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ABSTRACT

Keyword Spotting Using Normalization of Posterior Probability Confidence

Measures

by

Rachna Vijay Vargiya

Thesis Advisor: Marius C. Silaghi, Ph.D.

Keyword spotting techniques deal with recognition of predefined vocabu-

lary keywords from a voice stream. This research uses HMM based keyword

spotting algorithms for this purpose. The three most important componenets

of a keyword detection system are confidence measure, pruning technique and

evaluation of results. We suggest that best match for a keyword would be

an alignment in which all constituent states have high emission probabilities.

Therefore score of even the worst subsequence must also be better than a thersh-

old and a path can be represented by the score of its worst subsequence match.

This confidence measure is called Real Fitting. The harsher the pruning in a

technique, the fewer paths survive. This increases the speed as well as the risk

of pruning the best match. Three levels of pruning are explored and results

and performance are compared. Since the proposed algorithms do no follow
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the principle of optimality,possible optimal paths could be pruned. Therefore

we propse a pruning that permits a set of paths to be retained in every frame

instead of a single path. Finally the evaluation of these algorithms plays an im-

portant role in assessing the performance of these algorithms. since the choice

of keywords can affect the results, an equal opportunity evaluation is proposed

which evaluates the algorithms on their respective best keywords.
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Chapter 1

Introduction

Speech recognition is the process of matching voice pattern to a vocabulary.

Successful speech recognition systems which can be used as voice dialing for

telephone systems, speech driven word processors or communication aid for the

disabled, are a field of interest in today’s world due to the multifarious areas

of applicability. This chapter provides an introduction to the field of speech

recognition and describes our goal and motivation.

1.1 Speech Recognition

Speech recognition can be broadly classified into three categories.

• Isolated word recognition: deals with recognizing predefined keywords

when spoken in isolation. The word being recognized is neither preceded
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nor followed by any other speech/sound.

• Keyword Spotting: This category also deals with recognizing predefined

keywords. However, in this case the keyword is recognized in continuous

speech (could be preceded or followed by other speech/sounds).

• Continuous Speech Recognition: This category deals with recognizing en-

tire sequence[s] of words from a continuous utterance. It is usually followed

by a syntactic and semantic analysis.

Isolated word recognition is the simplest of the three tasks. It is a quick and

inexpensive form of speech recognition. However it has limited applicability

since isolated occurance of words is rare. Continuous speech recognition, on

the other hand, is a complex and computationally intensive task that requires

a large amount of training. High computational complexity makes it hard to

achieve and more expensive to implement.

Many applications have a requirement that lies between the two approaches

described above. They do not require entire sequence of words to be recognized.

These applications are covered by keyword spotting. Examples of applications

using keyword spotting are: classification of speech messages, word-based com-

mands etc.
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Speech recognition systems are also classified based on the allowed number

of speakers as follows:

• Speaker dependent recognizers can recognize words uttered only by a sin-

gle speaker. The model is trained and can perform recognition only for

that speaker.

• Multiple speaker recognizer can successfully recognize words spoken by

predetermined set of multiple speakers.

• Speaker independent recognizers can recognize words spoken by any per-

son. Training as well as recognition is independent of the speaker.

Clearly, speaker independent recognizers have the most applicability amongst

all three categories. Such a system could perform recognition without the any

user specific training.

1.2 Problem Statement

This research focusses on speaker independent keyword spotting. We propose

novel keyword spotting algorithms to achieve a high rate of recognition at con-

siderably low number of false recognitions.

It is also observed that the choice of keywords influences the performance of

keyword spotting algorithms. Certain words are recognized more easily than
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other words making the selection of keywords a difficult task. The properties

that make words ”good” or ”bad” keywords are still vague. Comparison of two

or more techniques on a set of keywords may be inaccurate if the keywords favor

one algorithm. This research also investigates an evaluation which resolves this

limitation.

1.3 Contributions

The major contributions of this research are summarised as follows.

• A novel confidence measure called Real Fitting is proposed. The mea-

sures results in high detection rates, outperforming existing confidence

measures.

• Two different kinds of pruning are investigated for confidence measures:

double normalization and real fitting. A novel pruning technique not only

yields better results but also is more efficient.

• Three different prunings are investigated for Real Fitting. It is observed

that with relaxation of pruning the performance of real fitting improves

significantly.

• Limitations of standard evaluation of keyword spotting techniques are

highlighted. A novel evaluation, equal opportunity evaluation, is pro-
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posed.

• A few properties observed in the list of keywords being recognized easily

are put forth.

1.4 Organisation of Thesis

The next chapter focusses on the different concepts and phases of speech recog-

nition integral to the understanding of this thesis. It also discusses the models

used for representation of speech in our experiments. The following chapter

presents the different keyword spotting techniques – existing and novel tech-

niques proposed in this research. The fourth chapter provides experimental

results and their analysis using a novel evaluation. The final chapter presents

our conclusions and the contributions of this research.
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Chapter 2

Speech Recognition Concepts

In this chapter some relevant concepts in the field of speech recognition are pre-

sented. It describes the structure of speech, models used to represent keywords

and gives an introduction to the important phases in speech recognition.

2.1 Keyword Modeling

It is essential to model speech for the purpose of recognition. Speech is a

time-varying signal 1. The selected represention must be able to model this

attribute. Following sections describe a model which can model time-varying

data, and hence is suitable for representing speech. The model is called Hidden

Markov Model.

1HMM based recognizers assume that the speech signal over very small time frames is

stationary.
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2.1.1 Hidden Markov Models

qi qj

P(qj|qj)P(qi|qi)

P(qj|qi)

ol ok

P(ol|qi) P(ok|qj)

Figure 2.1: Example of a Hidden Markov Model

Hidden Markov Models, also referred to as HMMs, are variants of finite state

machines. An HMM consists of a set of states, a set of output alphabet, transi-

tion probabilites and output probabilities. Transitions from one state to another

are associated with transition probabilities. Every state can generate an output

governed by a probability called the output probability. Formally, a HMM is

defined by the triple (λ, B, Π) where,

7



• λ = P (qt+1
j |qt

i), qi, qj ǫ Q,

λ is the set of transition probabilities

Q is the set of states in the HMM model

t is the time (t >= 1).

• B = P (ol|qi), ol ǫ O

B is the set of output probabilities

O is the set of output alphabet

• Π = P (q0)

q0 is the initial state.

Figure 2.1 shows a simple HMM with two states qi and qj generating the out-

puts ol and ok respectively. The states of an HMM can be divided into two

categories: emitting and non emitting states. States that emit a phoneme are

called emitting states while those that do not emit a phoneme are called non-

emitting states. The entry and exit states are usually the non emitting states

in an HMM. The outputs of emitting states as well as the transition among

states are governed by probabilities (P (qj|qi), P (qi|qj) and P (ol|qi), P (ok|qj)).

The name of hidden markov models is derived from the fact that in an HMM,

only the output sequence, O, is observable to us and not the underlying state

sequence. Since the same output sequence (observation) may be produced by

different underlying sequence of states, predicting the state sequence from an
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output sequence (an utterance) is a bayesian inference. A word can be spoken

differently by people with different accents, ages etc.

