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Abstract

Title: Reduced Index Sparse Representation in a Parallel Environment.
Author:  Pedro Alfonso Escallon
Advisor: Charles Fulton, Ph.D.

Sparse-matrix/dense-vector multiplication algorithms are not as highly developed as
algorithms for dense matrices. Dense matrix multiplication algorithms have been
made efficient by exploiting data locality, parallelism, pipelining, and other types
of optimization. Sparse matrix algorithms, on the other hand, encounter low or no
data locality, indirect addressing, and no easy way to exploit parallelism. In an
effort to achieve savings in storage and computation time, the topic of sparse matrix

representation is often revisited.

The first contribution of this thesis is the introduction of a new representation for
sparse matrices. This representation is called here the Reduced Index Sparse (RIS)
representation because an ordered pair (j,v) with a single index j is used for every
nonzero matrix element. This considerably reduces the required disk storage from
that needed by other representations like the coordinate (COO) format, which uses

an ordered triple (a;;,1,7) with two indices, 7 and j for every nonzero matrix element.

The second contribution of this thesis is a modified block cyclic data distribution
for sparse matrices with arbitrary nonzero structure. And the third contribution
is the implementation of this distribution using RIS to perform a parallel sparse-
matrix/ dense-vector multiplication on a distributed memory computer using MPI.
The implementation achieved good load balancing for sparse matrices of different

sparsity patterns.

Software was written to generate large random sparse matrices having well prescribed
sparsity patterns. The desired number of nonzero elements and matrix density are

user input. The sparsity pattern is also controlled by user input.

Performance of the new RIS storage scheme was measured against SPARSKIT rou-
tines. Efficiency and scalability of the parallel sparse-matrix/dense-vector multiplica-

tion was generally good and timing analysis shows the new RIS scheme is competitive.
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Symbol Name

cP The current process

nP The number of processors used
nCD The number of column divisions
nRD The number of row divisions
Pc The number of column cycles
cD The column division

rD The row division

Pr The number of row cycles
nPG The number of process grids
nCG The number of column groups
nRG The number of row groups
pCC The process column cycle

pc The column process coordinate
pr The row process coordinate

Y Vector Y

) Vector Y

Y iz, €lement of Y

A Matrix A

(ai]-) Matrix A

a;j (i,j) entry of A

M The number of rows

N The number of columns

The number of nonzero elements
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Chapter 1

A Matter of Representation

1.1 Introduction

Sparse matrix representation is doomed to have index information attached to the
matrix element value. In dense representation, indexing is implied by the position of
the datum in whatever structure the matrix is represented (usually lists of arrays).
For sparse matrices, the simplest representation is the coordinate format [1] in which
each element has row and column indices attached to the nonzero element that is
represented. All the representations previously known and proposed here have two
aspects to consider. One is disk storage which is how the matrix is saved in a disk file
for later retrieval. The other aspect is the way to store the matrix in random access
memory for processing. This second aspect is more decisive in obtaining efficient

algorithms.

According to Im [2], there are hundreds of sparse matrix formats. Of those we will
consider only two, the coordinate (COO), and the compressed sparse row (CSR).
And we will introduce two new ones, the reduced index sparse (RIS), and the reduced
index compressed sparse row (RCSR). In this chapter we will treat each of these

representations mathematically.

A small sample matrix (figure 1.1) will be used for illustration. All the representation

examples of this chapter refer to this matrix.



17 0 0 0 65 0 0 0 T
0o 0 200 0 O O O
o 0o o0 0 0 0o 0 o0
0 62 0 0 0 0 05 53
o 0o o0 0 0 0 0 o0
0 0 0 0 78 0 6.7 O
o 0o o0 0 0 o0 0 o0

| 0 0 0 0 0O 0 0 0.3

Figure 1.1: Sample Matrix - Dense Format

1.2 Notation

The matrix and vector notation of Golub and Van Loan [12] is adopted here. Bor-
rowing the introductory portion of this notation, Let R be the set of real numbers.
Let RM*N be the vector space of all M x N real matrices,

(@1) -+ (a1n)

AERMXN<:>A:(G,U): , ai; €R

(arr1) -+ (amn)
Matrices are denoted by uppercase letter, and their corresponding lower case letter
with subscript ij refers to the (4,j) entry. A(%,j) notation is also used to designate

matrix elements.

Let R™ be the vector space of real n-vectors. Then,

Z1
XeR' = X = () = , ; €R
Zn
As in matrix notation, vectors are expressed in uppercase letters, their corresponding
lower case letter with subscript i refers to the i*® entry. X(i) notation is also used to

designate vector elements.

1.3 Dense Representation

Let Y = (y;) € RM be the product vector. Let X = (z;) € RN be the right hand side
vector. Let A = (a;;) € RM*N be a sparse matrix represented in dense format. The

product Y = AX can be expressed as



N
yi= Y ayzj, Vi=1:M (1.3.1)

=1
Using C style syntax, equation (1.3.1) produces algorithm 1.1. In this algorithm
each y; should be initialized to 0 prior to calling the function mul, because in every
iteration of the inner loop y; is updated. In every such update, the memory of y; is

accessed to read the current value, and again to store the updated value.

Algorithm 1.1. Dense Format Multiplication Algorithm

void mul( int nnZ, double A[] [N], double X[], double Y[] )
{
int 1i,j;
for (i=1;i<=M;i++) {
for (j=1;j<=N;j++) {
Y[i]l += A[i1[j] = X[j];
}

}
}

1.4 Coordinate Representation

To avoid re-describing established representations, quoted descriptions will be given
when appropriate. Im [2] states that the “coordinate representation stores each
nonzero matrix element with row and column integer indexes along with a float-
ing point value” or floating point value pair if the matrix is complex!. “It consists of
three arrays: a real array of size nnZ containing the real values of nonzero elements
of A in any order, an integer array containing their row indices and a second integer

array containing their column indices” according to Saad [9].

Let A = (a;;) € RMXN be a real sparse matrix with nnZ nonzero entries that we
want to represent in coordinate format. The coordinate representation (COO) of A

consists of three arrays:

e A real one-dimensional array A = (ji, dx) € R*Z that contains only the nonzero
entries a;; of A in any order.

e An integer array I = (i) also of length nnZ that contains the row indices of
the corresponding a;; elements stored in A.

!For simplicity, we only consider real matrices, but all representations treated here can be extended
for use with complex matrices.



%%MatrixMarket matrix coordinate real general
% M N nnZ
9
val
1.7
6.5
2.0
6.2
0.5
5.3
7.8
6.7
0.3

oo
oo

%

O OO RN
0 =3 U1 00 ~J N0 W T = =

Figure 1.2: Sample Matrix in Coordinate format

e An integer array J = (jx) also of length nnZ that contains the column indices
of the corresponding a;; elements stored in A.

Let A" = {(aij,i,j)} € (R x ZT x Z7)"Z be the set of triples corresponding to the
nonzero entries of A. Let the triple consisting of the three arrays (4,I,J) be the
COO representation of A. Then there is a function f : A" — (A,I1,J) as f(t) =
(A(k), I(k), J(k)) for each triple t = (a;j,i,5) € A’. In other words, for each triple
t € A thereis a k, 1 < k < nnZ such that

Qg5 ZA(]{I) ZCNI,]C
i=1I(k)
j=J(k)

With this we can express A as an array of triples that can be mapped to a triple
consisting of three arrays (A,I ,J). This is what the coordinate representation is.
Using Y, X, and A as defined for equation (1.3.1), and replacing the index notation
we obtain Y = (y;) = (yr)); X = (27) = (z)), and A = (a45) = (A(k)) = (jk, @)
for k =1:nnZ. With these, equation (1.3.1) becomes,

nnZz

Ui = Y GkEs(k) (1.4.1)
k=1

4



Using C style syntax, let A[k], I[k], and J[k] be the k' elements of A, I, and J
respectively. Let X[j] be the j** element of X, and Y [i] be the i** element of Y. With
these definitions algorithm 1.2 mm_SparseMul that corresponds to equation (1.4.1) is

shown next.

Algorithm 1.2. Coordinate Format Multiplication Algorithm

void mm_SparseMul( int nnZ, double A[], int J[], int I[],
double X[], double Y[] )

{
int k;
for (k=0;k<nnZ;k++) {
Y[I[k]] += A[k] * X[J[k]];
}

Civen the fact that A(k) contains the nonzero elements of A in any order, the associ-
ated arrays of A, I(k) and J(k) are not necessarily nondecreasing functions of k as k
varies from 1 to nnZ. In other word, the order of the triples in A’ can be completely
arbitrary. Algorithm 1.2 makes use of indirect addressing for the components of X
and Y. So Y[I(k)] and Y[I(k + 1)] for arbitrary k are with very high probability not
contiguous in memory. The same argument applies to X[J(k)] and X[J(k + 1)] for
arbitrary k. Thus, this algorithm is very inefficient from the memory access point of

view.

The storage of this representation is illustrated using the sample matrix in coordinate
format in figure 1.2. The minimum storage required by the coordinate representation

on an MxN real double precision sparse matrix with nnZ nonzero elements is

Stm = sizeof (int) x (2 x nnZ) + sizeof (double) * nnZ (1.4.2)
assuming a double has 8 bytes and an int has 4 bytes, St,,,;, = 16 * nnZ bytes.

Ignoring cache efficiency issues, the relative cost of algorithm 1.2 is calculated. In
order to do that, the algorithm is re-written below using the style of Brassard and
Bratley [6]. Let ¢ be the upper bound of the time required to perform a loop test
k < mnZ, an assignment (as in k < 0), and an integer addition (as in k < k + 1).
Indirect addressing as in X[J(k)] is handled at the machine level by first calculating

J(k) into a temporary memory location j. This is shown below as j < J(k). Then



this temporary internal variable is used to calculate X[j]. This has the same effect
as calculating X [J(k)]. Likewise, to perform a multiplication and an addition as in
A+ B x C, the processor first computes B x C into a temporary memory location,
let us call it bec (bc + B x C). Then A+ B x C is calculated by A+ bc. In some
architectures, a product such as A+ B x C is called a fused add-multiply which
is more efficient than performing both operations separately. Using a worst case
scenario, we will consider them as separate operations. Let ¢ be the upper bound of
the time required to perform a floating point operation (as in tmp < A(k) x X(5))-
Then the loop time is bounded above by £ < (2nnZ)t + (4nnZ + 2)c as seen below

Loop Cost
k<0 c
while k£ < nnZ do nnZ+1)c
i<+ I(k) nn
Jj <« J(k) nn

Y (i) « Y(i) +tmp

(nnZ
(nnZ)c
(nnZ)c
tmp < A(k) x X(j) (nnZ)t
(nnZ)t
k+<k+1 (nnZ)c

(2nnZ)t + (4nnZ + 2)c
1.5 Compressed Sparse Row Representation

The Compressed Sparse Row (CSR) format consists of three arrays:

e A real array A = (Jk, ag) of length nnZ that contains only the nonzero values
a;; of A in row order.

e An integer array J = (ji) also of length nnZ that holds the column indices of
the corresponding a;; elements stored in A.

e An integer array R of length M + 1. For each row ¢ in A, R(i) contains the

position in the A and J arrays of the first occurrence of a nonzero element for
that row. If a row is zero, R(i) contains the position of the first occurrence
of a nonzero element in the next nonzero row. This implies that A and the
corresponding J must be ordered by row. The last element, R(M + 1) holds
the location of a fictitious row M + 1. The fictitious row M + 1 is necessary to
simplify the matrix-vector multiplication algorithm.

The sample matrix in CSR format is shown in figure 1.3. Notice how the zero rows of

the matrix are represented in CSR format. In CRS, an element of R that corresponds



R= [13 447799 10]
J= [153 27857 8]
A= [17 65 20 62 05 53 7.8 6.7 03]

Figure 1.3: Sample Matrix in CSR Format

to a zero row is equal to the entry that corresponds to the first nonzero row. For
example, the third row of our example matrix is zero but the fourth row is not. So
R(3) is equal to 4. We also have R(4) equal to 4 because the first nonzero entry of

the next nonzero row is stored in position 4 of A and J.

