Florida Institute of Technology

Scholarship Repository @ Florida Tech

Theses and Dissertations

5-2007

Type Inference, Type Improvement, and Type Simplification in a
Language with User-Defined Polymorphic Relational Operators

Lajos Pal Nagy

Follow this and additional works at: https://repository.fit.edu/etd

Cf Part of the Computer Sciences Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.fit.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational
Operators

by

Lajos Fal Nagy

Master of Science
in Computer Science
Technical University of Budapest
2000

A dissertation submitted
to Florida Institute of Technology
in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in
Computer Science

Melbourne, Florida
May, 2007

© Copyright 2007 Lajos & Nagy

All Rights Reserved

The author grants permission to make single copies

We the undersigned committee
hereby approve the attached thesis

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational Operators

by
Lajos Fal Nagy

Ryan Stansifer, Ph.D.
Major Advisor
Associate Professor, Computer Sciences

Philip J. Bernhard, Ph.D.
Committee Member
Associate Professor, Computer Sciences

Philip K. Chan, Ph.D.
Committee Member
Associate Professor, Computer Sciences

Jewgeni H. Dshalalow, Dr.Sci.
Committee Member
Professor, Mathematics

William D. Shodf, Ph.D.
Associate Professor and Head
Computer Sciences

Abstract

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational Ojpesa
by
Lajos Fal Nagy

Major Advisor: Ryan Stansifer, Ph.D.

The overarching goal of the current thesis is to pave the road towaa®prehensive solu-
tion to the decades old problem of integrating databases and programmin@desg For this
purpose, we propose a record calculus as an extension of an MListgitonal programming
language core. In particular, we describe: (1) a set of polymorpbkirdeoperations that are
expressive enough to define the operators of the relational alg&ra;type system together
with a type inference algorithm, based on the theory of qualified types, teatlyrcapture the
types of said polymorphic record operations; (3) an algorithm for dhgake consistency (sat-
isfiability of predicates) of the inferred types; (4) an algorithm for imprgvamd simplifying
types; and (5) an outline of an approach to explaining type errors in $ludtirey type system in

an informative way.

Table of Contents

Page
Acknowledgment L iX
Dedication X
Chapter 1: Introduction 1
1.1 TheGreatChasm it 1
1.1.1 Rationale for Functional Programming 4
1.1.2 Rationale for the Relational Model 5
1.2 Problem Statement 6
1.2.1 MainChallenges e 7
1.3 Contributions 8
1.4 Outline of Dissertation 9
Chapter 2: Related Work 10
2.1 Database ProgramminglLanguages a 1
2.1.1 Orthogonal Persistence 11
2.1.2 TheRelational Approach 13
2.2 Deductive Databases 15

2.2.1 A Simple Deductive Database 16

2.2.2 Deductive Databases versus Functional Database Programming. . 18

2.3 Record Calculi and Systems with Polymorphic Relational Operators 20
2.3.1 Record Support in Mainstream Languages 1 2
2.3.2 Standard Record Subtyping, 22
2.3.3 Rows and Unchecked Row Extension 23
2.3.4 PresephbsentFlags 23
2.3.5 Generalized Rows with Subtyping 24
2.3.6 Record Concatenation with Disjointness Predicates 25
2.3.7 Kinded Record Types and Machiavelli 26
2.3.8 Qualified Typesand Rows 29
239 ThelanguagP 30
2.3.10 Type Inference for the Relational Algebra 32
2.3.11 HaskellDB: Strongly Typed Database Access for Haskell 34
2.3.12 Heterogeneous Collections forHaskell 36

Chapter 3: Language Syntax and Semantics 40

3.1 Language Design Considerations 40
3.1.1 The Notion of Record and the Omission of Variants 42
3.1.2 FirstclasslLabels 43

3.2 BasicRecordOperations 43

3.3 FormalSemantics 49

3.4 SetsandRelations 53

3.4.1 RelationHeadings 55

3.5 Defining Relational AlgebraOperators 56

3.5.1 Sample Relational AlgebraQueries 58
Chapter 4: Type System 61

4.1 Kinds 61

4.2 TYPES . . o e e e e e 62

4.3 Type-level Operationsand Relations 63

4.4 Type Predicates and Qualified Types 65

4.5 Typing Basic Record Operations 9 6

4.6 TypingRulesand Typelinference 71
4.6.1 Substitution and Unification 71

4.7 Examplesofinferred Types. 74

Chapter 5: Checking Satisfiability of Predicates 76

5.1 Definition of Satisfiability 78

5.2 Mappingto Set EXpressions 79

5.3 A Simplifying Language Restriction 80

5.4 TheAlgorithmQ 83
5.4.1 Pseudo CodeforAlgorithmQ 84

5.5 A Normal Form for Set Expressions 84

5.6 SolvingSetConstraints L 88

5.7 SelectingBase Sets 90

5.8 Checking Field Type Constraints 93

Vi

5.9 HandlingNestedRecords, 96

5.10 Soundness and Completeness e 98

5.11 Complexity of Algorithm Q. 99

512 Sample Run 101

5,13 Summary e e e e e e 103

Chapter 6: Type Improvement and Simplification 4 10

6.1 Typelmprovement e e e e 104
6.1.1 Representative Cases 106

6.2 Algorithm for Type Improvement. 011
6.2.1 Finding the Improving Substituticea (Field Types) 110
6.2.2 Finding the Improving Substitutic (Empty Row) 111
6.2.3 Finding the Improving Substitutien (Same Row) 113

6.3 Type Simplification 116
6.3.1 RepresentativeCases i 118

6.4 Algorithm for Type Simplification 122
6.4.1 Identifying Reachable Predicates. 122
6.4.2 ldentifying Constructor Predicates 124
6.4.3 Identifying Relevant Predicates 125
6.4.4 PuttingltAllTogether 127

Chapter 7: Explaining Type Errors o 129
7.1 Explaining Type Errors in Polymorphic Languages 130
7.2 Type Errorsand Qualified Types 131

Vii

7.2.1 Showing the Origins of Predicates 134
7.2.2 ldentifying Conflicting Predicates 135
7.2.3 Revealing the Contradiction 136
Chapter 8: Conclusions e e 014
8.1 FutureWork 141
Appendix A: Overview of the Relational Model and Algebra 150
Al UNiON . .. 151
A2 Intersection 152
A3 Difference 152
A4 CartesianProduct 315
A5 (Natural)Join 154
A.6 Restriction 155
A7 Projection e e 156
A8 DIVISION 157
A.9 ‘Non-Standard’ Relational Operators 158
A.9.1 Projecting Away and Renaming Attributes 159
A.9.2 \Variations on join: semijoin, antijoin, and compose 160
A.9.3 Improved division: the SmallDivide 160
A9.4 EXIENSION 161
AppendixB: Proofs 621

viii

Acknowledgment

First of all, I would like to thank my parents for their patience and understgnd know
how hard it must have been to let their only son go to a far away counttieonther side of the
Atlantic. | thank my sisters, EmEva, and Julcsi, for their encouragement and support.

| thank all the members of my doctoral committee. | thank Dr. Chan for pushinigamter
and demanding focus and clarity. Special thanks goes to my major advis@tdnsifer whose
knowledge, patience, professionalism, eye for detail, and last, buirdgrat least, his constant
encouragement really was indispensable in helping me to write this dissertation.

| would like to thank my friend, Attila, who always lent a sympathetic ear whenéwit
obstacles in my research (and that happened a lot).

| thank Dr. Imre Paulovits, who helped me to get to the United States and pdavidevith
a lot of advice on how to conduct world-class research.

Finally, | thank Yoshiko, who believed in me all the way, and wanted me to sdc¢8he is

also pretty, by the way.)

Dedication

To My Grandparents

Chapter 1

Introduction

Databases as separate entities of information systems emerged in the 1860she@tame
obvious that the common task of handling shared and persistent datadeakstith a dedicated
component, a Database Management System. Up until then, each applicatioanp did its
own data management using the facilities provided by the file system. Thougdepi@sation
of duties proved to be extremely beneficial in the long run, it neverthetesset its own set of
problems—most of them stemming from thdhdiulties of interfacing programming languages

with databases.

1.1 The Great Chasm

Programs that access data in a database are referredavadimse applicationsTraditionally,
database applications are written in some high-level programming languige ¢alled the
hostlanguage in this context), and uselata sub-languagéhe embeddedanguage) to query
and update data in the database. (This description holds true even in teatcahmodern
object-oriented languages, although varipassistencendobjectrelational mappingsolutions
blur the language boundaries somewhat.) It has long been recognizedishdualism of lan-

guages (or ‘impedance mismatch’, as it has become infamously knowmgcsergeral problems:

[EEN

. differences between the primitive and complex data types of the host and thddetbe
languages require constant translation (mapping) between feratit data representa-

tions (implementing this translation is often both laborious and error-prone);

2. there are quite ffierent approaches to the optimization of programs as opposed to the
optimization of database operations, with very little work existing on how to parfo

them jointly;

3. most databases, nowadays almost always relational, support, intheffprimitive op-
erations, ‘set-at-a-time’ (bulk) processing of data, while most programmimgukges,

especially for update operations, support only ‘tuple-at-a-time’ (itexppyvocessing;

4. the host language is disconnected from the syntax and semantics ohbleelded lan-

guage which prevents compile-time checking of database operations; and

5. when dealing with concurrent access to shared data, programmingeroften assume
cooperation betweenfiierent entities (that are considered friendly, creating only inadver-
tent conflicts) while databases by default assume competition amffaredt entities (that
are considered hostile, creating deliberate conflicts) which leads to widkdyidg views

on such issues as transaction management.

Since the late 1970s, there have been several attempts at addresgirgy formulating)
the ‘impedance mismatch’ problem (see [Atkinson and Buneman, 1987fjéoolder, but quite

broad survey, and [Cook and Ibrahim, 2005] for a more recent, albgiewhat narrower one.)

Most, if not all, solutions address this problem of language dualism, they $phte the problem
by coming up with a single, unified language)atabase Programming Langua@BPL), that
can be used for both computation and data manipulation [Bancilhon and Bon#@8®; Date

and Darwen, 1998].

We believe in the general correctness of the unified language apptoashlving the
‘impedance mismatch’ problem, and consider the combination of fundtiagramming and
the relational model of data the most promising candidate for such a ud#iegliage. In ac-
cordance with this, we propose a record calculus (as an extensioniaff@ititly-typed lambda
calculus with let-bound polymorphism), that is powerful enough to egphes‘standard’ rela-
tional algebra operators and also to permit the definition of novel ondthoAgh far from a
full-fledged database programming language proposal, neverthelesisppe that by exploring
a particularly complex and interesting segment of the design space, nveardribute to the

design of more ambitious programming languages.

Quick Note on Terminology

The basic building block of the relational model, the relation, is defined as@f sgples. In
database theory, mple (or labelled tuple) is a finite map fromattribute namedo attribute
values The programming languages community ha$edent names for the same concepts: a
recordis a finite map fronfield namegor labelg to values In this thesis we will mostly use
programming language terminology, unless the topic is directly related to dattiemsy. Also,

slightly abusing standard usage, we will call operations on relatelational operators

1.1.1 Rationale for Functional Programming

Functional programming languages are important members of a broader t#rdibelarative
languages These languages are characterized by their relative closeness tamattiseboth
in their syntax and their semantics. Functional languages are badaohbda calculuswhich
makes formal reasoning about the properties of programs much easién tha case of imper-
ative languages. The history of functional programming also provegrakdanguage features

extremely useful, each of which we were determined to preserve whilenilegigur system:

1. Static Type Checking and Type Infereridee ability to statically type check programs
without extensive explicit type annotations [Cardelli, 1997] makes for very isenaro-
grams while retaining the advantages of static type checking. Coupled witiefBéde
free programming it is very often true about functional programs that €&ibihpiles, then

it is correct.”

2. Higher-Order Functiong-unctions are first-class citizens in a functional language so they
can be passed around and manipulated just like ordinary values. This &bitigfine
and use higher-order functions (functions that operate on functalusys for powerful

abstraction mechanisms that greatly enhance the expressive powetasfgbage.

3. Polymorphism (or Generic Programminly) a polymorphic functional language, it is pos-
sible to define functions that operate on arbitrary tywhae retaining static type checking
and type inference. Polymorphism facilitates the ‘Once and Only Onceipténof soft-

ware engineering that puts great value on avoiding duplicating functionality

4. Referential Transparency a pure [Sabry, 1998] functional language, functions behave
like their counterparts in mathematics, that is, they denote a value and invokingtean
with the same list of arguments always yields the same value. In other wdedgyumage
of pure functional programs ieferentially transparentvhich allows developers to use
powerful equational reasoning when thinking about programs. Fomple, in a referen-
tially transparent language, the expresdaink = f(y) in g(x) + g(X) is alwaysequivalent
in valueand effect to the expressiog(f(y)) + g(f(y)) which cannot be said of languages

that permit functions with sideféects.

1.1.2 Rationale for the Relational Model

In the early 1970s when Codd first introduced the relational model of|Gatdd, 1970], it was
not entirely obvious that relational databases would be ubiquitous thirty yater. Several

factors contributed to the eventual success of the relational model:

1. The relational model, as a formal system of logic, is equivalent in egpepower to first-
order predicate logic (without function symbols) restricted to non-réaitdorn clauses
[van Emde Boas-Lubsen and van Emde Boas, 1998]. In addition, aagythethe rela-

tional model is always guaranteed to be fingaféin relational terminology.)

2. Complex,ad hocqueries can be formulated using only the operators of the relational
algebra, which stands in sharp contrast with the more programmatic, ‘polmsing’

style of querying in network and object-oriented databases.

3. Unlike first-order predicate logic (where resolution is exponentidgtiomal algebra does

have an #icient evaluation algorithm (polynomial in the size of input relations).

4. Significant amount of research has gone into the optimization of relatioealkes both at

compile-time (query re-writing) and execution-time (indexes, scheduling).

5. Transaction semantics can be clearly defined in the relational model, wiréaies seri-

ous theoretical diiculties in other data models.

1.2 Problem Statement

The algebraic approach to defining relational queries (relational apihpurely functional by
nature, thus it seems natural to use the functional paradigm combined wittldtienal model
of data as the basis of a database programming language:

The goal of this thesis is to define polymorphic relational operators frommallsset of
primitives in a functional programming language with full compile-time type kihggc type
inference, polymorphism, and higher-order functions.

We emphasize full compile-time type checking (catching type errors at theitdefisite,
if the particular definition can be proven to be erroneous) to set our ggibppart from sys-
tems (like [Buneman and Ohori, 1996] and [Makholm and Wells, 2005]) vbi only partial
compile-time type checking (catching more expensive type errors onl\ll alites, thus poten-
tially accepting erroneous, albeit unused definitions).

Another important dference between previous systems and our proposal is that we set out to
find a handful of primitive operations in terms of which most polymorphic retatioperations

could be defined, as opposed to trying to canonize in the language a dixetiimitive rela-

tional operators (see [Buneman and Ohori, 1996] and [Van den Bessa Waller, 1999]). We
consider this later approach not satisfactory and decided against ityfitex and semantics of
the language, the typing rules, and the type inference algorithm (not to memtiofs of sound-
ness and completeness in the system), all become unduly complex when prielgitienal
operators need to be treated as special cases every time. Even if one ig teilincept this
additional complexity, it turns out that the list of polymorphic relational ofmesais practically
open-ended, so every time a new relational operator is introduced tivaitdaze expressed using
the built-in ones, one has to change the language definition together with thg tytes and
the type checking algorithm (and every proof concerning the type syatelrthe type inference

algorithm would have to be re-done as well).

1.2.1 Main Challenges

The following are the main challenges one has to face when designing ayyalge with the
properties laid out in the problem statement:

Value-Dependent Typ&de result type of a polymorphic relational operator often depends
on thevalueof its operands in a non-trivial way (for example, in the caseatfiral join, the
headingof the result is thainion of the headings of the operands—see Section A.5 for details).
As a result, the type ofatural join, along with most other polymorphic relational operators,
cannot be expressed using only the standard Milner [Damas and MiB&2] tiype system that
forms the basis of all modern functional programming languages.

NP-hard Type Checkingnother problem is that static type checking in a language that

supports polymorphioatural join has been proven [Ohori and Buneman, 1988] NP-complete.

Even type checking for the seemingly weaker system of symmetric recochtamation and
field selection was proven to be NP-complete [Makholm and Wells, 2005% iSta challenge
because a programming language is of little practical use unless the tygdnchefcmoderately
sized programs can be done in reasonable amount of times, tfestis,

First-Class Attribute (Record Label) Sekbe relational operatgorojecthas two operands:
a set of attribute names and a relation. One faceshzuty when trying to adgrojectto a
functional language, because it is not clear how to represent setisibfi@sboth at the value
and the type level. Again, the problem withroject is that the resultype of the operation
depends on thealue of its operands. For example, the following relational expression using
is ill-typed, regardless of the type of relation mag)(micpy(r)). Notice that the individual
invocations ofprojectare well-typed in the Milner type system, that is, the actual arguments are
of the correct types: a set of attributes and a relation. Nevertheless)deof the actualalue

of the arguments, the expressiasa wholss ill-typed.

1.3 Contributions

The main contributions of this dissertation are:

1. A carefully chosen collection of basic record operations, complete withdl semantics,

that are expressive enough to define polymorphic relational operators

2. A polymorphic type system (with a standard type inference algorithm) tletpiessive
enough to capture all the type constraints necessary to guarantee ctimpilehecking

of all basic record operations.

3. An algorithm for checking the satisfiability of type constraints generayetid type in-

ference algorithm.

4. Algorithms for improving and simplifying inferred types, where type improget is

guaranteed to find the principal satisfiable type.

5. An outline of an algorithm for explaining type errors in the face of polyshar relational

operators that can give rise to arbitrary systems of set constraints.

1.4 Outline of Dissertation

Chapter 2 summarizes related work in the area with emphasis on varioud =douli and
system with polymorphic relational operators. In Chapter 3, we describgytitax and formal
semantics of the core language and the basic record operations. IteChawe describe the
type system of the language and define the types of the basic recoadiopgr Chapter 4 also
contains the description of a standard type inference algorithm for theygbem. In Chapter 5,
we develop an algorithm for checking the satisfiability of type constraintergéed by the type
inference algorithm. Chapter 6 formalizes the notions of type improvemergiamgdification,
and also describes algorithms for performing type improvement and simplificiti€hapter 7,
we analyze how to best explain type-errors in the system, and proposslisie of an algorithm
for doing so. Chapter 8 concludes the dissertation by summarizing the rasdlminting out
possible future work. Appendix A gives an overview of the relational ehaahd algebra, and

all the proofs are collected in Appendix B.

10

Chapter 2
Related Work

In this section we look at related work in the main problem areas identified edidiglace
our contribution into perspective, we first have to establish a broadeextofor our éforts.
Since attempts at addressing interfacing issues between databasesgatpring languages
can be dated back to the early 1960s, it is no wonder that the work donésisamewhat
loosely defined area has been immense. Therefore, we do not evendote give a compre-
hensive account of all previous work, but rather settle for a géoeeaview that will hopefully
help position the current thesis in relation to other major research directighe area. After
establishing the broader context we can move on to the narrower and psaificstopic of de-
scribing related work in the areas of record calculi and polymorphic rekaltiaperators, where
we can take the chance to elaborate on some technologies mentioned onlyig paslier. As
a technical side note, we remark that since in the programming language cignialeled tu-
ples’ are almost exclusively referred to as ‘records’ we will oursehewert to this terminology

when discussing previous work in this area.

2.1 Database Programming Languages

The idea behind Database Programming Languages (DBPLS) is to make tipulaéon of

persistent data (definitigstoraggretrieval) an integral part of the programming language [Ban-

11

cilhon and Buneman, 1990]. (An early survey of the area can be foupitkinson and Bune-
man, 1987]. For a maore recent problem statement and analysis, sded@ddtborahim, 2005].)
It is important to mention here that the term Database Programming Languagedener-
ally accepted (or recognized) as the one that correctly describes sddtimnpts aiming at the
integration of databases and programming languages, and, as a resalt,reeearch £orts
place themselves into the DBPL camp or realize that they belong there. Asfpragraming
paradigm and the underlying persistence mechanism to use in designiriggmated language,
there never has been any real consensus among the researchpraditioners of the DBPL
field. Nevertheless, it is possible to distinguish two chief research directiwith several vari-

ations for each) that dominated the field in the last two decades or so.

2.1.1 Orthogonal Persistence

One direction, often called thewthogonal persistencs in “persistence is orthogonal to type”)
approach, deals with persistence from the point of view of programmirguéages [Atkinson
et al., 1990]. This movement hopes to close the gap between databaggegirzatnming lan-
guages by removing the need for a database management system (ofteitlymplderstood
to be a relational database management system) as a stand-alone systemetartipough
programming language extensions for persistence. Its advocates wsuptasize the primacy,
or the very least, the needs of application development over that of datalesign. In an
ideal language with orthogonal persistence, volatile and persistensvataendistinguishable
by their types, created and used by the application in the exact same wayyeaactual per-

sistence mechanism (reading data from and writing data to secondargestisacompletely

12

transparent from the point of view of the programmer. Combining orthalgoersistence with
Object-Oriented programing lead to the emergence of Object Databasegydfaeat Systems
(ODBMSs) [Dittrich, 1991]. ODBMSs support the storage and retrie¥abjects that encap-
sulate both data and its operations but usually are tied to a single object-dnEogramming
language, commonly €+ [Bartels and Robie, 1992]. Research in the ODBMS field flourished
in the early 90s but interest began to wane as prototypical systemsddtuseeasure up to
relational systems and the long sought after theoretical foundations ditiatetialize [Kim,
1991]. The Enterprise Java Bean (EJB) technology [Ran et al., 28i¢ugh larger in scope,
can also be categorized as an attempt to add orthogonal persistence awah@aramming
language, showing striking similarities to the ODBMS movement both in its gengpabach
and its general failure to meet expectations [Johnson, 2004].