2.1.2 Words and Phonemes

Speech has a hierarchical structure. It consists of sentences which are com-

posed of words. Each word can further be broken down into smaller units of

sound, called phonemes2. Phonemes are the atomic units of sound. All words

can be represented as a concatenation of some of these phonemes. For example,

the keyword abaisser may be represented by the set of phonemes a b E s e.

Since the number of words in a vocabulary can be much larger than the number

of phonemes, modeling phonemes is simpler. Models of these phonemes can

then be used to model words and hence model speech. Thus the first step in

modeling speech is modeling phonemes.

2.1.3 Modeling Phonemes using HMM

We represent each phoneme by a single HMM. The HMM of a word is formed

by the concatenation of the HMMs of its constituent phonemes.

2Since each sound may be spoken differently by individuals, a family of sounds which are

considered the same in a language are represented by one phoneme.
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p1 p2 p3-1 -2

‘a’ ‘a’ ‘a’

Figure 2.2: Hidden Markov Model for a single phoneme ’a’

For the database in this research, BREF [5] , the HMM of a phoneme has a

simple left to right topology, as shown in Figure 2.2. This means the transitions

are permitted to take place only from left to right. The selected model has

three emitting states and two non emitting states. The three emitting states

are included to impose a lower bound on the time required to pronounce a

phoneme (a person can not speak faster than a limit imposed by nature). It is

impossible to get to the final state without passing through at least three states

10



emitting the phoneme. Since there is no upper bound on the maximum number

of times a phoneme can be emitted(there is no limit on how slowly a person may

speak), the third phoneme is allowed to make a transition to itself which allows

indefinite stay in the phoneme. The non emitting states are the entry and exit

states. They are included for the purpose of concatenation of multiple HMMs.

An example of the HMM of a phoneme ’a’ is shown in Figure 2.2. All the three

emitting states, p1, p2, p3, emit the same phoneme ’a’. The last emitting state,

p3, can make a transition to itself so that the model can represent both aaa and

aaaaaaaaa. Entry and exit states are represented by −1 and −2 respectively.

2.1.4 Modeling Words using HMM

a a a-1

-2

z z z

a~ a~ a~

Figure 2.3: Hidden Markov Model for a keyword ’agent’
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Word HMMs are formed by simple concatenation of phoneme models as shown

in Figure 2.3. The entry and exit states of all but the first and the last HMM

are replaced by the HMM of the phoneme preceding and following the current

phoneme respectively. For the first and the last phoneme HMM, only the exit

and entry states are replaced respectively. As an example, the french keyword

agent is composed of the phonemes a Z a . The HMM of the keyword is formed

by concatenating the HMMs of individual phonemes as shown in Figure 2.3.

The models for phonemes ’a’, ’Z’, and ’a ’ are concatenated by replacing the

appropriate entry and exit states.

2.2 Feature Extraction

For the analysis of an utterance, an effective and compact representation of the

speech signal is required. Feature Vectors are one such representation. The first

component of a speech recognition system consists of a front end signal processor

that can carry out such a conversion of speech signal into a representation that

can be interpretted by a speech recognition algorithm, namely feature vectors.

Each feature vector represents a speech spectrum of a short duration obtained

by sampling the speech signal. This phase is called Feature Extraction. The

feature vectors represent the signal for further processing.

12



2.3 Decoding

The goal of a keyword spotting algorithm is to search among a set of keywords,

the keyword with the highest probability of producing a given utterance. To

summarize two major topics discussed so far:

• As described in Section 2.2, a speech signal is converted to a set of feature

vectors or a set of observations X = x1, x2, . . . xn .

• In an HMM (keyword model), only the output sequence is visible while

the underlying state sequence is hidden.

Decoding is the process of searching the state sequence in a model (represent-

ing a keyword) most likely to produce the observation. I.e. given an observed

utterance (represented by feature vectors), X, decoding is the process of com-

puting the probability of a keyword (represented by an HMM), W , to produce

the utterance, i.e P (W |X). However, direct estimation of P (W |X) is difficult

in practice. So one decomposes the problem using Bayes’ rule as below.

argmaxW P (W |X) = argmaxW

P (W )P (X|W )

P (X)
(2.1)

P (W ) is the prior probability of observing the word independent of the signal. It

is determined by the language model. The remaining part of the equation (2.1),

P (X|W )/P (X), denotes the probability of observing a signal (or feature vec-

tors) given the occurance of a keyword. This probability is determined by the

13



acoustic model. These probabilities are calculated during the training phase.

Decoding uses the language and acoustic models to search the most probable

state sequence of a keyword model that produced the output sequence, W .

Most probable state sequence of an HMM would be the one which would maxi-

mize equation (2.1). Decoding, like other search techniques has depth-first and

breadth first approaches.

Decoding using depth-first search pursues one path (a state sequence) at a

time. The most promising state sequence is explored first. The most common

techniques using depth-first search are stack-decoding and A*-decoding. These

techniques are more commonly used for continuous speech recognition.

Breadth first decoding pursues the search of all candidate paths (state se-

quences) simultaneously. Most common breadth-first decoding is Viterbi decod-

ing.

Viterbi is a dynamic programming algorithm which exploits Bellman’s opti-

mality principle to pursue the candidate state sequences. An utterance is said

to be produced by a model i if,

P (X|Mi) > P (X|Mj) ∀j 6= i (2.2)

14



where X = utterance,

Mk = Model representing the word k

Viterbi being a time synchronous algorithm is particularly suited for time

dependent speech signal. The computation complexity for Viterbi is linearly

proportional to the length of the utterance and the number of states in the

model. However, Viterbi cannot be used directly for the purpose of keyword

recognition.

Details are discussed in the following chapters.

2.4 Confidence Measures

Speech recognition systems take as input an actual input utterance and output

a sequence of words which produced the input utterance. The correctness of the

system is nothing but the correspondance between the output of the recognizer

and the input sequence. The goal of these systems is to maximize this corre-

spondance. However, none of the existing systems have been able to achieve

absolute correctness and there is a degree of uncertainty associated with the

correctness of the result. It is, therefore, necessary to have a measure to indi-

cate how well the output corresponds with the input sequence to affirm that the

result of the system is correct or incorrect. This measure is called confidence

15



measure.
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Chapter 3

Keyword Spotting Techniques

Continuous speech recognition requires complete decoding of speech signal and

it outputs a completely decoded sentence. Keyword spotting only requires to

output whether a keyword is present in a signal or not. This makes keyword

spotting different from continuous speech recognition. Keywords are embedded

in extraneous speech and may begin and end at any instant in the utterance

making keyword spotting a non trivial task and as discussed in the previous

chapter, Viterbi can not be applied directly to a keyword spotting system. This

chapter describes in Section 3.1, some of the existing approaches that have been

adopted to achieve keyword spotting. Some of the novel approaches in keyword

spotting proposed by this report are described in Section 3.2.

17



3.1 Related Work

The existing work done in keyword spotting can be categorized under two major

approaches. The first approach is the filler or garbage models approach. In this

approache, all words other than the keywords assumed to be garbage and are

represented by preassigned models called garbage or filler models. The second

approach is the sliding model approach. This approach computes for every

begin and corresponding end frame, the probability of the keyword occurance.

Details of the two approaches are discussed in the following sections.