Let A = (ai;) € RM*N be the real sparse matrix with nnZ nonzero entries to be
represented in CSR format. Let the triple consisting of the three arrays (4, J, R) be
the CSR representation of A. Let A(k) = @y and J(k) be the k™ entries in A and J.
Let R(7) be the i*” entry in R and R(i 4+ 1) be the next entry. Then the set of all &
for which

R(i) <k < R(i+1)

is the range of k for which dj is in the i*» row. Given that A and J are ordered by the
rows of A, all elements k that obey the relation above, are contiguously represented in
A and J between positions R(i) and R(i + 1) — 1 in their respective arrays and belong
to row 7. So for row 7 we can replace j by J(k), and a;; by a for k = R(i) : R(i+1)—1

in equation (1.3.1) to obtain

R(i+1)—1
yi= Y, @wyg, Vi=1:M (1.5.1)
k=R(i)
Using C notation, let A[k] and J[k] be the k** elements of A and .J respectively. Let
X[5] be the j** element of X, and Yi] be the i’* element of Y. The algorithm that

corresponds to equation (1.5.1) is shown next.

Algorithm 1.3. Compressed Sparse Row Multiplication Algorithm

void csr_SparseMul( int M, double A[], int J[], int R[],
double X[], double Y[] )
{

int i,k;
for(i=0;i<M;i++) {



for (k=R[i] ;k<R[i+1] ;k++) {
Y[i] += A[k] * X[J[k]];
}
}
}

The minimum storage required by the CSR representation on an MxN double precision
sparse matrix with nnZ nonzero elements is

Stesr = sizeof (int) X (M + nnZ) + sizeof (double) * nnZ (1.5.2)

or, Steey = 4 x M + 12 X nnZ bytes. The storage savings of CSR over COO are
SScs'r = Stmm - Stcs'r
SSesr = sizeof (int) x (nnZ — M) (1.5.3)

or, SScsr =4 X (nnZ — M) bytes.

Algorithm 1.3 addresses X indirectly, while Y and A have contiguous storage through-
out. The reason for this is that the CSR representation requires that the matrix data
be ordered by rows. So sorted matrix data can have a positive effect on efficiency.
Matrix re-organization is a way to increase efliciency of matrix algorithms. Sorting
can be one of them. Notice that the CSR multiplication algorithm has two nested
loops while the COO one has only one loop. To calculate the relative cost of this
algorithm we re-write it as we did in the COO format case. The outer loop runs M
times but it is tested M + 1 times. To calculate how many times the inner loop runs,
we recognize that in the i'» iteration of the outer loop, all the elements of the i
row are processed. If we add the number of elements of each row over all M rows
of the matrix we obtain nnZ. Let nR; be the number of nonzero elements in the

th

1"* row. Let nK be the total number of inner loop iterations for the %;, loop. Then

nK =YY nR; = nnZ. Therefore the inner loop runs nnZ times.

Let ¢ be the upper bound of the time required to perform the loop tests k < M
and k < K(i+ 1), the assignment instructions, and the integer additions. Let ¢ be
the upper bound of the time required by a floating point multiplication or addition.
Then the loop time is bounded above by £ < (2nnZ)t + (3nnZ + 3M + 3)c as seen

below



Loop Cost

140 c
while ¢ < M do (M +1)
k + K(7) (M)c
while k < K(: +1) d (nnZ +1)
tmpl « J(k) (nnZ)c
tmp2 < A(k) x X(tmpl) (nnZ)t
Y (i) « Y (i) + tmp2 (nnZ)t
k—k+1 (nnZ)c
ieitl (M) ¢

(2nnZ)t+ (3nnZ + 3M + 3)c
1.6 Reduced Index Sparse Representation

This thesis introduces the new Reduced Index Sparse (RIS) representation that con-
sists of a single array of ordered pairs (j,v) for every nonzero value in the matrix.
A nonzero matrix element is expressed by a pair (j,v) where j is a positive integer
that indicates its column index and v is the nonzero value that can be an integer, a
real or a complex number. Only real valued matrices are discussed here. To make it
possible to use pairs instead of triples the new storage scheme uses row markers. A
row marker (—r,0) is a pair consisting of the negative integer —r that indicates the
row 7 and a 0 value that is ignored. All pairs (j,v) following the row marker (—r,0)
belong to row r. The last element of the matrix is the pair (0,0) which is called the
end-of-matrix pair. This single array representation of a sparse matrix introduced
here contrasts with the COO and CSR representations that require three arrays to
process the matrix. The savings in storage are paid back with extra processing to

extract the row information.

Definition 1.1. P is the set of pairs (j,v) where j € ZT and v € R. P =Z* x R.

l{ »

Each element of P has a “j” part that is an integer and a part that is a real.

Definition 1.2. PZ is the vector space of all vectors of length L consisting of (j,v)
pairs where j € ZT and v € R.



%%Reduced Index matrix coordinate real ris
% M N nnZ
8 8 9

% j v
-1 0.0
1 1.7
5 6.5
-2 0.0
3 20
-4 0.0
2 6.2
7 0.5
8 5.3
-6 0.0
5 7.8
7 6.7
-8 0.0
8 0.3

Figure 1.4: Sample Matrix in RIS Format

Definition 1.3. Let V € PL. Let a(k) = (ji,vx) be the k™ element of V. Then the
J part of a(k) is jx and is expressed as a(k).j and the v part of a(k) is vy and is

expressed as a(k).v

This definition is adopted from some common notation from C/C++. Let A = (a;5) €
RMXN he a sparse matrix with nnZ nonzero entries that we want to represent in RIS

format. The RIS representation of A consists of:

e A single one dimensional array P = (P(k)) = (px) = (jk,vx) € P with length
L > nnZ + M that contains (j,v) pairs corresponding to the nonzero values a;;
of A in row order together with a set of embedded row markers (—r,0) according
to the rules given in figure 1.5

Let Y = (y;) = (Y(4)) € RM be the product vector. Let X = (z;) = (X(j)) € RY be
the right hand side vector. We want to express Y = AX in terms of P. To calculate
Y with P, it is required to test P(k).j for every P(k) € P. If P(k).j is 0, P(k) is the
end-of-matrix element and the loop terminates. If P(k).j is negative, P(k) is a row

marker and the algorithm begins processing the new row i = —P(k).j. If P(k).j is

10



positive, P(k) is a data element and is used to process Y (i). Then

SE®IE0 p(k).w x apy; P(k).G > 0;
y; = (1.6.1)
i = —P(k).j, P(k).j < 0.

Rules 8 and 9 in figure 1.5 state that the representation does not require the rows
to be ordered and that rows can be segmented. For increased efficiency of the RIS
multiplication algorithm however, it is advantageous to restrict the rows to be unseg-
mented and that they be ordered. Ordered, unsegmented rows imply more efficient
access to the elements of Y. Using C style syntax, the algorithm that corresponds to

equation (1.6.1) is shown next.

Algorithm 1.4. RIS Multiplication Algorithm

void risMul( dSparS_t *P, double *X, double *Y )
{
int i, k;
for( k=0; 0 !'= P[k].j; k++ ) {
if(P[k].j < 0)
i=-1-P[k].j;
else {
Y[i] += P[k].v * X[P[k].j-1];
}
}
}

Only nonempty rows are shown.

Row indices are negative.

Column indices are positive.

The first entry must be a row marker.

The end-of-matrix (0,0) is the last element.
Rows do not have to be ordered.

NS o=

Rows can be segmented, that is parts of a row can appear
in different places.

Figure 1.5: RIS Representation Rules

The minimum RIS storage required for an MxN sparse matrix with nnZ nonzero

elements and no empty rows is

11



Stris = sizeof (int) x (M + nnZ) + sizeof (double) x (M + nnZ) (1.6.2)

or, Stris = 12 % (M + nnZ) bytes.
The storage savings of RIS over COO are SS,;s = Stym — Stpis or,

SSyis = sizeof (int) * (nnZ — M) — sizeof (double) * M (1.6.3)
or, SSis = 4xnnZ — 12 x M bytes.

The minimum required RIS storage is less if the matrix has empty rows because the
RIS representation does not mark empty rows. Matrix operations with the RIS format

do not require explicit knowledge of empty rows.

To calculate the relative cost of this algorithm we re-write it as we did in the previous
cases. Let ¢ be the upper bound of the time required to perform loop and if tests,
jumps, assignments, and integer additions. Let ¢ be the upper bound of the time
required to perform floating point multiplications and additions. Then the loop time

for this algorithm is bounded above by £ < (2nnZ)t+ (5nnZ + 2M + 3)c as seen

below
Loop Cost

k<« 0 c

while P(k).j # 0 do (nnZ+M+1)c
if P(k).j < 0 then (nnZ + M +1)
i+ —P(k).j—1 (M)c
goto L1 (M)c
else 0

tmpl < P(k).j — 1
tmp2 < P(k).v x X (tmpl)
Y () < Y (i) + tmp2
L1 continue
k—k+1

3
S

3
3

gr—\?r—\/—\
3 3

NN
O O T =+ O

(2nnZ)t + (5nnZ + 2M + 3)c
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1.7 Reduced Index CSR Representation

The CSR representation can be modified to have only two arrays. One such array
is R as defined for CSR and the other one is P as defined for RIS. Unlike RIS, the
modified CSR representation does not require row markers. Since this representation
is a hybrid between RIS and CSR, it is called the Reduced Index Compressed Sparse
Row, or RCSR representation.

R= [13 447799 10]

(1,1.7) (5,6.5) (3,2.0) (2,6.2) (7,0.5)

P="1(53 (78 (767 (803)

Figure 1.6: Sample Matrix in RCSR Format

Let A = (a;j;) € RMXN be a real sparse matrix with nnZ nonzero entries that we

want to represent in RCSR format. The RCSR representation of A consists of:

e A one dimensional array P = (P(k)) = (pr) = (jk,vx) € P"™Z that contains
(4,v) pairs corresponding to the nonzero values a;; of A in row order.

e An integer array R of length M + 1. For each row ¢ in A, R(i) contains the
position in the P array of the first occurrence of a nonzero element for that row.
If a row is zero, R(i) contains the position of the first occurrence of a nonzero
element in the next nonzero row. This implies that P must be ordered by row.
The last element, R(M + 1) holds the location of a fictitious row M + 1. The
fictitious row M + 1 is necessary to simplify the matrix-vector multiplication
algorithm.

Let P(k) = pi be the k' entry in P. Let R(i) be the i entry in R and R(i + 1) be
the next entry. Then the set of all k& for which

R(G) <k <R@E+1)

is the range of k for which py, is in the i row. Given that P is ordered by the rows
of A, all elements k that obey the relation above, are contiguously represented in P
between positions R(:) and R(i + 1) — 1 and belong to row i. So for row ¢ we can
replace j by P(k).j, and a;; by P(k).v for k = R(¢) : R(¢ + 1) — 1 in equation (1.3.1)

to obtain
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R(i+1)—1
yi= Y P(k)wxzpyy,, Vi=1:M (1.7.1)

k=R(3)
Using C style notation, let P[k] be the k' element of P. Let Y[i] be the i’ ele-
ment of Y. Let X[j] be the j* element of X. The algorithm that corresponds to

equation (1.7.1) is shown next.

Algorithm 1.5. Reduced Index CSR Multiplication Algorithm

void rcsr_SparseMul( int M, dSparS_t *P, int *K,
double *X, double *Y )
{

int i,k;
for(i=0;i<M;i++) {
for (k=R[i] ; k<R[i+1];k++) {
Y[i] += P[k].v * X[P[k].jI;
}

}
}

In this algorithm the index of X becomes available while fetching P[k]. One fetch to
PIk] suffices to obtain P[k].v and P[k].j. This is the major advantage over CSR.

