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ABSTRACT 
 
 
TITLE: Quantifying Software Maintainability on Re-Engineered Translation 

of FORTRAN to C++ Code 
 
AUTHOR:       Zane Grey Tomlinson, Jr. 
MAJOR ADVISOR: Rhoda Baggs Koss, Ph.D. 
 

Due to the expanding existence of old software, legacy systems, and 
obsolete platforms with many industries, software re-engineering has become a 
widespread methodology that assists engineers and software practitioners with 
translating inflexible, unsupportable legacy software into maintainable software. 
Many companies today are investing in a variety of re-engineering techniques 
such as translation of source code to new code structures and target platforms to 
ensure future software maintenance can be performed in an efficient and effective 
manner.  With sound re-engineering principles, the application of these techniques 
leverage the knowledge and previous engineering endeavors to mitigate risks and 
provide adequate performance to ensure that code attributes retain the 
functionality of the legacy systems while improving software quality. 
 

In this thesis, an evaluation will be made:  What effect does the re-
engineering legacy system software have on quality characteristics, with respect to 
maintainability?  The research focuses on determining if a re-engineered 
methodology of translating FORTRAN to C++ resulting code using an in-house 
developed translator, can truly re-engineer legacy procedural source code into 
maintainable object-oriented source code.  Based on the metric data and analysis, 
key measurement results of the empirical data will interpret the translated code to 
ascertain whether it accurately reflects factors that influence software quality and 
maintainability.  By addressing maintainability and using a set of metrics tailored to 
assess the criteria, a determination will be made based on the empirical evidence 
to support the alternative hypothesis that the re-engineered translation of 
FORTRAN to C++ source code has produced maintainable software.  A high-level 
set of characteristics evaluated in this research include measures quantifying 
class-related software quality attributes of analyzability, changeability, stability and 
testability, which include a number of metrics attributes as size, structure, 
complexity, cohesion and coupling, with emphasis placed on areas of object-
oriented characteristics. 

 
The results of this thesis indicate that the re-engineered effort to translate 

FORTRAN to C++ source code did exhibit maintainable characteristics on the 
basis that a majority of the metrics examined correlated with high “Maintainability” 
standards.  It is therefore recommended that based on this interpretation of data, 
opportunities to use the translator in the future for re-engineering efforts should be 
retained and implemented. 
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CHAPTER 1 
 

 
UIntroduction 
 
1.1 Overview  
 

Software engineering and the art of re-engineering legacy systems has 
become a significant factor in today’s organizations.  With the continual 
widespread advances in technology, many companies are having to make crucial 
decisions, such as whether to spend money on sustaining older systems by relying 
on interim fixes until a feasible time at which to upgrade or replace systems 
become an essential business objective.  Key motivators include cost, schedule 
and performance, with emphasis on overall reliability and functional correctness.  
As systems mature, the maintenance of legacy systems provides many notable 
problems, over and above regular maintenance, which drives cost higher.  
Examples are included below in Table 1-1. 
 

Item # Description 
1 Technology obsolescence 

2 The systems have often been modified several times by different 
programs 

3 Lack of supporting documentation.  The modifications are often 
made over a long period of time, with minimal or no documentation 

4 The systems are expensive to maintain and have inherent levels of 
higher risk based on increasing failures 

5 Loss of expertise with maintaining the system 
Table 1-1 Problems Associated with the Maintenance of Legacy Systems 
 
 

When these problems become ever present and the system becomes too 
expensive or too complicated to maintain, renovation of the technology needs to 
occur.  Various approaches are identified in Table 1-2. 
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Item # Description 

1 Throw out the old system and buy new commercial off-the-shelf 
product 

2 Design and develop a new system in-house from scratch 

3 Perform a make-shift re-engineering effort (combination of legacy 
and new code) 

4 Use software re-engineering principles to convert old systems to 
new versions, which leverage the past knowledge, cost and time 

Table 1-2 Approaches to Maintaining Legacy Systems (Historically) 
 
 
 Of the four approaches listed above, this thesis will focus on the fourth 
approach and the use of software re-engineering principles, also referenced by 
(Trifu and Dragos) as software renovation, to effectively leverage previous 
knowledge, functionality, requirements and technologies.  It is hoped this will yield 
a software solution that advances both object-oriented software restructuring and 
overall maintainability considerations.  A key concept with software re-engineering 
is the approach provides the basis for changes in software systems without 
changing the functionality (Sommerville).  This has triggered a plethora of research 
with the objective of leveraging the business value of legacy software systems into 
supportable environments through re-engineering.  There are two essential 
advantages to re-engineering compared to developing new software.  The 
advantages are reduced risk (problems with development, staffing and 
specification in new software) and reduced costs (the cost of re-engineering is 
often significantly less than the costs of developing new software) (Gyllenspetz 
and Tajti; Sommerville). 
 

In this thesis, a business decision will be made to assess the feasibility of 
re-engineering existing software code, while maintaining its functionality and 
improving its software quality attributes and properties.  The focus of this thesis will 
be to apply sound software re-engineering principles by investigating and 
measuring the maintainability of re-engineered source code translated with a 
translation tool.  The translator tool under investigation converts source code from 
procedural code (FORTRAN) to object-oriented code (C++).  The objective of the 
research is to assess the re-engineering effort to ensure resolution of the 
supportability concerns with an obsolete system, with the intention of making the 
source code more understandable and easier to maintain.  Key identification of 
measurement data (metrics) will provide the basis for assessment and analysis.  
Detailed investigation of the re-engineered FORTRAN to C++ code investigation 
will determine if the translator is a feasible tool for translating a procedural 
language into an object-oriented language by validating whether the software 
changes increase maintainability and produce a more understandable and 
modular program. 
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The measurement and evaluation of internal software attributes has played 
a major role with the improvement of software quality and overall improvements as 
described in the Software Engineering Institute’s Capability Maturity Model (CMM) 
(Pritchett).  From a measurement perspective, specific software quality attributes 
must be defined to quantify and accurately represent meaning to a user.  However, 
as Pritchett (117) noted, many traditional measures may not be appropriate for 
object-oriented software and do not address the structural aspects of code.  In 
addition, others have annotated this concern about object-oriented metrics, noting 
no widespread agreement on which metrics are of value when assessing object-
oriented systems (Fenton). 
 

Therefore, given the lack of suitability of traditional measures for use in 
assessing object-oriented software, this thesis will base the metrics generation 
data from proposed newer measures identified by Chidamber and Kemerer (4-19) 
and validated by Pritchett (121-125), whose results concluded that the following 
object-oriented metrics were validated as being predictors of fault-prone classes:  
Depth of Inheritance (DIT), Number of Children (NOC), Weighted Methods per 
Class (WMC), Response for a Class (RFC), Lack of Cohesion in Methods (LCOM) 
and Coupling Between Object Classes (CBO).  Significant importance is placed 
upon ensuring these metrics provide the substance and granularity to effectively 
assess the quality attributes of the code under investigation. 
 

Key use of these metrics will generate an effective measurement of internal 
product attributes by measuring the structural properties of the software.  Fenton 
and Pfleeger (280-319) describe several distinct classes of structural measures, 
control-flow, information and data-flow and data structure summarized in Table 1-
3.  It is widely believed that well-designed software is characterized by desirable 
internal structure attributes and the measurements of these attributes may provide 
important indicators of key external attributes, such as maintainability, testability, 
re-usability and even reliability (Fenton and Pfleeger). 
 

Item # Description 

1 Control Flow – addresses the sequence in which instructions are 
executed in a program 

2 Data Flow – follows the trail of a data item as it is created or 
handled by a program 

3 Data Structure – is the organization of the data itself, independent 
of the program 

Table 1-3 Classes of Structural Measures 
 
 
1.2 Objective of the Thesis 
 

The primary focus of the thesis investigation, from a software re-
engineering perspective, of whether an in-house FORTRAN to C++ translator is a 
feasible tool to utilize during a re-engineering effort.  This would require that 
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obsolete FORTRAN code be re-engineered to object-oriented C++ code to 
eliminate supportability and maintainability concerns. 
 

The thesis includes determining the effect of translated code on the quality 
(maintainability) of the resulting code.  The investigation will focus on an in-depth 
evaluation and analysis of the re-engineered source code to determine if it yields 
maintainable source code.  
 