Orthogonal persistence, even after decades of research, $éhssiitom several unsolved, or
inadequately addressed, issues that prevent it from replacing relaéehnology, as originally

hoped. There are several reasons for this failure to meet expectations

¢ lack of a formal mathematical foundation (comparable to the relational modebddé

[Codd, 1970]) for the description and manipulation of persistent data;

¢ lack of, or poor support for, a simple but expressive query langdagwriting ad hoc

queries, if ad hoc queries are supported at all;

e inability, or difficulty, of sharing of data between applications, due to fact that persistent

data is often tightly coupled with a particular programming language and paradig

13

e data manipulation is chiefly performed innavigational(‘pointer chasing’) rather than
a declarative(for example, relational algebra) manner, despite the fact that navightion
databases (network and hierarchical) had been proven to be infestbrjn theory and

practice, to declarative (relational) databases a long time ago [Date arl] T3xb];

e difficulty in handling bulk data, or handling itfeciently, a fact which is often due to the

‘tuple-at-a-time’ processing nature of general purpose programmiggidayes;

e theoretical and practical fiiculty in utilizing both compile-time and run-time query opti-
mization techniques which are now commonplace in relational databases l@idake

proved to be indispensable in achieving acceptable performance); atig fin

¢ lack of, or limited support (let alone formal foundations) for features tikdtiple users,
transaction isolation, integrity constraints, distribution, security, or vieWsf avhich

features are now taken for granted in relational databases.

2.1.2 The Relational Approach

Efforts that fall under the umbrella of thelational approachaccept the relational model and its
embodiment, the relational database management system (RDBMS), as ¢nal fmmdation
for handling persistent data. As opposed to orthogonal persistengeidges belonging to the
relational approach insist that only certain data types and run-time cotsstnamely, relations,
can be made persistent. Thus, the emphasis is on developing a smooth imdratiieen the

programming language and the underlying RDBMS, both in terms of run-tinfierpeance and

14

in terms of harmonized type systems. In essence, the relational apprgasttie next logical
step from the traditional embedded data sub-language approach thHa¢drag use from the
"70s, and which is still the most popular way of accessing data in a datéthesgite its well-

known shortcomings). Proposals in the area tend to extend mainstrearadasguith relations
and, occasionally, relational operators, like in Pagcgbchmidt, 1977], Modul&r [Reimer,

1984], or Machiavelli (based on ML) [Buneman and Ohori, 1996].

Adding support for records and relational algebra is often impossible wutitintroducing
new language constructs and modifying the target language’s type syStene languages are
more amenable to extension than others. Typically, languages with some flesegdpmrt for
records and record operations handle the extension with more easal{Raan those without
(Java). Recently, the language C# has been the target of such asiextéfort under the name
of Language INtegrated Query (LINQ) [Torgersen, 2006], a résalale €fort, considering that
C# is an object-oriented language with no direct support for recordscord operations. The
functional language Haskell has such an expressive type systeilaat possible to define a
relational extension as a language library in the project HaskellDB [Leijeihn\eijer, 1999],
a comprehensive, type-safe, database access library, similar in sphilti@ (of which it can
be considered a predecessor). Although more of an exercise in gusdhsgkell’s type classes
to the limit, strongly-typed heterogeneous collectidtise HList library) [Kiselyov et al., 2004]
proved to be capable of expressing all practically conceivable polymwrecord and relational
operations in a statically type-safe manner.

There is one language (or, more precisely, a list of language presos@tia proscriptions)

proposed by Date and Darwen in thlird Manifesto[Date and Darwen, 1998] that deserves

15

extra attention because it was designed from the ground up to alleviate $dheeperceived
problems of database programming languages plagued by the ‘SQL Ldbpatys, the general
shortcomings of SQL both as a language in itself and also as an implementatielatainal
algebra [Date, 1990; Date and Darwen, 1992b, 1995; Date et al.]. TR98proposal describes
a strongly-typed relational algebra language, correcting many of SQistakes on the way,
where attributes in relations can be of arbitrarily complex, including usimetk types. It also
emphasizes the importance of a unified language, that is, supporting lgemrayautation and
database access in a single language. There exist several implemeniatituting a full-
fledged commercial one, that are based on the principles put forward ifhilhd Manifesto, a

rarity in the realm of DBPLs.

2.2 Deductive Databases

The field of Deductive Databases (DDB) tries to combine logic programmirgyPliklog, with
relational technology [Minker, 1997]. Strictly speaking, a Deductivéabase can be catego-
rized as a Database Programming Language, but the area has suctlynditkerent points of
interest and body of research that it is best discussed in its own sergder [Reiter, 1982] was
the first to describe relational theory in terms of a logic system, pointing otittban be de-
scribed as a sub-theory of first-order predicate calculus, more phg@s a system of function-
and recursion-free Horn clauses. The realization that predicate leijiccertain restrictions,
can be used for programming [Kowalski, 1974] lead to the developmenguaf fwogramming
languages and most prominently to the development of Prolog that is alsbdrak®rn clauses.

It seemed natural to combine the elegance and declarative nature oflogieqmming with the

16

robustness and high performance of relational databases. In the amhdyistem, predicate
logic would serve as the unifying ‘lingua franca,’ used simultaneouslagpmiication program-
ming, expressing database queries, and specifying integrity constraifies. all, when seen
from a logic programming point of view, a relational database is nothing bogia theory,
where relations correspond to predicates, and tuples belonging to amelati@spond to unit
clauses of the predicates. Relational algebra queries can be directhateaito goal predicates,
where the result of the relational query corresponds to those varigméitsitions that make the
goal predicate true under the logic theory represented by the datatiasenew approach was
christened Deductive Database since it is based on deduction (logienné&rand database

technology.

2.2.1 A Simple Deductive Database

To demonstrate the feasibility of using logic as a database programming langnddo com-
pare it with relational theory, we will present a simple database together witie sample
gueries in this section . The relational database consist of only two relgarentandFemale

(this example is taken from [Colomb, 1998]):
PARENT FEMALE

Older | Younger Name

jane | lois jane

jim jane lois

17

The same database expressed as a logical theory with unit clausesRdgsyntax):

parent(jane,lois).
parent(jim, jane).
female(jane).

female(lois).

We can now define a view (infiect, a stored query) for the mother-child relation (using Tutorial
D syntax [Date and Darwen, 1998]):

MOTHER := (PARENT rename {Older as Mother, Younger as Child) join (FEMALE rename {Name as Mother})
The same view defined using logic:

mother (Mother, Child) :-

female(Mother), parent(Mother, Child).

However, DDBs are strictly more powerful than relational algebra, gimeg support recur-

sion, as demonstrated by the followiagcestompredicate:

ancestor(Older, Younger) :-

parent (Older, Younger).
ancestor(Older, Younger) :-

parent (Older, Intermediate),

ancestor(Intermediate, Younger).
The ancestorpredicate cannot be defined using standard relational algebra, andgiitthe
SQL standard has embraced recursive queries lately [Melton and Sif@d], & still remains
something of an afterthought that does not nicely fit with the rest of theubegey Contrast
this with the fact that DDBs have always put great emphasis on maintainitegrceesirable

properties of database queries, like finiteness, and unequivocahSesnavhich amounts to

allowing only safe forms of recursion (ones that cannot lead to infinitétsesr undecidability).

18

2.2.2 Deductive Databases versus Functional Database Programming

Since logic programs and databases are indistinguishable in a DDB, whickeiyg appealing
feature, most theoretical and practical results can be applied to both) hidsanade research in
the area a very fruitful one. If we add to this the fact that DDB technoltmgydirectly leverage
the decades of research done in various areas of logic, the questies, artsy choose func-
tional programming, as opposed to logic programming, as the basis for aduaifiguage for
database programming. Despite being theoretically elegant and producing$elgnexciting
results over the last three decades, the field of Deductive Databasssfigillfrom some se-
rious deficiencies, both theoretical and practical, which has preveataahg other things, the
development of a single commercially successful DDB as of this writing.

Functional programming is based on the lambda-calculus which, besideg) Fawell-
defined and straight-forward evaluation method, easily handles higter-functions and has
no difficulty whatsoever in accommodating relational operations. On the other Deébigis
have long sffered from the dticulties created by any attempt tffectively combine the stan-
dard top-down, ‘tuple-at-a-time’ execution of logic programs neededgppfication code that
might include functions and general recursion with the bottom-up, ‘settiated evaluation of
relational queries, which emphasizes run-time optimization, finite results,aafamance [Ra-
makrishnan and Sudarshan, 1991]. In practice, the two evaluatiorggtabeteract poorly. An
additional theoretical dliculty is that diferent evaluation strategies can result iffedent se-
mantics, and the ffierences among these strategies can rarely be described as simplyesis ‘eag

versus lazy’ in functional programming.

19

Logic programming also has somefutiulty supporting higher-order predicates, a feature
that proved to be so enormously useful in functional programming in the &frhigher-order
functions. The main reason for this is that logic programming is based on thewderstood
first-order predicate calculus, and higher-order predicates woutddetof this system, thus
preventing the use of its elegant anflieetive inference procedure (resolution). Despite this,
some logic programming languages [Somogyi et al., 1994], Mercury in pktjado support
higher-order predicates, but in a limited fashion. Although not centrally itapg one must
nevertheless point out the fact that higher-order functions fit haiously into the syntax of
functional programs, which cannot be said of higher-order predicategic programs.

Finally, when attributes in relations must be referenced by position, whidttrid the case
if they are represented as logic predicates, one loses an important etdrdatd independence,
that is, the ability to add attributes to or remove them from relations without ingalatabase
programs that do not depend on th€eated attributes. From the point of view of reducing
programmer errors, attribute names make explicit which attribute one refenghiie in the
positional setting of logic programming, it is easy to confuse attributes, evanyipeful logic
programming language like Mercury (for example, although predicates vif{himthe dozens
are rare in logic programming, they are not at all that uncommon in relatiobats). We
close this section with an example that demonstrates the potential drawbacksa(oftware
engineering point of view) of having to refer to attributes by position instdday name (the
first view is defined using Prolog and the second view is defined usingidluf). In both cases

we assume that a relati@OURSEexists with several attribute€ourseNoSubjectetc.) in it:

20

course_title(CourseNo, Title) :-

course(CourseNo, Subject, Title, Term, Instructor, Credit, Campus, Room, Hours).

COURSE_TITLE := COURSE { CourseNo, Title }

When using logic programming, we are forced to enumerate all attributes @l#imn and we
also need to keep in mind which position refers to which attribute (say,Titlatis the third

attribute). This is not the case when using Tutorial D (that is, relationabedge

2.3 Record Calculi and Systems with Polymorphic RelationaDperators

Historically, the research community has spent serious amount$oof en designing record
calculi. Each record calculus proposed in the literatufied in the trade-s it makes in terms
of the level of polymorphism, the basic operations, and the complexity of hdtirg type
system. Polymorphic relational operators put an additional strain on theygpem of statically
typed languages because the result type of most of the relational opeméipends on the types
of their operands in a non-trivial way. Also, the complexity of typing polypiic relational
operators is known to be NP, irrespective of the actual type system bsaty[Vansummeren,
2005]. Since relations are just sets of records, it is natural that wank th the area of record
calculi is inherently connected with work done on language extensionk/inggolymorphic
relational operators. In the following, we present a detailed overvievelated work that is
relevant to the subject of the current thesis. In our presentation, we pyogress from less
expressive systems to more expressive ones. Naturally, not all systersisict supersets of, or
even meaningfully comparable to, other systems, so our ordering is at timesvbat arbitrary.

As a technical note on our usage of terminology: in order fledéntiate records from simple

21

lookup tables (also associative arrays, hash maps, dictionaries, etdrnsistethat all record
operations are checked for type correctness at compile time: that isguieerstatic typing of
record operations, otherwise the language construct in question dbgaalify as a record in

our view.

2.3.1 Record Support in Mainstream Languages

In most mainstream languages that provide records (for examplet-€,Java, C#, ML), oper-
ations on records are usually limited to a single one: field selection. In addititthselection
is not polymorphic, that is, the compiler needs to know the type of eachd@&squression at
compile time in order to decide whether field selections are type correct o6pate of these
mainstream systems are further limited by the lack of light-weight recordssthtae ability to
construct records ‘on-the-fly’ using record literals. For example, [K&nighan and Ritchie,
1978], each record type (called ‘struct’ in C) needs to be declarextdéfcan be used (Pascal
behaves similarly), and even with pre-declared records, suppgatdgrammer-friendly literals
(initializers in C parlance) has only recently made it to the standard [Me3e@g)].

The following example, where we try to select the fietd or from the record argument,

illustrates Standard ML'’s [Milner et al., 1990] inability to type polymorphic fielteson:

- fun f r = #color r;
stdIn: ... Error: unresolved flex record

(can’t tell what fields there are besides #color)

In object-oriented languages (Java; £ C#) objects can serve as records and field selection

can be made somewhat polymorphic through the use of inheritance or teterfais important

22

to note, though, that the polymorphism of field selection does not come frematme of the
field, but rather it depends on the type of the object being used. Just {ikerecord (in this case,
object) types need to be declared before being used. The followingesuis Java code segment
demonstrates that the presence and absence of record fields aneirteddsy the nominal type
of the record (object) and not by their structural presence, thus limitingahenorphism of

record operations:

class A {
public int x;
public void test() {
A a = new AQ);
Object o = a;
a.x = 2; // Accepted by the compiler. The type of ‘a’
// indicates the presence of the field ‘x’.
0.X = 3; // Rejected by the compiler. Despite the fact that

// the field ‘x’ is present in the object ‘o’.

2.3.2 Standard Record Subtyping

A popular way of handling polymorphic record operations is to define gitgybetween records
[Pierce, 2002]. The intuition is that a function that expects a record witlaioefields should
accept any record that has those fields plus, possibly, some othéymdPghic field selection

thus involves a subtyping constraint:

(rl) = VaV¥p < (l:a).Recp » a

23

This approach has several undesirable properties. First, subtymisraints fail to retain in-
formation on other fields in the record. Second, adding subtyping to a pgiymedype system
is known to complicate type inference and interacts poorly with other usefglkge features,
like overloading [Pierce, 2002]. Finally, other useful record openatidike extension or con-

catenation, cannot be described in terms of record subtyping only.

2.3.3 Rows and Unchecked Row Extension

Wand introduced the concept afws as basis for the recursive definition of record types in
[Wand, 1987]. A row in Wand'’s system is either the empty rf)wor an extension of a row

(I - 7 | p) with the label and type pait (7). The type of field selection in Wand’s system is:

() s VaVp.Rec(l : a | p) — @

Also, it is now possible to express record extension:

(I'=_]_):YaV¥p.a - Recp - Rec(l : a | p)

The problem with Wand’s system is that record operationsuachecked For example, it is
possible to extendnyrecord withanylabel. One consequence of this is that some programs do

not have principal types [Wand, 1988].

2.3.4 Preser\bsent Flags

Rémy also used rows to handle labels not pertinent to the current operatioe also introduced

flagsto keep track of what labels need to be present in (or absent from)ea gbw [Remy,

24

1989]. In his system the type of record extension would be:

(I=_]):VYaVp.a — Rec(l : abp — Rec(l : pre(a) | p)

The type-checker is now able to deny access to undefined fields or demxténsion of
a record with a label that it already hasémy further developed his system ingRy, 1992]
to include bothsymmetriqrecords are disjoint) angsymmetriqrecords might overlap) record
concatenation. However, his method was to translate programs with remocdtenation to
programs with record extension which limited the expressiveness of hénsyBor example, the
following expression (taken from fny, 1992]) cannot be typed irgéRy’s systenil! because

of ML’s restrictions on polymorphism:

let reverse r s= if truethen (r || s) else(s|| r)
in reverse(a= 1) (b= 2)
In other words, under certain conditions, symmetric record concatenatiemo longer com-

mutative, a serious limitation of the system in our view.

2.3.5 Generalized Rows with Subtyping

Pottier [Pottier, 2003] described a conditional type system with subtypingtints and gen-
eralized rows, complete with a polynomial time constraint solver, with the restritiiat rows

had to be ground. The paper suggested the following constrained tigpmes for some poly-
morphic record operations (where the empty record has{tjfdles}, o ranges over variables of

sortTypeand kindtype ¢ ranges over variables of s&®bwand kindfield, < denotes a subtyping

25

constraint, and the dotf)(separates type constraints from the type):

Yay[{l} : ¢ < I(Pre @)].{¢} > @ (field selection for labef)

Vapip2[{t} : d(Pre @) < ¢z , o
(non-strict extension with labé)

A (L) ¢1 < 2] {1} — @ — {2}

Vo19203[L 1 Abs < @122 < 3
AL :Abs < 2?1 < 3
(symmetric concatenation)
A L Pre < ¢1?2p2 < Abs].
{e1} = {p2} — {es3}
The type scheme above for record extension does not prevent thesiextef a record with

a field that it already has, hence it is called ‘non-strict’ extension. Potiibnat discuss the

applicability of his system for describing polymorphic relational operators.

2.3.6 Record Concatenation with Disjointness Predicates

Harper and Pierce examined a second-order systemith symmetric record concatenation in
[Harper and Pierce, 1991]. Rows were constructed using contatenastead of the usual
extension. A row was either the empty row, a singleton label-value pair, @otheatenation of
two rows. In their system the type predicatiér, meant that the rows, andr, are disjoint. The

type of label selection in their system was:

D) = YaVp.(o#(l : @) = Rec((l : a) || p) = @

26

Being second-order means thdtincludes both explicit type abstraction and type application.
Record types need to be passed as arguments to functions with polymoirit operations.
Also, the system did not include a type inference algorithm.

Makholm and Wells in [Makholm and Wells, 2005] described their systenmi@n mod-
ules based on the languabewtie with symmetric record concatenation. They concluded that
full polymorphic type checking is NP-complete but came up with the result tatthecking
becomes polynomial when they ignore expressions that are eitbad (their result will never
be needed) orsieeping (their result will only be used if put into a larger context, like unused

function definitions.)

2.3.7 Kinded Record Types and Machiavelli

Ohori [Ohori, 1995] described a type system with polymorphic field seledbgether with
type inference and anffecient compilation method for polymorphic record operations using
numerical label fisets. The basic idea is to assign records fiedint ‘kinds’ (types of types)
based on the set of fields they are expected to contain. For example, ¢hef figld selection in

this system would have the type:
1) Vavrtd Rec r— a

This kinded type system of records formed the basis of the languageidtettiiBuneman
and Ohori, 1996] which was itself an extension of ML. Machiavelli wasgied as a true
database programming language with direct support for polymorphic mredtperators in the

language. The extensions of interest to us included: (1) sets andesatiops, (2) relations

27

as sets of records, and (3) relational operajoirs and project as primitives of the language.
Machiavelli also supported extensible variants, recursive record tgpel a generalized version
of thejoin operator that could operate on data types other than relations. The fgjlewxémple
shows a function that selects young employees from a polymorphic relatianable (‘select

...from ...wher€e is Machiavelli's syntax for set comprehension):

-> fun young r = select [Name=x.Name] from x <- r where x.Age < 25;

>> val young = fn: {a:: [Name: b, Age: int]} -> {[Name: b]}

Machiavelli inferred the most general type for the polymorphic functioang restricting
the input parameter to relations that have fiéldse andAge. The return type of the function is
a set of records with a singhame field.

Machiavelli also defines the relational opergtmn as a primitive function of the language

and assigns it a special conditional type:

>> val join = fn : (a * b) -> c where { c = jointype(a, b) }
-> join ({[SSN=123, Name="Smith"]},
{[SSN=123, Car=Porsche], [SSN=123, Car=bmw]});
>> val it = {[SSN=123, Name="Smith", Car=Porsche],
[SSN=123, Name="Smith", Car=bmw]}

: {[SSN : int, Name : string, Car : carmake]}

The conditionc = jointype(a, b) requires the type variableto be in a certain relation
with the type variablea andb. The result of thgoin operation is a relation whose heading is
the union of the headings of the relations being joined. This is the constraint thatikiesdti
captures with its conditional typing. However, if eithepr b is unbound at compile time then

Machiavelli cannot compute the value ofo it might accept programs that contain type errors.

28

In other words, Machiavelli does not check the satisfiability of type corditidnterestingly,
this is not a serious limitation in practice since whenever an expression gvaluolvesjoin
that means that the type variables are required to be bound so the compilgrezk the type
conditions. In other words, Machiavelli restricts the type-checking &§morphic relational
operators in a similar way dmwtie did with record concatenation in Section 2.3.6: Machiavelli
does not check ‘dead’ or ‘sleeping’ code. For example, the followmimgtion is accepted by
Machiavelli although it is ill-typed:

-> fun tricky (r,s) =
union (select x.Name from x <- join(r,s)
where x.Salary > 100000,
select y.Name from y <- s
where y.Salary = "High");

The problem withtricky is that if s has aSalary attribute of typestring then the join
of r ands cannot have &alary attribute of typeint. Machiavelli could not catch this error
because ands are polymorphic, so th¢ointype of the relations ands cannot be computed
at compile time.