To obtain the relative cost of the algorithm let ¢ be the upper bound of the time
required to perform the loop tests k < M and k < K(i + 1), the assignment instruc-
tions, and the integer additions. Let ¢ be the upper bound of the time required by
floating point multiplications and additions. We calculate the relative cost of algo-
rithm 1.5 by rewriting the algorithm below as was done in the previous cases. The
loop time is found to be bounded above by £ < (2nnZ)t + (3nnZ + 3M + 3)c as seen

below.
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Loop Cost

140 c
while i < M do (M+1)c
k + K(7) (M)c
while £ < K(i+1) do (nnZ+1)c
tmpl < J(k) (nnZ)c
tmp2 <+ P(k) x X(tmpl) (nnZ)t
Y (i) < Y (i) + tmp2 (nnZ)t
kE+—k+1 (nnZ)c
ieitl (M) ¢

(2nnZ)t + (3nnZ + 3M + 3)c

The RCSR and CSR algorithms come up with the same cost analysis. This is expected
because the loops are the same. But this analysis is based on estimates and upper
bounds. The actual value of ¢ (an upper bound) as defined in both algorithms could
be different for each. Nevertheless, the two algorithms have the same cost. Having

both P(k).j and P(k).v in a single fetch can be exploited for optimization, however.

1.8 Example

The RIS format for this matrix can expressed in a human readable format (figure 1.8),
where each line starts with a row marker followed by one or more column indexed
entries. An empty row is identified by the absence of the corresponding row marker.
For example, the sample matrix in figure 1.8 does not have row 3 because there is no
row marker {3,0.0}. The end-of-matrix marker {0,0.0} is the last entry. Our sample
matrix (figure 1.1) is depicted graphically in figure 1.7. The graphic was obtained
2

with matview

(CSR storage).

. It is the same matrix in figure 1.2 (COO storage) and figure 1.3

The coded values of figure 1.7 range from light Grey (minimum) to dark Grey (max-
imum) as seen in figure 1.9. Graphic representation is important to make it easy to

visualize the actual matrix.

*matview can be found at http://www.csm.ornl.gov/ kohl/MatView/
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{-1,0} {1,1.7} {5,6.5}
{-2,0} {3,2.0}
{-4,0} {2,6.2} {7,0.5} {8,5.3}

] | (6,01 {5.7.8} {7.6.7}

{-8,0} {8,0.3}

00)
H

Figure 1.7: Sample Matrix Figure 1.8: Human readable RIS

Figure 1.9: Grey Scale

1.9 Comparison

A sparse representation can have an impact on the efficiency of sparse matrix algo-
rithms. An analysis of these algorithms as presented here shows the relative cost of
each. Of the algorithms presented in this chapter the Reduced Index CSR seems to
be the best one. Using the COO algorithm as reference, and assuming that ¢ (as
defined in previous sections) is the same for all three algorithms, we find that CSR
and RCSR improve the performance by (nnZ —3M — 3)c, and the RIS worsens the
performance by (nnZ +2M + 1)c.

Algorithm efficiency has many variables and aspects to be considered. The best way
to find out is by actual time measurements using the same data on all algorithms.

This type of comparison will be presented in a later chapter.

The RIS and RCSR storage schemes guarantee that all the information necessary
to describe the next nonzero matrix element is available with a single access to the
memory. Current computer technology organizes memory in a hierarchy of levels with
conflicting properties [3]. Closest to the CPU and fastest access memory is the set

of CPU registers. This memory is very limited in size. Furthest from the CPU, disk
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memory is very large but extremely slow. Cache memory is an intermediate stage of
memory that ranks next in speed to the registers. This memory is also limited but
on the order of a few Kilobytes. When accessing the memory for the next nonzero
matrix element, cache memory is where the operating system first looks. If it does not
find it there it goes to the next level in the hierarchy with a much longer access time.
This is known as a cache miss. With a single array to access, RIS and RCSR offer a
higher likelihood of finding the data in cache memory during a read. Cache misses
will be fewer accessing a single array than accessing three arrays because having to
access three arrays to obtain the information of one nonzero matrix element requires

three reads. This increases the probability of getting a cache miss.
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Chapter 2

Sparse Matrix Multiplication in Parallel

The proving ground of the RIS representation is the parallel processor environment.
One goal is to arrive at scalable, accurate implementation with excellent load balance
and efficiency. Another goal is to compare the sparse matrix multiplications of the

different representations with numerical results.

In order to improve efficiency, three different partition schemes are implemented and
tested with large matrices to obtain good numerical results. The matrices found at
the Matrix Market website are excellent sparse matrices for testing, because they
represent real world matrices. But they are not big enough for parallel processor
testing. Ome of the most expensive parts of a parallel implementation is the com-
munication between processors. The communication cost is fairly independent from
the size of the data to be crunched. So it is important to increase the amount of
computation to offset the cost of communication. On one hand, one could ignore the
communication timing and say that only computation timing is to be compared. But
that is not realistic because message passing between processors is an integral part
of the algorithm. With that in mind, the choice is to produce very large matrices
for testing the resulting implementations. In order to generate such large matrices
a program named genMatrix was created to generate matrices of a target number
of nonzero elements, with a target density and a specific distribution. This program
will be described later. The following sections describe three partition schemes, the
column balanced partition, the balanced column cyclic partition, and the balanced

block cyclic partition.
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2.1 The Column Balanced Partition

Let nP be the number of processors to execute a sparse-matrix/dense-vector multipli-
cation of a sparse matrix A € RM*VN with nnZ nonzero elements by a vector X € RV.
The question is how to balance the processing load among the nP processors. Assume
that processing an equal amount of nonzero elements in each processor implies that
each processor performs the same number of operations to process its share of the

data. With that assumption we would like to partition the data into nP equal parts.

RIS representation of a sparse matrix consists of a single array of (j, v) pairs of length
aSize = nnZ + M. Exploiting that fact, it is safe to say that dividing the the array
into nP number of sub-arrays of size roughly equal to targetSize = aSize/nP also
divides the matrix into nP parts of roughly the same number of elements. The reason
for using the word roughly is because the row markers are embedded in the arrays
and sub-arrays. With nP being the number of processors, this would be one way
to balance the load among them. But the question arises whether to respect row
boundaries or not. Respecting row boundaries implies that in some cases the load
will be thrown too far out of balance to consider this a good load balancing scheme.
On the other hand, ignoring row boundaries could leave part of the elements of one
row in one processor and the other part in another. This would require additional
post processing message passing where communication is expensive, offsetting any
efficiency gained by the balancing scheme. This partition scheme is called here the

Row Balanced partition.

The RIS representation can be used to implement a variable column size decompo-
sition of the matrix where each process would get close to equal number of nonzero
elements. The first step is to count the elements of each column into an array of size
N. Let us call this array colCount. Suppose that the matrix is to be partitioned
into nCD column divisions, and the total number of nonzero elements in the matrix
is nnZ. Then the target size of the sub-matrices is targetSize = nnZ/nCD. The
column partition is performed by finding nC'D column divisions of close to targetSize

elements each. For each column division ¢D find the number of columns cnc[cD] by
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N columns
—= cnc[0] |<— —’-I encfi] |<—

rqa rqa

) 2 - 3y
Stripe 0 1 nCD-2 nCD-1

Nonzeros cnz[0] cnz[1] cnz[nCD-2]| cnz[nCD-1]

rqa rqa

)) ))
csc[0] cscli] csc[nCD-1]

Figure 2.1: Column Balanced Partition

finding the

min(|sum—targetSize|)
sum = Z colCount|[col]

col=Cp
which is the summation of the column counts in the colCount array until the sum is
closest to targetSize. Suppose that Cr, is the column number in the above summation
that |sum — targetSize| is minimum for the column division ¢D considered, then the
number of columns in column division ¢D is C,—Cy+1. This value is stored in the cnc
array which stands for column division number of columns. So cnc[cD] = C,—Cy+1.
Two more arrays are populated in the column partition, the ¢cnz and the cns arrays.
The cnz array stores the actual number of nonzero elements in each column division,
and the cns array contains the starting column of each column division. In the column
partition, columns are not broken. Each column is part of one and only one column

division. All theses arrays are of size nCD.

2.2 The Balanced Column Cyclic Partition

The column cyclic partition uses the Column Balanced Partition algorithm described
in the previous section. Then it distributes the column divisions among a number nP
of processors. One requirement for this partition is that nCD > nP as there should

be a minimum of one cycle. It is desirable that nC'D be an integral multiple of nP
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to achieve a balanced distribution. So the column cyclic partition is really a column
balanced partition that cyclically assigns column divisions to the processors. Column
division 0 is assigned to process Py, column division 1 is assigned to process P;, and

so on. For an arbitrary process P, and an arbitrary column division c¢D,
P, +—cD <= P, == (¢cD mod nP)

where the subscript = in P, represents the rank of the process (0 < z < nP). In
the extreme case where the number of processors is one, all the column divisions are
assigned to Py. When the number of column divisions is the same as the number of

processors, each column division is assigned to exactly one process.

2.3 The Balanced Block Cyclic Partition

This partition occurs in two steps, column partition and then row partition. The
balanced block cyclic partition uses a column cyclic partition, but the assignment of
blocks to processes is different. The row partition consists of dividing the nonzero
elements of each column division into nRD blocks of nearly the same number of ele-
ments where nRD is the number of row divisions. In section 2.1 there is a description
of how column divisions can be partitioned into nRD blocks ignoring row boundaries.
Ignoring row boundaries is a good choice in this case because in this partition, the
range of rows that will be assigned to a particular processor P, varies from one column
cycle to another. To avoid complicated partitioning of Y, each processor will generate
a Yjpcar that is the same size of Y (namely, |Yjocqi| = |Y]). Each processor’s Yjoeq will
contribute partial results in many of the rows. The final result will be added into

processor Py using MPI_Reduce.

The blocks are then distributed among the different processors in the same manner
they are in the dense (traditional) block cyclic algorithm. The big difference between
the balanced and the traditional block cyclic distributions is that the row partitioning
is implicit (or predefined) for the traditional case, while it is calculated for the bal-
anced case. As in the traditional case, there is a column cycle Pc, and there is a row
cycle Pr. In the traditional case the column cycle is a specific number of columns,

and the row cycle is a specific number of rows. In the balanced block cyclic partition
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case, the column cycle Pc is a specific number of column divisions, and the row cycle
Pr is defined by a specific number of row divisions. The number of processors needed
for a balanced block cyclic partition is nP = Pc X Pr. A complete process grid is a
contiguous set of blocks each of which is assigned to one of the nP processors. Num-
bering the processor assignment of the blocks from left to right and top to bottom in

a complete process grid, a block cyclic assignment is mapped as follows:

0 1 e Pc-1
0 0 1 e Pc-1
1 Pc 1+Pc . (Pc-1)+Pc
(Pr-1) | (Pr-1)*P¢  14+(Pr-1)*Pc ... (Pc-1)+(Pr-1)*Pc

The previous mapping is a more abstract description of the process grid defined in the
ScalaPACK User’s Guide [17] section 4.1.1. The single top row is the column process
coordinate heading and shows the column process coordinates pc. The single left
column is the row process coordinate heading and shows the row process coordinates
pr. The process coordinate headings are optional, they can be excluded from the

assignment map.

As an example, with Pc = 4 and Pr = 4 the assignment map with process coordinate

headings in a complete process grid is

0o 1 2 3
0o 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

W N = O

With the same values of Pc = 4 and Pr = 4 and with the number of column divisions
nCD = 8 and the number of row divisions nRD = 8 the assignment map without

process coordinate headings is
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0o 1 2 3|0 1 2 3
4 5 6 7|4 5 6 7
8 9 10 118 9 10 11
12 13 14 15|12 13 14 15
0 2 3|10 1 2 3
4 5 6 7|4 5 6 7

12 13 14 15|12 13 14 15

Definition 2.1. Let x € R be an arbitrary real. Let Ceil € Z be the smallest integer
such that Ceil > x. Then Ceil can be expressed by the notation

Ceil = [z]

In this mapping, the column divisions are grouped into column division groups, each
with Pc column divisions or less. The row divisions are also grouped into row division
groups, each with Pr row divisions or less. The number of column division groups

nCG, and the number of row division groups nRG are given by

e = [0
w6 = ["57]

In the previous example, with nCG = 2, nRG = 2, the number of process grids is
nPG = 4. All four of the process grids are complete, that is, all the processors get a

block assignment. This could have been predicted as
nPG =nCG x nRG

To expand these concepts let us use another example with the same values of Pc = 4
and Pr = 4 but having nCD = 10 and nRD = 10. The assignment map with process

coordinate headings is
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0o 1 2 3|0 1 2 3]0 1
oo 1 2 30 1 2 3,0 1
114 5 6 7|4 5 6 7|4 5
2|8 9 10 1178 9 10 118 9
3|12 13 14 15|12 13 14 15|12 13
o,o0 1 2 30 1 2 3,0 1
14 5 6 7|4 5 6 7|4 5
218 9 10 118 9 10 11| 8 9
3|12 13 14 15|12 13 14 15|12 13
oo 1 2 30 1 2 3,0 1
114 5 6 7|4 5 6 7|4 5

In this example, the number of column division groups is nCG = [%1 = 3, the number
of row groups is nRG = [%] = 3, and the number of process grids is nPG =9 of

which four are complete and five are incomplete.