Based on this representation, this thesis will evaluate measurement data 
and interpret the results to determine if the code accurately reflects factors that 
influence the software quality attributes supporting maintainability.  The high level 
characteristics used are analyzability, changeability, stability and testability.  The 
measurement objective will provide the data required to ascertain if the re-
engineered code is maintainable based on the resultant data.  The null and 
alternative hypotheses are listed below. 

 
Null Hypothesis:  The re-engineered translation of FORTRAN to C++ 

source code has produced low software maintainability characteristics and 
therefore should not be used to address the supportability issues of the legacy 
system until improvements are made in the translator to yield higher software 
maintainability results. 

 
Alternative Hypothesis:  The re-engineered translation of FORTRAN to 

C++ source code has produced high software maintainability characteristics and 
therefore is recommended that the translation efforts proceed to mitigate the 
supportability problems of the legacy system. 
 
1.3 Breadth of Research and Related Work 
 

A key objective of software engineering is to improve the quality of the 
software, while validating from a measurement perspective; specific software 
product attributes that meet the customer and user needs.  A number of 
researchers and practitioners have continued to evolve software engineering, 
focusing on guiding re-engineering processes with the main objective of achieving 
target quality software attributes and transforming unsupportable code to 
maintainable, cost effective code solutions.  There continues to be an increase in 
industry focusing on new techniques and tools to enhance legacy system’s 
software and minimize rework and cost.  The related work is referenced 
throughout the thesis and spans a variety of topics as shown in Table 1-4. 
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Description References 

Object-Oriented Software 
Engineering 

Berard; Chidamber, Darcy and Kemerer; 
Chidamber and Kemerer; Trifu and 
Dragos; Whittaker; Eliens; Fenton and 
Pfleeger; Preiss; Pressman; Sommerville; 
Whittaker 

Software Maintainability Metrics  

Daly et al.; Martin; Morris; Pritchett; 
Rosenberg; Welker and Oman; 
International Standards Organization; De 
Marco; Fenton and Pfleeger; Pressman; 
Sommerville 

Software Migration to Object-
Oriented Software 

Patil, et al.; Zou and Kontogiannis 

Software Re-Engineering  Berg; Gyllenspetz and Tajti; The Au; 
Tahvildari and Kontogiannis; Pressman 

FORTRAN and C++ Language Cary, et al.; Headington; Preiss; 
Sedgewick; Stroustrup 

Table 1-4 Software Topics Related to this Research and Thesis 
 
 
1.4 Purpose 
 

The purpose of this thesis work is to identify, through data analysis, if the 
use of an in-house translator tool will be prudent to re-engineer an obsolete 
system’s software to new “target” software architecture.  The thesis is aimed at 
comparing the maintainability of the existing base-lined FORTRAN source code 
with the translated source C++ code.  An analysis on a number of attributes 
software quality metrics (analyzability, changeability, stability and testability) of the 
re-engineered translated source code is performed.  The outcome of the results 
will be used to make a recommendation on whether to proceed with the use of the 
translation tool based on the success in producing maintainable source code for 
future sustainable activities or pursue other engineering approaches to solve the 
supportability problems. 
 
1.5 Organization 
 

This section provides an overview of the content of this thesis. 
 

Chapter two describes the approach used to solve the problem.  A brief 
history of the project, methodology, research focus and overview of the metrics 
software analysis is included. 
 

Chapter three provides a system description of the translation tool, its 
functionality, data process flows and conceptual overview.  The re-engineered 
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approach is summarized to depict how the translation tool translates FORTRAN 
procedural code to C++ object-oriented code. 
 

Chapter four identifies the metrics identification and generation used for 
analysis and provides insight into the validity and scope of each metric specific to 
measurable software quality attributes. 
 

Chapter five identifies the metrics generation and the collected data and 
analysis with descriptions and details regarding metric and quantitative 
assessments. 
 

Chapter six provides the interpretation of results through comparative 
analysis of software quality metric maintainability attributes (analyzability, 
changeability, stability and testability) of the re-engineered translated source. 
 

Chapter seven includes the conclusions drawn from the present work and 
suggestions for future work. 
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CHAPTER 2 
 
 
UApproach U 

 
2.1 Legacy System Background Data 
 

Cyber 860 computers were introduced in the mid-1970's. The Air Force 
currently operates and maintains the Cyber computer systems network at the 
Cape Canaveral Air Force Station. The Data Processing System function consists 
of a Cyber 860 mainframe providing the majority of the data processing during pre-
launch; launch countdown and post-launch phases of the Eastern Range 
operations.  The processed data for the operations on the Eastern Range are sent 
to the Range Operations Control Center via a network for utilization by the Range 
Safety/Range Control Subsystem (RS/RCS) processors. The Cyber 860 
mainframes are water-cooled and are utilized seven days per week on a 24-hour 
per day basis. The data processed by the Cyber mainframes are stored on a bank 
of 13 Cyber 885-12 disk drives with each drive equipped with two spindles that 
turn a disk for data storage. 
 

An outside vendor currently supports the Cyber hardware system.  After 
fiscal year 2006, support could potentially be impacted by the retirement of some 
of the key personnel that currently support the Cyber.  The Cyber should be 
maintainable for a few years after fiscal year 2006, but the costs could rise 
significantly, due to loss of expertise and degradation of the Cyber System and the 
facility systems where the system resides. 
 

While the software applications that run on these computers have matured 
over the years, the cost to maintain the hardware has been increasing based on 
maintenance and repair data.  There are several factors complicating maintenance 
of the current system, most of which can be attributed to system obsolescence or 
quickly approaching obsolescence.  An additional impact of continued utilization of 
Cyber programs is in Table 2-1. 
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Item # Description 

1 New systems will require programs that translate data products used by 
the Cyber programs. 

2 The Cybers are difficult to network and require proprietary or special 
interfaces for all input/output requirements. 

3 
The Cyber Networking Operating System (NOS) has been locally 
customized for security and other requirements, making an upgrade 
extremely risky. 

4 The Cyber hardware requires high annual maintenance costs. 
Table 2-1 Obsolescence Problems Presented by the Cybers 
 
 
2.2 Thesis Research Methodology 
 

To meet the objectives in the thesis, a case study is used as the research 
technique where key factors are identified that affect the outcome of an activity.   
The thesis follows a tailored scientific method to design, collect measurements, 
analyze and interpret data.  Figure 2-1 depicts the analysis and methodology. 
 
The steps identified are as follows: 
 

• Understand the purpose of the measurement (metric) and ensure the 
validation can be performed or the metric has been validated in previous 
work. 

 
• Identify the data needed to answer the problem statement, along with the 

data collection tools and techniques to be used. 
 

• Identify the metrics and measurements used to correlate benchmarks for 
future analysis and interpretation. 

 
• Gather the data on the translated FORTRAN to C++ code based on 

maintainability metrics.  The translated software will be base-lined to 
establish an initial benchmark.  

 
• Identify variables, controls and techniques to analyze the data.  Analysis is 

performed to evaluate maintainability criteria of the translated C++ source 
code. 

 
• Finalize, interpret and present the results.  Discovery of results to 

determine whether the resulting code from the translator is easily 
maintained and can continue to evolve without referring to the original 
code. 
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Figure 2-1 Analysis and Evaluation Methodology 
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2.3 Research Focus 
 

The focus of this research will be to determine whether re-engineering 
software via automatic translation is an effective approach for meeting defined 
internal quality attribute standards.  The over-riding desired quality objective under 
evaluation is software quality as it pertains to maintainability.  The framework used 
in this thesis for identifying a methodology for assessing various software quality 
attributes was tailored from two sources, ISO 9126 model and object-oriented 
metrics applications (Pritchett and Chidamber, et al.).  Based on this tailored 
framework, a Maintainability Measurement Profile Table is presented in Chapter 4 
for identifying key software quality attributes and software structural attributes.  
This framework will be used during the analysis to help identify if the 
maintainability is improved significantly after the re-engineering approach and if it 
meets industry standards associated with object-oriented code. 
 
2.4 Metrics Analysis 
 

Metrics analysis will provide a useful mechanism for assessing the 
maintainability of the translated code and is the basis for the recommendation on 
whether to continue to utilize the translator to re-engineer legacy systems to solve 
supportability problems. 
 