3.1.1 Garbage/Filler Models

For a keyword spotting algorithm, the keyword to be recognized is embedded

in extraneous speech. Garbage model handles this extraneous speech by explic-

itly modeling the extraneous speech by non-keyword models. The input speech

signal is represented by a sequence of extraneous speech embedded with vocab-

ulary keywords. Assuming keyword is in the vocabulary, it is represented by the

keyword model and the rest of the utterance is represented by filler (or garbage)

models. Every keyword has its own unique model.

Garbage models for keyword spotting are used by Higgins and Wohlford in

[3]. They used a template based connected speech recognition system with a set

of ”filler” templates. The system outputs a continuous stream of keyword and

18



This sentence has a keyword to be recognized.

Filler 

Model

Keyword 

Model

Filler 

Model

Figure 3.1: Keyword Spotting using Garbage Models

filler templates. The keyword template in this stream represents a putative hit.

Rose and Paul in [7] also use a filler model approach. However they use HMM

based filler models, filler models in combination with likelihood ratio scoring.

A syntax-derived, frame synchronous, network search algorithm is used in

[11] to match frames against the stored HMMs. The syntax allows n number of

19



garbage models followed by the model of a keyword to be recognized, followed

by another sequence of m garbage models, where n, m >= 0. Their algorithm

achieves a recognition rate of about 95 percent. However, their vocabulary

size was limited to five words. Also, their grammar was constrained to find

exactly one keyword per utterance since they had prior knowledge that only

one vocabulary words appears in any utterance. This paper proposes techniques

which are free of any such assumptions. The number of keyword occurances is

unconstrained and the vocabulary size is much larger.

3.1.2 Sliding Window Models

Dynamic programming techiques for keyword spotting, which are the basis of

sliding window techniques, were originally proposed by Bridle [2]. Each dynamic

path is considered as a possible keyword occurrence. Overlapping occurrences

are removed and scores are normalized in the second stage. Thresholds are then

established to detect true hits.

Unlike garbage models, sliding window models do not require explicit model-

ing of extraneous speech. Instead, a Viterbi alignment is computed beginning

every frame (since a keyword may be present at any instant in the utterance).

This may be interpreted as sliding a keyword model across the input speech

signal to identify possible matches. The scores of all alignments, beginning

20



and ending in all frames, are computed. The confidence measure of a keyword

model for a speech signal is the score of its best alignment. If an alignment

of a keyword mode whose confidence measure indicates high probability of the

keyword being present in the utterance for a keyword model exists, the keyword

is assumed to be present.

The input to the algorithm is a list of probabilities for all states in each time

frame. These probabilities are the emission probabilities of each state in the

keyword HMM. A trellis of these probabilities is constructed. For every begin

frame i, all candidate alignments are explored. The score of an alignment,a(i, j),

is computed at every frame j, from the score at frame j − 1, a(i, j − 1). The

local score(likelihood measure) at frame j is added to the score a(i, j − 1) to

obtain a(i, j).

Figure 3.2 shows an example trellis with nine frames. Four possible align-

ments are shown in the Figure: P1, P4, beginning in the first frame and P2, P3

beginning in the second frame. Such alignments are computed for each frame,

x1, x2, . . . , xn. The best of these alignments is retained and the score of this

alignment is assigned to the keyword model. The scores are a function of the

product of emission probabilities of the states in the path (state sequence). This

may cause the algorithm to be biased toward shorter alignments. Therefore it is

important that the scores be normalized at the end. An obvious normalization

21
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.

.

.

.

.

.

Q2

Q1

X1 X2 X3 X4 X5 X6 X7 X8 X9

P1 P4P2 P3

Figure 3.2: Keyword Spotting using Sliding Window Technique

factor would be the length of the path. Length of a path is the total number of

frames or states in it. For example, the path P1 traverses five frames (the path

has five states), hence its length is five. The score of this path is normalized at

the end by its length, which is five.
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Wilpon et al [10] use sliding window model technique, as described above.

For the five vocabulary keywords, Collect, Calling-card, Third-number, Person,

Operator, a recognition rate of 86.1 percent is reported.

Junkawitsch et al also use a similar approach in [4]. Details of this aproach

and some interesting work done by Silaghi and Bourlard in [8] are described

later in Section 3.2.1.

The disadvantage of sliding window models is that the algorithm takes longer

to run since all alignments, beginning every frame, are considered with little

pruning.

3.2 Proposed Techniques

Both Garbage/Filler models and Sliding Window models suffer from certain

limitations. While the former technique requires explicit modeling of extraneous

speech, latter is computationally expensive. We present alternative one-pass

technique that:

1) runs faster due to better pruning strategies and

2)does not require filler models. It does not require scoring for all possible begin

end points, hence space and time complexities are lower. It also achieves higher

recognition rates for larger vocabularies.
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3.2.1 One Pass Algorithm

One pass algorithm searches the most probable alignment of a keyword HMM

in a speech signal. Every path (state sequence), is associated with a score

or confidence measure. This confidence measure represents the probability of

the alignment to have produced the utterance. The alignment with highest

confidence measures is retained while the rest are pruned. Proposed confidence

measures are discussed in 3.2.2 and 3.2.3.

The algorithm is similar to sliding window technique. A trellis of emission

probabilities of all states in the hypothesized keyword HMM at all frames is

constructed as shown in Figure 3.3. At any frame, N new paths are permitted

to enter the trellis(since a keyword may begin at any frame), where N is the

number of distinct states to which transition from the entry state (-1) is possible.

Each of these N paths enters one of the distinct states. Score for a new path

entering a frame is equal to the local score of the state since a new path bears

no history (the score of the path so far is 0). All existing paths (which entered

the trellis at some previous frame) do bear a history and have a nonzero score

accumulated so far. In every frame, paths ending in states emitting the same

phoneme are compared. Only the best path per phoneme (set of states emitting

the same phoneme) is retained while the rest are pruned. This means that at

any time, total number of live paths in the algorithm is no more than the total
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Figure 3.3: One Pass Algorithm

number of phonemes (states emitting the same phoneme can be considered

same). This keeps the space requirement of the algorithm limited. Every path

propagates from a frame say n, to the subsequent frame, n + 1, by making a

transition. The score of the path is updated by accumulating the local score at

frame n + 1 into the score of the path till frame n. Finally, a set of paths that
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were not pruned remain. Among those, the best alignment (one with the best

score or confidence measure) is reported as the most probable alignment of the

model.

Figure 3.3 illustrates the comparison between two candidate paths P1 and

P2 for a keyword model. Each path traverses the trellis updating its score at

each frame. At frame seven, they enter the same state. Assuming the score of

path P1 > score of path P2, the latter gets pruned, leaving P1 as the surviving

alignment.

One pass algorithms are considerably faster than the sliding window model

technique because all paths entering the trellis are evaluated in the same pass

of the algorithm. The need to repeatedly compute alignments beginning every

frame is eliminated.

A significant issue in keyword spotting is the choice of the confidence measures

in a detection by a path in the HMM. If the confidence measure is poor, the

most likely paths may get pruned leading to poor results. Effective confidence

measures resulting in high detection rates are proposed in the following sections.