The process in a process grid can be derived from the process coordinates pr and
pc. But the process coordinates can be determined from the block parameters as
well. For an arbitrary column division ¢D, the column process coordinate pc is the
column position of the column division in the process grid. For an arbitrary row
division rD, the row process coordinate pr is the row position of the row division in
the process grid. The column process coordinate pc and the row process coordinate
pr are determined by

pc=cD mod Pc

and

pr=rD mod Pr.

And for an arbitrary process Py, an arbitrary row division D in an arbitrary column

division ¢D
P, «— (rD,cD) <= P, ==pc+ pr x Pc (2.3.1)

2.4 Sample Partitions

The partition implementation achieved in support of this thesis happens to include all
the possible partitions discussed in this chapter. The parameters given to partition a

matrix are the number of column divisions nC' D, the number of row divisions nRD,
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the column cycle Pc, and the row cycle Pr. Depending on how these parameters
are combined, the partition software can generate any partition desired. Using a
generated 100x 100 matrix with about 500 nonzero elements, several sample partitions

were produced using the program partM at.
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Figure 2.2: Unpartitioned Matrix

The example matrix is not uniformly distributed as we want to observe how the
partition algorithms work on odd distributions. Concentrations of nonzero elements to
the right and the bottom of the matrix are purposely included to create a visible effect

of the partitioning. This test matrix matrix101.mtx has the following specifications.

e Values range from -1 to +1.
e The matrix size is 100 x 100.
e It has 506 nonzero elements.

e 30% of the nonzero elements are concentrated along the diagonal
with a density of 8%.

e 25% of the nonzero elements are concentrated along the right edge
with a density of 9%.

e 25% of the nonzero elements are concentrated along the bottom edge
with a density of 9%.

e 20% of the nonzero elements are spread out.

The first example (figure 2.3) is a row balanced partition that was generated by issuing
the command “partMat mat101 121 2”. That is a partition with one column division

(nCD = 1) and one column cycle (Pc = 1), two row divisions (nRD = 2) and two
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Figure 2.3: Row Balanced Partition

row cycles (Pr = 2). A gray scale map of the partition was produced using matview .

In order to highlight the partition without the use of colors, each partition block has
its own level of Grey according to the gray scale of figure 1.9. Each block of the
partition has roughly the same number of nonzero elements. But because of density
variation of the sparsity pattern in a sparse matrix, the area that comprises the block
looks different. The lower the density of a partition block, the larger the area of the
block will appear in the graphic. The top block (block 0) spans from row 1 to row 67.
Block 1 ranges from row 67 to row 100. Notice that one element in row 67 belongs
to block 1. All the other ones belong to block 0. Row 67 is shared between the two
blocks. In the graphical representation generated by matview, rows are counted from

top to bottom starting at 1, and columns are counted from left to right starting at 1.

The second example (figure 2.4) is a column balanced partition that was generated
by issuing the command “partMat matl01 2 1 2 17. That is a partition with two
column divisions (nrCD = 2) and two column cycles (Pc = 2), one row division
(nRD = 1) and one row cycle (Pr = 1). In this partition the first 66 columns of
matrix matl0l.mtx is on block 0, and block 1 is the right side area of columns 67
through 100. Notice that there are no shared columns. Column partitions respect

boundaries; row partitions do not.

'matview can be found at http://www.csm.ornl.gov/ kohl/MatView/
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Figure 2.4: Column Balanced Partition
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Figure 2.5: Balanced Block Cyclic Partition

The third example (figure 2.5) is a balanced block cyclic partition that was generated
by issuing the command “partMat mat101 2 2 2 2”. That is a partition with two
column divisions (nCD = 2) and two column cycles (Pc = 2), two row divisions
(nRD = 2) and two row cycles (Pr = 2). The left blocks (blocks 0 and 2) encompass
columns 1 through 65. Block 0 ranges from row 1 through row 58. Block 2 goes from
rows 59 to 100. The right side blocks (blocks 1 and 3), are divided at row 72. Block 1

comprises rows 72 and below, and block 3 rows 73 and above.
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Figure 2.6: Balanced Column Cyclic Partition

The fourth example (figure 2.6) is a balanced column cyclic partition that was gen-
erated by issuing the command “partMat mat101 4 1 2 1”. That is a partition with
four column divisions (nC'D = 4) and two column cycles (Pc = 2), one row division
(nRD = 1) and one row cycle (Pr = 1). This partition has two column groups
(nCG = 2). For the left column division group, block 0 spans columns 1 through 34,
and block 1 spans columns 35 through 65. On the right column division group, block 0
spans columns 66 through 89, and block 1 ranges from column 90 to the last column.
Observe that the areas become smaller at the right of the matrix where the density

is higher.

The last example (figure 2.7) is a balanced row cyclic partition that was generated by
issuing the command “partMat mat101 1 4 1 2”. That is a partition with one column
division (nCD = 1) and one column cycle (Pc = 1), four row divisions (nRD = 4)
and two row cycles (Pr = 2). This partition has two row groups (nRG = 2). For the
top row group, block 0 spans rows 1 through 35, and block 1 spans rows 35 through 67.
On the bottom row group, block 0 spans rows 67 through 90, and block 1 ranges from
column 90 to the last column. Observe that the areas become smaller at the bottom
of the matrix where the density is higher. Also notice that rows 35, 67, and 90 are

shared between blocks.

The program partMat that was used to produce the visual representations of the
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Figure 2.7: Balanced Row Cyclic Partition

different partitions uses the same algorithm for partitioning the data as the program
RIS_Block_Cyclic. Furthermore, the partition occurs during matrix read. This fact
could be a very nice feature if the program is capable of concurrently executing useful
work during a disk read. Asynchronous I/O and multiple threads come to mind [16].
In such scenario, partitioning can be practically cost free because it can occur while
the operating system acquires the data from disk storage. Such concurrency was
not implemented in RIS Block_Cyclic but is proposed as a future work item. As
a matter of interest, and to compare the effect of a particular partition type on

performance, timing measurements for the different types of partition are presented

in a later chapter.
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Chapter 3

RIS Block Cyclic Implementation

3.1 Introduction

The (j,v) pairs are populated into variables of type dSparS_t (see figure 3.1) for
matrices with data of type double. Integer matrices use type iSparS_t, and complex
matrices use cSparS_t. As stated before, only real valued matrices are discussed here.

But the other types are shown to indicate the way to structure other types of matrices.

typedef struct { typedef struct {
int Js double re;
double v; double im;
} dSparS_t; } cmplx_t;
Figure 3.1: double RIS structure Figure 3.2: Complex value structure
typedef struct { typedef struct {
int j; int Js
int v; cmplx_t v;
} iSparS_t; } cSparS_t;
Figure 3.3: int RIS structure Figure 3.4: complex RIS structure

The implementation of the RIS block cyclic concept involves several programs. A
program called R1S_Block_Cyclic implements the block cyclic algorithm in a parallel
computer using MPI. To be able to partition the input matrix while reading it is
necessary to order the matrix by row, and by column within the rows. A program

[

called prepMat does that and saves the matrix into a new file with a “_0” appended
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to its name. For instance, if the input matrix is foo.mtx, the ordered matrix is
foo_o.mtx. This step is required for matrices that are downloaded from Matrix Market
(http://math.nist.gov/MatrixMarket /) or some other source. Program prepMat adds
a column count array to the header section of the matrix. This array is expected by

the program RIS_Block_Cyclic.

A program called genMatriz generates matrices large enough to get decent time
measurements of the implementation. The matrices produced by genMatriz are
specified to have a target number of nonzero elements with a specific target density,
and a specific sparsity pattern. Files generated by genMatriz are not required to
be run through prepM at because they are fully ordered, and the column count array
in the header section is included. A program called ris_Val independently validates
RIS _Block_Cyclic via a FORTRAN program called ftest.f that uses the SPARSKIT
library libskit.a. This chapter will present the principal program of the implementa-

tion RIS _Block_Cyclic.

The validation software ris_Val is discussed in section 3.7. The matrix generation

software genMatriz is discussed in chapter 4.

3.2 Function Main

The function main performs four tasks amid necessary calls to MPI. The four tasks
are reading the matrix from disk, broadcasting the X vector from the root processor,
performing the local multiplication, and assembling the results back in the root node
using M PI_Reduce. The main parts of the main block are presented in the section 3.2.
The function calls (including the function main) are simplified to avoid clutter. The
four tasks mentioned above are in boldface. Around each one of the tasks there are
timers to measure the performance of that part of the implementation. In reality,
each timer requires a separate compilation because of a restriction of the wall time
function M PI_Wtime that can only be used once in each program. Two other tasks
that occur in separate compilations are the determination of the time it takes to
perform the test multiplication by an independent code. This test gathers the CSR

multiplication time of a function called amuz_ from the SPARSKIT archive. The
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int main(int argc, char *argv]])

{

MPI Init(&arge, &argv);
MPI_Comm size(&nP);
MPI_Comm_rank(&my_rank);
start Time6 = MPI_Wtime();
readMatrix( );

stopTime6 = MPI_Wtime();
MPI _Barrier();

start Timel = MPI_Wtime();
// Preparation

stopTimel = MPI_Wtime();
start Time2 = MPI_Wtime();
MPI Bcast(X,)

stopTime2 = MPI_Wtime();
start Time5 = MPI_Wtime();
start Time3 = MPI_Wtime();

risMul(A_local, X_local, Y _local );

stopTime3 = MPI_Wtime();
startTimed = MPI Wtime();
MPI_Reduce(Y _local, Y);
stopTime4d = MPI_Wtime();
stopTimebs = MPI_Wtime();
start Time7 = MPI_Wtime();
amuz_(N,X,Ycsr,Ac,jC,RS);
stopTime7 = MPI_Wtime();
valmat_(X,Y,Ac,iR,jC);

MPI _Finalize();

// Start MPI
// get # of processors
// get current process
// Read Time

// Sync processes

// Prep Time

// Broadcast Time

// Reduce Time

// CSR Time

// Validation
// Finalize MPI

Figure 3.5: Function Main

other task is the accuracy validation also by SPARSKIT library functions.

The program uses several structures defined as types. The matParams_t type con-
tains M, N, and nnZ. The partitionParams_t type holds the arguments given to
the program nCD, nRD, Pc, and Pr. The cycleData_t type has pointers to four
integer arrays (cnc, csc, cnz, and Pent) that are used to partition the matrix while
reading it from disk. The dSparS_t is the type used to hold the (j,v) pairs in the RIS
format. Some of these structures simplify the argument lists in some of the program’s

functions.
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typedef struct {
int M; // Number of rows
int N; // Number of columns
int nnZ; // Number of nonzeros
} matParams._t;

typedef struct {
int nCD; // column divisions
int nRD; // row divisions
int Pc; // column cycles
int Pr; // row cycles

} partitionParams_t;

typedef struct {
int *cnc; // column division # of columns array
int *csc; // column division starting column array
int *cnz; // column division nonzeros array
int *Pcnt; // count of elements read in cycle

} cycleData_t;

Besides measuring the elapsed time of the four main tasks of the implementation, it
is desirable to know how long it takes to prepare the arrays for processing (memory
allocation and initialization). So timing data was gathered as well for preparation. In
this parallel implementation, each processor reads its own portion of the matrix. The
function read M atriz partitions the matrix as it reads it. The readM atriz function
will be discussed in section 3.3. Because the time of reading from disk is not very
predictable, it is necessary to synchronize the end of matrix reading on all processors
with a call to M PI_Barrier. All other MPI function calls form the basic MPI multi-

processor program skeleton.