The thesis will look at various software metric measurements for specific 
properties associated with the translated source code to predict characteristics that 
have been measured.  One example is the use of quantitative complexity metrics, 
which play an important role with evaluating the effectiveness of re-engineering 
software systems and the complexity of an entity of a system.  To further evaluate 
this objective, a suite of traditional and object-oriented metrics will be used to 
measure areas regarding the object structure that reflect complexity of classes and 
methods and their interactions of class entities.  Metrics chosen will support the 
facilitation of evaluation and fulfill the resolution of the thesis objective for making 
decisions about whether the software re-engineering effort using the translator will 
produce maintainable source code.  All metrics are listed and further explained in 
Chapter 4. 
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CHAPTER 3 
 
 
USystem DescriptionU 

 
3.1 FORTRAN to C++ Translator Description 
 

Source code translation is used when conversion is made between 
different programming languages (Gyllenspetz et al.).  Translators are tools that 
convert source code from one programming language to another.  If the languages 
are at the same level of abstraction the most common is that the new code is less 
readable, but if the new language is at a higher level of abstraction and the 
conversion is successful, the tool can produce a more understandable and 
modular program (Berg). 
 

ITT Corporation Systems Division is currently completing the development 
of a FORTRAN to C++ Translator.  The translator is a software tool that translates 
FORTRAN source code to C++ source code.  It is intended for those who wish to 
convert their FORTRAN code to C++, to yield reproducible results, which are 
repeatable, verifiable and maintainable. 
 

The tool is a unique translator that takes advantage of a C++ object-
oriented environment.  Global data blocks are translated into classes and then 
individual subroutines are assigned to classes, which minimize the number of 
public variables and methods.  The translator was designed to produce code that 
is optimized for maintainability and compatibility.  The power of the translator is in 
its ability to restructure, slice and optimize code.  During the restructuring, the 
translator replaces unstructured FORTRAN with equivalent structured FORTRAN 
and eliminates unnecessary Goto statements.  The translator also slices 
FORTRAN modules into smaller modules to reduce module size and complexity.  
The primary function of the translator is to move applications from a FORTRAN to 
a maintainable C++ environment by automatic software conversion rather than by 
expensive, labor intensive re-engineering or re-writing efforts. 
 
3.2 Process Overview 
 

Based on ITT’s documentation (ITT System Division), the translator 
incorporates three key algorithmic components.  In the process, each of the global 
data blocks is translated into classes, which initially contain only data members.  
The restructure and slicer algorithms are designed so that all modules are reduced 
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to a low complexity before being assigned to classes by the solution algorithm.  A 
brief description of the translator process and translator algorithms is listed below.  

3.2.1 Translator Process 

The FORTRAN to C++ translator was developed to reside on a personal 
computer running Microsoft Windows and developed using Microsoft Visual C++ 
version 6.0.  A procedural FORTRAN Computer Software Configuration Item 
(CSCI) is translated by running the translator on the CSCI.  The translator 
generates the corresponding C++ source files (cpp and .h) for the CSCI which 
contains a complete listing of all classes in alphabetical order with hyperlinks to the 
detailed class descriptions showing all member subroutines with their calling 
sequences, class data variables, as well as referencing modules and modules 
referenced.  The class descriptions also contain any original FORTRAN comments 
describing the module.  The documentation also provides a calling tree. 
 

After a CSCI has been translated, it can then be compiled and linked on 
the personal computer.  The CSCI is linked with various support libraries that 
complement the translator by providing FORTRAN intrinsic functions, input/output 
(I/O) functions and Cyber emulation code. 
 

The final step in the translation process involves manual translation of any 
formatted I/O statements that were too complex for the translator to interpret.  
When the translator encounters a formatted I/O statement that cannot be 
translated, it inserts code to generate a message box so that if the translated 
program is run, a message box appears indicating that manual translation is 
required for a particular section of code.  The message box specifies the name of 
the module where manual translation is required and displays the original 
FORTRAN I/O statement. 

3.2.2 Restructure Algorithm 

The source code-restructuring algorithm re-writes the non-structured 
FORTRAN source code into equivalent structured FORTRAN.   The translator 
employs restructuring designed specifically to translate Cyber FORTRAN which 
employs many extensions to American National Standards Institute (ANSI) 
standard FORTRAN and local extensions. 

3.2.3 Slicer Algorithm  

The slicer algorithm locates statements within modules to be sliced.  A 
maximum and a minimum complexity threshold constant for a module are used to 
control the granularity of module slices.  The translator loads the complexity 
thresholds from a directive file and uses an algorithm to approximate McCabe’s 
complexity algorithm.  Any module with a complexity exceeding the maximum 
threshold is a candidate for slicing.  As modules are sliced, the modules created 
from the slices are appended to the array of modules so that the number of 
modules grows as modules are sliced.  The complexity data presented in this 
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thesis is averaged over the class and sub-class modules and is applicable not only 
to how the translator functions but is also used as a data point for the overall 
structure and complexity of the translated code.  The values depicted are 
averaged values over the entire class structure. 

3.2.4 Solution Algorithm 

The solution algorithm assigns modules to classes derived from global data 
blocks, for example, FORTRAN COMMON blocks.  The solution algorithm 
recursively calls itself to ensure that all modules called from the module, which are 
assignable have been assigned before the module itself is assigned.   
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CHAPTER 4 
 
 
UMetrics Identification 
 
4.1 Overview 
 

One of the most important steps in the assessment of software quality is 
the collection of data.  The data that is collected has to be useful to develop the 
findings presented in this thesis.  The data collected is based on the legacy 
procedural FORTRAN code and the translated C++ code, with emphasis on the 
latter.  The analysis provided within this thesis is based on an analysis of code 
metrics through manual investigation, evaluation and comparison.  The 
interpretation and comparison of identified data provides key insight into resolving 
the objective of this thesis through the effective validation of the results.   
 

As indicated by DeMarco, “you cannot control what you cannot measure”.  
Software characteristics continue to be promoted by many practitioners as an 
important consideration with classifying how effective attributes of software impact 
the desired outcome of the code.  As new development and re-engineering 
technologies become more abundant, a shift in focus from functional properties to 
non-functional properties is taking on an enhanced interest.  Specifically, a non-
functional property addresses aspects related to the reliability, compatibility, cost, 
ease of use, maintenance, maintainability and so forth.  Many models have been 
used in the past, similar to Welker and Oman, which emphasize quantifying 
software maintainability through prediction variables and maintainability indexes.  
Evidence suggests through the breadth of research that meaningful metrics should 
be viewed as a “whole” with other metric relationships and dependency of these 
relationships based on the scope and depth of the research required.   
 
4.2 Structure 
 

One important focus on the analysis will be to evaluate software structure.  
Structure plays an important role on how well a product is maintained and 
measures the structure of the software used to implement the algorithm (Fenton et 
al.).  For example, in this thesis an evaluation of control flow, data flow 
(hierarchical) and data structure (modular) will be used to extract measurement 
criteria.  The data collected will focus on these three aspects of structural 
complexity, each playing a crucial role.  A brief summary of each is described 
below: 
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• Control flow - addresses the sequence in which the instructions are 

executed in program.  This aspect of structure reflects the iterative and 
looping nature of programs.  For example, where lines of code metric 
counts an instruction just once, control flow measures more visible the fact 
that an instruction may be executed many times as the program is actually 
run. 

 
• Data flow - follows the trail of a data item as it is created or handled by a 

program.  Many times, the transactions applied to data are more complex 
than the instructions that implement them.  Data-flow measures depict the 
behavior of the data as it interacts with the program.  As noted by Patil, et 
al. minimizing data flow interaction complies with principles of information 
hiding and encapsulation by keeping data flows within boundaries (for 
example, a class and its associated methods). 

 
• Data structure - is the organization of the data itself, independent of the 

program.  When data elements are arranged as lists, queues, stacks or 
other well-defined structures, the algorithms for creating, modifying or 
deleting them are more likely to be well defined.  The structure of the data 
tells us a great deal about the difficulty involved in writing and maintaining 
programs to handle data and with defining test cases for verifying that the 
programs are correct. 