Sliding window approach described in the previous sections has been used

by Junkawitsch et. al in [4] and Wilpon in [10].The difference between their

approaches is in the way local scores are computed. [4] compute the difference
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between the negative logarithm of the emission probability of a state and the

value of the best state for that frame and assign it to the local score. Like [10]

alignments are permitted to start at any frame, and the score of a path entering a

state in frame j is computed by adding the local score of the state in the current

frame j to the score of the path in frame j−1. Again, scores of paths of different

lengths are normalized by the length of the paths, that is the number of frames

the path has traversed. Junkawitsch et al used keyword specific thresholds and

trained context dependent as well as context independent HMMs on 12 hours

of speech data. The experiments were performed on twenty five keywords and

obtained the Figure of merit of 58.5 percent for context independent and 73.9

percent for context dependent HMMs. The maximum detection was 80 percent

at the rate of 10 false detections/keyword/hour for context dependent HMMs.

An interesting keyword spotting approach without using filler models is pre-

sented by Silaghi and Bourlard in [8]. They investigate the confidence measure

of Double Normalization which is described and extended in this report. Their

paper proposes Iterative Viterbi Decoding which aims at mathematically com-

puting the probability of a state being a garbage state given an utterance i.e.

P (qG|xn) instead of using explicit garbage models. IVD achieves about 95
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3.2.2 Double Normalization

As described in Section 2.4, confidence measures are an indicator of the prob-

ability of a path (or state sequence or an alignment) producing an utterance,

and are therefore used for the comparison of different candidate paths. Among

the paths being compared, one with better confidence measure is retained while

the other is pruned. As mentioned before, a path is allowed to enter at any

frame and it may make a transition to a state producing the same phoneme any

number of times. Since one pass algorithm compares paths entering in different

frames, paths in the same state may differ in their length1. This difference in

length can cause a bias in the scores of the paths, favoring paths that are shorter

(that entered later in the trellis).

As a path enters a state in the trellis, the emission probability of the state

in the current frame is added to the confidence measure of the path. Since

probability is always less than one, this lowers the confidence measure of longer

paths. A good normalization technique is thus required to counter this bias in

confidence measures. Wilpon et al explore one such normalization in [10].

We propose the confidence measure of Double Normalization which proposes

normalizing the score twice. The fact that emphasis on a phoneme may cause a

1length of the path is equal to the number of frames the path has traversed
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path to remain in one state2 gives rise to the first normalization. This normal-

ization is done over the length of the phoneme. Visiting large number of distinct

phonemes may also lower the confidence measure of a longer path. This gives

rise to the second normalization, which is over the number of distinct phonemes

visited by the path. The resulting confidence measure is given as:

1

NV P

∑

piǫV P

∑
pstiǫPST − log(psti)

length(pi)
(3.1)

where, NVP: the number of phonemes visited by the path

pi: a phoneme in the path

VP: the set of all the phonemes

psti: the emission probability of the phoneme pi in the current frame

PST: set of emission probabilities of all the phonemes in VP

length(pi): returns the length of the phoneme (number of consecutive states

emitting this phoneme)

One pass algorithm using Double Normalization is presented in Algorithm 1.

Γ represents the set of all frames3 in the trellis (or utterance), Π is the set of all

candidate paths or alignments of the keyword model. A phoneme emitted by a

state s is represented by P [s].

2States represent emitted phonemes
3a frame is a period of 10ms in the utterance
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For every frame in the utterance, candidate paths of the keyword model

are computed by exploring transitions from the paths in the previous frame as

explained in Section 3.2.1. A path ending in a state σ in frame τ −1 could make

a transition in frame τ to a state emitting the same phoneme as shown in step

0.1 or to a state emitting a different phoneme as shown in step 0.2; the score

of the path is updated by accumulating the score of current state accordingly.

All paths ending in states emitting the same phoneme in the current frame are

compared. Only the best path per state is retained as shown in step 0.3.

Based on the criteria of comparing two paths, two versions of Double Normal-

ization were studied: Double Normalization 1 (DN1) and Double Normalization

2 (DN2). Both of these vary only in the criteria that must be met for two paths

to be compared and thus pruned. Details are discussed below.

Double Normalization 1

As discussed before, the hmm of a word is formed by the concatenation of the

hmms of its constituent phonemes. Consider a word which consists of phonemes

a, b, z in the order a b a z. The HMM of the word would consist of the following

states:

−1, A1, A2, A3, B1, B2, B3, A1, A2, A3, Z1, Z2, Z3,−2
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for each time frame τ ∈ Γ do

for each path ρ ∈ Π do

for each possible transition to state σ from the current state ς do

if (P [σ] == P [ς)] then

0.1 Increment length of phoneme P [σ];

Update posterior pst for phoneme P [σ];

Update score for path ρ;

else

0.2 Set length of phoneme P [ς] to 1;

Increment number of visited phonemes, NV P , for path ρ;

Initialize posterior pst for phoneme P [ς];

Update score for path ρ;

for any path ̺ ∈ Π ending in state emitting P [ς] and frame τ do

if (ρ < ̺) then

0.3 Add ρ to Π;

Delete ̺ from Π;

Algorithm 1: Double Normalization
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where -1 and -2 are the non emitting entry and exit states respectively and

{A1, A2, A3}, {B1, B2, B3} , {Z1, Z2, Z3} are the three emitting states in

the HMMs of phonemes a, b and z respectively.

If HMM of each phoneme that is concatenated for the formation of the HMM

of a word is considered a level, it can be said that the HMM in the example

above consists of 4 levels: first level consisting of states A1, A2 and A3, second

level consisting of states B1, B2 and B3, third level again consisting of the same

states as the first level (A1, A2 and A3) and finally the forth level consisting of

states Z1, Z2 and Z3. If an alignment of this HMM is being computed in an

utterance, two candidate alignments being evaluated in the trellis could be:

−1 A1 A2 A3 A3 A3 A3 A3 A3 B1 B2 B3 B3 A1 A21.4

−1 A1 A2 A3 A3 A3 A31.5

As shown, path A has visited 16 states (or frames). If path A enters the trellis

in frame 1, the path would currently end in frame 16. As path B consists of

6 states, if path B enters the trellis4 in frame 10, last state of path B would

also be in frame 16. Assuming this scenario, both paths A and B end in frame

16. Also, the last state in both the paths, A2 and A3 emit the same phoneme,

a. As mentioned in Section 3.2.1, the algorithm compares paths ending in the

4A path is allowed to enter in any frame
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states emitting the same phoneme in a frame and only the best is retained. This

means that paths A and B should be compared and the inferior path must be

pruned. However, based on the criteria of DN1, this is not so.

Based on the idea of levels in a word HMM, it can be said that alignment A

is currently at the third level of the HMM while alignment B is at the first level

of the HMM. DN1 allows paths to be compared only if their current states emit

the same phoneme and are at the same level in the HMM. Because Paths A

and B end at different levels in the HMM, DN1 does not allow the comparison

between paths A and B even though they end in the same state (states emitting

the same phoneme, a).

