7.25 1.75 29.75
Table A-14 CSCI #4 Class Data

CSCI #5
Sub-

Classes

Sum
Number
Methods

per
Class

Number
of Public
Methods

Number
of

Private
Methods

Number of
Referenced

Calls

Number of
Referencing

Calls

Depth of
Inheritance

Number
of

Variables

1 3 1 2 2 3 6 37
2 32 1 31 34 34 7 429
3 1 1 0 0 1 3 13

Total 36 3 33 36 38 16 479
Average 12.00 1.00 11.00 12.00 12.67 5.33 159.67
Table A-15 CSCI #5 Class Data

 50

CSCI #6
Sub-

Classes

Sum
Number
Methods

per
Class

Number
of Public
Methods

Number
of

Private
Methods

Number of
Referenced

Calls

Number of
Referencing

Calls

Depth of
Inheritance

Number
of

Variables

1 9 3 6 14 9 6 62
2 11 1 10 13 11 5 42
3 40 6 34 45 49 6 219
4 0 0 0 0 0 5 0
5 4 3 1 2 4 5 2
6 11 7 4 12 13 6 28
7 0 0 0 0 0 7 0
Total 75 20 55 86 86 40 353
Average 10.71 2.86 7.86 12.29 12.29 5.71 50.43
Table A-16 CSCI #6 Class Data

Quality Criteria CC LR Exits Goto DIT NOC WMC RFC LCOM CBO

Analyzability
CSCI #1 Good Poor Mod Good
CSCI #2 Mod Mod Good Poor
CSCI #3 Mod Poor Good Mod
CSCI #4 Good Mod Good Poor
CSCI #5 Mod Mod Good Poor
CSCI #6 Mod Mod Poor Poor
Avg. Overall Rating Mod Mod Good Poor
Changeability
CSCI #1 Good Good Mod Mod Good Good
CSCI #2 Mod Good Good Good Good Mod
CSCI #3 Mod Good Mod Good Mod Mod
CSCI #4 Good Good Good Good Mod Mod
CSCI #5 Good Good Good Good Good Good
CSCI #6 Good Good Good Poor Mod Poor
Avg. Overall Rating Good Good Good Good Good Mod
Stability
CSCI #1 Good Poor Poor
CSCI #2 Mod Poor Mod
CSCI #3 Mod Poor Poor
CSCI #4 Good Poor Mod
CSCI #5 Good Good Mod
CSCI #6 Good Good Mod
Avg. Overall Rating Good Poor Mod
Testability
CSCI #1 Good Poor Poor Good Mod Good
CSCI #2 Mod Poor Mod Good Good Poor
CSCI #3 Mod Poor Poor Good Mod Mod
CSCI #4 Good Poor Mod Good Good Poor
CSCI #5 Mod Good Mod Good Good Poor
CSCI #6 Mod Good Mod Good Good Poor
Avg. Overall Rating Mod Poor Mod Good Good Poor

Table A-17 CSCI #1-6 Criteria Rating Composite

	Quantifying software maintainability on re-engineered translation of FORTRAN to C++ code
	List of Figures
	List of Tables
	CHAPTER 1
	Introduction
	1.1 Overview
	1.2 Objective of the Thesis
	1.3 Breadth of Research and Related Work
	1.4 Purpose
	1.5 Organization

	CHAPTER 2

	Approach
	2.1 Legacy System Background Data
	2.2 Thesis Research Methodology
	2.3 Research Focus
	2.4 Metrics Analysis

	CHAPTER 3
	System Description
	FORTRAN to C++ Translator Description
	Process Overview
	3.2.1 Translator Process
	3.2.2 Restructure Algorithm
	3.2.3 Slicer Algorithm
	3.2.4 Solution Algorithm

	CHAPTER 4
	Metrics Identification
	4.1 Overview
	Structure
	4.3 ISO 9126 Model
	ISO 9126 Model

	4.4 Object-Oriented C++ Characteristics
	Metric Identification
	4.5.1 Cyclomatic Complexity
	4.5.2 Number of Label References
	4.5.3 Number of Exits
	4.5.4 Number of Goto Statements
	4.5.5 Depth of Inheritance (DIT)
	4.5.6 Number of Children (NOC)
	4.5.7 Weighted Methods per Class (WMC)
	4.5.8 Response for a Class (RFC)
	4.5.9 Lack of Cohesion in Methods (LCOM)
	4.5.10 Average Coupling Between Object Classes (CBO)
	The descriptive summary above leads to the following asserti

	CHAPTER 5
	Metric Generation and Data Collection
	Cyclomatic Complexity
	5.2 Number of Label References
	5.3 Number of Exits
	5.4 Number of Goto Statements
	5.5 Depth of Inheritance (DIT)
	5.6 Number of Children (NOC)
	Weighted Methods per Class (WMC)
	Response for a Class (RFC)
	Lack of Cohesion in Methods (LCOM)
	Coupling Between Object Classes (CBO)

	CHAPTER 6
	Interpretation of Results
	6.2 Interpretation of the Six CSCI Maintainability Character
	6.2.1 CSCI Maintainability General Results

	6.3 Overall Synthesis of Maintainability of the Translated C

	CHAPTER 7
	Conclusions
	7.1 Translator’s Effectiveness with Providing Maintainable O
	7.2 Future Work

	List of References
	APPENDIX A

	NOC
	Analyzability
	Avg. Overall Rating
	Stability
	Testability