Machiavelli also introduces a generalizamjectoperator that takes an arbitrary expression
and a ground type (for which equality is well-defined) and projects thesggjpn on the given
type. For example, the following expression projects a record on onelabiss:

-> project([SSN=123, Name="Smith", Car=Porsche], [Name : String]);
>> val it = [Name="Smith"] : [Name : string]
Although it might seem like, the functigorojectdoes not itself introduce first-class labels be-

causeprojectis part of Machiavelli'ssyntax The best way to think gprojectin Machiavelli

29

is like a type cast operator whose correctness is checked at compile tiredleieto say, this
means that there has to be a special typing rule in the type system for ded#lineject
Although Machiavelli introduced the relational operatjais andprojectas primitives of the
language it sfiers from the same problems as any language that try to fix the list of polymorph
relational operators: there always will be relational operators thaiotdoe expressed using the
pre-defined ones. In the case of Machiavelli, neither the relationabtipgreat divide[Date

and Darwen, 1992a] n@momposgCodd, 1970] can be expressed using the primitives.

2.3.8 Qualified Types and Rows

A system for record extension based on rows is presented by Gasdtdonas in [Gaster and
Jones, 1996]. The system presented in the paper is an adaptatioressXtweory ofjualified
types[Jones, 1992] which is a comprehensive system of using constraretii¢ates) on types
to restrict the applicability of polymorphic functions. Gaster and Jonestesy can infer the
type for expressions with polymorphic field selection, field deletion, anddesxtension, and
also check the satisfiability of the arising type constraints in polynomial time, banihat
express polymorphic relational operators. Similarly to Ohori's system(iOH@95], the authors
described anféective compilation method that calculated labfsets from théackspredicates
that appear in the types of expressions with polymorphic record opesatiime type system
of the current thesis is a direct extension of that of the system preseni@dster and Jones,

1996].

30

2.3.9 The LanguagP

Date and Darwen presented a comprehensive language proposatérgizl Darwen, 1998] that
they tentatively nameB. The proposal mainly consisted of prescriptions and proscriptions for
various language features that the authors deemed desirable for a rdatidrase programming
language based on relational algebra. In contrast with the orthogersisignce approach,
only relational variables (representing relations in an external relati@abase) can be made
persistent. For demonstration purposes, the authors introduced thadmTguiorial D which
embodied the language principles of they put forward. The design ofidl® aims at fixing
some of the chief mistakes committed by SQL, but it also includes some novebcoioins.
Tutorial D is an explicitly-typed language with full compile-time type checking. ibtttes
in relations can be of arbitrary types, which means that besides primitive,tyser-defined
types can also be stored in the database. The language does not sapipots or recursive

tuple types. The following Tutorial D code segment defines a relation#&bilar(or relvar)

person
VAR person REAL Relation { id Integer,
name String,
address Tuple { street String,
city String,
state StateCode,
zip ZipCode 1},
location GPSCoord }
KEY { id };

The above definition demonstrates several features of Tutorial Dxflici type signatures;

31

(2) arbitrary user-defined types in relvars (the attridatationis of type GPSCoordwhich is,
presumably, a user-defined abstract data type); and (3) nested tpede(thie type of attribute
addresss a tuple type with attributestreet city, etc.).

Relational operators are part of the language definition with speciabsgnthtyping rules.
Due to the explicitly typed nature of the language, the type correctnessatibral operator
applications can always be checked in polynomial type during compilatiorti{er avords, the
language does not support polymorphic type inference). Also, agseppto SQL, relational
queries can be arbitrarily nested. An important contribution of Tutorial Btat it invigorated
interest in relational algebra with its concise and elegant syntax and sesyamtimterest that
began to wane as the majority came to identify relational algebra with its most yidaes and
less than flawless, implementation, SQL. As such, the language TutorialdDharanguage
design principles advocated by the Third Manifesto, were a major inspirdiotihe current
thesis. To convey an impression of the novelty of its approach, we list spanepdes that show
Tutorial D expressions along with their SQL counterpart. Throughoutxhenples, we will use

Date’s familiar suppliers-parts database [Date, 1999]:

S { Sname , City } SELECT Sname, City FROM S

S JOIN SP SELECT S.S#, S.Sname, S.Status, S.City, SP.P#, SP.Qty

FROM S JOIN SP ON S.S# = SP.S#

S WHERE City = "London" { Sname } SELECT Sname FROM S WHERE City = "London"

EXTEND SP ADD (Qty + 10) AS AltQty SELECT S#, P#, Qty, Qty + 10 AS AltQty FROM SP

32

2.3.10 Type Inference for the Relational Algebra

Bussche and Waller in [Van den Bussche and Waller, 1999] directlyeaddhe problem of
type inference for polymorphic relational expressions. However, tlgetaf type inference
is ‘pure’ relational algebra, that is, an ‘out-of-context’ version whigmot embedded in any
programming language. The type of a relational variable is simply a set ofuadtmames, and
no further types are assigned to the attributes themselves. Type infésemioged at deriving
type formulas (including boolean formulas on attributes) that describe giabsible schemas
under which a given relational expression is well-typed. If the type ftansiunsatisfiable,
then the relational expression contains a type error and there is no scimelmawhich it is

well-typed.

The following example is taken from the same paper and shows a relatigraksion

€= oas(re<s) s ((r xu)—v)

together with the inferred type formula that captures the constraints on relatiariables in

expressiore;
V. ajdpazay
r:aias
€ qaxazasas
u: azay =
A true
S agayas

A:(rvoAa(r=Vv)A-(rAu)
The interpretation of the above type formula is that if eacts assighed some set of attributes

(that does not include the attributeand is disjoint from all otheg;’s) and the constraint on

33

the attributeA is true (whereA : r v sis an abbreviation foA € r v A € 9) then the type of
expressioreis the uniona; U a, U az U a4 U as andA must be ine.

Bussche and Wadler presented a type inference algorithm that colild tigre formulas
for arbitrary relational algebra expressions. However, their systasinet directly aimed at
solving the polymorphic type inference problem of relational algebrasssgions in the context
of a functional language. They ignore the types of attributes and thegtdontroduce tuples and
tuple operations into their language. In a follow-up paper [Van den Biessad Vansummeren,
2005], they extended their previous system with attribute selection andmsgrehension and
used rows to describe attribute types in tuples. The paper described iafgesce algorithm
that generated type formulas, but no algorithm was provided to checlatiséiability of type
formulas. Their new system, like their earlier one, lacked the ability to definerakational
operators.

Inspired by the work of Bussche and Wadler, Nagy and Stansifenfidad Stansifer, 2005]
described a functional language with polymorphic relational operatare(ience with said
system influenced to design of the system presented in the current tHided) approach was
based on type formulas introduced by Bussche and Wadler but theyparated constraints on
attribute types into their system. The problem with their system is that the constoaiing
phase was only hinted at and it is unclear how row unification (unifying thestyf matching
attributes) is supposed to be carried out in that system. As an additior@éprothe type

inference algorithm is quite complex and does not lend itself easily to coesscproofs.

34

2.3.11 HaskellDB: Strongly Typed Database Access for Haskell

Leijen and Meijer presented HaskellDB in [Leijen and Meijer, 1999] as anoise in designing
domain specific language extensions using Haskell’s powerful abstrangghanisms and ex-
pressive type system. The original design of HaskellDB relied on a Hlaysef and Peterson,
1999] (a Haskell implementation) specific language extension (sometimesedefe as Trex)
that supported a system of extensible records based on the work tdr@Gad Jones [Gaster
and Jones, 1996]. From later versions of HaskellDB, this dependemadHugs extension has
been removed to make it more standards compliant (at the cost of losing $armeaginal
elegance).

The main idea behind HaskellDB is that instead of having the programmer buiild|&&ies
using the traditional method of string concatenation, thus losingtelt&e chance at ensuring
syntactic and semantic correctness at compile time, the programmer is giilitie$for build-
ing queries in a type-awagedstract syntax treformat. To make the construction of syntactically
incorrect queries impossible, the authors used Haskell's algebraic gattty describe the ab-
stract syntax of relational algebra (actually, SQL, but due to the high tdvabstraction the
difference mattered little). HaskellDB further improved this idea by embellishing raipatata
types with phantom types and thus preventing the construction of semanticalfyaot queries.

Next, we give a hint as to how it was achieved using excerpts from thieeH8 code base:

data PrimExpr = -- Data type for primitive expressions.

BinExpr BinOp PrimExpr PrimExpr | UnExpr UnOp PrimExpr | ConstExpr String

data BinOp = -- Data type for binary operations.

OpEq | OpAnd | OpPlus | ...

35

Writing queries directly in abstract syntax is a bit inconvenient, but thanksaskell, it is

possible to provide combinators that correspond to the usual SQL orgerato

constant :: Show a -> a -> PrimExpr

C.+.) :: PrimExpr -> PrimExpr -> PrimExpr
(.AND.) :: PrimExpr -> PrimExpr -> PrimExpr
(.==. :: PrimExpr -> PrimExpr -> PrimExpr

Using the above definitions, it is still possible to build semantically incorreatesgons, like

the following:

constant "3" .+. constant "b"

Phantom types take care of this problem by including the type of the expmethat the abstract
syntax tree is supposed to represent in the type of the expression mmtdz (how the type
variablea in Expr adoes notappear on the right hand side of the definition, hence thegrhan

type’ name):

data Expr a = Expr PrimExpr

constant :: Show a -> a -> Expr a

C.+.) :: Expr Int -> Expr Int -> Expr Int
(.AND.) :: Expr Bool -> Expr Bool -> Expr Bool
(.==. :: Eq a -> Expr a -> Expr a -> Expr Bool

To handle arbitrary relational expressions, a comprehension baseatina@s introduced
by the authors which represents the computation expressed by the §irailar to most SQL
implementations that also use comprehension, HaskellDB cannot concipefsexatural join

but rather relies on the programmer to explicitly enumerate each and evdmytatthat has to

36

appear in the result. The way to construct queries using this monadic comttimated out
to be surprisingly intuitive, especially if one is familiar with Haskell’s list comenetions, as
demonstrated by the following example (we also show the same query in TiDsjaltax):

do { r <- table s
; p <- table sp
; restrict (r!city .==. constant "London")
; restrict (r!s# .==. p!s#)

; project (sname = r!sname, p# = plp#, qty = plqty)

S JOIN SP WHERE City = "London" { Sname, P#, Qty}

The use of monadic combinators made it possible to treat relational queriigstagass
values with the additional benefit of the ability to serialize access to the ektietadase, a basic
feature of monads [Wadler, 1993]. The fact that queries weresepted by their abstract syntax
tree also made it possible to apply traditional query optimization techniquegduritime. To
ensure full static type checking, HaskellDB required the definition of thabdse schema to
be available at compile time in the form of a separate Haskell module (which \pa=zlty

generated by tools that could extract schema information from the dajabase

2.3.12 Heterogeneous Collections for Haskell

Kiselyov et al. [Kiselyov et al., 2004] presented for Haskell an enapdincollections (more
particularly, lists) whose elements were not restricted to the same type. Tbdieg heav-
ily relied on Haskell's extensible class system which is itself based on theytbéqyualified

Types [Jones, 1992]. To demonstrate the expressive power ofys&dns, the authors presented

37

strongly typed encodings, using Haskell's class system to representtystraints, of an un-
precedented variety of polymorphic record operations, including, arotiregs: (1) extension,
(2) field deletion, (3) symmetric concatenation, (4) the ability to ask for thefsketels (the
heading of a record and to perform set operations on headings, (5) to coratiseof labels
and a list of values into a record, and (6) to project a record on a $abels. In addition, field
labels are first-class citizens in their system (due to the fact that they emdexhas singleton
types). The following example demonstrates the construction of a recewildieg the cow

Angus, where we first construct the record labels:

data Cow = Cow -- Type used as label name space.

-- Definition of record labels.
key = firstLabel Cow "key"
name = nextLabel key "name"
breed = nextLabel name "breed"

price = nextLabel breed "price"

-- Definition of a record.

angus = key .=. (42::Integer)
.*. name .=. "Angus"

.*. breed .=. Cow

.*. emptyRecord

Just to give ataste of the level of Haskell type magic that goes on in thgtmarid, we show

the definitions, starting from that of heterogeneous lists, that lead up @ thé combinator:

38

data HNil = HNil deriving (Eq,Show,Read)

data HCons e 1 = HCons e 1 deriving (Eq,Show,Read)

class HList 1
instance HList HNil

instance HList 1 => HList (HCons e 1)

(.*.) :: HList 1 => e -> 1 -> HCons e 1

(.*.) = HCons

Actually, the encoding of records uses type-level naturals annotated wiitimg for the label
name. Name spaces (represented by singleton typeddikabove) are used to prevent conflicts
between naturals when used as record labels. As the encoding hetg#yore Haskell's class
system whose error reporting capability is far from perfect, specifdthad to be used in order
to improve error messages. For this purpose, the vacuous HaskelFaleksvas introduced
and later used to provide instances of special error-reporting cladSseseous situations were
represented by requiring the compiler to derive an instance for anreporting class (which
it could not, since the only class providingiail, was vacuous), thus forcing the compiler to
provide a more useful failure indication. The following example gives adsrib the nature of

this method:

instance Fail (TypeNotFound e) => HOccurs e HNil

where hOccurs = undefined

class Fail x -- no methods, no instances!

data TypeNotFound e -- no values, no operations!

39

Now, if we would like to ask for a list of integers from a heterogeneous It ¢imly contains
a single boolean value, the Haskell interpreter would give a more usefulreessage (similar

error messages were defined for erroneous record operations):

ghci-or-hugs> hOccurs (HCons True HNil) :: Int

No instance for (Fail (TypeNotFound Int))

Naturally, as record encodings relied completely on the capabilities of aleittdskell
compilers, no special purpose constraint satisfaction algorithm wagprbfor checking type
correctness of polymorphic record operations in general. This, hewdid not prove to be
a problem, since whenever such operations are applied to actual atgumyee variables are

instantiated to actual types, thus the compiler can check the satisfiability of typeaiats.

40

Chapter 3

Language Syntax and Semantics

In this chapter, we describe the syntax and the semantics of the languadpegill with the
syntax of the core language and of the basic record operations, whifdilaw with a section on
the considerations that shaped our design choices. Next, we providaiked description of the
basic record operations, together with usage examples. We continue withrfed flefinition
of language semantics through evaluation rules (which we include chieftiidcsake of com-
pleteness). After introducing sets and relations, we conclude the cheitlighe development
of relational algebra, from basic record operations and sets, comptetexamples.

The term language is an extension of core-ML, that is, an implicitly-typedlculus with
let-bound polymorphism. Figure 3.1 defines the syntax of terms where tluastiecore and the
record extensions are separated by a line (both variaddesl labeld draw their values from a
countable set of nameg). For the purposes of defining formal semantics, we also defihes

in Figure 3.2 as a subset of terms.

3.1 Language Design Considerations

Our goal was to design a language that can not only express polymoetdtional operators,
but which would also allow the definition of user-defined ones. The decls to be made

whatprimitives or basic operations, need to be present in the language in order toeatttise

41

term

X variable
c constant
AXt abstraction
tt application
letx=tint let
d1=t,...,1h=1 record literal
d=t|t) record extension
t-l field selection
|t record concatenation
(t\t) record diference
t! field deletion
t-[t] record projection

Figure 3.1: Syntax of Terms

= value

c constant value

AXt abstraction value

d1=v,.,In =V record value

Figure 3.2: Value Terms

42

goal. Since relations are sets of records (tuples are called recordsgrotframming language
community), it was clear from the beginning that the language would havesexdban some
form of record calculus. The particular set of basic record opemtianeventually chose was
arrived at through experimentation, where we strived for a minimal sepeifations that could
express all original relational operators and was powerful enoudbftne new ones. As it will
be demonstrated later, the chosen basic operationsuyfigently expressive to describe user-
defined polymorphic relational operators. The question arises whedhbrig alsanecessary
that is, whether the set of basic operations is minimal. Curiously, the ansn@ri&ot all basic
operations are strictly necessary and there is a proper subset ostb@parations that have the
same expressive power as the original set. Why include the additionaltopgethen? The short
answer is: for software engineering considerations. Some operatibitd) are expressible in
terms of more basic ones, nevertheless, allow us to put additional cotstraitheir operands.
For example, althougfield deletioncan be expressed usimgcord djference a separatéield
deletionoperation allows us the require the presence of the field to be deleted, suyribiht
can help catch typos in record labels (otherwise, an attempt to delete istenefield would

always succeed, instead of resulting in an error).

3.1.1 The Notion of Record and the Omission of Variants

A recordis a collection of values (known dields, possibly of diferent types, each of which is
associated with a distintabel drawn from theheadingof the record. A record is thus@oduct
of values of possibly dierent types. The dual of productsam and the dual of record is called

variant (or tagged uniol A variant is one particular value, tagged by a label, from some fixed

43

set of possibly dferent types. As a result of this theoretical duality, records and vardaats
often introduced side by side and treated similarly in some systems, for exanjplen@man

and Ohori, 1996; Gaster and Jones, 1996; Leijen, 2004]. Duringrédieninary design phase,

a conscious decision was madeoimit variants from the system, because variants, as opposed
to records, play a marginal role in relational algebra, our main topic of sttelteemains as an

interesting future work to consider the implications of adding variants to thremsystem.

3.1.2 First-class Labels

In a language with first-class record labels we have the ability to treatdréaoels as ordinary
values that can be passed in as function arguments, stored in data ssuotuserve as return
values from functions. A system with first-class labels was describeddijeft, 2004]. Un-
fortunately, the ability to pass around record labels as ordinary valoes, b, in itself, allow
us to define polymorphic relational operators. Hence, after due coasam it was decided to
omit first-class labels from the current system, mainly because the costsld imour (chiefly,
loosing the ability to derive principle types) seemed to outweigh its possiblentadyes (inter-
section types, type selective functions, etc). Thus, in the curreninsystord labels are part of

thesyntaxof the language.

3.2 Basic Record Operations

In this section we introduce the basic record operations. A word of caléifome we proceed. It
is important to realize that the particular syntax chosen for the basic oper&im a large extent

irrelevantfrom a theoretical point of view. Nevertheless, syntiesplay an important role in

44

Operation Shorthand Expansion

Heading Literal | (1,...In) [{d1=0,....1n =)

Record Restriction (e;![e]) (er\(er - [e2]))

Table 3.1: Notational Shorthands

the practical usefulness of any programming language so we strivéatfios that respect good
language design principles and aesthetics. The decisions for opesstaiativity, precedence,
and syntactic form were governed by a search for economy of esipreseadability, and, above
all, the somewhat elusive notion of ‘conceptual integrity’ (as advocatf8rooks, 1995]).

We defer the discussion of types to the next chapter so that we camt@ieeon the mean-
ing of and the rationale for each basic operation here. Using the basmtiops, it is possible
to define other useful record operations that are common enough to neg@ribtim notational
shorthands. A summary of these derived operations is presented in3lablé detailed de-

scription of the operations themselves follow:

e Record ExtensioRecord extensiore'= (| = e; | &)’ is used to extend records with new
fields. Record extension will also play an important role in type-checkiogrdliterals,
since, at the conceptual level, record extension is used to recursividyrecords, starting
from the empty record. In order to be well-defined, the expressionust evaluate to a
record thatacksthe labell. The result of record extensianis a record that defines the

same mapping as the recoegl and in addition it maps the labeto e;. Examples of

45

behavior (the symbok»’ denotes evaluation):

(@=11Q) ~ (a=1

(b=2J@=1) ~ <(b=2a=1)
(b=2](c="A"a=1) ~ <(b=2c="A"a=1)
(b=2]¢b=1)) ~ UNDEFINED

(b=2|(@a=42b=1)) ~ UNDEFINED

e Field SelectionField selectioné - I’ is used to access the fieldin recorde. In order
to be well-defined, the expressi@must evaluate to a record thiaasthe labell. The
result of field selection is the value for the specific field in recardn the syntax used
throughout the thesis, field selection is left-associative and has higeeedgence than
function application, for examplef ‘x-a-b’ means f ((x-a)-b)’ and not ‘((f x)-a)-b'.