Double Normalization 2

The difference between DN2 and DN1 is in the constraints that need to be

satisfied for two paths to be compared. As discussed above, for two paths to be

compared, DN1 requires that not only the two paths end in the states emitting

the same phoneme, but also are at the same level in the current frame. DN2

relaxes this constraint and allows the paths to be compared if the paths end in

states emitting the same phoneme in a frame, irrespective of the level at which

the alignments currently end. Taking the example from 3.2.2, paths A and B

would be compared at frame 16, the inferior being pruned. This leads to a
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harsher pruning in DN2, causing fewer paths to survive. The total number of

paths in DN2 would never exceed the total number of unique phonemes in the

word model. In DN1 it would never exceed the total number of phonemes in the

word model (which would be greater than the former if a phoneme is repeated

in the model).

3.2.3 Real Fitting

Like DN, in Real Fitting also every state is associated with its emission proba-

bility in every frame and the confidence measure is a function of the probability

of all states in an alignment. The best alignment would be one in which all con-

stituent states have high emission probabilities in their respective frames. This

means that for the best alignment, every subsequence of the alignment must

also be a good match and the score of even the worst subsequence must also be

better than a thershold. Based on this fundamental, Real Fitting suggests that a

path can be represented by the score of its worst subsequence match. Therefore,

instead of a confidence measure based on the posterior of the entire state se-

quence, one based the posterior of the worst phoneme match subsequence should

suffice. This confidence measure represents the worst subsequence alignment for

the model. It can be represented mathematically as,

MAXpiǫV P

∑
pi
− log(psti)

length(pi)
(3.2)

34



Where, pi represents the phoneme with worst subsequence match

V P is the set of all the phonemes

psti is the emission probability of the phoneme pi in the given frame

length(pi) returns the length of the phoneme5.

A one pass algorithm using real fitting confidence measure is presented in

Algorithm 2. Γ represents the set of all frames in the trellis (or utterance), Π is

the set of all candidate paths. A phoneme emitted by a state s is represented

by P [s]. The algorithm is similar to Double Normalization: For every frame in

the utterance, candidate paths of the keyword model are computed by exploring

transitions from the paths in the previous frame. A path ending in a state σ

in frame τ − 1 could make a transition in frame τ to a state emitting the same

phoneme as shown in step 0.1 or to a state emitting a different phoneme as

shown in step 0.2; the score of the path is updated by accumulating the score of

current state accordingly. All paths ending in states emitting the same phoneme

in the current frame are compared, pruning the inferior path and retaining only

the best path per state as shown in step 0.3.

The difference between one pass algorithm for RF and DN is when the score

of a path is updated. As opposed to DN, the score of a path remains unchanged

in RF as long as the path makes a transition to the same state (state emitting

5length of a phoneme is the total number of frames in which it occurs consecutively
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the same phoneme, say P [σ]). When a transition to a state emitting a different

phoneme is made, the average posterior of the set of consecutive states emitting

the same phoneme, P [σ] is computed. If the real fitting score of the subsequence

of consecutive states emitting the same phoneme is lower than the current score

of the path, this is the worst subsequence encountered so far. The score of the

alignment is thus updated with the score of this subsequence. This way, score of

an alignment is always equal to the score of its worst subsequence match found

so far.

Like Double Normalization, different versions of pruning in Real Fitting are

proposed, namely Real Fitting 1 (RF1), Real Fitting 2 (RF2) and Extended

Real Fitting (XRF). The detailed description of each is presented below.

Real Fitting 1

The pruning in RF1 is similar to DF1. As described earlier under Double

Normalization 1, if each HMM being concatenated to form a word HMM is

considered a level, DN1 imposes the constraint that only those paths can be

compared for pruning which end in states emitting the same phoneme and are

at the same level in the word HMM. The same constraint applies in RF1. In

the example from DN1, RF1 would also forbid paths A and B to be compared

although they end in states emitting the same phoneme in a frame because they
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for each time frame τ ∈ Γ do

for each path ρ ∈ Π do

for each possible transition to state σ from the current state ς do

if (P [σ] == P [ς]) then

Increment length of phoneme P [σ];

Update posterior pst for phoneme P [σ];

Update score for phoneme P [σ];

else

Set length of phoneme P [ς] to 1;

Increment number of visited phonemes, NV P , for path ρ;

Initialize posterior pst for phoneme P [ς];

Compute average posterior of the last phoneme P [σ] ;

if (P [σ] score < ρ score) then

Set ρ score = P [σ] score;

for any path ̺ ∈ Π ending in state emitting P [ς] and frame τ do

if (ρ < ̺) then

1.1 Add ρ to Π;

Delete ̺ from Π;

Algorithm 2: Real Fitting
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are at different levels in the word HMM.

Real Fitting 2

Real Fitting 2 is different from Real Fitting 1, the same way that Double Nor-

malization 2 differs from Double Normalization 1 - it allows paths ending in

states emitting the same phoneme in a frame to be compared, irrespective of

the level they are at in the word HMM. Thus Real Fitting 2 would allow paths

A and B to be compared, pruning the inferior path and retaining the superior

one. Like in DN1 and DN2, RF1 relaxes the pruning of paths as compared

to RF2, allowing more paths to survive. Like DN, the total number of paths

in RF2 would never exceed the total number of unique phonemes in the word

model, whereas in RF1, it would never exceed the total number of phonemes in

the word model (which would be more than the former if a phoneme is repeated

in the model).

Extended Real Fitting

Real Fitting is not an optimal algorithm. Two paths are compared and the

inferior path (one with a worse confidence measure) is pruned before the paths

reach their final states. The proposed algorithms do no follow the principle of

optimality. This could lead to pruning of possible optimal paths since there is

no way to guarantee that the alignments measures would maintain the same
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order of precedence of scores in future. Both RF1 and RF2 suffer from this

limitation.

It has been described earlier that RF1 relaxes the pruning of paths from RF2

by allowing fewer paths to be compared. Extended Real Fitting (XRF) goes

one step further from RF1 in the relaxation of path pruning. Extended Real

Fitting does not retain just one path per phoneme in the trellis. Instead, it

retains a set6 of paths per phoneme satisfying some constraints independent of

the other paths. We define:

• Φ: maximum acceptable values of the negative logarithm of the phoneme

posterior(emission probability of state producing the phoneme)

• Λ: length of the phoneme

• ϕ: negative logarithm of posterior of a phoneme in the current frame for

a path

• φ: cumulated posterior of a phoneme over frames in which the phoneme

repeats itself consecutively

• λ: length of the phoneme or the number of frames over which the phoneme

repeats itself consecutively

Consider a word with phonemes a, b and a candidate path:

6Our experiments retained 3 paths per trellis
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−1, A1, A2, A3, A3, B1, B2, B3

States A1, A2, A3 and B1, B2, B3 are the states emitting to phonemes a and b

respectively. ϕi represents the negative logarithm of the emission probability

of state i in the frame of occurrance. E.g. ϕ1 is the negative logarithm of

probability of state A1 to emit phoneme a in frame 1. Every state is associated

with an emission probability, ϕ in its frame of occurrance. φ is the cumulated

posterior for the states emitting a phoneme over frames in which the phoneme

appears consecutively . It can be defined as:

φ =
∑N

i=1 ϕi

where states (1 . . . N) emit the same phoneme, i.e. the phoneme for which

the average posterior is being computed, say a. In our example, φ for a =

ϕ1 + ϕ2 + ϕ3 + ϕ4

where: ϕk is the emission probability of state Ak in frame k.