The matrix multiplication function risMwul uses the arrays A_local and X _local to
perform the local matrix-vector product. The result is returned in Y Jocal. The
function risMul will be discussed in section 3.4. A special compilation that does
not perform any timing measurements, calls valmat_ to validate the results. This
function belongs to a program called ftest.f. The program ftest.f will be discussed

in section 3.7.
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3.3 Function readMatrix

The function read M atriz performs three main tasks. The three tasks are reading the
header, obtaining partition information, and reading the matrix data. While reading
the matrix data, read M atrix only stores the data that belongs to the current process
partition. The function shown below has been grossly simplified. Only the data read
loop is shown in some detail. After reading a nonzero matrix element the current
process cP is compared to the return value of a function called whichProcess. If the
return value of whichProcess is equal to c¢P, then the data that was read is stored,
otherwise it is ignored. The function whichProcess passes by reference a newCol
value that is used to replace the column value if the matrix element is accepted. This

will all be discussed in section 3.5.

The argument list of this function is fairly large. Most of the arguments are passed
by reference back to the calling routine for its use. But because readMatrix allocates
memory for all the arrays passed by reference, it is the responsibility of the calling
routine to deallocate the memory from those variables when no longer needed. the

complete parameter list is

char *mmFile, // The matrix file name

e int cP, // The current process

e partitionParams_t *pp, // Program argument list

e double **Y _test, // A matrix to test the results - only during validation
e int **¥R, // COO format I (rows) array - only during validation

e int **jC, // COO format J (cols) array - only during validation

e int **Ac, // COO format A (a;;’s) array - only during validation
e matParams_t *mp, // Matrix dimension information - M, N, nnZ
¢ MM_typecode *matcode, // MM format typecode

e cycleData_t *cycl, // Partition support data

e dSparS_t **A_local, // The local A matrix in RIS format

The first three parameters are inputs, the rest are outputs. Y test, iR, jC, and Ac

are passed only in the validation compilation. When they are defined, the calling
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program must free the memory for these variables. A local, cycl, matcode, and mp
are either read from a file or created in readMatriz. A _local must be deallocated by

the calling routine.

readMatrix( theMatrix,..., A_local )
{
mat = fopen(theMatrix, ”r”);
// Read header
getColumnIndices();
for(k=0:nnZ-1) { // data read loop
li=0;
prevRow=0;
// read iRow, iCol, and rVal
if( whichProcess(icol,newCol) == cP ) {
if(iRow # prevRow) {

A local[li].j = -iRow; // row marker
A _locallli].v = 0.0;
lit+;

prevRow = iRow;

}
A _local[li].j = newCol;

A _local[li].v = rVal,
lit-+;
}
}

fclose(mat);
return li;

}

While readM atriz is reading the header, it fills the colCount array found in the
header section. This column count is placed in the header section of the matrix
file by prepMat, a program that orders the matrix by row, then by column so that
RIS _Block_Cyclic can partition the matrix during read. The program prepM at
counts the nonzero elements for each matrix column. Knowing that this information

is required by RIS _Block_Cyclic, it was decided to add this to the matrix file.

The function getColumnIndices fills the partition support data into the variable cycl.
Variable cycl, which is passed by reference to and from readMatriz, is a structure
that holds four arrays. One is the column division number of columns cnc. Another

one is the column division starting column cns. Yet another one is the column division
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number of nonzero elements c¢cnz. And the last one is Pcnt that is used by function
whichProcess to determine the row cycle a nonzero belongs to. The whole structure

is used by function whichProcess to partition the matrix.

3.4 Function risMul

This function is the implementation of algorithm 1.4. The inputs are A _local, the

right hand side vector X. And the output is the product vector Y.

void risMul(dSparS_t *A local, double *X, double *Y )
{

int theRow, i, index;
for( i=0; 0 != (index = A_local[i].j); i++) {
if((index = A_local[i].j) < 0) {
theRow = -(index + 1);

}
else {

Y[theRow| += A_local[i].v * X[index - 1];

}
}

As has been pointed out previously, the for loop contains a test of the “}” part of
the A _local element. Because the “j” part is tested again inside the loop to find row
markers, it is assigned to a private variable called index. This is done to avoid access-
ing A_localli].j again in the same iteration of the for loop. The for loop terminates
when index = 0. Inside the for loop, if index is found to be negative, it is used to
process a new row by the assignment the Row < —(index+1). Otherwise, Y [theRow]
is accumulated by the product A_local[i].v* X [index —1]. A good algorithm for math
intensive processing is a simple algorithm. Then, to take advantage of parallelism,
it can be made complicated with loop unrolling, software pipelining, and other opti-
mization schemes. Because of the internal test to identify row markers, this algorithm
does not lend itself well for loop unrolling using current hardware technology. New
technology is being developed at present to be able to optimize if loops (one exam-
ple is the Intel Itanium processor). When such technology is readily available, this

algorithm should be revisited for optimization.
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3.5 Function whichProcess

int

whichProcess( int col,
int *newCol,
cycleData_t *cycl,
partitionParams_t *pp )

// Determine column division
Pent[coldiv]++; // coldiv’s element cnt

// Determine block within the coldiv

// Determine process
pc = coldiv % Pc;

pr = block % Pr;

cP = pc + pr * Pc;

// Determine newCol

return cP;  // return process

}

The function whichProcess performs four tasks. The four tasks are to find the column
division that col belongs to, determine the row division within the column division
found, and thereby determine which process cP owns col, and lastly to calculate a
newCol value for col. The inputs to the function are col, cycl that was previously
populated by the function getColumnlIndices in main, and the argument list of the
program in pp. The function returns the process that col belongs to, and passes by
reference newCol back to the calling routine. The column division and block are

necessary to determine the process ¢P and the newCol.

The function determines the column division by testing if col is between coldivStart
and coldivEnd for each column division until found. To determine the block, the
function increments the column count of the column division Pent|coldiv] every time
the function is called. Using Pcnt[coldiv], the function determines the block by testing
if Pent[coldiv] is between blockStart and blockEnd for every block in the column
division until found. Process determination is shown in the simplified function shown

above, where Pc is the number of column cycles and Pr is the number of row cycles
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both supplied as program arguments).
g g

The determination of newCol is due to a choice made on how to store X _local. This
implementation populates X _local with only the elements of X that are necessary for
the local matrix-vector product. In doing that, indices are readjusted for X local. So

the A local column indices must be readjusted accordingly.

3.6 Function getColumnlIndices

The function getColumnlIndices is only an accounting function. First, it establishes
the target number of nonzero elements eqLoad = nnZ/nC D that each column division
should have. Then, for each column division, it accumulates the column counts until
the accumulated sum is closest to the target eqLoad. Upon reaching this goal for
each column division ¢D, the results are stored in cnc[cD], and cnz[cD]. At this
point e¢sc[eD + 1] is also filled. The first element of csc is set before the loop starts as

csc|0] = colStart. The function is void, it returns nothing.

The routine whichProcess is thus quite analogous to the ScalaPACK routine NUM-
ROC which determines the number of rows and columns that each process receives

in the A_local matrix.

3.7 Validation Software

Program ftest.f (see appendix A.2) has two subroutines. One is valmat that receives
the matrix size n, the number of nonzero elements nnz, the RHS vector z, the vector
to be validated y;, and the matrix to use in coordinate format (a, ir, jc). amuz is
a function form the SPARSKIT archive that performs matrix-vector products. But
since it requires CSR format, a call to coicsr (also from the SPARSKIT library)
converts the input matrix to CSR format in place. After the call to amux, the
subroutine calls subroutine errpr that was copied from a sample program in the

SPARSKIT archive to maintain the same look and feel.

Subroutine errpr calculates




where n is the length of y and y;, and y and y; are the vectors to be compared. Then
it prints the message, “ 2-norm of difference in msg = t”, where msg is a message

supplied to the subroutine to identify the results.

The routine valmat in ftest.f calls errpr with y; being the output of RIS_Block_Cyclic
for the global vector y; = A x X, after assembling it on node Py, and y0 being the

output of routine amuz for computing the same matrix-vector product.
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Chapter 4

Sparse Matrix (Generator

4.1 Main

The program genMatrixz requires as argument the name of a configuration file. The
argument is not required to include the extension, but the configuration file name
is expected to have the extension “.mcfg”. The program reads and displays the
configuration information for the user to accept, reject, or quit. The configuration

file is expected to be as in the sample shown in figure 4.1.

minValue -1.0

max Value 1.0
densityReq 0.01
nonZeros 25e6
groupDiagonal 0.20 0.15
groupRight 0.30 0.15
groupLeft 0.30 0.15
groupTop 0.0 0.0
groupBottom 0.0 0.0
groupCenterRow 0.0 0.0
groupCenteProl 0.0 0.0
spreadout 0.20

Figure 4.1: Sample matrix.mcfg file

The minV alue and mazV alue entries specify the random data bounds of the matrix
elements. The requested density is specified by densityReq. The desired number of

nonzero elements is the nonZeros entry. Each groupN entry has two numbers to
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the right. The first one is the nnZ share of groupN, and specifies the fraction of
the nonZeros entry that is to be applied to group N. For instance, if 20% of the
desired nonzero elements is to be grouped near the diagonal, then the first number to
the right of groupDiagonal should be 0.20. The second number specifies the group
density. If, for example, the concentration around the diagonal is desired to have a
density of 15%, then the second number to the right of groupDiagonal should be
0.15. The entry for spreadout indicates the fraction of the nonzero elements that
should be spread throughout the matrix. All the first entries of groupN and the
spreadout entry should add up to 1.0 (100%). While reading the configuration file,
the program finds the boundaries between which the new matrix elements will be
randomly assigned using a function called findBounds. With a call to the function

prepareM atriz Header the program writes the heading to the “.mhdg” file.

For each row, and for each group with nnZ share grater than zero, the program
determines the maximum number of data elements uB that the program will produce
for that group with a function called upper Bound. Then, with uB and the group
boundaries, a column number is randomly assigned using the function getColumn.
The matrix element value is randomly assigned with a call to getValue. These steps
produce one single matrix element that is pushed to a linked list. When all the
elements of the row are produced, the linked list contents are written to the output
file with a call to recordMatrizRow and empties the list for the next row with

cleanRowList.
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Chapter 5

Results

All the results and source code, are available on-line. Currently they can be found
at http://my.fit.edu/~pescallo or http://my.fit.edu/beowulf under Publications. This
chapter presents only the information necessary for interpretation of the results. Each
test requires from three to eight separate runs depending on the purpose of the test.
Each one of the plots in section 5.3, for instance, requires at least 16 tests with 3
runs each. That is a minimum of 48 runs. Each run produces nP results, one for
each processor. If all the raw data were included, it would consume many pages
that nobody is interested in reading. Some of the tables in this chapter contain the

information to produce the plots is presented here.

5.1 Validation Results

To test the validity of the RIS implementation, SPARSKIT functions were used to
test a total of ten randomly generated matrices of 50000 nonzero elements each. The
matrices, named test00.mtx through test09.mtx were generated with different density
patterns. The runs were made with a variety of partitions. The results are found in
table 5.1. The column under the heading “Mult Time” is the RIS time at the root
node. The “CSR Time” data came from timing a call to function amuz_ from the
SPARSKIT library. The “2-nom(Diff)” column is from the output of ftest.f. The

last four columns show the partition information.