 
4.3 ISO 9126 Model 
 

The International Standards Organization published a standard, ISO 9126 
Model (International Standards Organization) for measuring software quality that 
defines quality as a combination of six characteristics.  They are:  functionality, 
reliability, usability, efficiency, maintainability and portability.  To bind the software 
characteristic scope of the thesis, the focus will be on the maintainability attribute 
that according to Pressman (93) “relates to the ease with which a program can be 
corrected if an error is encountered, adapted if its environment changes or 
enhanced if the customer desires a change in requirements.”  The attribute is 
comprised of the sub-characteristics, which are analyzability, changeability, 
stability and testability identified in Table 4-1. 
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Table 4-1  ISO 9126 Model Maintainability Sub-Characteristics 
 
 
4.4 Object-Oriented C++ Characteristics 
 

In addition to the ISO 9126 model, re-engineering efforts today are 
changing the programming paradigm to take advantage of modern software design 
principles, particularly Tobject-oriented designT.  An important aspect of this thesis 
research will also be to consider and evaluate the impact the translation of the 
FORTRAN to C++ code has from an object-oriented perspective.  The software 
are considered to fully evaluate the measurability of the translated code.  As noted 
in related documentation, Berard emphasized object-oriented technology yields 
higher productivity and required fewer engineers to accomplish work as compared 
to traditional software structures.  Based on this ascertion, this thesis elects to 
evaluate the translated code with object-oriented metrics and attributes. 
 

Based on the structural attributes, ISO 9126 Model Maintainability sub-
characteristics and object-oriented characteristics an overall maintainability profile 
chart, Table 4-2, identifies a number of Quality Metric Criteria.  The data from the 
respective Quality Metric Criteria will be compiled quantitatively to derive a 
resultant output that can be further decomposed and analyzed to yield results 
regarding the maintainability of the translated code.  Table 4-2 provides a 
summary of the metrics used in this thesis to make a determination if the code is 
maintainable.  The main objective in selecting the criterion is to ensure a well-
represented number of metrics can be assessed to validate the application of a 
maintainability “coding standard”.   
 

ISO 9126 Model 

Characteristics Sub-
Characteristics Description 

Analyzability 

Relates to the effort needed for 
diagnosis of deficiencies or causes 
of failures or for identification of 
parts to be modified. 

Changeability 
/ Reusability 

Relates to the effort needed for 
modification, fault removal or 
environment change. 

Stability 
Relates to the attributes of software 
that bear on the risk of unexpected 
effect of modifications. 

Maintainability 

Testability 
Relates to the attributes that bear 
on the effort needed for validating 
modified software. 
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The marked boxes identify the applicability of the metric to the respective 
data and quality criteria. 
 
Metric Data Quality Criteria Analyzability Changeability 

/ Reusability 
Stability Testability 

Cyclomatic 
Complexity x   x 

Number of Label 
References x x  x 

Number of Exits   x x 

Traditional 
Metrics Suite 

Number of Goto 
Statements x x x x 

Depth of 
Inheritance (DIT) x x x x 

Number of 
Children (NOC) x x x x 

Weighted Methods 
per Class (WMC) x x x x 

Response for a 
Class (RFC) x x x x 

Lack of Cohesion 
in Methods 
(LCOM) per Class 

x x x x 

Object-
Oriented 

Metrics Suite 

Coupling 
(AVG_CBO) 
Between Object 
Classes per Class 

x x x x 

Table 4-2  Maintainability Measurement Profile 
 
 
4.5 Metric Identification 
 

A brief narrative of each Quality Metric Criteria will be discussed in detail 
with specific criteria for defining and explaining the applicability of the metric on the 
“Maintainability” of the resultant code.  It addition, a brief assertion for the metric 
will be provided relating to the measure’s ability to predict future results for 
software maintainability, along with quality objective guidelines for each metric 
respectively. 

4.5.1 Cyclomatic Complexity 

McCabe’s Cyclomatic complexity measures the complexity of code by 
taking into account the decision structure of the code and application of the 
algorithms (for example, code that contains loops, if-then-else conditions and so 
on).  Complexity measurements are used within this thesis based on McCabe’s 
Cyclomatic complexity to evaluate complexity factors of the methods in a class for 
the re-engineered translated C++ code.  The data collected provides an average of 
the overall complexity of the individual methods to fully evaluate the complexity of 
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the class data.  McCabe noted that the program complexity be measured by the 
cyclomatic number of the program’s flow graph (Fenton et al., 293-294).  For a 
program with flow graph ‘F’, the cyclomatic number is calculated as: v(F) = e – n + 
2; where F has ‘e’ arcs and ‘n’ modes.  The cyclomatic number measures the 
number of linearly independent paths through ‘F’.  This measure is useful when 
counting linear independent paths, but it is not at all clear that it defines a complete 
picture of program complexity.  Empirical evidence has suggested that this metric 
has a strong correlation with the number of faults found during the testing of a 
software component.  The cyclomatic number is a useful indicator of how difficult a 
program or module will be to test and maintain.  In this context, McCabe has 
suggested that, on the basis of empirical evidence, when v exceeds 10 in any one 
module, the modularity may be problematic (Fenton et al. 39).  This metric is most 
often used to measure both analyzability and testability attributes.   

 
To calculate, the average complexity is equal to the sum of the complexity 

methods divided by the total number of application methods. 
 

The descriptive summary above leads to the following assertion:  
Maintainability of the software decreases as the complexity increases. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-3. 
 

Threshold Data Rating Criteria 
Complexity < = 10 Good 
11 < = Complexity < = 14 Moderate 
Complexity > = 15 Poor 

Table 4-3 Complexity Evaluation Criteria 
 
 

4.5.2 Number of Label References 

The number of label references provides an overall structure metric based 
on the modularity of the code.  Elimination of label references provides an 
opportunity to reduce the level of complexity (analyzability) and enhance the 
structure to expedite improved changeability and testability.  The Label Reference 
metric is used to provide size measurement criteria, emphasizing the percentage 
of improvement in each class.  Since attributes regarding both simplicity and 
improved structure improve maintainability, this metric is used to measure both 
analyzability, changeability and testability attributes. 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the number of label references 
increase. 
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Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-4. 
 

Threshold Data Rating Criteria 
Improvement > = 50% Good 
25% < = Improvement < = 49% Moderate 
Improvement < = 24% Poor 

Table 4-4 Label Reference Evaluation Criteria 
 
 

4.5.3 Number of Exits 

The number of exits is a measure of the number of exit statements in a 
class.  Exit statements increase the risk of instability because of unwanted effects 
on program operation.  This metric also provides insight into the testability, since 
each exit point should be verified during code testing activities. 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the number of exits increase. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-5. 
 

Threshold Data Rating Criteria 
Improvement > = 50% Good 
25% < = Improvement < = 49% Moderate 
Improvement < = 24% Poor 

Table 4-5 Number of Exits Evaluation Criteria 
 
 

4.5.4 Number of Goto Statements 

The FORTRAN programming language provides Goto statements, which 
are undesirable, based on standardized concept of control flow.  The Goto 
elimination can improve program structure by translating implicit control structures 
to explicit control structures like loops and function calls.  Similar to label 
references and number of exit metrics, the Goto metric emphasizes the 
effectiveness of the structure of the code yielding insights into analyzability, 
changeability and testability. 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the number of Goto statements is 
used in the code. 
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Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-6. 
 

Threshold Data Rating Criteria 
Improvement > = 50% Good 
25% < = Improvement < = 49% Moderate 
Improvement < = 24% Poor 

Table 4-6 Number of Goto Statements Evaluation Criteria 
 
 

4.5.5 Depth of Inheritance (DIT) 

The Depth of Inheritance measure is defined to be the level of the 
class in an inheritance tree, with the root class being zero. The number of 
immediate subclasses provide a measure of how many layers of 
inheritance make up a given class hierarchy.  The deeper a class is in the 
hierarchy, the more likely it will become more complex as it inherits more 
methods, which in turn could increase risk of unexpected events during 
modifications.  This measure is important because changes to the parent 
class may impact the descendents, increasing the difficulty of testability 
and comprehensibility due to deeply nested functions and inheritance 
layers.  Deep trees indicate greater design complexity, but also promote 
reuse based on inheritance methodologies.  Depth of Inheritance is 
favorable over breadth with respect to reusability and promotes greater 
method sharing.  Chidamber and Kemerer note that a recommendation of 
Depth of Inheritance of five or less is preferable based on the increase in 
complexity of deeper hierarchies. 
 

The descriptive summary above leads to the following assertion: 
Maintainability of the software decreases as the DIT increases. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-7. 
 