Examples of behavior:

(a=42-a ~ 42
<C — HA”,a — 1> . C ’\) ”Aﬂ
(b=1-a ~ UNDEFINED

(b=2,c=42)-a ~ UNDEFINED

e Record ConcatenatioRecord concatenatioe = (e ||)’ is used to merge two records.
This operation should more precisely be callgthmetricecord concatenation since the
two records are required to be disjoint. Because the records to be nagggdigjoint, the
operation is commutative (hence the name, ‘symmetric’). In order to be witledie both

expressiong; ande, must evaluate to records and they must hdiggint headings (sets

46

of labels). The result of the concatenation of recadande; is a record that defines the
same mapping as the recad(e;) when restricted to labels i (e2). The empty record

is a unit element for this operation. Examples of behavior:

@=110 ~ (@a=1
Olla=1) ~ <(a=1
(b=21@=1) ~ <(b=2a=1)
((b=2)lI(b=1)) ~ UNDEFINED

(b=2)yl|(a=42b=1)) ~ UNDEFINED

e Record DjferenceProbably the most versatile of the basic operations, recdfdrdnce
‘e = (e1\&)' is used to throw away those fields from that also appear ie,. The
field valuesof the second operand play no role in the operation, onlafisls The only
requirement for this operation to be well-defined is that both expressioasde, must
evaluate to records. The result of the operation is a record that défimeame mapping
as the record; but is restricted to those labels thtat notappear ire,. The empty record

is a right unit element for this operation. Examples of behavior:

@=m\0) ~ (@=1

O\Wa=1) ~ ¢

(b=2\a=1) ~ <(b=2)
((b=2a="A"\@=1) ~ <(b=2)
(b=2a="A")\(a="Yoshikd)) ~ <(b=2)

((b=2a=197D\(a="Yoshikd)) ~ <(b=2)

47

e Field DeletionTo remove a field from a recorde we use field deletionée!l’. This op-
eration is not strictly necessary since it can be expressed using mdikeneknce in the
following way: el = (e\{l = ())). The reason why it was included among basic oper-
ations is that, in contrast with recordfiifirence, it requires the presence of the field to
be removed, thus it is not defined on all operands. From a softwaneesming point of
view, it is useful if we can signal potential programmer errors as eanppsasible. Trying
to remove a non-existent field can be the sign of a typo in the name of the fieddi ib
better reported. If the programmer decides that the operation is in faectahen field
deletion can always be re-written using the more forgiving recdiférdince. In order to
be well-defined, the expressi@must evaluate to a record thzsthe labell. The result
of field deletion is a record that defines the same mappirglasg is undefined for the
labell. In the syntax used throughout the thesis, field deletion is left-assocati/éas
higher precedence than function application (but the same as field se)efdiagxample,
‘f xlalb’ means f ((x'a)!b)’ and not ‘((f x)!a)!b’. Examples of behavior:

(@a=42la ~ ()

(c="A"a=DLlc ~ (a=1
(b=3,c="A"a=DLlclb ~ (a=1)
(b=1a ~ UNDEFINED
(b=2,c=42!a ~ UNDEFINED

e Record ProjectiorThis operation is analogous to tipeojection operation of relational
algebra, and was introduced so that the subset relation constrainteipetiree headings

of operands could be enforced. Record project®nr-‘e; - [e2]' is used to project the

48

first recorde; on the heading of the second recagd Similarly to field deletion record
projection is not strictly required since it can also be expressed usiogdrééference:
e - [e] = (e1\(e1\e)). The reasons for including it are similar to thosdiefd deletion
that is, software engineering considerations. In order to be well-akfiowth expressions
e, ande, must evaluate to records and the heading (set of labek) wiust be a subset
of the heading o&;. The result of projecting recorel on e, is a record that defines the
same mapping as; restricted to labels that appear ép. It is important to note, that
the field values of recore, play no part in the operation. Heading literals (see Table 3.1),
often used in record projection, are simply records whose field valead ab importance
(since we are only interested in the set of labels they define). In the syseabthroughout
the thesis, record projection is left-associative and has higher prezedean function
application, for example,f* x-[y] - [2' means ‘f ((x-[Y]) -[Z])’ and not ‘((f X)-[V¥]) - [Z]'.
Also, notice the deliberate similarity in notation between field selection (projectiry 0

single label) and record projection (projecting on a set of labels). Exapleehavior:

@=1-[01 ~ O

(b=2a=1 [(@a=23] ~ <(a=1)
(b=2a=1-Kb] ~ <((b=2)
(b=2a=1)-[(a=42b="B") ~ <(b=2a=1)
(b=2,a=1)-[(c="C")] ~ UNDEFINED

(b=2,a=1)-[(a=3,c="C")] ~ UNDEFINED

To showcase the expressive power of basic record operations, oiatiag example we

49

show howdefaultvalues for missing fields can be supplied in a statically type-safe manner:

default= Atletd = {(a=7) in (t| {(d\t))
default(a=2,c=Truee ~ <(a=2c=True

defaulttb=5 ~ (a=7,b=05)

3.3 Formal Semantics

The formal meaning of programs in the language is defined through operediemantics, that
is, using evaluation rules. With regard to these evaluation rules can we aaynll-typed
programs don’'t go wrong”, that is, if a term is well-typed according the gystem described in
the next chapter, then the evaluation of a term will always result in a vRigare 3.3 describes
the standard evaluation rules [Pierce, 2002] for an implicitly-typedlculus with an additional
let construct. The evaluation rules follow a lazy, or more precisely ‘call-doye’, evaluation
strategy, that is, we always reduce the leftmost, outermost redex ipeglagpression) and we
never reduce inside abstractions. The substitutions used in (EH&ppAbs)and (E-Let) are
standard capture-avoiding substitutions, as defined in [Pierce, 2B@g]res 3.4, 3.5, and 3.5
formalize the meaning of basic record operations that were describast éaotice how record
projection and field deletion is defined in terms of recoftedence).

We remark that in the evaluation rules we make use of our earlier definitioaloés and
require certain terms to be actually values to enforce evaluation ordexdaonple in(E-Diff2).
Also, although we could have defined it directly, we chose to define dezmmcatenation as a

series of record extensions to simplify presentation.

50

tl'\’)t;_

(E-App
(1 t2) ~ (1] t2)

(E-AppAbS ((Axty) t2) ~ [Xx - to]ty

(E-Led let x=t1in t; ~ [X > 1]t

Figure 3.3: Evaluation Rules for the Core Language

tj ~ t}

(E-Reg

<|1 = tl, veey I] = t]’ ceey In = tn) > <I]_ = tl, veey |J = t], veey In = tn>

tz’\» t/2

(E-Ext]

(=t~ =t]t)
IX ¢ {I]_,...,In}
(E-Ext2
Ix=tx 1=t .., In=t)) ~> x =t 11 =t1, ..., In = tn)

1 ~ t’l

(E-Conc)

(t1 |l 't2) ~ (1] Il t2)
(E-Conc) 1=t ln=t) [t~ 1 =tr] ..{ln =t [t)...)

Figure 3.4: Evaluation Rules for Basic Record Operations

tlf\»t’l

(E-Diff1)

(t1\t2) ~ (t]\t2)

tzf\»t’z

(E-Diff2)
(V1\t2) ~ (\1\t))

IXe{ld, ... 1)

(E-Diff3) (=t 1% = 0O =t By = B))
~o (I3 = X = EONI = 1, Iy = o)

HCILA 1A

(E-Dig4) =t = 0N = 2 B = B0

o (X = B = 8 X = OO =t B =)

Figure 3.5: Evaluation Rules for Basic Record Operations (Continued)

51

tl’\»ti

(E-Del))
ta!l ~ t!l
I € {I]_, ceey In}
(E-Del?
(|1 =11, ..., In = tn>!| ~> <<|1 =11, ..., In = tn)\(' = 0>>
t1 ~ '[’1
(E-Proj1)
ty - [to] ~ 1] - [t2]
to ~ t’2
(E-Proj2)
V71 - [tz] ~ V- [t,Z]
AN A R (L <
(E-Proj3) = =) [=t T = O]

o (I = 1= BN = 8L I = 8O\ = 8, T = to))

Figure 3.6: Evaluation Rules for Basic Record Operations (Continued)

53

3.4 Sets and Relations

Sets and set operations are not central to the current thesis, bwdcatieed in any practical
implementation and are also convenient in presenting the examples. Hene#l, assume that
standard set operations, together with an empty set constant, are definad the constants of
the language. In addition to having the standard set operations defined #inecconstants, it is
highly desirable to provide a special syntax for set comprehensions thiag greatly simplify
the definition of relational operators. The syntactic extensions for sdtsetrcomprehensions
are described in Figure 3.7. Although we will not provide formal evaluatibes for the stan-
dard set operations (we assume that they are provided by some extergadge), we will
nevertheless give the translation rules for set comprehension to clanfe#dsing. The trans-
lation rules (based on the translation rules for list comprehension in H43kaks and et al.,
2003]) are presented in Figure 3.8 (the set operatjginmapis analogous to the list operation
concatMapin Haskell's standard prelude).

Arelation is simply a set of records. However, due to the way sets are ypioplemented,
there is a technical issue that must be addressed when introducing latiaprogramming
language. The technical issue, which is somewhat marginal to the cthresig but which nev-
ertheless is one that still merits some attention, is the question of computable ehe#ligen
values. For example, it is well-known that the problem of comparing twotfoimwalues for
equality is undecidable (a reason why programming language implementatiseis aformally
cannot handle sets of functions). As a result, only values of types @hwelquality is defined

and computable are allowed as members in sets. Some set implementations gorénen f

54

g = qualifier
Xt generator
t guard
t = term
{t,....t} set literal
{tiqg,...,q} set comprehension

Figure 3.7: Extra Terms for Sets and Set Comprehension

(SetCompll {tr | True} ~ {ta}

(SetCompp {tu | ga} ~ {t1] g1, Truel

(SetCompP {t1 | X < t2,q1, ..., O} ~> CunionMap (AX.{t1 | Q1. ..., On}) t2
(SetComp¥ {t1 | t2, 01, ..., On} ~ if ta then {t1 | g1, ..., On} else{}

Figure 3.8: Translation Rules for Set Comprehension

when, for reasons officiency, they require that only values of types withadering defined
on them are to be used as members of sets. It follows that record valugslatian must be
comparable to each other, at least for equality. For example, in [Bunenth®@hori, 1996]
the authors achieved this by restricting field typeslégcriptiontypes of ML (types for which

equality is defined) and then defining equality between records redyrawequality on fields.

55

While acknowledging the problem, we would rather not provide a completdicoltor
it inside the framework of the current thesis. This is simply because doingpstd require
the bringing up of a large sffalding, in the form of various advanced programming language
features, that would be completely extraneous to our presentation. Alite, sve envision that
in a practical implementation, something along the lines of Haskell's type clakgrs{3ones
and et al., 2003] could be used to define records as members of therdt@ndlype class (types
with ordering defined on them), with the understanding, of course, tihatecords whose field
types are themselves @rd would be members oDrd. Using type classes would also have
the advantage that records with function values in their fields would notiteweed, unless, of

course, we tried to use them in relations.

3.4.1 Relation Headings

The definition of certain relational operators requires access to thengsaaf their operands.
Since the heading of a relation is simply the heading of one of its records, it isegim an
easy task to get the heading of a relation. The problem is caused by etapiyn® since there
is no member record to provide the heading of the relation. The solution is Y@praccess
to thetypeof the relation through a controlled form of type reflection. The operattation
headingaccesses this type and returns a record whose heading is the sameoathihatlation
in question. We will use the notatiati to denote the heading of relationReaders with a keen
eye for detail must have noticed that this kind of type reflection implies thataelalues must
carry with them their type information during execution. In fact, this is whapvepose, using,

again, Haskell's type classes to provide the necessaffotdiag.

56

3.5 Defining Relational Algebra Operators

In this section we demonstrate the expressive power of the chosensetiofecord operations
by providing definitions for standard (and also for some non-standelatjonal operators. The
standard set operations of relational algel@dn intersection anddifferencé are considered

to be defined among the constants of the language so we omit their definititmgh@exception

of Cartesian productvhich we define explicitly). In order to help understanding, some of the

more involved definitions are introduced with some brief explanatory remarks

e Cartesian ProduciThe definition of this operator is straightforward. Notice though, that
the application of the record concatenation operator requires that ttiemalsoperands
be disjoint:

times= Ar.As.{{ts|| tr) |tS« s tr « r}

¢ RestrictionThe function parametef, representing the restriction criteria, must return a

boolean value when applied to a record from the relation

restrict= Af.Arf{tr |tr <, f tr}

e ProjectionThe record parameten”represents the heading on which we want project the
relationr. The application of record projection guarantees lthiatactually a subset of the

heading ofr:

project= Ah.Ar.{tr - [h] |tr < r}

57

¢ Join The local variabléh represents the intersection of the headings of relaticarsd s.
This common set of attributes is then used to match pairs of records fromdiations.
By the way, this comparison for equality also implies that both relations shoutltha

same types for their common attributes:
join = Ar.Aslet h = (r*\(r*\s%) in
{¢tr || gs\tr)y [ts« s, tr « 1, tr - [h] == ts- [h]}
¢ Division The local variablédn represents the unique set of attributes of relati¢its com-
putation also enforces the constraint that the headirgnofist be a subset @). Other-
wise, the computation of division is based directly on its text book definition:
divide= Ar.Aslet h=r*l[s"] in
let wi = project hrin
let wo = times w sin

let wz = project h(minus v r) in minus w ws

e All But ... Using the terminology of [Date and Darwen, 1998], we will name the opera-
tion of projectingawaya set of attributes from a relation albut. The set of attributes

projected away must form a subset of the input relation:

allbut = Ah.Ar {tr![h] | tr « r}

e CompositionThe definition of this operator is straightforward. We simply project away

the common attributes from the result of the join:

composes Ar.Aslet h = (r*\(r*\s*)) in allbut h (join r s)

58

e Small DivideThe definition of this ternary operator is lifted almost verbatim from [Date

and Darwen, 1998]:

small= 2g.ar.4s.
let wy = times q rin

let wo = minus w sin minus g(project d w») in

e Aggregationin order to calculate various summaries over relations, we introduce the
groupby operator that partitions a given relationby grouping records that match on
the supplied headin. A user-supplied aggregation functigns then applied to each
partition to calculate summaries (typical aggregation functioncan@t sum average

minimum andmaximuny:

groupby= Ag.ih.ar.
let p=aAv. {ul[h] |u«r, u-[h] ==V}

in{gt(pt)|t« projecthn

3.5.1 Sample Relational Algebra Queries

Having defined relational operators, we put them to use in this sectionnodomplex queries
over a toy relational database. We show the queries together with theltsre$he sample
database consists of three relations: the relagimpsfor describing employees, the relation

deptsfor describing departments, and the relatiwojs for describing projects. Their definitions

59

are as follows:

depts= {
(dname= "CSE, deptno= 1),
(dname= "PHY”, deptno= 3),
}
emps= {
(ename="SmitH, age= 34, deptno= 1, empno= 1),
(ename= "Jones, age= 28, deptno= 3, empno= 2),
(ename="Adams$, age= 42, deptno= 3, empno= 3)
}
projs = {
(pname= "Laserl’, empno= 1),
(pname= "Robot, empno= 3),

(pname= "Robot, empno= 1)

¢ Find the names of employees who are under 40:

gl=letc=Att-age< 40
in project(enamé (restrict c emp}

gl ~ {{ename="Jones), (ename="SmitH)}

60

¢ Find the names of employees who work in the Physics department:

g2=let c = At.t - dname== "PHY"
in project(ename (restrict c(join emps dep)3

g2 ~ {(ename="Jone$), (ename="Adams))}

¢ Find the names of employees who work on all projects:

g3 = let empnos= divide projs(project{pname projs)
in project{ename (join emps empnoys

g3 ~ {{ename="Smitl)}

e Count the number of employees per department (we assume that the figingietis the

size of a given set):

g4 = let cnt = At.As{count= size g t)
in project{dname counb (join depts(groupby cnt{deptno emp3)

g4 ~ {(dname="PHY”, count= 2), (dname= "CSE, count= 1)}

e Find the names of employees who are not assigned to any projects at all:

g5 = let empnos= minus(project{empn® emp$ (project{empno projs)
in project{ename (join emps empnys

g5 ~ {{ename= "Jones)}

61

Chapter 4
Type System

In this chapter, we present the type system of the language and propiefoyr the basic
record operations. The type system we develop here is an applicationtbetiry of qualified
types by Jones [Jones, 1992] and is a direct extension of a systesrtéursible records and
variants [Gaster and Jones, 1996] usiogs[Wand, 1987] to describe record types. The theory
of qualified types extends the standard Milner type system [Damas and MiB&2] of poly-
morphic types wittpredicateson types taconstrain(qualify) the possible instantiations of type
variables. It also comes with a nice formal development, typing rules, typeeimdée algorithm,
and proofs of soundness for the main components. The presentatiantgpthsystem follows

similar sections from [Gaster and Jones, 1996; Leijen, 2004].

4.1 Kinds

We will use the kind system to distinguish betweeffatient kinds of type constructors and to

ensure that types are well-formed. The set of kinds is defined with theviajogrammar:

K = the kind of all types
| row the kind of all rows

| k— « arrow kinds

62

Terms of the language have types of kind Arrow kinds are used in type constructors like

polymorphic sets or lists.

4.2 Types

We define the set* of type constructors of kind as:
Cr =x~ constants
| o variables
| C¥—xC¥ applications
Types are now defined simply as:= C*. We assume the following initial set of type construc-

tors is defined (presented in distfix notation):

Int o o= integers
Bool :: = booleans
Unit 0 = unit
{1} o ox oo« set type
- Il %o x> % function space
M = row empty row
(l:-1) = =—>row—row row extension
Rec :: row — = record type

Types are well-formed only when type constructors are fully applied 6ngid partial ap-

plication of type constructors) to arguments of correct kinds. For example

e The result of applying the type constructer of kind = — * — = to typeslint of kind =

andBool of kind * is Int — Bool. In general, function types are constructed by applying

63

the function type constructes to arguments; andr,, both of kind«. Also, instead of
writing — 71 72 for the result of the application, it is customary to use the infix notation

71 — 12 (Where the— operator associates to the right).

e The result of applying the type construc®ec of kind row — = to the empty row() of

kind row is the record typ&ec() of kind .

e The result of applying the type constructow extensiorio a typer of kind =« and a row
of kind row is the row(l : 7 | r). Since there are no first-class labels in the language, we are
actually talking about a family of type constructors, one for each possibég. [&lotice,
that the syntactic construction of rows permits the building of ill-formed roawgrwith

duplicate labels), something that we will have to prevent using type preslicate

4.3 Type-level Operations and Relations

In this section we introduce some type-level operations and relations athatvare needed in
the rest of the thesis, some of which has already appeared elsewlzeterf@nd Jones, 1996;
Leijen, 2004]. An important property of the operations and relationspted in this section is
that they all are simple—they have polynomial complexity. In the following defimiti@as in

the rest of the thesis, the meta variabands for type expressions of kirmiv.

64

The syntactic order of labels is irrelevant in deciding equality between, fowsally:

(]|1ZT1|(]|22T2|I'DD (]|22T2|(]|1ZT1|FI)D

Label deletion removes a labefrom a row:
W) =1 = r

(]|1ZT1|r[)—|2 = (]|1ZT1|I’—|2[)

Row concatenation is defined as:

rpg =r
I’1||(]|ZT|I’2D = (]|1T|I’1D||I’2
Difference of rows is defined as:
nQ =r
ra\(l:7lra) = (ri—=D\r2

Intersection is thus simplyyNro = r1\(r1\r2). Notice though, that due to the way rowffédrence
is defined, row intersectiois notcommutative: the field types of the resulting row are ‘coming
from’ the first operand.

Much like [Gaster and Jones, 1996] we defima@mbershipelation { : 7) in r which holds

if the labell with typer appears in row:

(|1:T1)il’]r 1 #1,

(:n)in(l:7]r)
(|1ZT1) in (]|22T2|r[)

65

o= predicate
r=r row equality
r lacks| lacks (for each label I)
rhas(l:7) has (for each label I)
r#r disjoint
r<r subset

Figure 4.1: Syntax of Type Predicates

4.4 Type Predicates and Qualified Types

Basic record operations are well-defined only if the types of the opsrsatisfy certain con-
straints. Following the theory of qualified types [Jones, 1992] we willuedicateson types to
capture these constraints. The syntax of predicates is presented ia Eigjur

The predicateow equalityis separated by a line from the rest for a good reason: all other
predicates (serving only as notational shorthands) can be expriestchs ofrow equality.
Why include these ‘derived’ predicates then? The answer is that theg foaknore readable
(programmer-friendly) predicates, and, more importantly, they are af gedp in type simplifi-

cation, as we will see in Chapter 6. An explanation of the meaning of predifmdtews:

e Therow equalitypredicate requires two rows to be equal, up to permutation of labels.

e Thelackspredicate requires the absence of a label from a row.

e Thehaspredicate requires the presence of a label with a specific type in a row.

66

Predicate | Shorthand Expansion

lacks r lacks| re~r-—|
has rhas(l:7) [(l:7|()) =r\(r=1)

diSjOil’]t ri#ro r{ ~ri\ro

subset r{<ro () ~ra\r2

Table 4.1: Expansion of Derived Predicates

e Thedisjoint predicate requires two rows to have disjoint headings.

e Thesubsepredicate requires the heading of one row to be a subset of the heddimge

other row.

The formal semantics of predicates is defined by the entailment relation in FiguréVe
only have to formalize theow equalitypredicate, since all other predicates are just notational
shorthands that expand tow equality predicates, as defined in Table 4.1. Notice how we
make use of type-level operations and relations on rows, introducedctio®e.3, to define
expansions for derived predicates and also to formatimeequalityin the entailment relation.
The definition ofrow equalityis based on that in [Gaster and Jones, 1996].

A derivation of predicater from a finite set of predicateB, written asP I x, proves that
when all predicates i hold, then the predicate must hold as well. The entailment relation
naturally extends to finite sets of predicates, that is, when all predicatefniteasetP hold,

then all predicates in the finite s@must hold as well, if there is a derivation frobhfor each

67

neP
(taut)

Pirn
(rowEqEmpty Pir()=()
(rowEqVai Prp=p

(I:7)inry Pirro=(rp-1)

(rowEqHead

Pirri=(l:7]r))

Figure 4.2: Entailment Relation

predicate inQ. Formally:P - Q = Vr € Q.P I+ 7.
The theory of qualified types allows us to use any set of predicasdeng aswve can prove

that the entailment relation is monotone, transitive, and closed under substitutio

Theorem 4.4.1.The entailment relation in Figure 4.2 is:

1. monotone: C P= P Q,

2. transitive: PF TATFQ= Pk Q, and

3. closed under substitution: P Q = sPI sQ.