This makes φ/λ is the average posterior for a phoneme.

Constraints imposed by XRF for retention of paths are as follows.

• ϕ > ΛΦ

• φ/λ > Φ

The first constraint ensures that the emission probability of every state in

a candidate path is greater than a maximum allowed value, ΛΦ. The second
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constraint verifies that the average posterior of every phoneme is also greater

than a threshold, Φ. The values of Λ and Φ are predetermined.

Constraints imposed by XRF could be satisfied by a large number of paths

for large values of Λ and Φ. This leaves a considerable number of paths in the

algorithm unpruned, thus preventing the pruning of a possibly optimal path.

Defining a maximum number of paths (MAX) in each state in a frame that

can be permitted to exist at any time ensures that the number of paths does

not grow too large thereby slowing the algorithms significantly. The best MAX

paths, satisfying the constraints described above, are retained. The best paths

are the ones with best confidence measure described in equation 3.2
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Chapter 4

Experimental Evaluation

This chapter presents the evaluation of the keyword spotting algorithms dis-

cussed in Chapter 3. The first section is about the database used for conducting

the experiments. The next section describes the existing evaluation criteria for

the keyword spotting algorithms. Then we present the results and discuss the

drawbacks of the evaluation procedure in Section 4.3. A procedure to overcome

this drawback is proposed and the results using this procedure are presented in

the final section.

4.1 Experimental Dataset

The algorithms proposed in this report were evaluated on a part of the BREF

database. BREF is a large French speech corpus containing about 100 hours of
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speech data gathered from about 120 speakers selected from Paris area. The

text to be read was selected from a french newspaper Le Monde. It consists

of 3300 short sentences and 3800 long sentences (12.4 words/sentence and 21

words/sentence respectively) with 35 distinct phones and 14,089 distinct words.

About 46 percent speakers were male and 54 percent were female of ages ranging

from 18–73 years. Details on the database can be found in [5].

We did our experiments on 242 sentences of the database using the same 35

distinct phones and 1221 distinct words.

4.2 Evaluation Criteria

The algorithms proposed in this report, like most other keyword spotting algo-

rithms, output a confidence measure for each keyword for an utterance. This

confidence measure indicates how strongly the algorithm believes the keyword

is present in the utterance. A threshold is set and keywords with better1 confi-

dence measures than the threshold are considered present in the utterance. Thus

the output of the algorithms for a keyword in an utterance is true(keyword is

present) or false (keyword is not present).

1Since the confidence measures being evaluated are functions of the negative logarithm of

the posterior probability, lower values of confidence measures mean higher probability and

thus better confidence measures
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We count true positives2, false positives3 and false negatives4 for the evalua-

tion of results. Receiver Operating Characteristic curves are plotted to compare

and assess the performance of two or more algorithms.

4.2.1 Receiver Operating Characteristics

Receiver Operating Characteristics, ROC curves were initially used to interpret

radio signals containing noise. They are used for evaluating decision making ap-

plications which produce a true or false result. Such results involve a threshold

which determines whether the output should be true or false. If values lower

than the threshold are considered true, more values will be classified as true

with higher threshold. This increases the true positive rate as well as the false

positive rate and lowers the false negative rate. The curve of true positives

(TP) or false negatives (FN) versus false positives (FP) is called an ROC curve.

Good results have points on the graph with high true positive rates or low false

negative rates and low false positive rates. An ROC curve and thereby the

performance of an application is evaluated by the area under the ROC curve.

If the curve is plotted between FN and FP, it should resemble the curve shown

in Figure 4.1

With low thresholds, the number of FN is higher while that of FP is lower.

2results correctly identified as true by the application
3results incorrectly identified as true (they were actually false)
4results incorrectly identified as false (they were actually true)
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Figure 4.1: ROC curve made by plotting False Negatives versus False Positives

As the threshold is raised, FNs decrease while FPs increase. For an application

with good results, there should be a point in the curve where both FNs and FPs

are low and neither increases abruptly. This is represented by the area under

the curve: lower the area under the curve, better the performance.
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Figure 4.2: ROC curve made by plotting Truep Positives versus False Positives

However if the curve is plotted between TP and FP, the curve would resemble

the curve shown in Figure 4.2. With low thresholds, the number of TP as well

as the number of FP is low. As the threshold is raised, both show an increase.

For good results, the curve now should have a point with high number of TPs
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and low FPs. Larger area under the curve indicates better results. Thus the

area under an ROC curve reflects the performance of the application.

ROC curves and the area under the curves have been used for the evaluation

of the algorithms proposed in this report.

4.3 Results and Analysis

This section presents the experimental procedure and the results obtained. Two

different experimental procedures were followed: the first procedure, Procedure

1 or Standard Evaluation, is the standard procedure followed to compare two

keyword spotting algorithms. We then discuss the limitations of Procedure

1 when used for keyword spotting algorithms and present a novel procedure,

Procedure 2 or Equal Opportunity Evaluation, to overcome those limitations.

Each of the procedures is discussed in detail in the following subsections.

4.3.1 Standard Evaluation - Procedure 1

This is a simple procedure used to compare any two keyword spotting algorithms

using ROC curves. The first step is to select a set of words and the utterances

over which the techniques are tested. For each utterance, the techniques are
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then allowed to present their confidence measures5 for each word. Based on

these confidence measures, the number of TP (or FN) and FP belonging to

each technique are computed for a set of thresholds. An ROC curve is then

plotted. The performance of the technique whose ROC has higher curvature is

better.

Using this procedure of standard evaluation, two of the techniques - XRF and

DN2 - were evaluated on two different sets of keywords.
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Figure 4.3: ROC curve comparing XRF and DN2 for the first set of 100 keywords

Each set of keyword consisted of 100 words selected from the 242 utterances

in the database. All algorithms were made to calculate the confidence measures

5Since the confidence measures proposed in this report are based on the negative logarithm

of posterior probability, lower values for confidence measures are better than higher ones.
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Figure 4.4: ROC curve comparing XRF and DN2 for the second set of 100

keywords

for each keyword. TPs and FPs were computed from these confidence measures

for three different thresholds and an ROC curve was plotted between TPs and

FNs for the three different thresholds. The resulting graph is shown in Figure

4.3. Same experiments were repeated with the second set of 100 keywords.

Another ROC was plotted between the TPs and FPs of the techniques for the

same thresholds. The results are shown in igure 4.4. The x-axis represents the

detection rate, or the percentage of keywords correctly detected(percentage true

positives). The y-axis represents the total number of false positives per keyword

per hour of the speech data.
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Clearly, the two curves in Figure 4.4 and Figure 4.3 show contradicting results.

In Figure 4.3, XRF clearly outperforms DN2. XRF starts with a detection rate

of about 78 percent at 0 FPs. As the threshold is increased, XRF achieves 100

percent detection at 0.5 false positives/keyword/hour. DN2 on the other hand

achieves only 97 percent detection at about 5 false positives/keyword/hour.