Threshold Data Rating Criteria 
Depth of Inheritance < = 6 Good 
7 < = Depth of Inheritance < = 10 Moderate 
Depth of Inheritance > = 11 Poor 

Table 4-7 Depth of Inheritance Evaluation Criteria 
 
 

4.5.6 Number of Children (NOC) 

The Number of Children is the number of immediate subclasses 
subordinate to a class in the hierarchy.  This measure is important because a large 
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number of children may indicate a poor design (improper abstraction) or that the 
sub-classes are too complex and therefore more fault prone.  However, the greater 
number of children also facilitates reuse since inheritance is a form of reuse.  If a 
large Number of Children is present in the class, additional testing of the methods 
of the class will be required.  Based on Chidamber and Kemerer, a high NOC 
indicates high reuse and an indication of fewer faults within the code. 
 

The descriptive summary above leads to the following assertion:  
Maintainability of the software decreases as the number of children increase. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-8. 
 

Threshold Data Rating Criteria 
Number of Children < = 10 Good 
11 < = Number of Children < = 30 Moderate 
Number of Children > = 31 Poor 

Table 4-8 Number of Children Evaluation Criteria 
 
 

4.5.7 Weighted Methods per Class (WMC) 

The Weighted Methods per Class is a count of the methods implemented 
within a class.  This metric is a predictor of the maintainability of the class.  A large 
number of methods provides for a greater potential impact on its derived classes, 
which in turn may be more likely to be application specific, limiting reusability.  A 
high WMC has been found to lead to more faults and a predictor of stability, time 
and effort to maintain the class.  In addition, Morris suggested a larger number of 
methods per object class is likely to complicate testing due to the increased object 
size and complexity.  Based on Chidamber and Kemerer, a recommendation is to 
have an average of 25 methods with an upper threshold of 40 for user intensive 
classes. 
 
To calculate: 
 
WMC = Number of Methods in a Class 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the WMC increases. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-9. 
 

Threshold Data Rating Criteria 
Weighted Methods per Class < = 40 Good 
41 < = Weighted Methods per Class < = 60 Moderate 
Weighted Methods per Class > = 61 Poor 

Table 4-9 Weighted Methods Per Class Evaluation Criteria 
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4.5.8 Response for a Class (RFC) 

The Response for a Class is the count of the set of all methods that can be 
invoked in response to a message to an object of the class or by some method in 
the class.  A key attribute of this metric is its ability to assess the complexity of a 
class through the number of methods and the amount of interaction with other 
classes.  This metric also provides insight into stability.  As noted by Martin, most 
cases that exhibit stability have minimal dependence on other classes and any 
change has a large impact, which can lead to fewer changes being made by the 
programmer.  Additionally, a large RFC has been found to indicate more faults and 
have increased complexity.  In addition, the testing and debugging of the class 
becomes complicated given the increased level of understanding on the part of the 
tester.  To calculate the response for class is equal to the number of methods in 
the class plus the number of remote methods directly called by methods of the 
class.  This measure counts only the first level of calls outside of the class. 
 

Average RFC = number of methods in a class + number of remote 
methods directly called divided by the total number of RFC per object class. 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the RFC increases (Chidamber, et 
al.). 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-10. 

 
Threshold Data Rating Criteria 

Response For a Class <= corresponding range of 
classes referenced in the class 

Good 

Response For a Class < = double the 
corresponding range of classes referenced in the 
class 

Moderate 

Response For a Class < = triple the 
corresponding number of classes referenced in 
the class 

Poor 

Table 4-10 Response for a Class Evaluation Criteria 
 
 

4.5.9 Lack of Cohesion in Methods (LCOM) 

Class Cohesion is a measure of the lack of dissimilarity of methods in a 
class, in essence, that a class performs more than one function.  This measure is 
important as high cohesion indicates good class subdivision, whereas low 
cohesion increases the complexity and increases the likelihood of faults.  Lack of 
cohesion indicates the classes’ operations do not operate on the attributes and, 
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therefore, is a poor abstraction/poorly designed class. Thus, the class is more 
likely to contain faults as the operations and attributes have little to do with each 
other and the implementation of the class may be complex, further impacting 
changeability, testability and code stability.  High cohesion (low LCOM) is 
desirable, because it promotes encapsulation and indicates high coupling between 
methods of a class, as seen in well-defined classes.  LCOM is counted as the 
percentage of methods that do not access a specific attribute of a class averaged 
over all attributes. 
 

The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the LCOM increases. 
 

To calculate, LCOM is counted as the percentage of methods that do not 
access a specific attribute averaged over all attributes in the class. 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-11. 
 

Threshold Data Rating 
Criteria 

LCOM < = .5 Good 
.51 < = Lack of Cohesion (LCOM) < = .75 Moderate 
Lack of Cohesion (LCOM) > = .76 Poor 

Table 4-11 Lack of Cohesion Evaluation Criteria 
 
 

4.5.10 Average Coupling Between Object Classes (CBO) 

Average Coupling Between Object Classes is a count of the number of 
other classes to which a class is coupled.  High CBO is undesirable and 
detrimental to modular design.  The goal is to minimize inter-object class coupling 
to enhance both modularity and encapsulation, thereby reducing complexity, which 
is a highly desirable property as noted by Zou.  The larger the coupling, the higher 
the sensitivity to changes in other parts of the design and therefore maintenance 
regarding analyzability and changeability become more difficult.  A higher degree 
of coupling between objects is likely to complicate application maintenance 
because object interconnections are more complex.  The higher the degree of 
object independence (for example, the more 'uncoupled' objects are from each 
other) the more likely it is that objects are suitable for reuse within the same 
applications and the code stability improves.  Uncoupled objects should be easier 
to augment than those with a high degree of 'uses' dependencies, due to the lower 
degree of interaction.  Testability is likely to degrade with a more highly coupled 
system of objects.  Object interaction complexity associated with coupling can lead 
to increased error generation during development.  
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 The descriptive summary above leads to the following assertion:  The 
maintainability of the software decreases as the average CBO increases. 

To calculate, the coupling between object classes is equal to the number of 
classes to which a class is coupled and equates to the number of public 
references divided by the immediate subclasses within the class hierarchy. 
 

Average CBO = number of public methods / number of sub-classes 
 

Thresholds and guideline criteria for the complexity metric evaluation is 
shown in Table 4-12. 
 

Threshold Data Rating 
Criteria 

Average Coupling Between Object Classes < = the 
corresponding range of classes referenced in the class 

Good 

Average Coupling Between Object Classes < = double the 
corresponding range of classes referenced in the class 

Moderate 

Average Coupling Between Object Classes < = triple the 
corresponding range of classes referenced in the class 

Poor 

Table 4-12 Coupling Between Object Classes Evaluation Criteria 
 



 25

 
 
 
 
 

CHAPTER 5 
 
 
UMetric Generation and Data Collection 
 

The data collected is based on the legacy procedural FORTRAN code and 
the translated C++ code, as identified in Table 5-1.  Data collection of code metrics 
will be extracted based on a set of traditional metrics (for example, cyclomatic 
complexity, number of levels, number of local variables, direct call functions, 
number of exists, number of label references and number of Goto statements) and 
object-oriented metrics, with emphasis on object-oriented techniques (for example, 
cohesion, coupling and inheritance).  The interpretation and comparison of 
identified data shown in Chapter 5 will provide key insight into resolving the 
objective of this thesis through the effective validation of the results further 
discussed in Chapter 6. 
 