68

Now we are in the position to introducpialified typestypes that are qualified by a set of
type predicates. Like in [Gaster and Jones, 1996], we distinguish betyees,r, described in

Section 4.2, and type schemes(types with universally quantified type variables). Formally:

¢ = 1 | m=¢ qualified types
o = ¢ | Ya.o typeschemes
Since the order of predicates and quantified type variables does not mvatiaetroduce the

following abbreviations:

mM=>.>m=>17 = 7n=>17=P=>r1

Yai...Van.e = VYa.
Universal quantification, hence polymorphism, is restricted by constraintgpes, captured by
the set of predicateB.

Like in [Leijen, 2004], for qualified types to be well-formed, we requiret thrdy row vari-
ables or the empty row appear in types and not arbitrary row expresdibissis an important
technical necessity, because the unification algorithm, used during tgperieE, does not know
how to unify arbitrary row expressions (like row concatenation). Ropressions thus appear
only in type predicates. For example, instead of writing somethingRi&e(o1 || p2), we have

to write p3 =~ (o1 || p2) = Recps.

69

Operation Surface Syntax| Core Syntax

Empty Record O o

Record Extension (I =e1|e) ((c= e1) &)

Field Selection (e) (cr e
Record Concatenation (e ||) (¢ &) &)
Record Djference (e1\e) ((c, &) &)

Field Deletion (el (cy e
Record Projection (er-[e2]) ((cp &) &)

Table 4.2: Translations of Record Operations to Core Syntax

4.5 Typing Basic Record Operations

The theory of qualified types assumes that the term language is core-Mlis tlan implicitly-
typed lambda calculus with let-bound polymorphism. Thus, the special syntactitructs for
records and record operations have to be translated to core synta® tygfe-checking can take
place. The translation rules are presented in Table 4.2, with the undenstémat record literals
are treated as series of record extensions, that is, where eactl liemad (11 = e, ...,Inh = &)
is treated as the equivalent expressign= e; | ...{p = €y | O)...).

There is one constant function corresponding to each record opeiatite translation, and
it is the types of these constants that will capture the meaning of recordtmper for type-
checking purposes. Notice, that during the translation, record labelgmtiar from the syntax

of the language as they get incorporated into the names of the constaneisponiding to the

Operation (Constant)

Predicates

Type

Empty Record(c)
Record Extensior(ci-)

Field Selection(c,)

Record Concatenatiorc;

Record Dfference (c\)
Field Deletion (cy)

Record Projection(cy)

p2=(l:alpi), p1lacksl
p1has(l: @)
p3 = p1 |l p2, pi#o2
p3 = p1\p2
p1has(l:a), p2~p1-I

p3=p1Np2, p2<pl

Rec()
a — Recp; — Recpr
Recp1 — «
Recp; — Recp, — Recps
Recp; — Recp, — Recps
Recp; — Recp:

Recp1 — Recp,; — Recps

Table 4.3: Qualified Types for the Basic Record Operations

70

record operations. This clarifies what we meant when we said thatireperations referring to

record labels form &gamily of operations (one for each label).

The qualified type schemes (predicates together with types) for the cterspresenting the

basic record operations, introduced by the translation to core syntagresented in Table 4.3

(all type variables in the predicates and in the types are assumed to besatygquantified.)

Notice how, in the type predicates for basic operations, the constructiomwefat the type level

mirrors the construction of records at the value level. This property opttbdicates will play

an important part in checking the satisfiability of predicates in Chapter 5.

71

4.6 Typing Rules and Type Inference

In this section we present the typing rules and the type inference algdfitfion the theory of
qualified types as developed by Jones [Jones, 1992]. A type assigAnea finite map from

term variables to type schemes:

A={X1:01,... % . 0on}

The notationAy stands for the type assignmehtwith the assumption om removed. We
abbreviateA, U {x : o} asAy, X : o. Figure 4.3 shows the standard typing rules for the theory
of qualified typesftv returns the set of free type variables). The typing judgerRdm + e: o
asserts that the expressiehas type scheme when the predicateB are satisfied and types of
the free variables irare given by the type assignmextNotice that the typing rules treat sets of
predicates as ‘black boxes’, that is, the type inference algorithm isaleotvards the concrete
system of predicates being used. This ‘pluggability’ of the system is it¢apEadvantage since
the same set of typing rules (and type inference algorithm) can be useditvitiodification in

different contexts.

4.6.1 Substitution and Unification

A substitution is a map from type variables to type constructors, and it is thétidemction
for all but a finite set of variables. We restrict ourselvekitaw preservingubstitutions: that is,
to substitutions that map type variables to type constructors of the same kinal skbstitution
that maps a type variable to a type constructo€ we will write [— C], for the identity

substitution we will writeid and for the composition of substitutiosgndt we will write st

72

(cons) P|ArcC:o¢
(x:0)eA
(var) _
PlArX: o

PlAre: 7 -1t P|A+E: T

(=B
PlAre€:
PlA.X:T're: T
(=N
PlAraxe: 7 —» 1
PlAre:n=¢ Pinx
(=E)
PlAre:gp
Pu{r}|Are:gp
=1
PlAre:n=¢
PlAre:Ya.o
(VE)
PlAre:[am 1]o
PlAre:o a¢ftv(A) Uftv(P)
(v1)
PlAre: Ya.o
PlAte:oc Q|ALX:or€: T
(let)

PUQ|Atrletx=¢ein€:r

Figure 4.3: Typing Rules

A substitutions is called aunifier of type constructor€; andC, if sC; = sG,. A unifier s

is amost general unifieif for all unifiers u of constructor€; andC, there exists a substitution

73

a ¢ ftvC) ¢ ftv(C)

g

@]
5

o [Q/TC] C C [(YTC] o

C1 S D1 uG, u~’ ubD,

C1C>, Y DD

Figure 4.4: Kind Preserving Unification

t such thau = ts. Since types are represented as Herbrand terms we can use thedstandar
preserving unification algorithm, as shown in Figure 4.4, to calculate mostgamifiers. We
write C; & C, for the most general unifierof C; andC,. The following theorem is by Robinson

[Robinson, 1965]:

Theorem 4.6.1. The algorithm in Figure 4.4 returns a most general unifier if it exists. It fails

precisely when there’s no such unifier.

With the given unification algorithm we can directly use the type inferenceitiigoW for
qualified types by Jones [Jones, 1992]. For completeness we includgpthenference algo-
rithm in Figure 4.5. The type inference rules can be interpreted as an tdtglammar where
each judgment of the form | sArW e 7 is a semantic rule where assignmérdnd expression
e are inherited, while the predicat®s the substitutiors, and the typer are synthesized. The
algorithmW calculates principal types with respect to the typing rules presented ineHg8Lr

In the (et") rule, we use a generalization function that quantifies free variablgsresent

in the type assignment:

genA ¢) = VYa.p wherea = ftv(p)\ftv(A)

74

xX:YaP=1)eA

(var®) fresh(B) s=[a — Bl

SPIA+W x: st
PlsAtWe:r QtsArWVe : 7

(- EY) (tr) L (v = a) fresia)

utPuU Q) |utsArW e € : ua

PIsA.x:arVe:r fresHa)

(= 1)
P|sArW ixe:se - 1
PIsAtWe:r o =gensAP= 1)
(let") QltsA.x:otWVe v

Q|tsAtWletx=ein e : 7

Figure 4.5: Type Inference Algorithiy

Jones proves that the type inference algorithiin Figure 4.5 is both sound and complete with

respect to the typing rules in Figure 4.3 [Jones, 1992]:

Theorem 4.6.2.The algorithm in Figure 4.5 infers a principal type for a given expressionce an

assignment A. It fails precisely when no type exists for e under the assigAm

4.7 Examples of Inferred Types

To give a taste of the type system, in this section we provide some expreakiagswith their

inferred types (separated from the expression with a single line). Aspilértference algorithm

75

does not check the satisfiability of predicates (a problem, addressetihiiéhe next chapter)
some expression, though incorrect, do have types inferred for theme ddonplex expressions
(like join) also demonstrate how unwieldy inferred types can grow and thus theforegghe

improvement and type simplification.

1. Selecting a field from a record literal:

(a=2, b=True-a

P =p1 has(a: Int), pa lacksb, p1 ~ (b: Bool| p2)), () lacksa, p2 ~ (a: Int| ()

7 =Int
2. Concatenating two records then extending the result:

AxAya =71 (x| y)

P=p1lacksa, po = (a:Int|p1), p1 = (03l pa), p3tos

T = Recps — (Recps — Recpy)

3. A quite complex expressiodoin

join = Ar.Aslet h = (r*\(r*\s")) in

{{tr || ¢ts\tryy [ts«— s, tr « 1, tr - [h] ==ts- [h]}

P = p4 = (p1\ps), ps = (p1\p2), ps = (p1\pe), Ps = (P1\p4), P4 < p1, P4 = (p1\ps),
P8 = (p1\p2), ps = (02\p7), P7 = (02\P4), Pa < P2, pa = (01\Ps), ps = (01\02),
p3 = (p11l pe), pitpe, po = (p2\p1)

7 = {Recp1} — {Recpz} — {Recps}

76

Chapter 5
Checking Satisfiability of Predicates

The type inference algorithiw ignores the satisfiability of predicates, a serious challenge
since the power of the language derives in part from the expressigerfitype predicates, hence,
we begin the chapter with formalizing the notion of satisfiability and stating thatrtiggm of
checking satisfiability is NP-complete both in the number of row variables anceindmber
of labels. In order to remove exponential complexity in the number of labedsinwoduce
a language restriction, but argue that the majority of useful programsestitin valid under
the restriction. Next, we develop an algorithm (algorithm Q) for checkinigfgbility in the
restricted system. The algorithm consists of two main parts: (1) a set dahstibver, and (2) a
field type constraint solver. Nested records require special treatnoewe $ollow the general
description of algorithm Q with a section on how to handle them. We concludén#pter with
a semi-formal complexity analysis, where we mainly argue for the practiedlingss of the
algorithm, despite its exponential complexity.

Let us begin our discussion on satisfiability with a motivating example. Takeotlosving
expression:

e = (a=ML-b

We are trying to select a field from a record literal that does not posksas§ield, that is, we

77

violate the precondition of thigeld selectioroperation. If we attempted to evaluate the expres-
sion e using the evaluation rules presented in Chapter 3, we would get studlebefhing a
value term, hence, the expressiis ill-typed. The problem isiot thatfield selections applied

to something other than a record (it is applied to a record), but rather theg¢brd in question
does not have the fielol The standard Milner type system can express the first constraint, that
field selectiormust be applied to a record, but it cannot express the second onéhetfald
being selected must be present in the record. Type predicates aréoussmuature these addi-
tional constraints on types, constraints that cannot be expressedthisiMjiner type system

only. Let’s look at the type inferred by the type inference algorithifor the expressios:

p1=(@a:Int|()), pphas(b:a) = «

Since the type inference algorithm is an extension of the standard Damas+dila, if the al-
gorithm succeeds in inferring a type for an expression, then none cbtisraints expressible

in the Milner type system are violated in the expression (a basic propertyefitference).
Nevertheless, it istill possible that some constraints, expressed using type predicates,-are vio
lated by the expression in question. In the case of the concrete exampleadlyigo see that
there is no instantiation of the row variallgthat would simultaneously satisfy both predicates:
thatp; must be equal tda : Int | ()) and thato; must have the fieldb. In other words, the

type predicates inferred for the expresseareunsatisfiablga notion we formalize later). In-
formally, when a set of predicates is unsatisfiable it means that the pigonadf some basic
record operations are violated (and vice versa).

In the rest of the chapter, we formalize the notion of satisfiability of predicge@pose a

78

language restriction to eliminate one source of exponential complexity in ictgesdtisfiability,
describe the algorith® for checking the satisfiability of predicates, and analyze the complexity

of the proposed algorithm.

5.1 Definition of Satisfiability

In this section we formalize the notion of satisfiability of predicates and pratelte problem

of checking satisfiability is NP-complete. We define the satisfiability of a setenfigates as:

satP iff Ju.ue {s|se Subst - sP}

That is, a set of predicatd3is satisfiable if there is at least one instantiation of row variables

that makes all predicates in the set true (that is, entailed by the entailmentrklatio
Theorem 5.1.1.Given a term e, where PsA+W e 7, the problensat P is NP-complete.

Even more importantly, we observe, based on the reductions used in thie {rat the
decision procedure is exponentlath in the number of row variableand in the number of
labels mentioned iiP.

We could now add the requiremesat P to the (et") rule of the type inference algorithm W
to ensure satisfiability of predicates for inferred types. This extensitimecflgorithm, neces-
sary it might seem, is nevertheless a non-obvious step, since it chaegastiplexity of type-
checking from the Damas-Milner ‘quasi-linear’ (that is, exponential itiaebut overwhelm-
ingly linear in practice) to NP-complete. However, checking the satisfiabilifgreflicates is
polynomial, if all record operations are performed on operands withngttypes, which is al-

ways the case in expressions that can cause the evaluation of reesadiaps. Exploiting this

79

fact, it is possible to keep the type-checking algorithm polynomial, by aceeptimgrams with

type errors that are guaranteed not to interfere with evaluation, anagptaken both in [Bune-

man and Ohori, 1996] and [Makholm and Wells, 2005]. We do not sidetbie exponential
complexity caused by type-checking polymorphic record operation®rrdt introducing cer-

tain restrictions, we fer a system that is almost as expressive as the unrestricted system, and

though still NP-complete, we argue that exponential complexity rarely driggactice.

5.2 Mapping to Set Expressions

Rows describe sets of labels and predicates on rows can be thoughsef eonstraints. We
would like to formalize this intuition by introducing a mappiggrom row expressions to set

expressions. The language of set expressions that is used as giofdhg mapping is:

ex=o[{l}Ix](eue)|(ene)](e\e)

With the above definition in mind, we define the mappifhidrom row expressions to set

expressions inductively (notice the convention of mapping row varjaliteset variabley).

o) = o
olpi) = pf
p(r=1) = o(\{l}
o((l:7lr)) = {Bue(r)
¢(rillra) = ¢(r) U e(ra)
¢(ri\ra) = ¢(r)\é(r2)

80

The following examples show the results of applyitp various row expressions:

Row Expression Set Expression)
o1l p2 PLYUPs
(a:Int|(b:Bool|p1)) {a} U ({b} U p7)
p1ll(a:Int| () PV ({aue)
(o1 =b) Il (os\(a: Int]p2)) | (L7 \{b}) U (07 \({a} U p7))

We extends to substitutions (restricted to row variables):

¢(s) = [oloi) — o(ri)]
... and predicates (we treat all derived predicates in their expandadtience we only have to

handle row equality):

p(ri=r12) = (p(r2) = ¢(r2))
Thus ¢(s) is a mapping from set variables to set expressions, WHiR is a system of set

constraints. An important property of our mapping is expressed by thevialijdemma:

Lemma 5.2.1. Under all substitutions s, for a row expression r and a label € ¢(sr) if and

only if (¢ : 7) in sr for somer.

Informally, what the lemma says is that the mappinig well-behaved, in the sense that the

presenc@bsence of fields in row expressions is preserved by the mapping.

5.3 A Simplifying Language Restriction

Theorem 5.1.1 asserts that checking the satisfiability of predicates isenadnn the number

of labels appearing (mentioned) in the predicates. Our goal in this sectiorrésntave this

81

source of complexity from the system, for it would be unreasonable torpatiori upper
bound on the number of labels appearing in expressions.
One obvious solution would be to require all fields with the same label to hagathe type,
in the manner of Haskell. Although this would achieve our goal (we do retepthis here), it
would make the system too inflexible. From the programmer’s point of vievelated field
selections would be forced to have the same type, greatly reducing thénessfof the system.
Our solution is to require only those field selections the potentially related through
record constructiorto have the same type. We try to make this restriction clear through the
following example, which, though is type-correct under the unrestricgstem, violates our

restriction:
f = atauav(t|uy-a==10At| v)-a== True

We require the two field selections to have the same type because they catiafipteefer to
the same field, as it is the case whemas fielda. On the other hand, the following, modified,
example passes our restriction, since ni@annot have the field (we extend with the fielda)

so the two field selections are not related:

f’ = Aatauav|uy-a==10A<t | v)-a== True
NMa=T7|ty==(a=7,b=05)
Extendingt with the fielda is just a roundabout way of saying that the recbodnnot have.
Naturally, in a full-fledged language with type ascription, there is no neesilith workarounds,

instead, the programmer could achieve the saffieeEby simplyascribingthe intended type to

82

the given term (in this cad®. For example (using Haskell-like syntax):

f”7 = atauav((t: placksa= Recp) || uy-a==10A(t|| v)-a== True

With the above restriction imposed, checking satisfiability of predicates is puliah in the
number of labels. We will show this by presenting an algorithm with the requioatplexity
in the sections that follow. Formally, satisfiability in the restricted system, as reaphy the

algorithm for satisfiability, relates to satisfiability in the unrestricted system as:

sata g P iff satPAVYS € [P'1.dse [Pl.¢(s) = ¢(9)

where we geP’ from P by replacing all occurrences of base typéswith type variablesy;,
fresh for each occurrence. liffect,P’ is a form of P, where the field type constraints have been
relaxed. Informally, what the definition says is that for each satisfyibgt#utions forP’” there
must exist a satisfying substitution fBrthat assigns the same set of labels to each row variable.
Sincesaty g P impliessat P, butsat P does not implysata ¢ P, the algorithm for satisfiability
is sound but not complete with respect to the unrestricted system.

With the restriction imposed, the algorithm still correctly type-checks all exasyplevided
in the thesis, including the definitions of polymorphic relational operatoi$aamost of useful
programs with record and relational operations. Actually, we claim ever mbke claim that
the restriction, in some sense, actuattyprovesthe language by rejecting programs that are

rarely useful in practice.

83

5.4 The Algorithm Q

Type predicates can be unsatisfiable, either because there are candlaristraints on the pres-
encégabsence of record fields, or because there are conflicting type @iotsion record fields.
Thus, we will first check ifp(P) is satisfiable (since obvioushysat ¢(P) implies —sat P),
then, using information gathered from the previous step, we will move ondokctield type
constraints. Special care needs to be taken to handle nested recoiatsywe will address af-
ter discussing the first two phases. The algorithm Q we are about talmegoplements the
language restriction explained in Section 5.3.

There already exist several decision procedures to solve a systeeh adnstraints [Aiken
and Wimmers, 1992; Aiken, 1994], however, none of them db®ef the properties that we
find important. Our algorithm exhibits all of them: (1) mixing set constraint sglwiith uni-
fication, (2) producing a normal form that can be directly used for tymglffication and im-
provement, (3) being compositional, or resumable, that is, adding a n@ersdtaint does not
require starting over, (4) having good error-reporting capabilitieslegrly identifying con-
flicting constraints, and (5) exploiting assumptions on external databheeas (explained in

Section 5.11).

84

5.4.1 Pseudo Code for Algorithm Q

The steps of the algorithm for satisfiability are summarized in the following higgi-tutline:
1. Identify base variables ip(P)
2. Map row predicateP to set constraintg(P)
3. Identify independent (base) variable (i)
4. Calculate normal formy) for set expressions ig(P)
5. Solve set constraintgP) now in normal form (offail)
6. Build row construction grap& from P
7. ldentify connected components@using output from Step 5
8. Unify field types belonging to the same componentds)

9. If row variables unify in Step 8, add new set constraints and resu@ept5, otherwise
finish

5.5 A Normal Form for Set Expressions

Let £ be the universal set of all labels witlase sets H...,H, € £. We define 2 regions
Ro, ..., Rn_1 by R; =;Hi whereH; = H; if the ith bit is set in the binary representation jof

andH; = Hj otherwise. Informally, regions are just the contiguous areas of a \iagnaan, as

illustrated in Figure 5.1 and Table 5.1 for two base sets.

85

H H
R, 1 2

R, R>

Figure 5.1: Regions Defined by Base SdisandH

Ro=HinH;
R; = HiNnH,
R, = Hy N H;
Rs = Hi N Hy

Table 5.1: Regions Defined by Base SdisandH,

The following theorem can be found in many textbooks on set theory:

Theorem 5.5.1.For base sets H ..., H, and regions B, ..., Rx:n_; defined as above:

1. L= UR,

2. regions are pair-wise disjoint, and

3. any set expression omH.., Hy, built using only set union, intersection, complement, and

difference, is equivalent to the union of some regighs R

86

An important corollary of the theorem that will be exploited later is that, sing®ns parti-
tion £ , each label belongs teexactly oneof the regionsR,.

We define a mappingg from homogeneouset expressions (set expressions without label
constants) tgrovisional normal formsvhereB is a set of base sety, ..., Hy, andRy, ..., Ron_1

are regions defined on the base sets:

%)

¥e(2)

ye(Hi) = Uier R wheref = {k| R¢ € Hj}

yeenf) = ys(® Nys(f) = Uiegenrn R
yeeu f) = ye(®) Uys(f) = Uiegeurn R
yee\f) = ye(@\¥s(f) = Uicgern R

It is important to note that we use the definitions of regions to decide whBjherHy holds
for some regiorR; and some base skl (it is easy to check tha; c Hy holds if and only if
Rj=..NnHgn..).