Two plots were produced from these results. The first one is a comparison of the RIS
and CSR times. To make the comparison more realistic, the plot has an “adjusted

RIS” curve. This is the cost function that is the product of the “Mult Time” figure and
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nP Mult Time CSR Time 2-nom(Diff) nCD nRD Pc Pr
1 3.67E-03 2.15E-03 2.11E-11 1 1 1 1
1 3.69E-03 2.12E-03 2.11E-11 1 1 1 1
2 2.01E-03 2.10E-03 2.11e-11 1 2 1 2
2 2.23E-03 2.11E-03 1.93E-11 12 1 2 1
3 1.76E-03 2.14E-03 2.06E-11 1 12 1 3
4 1.11E-03 2.09E-03 2.15E-11 2 2 2 2
4 1.21E-03 2.08E-03 2.24E-11 4 6 2 2
4 1.24E-03 2.06E-03 2.08E-11 16 16 2 2
4 1.20E-03 2.08E-03 2.53E-11 16 16 2 2
4 1.38E-03 2.09E-03 2.49E-11 16 16 2 2
5 1.50E-03 2.13E-03 1.70E-11 10 1 5 1
6 8.90E-04 2.03E-03 2.58E-11 8 6 2 3
6 8.22E-04 2.04E-03 2.07E-11 12 15 2 3
8 6.69E-04 1.97E-03 1.85E-11 10 8 2 4
9 6.88E-04 2.03E-03 2.09E-11 15 15 3 3
10 5.59E-04 2.01E-03 1.80E-11 10 10 2 5
11 4.69E-04 2.05E-03 2.57E-11 1 11 1 11
12 5.94E-04 2.00E-03 2.08E-11 12 15 4 3
13 5.90E-04 2.05E-03 2.21E-11 13 1 13 1
14 4.31E-04 2.05E-03 2.16E-11 14 14 2 7
15 4.60E-04 2.02E-03 2.12E-11 20 21 5 3
16 4.04E-04 2.10E-03 1.94E-11 16 16 4 4

Table 5.1: Validation Results
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Figure 5.1: RIS, CSR Performance Figure 5.2: RIS Accuracy

the number of processors nP. For nP > 1, Tecsgr = 2.15e — 3 and Ty = 3.67¢ — 3.
Speed is proportional to 1/T, so the relative speed of CSR over RIS is

1/Tosr _ Taruit
1Tyuwr Tesr

or relSpeed = 3.67e — 3/2.15e — 3 = 1.707. Therefore, the single run result indicates

relSpeed =

that CSR runs about 70% faster than this RIS implementation. This result was

expected from the analysis in sections 1.5 and 1.6. In the cost analysis of algorithm 1.3,
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an upper bound of the CSR loop time is found to be
losr < (anZ)t + (3nnZ +3M + 3)6.

And in the cost analysis of algorithm 1.4, an upper bound of the RIS loop time is
found to be
Lrrs < (2nnZ)t + (5nnZ +2M + 3)c

Certainly, assuming that ¢ and c¢ are the same for both algorithms, the CSR loop time
upper bound is less than the RIS loop time upper bound by (2nnZ — M)c. Observing
both algorithms, the big difference between them is the test for the row markers in

the RIS loop. This overhead proves to be costly.

For nP > 1, the adjusted performance of RIS gets worse because of communication
overheads. The second plot shows the accuracy deviation of RIS versus CSR using pro-
gram ftest.f. The results prove that this sparse-matrix/dense-vector multiplication
using this RIS implementation agrees with sparse-matrix/dense-vector multiplication

using SPARSKIT functions.

5.2 Load Balancing

Using a generated matrix of 25 million nonzero elements, timing was gathered for
several partitions. The matrix has a target number of nonzero elements of 25 million.
The sparsity is specified as 30% of the nonzero elements along the diagonal with a
density of 15%, 30% of the nonzero elements are concentrated on the right edge of the
matrix with a density of 15%, 30% of the nonzero elements is concentrated on the left
edge with a density of 15%, and 20% of the nonzero elements are spread throughout
the matrix. The contents of the genMatrix input file mat25M.mcfg are shown in

figure 4.1.

Tests were conducted in order to prove that the partition algorithm can be used to
balance the processing load among the processors. Two tests are presented here. The
first test involves 16 processors (table 5.2). Eight runs were made for that test, each
with a different partition. Four of the runs have balanced partitions, and the other
ones have unbalanced partitions. The characteristic of a balanced partition is that

nCD is divisible by Pc and nRD is divisible by Pr.
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cP Runl Run9 Runi0 Runil Runi2 Runli3 Runi4 Runilb
0 108 148 113 172 114 198 105 264
1 113 124 108 124 109 134 119 144
2 114 127 108 124 107 127 130 173
3 108 123 110 124 114 134 103 144
4 107 118 110 124 111 128 104 132
5 110 096 108 092 108 087 118 070
6 110 098 107 092 108 085 121 o77
7 108 098 109 091 110 086 103 073
8 107 117 109 123 109 127 104 132
9 110 097 107 092 107 088 122 073

10 110 097 108 093 108 085 120 o077
11 107 097 110 091 112 088 105 073
12 108 117 111 124 115 128 105 132
13 113 098 109 091 107 086 132 073
14 112 097 109 091 109 084 121 078
15 107 096 113 092 113 087 105 070

nCD 16 17 12 13 8 9 4 5
nRD 16 17 12 13 8 9 4 5
Pc 4 4 4 4 4 4 4 4
Pr 4 4 4 4 4 4 4 4

Table 5.2: Load Balance Results with 16 Processors

Load Balancing Tests of mat25k—h.mtx
0.35 T T

0.3 [ Balanced partition: (16 16 4 4) B
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Figure 5.3: Load Balance Results with 16 Processors

Higher values of the ratios nCD/Pc and nRD/Pr in a balanced partition produce
finer distributions of the data. A finer distribution implies a closer balance. The
partition parameters of each test is shown at the bottom of table 5.2. From that it

is easy to see which tests are balanced and which tests are not. The timing results
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are in milliseconds. From the partition parameters and the timing results, the most
balanced run is Runl. This test’s results are used in figure 5.3. The load balance
plots include the most balanced and the most imbalanced results in the test to show

a good contrast.

With respect to imbalance, lower values of the ratios nCD/Pc and nRD/Pr in a
imbalanced partition produce greater imbalance. In the test under discussion, the
partition parameters of Runl5 are (ref. section 2.3) nCD =5, nRD =5, Pc =4,
Pr=4,nCG=[52]=2,nRG=[2]=2, and nPG =2 x 2 =4. The total number
of process grids is four. One of them is complete, and the other three are incomplete

as seen in the assignment map below.

0o 1 2 310
4 5 6 7|4
8§ 9 10 11 8

12 13 14 15| 12
o 1 2 30

It is easy to see from the assignment map that process 0 is assigned four blocks,
processes 1, 2, 3, 4, 8 and 12 are assigned two blocks each, and processes 5, 6, 7, 9,
10, 11, 13, 14 and 15 are assigned only one block. Therefore, the expectation is that in
Runlb process 0 performs its share of the sparse-matrix/ dense-vector multiplication
in about twice the time as processes 1, 2, 3, 4, 8 and 12. And they, in turn, do it
in about twice the time as processes 5, 6, 7, 9, 10, 11, 13, 14 and 15. The results of
figure 5.3 show that indeed this is the case.

The second test (table 5.3) presented here involves twelve processors. Eight runs were
performed with a different partition each. The runs chosen to generate the plots in
figure 5.4 are Runl6 and Run23. Runl6 is the most balanced one, and Run23 is the

most imbalanced one.

The partition parameters of Run23 are (see section 2.3) nCD =5, nRD = 4, Pc = 4,
Pr=3,nCG =[5]=2, nRG =[3] =2, and nPG =2 x 2 = 4. The total number
of process grids is four. One of them is complete, and the other three are incomplete

as seen in the assignment map below.
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cP Runi6 Runl7 Runi8 Runl9 Run20 Run21 Run22 Run23

0 149 216 151 236 1562 256 139 331
1 146 1565 144 161 144 172 167 179
2 144 154 143 1562 143 162 173 208
3 147 156 1561 161 1561 173 138 178
4 147 168 149 172 148 164 138 164
5 143 123 144 118 143 112 157 089
6 143 122 144 114 144 109 158 096
7 146 121 148 120 148 111 138 091
8 148 168 1561 172 150 164 138 165
9 144 121 143 120 144 112 173 091
10 146 122 144 114 145 109 157 098
11 148 123 151 118 152 113 138 089
nCD 12 13 8 9 8 9 4 5
nRD 12 13 9 10 6 7 3 4
Pc 4 4 4 4 4 4 4 4
Pr 3 3 3 3 3 3 3 3

Table 5.3: Load Balance Results with 12 Processors

Load Balancing Tests of mat25k—b.mtx
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Figure 5.4: Load Balance Results with 12 Processors

01 2 3|0
4 5 6 4
8 9 10 11|38
01 2 0

From the assignment map we see that process 0 is assigned four blocks, processes
1, 2, 3, 4 and 8 are assigned two blocks each, and processes 5, 6, 7, 9, 10 and 11

are assigned only one block. Therefore, the expectation is that in Runlb process 0
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performs its share of the sparse-matrix/ dense-vector multiplication in about twice
the time as processes 1, 2, 3, 4 and 8. And they, in turn, do it in about twice the
time as processes 5, 6, 7, 9, 10 and 11. The results of figure 5.4 show that indeed this

is the case.

5.3 Timing Results

The timing results are voluminous. So instead of showing all the collected numerical
data in this document, selected samples of the data are shown, and plots of the results
are provided. All the timing tests were performed on the same 25 million nonzero
sparse matrix. Each column of each table and each curve of each plot presented here
proceed from independent sets of runs. Therefore, the numbers do not necessarily
“add up”. For instance, on table 5.5, one would expect that for each row the value
under the “Overall” heading would be equal the sum of the “Mult” and “Reduce”
readings on the same row. This is not necessarily the case because each column was

produced with a separate, independent run.

Test 1 (mat25M-b.mtx 8 8 2 2) results:
Prep Bdcast Read

Process Time Time Time
PO 8.2e-5 7.61le-2 1.41e+2
P1 7.0e-b 7.88e-2 1.41e+2
P2 5.0e-5 8.01le-2 1.41e+2
P3 7.3e-5 8.16e-2 1.41e+2

Test 2 (mat25M-b.mtx 12 8 3 2) results:
Prep Bdcast Read

Process Time Time Time
PO 8.3e-5 1.11e-1 1.44e+2
P1 7.1le-5 1.12e-1 1.45e+2
P2 7.3e-5 1.10e-1 1.45e+2
P3 7.4e-5 1.15e-1 1.45e+2
P4 4.8e-5 7.87e-2 1.44e+2
P5 5.6e-5 8.28e-2 1.4b5e+2

Table 5.4: Sample Results

The speedup factor, according to Wilkinson and Allen [13] is



where 25 is the time using one processor, and %, is time using a multiprocessor with

n processors. The system efficiency is defined as

given as a percentage. Cost is defined as the execution time times the total number

of processors used.

ts X t
5 nzisztpxn

nP Mult Reduce Overall S(nP) Effic Cost nCD nRD Pc Pr

1 1.840 0.003 1.850 1.00 100.0% 1.85 1 1 1 1 Test2

2 0.911 0.047 0.959 1.93 96.5% 1.92 2 1 2 1 Test8

3 0.559 0.240 0.799 2.32 77.2% 2.40 3 1 3 1 Testil
4 0.413 0.985 0.578 3.20 80.0% 2.31 4 1 4 1 Testl7
5 0.334 0.193 0.525 3.52 70.5% 2.63 5 1 5 1 Test21
6 0.277 0.176 0.455 4.07 67.8% 2.73 6 1 6 1 Test34
7 0.238 0.167 0.401 4.61 65.9% 2.81 7 1 7 1 Test39
8 0.209 0.151 0.365 5.07 63.4% 2.92 8 1 8 1 Test61
9 0.186 0.188 0.375 4.93 54.8) 3.38 9 1 9 1 Test72
10 0.168 0.181 0.354 5.23 52.3% 3.54 10 1 10 1 Test77
11 0.153 0.179 0.332 5.57 50.7% 3.65 11 1 11 1 Test76
12 0.141 0.177 0.322 5.75 47.9% 3.86 12 1 12 1 Testb3
13 0.130 0.181 0.310 5.97 45.9% 4.03 13 1 13 1 Test4l
14 0.121 0.175 0.301 6.15 43.9% 4.21 14 1 14 1 Test33
15 0.113 0.177 0.294 6.29 42.0% 4.41 15 1 15 1 TestlS8
16 0.107 0.182 0.289 6.40 40.0% 4.62 16 1 16 1 Testil

Table 5.5: Column Balanced Results

Column Balanced Timing Results Column Balanced Efficiency Calculations

Root Node Reading

#——*  Multiplication Time

L L L L L L L L L L
8 10 12 14 16 0 2 a 6 8 10 12 14 16
Number of Processors Number of Processors

Figure 5.5: Column Balanced Results  Figure 5.6: Column Balanced Efficiency

In the data sample in table 5.4, PO, P1, etc., indicate the processor that produced

49



the results were obtained. In parenthesis at the top of each test is the matrix used for
the test along with the partition parameters nCD, nRD, Pc, and Pr in that order.
Each column of each test requires a complete run because M PI_Wtime can only be
used once per program. Refer to figure 3.5 for definitions of these tests. Given the
size of the matrix in these tests, the PrepTime measurement turned out to be neg-
ligible. It only proves that memory allocation and such does not affect performance.
Although measurements of the BdcastTime were gathered for the population of X
and X Jocal, they were ignored because population of the right hand side vector is
not part of the algorithm. ReadTime measurements were also ignored for the same
reason, population of the matrix is not part of the algorithm. These parameters will

not be considered any further.