CSCIs Legacy FORTRAN SLOC per CSCI 
CSCI #1 1,814 
CSCI #2 1,441 
CSCI #3 2,009 
CSCI #4 876 
CSCI #5 1,940 
CSCI #6 2,758 

Table 5-1 Legacy Computer Software Configuration Items Listing 
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5.1 Cyclomatic Complexity 
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Figure 5-1 Average Complexity Data per CSCI 
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Figure 5-2 Percent Improvement of CSCI Complexity 
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5.2 Number of Label References 
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Figure 5-3 Number of Label Reference Data per CSCI 
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Figure 5-4 Percent Improvement of CSCI Label References 
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5.3 Number of Exits 
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Figure 5-5 Number of Exits Data per CSCI 
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Figure 5-6 Percent Change in Number of Exits per CSCI 
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5.4 Number of Goto Statements 
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Figure 5-7 Number of Goto Statement Data per CSCI 
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Figure 5-8 Percent Change in Number of Goto Statements per CSCI 
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5.5 Depth of Inheritance (DIT) 
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Figure 5-9 Number of Depth of Inheritance Data per CSCI #1-3 
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Figure 5-10 Number of Depth of Inheritance Data per CSCI #4-6 
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5.6 Number of Children (NOC) 
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Figure 5-11 Number of Children Data per CSCI 

 
 
5.7 Weighted Methods per Class (WMC) 
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Figure 5-12 CSCI Weighted Methods per Class Data 
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5.8 Response for a Class (RFC) 
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Figure 5-13 Response for a Class Data per CSCI 

 
 
5.9 Lack of Cohesion in Methods (LCOM) 
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Figure 5-14 Lack of Cohesion in Methods Data per CSCI 
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5.10 Coupling Between Object Classes (CBO) 
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Figure 5-15 Coupling Between Object Classes Data per CSCI 



 34

 
 

CHAPTER 6 
 
 
UInterpretation of Results 
 

Interpretation of the results is based on the empirical data necessary to 
validate the result of the thesis hypothesis.  To quantify the complexity and quality 
characteristics, the following tables are derived from each respective CSCI 
translated code.  The data analysis is based on the selected quality characteristics 
criteria and quality objective guidelines, to make recommendations based on the 
measured metric characteristic value to assess the maintainability of the translated 
source code.  The six CSCI data are represented on the next several pages. 
 
6.1 Summary of CSCI Metric Data Results 
 

CSCI #1 
Quality Metrics For 

Re-engineered Source 
Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 6.6 Good 

Number of Label References Approx. 50% 
Improvement 50% Decrease Good 

Number of Exits Approx. 50% 
Improvement 51% Increase Poor 

Number of Goto Statements Approx. 50% 
Improvement 12% Increase Poor 

Depth of Inheritance (DIT) Low 
 6 Good 

Number of Children (NOC) Low 
 27 Moderate 

Weighted Methods per Class 
(WMC) Low 44 Moderate 

Response for a Class (RFC) Low 11 Good 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) .48 Good 

DATA 

Coupling (AVG_CBO) 
Between Object Classes per 
Class 

Low 19 Good 

OVERALL QUALITY ASSESSMENT RATING Moderate to Good 
Table 6-1 Quality Assessment Rating Table for CSCI #1 
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CSCI #2 Quality Metrics For 
Re-engineered Source Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 12 Moderate 

Number of Label References Approx. 50% 
Improvement 48% Decrease Moderate 

Number of Exits Approx. 50% 
Improvement 72% Increase Poor 

Number of Goto Statements Approx. 50% 
Improvement 42% Decrease Moderate 

Depth of Inheritance (DIT) Low 
 6 Good 

Number of Children (NOC) Low 
 2 Good 

Weighted Methods per Class 
(WMC) Low 31 Good 

Response for a Class (RFC) Low 144 Poor 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) .50 Good 

DATA 

Coupling (AVG_CBO) Between 
Object Classes per Class Low 5 Moderate 

OVERALL QUALITY ASSESSMENT RATING Moderate to Good 
Table 6-2 Quality Assessment Rating Table for CSCI #2 
 
 

CSCI #3 Quality Metrics For 
Re-engineered Source Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 13.2 Moderate 

Number of Label References Approx. 50% 
Improvement 35% Decrease Moderate 

Number of Exits Approx. 50% 
Improvement 37% Increase Poor 

Number of Goto Statements Approx. 50% 
Improvement 30% Increase Poor 

Depth of Inheritance (DIT) Low 
 5 Good 

Number of Children (NOC) Low 
 15 Moderate 

Weighted Methods per Class 
(WMC) Low 39 Good 

Response for a Class (RFC) Low 15 Moderate 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) .60 Moderate 

    DATA 

Coupling (AVG_CBO) Between 
Object Classes per Class Low 38 Moderate - Poor 

OVERALL QUALITY ASSESSMENT RATING Moderate 
Table 6-3 Quality Assessment Rating Table for CSCI #3 
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CSCI #4 Quality Metrics For 
Re-engineered Source Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 7.6 Good 

Number of Label References Approx. 50% 
Improvement 55% Decrease Good 

Number of Exits Approx. 50% 
Improvement 22% Increase Poor 

Number of Goto Statements Approx. 50% 
Improvement 45% Decrease Moderate 

Depth of Inheritance (DIT) Low 
 3 Good 

Number of Children (NOC) Low 
 4 Good 

Weighted Methods per Class 
(WMC) Low 22 Good 

Response for a Class (RFC) Low 26 Poor 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) .75 Moderate 

     DATA 

Coupling (AVG_CBO) Between 
Object Classes per Class Low 6 Moderate 

OVERALL QUALITY ASSESSMENT RATING Moderate to Good 
Table 6-4 Quality Assessment Rating Table for CSCI #4 
 
 

CSCI #5 Quality Metrics For 
Re-engineered Source Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 13 Moderate 

Number of Label References Approx. 50% 
Improvement 64% Decrease Good 

Number of Exits Approx. 50% 
Improvement 70% Decrease Good 

Number of Goto Statements Approx. 50% 
Improvement 49% Decrease Moderate 

Depth of Inheritance (DIT) Low 
 6 Good 

Number of Children (NOC) Low 
 3 Good 

Weighted Methods per Class 
(WMC) Low 36 Good 

Response for a Class (RFC) Low 37 Poor 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) 0 Good 

     DATA 

Coupling (AVG_CBO) Between 
Object Classes per Class Low 3 Good 

OVERALL QUALITY ASSESSMENT RATING Moderate to Good 
Table 6-5 Quality Assessment Rating Table for CSCI #5 
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CSCI #6 Quality Metrics For 
Re-engineered Source Code 

Quality 
Objectives 
Guidelines 

Measured 
Metric 

Characteristic 
Average Value 

Ratings 
-   Good 
-   Fair 
-   Poor 

Cyclomatic Complexity Low 12 Moderate 

Number of Label References Approx. 50% 
Improvement 73% Decrease Good 

Number of Exits Approx. 50% 
Improvement 73% Decrease Good 

Number of Goto Statements Approx. 50% 
Improvement 48% Decrease Moderate 

Depth of Inheritance (DIT) Low 
 6 Good 

Number of Children (NOC) Low 
 7 Good 

Weighted Methods per Class 
(WMC) Low 75 Poor 

Response for a Class (RFC) Low 29 Poor 
Lack of Cohesion in Methods 
(LCOM) per Class 

LCOM < 1 
(Low Value) .71 Moderate 

    DATA 

Coupling (AVG_CBO) Between 
Object Classes per Class Low 65 Poor 

OVERALL QUALITY ASSESSMENT RATING Moderate to Good 
Table 6-6 Quality Assessment Rating Table for CSCI #6 
 
 
6.2 Interpretation of the Six CSCI Maintainability Characteristics 
 

Table 6-7 contains the descriptive statistics for each of the metrics 
considered regarding Points of Central Tendency.   

 

Combined CSCI 
Measurement 

Data 
Min Max 

 
 

Mean 

 
 

Rating 

Complexity 6.6 13.2 10.75 Moderate 
# Label 

References 
35% Decrease 74% Decrease 54% Decrease Good 

# Exits 72% Increase 74% Decrease 6% Increase Poor 
# Goto 

Statements 
30% Increase 49% Decrease 25% Decrease Moderate 

DIT 0 7 6 Good 
NOC 3 27 9.67 Good 
WMC 22 75 41.17 Good 
RFC 11.1 144 43.8 Poor 

LCOM .9916 .9979 .50 Good 
CBO 5 65.6 22.82 Moderate 

Table 6-7 Metric Descriptive Statistics for CSCI 1-6 
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Table 6-7 shows a central axis for the mass of data to determine the 
midpoints and distribution.  The mean point of central tendency will be used to 
provide a statistical data point during the overall evaluation rating of each metric.   

 
In addition, an overview of the CSCI software quality metrics and 

characteristics is discussed below.  This criteria and data results compiled in Table 
A-17, in addition to descriptive statistics shown in Table 6-7 yield a rating (Good, 
Moderate and Poor) on the maintainability of the translated code, taken as a 
whole.  
 

6.2.1 CSCI  Maintainability General Results 

TThe primary analysis technique used in this thesis is to explore a number of 
metric measurements and examine focus areas of software quality and object-
oriented characteristics.  The following is an overview of general results for the six 
CSCIs under investigation. 
 