We remark here that provisional normal forms can fieatively implemented by their index
sets () represented as bit vectors (of length thus allowing the performance of set opera-
tions on provisional normal forms as bit-wise logical operations on bit vecRit vectors also
provide a succinct way of representing provisional normal forms€fulifact in discussing ex-
amples). For example, in bit vector notation®1 stands fot i1 3 R, that is, a region appears
in the union if the corresponding bit is set in the bit vector. Further exanfpkssiming there
are two base sets, hence, four regions) are presented in Table 5.2.

Provisional normal forms cannot handle label constants in set eipmes$-or this reason,

we extend our normal form wittabel presencéndex setsl', for each label € Lp, whereLp

87

Set Expression| Provisional Normal Form (yg) | Bit Vector
@ Uieo R 0000
Hi Uieira R 0101
Ho Uieza R 0011
Hi U H> Uieir23 R 0111
Hi N H Uieray R 0001
Hi\Hz Uiey R 0100
Hi Uiero2 R 1010

Table 5.2: Examples for Provisional Normal Forms

stands for the set of labels appearingPinThese presence sets, like index sets, are determined

by the set expression at hand. The format of our normal form thumhes:

ds@ = JR\LpU | J | JRN 1A

ieze telpicr®
We definejg inductively as:

For yg(@),let I = @, with 7, = @ forall £ € Lp.

Foryg({l}),let I = @, with 7} = {0,...,2" =1} andZ, = @ forall | # ¢ € Lp.

Foryg(Hj),let I = {k| Rc € Hj}, with 7, = 7 for all £ € Lp.

ge(en f) = gs(e) ns(f) =

Uierenrt (RALP) U UreL Uierens RO
The cases fogg(e U f) etc. are defined analogously.

An important property of the normal form defined byis that the union (intersection, etc.) of

88

two expressions in normal form is again in normal form. Furthermore, thenwing lemma

guarantees thalt preserves the meaning of set expressions:
Lemma 5.5.2. For a set expression e and labglf € e iff ¢ € yg(e).

The index setZ; for a labelf in the normal form ofyg(e) of a set expressior plays an
important part in the algorithm, since it tells us exactly which one of the regidakeh must

belong to in order to belong to a set expression:

Lemma 5.5.3. For a set expression e and a lab&k Lp, { € eiff £ € Uief? R, wherel7is

defined by the normal forgg(e).

Although formidable looking, normal forms can also be concisely reptedday their index
sets (together withZ , for each? € Lp) represented as a collection of bit vectors (of length 2
in other words, as a bit matrix, thus allowing the performance of set opesationormal forms
as bit-wise logical operations on these bit matrices. Furthermore, in the bikxmatation
we will use the generic label name *' to mark the index set for all unmentidabdls inP.

Examples for normal forms in bit matrix notation are presented in Table 5.3 ddiqates:

P=p3=(a:Int|pi), ps = p3\p2

where there are two base sgi$ &ndp’), and alsd_p = {a}, that is, only the labed is mentioned
in P.

5.6 Solving Set Constraints

If no labels appear in the set of constraiRsthenP is trivially satisfiable by the substitution

that maps each row variable to the empty row (an observation also made inl¢viaBussche

Set Expression

Normal Form

89

Bit Matrix

faupy

({a} U pp)\oj

Uiep R\M@ U Uieg R N {a}
Uietnay R\M@ U Uiy R N {a)
Uietzay R\M@ U Uiezgy R N {a)

Uierna R\{@ U Uio123 R N {a}

Uieryy R\Mat U Uiejo.y R N {a}

a:0000
*:0000

a:0101
*:0101

:0011
10011

11111
:0101

:1100
:0100

Q) Q)

Q)

Table 5.3: Examples for Normal Forms in Bit Matrix Notation

and Waller, 1999]).

Otherwise ¢(P) is a collection of set equality constraints of the foens f that we no set

out to solve. Using Lemma 5.5.8,= f iff yg(e) = ya(f). Now, using Lemma 5.5.3, € eiff

{e Uid? Ri, and similarlyt € f iff ¢ € Uid; Ri. Now supposé € R wherek € 77 andk ¢ J;.

This would imply thatt € e while ¢ ¢ f, which would violate the constraimt = f. Thus, it

must be the case thét¢ Rg. In generalf cannot belong to any of the regiofi§ I; without

violating the constraing = f.

The last observation leads us to an algorithm to check the satisfiability ofttberssraints

¢(P) as follows:

1. Initialize ®(¢) to {0, ..., 2"

— 1} for each? € Lp.

2. For each set equality constraiet£ f) € ¢(P), and for eaci € Lp, perform the update

O(0) « O()\(I%w I;), where7® andI; are defined by/g(e) andyg(f), respectively.

90

3. If ©(¢) = @ for any¢, theng(P) is not satisfiable, otherwise it is satisfiable.

O(¢) tells us which regions the labélcan be in. Before processing any of the set equalifies,
can be in any of the regions, hence the initial value@¢f) is the set of indexes of all regions.
By processing the set equalities the algorithm ‘narrows down’ the sefadms each label can
belong to. If@(¢) = @, then¢ cannot be in any of the regions, a contradiction, meaning that
the constraints are inconsistent. From an error-reporting point of #hemalgorithm can report
(1) exactly which labels have inconsistent constraints on them (thosehichwW®(¢) = @),
and (2) exactly which set equalities are responsible for the inconsisfrose that caused the
update of somé&(¢) to @).

Observe, that the global constraints capture®lman also be represented by a set expression

in normal form (using the special name **’ for unmentioned labels):

v©) = | RiLeu) | Rnte)

i€@(*) telp ie@(f)

This will be convenient in Chapter 6 when we will introdutleansechormal forms using.

5.7 Selecting Base Sets

In order to solve set constraints, we need to convert set expregsioasmal form. But to do
that we first need to select base sets in terms of which all set expresaiohe expressed. The
naive approach would be to take all the variables (that stand for unknostgf appearing in
¢(P) as base sets, but since the number of regions is exponential in the nofnblase sets, it is
crucial to keep their number small.

A closer examination of the structure of predicates generated by the paisions reveals

that most row variables i only name other row expressions and thus could be completely

91

1. Initialize DepgX) to {vde) | (X = €) € ¢(P)} for all X € vg¢(P)), and initializeBVp to

v($(P)).

2. If there isV € BVp with a dependency set € DepgV) such thatd # @ andV ¢ d

(a non-recursive dependency), then

(a) updateBVp <« BVp\{V},
(b) and for allX € BVp, update

DepgX) « {d € DepgX) | V ¢ d

U {dx\{V} U dy | dx € DepgX),V € dx,dv € DepgV),V ¢ dy}

3. If BVp has changed then goto Step 2, otherwise stop.

Figure 5.2: Algorithm for Identifying Base Variables

eliminated by substitution. Those variables that cannot be substituted iadagendenvari-
ables, will form a suitable collection of base sets. We make a slight shift of telogiy now
as we start talking about basariablesinstead of base sets. The reason for this shift is that we
would like to emphasize the fact that base sets will correspond to certamrsables ing(P)
and that we are going to identify these set variables by analyzing thersstaiots ing(P).

We assume, without loss of generality, that the right-hand side of all egsatia(P) is
either a single variable or the empty set. ste) stand for the set of variables appearing
in e. The set of independent variablesdi(P) can be identified (actually, approximated) by the

algorithm presented in Figure 5.2.

92

When the algorithm terminateBVp will be the set of independent variables that now can
be used as base variables in calculating normal forms for set expregsiotourse, now set
equalities must be processed in order of their dependencies to endutteetharmal form of a
given variable is available in expressions that use that variable).

To clarify how the algorithm works, we present a sample run of the algorhitine set of
constraint4A = B, B=CuU D, A= An C}. DepgX) describes the set of dependency sets for
variableX while BVp is our current approximation of base variables. Since the dependenfcies
variables that are no longer B\Vp are never considered again, we will only show dependencies

for variables that are still iBVp. The initial values oDepsandBVp are:

BVe = {A B, C, D}
DepgA) = {{B}. {A. C}}
DepgB) = {{C, D}}
DepgC) = {}

DepgD) = {}

Next, in Step 2 of the algorithm, we discover that the variagbleas a dependendyB} that is
not empty and that does not hafeas a member. After performing the updates, described in

Step 2.a and Step 2.b, the new valueBepsandBVp are:

BVp = (B, C, D}
DepgB) = {{C, D}}
DepgC) = {}
DepsD) = {}

Our next candidate for elimination is varialesince it has a non-empty, non-recursive depen-

93

dency. After performing the necessary updates:

BVe = {C D}

DepgC)

Il
—_—
=

DepgD)

Il
—_—
=

There are no more suitable candidates for substituting away, so we retuapproximation

of base variables, the séf, D}. We talk about approximation, since it can be the case that
a variable we identified as base variable is in fagt an independent variable, that is, it can
be expressed in terms of other variables. However, this is not a serobleim, since all we
care about is to quickly select a suitably small set of base variables in ténvigah all other

variables can be expressed using our normal form.

5.8 Checking Field Type Constraints

Type predicates on rows reflect the way records are constructegl hessic record operations.
Thus, it is possible to build a ‘goes into’, or row construction, gr&lshowing which records
contribute fields to some other record, by analyzing the predicates. Ifaue ddout the type of
a field in a given record, we can deduce, by looking at the graph, dna¢ ther record must
also have the same type for the given field. For example, in the recordssipne = (X || y),
if the field a has typelnt in x, then it must also have the same typeeirNotice that field type
information flows in the other direction as well, that is, if we discover the type afthen we
learned the type ad in x or y (since only one of them can haag henceG is undirected.

The row equality predicates idrthat we are interested in when building our gr&phre one

of the forms:

94

1. pi = (€:7]pj)
2. pi = (pj Il px)

3. pi = (pj\ok)

The vertices of the grapt® are row variables, and an edge between two vertices signals a
potential equality of some field types in the connected rows. Form@lly (V, E), where

V = ftv®¥(P), andE is defined as follows:

(i = (C:7|pj)) € P= (oi.pj) €E
(0i = (j I k) € P = (oi.pj) € EA(oi,pk) € E

(0i = (pj\px)) € P = (oi.pj) € E

Vertices are labelled with field type information as follows:

pi(€) =it 1 (pi = (¢ : 7|pj)) € P}

The row construction grap@ is used to determine which field types must unify. Given a
label¢, and connected verticgs andp,, if £ € ¢(o1) and alsal € ¢(p»), then the fieldd must
have the same type in both rows, that is, all typepaiff) U p2(¢) must unify. In general, for
a given labelt, if we can decide whethef € ¢(p;) for each vertex;, then we can identify
connected componentf in G wherep; € Cf implies¢ € ¢(p;). Vertices that belong to the same
componean must have the same field type forthat is, all types irUPieC? 0i(£) must unify.

In order to identify the connected compone@fswe need to be able to answer the question
whethert € ¢(o;). More precisely, we are asking the question: dggdas fields in all valid

instantiations of;’ follow from the set of type predicateB? We can answer this question by

95

taking advantage of a by product of the set constraint solving algorith®edation 5.6, that is,
0(¢), which tells us to which region&can belong to. Using Lemma 5.58¢ y(¢(pi)) if and
only if £ belongs to one of the regions in the indexﬁé(f’i).

Now the question ‘i in ¢(o;j)?’ can be answered in thredfi@irent ways:
1. 1Fe(l) ¢ 9%, thenyes

2. 1F0(1) N 1% = @, thenno,

3. Otherwisemaybe.

In order to proceed without resorting to back-tracking (that is, briaigcbn everymaybe
answer), and thus to exponential complexity in the number of labels; ourithlgotakes a
maybeanswer folyesand considers ambiguous cases as if the lahak positively appeared in
the given row. This greatly simplifies the algorithm and is at the heart of tlyzibage restriction
discussed earlier.

Once we identified all the field types that must unify we perform unificatiahifit fails,
then we can conclude that the predicate®iare not satisfiable due to conflicting field type
constraints. In case of success, the resulting (referredita@sving substitutionse will play

an important part in type improvement, as discussed in Chapter 6.

96

Figure 5.3: Connected Components for Fiald

To further understanding, in Figure 5.3 we show a row constructionhgnagh connected

components for fielé encircled. The graph is generated by the following expression:

if Z-athen (X || 23 -aelseg(a=2|x%)* (2| y°)°

where numerical superscripts link vertices to their corresponding degressions. The re-

sulting substitution in this case $ = [@ — Bool.

5.9 Handling Nested Records

Consider the following example using nested records:

e = if x==ythenf ((x-a)-b)elsegb=2|y-a)

Although not immediately obvious, the expressiis ill-typed since it has conflicting pres-
encegabsence constraints on the fiddd Both x andy are records (we select the fieddfrom
both) of the same type (we compare them for equality) meaning that theafralast have the
same type in both of them. However, given the same record type fordjelg cannot simul-
taneously select from it (requiring its presence) and extend it with ifieguts absence) the

field b.

97

The problem is that in the set constraint solving phase, the algorithm dbvgstrknow the
important constraint that the record types for fialahust be the same. This additional constraint
is discovered only in the field type constraint checking phase.

To correctly handle nested records, we have to continue analyzing thevimgsubstitution
sp returned by the field type constraint checking phase. The basic ideaisshanaps one row
variablepy to anotherpy, then we have to enforce the additional set constig(ng) = ¢(py).

Formally, we define the additional set constraints as

K = {¢(ox) = ¢(oy) | [ox = py] € sp}.

We can process the additional set constraihtgithout re-checking all previous set constraints.

If the system of set constrainggP) extended withK is unsatisfiable, we fail. Otherwise, we
apply the improving substitutiogp to P and move on to the field type constraint checking phase.
We repeat this cycle untl = @, which is guaranteed to happen since each substitution reduces
the number of type variables i1 If the algorithm successfully terminates, the improving substi-
tution eventually returned is defined to be ttmmpositionof improving substitution from each
cycle.

Nested records raise the possibility of recursive record types. TaKeltbwing expression:

g = Atta==

The type of fieldain the record is the same as the type totself. There is nothing in the design
or the assumptions of algorithm Q that would prevent it from handling saé@irecord types,
and indeed it does handle them correctly. It is an altogettigardint question whether recursive

record types serve any useful purpose and whether they shouldlbdéd in the language. It

98

remains as future work to consider the pros and cons of recursigedrgges in the context of

a purely functional database programming language.

5.10 Soundness and Completeness

The following theorem states that algorithm Q, described in the previotiesgaorrectly iden-
tifies sets of predicates that are not satisfiable (with regard to the entailel@tidm presented

in Section 4.4):

Theorem 5.10.1(Soundness)If —sat P then Algorithm Q will report failure.

Completeness, because of the language restriction presented in Sectigramha trickier
business. As it stands, algorithm Qdsliberatelynot complete, since it rejects programs that
are well-typed but violate the language restriction. However, it is possibieotify the type
system in such a way that it coincides with the algorithm. The main idea is tovasews (not
just one) to describe record types: one for fiptdsenceand one for fieldypes Then we can
modify the type of record concatenation so that it requires all fields (pteseabsent) in its

operands to have the same type:

(19 p3 = p1ll p2, prHo2 =
Recp1 pa — Recpz pa — Recps pa

With the modified type system in mind, we can state the following theorem:

Theorem 5.10.2(Completeness)Assuming a modified type system with two rows per record

type, ifsat P then Algorithm Q will succeed.

99

5.11 Complexity of Algorithm Q

The determining factors in the complexity of constraint satisfiability checkiag ar

1. the number of predicatep)(

2. the number of base variablas< p), and

3. the number of labeld & p).

Each predicate is of sizZ®(1) (the typing of basic operations guarantee this). Furthermore,
we assume that field types are ©f1) so that unification can be considered a unit operation.
Next, we proceed with a detailed complexity analysis of the algorithm.

Converting to set constraints @(p). ldentifying base variables ©(p): in each iteration
(requiringO(p) steps) we get rid of one variable, and there can be at muatiables). Calcu-
lating the normal forms and processing the predicat€X25Ip), since each bit matrix used to
represent normal forms is of siZ&2"l) (there are 2 regions and there is one presence set for
each label). Building the row construction gra@his O(p) (assuming anfécient graph rep-
resentation using hash tables and adjacency lists), since it consistdydimmpa@ach predicate
and building the graph. Finding the connected componen&fior each label (with checking
label presence for each vertex) is agaii2"lp) (each presence check@2") with O(p) vertices
andO(l) labels, while findind connected components using depth-first searClfl{z)). Without
nested records, the complexity of algorithm is t&"Ip). Since the presence of nested records
might require restarting the algorithm, in the worst-c@$p) times (for each row variable), we

conclude that the complexity of algorithm Q@2"Ip?).

100

The algorithm is clearly exponential in the number of base variables (wleitghrdines the
number of regions used in describing normal forms) so we would like togowigird arguments
as to why we rarely expect to see this exponential complexity arise in pragtieegist of our
argument for practicality hinges on the fact that the number of base lesimbproportional to
the number of function parameters from polymorphic function definitionsseothis, all one
has to consider is that independent row variables (ones that are mesthitof some type-level
operation) can only originate from polymorphic function arguments (inféymnancertainty
must come from the ‘outside’). Functions that take even as many as a dop@ments are
quite rare in practice, so we expect the algorithm to perform well on geegpaograms. Our
expectation is also supported by the experience we gained when using tleenenpation of
the algorithm. Also, we would like to re-iterate here the importance of the laegestriction
introduced in Section 5.3 that removed one source of exponential complexitiie number of
labels).

In database programming, it is quite common to refer to relations defined in saeraa
database. With the language presented in this paper, it now becomesegusdib this without
access to database schema information, relying on the type-checkinighatgtor enforce that
external relations are used in a consistent manner. From a complexityopeieiv, this poses
a new problem, since database applications regularly use dozens (ifimdrells) of external
relations so our previous argument for practicality (upper bound ompmiyhic function ar-
guments) no longer holds. However, this only has to be the case if we atediase schemas
as completely unstructured, which would ignore the useful fact that retetianal databases

are normalized (to some extent, at least). In fact, if we impose the strict canditidatabase

101

schemas thatny two relations can have at most one attribute in comrttan the number afis-
tinct regions becomeguadraticin the number of external relations, making the type-checking
algorithm practical again. Severe as it might seem, the restriction is not cetyplarealistic,
since database schemas in third normal form and using numeric surreystefken already
satisfy the condition, and if not, can be brought into conformance by fimin@g introducing

surrogate keys, and renaming attributes.

5.12 Sample Run

In this section we provide a sample run of the algorithm on a simple expressiterify each
step of the algorithm. The expression we are going to analyze is the followitygpdt expres-
sion:

Ax.xXla == xlb
The inferred type is:

P=pi1has(a:a), po~p1—a prhas(b:p), p2~p1-b
7 = Recp1 — Bool

First, we convert the predicates to their expanded forms:

P=(a:a|()) =pi\(p1—a), p2=p1—a (b:B8]()) =p1\(p1—b), p2o=p1-b

Next, we convert the predicates to set constraiiBy :

¢(P) = {a} U @ = p1\ (o \{@), p5 = pi\{a), {b} U@ = p]\(p1\(b}), p5 =~ p}\{b}

By analyzing the set constraints, we can identify the set of base variabtes caseB = {p}}.

102

Set Expression| Bit Matrix

a:00
b:00
*:00

111
:00
:00

:00
111
:00

:01
:01
P *:01

:00
:01
:01

a:01
b:00
pi\(e7\ (&) *:00

a:01
b:00
(03 =) p1\b} *:01
:00

:01
:00

T *T O

T

(05 =) pi\a)

T

P1\(p7\(b})

Table 5.4: Normal Forms in Bit Matrix Notation

In order to process the set constraints, we need to calculate the normaldbset expres-
sions, presented in Table 5.4. There is one base variable that definesgiamas, and there are
two labels & andb) mentioned inP, which means that our bit matrices are relatively small.

All that remains is to process set constraints, now with both sides of thei@gua nor-
mal form. Initially, there are no constraints on the presence of labels in faimg segions, so

0@ = 11 and®(b) = 11 . Next, we process the set constraints (order is not important):

103

1. First, let's process constraif@t} U @ = p7\ (0} \{a}), now in normal form:

a:11 a:01
b:00 b:00
*:00 = *:00

Thus, we learn that labe@lcannot appear in regidRy (since that would violate the equa-

tion), and we updat®(a) to 01 .

2. Processing set constrait U @ = p}\ (07 \{b}) is analogous to the previous step, with the

result of updating(b) to 01 .

3. Finally, we process set constraipt) p7\{a} = p}\{b} (= p5):

a:00 a:01
b:01 b:00
*:01 = *:01

From this we learn that neithernor b can be in regiofR;. Thus, we updat®(a) to 00

andoO(b) to 00 .

Now that we have processed all the set constraints, we can concluttmking at®, that
they are unsatisfiable since bddifa) = @ and®(b) = @. Not only that, we can report that we

have inconsistent preseriabsence constraints for laba@sindb.

5.13 Summary

In this chapter we described algorithm Q, an algorithm for checking thdiahtigy of predi-
cates derived by type inference algorithth The internal data structures built by algorithm Q,
especially® andG, will play an important role in the coming chapters, since they capture useful
information about the structure of the predicates, the relation betweenawables, and the

‘relevance’ of each predicate.