Since the RIS multiplication algorithm gathers the results of all processors at the
root node to produce the final answer, only the root node results are considered here.
Averaged results over the processors in each test generally look better than those at
the root node. Compare figures 5.5 and 5.14. To find out whether a partition type has
significantly different results from the others, the results were separated into column
partition, row partition, or a block cyclic partition results. For each partition, we
provide one data table and two plots. One plot is for the timing results, the other
one is for efficiency calculations that include speedup, efficiency, and cost as defined

above. The efficiency results are also included in the data tables.

The column balanced test results of the test matrix mat25M-b.mtx are shown on ta-
ble 5.5. The plots corresponding to those results are shown in figures 5.5 and 5.6. The
characteristic of these tests is that there is no row partitioning and that the number
of column divisions (nCD), the number of cycles (Pc), and the number of processors
(nP) are the same for each test. The graphical results of figure 5.5 show that (except
for nP = 4, the “Overall Time” curve appears to be the sum of the “Multiplication
Time” and “Reduce Time” curves even if they come from separate, independent runs.
The spike in the “Reduce Time” curve is unexpected under ideal conditions. In reality,
since the M PI_Reduce function is an MPI function that uses a single communicator
for all the nodes involved, it is possible to experience network contention. In this

test, the Y _local arrays in each node is of size 50,000 x sizeof (double), or 400,000
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bytes. With 16 nodes, the throughput required for the M PI_Reduce operation is 51.2
megabits. On principle, communication response times should be of the same order
of magnitude as the matrix multiplication times. Tests with excessively large reduce

or overall times were ignored.

Figure 5.6 shows the speedup, efficiency and cost curves of the column balanced test
results of the test matrix mat25M-b.mtx. The efficiency curve starts out at 1.0 for
one processor (nP = 1), and steadily decreases to about 40% for nP = 16. Scalability
is defined as the ability of a multiprocessor to perform nP times the workload done in
a single processor in the same amount of time as the single processor. In other words,
if W is the work load done by a single processor in ty time, a scalable multiprocessor
can execute a workload of size nP X W with nP processors in y time. The graphical
results show that for nP = 2, this implementation is almost scalable as seen by the
speedup curve. For nP > 2 the S(nP) seems to approach asymptotically a level no

greater than seven. The maximum number of nodes available for this work was 16.

nP  Mult Reduce Overal S(nP) Eff Cost nCD nRD Pc Pr

1 1.840 0.003 1.850 1.00 1.00 1.85 1 1 1 1 Test2
2 0.923 0.048 0.986 1.88 0.94 1.97 1 4 1 2 Test4
2 0.924 0.047 0.978 1.89 0.95 1.96 1 2 1 2 Test7
3 0.614 0.087 0.701 2.64 0.88 2.10 1 3 1 3 Test9
4 0.460 0.091 0.549 3.37 0.84 2.20 1 4 1 4 Testl6
5 0.382 0.123 0.501 3.69 0.74 2.51 1 5 1 5 Testl9
6 0.309 0.127 0.435 4.25 0.71 2.61 1 6 1 6 Test29
6 0.312 0.124 0.436 4.24 0.71 2.62 1 6 1 6 Test32
7 0.267 0.129 0.394 4.70 0.67 2.76 1 7 1 7 Test36
8 0.231 0.129 0.366 5.0 0.63 2.93 1 8 1 8 Testb6
9 0.204 0.168 0.370 5.00 0.56 3.33 1 9 1 9 Test71
10 0.184 0.171 0.355 5.21 0.52 3.55 1 10 1 10 Test84
11 0.169 0.167 0.337 5.49 0.50 3.71 1 11 1 11 Test75
12 0.155 0.168 0.3256 5.69 0.47 3.90 1 12 1 12 Testb8
13 0.142 0.176 0.316 5.85 0.45 4.11 1 13 1 13 Test44
14 0.133 0.174 0.302 6.13 0.44 4.23 1 14 1 14 Test3b
15 0.123 0.174 0.299 6.19 0.41 4.49 1 15 1 15 Test20
16 0.116 0.183 0.303 6.11 0.38 4.85 1 16 1 16 Testlb

Table 5.6: Row Balanced Results

The row balanced test results of the test matrix mat25M-b.mtx are shown on ta-
ble 5.6. The plots corresponding to those results are shown in figures 5.7 and 5.8.

The characteristic of these tests is that there is no column partitioning and that the
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Figure 5.7: Row Balanced Results Figure 5.8: Row Balanced Efficiency

number of column divisions (nRD), the number of cycles (Pr), and the number of
processors (nP) are the same for each test. The graphical results of figure 5.7 and of
figure 5.6 are very similar to those of the column balanced partition tests. No further

discussion is necessary.

nP Mult Reduce Overal S(nP) Eff Cost nCD nRD Pc Pr

1 1.840 0.003 1.850 1.00 1.00 1.85 1 1 1 1 Test2

2 0.923 0.048 0.986 1.88 0.94 1.97 1 4 1 2 Testd

2 0.910 0.050 0.957 1.93 0.97 1.91 4 1 2 1 Testb

4 0.459 0.085 0.546 3.39 0.85 2.18 4 4 2 2 Testl3
6 0.312 0.122 0.442 4.19 0.70 2.65 6 4 3 2 Test25
6 0.306 0.128 0.435 4.25 0.71 2.61 4 6 2 3 Test26
8 0.223 0.125 0.349 5.30 0.66 2.79 12 6 4 2 Test4d3
8 0.230 0.133 0.364 5.08 0.64 2.91 4 8 2 4 Test48
8 0.228 0.132 0.361 5.12 0.64 2.89 8 4 4 2 Testb2
9 0.200 0.166 0.365 5.07 0.56 3.29 9 9 3 3 Test64
10 0.182 0.169 0.345 5.36 0.54 3.45 10 4 5 2 Test80
10 0.184 0.168 0.351 5.27 0.53 3.51 4 10 2 5 Test82
10 0.180 0.166 0.348 5.32 0.53 3.48 10 4 5 2 Test83
12 0.140 0.198 0.331 5.59 0.47 3.97 6 2 6 2 Test62
12 0.148 0.169 0.314 5.89 0.49 3.77 18 6 6 2 Test65
12 0.150 0.169 0.317 5.84 0.49 3.80 6 18 2 6 Test73
14 0.126 1.280 0.296 6.25 0.45 4.14 14 4 7 2 Test37
14 0.131 0.171 0.302 6.13 0.44 4.23 4 14 2 7 Test40
15 0.119 0.184 0.288 6.42 0.43 4.32 10 9 5 3 Test22
15 0.119 0.174 0.293 6.31 0.42 4.40 10 9 5 3 Test23
15 0.119 0.171 0.294 6.29 0.42 4.41 9 10 3 5 Test27
16 0.110 0.185 0.297 6.23 0.39 4.75 16 16 8 2 Testl0
16 0.113 0.192 0.290 6.38 0.40 4.64 16 16 2 8 Testl2
16 0.107 0.176 0.304 6.09 0.38 4.86 16 16 4 4 Testl4d

Table 5.7: Block Cyclic Results

The block cyclic test results of the test matrix mat25M-b.mtx are shown on table 5.7.
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Figure 5.9: Block Cyclic Results Figure 5.10: Block Cyclic Efficiency

The plots corresponding to those results are shown in figures 5.9 and 5.10. The
characteristic of these tests is that they are neither column balanced nor row balanced
partitions. The graphical results of figure 5.9 and of figure 5.10 are very similar to
those of the column balanced and row balanced partition tests. No further discussion
is necessary.

Matrix Multplication Comparative Results Overall Time Comparative Results
2 T T T T T T T 2 T T T T T T T

Root node results ‘Root node results

#——*  Column Ballanced #——+  Column Bal
& - -0  RowBalanced & - -0 RowBal
+--—+  Block Cyclic +--—+  Block Cyclic

6 8
Number of Processors

6 8
Number of Processors

Figure 5.11: Multiplication Results Figure 5.12: Overall Timing Results

Figures 5.11 and 5.12 show the comparative results of the multiplication and overall
timings respectively for the three partition types (column balanced, row balanced,
and block cyclic). The curves are almost on top of each other. This helps us conclude
that the partition choice does not impact the performance. This may also prove that

this is a good load balancing algorithm.

Figure 5.13 shows the comparative results of the call to M PI_Reduce for the three

partition types (column balanced, row balanced, and block cyclic). Ignoring the spikes
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Figure 5.13: Reduce Time Results Figure 5.14: Averaged Column Balanced

in those curves, they match very well with each other.

In view of the spikes found in the previous tests, a decision was made to duplicate
some of the tests on a different computer that uses myrinet technology. The tests

above were run on a parallel computer that uses ethernet.

nP Mult Reduce Overal S(nP) Eff Cost

1 2.540 0.00690 2.570 1.000 100.0% 2.570
1 2.520 0.00650 2.530 1.016 101.6% 2.530
2 1.420 0.00750 1.430 1.797 89.9% 2.860
2 1.440 0.00760 1.440 1.785 89.2% 2.880
2 1.490 0.02520 1.500 1.713 85.7% 3.000
2 1.480 0.02470 1.510 1.702 85.1% 3.020
2 1.420 0.02370 1.430 1.797 89.9Y% 2.860
3 0.985 0.01870 1.010 2.545 84.8% 3.030
3 0.852 0.12900 0.981 2.620 87.3% 2.943
3 0.837 0.13900 0.992 2.591 86.4Y% 2.976
4 0.718 0.02680 0.737 3.487 87.2% 2.948
5 0.475 0.06460 0.570 4.509 90.2% 2.850
6 0.490 0.04450 0.500 5.140 85.7% 3.000
7 0.342 0.08260 0.420 6.119 87.4% 2.940
8 0.346 0.02640 0.379 6.781 84.8% 3.032
9 0.304 0.04090 0.331 7.764 86.3% 2.979
10 0.270 0.03810 0.305 8.426 84.3Y% 3.050
11 0.230 0.06140 0.281 9.146 83.1% 3.091
12 0.219 0.05040 0.261 9.847 82.1% 3.132
13 0.195 0.05560 0.243 10.576 81.4% 3.159
14 0.181 0.04410 0.228 11.272 80.5% 3.192
15 0.176 0.06100 0.238 10.798 72.0% 3.570
16 0.155 0.06180 0.222 11.577 72.4% 3.552