First, from a software complexity metric standpoint, the empirical data 
suggests that the complexity of the translated code significantly improved.  The 
decision structure of the code improved which minimized complexity factors and 
improved modularity of the code.  It appears through the data that complexity 
improvement will have a positive effect on improving ease of understandability, 
analyzability and testability.  Overall, maintainability attributes were significantly 
exhibited throughout the translated code. 
 

Second, from a Label Reference, Exit and Goto elimination metric 
perspective the results were somewhat mixed.  There is a significant improvement 
with the elimination of label reference that reduced the complexity of the code and 
improved structure.  However, the elimination of exits and Goto statements on an 
average increased.  The higher value of exits was expected since the translator 
provided enhanced modularity with the increase of sub-classes, thereby improving 
both analyzability and testability.  But the lack of decrease in the number of Goto 
statements showed that while the translator did minimize this use, considerable 
improvement could be made.  The large number of Goto statements can cause 
instability within the code, impacting overall maintainability.  Overall, maintainability 
attributes were moderately exhibited throughout the translated code. 
 

Third, the empirical results for both Depth of Inheritance and Number of 
Children appear to show values within acceptable limits, providing insight that 
these objects can inherit the data and methods and have a potential for code 
reuse.  The modules appeared to be organized into hierarchies that were sensible 
with advancing ease of management of the application codes.  Both DIT and NOC 
showed a good mix of depth and breadth to leverage both objectives.  Overall, 
maintainability attributes were exhibited throughout the translated code. 
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Lastly, the results for WMC, RFC, LCOM and CBO are consistent with 
results in software engineering that higher coupling and lower cohesion are 
detrimental to maintainability. The data indicates that cohesion was positively 
emphasized through input and output flow and modularity, providing effective re-
organization of the source code (for example, splitting methods and functions).  
Coupling of the translated code was minimized and provided an assurance that a 
minimal number of data dependencies between methods improved structure, 
analyzability and testability.  Although all four metrics showed signs of object-
oriented influence, the measurements showed moderate object-oriented capability 
at best with the best improvement in complexity.  Overall, maintainability attributes 
were moderately exhibited throughout the translated code. 
 
 
6.3 Overall Synthesis of Maintainability of the Translated C++ 

Code 
 

Combined CSCI CRITERON Overall Maintainability Rating 
Analyzability Moderate 
Changeability Good 
Stability Moderate 
Testability Moderate 
Object-oriented techniques Moderate to Good 
Synthesis (Overall) Moderate 
Table 6-8 Overall Maintainability Synthesis of the Translated C++ Code 
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CHAPTER 7 

 
 
UConclusions 
 
7.1 Translator’s Effectiveness with Providing Maintainable 

Object-Oriented Code 
 

This thesis proposed a set of metrics for evaluating the maintainability of a 
re-engineered translation of FORTRAN to C++ code.  It includes the results based 
on empirical data during the review and evaluation of metric measurements 
regarding the overall maintainability and software quality attributes.  The objective 
was stated which lead to the resulting alternative hypothesis on how effective the 
re-engineered effort using the translator was with producing maintainable code.   

 
There is sufficient evidence based on the results of Chapter 5 and Chapter 

6, Section 6.2.1, to conclude that the metrics used show the translated code is 
maintainable.  The data exhibited a number of software quality characteristics and 
taken in the context of “Maintainability”, showed a moderate to good correlation of 
maintainability attributes, resulting in the conclusion that the translated FORTRAN 
to C++ code meets the intent of supporting maintainable attributes and is indeed 
maintainable, as identified in the Alternative Hypothesis.  It is therefore 
recommended that the translation efforts proceed to mitigate the supportability 
problems of the legacy system. 

 
Improved software maintainability is one of the key aspects of the 

FORTRAN to C++ translator tool.  Table 7-1 provides conclusive statements that 
are forthcoming based on the interpretation of the data. 
 

Item # Description 

1 The translator did produce object-oriented source code minimizing 
the number of public variables and improved stability. 

2 
The translator reduced the average module complexity and 
improved analyzability and changeability by creating smaller, more 
manageable modules. 

3 
The translator eliminated unnecessary label references and Goto 
statements, thus improving code structure, understandability and 
testability. 

4 
FORTRAN comments were maintained in the C++ translated 
source code that assures an adequate level of original readability 
and analyzability is maintained. 

Table 7-1 Conclusive Statements For Maintainability of Translated CSCIs 



 41

 
 
7.2 Future Work 
 

Future extensions of the work presented in this thesis could focus on two 
directions.  First, further investigation on the use of “other metrics” to support 
future developmental activities of the translator in order to optimize object-oriented 
and maintainability attributes.  This could extend an improvement in the tailored 
model and metrics used within this thesis and yield additional design criteria and 
software quality characteristics during the future enhancement of the translator.  
Second, additional emphasis on relying on automated tools and techniques for 
capturing the data and performing the analysis.  Commercial-off-the-shelf toolkits 
are available in the marketplace and could save substantial time and effort during 
the code analysis and metrics interpretation stages.   
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APPENDIX A 

 
UMetric Measurement Data per CSCI 
 

Computer Software 
Configuration 
Items (CSCI) 

Average 
Complexity per 
Module Before 

Slicing 
(C++ Code) 

Complexity per 
Module After Slicing

(C++ Code) 

Percentage of 
Change in 
Complexity 

CSCI #1 8.5 6.6 22.35% 
CSCI #2 19.1 12.1 36.65% 
CSCI #3 23.7 13.2 44.30% 
CSCI #4 8.7 7.6 12.64% 
CSCI #5 41.1 13 68.37% 
CSCI #6 69.8 12 82.81% 

Table A-1 CSCI Average Complexity Data 
 
 

Table A-2 CSCI Number of Label Reference Data 
 
 
Computer Software 

Configuration 
Items 

Number of Exits 
FORTRAN Code 

Number of Exits 
Translated C++ 

Code 

Percentage of 
Change in 

Number of Exits 
CSCI #1 31 47 -51.61% 
CSCI #2 18 31 -72.22% 
CSCI #3 48 66 -37.50% 
CSCI #4 18 22 -22.22% 
CSCI #5 40 12 70.00% 
CSCI #6 87 23 73.56% 

Table A-3 CSCI Number of Exits Data 
 
 

Computer Software 
Configuration 

Items 

Number of Original 
Label References 
FORTRAN Code 

Number of Label 
References after 
Translated C++ 

Code 

Percentage of 
Change in 

Number of Label 
References 

CSCI #1 75 37 50.67% 
CSCI #2 106 55 48.11% 
CSCI #3 213 138 35.21% 
CSCI #4 148 66 55.41% 
CSCI #5 469 168 64.18% 
CSCI #6 983 258 73.75% 
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Computer Software 
Configuration 

Items 

Number of Original 
Goto Statements 
FORTRAN Code 

Number of Goto 
Statements after 

Transition 
Translated C++ 

Code 

Percentage of 
Change in 

Number of Goto 
Statements 

CSCI #1 33 37 -12.12% 
CSCI #2 219 126 42.47% 
CSCI #3 113 147 -30.09% 
CSCI #4 124 68 45.16% 
CSCI #5 330 169 48.79% 
CSCI #6 506 261 48.42% 

Table A-4 CSCI Number of Goto Statement Data 
 
 
CSCIs DIT = 0 DIT = 1 DIT = 2 DIT = 3 DIT = 4 DIT = 5 DIT = 6 DIT = 7 

CSCI #1 0 0 1 2 6 0 18 0 
CSCI #2 0 0 1 0 1 0 6 0 
CSCI #3 0 0 0 0 2 9 4 0 
CSCI #4 1 1 0 2 0 0 0 0 
CSCI #5 0 0 0 1 0 0 1 1 
CSCI #6 0 0 0 0 0 3 3 1 
Table A-5 CSCI Depth of Inheritance Data 
 
 

Computer Software 
Configuration Items 

Number of Children 
(NOC) 

(Immediate 
Subclasses) per CSCI 

CSCI #1 27 
CSCI #2 2 
CSCI #3 15 
CSCI #4 4 
CSCI #5 3 
CSCI #6 7 

Table A-6 CSCI Number of Children Data 
 
 

Computer Software 
Configuration Items 

Number of 
Weighted Methods per 
Class (WMC) per CSCI 

CSCI #1 44 
CSCI #2 31 
CSCI #3 39 
CSCI #4 22 
CSCI #5 36 
CSCI #6 75 

Table A-7 CSCI Weighted Methods per Class Data 
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Computer Software 
Configuration Items 