Increase in the detection rate after this point comes at a cost of very high false

positive rate. Based on this graph, we could easily conclude that XRF achieves

higher detection rate than DN2 on this database. However, the experiments

performed on the second set of words prove this conclusion false. In Figure

4.4, DN2 starts with a detection rate of about 80 percent at 0 FPs. With the

increase in threshold, it goes on to achieve 100 percent detection rate at 0.35

false positives/keyword/hour. Whereas, XRF achieves 98 percent detection at

4 false positives/keyword/hour, after which, the detection rate increases at a

cost of very high false alarms rates. As mentioned before, area under the curve

reflects the performance of the technique. Since the curve is plotted between

TPs and FPs, higher the area under the curve, better the performance. In

Figure 4.3, area under XRF is higher than DN2 whereas in Figure 4.4, area

under DN2 is higher than XRF by about the same amount.

Hence, the results in Figures 4.3 and 4.4 are inconclusive. It is clear that

the performance of a technique is strongly influenced by the choice of keywords.
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Thus, to evaluate two techniques on a set of randomly selected keywords is not

fair. To overcome this issue, we propose a novel evaluation, Equal Opportunity

Evaluation discussed in Section 4.3.2.

4.3.2 Equal Opportunity Evaluation - Procedure 2

For a fair evaluation of keyword spotting techniques, it is important to remove

the bias caused by the choice of keywords as discussed in Section 4.3.1. Equal

Opportunity Evaluation overcomes this limitation by allowing each technique

to achieve its best possible result. The best performances of the techniques are

then compared. So each technique has an equal opportunity to display its best

performance.

As discussed earlier, performance of a technique is strongly influenced by the

choice of keywords. To allow the techniques to perform their best, the keywords

on which the techniques perform the best should be selected. Equal opportunity

evaluation selects the best keywords for each technique and then compares the

performances of each technique on its respective list of best keywords.

To begin with, the first question that rises is how is the list of best keywords

for each algorithm computed. Details of the procedure are described in the next

few sections.
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Initial Computation

In this phase, the results are computed for all the words (1221 words) in the

database. All techniques are made to compute confidence measures of all words

for each utterance in the database. To evaluate a word for a technique, its FPs

and FNs are computed for a set of different thresholds. So at the end of this

phase, a list of words and its FPs and FNs is available for each technique to be

evaluated.

In our experiments, techniques using double normalization confidence mea-

sure, namely DN1, DN2, were evaluated at threshold values 1, 1.5 and 2 while

the techniques using real fitting confidence measure, namely RF1, RF2 and

XRF were evaluated at threshold values 3, 3.5 and 4.

Best Keywords Selection

With the list of confidence measures obtained in the previous section, an ROC

curve is plotted between the FPs and FNs at different thresholds for all the

words produced in the previous step. The area under the ROC for each word

is computed and the words with lowest area6 under the ROC are selected.

Figure 4.5 shows an example of an ROC of a word. If the curve is represented

by y = f(x), the area under the curve can be evaluated by :

6since ROC is plotted between FNs and FPs, lower area means better performance
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Figure 4.5: ROC curve of a word

∫
f(x)dx

In Figure 4.5 the area can be evaluated by
∫

10

4 f(x)dx. It can also be approxi-

mated by computing the area under the trapeziums formed by joining the con-

secutive points, T1 and T2. This evaluates to: (3+2)∗ (4−2)+(2+1)(8−4) =
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Figure 4.6: ROC curve of another word

22. However in certain scenarios, this computation fails. E.g. when an-

other word has a curve as shown in Figure 4.6. In such a case, although

the word with ROC in Figure 4.5 should be considered better (because the

FPs are lower for same FNs), their areas would evaluate to the same value,
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(3 + 2) ∗ (6− 4) + (2 + 1) ∗ (10− 6) = (3 + 2) ∗ (4− 2) + (2 + 1) ∗ (8− 4) = 22.

To overcome this, we present an alternate method of computing area under

ROC: The area under the curve is approximated by computing the area under

the rectangles formed by joining the points with the x and y axes as shown in

Figure 4.7.

With the latter method, the area under the curves in Figures 2 and 3 evaluate

to (2 ∗ 3)+ (4 ∗ 2)+ (8 ∗ 1) = 26 and (4 ∗ 3)+ (6 ∗ 2)+ (10 ∗ 1) = 34 respectively,

indicating the ROC of the former word in Figure 4.7 is better, as required.

This method of computing area under ROC computes the area under the curve

and also takes into account the position of the curve on the axes, giving a

better evaluation for a curve closer to the axes, hence a curve with lower FPs.

Therefore, we used this method, to compute the area under ROC for each word

for each of the techniques.

Final Evaluation

From the list of words and the corresponding area under the ROCs produced

in the previous step, 100 words with lowest area under the ROC are selected.

For each of these techniques, ROCs are then plotted using the selected best 100

words. We plotted the ROCs using total number of TPs and FPs of the best

100 words of the technique for a set of different thresholds, and then compared

these ROCs.
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Figure 4.7: ROC curve of another word, area being computed by alternate

method

The first comparison was made between the different types of prunings dis-

cussed in chapter 3 under sections 3.2.2 and 3.2.3. The two prunings under

Double Normalization were DN1 and DN2. The ROC comparing these two is
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Figure 4.8: ROC curve of another word, area being computed by alternate

method

presented in Figure 4.9.

In the Figure, DN1 starts at a higher detection rate at 0 FPs however, DN2

goes on to achieve 100 percent detection at 0.3 FPs/keyword/hour as opposed
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Figure 4.9: ROC curve comparing DN1 and DN2 for their respective best 100

keywords

to DN1 which achieves 100 percent detection rate at 0.5 FPs/keyword/hour. It

can be said that as the threshold is increased, DN2 performs better than DN1.

Since the pruning is harsher in DN2, fewer paths survive during the search. This

also makes DN2 faster than DN1. The average time required by DN2 to evaluate

the confidence measure of a keyword in an utterance of 740 frames (7.4 seconds

of data) is 5.82 seconds/keyword while that of DN1 is 6.45 seconds/keyword.

The next comparison is between the three prunings under Real Fitting -

RF1, RF2 and XRF. As discuessed earlier, XRF retains a set of path per col-

umn in trellis. We used a predetermined number - three paths per column -

58



70

75

80

85

90

95

100

0 0.2 0.4 0.6 0.8 1

P
er

ce
nt

ag
e 

T
ru

e 
P

os
iti

ve
s

False Positives/Keyword/Hour

XRF for best 100 words of XRF
RF1 for best 100 words of RF1
RF2 for best 100 words of RF2

Figure 4.10: ROC curve comparing RF1, RF2 and XRF for their respective best

100 keywords

for our experiments. The ROC is shown in Figure 4.10. As the pruning here

gets harsher, the detection rate is lowered. The difference is more pronounced

at higher thresholds when the detection rates are higher. As discussed in the

previous chapter, pruning in RF2 is the toughest, followed by RF1 and is the

least in XRF allowing more paths to survive. As predicted from the pruning,

detection in XRF is the highest followed by RF1 and RF2. Thus, we can say

that if the pruning in the algorithm is further relaxed (to allow more than three

paths in a frame), the performance should improve. However, this improvement

comes at a cost of the time required by each algorithm to compute the confi-

dence measure of a word in an utterance. The average time taken by RF1 to
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detect a keyword in an utterance of 740 frames (7.4 seconds of data) is 5.06

seconds/keyword, while that taken by RF2 is 4.23 seconds/keyword and XRF

(with 3 paths per state per frame) takes 5.22 seconds/keyword.
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Figure 4.11: ROC curve comparing XRF and DN2 for their respective best 100

keywords

The next step is to compare the two confidence measures - Double Normaliza-

tion and Real Fitting. We picked the best prunings in each confidence measure,

DN2 and XRF, and compared their results. The ROC is shown in Figure 4.11.