104

Chapter 6

Type Improvement and Simplification

The types inferred by the type inference algoritifpresented in Chapter 4) are not always
as accurate or concise as they could be. In this chapter we formalize tibesnof accuracy
andconcisenessf qualified types, and develop algorithms thaproveandsimplify said types.
The idea of treating type improvement and simplification as orthogonal to typeeimde in
the framework of the theory of qualified types was discussed by Jondsmeg, 1995]. The
definitions (but not the algorithms, since they are specific to our systesgqel in this chapter

were inspired by Jones’s work.

6.1 Type Improvement
We will begin with a motivating example. Take the following expression:
e = AxAf.7+f (x-a) (x-a)
The type inferred for expressiais:
P=1t = pihas(a:a), p1has(a:B) = Recp1 - (@ » 5 — Int) - Int

By analyzing the structure a we can conclude that the two input parameters of the function

f must be of the same type, that of the fiaelih the recordx. Thus, a more accurate type for

105

expressiore would be @’ is aset thus repeated predicates have been removed):

P=7 = pihas(a:a)= Recos - (@ » a— Int) - Int

The original principal typer is not as accurate as it could be, because the type inference
algorithm does not (since it cannot) take into consideration certain additigeaequality con-
straints (here, equality of field types) that follow from the type predidatéss a result, there are
instances ot where the type predicatésare not satisfiable, for example, those instances that
map type variables andg to conflicting types. Thus, although the principal types strictly
more general than the improved typethis additional generality is illusory since we are forced
to map type variables andg to the same type anyway in order to satisfy the type predid¢ates

A more accurate (or improved) type is thus one that takes into acaiuatist someof
the type equality constraints that follow from the type predicates, but adehitfom the type
inference algorithm. The type that has tak®hsuch constraints into account is thancipal
satisfiable typeNext, we develop these notions formally.

Recall from Section 4.4, that for a type to be well-formed only row variafeshe empty
row) can appear in it and not arbitrary row expressions. Accorditligisaule, the typefec())
andRecp; — Recp; are well-formed, while the typeRec (o1 — I) andRec (o1 || p2) are
not. In order to preserve the well-formedness of types during type ireprent, we define a
row-restrictedsubstitution as a substitution that maps row variables to other row variables (or
the empty row): that is, a row-restricted substitution does not map row \@sigbarbitrary row
expressions. For example, the substitution > p»] is row-restricted, while the substitution

[o1 — (a: Int|p2)]is not.

106

Next, we define the set of satisfiable instances of a tywéh regard to predicateR as:

|7]lp = {sr| se€ Subst + sP}

We call a row-restricted substitutioman improving substitution, and the typsr animproved

type, if the substitution does not change the set of satisfiable instancestgpth

Lstlsp = L7lp

We call the improving substitutios the principal improvingsubstitution, and the typsr the
principal satisfiable typgf for all improving substitutionsi there exists a row-restricted substi-
tutiont such thaur = tsr. Observe, that the principal satisfiable type is unique (up to renaming
of type variables, of course), but the principal improving substitution {sneoessarily so (for
example, if fr — B] improves the typer — B8 — Int, so doesg +— «]). This hardly matters in
practice, sincanyprincipal improving substitution will give the principal satisfiable type.

Jones states in [Jones, 1995] that in general (under an arbitrassyd predicates) it
can be undecidable to find the principal satisfiable type and sometimes it dbegem exist.
Fortunately, this is not the case with the type system presented in this thes#l Wwell-typed
expressions of the language, a principal satisfiable dggsexists and itanbe found using the

algorithm we describe later (in Section 6.2).

6.1.1 Representative Cases

Before we develop the algorithm for type improvement, we present thesaprs that embody
the three main ‘sources’ of additional type equality constraints that areefhittdm the type

inference algorithm, and thus are not reflected in the inferred type.

107

Field Type Constraints

Take the following expression:

e = AxAyf (X]||y)-a== 3then x-aelsey-b

The type inferred for expressia is:

p3z has(a:Int), ps = (o1 |l p2), p1#o2, p1 has(a: @), p2 has(b: a)
= Recp; —» Recpr — «

In this example, we select the fietdfrom the concatenation of recoratsandy to compare it
to an integer (thus pinning down its type). Hence, the feeldust have typént in either xor

y (since they are disjoint). But we also selecfrom X, meaning thak must havea, which,
together with our previous observation, implies that the expressiaas typelnt. Thus, we
can conclude from the constraints on field types that the return type ofitletidne; cannot
be anything butint. The row-constrained substitutior [— Int] is therefore an improving
substitution. As a matter of fact, the improving substitutier:= [« — Int] also happens to be a
principal improving substitution since it takall type equality constraints into account.

The type inference algorithm is too general to perform the kind of reagame did in the
previous paragraph and as a result the constraint that the type varistlefact equal tdnt is
hidden from it. In general, when two field selections refer to the sameddiedd the resulting
types must unify. As the above example tries to demonstrate, it is often aimahtask (since
it can involve reasoning with arbitrary record expressions) to decidtheh two field selections
actually refer to the same field. Field type equality constraints are thus potsntiedes of

improving substitutions.

108

Empty Row Constraints

A markedly diferent kind of ‘hidden’ constraint is when one row variable is constrhinebe

equal to the empty row by the type predicates. Take, for example, the fojaxipression:

& = AXX| X

The type inferred for expressia is:

p2 = (o1 1l p1), p1#po1

= Recp; — Recp:

In this expression, we concatenate the record itself. Record concatenation requires its
operands to be disjoint, s@, the type ofx, must be a row that is disjoint with itself. There
is only one row that is disjoint with itself, and that is the empty r@hwthus the type of both
the recordx and the return value is the empty rec&dc(|). As a consequence, the improving
substitution in this case & = [p1 — (), p2 — ()] (which also happens to be a principal one).

Clearly, the case represented by the expressibas nothing to do with field type constraints
(no fields are even mentioned in it), rather, it is the result of a field pregdrsence constraint,
namely, disjointness. In general, type predicates can constraint a fartiow variable to be
equal to the empty row under any valid instantiation of the type, thus we canumitre type by
substituting said row variable with the empty row. Discovering empty row cansirg again
outside the scope of the type inference algorithm, and thus it too providgstial opportunity

for type improvement.

109

Same Row Constraints

Type predicates can constrain two row variables to be the same in waysdhaitaaccessible

to the type inference algorithm. Consider the following expression:

&g = WxAf.f@=7|x@=2|x

The type inferred for expressia is:

p1lacksa, pp ~ (a:Int|p1), p3=(a:Int]p1)
= Recp1 — (Recpy, —» Recpsz — a) — «

The two input parameters of the functidnare extensions of the same recorwith the field
a of type Int, therefore, the parameters should be of the same type. We could draantiee s
conclusion by looking at the type predicates and realizing that the riglit-idies of the row
equalities defining row variablgs andps are exactly the same. Using our observations, we can
improve the type inferred fogs by the improving substitutioss = [o3 — o], which is also a
principal improving substitution.

In general, by analyzing the type predicates it can sometimes be concludesbithe row
variables must always refer to the same row (because, for example¢dhsist of the same
fields and the have matching types for all of their fields). In these casesawimprove the
type by substituting away some row variables by other (equivalent) roablas. Like in the
previous cases, the type inference algorithm is not aware of these adtiiipe constraints so

they can be exploited for potential type improvement.

110

6.2 Algorithm for Type Improvement

In order to find the principal satisfiable type, we will have to take into conatam all type
equivalence constraints implied by the type predicates. The three mairesafrthese ad-
ditional type constraints (field type, empty row, and same row) were outlingukiprevious
section so now we can concentrate on identifying the principal improvingfisution that takes

all three sources into account. We proceed by breaking the problemaufiriding the three
improving substitutions:s, sg, ands., that capture the consequences of all the field type,
empty row, and same row constraints, respectively. The composition ofrie shbstitutions

s = s¢s) S- Will be a principal improving substitution which, when applied to the type, will yield
the principal satisfiable type. In the rest of the section we assume thaevisyiaig to improve

the qualified typd® = r and that it has already been established (using the algorithm described

in Chapter 5) thaP is satisfiable.

6.2.1 Finding the Improving Substitution (&ield Types)

Finding the substitutions, is easy, since it has already been done by the algorithm for checking
the satisfiability of predicates, that is, algorithm Q. Among other things, algei@mmust also
check field type constraints (since they might be unsatisfiable) by tryingfiptypes that refer
to the same field (see Section 5.8). The resulting substitution is exactly the dneetlzae

looking for, because it takedl field type constraints into account.

111

6.2.2 Finding the Improving Substitutiog, $Empty Row)

In order to decide which row variables are necessarily equal to the eovatyve will again take

advantage of information gathered by algorithm Q. Take exaefi®m Section 6.1.1.:
& = AXX] X

The set of predicates for expressigns:

P = p2=(p1llp1), pi#o1

The system of set constraint§P) is (with thedisjoint predicate expanded for processing):

¢(P) = py=piUpl, Py =pi\05
Analyzing P we can see that there is one base varighlgsincep, can be expressed in terms of

p1), and thus two regionk; = p_’1 andR; = p}. Next, we convert set expressions to normal form

(notice, that in order to calculate the normal formpgf we use the normal form @f,).

Set Expression| Normal Form

P *:01
Py (=pLUp)) *:101
P1\0% *:00

When algorithm Q tries to satisfy the set constraifit= p7\05 (in normal form: *:01 =
*:00) it discovers that the regioR, must be empty, since it appears on the left-hand side
but not on the right-hand side. In other words, the constraint on unnmeatitabels is that

they cannot appear in regid®. Algorithm Q records this a® = *:10 . Now, if regionRy is

112

constrained to be empty, then it can be removed from the normal fopawvathout changing its
meaning, yielding the normal fori *:00 . But *:00 is exactly the normal form of the empty
set! Thus, we can conclude that getmust be the empty set in order to satisfy the constraints
in ¢(P), and, consequently, the rgwy must be equal to the empty row in order to satisfy the
predicates irP.

In general, we would like to be able to tell, simply by looking at its normal form, thée
a set (and thus the corresponding row) is constrained to be empty. Asetieys example
shows, in order to do this, we have to take into consideration the globalpgatsgtnc@absence
constraints, captured by the algorithm Q. When we apply the consequehtiee global label
presenc@absence constraints to a normal form, we sayclganseit, turning it into acleansed

normal form. Formally, for some set express@mve define the cleansed normal form as:
W) =d(e)ne

For example, the cleansed normal formpbis *:00 (thatis, unsurprisinglyy, is also empty).
Obviously, cleansing normal forms only makes sense once we havespeatall set constraints,
that is, after algorithm Q has finished (sin®@emust reflectall label presengabsence con-
straints).

Now, if the cleansed normal form of a set is equal to the empty set, then tfesponding
row variable is necessarily equal to the empty row and can be safely stdasttnay. Formally,

we define the improving substituticsy as (where € ftv'®"(P)):

sp = {lo = 01 1¥%(e)) = ¥ (2))

113

6.2.3 Finding the Improving Substitution £Same Row)

A simple way of finding rows that are necessarily the same would be to cortipErenormal
forms for equality. After all, one might reasonably expect that two setesgions whose normal
forms match represent the same set. This is in fact the case, but, unfelyutizere are cases
where two set expressions represent the same set, yet, their normaldornot match. For
example, the set expressiogs= X U aande, = a (assumingX is the only base variable) have
normal forms %(ﬁ and g61)61) , respectively. Now, if the set is constrained to be the empty
set, then itis easy to see that sgtainde, are exactly the same. Thus, when looking for sets that
are the same, what we need to compare is not the normal forms, but rateéedhsed normal
forms (since they take global field presefadEsence constraints into consideration).

When the cleansed normal forms of two set variables are the same, it maansdier all
substitutions they have the same set of labels. The problem is, that this clogaamantee
that the corresponding rows also have matching fighets Therefore, in order to decide row
equality, we have to take field types into consideration as well. This is possibtg during
satisfiability checking, algorithm Q builds a row construction gr&pfsee Section 5.8) which
contains information on field types in individual rows. As part of checKielgl type constraints
the algorithm also calculates connected components for eaclﬂﬁeld?ows belonging to a

componean must have the same, unique typ(@f) for field ¢ (these unique field types are

determined through unification, whose result, the substitigipwe discussed in Section 6.2.1).

114

With the aforementioned in mind, after algorithm Q has finished, it now makes serask
for the type of field? in row p (for which type we will use the notatigs¥ to mirror field selection
on records). Formally:

p-t=1(Cy) wherepeCf

Two row variables, whose corresponding set variables have matdeigsed normal forms
and whose field types are the same for all labels mentionBddre considered the same and one
can be safely substituted away with the other. The following is the definitioneoiftiproving

substitutions. (wherepy, py € ftv'o"(P)):

s= = {lox = pyl 19%(@(0x)) = ¥%((py)). YV € LabelsP).ox-¢ = py-()

Actually, the above definition is incorrect, since it generates mappings betmyawo pairs in
a set of equivalent row variables. Thusp#f is equal top, and also tq, it will include both
mapping ps — p2] and [oz — p1]. To make the substitution well-defined, we assume there
exists some arbitrary ordering on row variables (for example, lexictigal), and require that,
if there are several mappings for a row variablesin then it should map to the smallest one
(according to the chosen ordering).

To further understanding, we walk through the steps of finding the impgosistitution

for the example presented in Section 6.1.1:
& = WMXxAf.f@a=7|x{@a=2|x

The type predicateB inferred for expression; are:

P = pilacksa, p2 =~ (a:Int]pi)), p3=~(a:Int|p1)

115

The system of set constraingéP) is (with thelackspredicate expanded for processing):

o(P) = pi=p\a), p)=1{a)up], pi=1{a}up]

The only base variable s, so the normal forms of the relevant set expressions are as follows:

Set Expression| Normal Form
a:01
P *:01
a:00
JANEY 101
a:11
P, (={ayupy) *:01
a:11
Py (={atup)) *:01

a:10
After algorithm Q has processed the constrainig(i?), the global constraints ar@ = *:11 .

(The only relevant constraint in this casepis= p7\{a}, that is, the fact thagt] lacks fielda.)

Using the value o® we can calculate the cleansed normal forms of the set variables:

Set Expression| Cleansed Normal Form
a:00
P *:01
a: 10
05 *:01
a: 10
oA *:01

By looking at the cleansed normal forms, we can conclude thap$etsdo’ represent the same

set of labels, and, consequently, rgwgsandps have the same set of fields.

116

Figure 6.1: Row Construction Graph, Expressigr:Af.f (a= 7| x1)? (a= 2| x})3

Next, we have to check whether the field types of regrandps match. The row construc-
tion graph (with vertices labelled with types for fieddand connected components encircled)
for predicates? is presented in Figure 6.1 (like in Section 5.8 numerical superscripts link ver-
tices to their corresponding record expressions). By looking at therpjatie can conclude that
the type of fielda in p; is Int, that is,p>-a = Int, and, similarly,o3-a = Int. Thus, rowso»
andps are indeed the same, so we can substitute one away with the other using thengpro

substitution p3 — p2].

6.3 Type Simplification

While experimenting with the language and the type system, one quickly disdtratiquite of-
ten the inferred type includes predicates that are superfluous. Infgrensuperfluous predicate
does not capture any relevant information, that is, it does not putdditi@nal constraint on the
type variables that is not already captured by other predicates. Takellthweing, motivating

example:

e = @=7[()

117

The type inferred fog is:

() lacksa, p1 ~ (a:Int|()) = Recps

Obviously, the predicatd) lacks a is trivially true under all instantiations, thus it does not
constrain the set of satisfiable instances in any way. Therefore, theiiojdype is equivalent
to the previous one:

p1=(a:Int| ()) = Recpy

Formally, two sets of predicatésandQ are equivalent if they define the same set of satisfi-

able instances (this definition slightlyfiérs from the oneféered by Jones in [Jones, 1995]):

P~Q iff [rlp=1l7lg

A predicater is thus superfluous P ~ P\{r}. A set of predicate® is minimal if there is no
predicate inP that is superfluous.

Although, in general, it is diicult to say under what conditions should one set of predicates
be considered simpler than some otheffédent metrics give dierent results, not to mention
one’s subjective taste), we nevertheless decided to settle on one parieasure: the number
of predicates in the set. Thus, in this thesis, type simplification will always mededs other-
wise stated) disposing of superfluous predicates and thus reducingrttieenof predicates in
the type. Formally, the set of predicatess simpler thanQ, written asP < Q, if P € Q and
P ~ Q. Since findinga minimal set of predicates is easier than finding $heallestminimal
set (because finding the smallest set would require enumegdtingnimal subsets oP), what
we will be looking for during type simplification is nahe minimum (smallest), but rathex

minimal (irreducible) set of predicates. Thus, there will be no ‘principaptified type.’

118

From now on, when we present inferred types, we will assume that ahtig§i checking
(described in Chapter 5) and type improvement (described in sections®6L.2) have already

taken place, that is, the presented types will always be principal saléstiqies.

6.3.1 Representative Cases

In this section, we present several examples for type simplification, wiesegrive at a minimal
set of predicates using semi-formal reasoning. Bear in mind, that oliigyoat to give an
exhaustive list of cases to be handled later, but rather to demonstratgitheswvays a predicate

can become superfluous.

Constant Predicates

In some cases, there are no row variables mentioned in the predicatesrthat be substituted

away using row equality predicates. Take the following example:

e = (@=7|b=2|OnNb

The improved type for expressi@n is:

p1has(b:Int), p1 = (a:Int]pz), p2 lacksa,
p2=(b:Int] (), () lacksb
= Int
In this example, we select a field from a record literal that is completely detedhaihcompile-
time. Intuitively, if the operation is type-correct, the type of the expressimulgl simply be

the type of the selected field without any type predicates whatsoever. fiotonally, observe

119

that there are no independent row variables in the predicat@set:(b : Int | ()), andps (an
extension ofpp) is (a: Int | (b : Int| ())). In other words, we are dealing with constant pred-
icates that are necessarily true (since we already checked that thestiafable). Necessarily
true predicates do not capture any relevant type constraints, hertgpéhaf expressiom; after

type simplification is simplynt.

Predicate Cancellation

Sometimes, the precondition of some basic operation is guaranteed by thenplitito of some
other basic operation. In this situation, the predicate expressing thenditon becomes su-

perfluous. Take the following example:
e = Ax{(a=2|xa)-a

The improved type for expressi@a is:

p2lacksa, p2 =~ p1—a @ p1has(a:),
. . @
pzhas(a:Int), p3 = (a:Int]|p2)
= Recp; — Int
In this example, there are two instances of predicate cancellation (cangeinsgof predicates
highlighted): (1) we extend the recoxtia with the fielda that the record is guaranteed to lack,
and (2) we select from the recotd = 2 | ...) the fielda that the record is guaranteed to have.

Actually, the only constraint expressi@ puts on recordx is that it must have the field.

Consequently, the simplified type of expressigtis: p; has(a: @) = Recp; — Int.

120

Unreachable Predicates

A guite common case is when some predicates become superfluous beeatyge thariables
they constrain are no longer reachable (a notion we will make more preggetam the Milner

type. Take the following example:

e3 = Axlet f =ay(x|ly)in x

The improved type for expressi@g is:

p3 = (p1 || p2), p1to2 = Recpr — Recps

In expressiores, inside the functionf, we concatenate the recoxdo the recordy, but there

is no way to supply the value gffrom the outside world sincé never escapes the scope of
thelet expression. A closer examination of the situation reveals that the row lepiaks not
mentioned in the type and cannot be constructed fogirthat is,p, is unreachable (and so is
03). As aresult, the type predicates, although they are not constant, domsitain the type of

recordx in any way. The simplified type ads is thus onlyRecp; — Recps.

Parallel Construction

When a row is constructed in severaftdrent ways from the same rows, it often happens that
only certain predicates are required to describe the construction ofuhenaking predicates

that lie on ‘parallel construction paths’ superfluous. Take the followkagp®le:

e = AxAy.if Truethen (x| y) elsexX\y) ||)

121

The improved type for expressi@j is:

p3 = (p1 1l p2), p1#o2, p3 = (04 |l p2), pato2, pa = (p1\p2)

= Recp; — Recp, — Recps
Predicates mirror the construction of records at the level of rows. Btanoe, the rovps is
constructed in two dierent ways (as a result of constructing the same record in the two lesnch
of theif expression). Observe, however, that only one way of constructiactislly needed
in this situation, because in both cases the resulting record is the concatefdtie recordx
andy. Consequently, during type simplification, we have a choice between two misétsabf

predicates (representing the twdfdirent ways of construction):

e p3 = (p1 |l p2), p1#p2 = Recp1 — Recpz — Recps

e p3 = (4|l p2), pitto2, pa = (p1\p2) = Recp1 — Recp, — Recps

The type simplification algorithm halts as soon as it has found a minimal setditptes,
and there is no guarantee that it will find the smallest possible set. Thusttted minimal set

chosen by the algorithm can be considered somewhat of an accidentlefrisygation.

122

6.4 Algorithm for Type Simplification

The goal of type simplification is to find a minimal set of predicates by removipgréuous
predicates from a given set of predicakesThe algorithm for type simplification consists of the
following steps: (1) identifyreachablepredicates using the Milner type; (2) identifglevant
predicates among reachable predicates; and (3) provide suppa tosistructorpredicates for
unsupported row variables appearing in the relevant predicates or ilther type. In the rest
of the chapter, we assume that satisfiability checking and type improvemenahaady taken

place before attempting type simplification.