Number of Classes 
Referencing Other 

Methods 

Total Number 
Response for a 
Class per CSCI 

Sub-Classes 

Average 
Response for 

Class per CSCI 

CSCI #1 12 133 11 
CSCI #2 1 144 144 
CSCI #3 9 137 15 
CSCI #4 3 80 27 
CSCI #5 3 110 37 
CSCI #6 5 147 29 

Table A-8 CSCI Response for a Class Data 
 
 
Computer Software 
Configuration Items LCOM 

CSCI #1 .48 
CSCI #2 .50 
CSCI #3 .60 
CSCI #4 .75 
CSCI #5 0 
CSCI #6 .71 

Table A-9 CSCI Lack of Cohesion in Methods Data 
 
 

Computer Software 
Configuration Items 

Total Number of Public 
References per Object 

Classes 

Average 
Coupling 

Between Object 
Classes per CSCI 

CSCI #1 505 19 
CSCI #2 10 5 
CSCI #3 574 38 
CSCI #4 24 6 
CSCI #5 10 3 
CSCI #6 459 66 

Table A-10 CSCI Coupling Between Object Classes Data 
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UClass Data per CSCI 
 
 
CSCI #1 Sum # 

Methods 
# Public 
Methods 

# Private 
Methods 

# Referenced 
Calls 

# Referencing 
Calls 

Depth 
Inheritance 

# 
Variables 

1 0 0 0 0 0 3 0 
2 1 1 0 0 1 6 12 
3 0 0 0 0 0 6 0 
4 4 2 2 2 3 6 9 
5 2 2 0 0 2 6 6 
6 1 1 0 2 1 6 18 
7 0 0 0 0 0 6 0 
8 0 0 0 0 0 6 0 
9 0 0 0 0 0 6 0 

10 1 1 0 0 1 6 8 
11 1 1 0 0 1 3 5 
12 0 0 0 0 0 6 0 
13 0 0 0 0 0 6 0 
14 0 0 0 0 0 6 0 
15 1 1 0 1 1 4 8 
16 0 0 0 0 0 6 0 
17 4 2 2 1 2 4 7 
18 0 0 0 0 0 2 0 
19 10 5 5 12 10 4 82 
20 12 1 11 15 15 6 51 
21 0 0 0 0 0 4 0 
22 0 0 0 0 0 6 0 
23 0 0 0 0 0 6 0 
24 4 1 3 9 5 4 77 
25 1 1 0 0 1 4 9 
26 0 0 0 0 0 6 0 
27 2 1 1 2 2 6 12 

Total 44 20 24 44 45 140 304 
Average 1.63 0.74 0.89 1.63 1.67 5.19 11.26 
Table A-11 CSCI #1 Class Data 
 
 

 
CSCI #2 

Sub-
Classes 

Sum 
Number of 
Methods 

Number of 
Public 

Methods 

Number of 
Private 

Methods 

Number of 
Referenced 

Calls 

Number of 
Referencing 

Calls 

Depth of 
Inheritance 

Number 
of 

Variables 

1 0 0 0 0 0 2 0 
2 31 1 30 65 48 4 322 

Total 31 1 30 65 48 6 322 
Average 10.33 0.33 10.00 21.67 16.00 2.00 107.33 
Table A-12 CSCI #2 Class Data 
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CSCI #3 
Sub-

Classes 

Sum 
Number of 
Methods 

Number 
of Public 
Methods 

Number 
of Private 
Methods 

Number of 
Referenced 

Calls 

Number of 
Referencing 

Calls 

Depth of 
Inheritance 

Number of 
Variables 

1 1 1 0 1 1 4 1 
2 2 1 1 2 2 5 3 
3 2 2 0 1 2 6 0 
4 0 0 0 0 0 5 0 
5 3 3 0 2 3 5 17 
6 15 1 14 27 17 6 121 
7 3 3 0 1 11 5 11 
8 0 0 0 0 0 5 0 
9 1 1 0 0 1 6 0 

10 0 0 0 0 0 6 0 
11 1 1 0 0 1 5 30 
12 0 0 0 0 0 4 0 
13 11 4 7 15 11 5 98 
14 0 0 0 0 0 5 0 
15 0 0 0 0 0 5 0 

Total 39 17 22 49 49 77 281 
Average 2.60 1.13 1.47 3.27 3.27 5.13 18.73 

Table A-13 CSCI #3 Class Data 
 
 

CSCI #4 
Sub-

Classes 

Sum 
Number 
Methods 

per 
Class 

Number 
of Public 
Methods 

Number 
of 

Private 
Methods 

Number of 
Referenced 

Calls 

Number of 
Referencing 

Calls 

Depth of 
Inheritance 

Number 
of 

Variables 

1 2 1 1 1 2 1 7 
2 9 6 3 11 17 3 49 
3 11 1 10 17 10 3 63 
4 0 0 0 0 0 0  

Total 22 8 14 29 29 7 119 
Average 5.5 2 3.5 7.25 7.25 1.75 29.75 
Table A-14 CSCI #4 Class Data 
 
 

CSCI #5 
Sub-

Classes 

Sum 
Number 
Methods 

per 
Class 

Number 
of Public 
Methods 

Number 
of 

Private 
Methods 

Number of 
Referenced 

Calls 

Number of 
Referencing 

Calls 

Depth of 
Inheritance 

Number 
of 

Variables 

1 3 1 2 2 3 6 37 
2 32 1 31 34 34 7 429 
3 1 1 0 0 1 3 13 

Total 36 3 33 36 38 16 479 
Average 12.00 1.00 11.00 12.00 12.67 5.33 159.67 
Table A-15 CSCI #5 Class Data 
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CSCI #6 
Sub-

Classes 

Sum 
Number 
Methods 

per 
Class 

Number 
of Public 
Methods 

Number 
of 

Private 
Methods 

Number of 
Referenced 

Calls 

Number of 
Referencing 

Calls 

Depth of 
Inheritance 

Number 
of 

Variables 

1 9 3 6 14 9 6 62 
2 11 1 10 13 11 5 42 
3 40 6 34 45 49 6 219 
4 0 0 0 0 0 5 0 
5 4 3 1 2 4 5 2 
6 11 7 4 12 13 6 28 
7 0 0 0 0 0 7 0 
Total 75 20 55 86 86 40 353 
Average 10.71 2.86 7.86 12.29 12.29 5.71 50.43 
Table A-16 CSCI #6 Class Data 
 
 

Quality Criteria CC LR Exits Goto DIT NOC WMC RFC LCOM CBO 

Analyzability           
CSCI #1 Good   Poor   Mod Good   
CSCI #2 Mod   Mod   Good Poor   
CSCI #3 Mod   Poor   Good Mod   
CSCI #4 Good   Mod   Good Poor   
CSCI #5 Mod   Mod   Good Poor   
CSCI #6 Mod   Mod   Poor Poor   
Avg. Overall Rating Mod   Mod   Good Poor   
Changeability           
CSCI #1  Good   Good Mod Mod  Good Good 
CSCI #2  Mod   Good Good Good  Good Mod 
CSCI #3  Mod   Good Mod Good  Mod Mod 
CSCI #4  Good   Good Good Good  Mod Mod 
CSCI #5  Good   Good Good Good  Good Good 
CSCI #6  Good   Good Good Poor  Mod Poor 
Avg. Overall Rating  Good   Good Good Good  Good Mod 
Stability           
CSCI #1  Good Poor Poor       
CSCI #2  Mod Poor Mod       
CSCI #3  Mod Poor Poor       
CSCI #4  Good Poor Mod       
CSCI #5  Good Good Mod       
CSCI #6  Good Good Mod       
Avg. Overall Rating  Good Poor Mod       
Testability           
CSCI #1 Good  Poor Poor Good Mod  Good   
CSCI #2 Mod  Poor Mod Good Good  Poor   
CSCI #3 Mod  Poor Poor Good Mod  Mod   
CSCI #4 Good  Poor Mod Good Good  Poor   
CSCI #5 Mod  Good Mod Good Good  Poor   
CSCI #6 Mod  Good Mod Good Good  Poor   
Avg. Overall Rating Mod  Poor Mod Good Good  Poor   

Table A-17 CSCI #1-6 Criteria Rating Composite 
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