As shown, although XRF starts at higher detection for lower FPs, DN2 goes

on to achieve 100 percent detection before XRF. Depending on the threshold,

one technique is better than the other. Also, if more number of paths are per-
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mitted per frame in XRF, its detection rate could surpass the detection rate of

DN2. We also compared the performance of our techniques with Sliding Window

(SW) Technique described in chapter 3, Section 3.1. DN2 and XRF exceeded

the performance of SW as suggested by the results in Figure 4.11. We also

compared the time taken by the three techniques and XRF took the least time

followed by DN2. As mentioned before, on an utterance of 740 frames, XRF

(with 3 paths per state per frame) takes 5.22 seconds/keyword while DN2 takes

5.82 seconds/keyword. For the same utterance, SW takes 20 seconds/keyword!

Clearly, not only do DN2 and XRF have better detection rates, they have a

much lower time complexity as compared to Sliding Window technique.

4.4 Phonemes in Best Words

We also conducted some experiments to analyze the performance of individual

phonemes. Tables 4.1 and 4.2 list all the 26 phonemes in the Bref database and

the number of times they occurred in list of best 100 words for each algorithm.

An interesting fact observed is that inspite of the fact that the words constitut-

ing the best 100 words for each algorithm were different, the frequency of the

phonemes is very similar across algorithms. Some of the examples of frequently

occurring phonemes in the table are phonemes E, R, i. This means that not

only are some words more easily spotted by algorithms, some phonemes are
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easier to recognize also. Another such analysis was done on the length of the

most easily recognized words.

Table ?? lists the lengths and the number of words of those lengths found

in the list of best 100 words for each algorithm. It can be observed the all

algorithms perform well on keywords with lengths 6 and 7. Thus it can be said

that keywords of length about 6-7 form good keywords. Another interesting

observation is that algorithms using RF confidence measure detect more shorter

keywords than the algorithms using DN confidence measure while the latter spot

more longer keywords than the former. A system comprising of both kinds of

algorithms would thus perform well on a wider range of lengths of keywords.

The purpose of these results is to be able to find better keywords for keyword

spotting systems to enhance their performance.

62



Table 4.1: Frequency of phonemes in the best 100 words

Phoneme RF1 RF2 XRF DN1 DN2

2 2 2 1 2 2

9 4 3 2 4 5

@ 9 7 4 13 11

E 53 50 71 59 66

H 2 2 3? 2 5

N 3 3 2 1 1

O 7 7 9 6 9

R 45 46 61 61 63

S 5 7 7 9 9

Z 9 12 8 10 9

a 46 44 45 53 56

a 30 27 20 27 29

b 10 10 6 12 16

d 16 25 22 19 17

e 7 9 9 22 19

e 10 11 9 10 8

f 17 15 16 19 15

g 2 5 4 9 9

i 47 44 45 62 61
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Table 4.2: Frequency of phonemes in the best 100 words

Phoneme RF1 RF2 XRF DN1 DN2

j 22 24 19 25 23

k 36 31 22 36 36

l 19 16 18 36 35

m 23 20 20 24 27

n 18 19 14 18 20

o 10 11 25 22 20

o 19 18 11 23 21

p 23 24 38 43 40

s 58 43 45 49 51

t 34 28 39 43 43

u 3 7 1 5 2

v 13 13 16 15 13

w 2 4 5 6 4

y 10 9 14 15 14

z 10 11 15 13 12
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Table 4.3: Frequency of keyword lengths in the best 100 words

Length RF1 RF2 XRF DN1 DN2

2 1 1 1 1 0

3 2 3 1 0 0

4 2 2 8 1 1

5 27 32 19 7 4

6 31 31 35 20 29

7 24 21 14 21 21

8 6 4 8 16 15

9 3 2 7 16 13

10 2 1 2 10 6

11 0 1 4 6 6

12 2 2 1 0 3

13 0 0 0 1 1

14 0 0 0 1 1
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Chapter 5

Conclusions

Keyword spotting techniques are a leading class of speech recognition tech-

niques. They deal with recognition of known vocabulary words in a stream of

voice signal. Three concepts of keyword spotting techniques that this research

focusses on are confidence measures, pruning techniques and evaluation criteria.

Confidence measures represent the correspondance between the output and

the input sequence. It is therefore important to have effective confidence mea-

sures to attain accurate results. Based on the logic that the best alignment

for a keyword would be one in which all constituent states have high emission

probabilities in their respective frames, the confidence meausre of Real Fitting

is proposed. Real Fitting represents the score of a path by its worst subse-

quence match. Algorithm using this confidence measure achieves 100 percent
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detection rate at 0.5 false positives/keyword/hour. For certain thresholds, it

also outperforms algorithm based on Double Normalization. Results also show

that algorithms based on Real Fitting are faster than those based on Double

Normalization.

Pruning techniques determine which paths are eliminated and hence play a

crucial role in keyword spotting. We introduce different pruning techniques for

the One pass algorithm used by Double normalization and Real Fitting tech-

niques. DN technique is tested with two different prunings, DN1 and DN2. The

former requires the paths to be at the same level for comparison while the latter

does not. This makes fewer paths survive in the latter leading to faster compu-

tation. DN2 achieves 100 percent detection at 0.3 false alarms/keyword/hour

in 5.82 seconds/keyword while DN2 achieves 100 percent detection at 0.5 false

alarms/keyword/hour in 6.45 seconds/keyword. RF1 and RF2 differ in pruning

like their DN counterparts, DN1 and DN2. RF2 proves to be the fastest tech-

nique among all the techniques explored in this research, achieving 97 percent

detection rate 0.4 false alarms/keyword/hour in 4.23 seonds/keyword which is

only slightly lower than RF1 detection 98 percent detection rate at the same

false alarm rate taking 5.06 seconds/keyword. XRF is a new pruning idea that

maintains a set of paths per frame in place of a single path per frame. It has a

detection rate of 0.5 false positives/keyword/hour, outperforming the rest, and
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takes 5.22 seconds/keyword. An interesting point to note here is that all Real

Fitting techniques are faster than Double Normalization techniques.

The results of a keyword spotting algorithm can be strongly influenced by

the choice of keywords on which the experiments are run. This assumption is

supported by the ROCs drawn to compare DN2 and XRF on two sets of key-

words. Another contribution of this research is an evaluation technique that

allows different algorithms to be compared without this influence. Equal op-

portunity evaluation selects the best keywords for each technique and compares

the performance of the techniques on their respective best keywords. Although

the best keywords for each technique differ, the phonemes constituting the best

keywords across techniques are consistent, which leads as to conclude that some

phonemes are easier to recognize. Most keywords which are recognized well by

algorithms vary in length between 6-7 characters long. Another interesting fact

to note is that RF techniques are better are recognizing shorter keywords than

DN while the latter recognize longer keywords more easily than the former.

Hence a system that combines the two is expected to have a broad range of

detection.
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