Table 5.8: Myrinet Results
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Table 5.8 shows the results on the parallel computer that uses myrinet. Figure 5.15
is the plot of the myrinet timing results. The reduce times in these tests are much
smaller than in the ethernet tests. For that reason, the matrix multiplication times
and the overall times are almost coincident. But because the reduce curve is so small,

is also shown in figure 5.16.
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Figure 5.15: Myrinet Timing Results Figure 5.16: Myrinet Reduce Times

Observing the reduce time curve on figure 5.16 helps us understand the spike problem
better. In the ethernet case, the reduce times were very large compared to those in the
myrinet tests so the spikes are even more noticeable. Myrinet results also show spikes,
but because the response is so much faster, those spikes are insignificant compared to

the times to perform the matrix-vector multiplication.
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Figure 5.17: Speedup and Cost (Myrinet) Figure 5.18: Efficiency (Myrinet)

The speedup and cost plot on figure 5.17 shows a very linear speedup curve, and a

cost function that is quite flat. In this set of tests, the speedup slope is about 0.8 for
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a number of processors np = 14 or less. Additional tests were not conducted to sta-
tistically determine the degree of scalability. But looking at the results of figure 5.17,
from the slope of the speedup curve, we can say that the RIS implementation is about
80% scalable with myrinet. The cost curve ranges from 2.6 to 3.6. That is pretty flat
compared to the cost curve in the previous set of tests which ranges from about 1.9

to about 4.9

Figure 5.18 is the plot of the myrinet efficiency results versus the number of processors
nP. This curve shows that efficiency is much higher with myrinet than with ethernet.
For instance, the test with nP = 14 was 80% efficient. Due to resource limitations,
the myrinet set of tests was limited. A larger sample could have been used to find a
statistical interpolation curve. But even with the small sample, it is easy to see that

efficiency is higher than 70% at nP = 16.
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Chapter 6

Conclusion

This thesis introduces the new RIS representation for sparse matrices. This repre-
sentation proved to be an improvement in storage over COO, but not over CSR.
Analytical results proved that RIS has lower performance than COO and CSR. This
analytical result was confirmed experimentally for CSR where it was found that the
performance of the CSR representation is better than RIS by about 70% (refer to

section 5.1).

This thesis develops a modified block cyclic data decomposition for sparse matrices
(called here the balanced block cyclic partition) that achieves very good load balanc-
ing independently of the sparsity pattern. The theory of the balanced block cyclic
partition scheme is then supplemented with graphical partition examples of a sample

matrix to provide clearer insight.

The balanced block cyclic partition scheme was then implemented in a program called
RIS _Block_Cyclic in a parallel computer using Message Passing Interface (MPI). The
implementation was validated with the use of SPARSKIT functions. The valida-
tion results proved that this RIS implementation produces results that agree with
those produced by the academically accepted functions of the SPARSKIT library. It
was also found that the performance of the implemented RIS algorithm for sparse-
matrix/dense-vector multiplication is comparable, albeit not as good, to that of func-

tion amuz_ of the SPARSKIT library.

It was explored whether the choice of partition would impact the results in this

implementation. Many partitions where the number of divisions was an integral
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multiple of the cycle (for either row or column partitions) to achieve good load balance
were tested with the conclusion that the choice of partition has no effect. Tests were
run with partitions where the number of divisions is not an integral multiple of the
cycle (for both row and column partitions) to obtain an imbalanced load distribution.
The conclusion of these tests is that the balanced block cyclic partition is a good load

balancing scheme (see section 5.2).

The multiplication algorithm with ethernet is about 40% efficient (see figures 5.6, 5.8
and 5.10). The myrinet tests, on the other hand, are better than 70% efficient. The
algorithm is practically not scalable with ethernet, but with myrinet, it is estimated

to be about 80% scalable.

The M PI_Reduce timing results show “spikes” on both ethernet and myrinet tests.
The myrinet spikes were found to be insignificant with respect to the time to perform
the matrix-vector multiplication, while the ethernet spikes were not insignificant.

These spikes are suspected to be caused by network contention.
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Chapter 7

Future Work

In the process of analysis of RIS, a hybrid representation between RIS and CSR,
called here RCSR, was found. It promises to be an improvement over CSR. This
would need to be explored. In fact, the balance block cyclic partition can easily be

implemented in RCSR, and maybe even in CSR.

The random matrix generator suits the needs of this thesis, but the program has the

potential of becoming a good matrix generator for software testing.

Program RIS_Block_Cyclic could be improved to concurrently partition the matrix as

is being read from disk storage.

The RIS Block_Cyclic algorithm should be revisited when new technology that al-
lows optimization of the “if” loop becomes available. The upcoming Intel Itanium

processor is one example of such new technology.
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Appendix A

Source Code

A.1 getColumnlIndices

void getColumnIndices(int N, int nCD, int nz,
int* colCount, int colStart, cycleData_t *cycl )

{
int i=-1;
int lastSum = nz;
int eqlLoad = nz/nCD;
int cd, k, sumCurr, sumPrev;
cycl->cnc[nCD-1] = N; // All columns go to the last process
cycl->csc[0]=colStart; // Start col for the first proccessor
for(cd=0;cd<nCD-1;cd++) { // For each column division
sumCurr=0, k=0; // initialize sumCurr and k
while( i<N && sumCurr<eqlLoad) { // for each column i
it++;
k++; // increment k
sumPrev = sumCurr; // keep track of the previous sum
sumCurr += colCount[i]; // incr. by elements in ith column
}
cycl->cnc[cd]=k; // number of columns for CD
if (sumCurr-eqload > eqlLoad-sumPrev) { // closer to previous
cycl->cnc[cd]l--; // decrement number of columns
i——; // decrement column
lastSum -= sumPrev; // adjust elements of the last CD
cycl->cnz[cd] = sumPrev; // the CD nonzero elements
}
else { // otherwise ...
lastSum -= sumCurr; // adjust elements of the last CD
cycl->cnz[cd] = sumCurr; // the CD nonzero elements
cycl->csc[cd+1]=colStart+i+1l; // the next cd’s start column
cycl->cnc [nCD-1] -= cycl->cnclcd]l; // adjust last nCD
}
cycl->cnz[nCD-1] = lastSum; // the last CD nonzero elements
return;
}
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A.2 Program ftest.f

C-———————- h————— h—————— ,————— *—m——————— ,————— *———
C

¢ Subroutine valmat(n,nnz,x,yt,a,ir,jc)

C

C-—-————-———- h———————— h——————— h——————— *———————— ,————— *——=

subroutine valmat(n,nnz,x,yt,a,ir,jc)
real*8 yt(x), a(x), x(*)
integer n, nnz, ir(*), jc(*)

real*8 y0(n)
integer iwk(n+1)
integer job = 0

call coicsr(n,nnz,job,a,jc,ir,iwk)

write(*, ’(a)’ ) ’-Comparing the supplied test vector Yt
write(*, ’(a)’ ) ’ with the generated vector YO using the ’
write(*, ?(a)’ ) ’ SPARSKIT subroutine amux(). ’

write(*x, ’(a)’ ) ’ °

call amux(n,x,y0,a,jc,ir)
call errpr(n,yt,y0,’RIS ’)

return
end

Q- R O e O O e
C End of valmat
G- R e e R e *——
(R O S T e T *—mm
C
C Subroutine errpr(n, y, yl,msg)
¢
G R K e Ko m e R *—mm

subroutine errpr(n, y, yl,msg)

real*8 y(*), yl(*), t, sqrt

character*6 msg

t = 0.0d0

do 1 k=1,n

t = t+(y(k)-y1(k))**2
1 continue

t = sqrt(t)

write (*,*) ’ 2-norm of difference in ’,msg,’ =’, t

return

end
Q- R S e O O O
C End of valmat
G- e e e R e *——
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Appendix B

Support Software

B.1 Makefile

MY_BIN = $(HOME)/bin/
CC = mpicc
F77 = mpif77

SBC_RIS1 RIS_Bk_Cyc RIS_Bk_Cycl RIS_Bk_Cyc2 RIS_Bk_Cyc3

SBC_RIS2 = RIS_Bk_Cyc4 RIS_Bk_Cyc5 RIS_Bk_Cyc6
SBC_RIS = $(SBC_RIS1) $(SBC_RIS2)
GEN_PROGS = genMatrix preplMat partMat
VAL_PROGS = ris_Val RIS_Bk_Cyc7
RIS_Block_Cyclic.o ftest.o mmio.o libskit.a

VAL_0BJ

PROGS 5(GEN_PROGS) $(SBC_RIS) $(LEGACY) $(VAL_PROGS)

FLAGS = -DKNC_OUTPUT=1 -DDEBUG=0

TIMER1 = -fast -DTIMING_OUTPUT=1 -DDEBUG=0
TIMER2 = -fast -DTIMING_OUTPUT=2 -DDEBUG=0
TIMER3 = -fast -DTIMING_OUTPUT=3 -DDEBUG=0
TIMER4 = -fast -DTIMING_OUTPUT=4 -DDEBUG=0
TIMERS = -fast -DTIMING_OUTPUT=5 -DDEBUG=0
TIMER6 = -fast -DTIMING_OUTPUT=6 -DDEBUG=0
TIMER7 = -fast -DCSR_TIMER=1 -DDEBUG=0

VALDT = -fast -DVALIDATION=1
OPTM = -fast

all: $(VAL_PROGS) $(SBC_RIS) $(SBC_RIS2) $(VAL_PROGS)

ris_Val: RIS_Block_Cyclic.c ftest.f mmio.o libskit.a
$(F77) $(OPTM) -c ftest.f
$(CC) $(VALDT) -c RIS_Block_Cyclic.c
$(F77) -Mnomain $(0OPTM) -o $@ $(VAL_O0BJ)
cp $@ $(MY_BIN)

RIS_Bk_Cyc: RIS_Block_Cyclic.c mmio.o
$(CC) $(FLAGS) RIS_Block_Cyclic.c mmio.o -o $@
cp $¢ $(MY_BIN)

RIS_Bk_Cycl: RIS_Block_Cyclic.c mmio.o
$(CcC) $(TIMER1) RIS_Block_Cyclic.c mmio.o -o $@
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RIS_Bk_Cyc2:

RIS_Bk_Cyc3:

RIS_Bk_Cyc4:

RIS_Bk_Cycb:

RIS_Bk_Cyc6:

RIS_Bk_Cyc7:

partMat:

prepMat:

genMatrix:

clean:

veryclean:

cp $@ $(MY_BIN)

RIS_Block_Cyclic.c mmio.o

$(CC) $(TIMER2) RIS_Block_Cyclic.

cp $¢ $(MY_BIN)

RIS_Block_Cyclic.c mmio.o

$(CC) $(TIMER3) RIS_Block_Cyclic.

cp $@ $(MY_BIN)

RIS_Block_Cyclic.c mmio.o

$(CC) $(TIMER4) RIS_Block_Cyclic.

cp $@ $(MY_BIN)

RIS_Block_Cyclic.c mmio.o

$(CC) $(TIMER5) RIS_Block_Cyclic.

cp $¢ $(MY_BIN)

RIS_Block_Cyclic.c mmio.o

$(CC) $(TIMER6) RIS_Block_Cyclic.

cp $0 $(MY_BIN)

mmio.

mmio.

mmio.

mmio.

mmio.

-0

=0

-0

=0

-0

RIS_Block_Cyclic.c ftest.f mmio.o libskit.a

$(F77) $(OPTM) -c ftest.f

$(CC) $(TIMER7) -c RIS_Block_Cyclic.c

$(F77) -Mnomain $(0PTM) -o $@ $(VAL_0BJ)

cp $@ $(MY_BIN)

partMat.c mmio.o

$(CC) $(OPTM) partMat.c mmio.o -o $@

cp $@ $(MY_BIN)

prepMat.c mmio.o

$(CC) $(0OPTM) prepMat.c mmio.o -o $@

cp $@ $(MY_BIN)

genMatrix.c mmio.o

$(CC) $(OPTM) genMatrix.c -lm mmio.o -o $@

cp $0 $(MY_BIN)

$(RM) core *.0 *.bak *~
clean

$(RM) $(PROGS)
(cd $(MY_BIN) ; $(RM) $(PROGS))
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