6.4.1 Identifying Reachable Predicates

Informally, reachablepredicates are those predicates that may directly or indirectly constrain
some type variables appearing in the Milner type. Predicates that areacbii®e are guaran-
teed to be superfluous, since they capture constraints on type variailearihot be instantiated

through unification. Take the following expressions and their improvedstype

Expression | Improved Type

P1= pphas(a:Int), () lacksa, p1 ~ (a: Int| ()
e = (@:Int]|)-a
71 = Int

P2= pihas(a:a), po~p1-a

e = AxXla
T2 = RGCpl — Resz

_ P3 = p3 = (01 Il p2), p1#p2, p1 has(a: @)
e = Axlet f = Ay.(x||y) in x-a

3= Recp; — «

123

For expressiom,, there are no type variables in the Milner type(sincelnt is a monotype), so
no predicate irP; is reachable. For expressies both predicates i, are reachable since they
constrain row variables; andp, appearing in the Milner type,. As for expressiors, only the
predicatep; has(a: «) is reachable.

To better understand why unreachable predicates are necessagitflisoys, take for exam-
ple the predicate1#0, from P3. Sincep, is unknown, and there iso waythat it can become
known, what predicatpi1#o, says is that rovw, is disjoint with someother rowp,. But we do
not know anything about roy.,! Hence, we can safely ignore predicatgto, since it is always
true that rowp; is disjoint withsomerow po.

We can calculate the set of reachable predicRigsC P, relative to some type, using the
following algorithm (wherervs is the set of currently reachable row variables, and predicates

like lacksor hasare processed in their expanded form):

1. Initialize Rch= @, andrvs = ftv"*"(7).

2. Ifthere is a predicate = (r; =~ r,) € P, such that the row expressionis not a single row

variable andz # ftv'®(r1) C rvs (or the same holds for row expressig), then update:

(@) Rch« Rchu {r}

(b) rvs « rvsu {ftv°"(n)}

3. If Rchhas changed in the last iteration, go to Step 2, otherwise, halt.

The restriction in Step 2 of the algorithm, that we do not consider a row eqpaditicate reach-

able if the reachable side consists of only a single row variable, makesfthitide of reachable

124

predicates much tighter. For example, without the restriction, the predicaie; ~ (o2 || p3)
would be considered reachable, even if gmyappears in the Milner type, which is undesirable,
since predicate is completely irrelevant unless we know something about pptndps. Also,
notice that, according to the algorithm, if a predicate does not contain roables (the set of
free row variables on both sides iw equalityis empty), then it cannot be reachable. Finally,
if the there are no row variables in the Milner typethen the set of reachable predicates is

necessarily empty.

6.4.2 Identifying Constructor Predicates

In Section 5.7 we presented an algorithm for identifying base variables éh af predicates.
Informally, base variables are independent row variables, that isyadables in terms of which
all otherderived(non-base) row variables can be expressed. Take for exampldlitheifg set

of predicates:

P = p3=p1-a prhas(@:a), ps=p2llp1, p2Ho1

The base variables iR arep1 andp,, while the derived variables apg andps. The predicates
Ctr ¢ P that are used to ‘construct’ all derived row variables are caltatstructorpredicates.
In the above example, there are two constructor predic&Bs= p3 ~ p1 — a, pa = p2 || p1.
We remark that, since the set of base variables is not unique (explainedtinrg5.7), neither
are the set of constructor predicates. For instance, take predigatgs, —a, p2 =~ (a: @ | p1):

either row variablg; or p, can be used as the base variable, the choice being arbitrary.

125

6.4.3 Identifying Relevant Predicates

As algorithm Q processes set equality constrainig(P) (see Section 5.6), it records the con-
sequences (in the form of disallowing the presence of certain labelstairceegions) of said
constraints. However, not all constraints convey new information aheuiroblem. Only when
the normal forms on the two sides of a set equality constraint flierelnt, can we learn some-
thing new. However, in the case of constructor predicates, the two didagsahave the same
normal form, since we use one side to define the other side (a deriviedbledr In a sense,
constructor predicates are assumed to be true and we check the remaedignes against
them. Now, if the processing of a hon-constructor predicate leaves thal gltesengabsence
constraintgd® unchanged, then the predicate in question is irrelevant, in the sense that-its ¢
sequences follow from the predicates processed before it. Unfeetynsince it depends on
the processing order, this approach does not, in itself, necessarily firndimal set of relevant
predicates.

In order to find a minimal set of relevant predicates, we have to ex®ersb that we can
capture theevolutionof label presengabsence constraints. The idea is, that after each update
of ®, we also record which predicate caused the change (this information valf@is the
basis of error-reporting in Chapter 7). Actually, we need to do morenwipelating® with the
consequences of some predicateve need to check whetherdtibsumeghe consequences of
some previous predicate (which we are now able to do, using the log ofagid®). Consider

the following set of predicates:

P = p3=~p1llp2 p1lacksa, pslacksa

126

Set Expression| Normal Form
a:0101
p& *:0101
a:0011
A *:0011
) o a:0111
Py (=pLUp)) *:0111
a:0000
pi\a) *:0101
a:0000
e\l *:0111

Table 6.1: Normal Forms for Set Expression®in

Sincep; is a subset op3, the predicates lacks a subsumes the predicate lacks a. To

see how we can discover this fact, take a look at the steps taken by algQithm

1. Convert predicateB to set constraintg(P) = {p; = p] U p5, p] = pi\{a}, p5 = p5\{al}.

2. ldentify the set of base variablesBY = {p1, p2}. The set of constructor predicates is

thusCtr = {p3 ~ p1 || p2}.

3. Calculate the normal forms of the set expressions in Table 6.1 (wessexéhdacks

predicate in its expanded form).

a:1010
4. After processing the constraint = p] = p7\{a}, the global constraints a®@ = *:1111 .

(We do not have to process the constructor predipate p} U o, since we used it to
define the normal form gb3.) In other words, we learned that the fidccannot be in

regionsR; andRg, that is, inp’l.

127

a:1000
5. Next, the constraint, = p; = p5\{a} changes the global constraints@= *:1111.

However, the information gathered from the constrainsubsumes that of constraii.
This is because the set of ‘forbidden’ regidts 3} implied by, for labela, is a subset of
the set of the forbidden regioni, 2, 3} implied by, for the same label. The constraint

m, captures all the constraints &g thus it makesr; superfluous.

We can now defineelevantpredicateRel C Rchas those non-constructor predicates that
cause an update to the global constraéhtduring set constraint solvirghdwhose &ect on the
global constraints is not subsumed by some other predicate (which weednskeeping track

of the evolution of global constraints).

6.4.4 Putting It All Together

After we have identified relevant predicates, we are still not done, dashstep is to provide
support for row variables mentioned in the relevant predicates or in theMijpe. The problem
is that relevant predicates, by definition, exclude constructor predicsteusing only relevant
predicates in the simplified type might result in ‘dangling’ row variables, thabig variables
without support (way of construction). For instance, consider theesspone = Ax.x!a. The
improved type for expressiomis P = 7 = po ~ p1 — @, p; has(a: @) = Recp; — Recps.
The row variablep is the only base variable, and predicate~ p; — ais the only constructor
predicate. The only relevant predicate in this cadedb= p; has(a:). However, it would be
incorrect to usg; has(a: @) = Recp; — Recp; as the simplified type, since it leaves row

variablep, dangling. The problem is th& + Rel which violates the fundamental requirement

128

of type simplification, that it should not alter the set of satisfiable instances.

The way to handle dangling row variables is to use constructor predicgtesvide support
for them. Since constructor predicates, by definition, are able to cohatrderived (non-base)
row variables from base row variables, we can use them to constnoglinig row variables. In
the following algorithm P’ denotes the simplified set of predicates being bdil,is the set of
dangling row variablesBV is the set of base variableSir is the set of constructor predicates,
andRelis the set of relevant predicates. We also assume that each constrneclicafe has the

row variable on its left-hand side:

1. Initialize P = Relanddrv = (ftv"*"(Re) U ftv'*"(7))\BV.

2. If drv = g, then halt.

3. With a row variable € drv and predicate = (o ~ r) € Ctr, update:

(@) PP <P U{nm)

(b) drv — (drvU ftv®(m)\(p}\BV

4. Goto Step 2.

Observe, that in the initialization step, we do not consider base row vesiableéangling, since,
by definition, they cannot (and need not) be constructed from othevadables.

When the above algorithm finishe, will be a minimal set of predicates that defines the
same set of satisfiable instancedPagsormally, P” < P and there is n®@ c P’ such thaQ ~ P.

We callP” = 7 thesimplifiedtype.

129

Chapter 7
Explaining Type Errors

In this chapter, we will turn to the problem of generating informative errossages for
ill-typed expressions. We do not present a fully-fledged algorithm (itccavell be the subject
of a separate dissertation on its own), only a proposal for explaining leaneprors using an
interactive approach. There has been a lot of research on how¢oagemiseful error messages
in polymorphic languages, including a proposal for an interactive Q&Asdistem by Beaven
and Stansifer in [Beaven and Stansifer, 1993]. Pure unification liggednference algorithms
are actually constraint solvers where the constraints are all type equalyraints. In a quali-
fied type system the type checking algorithm has to deal with both type equatityraintsand
predicates on row variables. Type errors in these systems translaterisaisfiable, conflicting
constraint set. The chief task of the type checker is to somehow reparatiseof the conflict
in a way that the programmer will find it useful in locating the error in her mogr The type
system of the language presented in this thesis is an extension of that aidslit felt natural
to base the type explanation algorithtfi one designed for ML [Beaven and Stansifer, 1993],

which we will briefly discuss in the next section.

130

7.1 Explaining Type Errors in Polymorphic Languages

The type inference algorithW presented in Section 4.6, like most type checking algorithms, is
syntax directed and compositional: the type of an expression is calculatedbap from the
types of its subexpressions. When type inference fails in ML, the refasdailure is always

a unification failure: two types that should be the same fail to unify. Thdtreguccessful
type unification is a substitution that summarizes the consequences of tygdéieguThe type
assignment provides the context in which type inference takes placef iiseoles being the
communication of type constraints betweeffatient subexpressions of an expression, that is,
between dterent branches of the abstract syntax tree. In practice, during bhgukiog there is
always an initial context (type assignment) which contains type bindinghégprimitives and
library functions of the language.

The general approach taken in [Beaven and Stansifer, 1993] is toemiglata structures
used by the type inference algorithm with information that can later be usexxgignation
functions to pinpoint the cause of type errors. Nodes in the abstraebsiyee are annotated by
the type inferred for their subexpressions by the type inference algorithis way we can now
what types were unified as a consequence of each expressiors tatleepresent identifiers are
treated somewhat filerently, because we also have to keep track of type variable renamings tha
take place whenever a generic type variable (introduced by let-bouyghpaohism) in the type
of the identifier is instantiated. Substitutions are represented as a list of atimiicds of type
variables to types. This ensures that there is always a single causeg/foinding, simplifying

error explanation. Each atomic binding is annotated with a pointer into the etbsraax tree

131

to the node that caused the unification call that resulted in the binding in queskis way we
can trace the evolution of a type to its final form.

There were two explanation functions defined in [Beaven and Stan$868]: Why and
How. The functionWhy tries to explain why a certain expression was assigned the type it
was assigned, while the functiddow attempts to answer the question how a type variable
got assigned a certain type. The functfinyuses structural information from the annotated
abstract syntax tree to answer questions, while the funet@mmuses annotated atomic bindings
to follow the evolution of types (representing information flow betwedtedint parts of an
expression). Rather than providing a detailed treatment of the explanatiotidns, we adhere
to the old adage of “a picture is worth a thousand wordsit & Chinese proverb!) and present
a sample interaction with the system in Figure 7.1 (taken from [Beaven andif§tai993]).
The expression that caused the type error (attempting to add an integeoateart for which

we are seeking explanation is the following:

(fn a == +((fn b => if b then b else a) true, 3))

The explanation functions in the original paper were not interactive (sivaply generated a
depth-first traversal of all the reasons leading to a type error), bytdbuld easily be converted
to ask the user which branch of the explanation should be explored nexbu3ly, as programs

get larger, this Q&A style becomes more advantageous.

7.2 Type Errors and Qualified Types

The theory of qualified types extends the standard Milner type with typégated to constrain

the instantiation of universally quantified type variables (see Chaptehé&)ability to statically

132

A type error was detected in the application ‘(+ (#,3))’.
The domain of the function ‘+’ is not unifiable with the type of the argument ‘((# true) ,3)’.
Domain of function is ‘(int*int)’.
The argument has type ‘(bool*int)’.
**lihy does the function ‘+’ have type ‘((int*int)->int)’?
The identifier ‘+’ was assigned type ‘((int*int)->int)’ as part of the initial environment.
**lihy does the argument ‘((# true) ,3)’ have type ‘(bool*int)’?
Type of the pair ‘((# true) ,3)’ is determined by type of each element.
**jfhy does the first element ‘((fn b => #) true)’ have type ‘bool’?
The type of an application is the range of the function.
The function ‘(fn b => if #)’ has type °‘(bool->bool)’.
**[fhy does the fuction ‘(fn b => if #)’ have type ‘(bool->bool)’?
The type of a function definition is determined by the type inferred for
the formal parameter ‘b’ and by the type of the function body ‘if b then b else a’.
**lihy does formal parameter ‘b’ have type ‘bool’?
The type of a formal parameter is inferred from its use.
The variable ‘b’ was initially assigned type variable ‘’b’.
**How did type variable ‘’b’ come to be bound to type ‘bool’?
This binding arose during analysis of ‘if b then b else a’.
Since the expression ‘b’ must have type ‘bool’ and the type variable ‘’b’ is its type,
then the type variable ‘’b’ must stand for ‘bool’.
**jfhy does the expression ‘b’ have type ‘bool’?
[Elided.]
**[fhy does functions body ‘if b then b else a’ have type ‘bool’?
The type of a conditional is determined by the the types of its branches which must unify.
**Why does the "then" branch ‘b’ have type ‘bool’? [Elided.]
**Why does the "else" branch ‘a’ have type ‘bool’? [Elided.]
**[fhy does the second element ‘3’ have type ‘int’?

All Integer constants have type ‘int’.

Figure 7.1: Explanation of a Type Error

133

type check basic record operations derives from the fact that wereaisely describe their
types using type predicates. As a direct consequence, the type tdeakyorithmw alone is
not able to decide whether an expression is ill-typed or not. In other wbaitsg accepted by
algorithmW is a necessary but notficient condition for well-typedness. It is the task of the
satisfiability checking algorithm Q (see Chapter 5) to ensure that there axigtstantiation of
type variables that make all type predicates true. If there is no such instamtiken the type
predicates are unsatisfiable, and thus should be rejected by the tyercWgben an expression
is ill-typed because of a type unification failure, we can use the approaskmied in [Beaven
and Stansifer, 1993] to explain the type error. On the other hand, if it isaédybecause of the
unsatisfiability of predicates, we need &elient approach.

The problem of how to explain why a set of type predicates (in our cagepredicates) can
be broken into the following, somewhat orthogonal, subproblems: (yisgavhich expression
introduced originally the predicates in the final predicate set; (2) identifyiognflicting set of
predicates; and (3) revealing, step by step, the conflict (contradidtiote conflicting set.
Before we develop algorithms for addressing these problems, we woultblg@phasize that
what we are trying to do is explaining type errors caused by the unsaiisfiath predicates.
The reason for this is that, if the type inference algoritthitself fails, then the approach
described in [Beaven and Stansifer, 1993], withoutdlightestof modifications, is 100 per cent
applicable to task of explaining type errors in our system (another triumptodtilarity for the
theory of qualified types). That is, in the cases we will handle, the typeenée algorithm has

successfully derived a qualified type for the ill-typed expression intgques

134

7.2.1 Showing the Origins of Predicates

Each type predicate that appears in the final set of predicates retoynthe type inference
algorithm must have been introduced by some subexpression. After ilsabiiigtroduction, a
type predicate can change several times as type variables in the preditatewgyh an evolution
similar to the one experienced by type variables in the type assignment. Tioaelpm [Beaven
and Stansifer, 1993] takes care of keeping track of how type varigelelsound to their final
type, so all that needs to be done is to augment type predicates with a poiatdrarabstract
syntax tree to the expression that introduced them into the current presds®t, and a list of
instantiations of generic type variables used in the predicate. This waypeaditate can be
traced back to its original source and form, and then, using informationeoemtiution of type
variables, can be shown to acquire its final form.
The information where a predicate is originated from becomes interesting relhiEwing

the set of predicates that caused the conflict. The investigative usecdhlshbe provided the

option to be presented with explanations on how each predicate has comeimyo dnd got

into its current form. The functiodVherecould be used to answer the question where a certain

predicate comes from.

The above described rosy situations is bit complicated by the fact that itsshpe that

predicates that have been introduced edéent expressions, ‘collapse’ into a single predicate

because of the result of type substitutions. For example, the predicatelaeks a, p, lacks a
becomes simply; lacks a if we apply the substitutiondp — p1] to it. In other words, some

predicates in the final set might actually stand for several predicatesdiried at dferent

135

points of the program. Can this create problem? As it turns out, hardly. Alftethe main
problem is that the expressions in the program generated a conflictiof petdicates, and it
does not really matter if more than one expression contributed a certaingiesth the final set,

as long as we can link the predicate to at least one of its contributors, wieickam

7.2.2 Identifying Conflicting Predicates

From the point of view of error explanation, it is beneficial to be able tdwwath a minimal set

of conflicting predicates (that is, where no subset is unsatisfiable)eveal the contradiction

in a larger set of predicates, it is useful to be presented with a smalleztshibs still exhibits
the conflict. Recall that we have already faced a similar problem duringsiypdification (see
Chapter 6) when we were trying to identify a minimal set of predicates thaesges the same
constraints as some larger set. As it turns out, the exact same algorithm, twitbdification,
works when the predicates in question are not satisfiable. This is due tarti®ifar way algo-
rithm Q identifies unsatisfiable sets of predicates: when there are conflptisgnc@absence
constraints on a particular field, it manifests itself as a global constraint teltitigat the partic-
ular field cannot appear in any of the regions. From the point of viewps gimplification, this

a perfectly legitimate constraint, so it is meaningful to ask: “what is a minimaletudigpred-
icates that still expresses the same (contradictory) constraints on the fogiéstion?” When
there are several fields with conflicting presgabsence constraints, we can identify separate,
and most likely diferent, conflicting sets for each. The user then could be presented with a

choice to choose for which field we should present and explain the dingliget of predicates.

136

7.2.3 Revealing the Contradiction

After identifying a minimal conflicting set of predicates for some fiéJdhe next step is to
showwhythey are in conflict. As it turns out, this is simpler than it might seem at first. After
all, when there is a conflict, it means that there is no instantiation of row vasidtdd would
satisfy the predicates. Because the conflict concerns the preémgieseece of fields in rows, it is
possible to provide a step by step explanation by making assumptions on ¢hWwasriables,
then proceeding with the evaluation of constructor predicates, until sdmene predicate is
violated (using the classification of predicates introduced in Chapter 6)thkr avords, we
depend on algorithm Q and the algorithms used for type simplification to bregkedjicates
into various categories so that we can explain the contradiction. Inforrbakbg row variables
are like independent variables in a system of equations, and we reatahthequations are
unsolvable by considering all possible combinations of values for the emlmt variables.
Luckily, since we are only interested in the pres¢absence of a particular fiell(we are not
even interested in its type), the number of possibilities is tnly per row variable. Take, for
example, the following ill-typed expression (we concatenate the rectdtself, forcing it to

be the empty record, so it cannot have the fatd

e = AXX|X-a

The type inferred for expressian:

= p2has(@a: a), p2 = (p1 Il p1), p1#o1

71 = Recpr—a

137

The conflicting set in this case is the wholeRyf. To clarify how the error explanation could
work, we present an extract from a hypothetical type error explamagesion in Figure 7.2.

[Elided.]
The following predicate set is in conflict for field ‘a’:
(a) r2 has (a:a)

(M) r2=(rl || rl)

(c) ril#rl
Explanation:

(1) rl has (a:b) Assumption.
Contradiction! (1) + (o)
(1) rl1 lacks a Assumption.

(2) r2=(rl || r1) (b)
(3) r2 lacks a 1 + (2)

Contradiction! 3) + (@

Figure 7.2: Explaining Predicate Conflicts Using Assumptions

Itis not always necessary to make assumptions when explaining thediotitnain a set of
type predicates. Actually, in most cases, the contradiction can be reweigthedit complicating
the explanation with any assumptions at all. The reason for this is that theletdvial type
predicates that simply require the presgabsence of a particular field in a base row variable.
In that case, there is no need to make the opposite assumption since it wilislpviail. Take

the following ill-typed expression:

& = AXAyX|Yy)a+xa==y-a

138

[Elided.]
The following predicate set is in conflict for field ‘a’:
(a) ril#r2
(b) rl has (a:Int)
(c) r2 has (a:Int)
Explanation:
(1) r1 has (a:Int) (b)
(2) r2 has (a:Int) ()

Contradiction! W+ @ + @

Figure 7.3: Explaining Predicate Conflicts Without Assumptions

The type inferred for expressiaa:

P2 pzhas(a:Int), ps = (o1 Il p2), p1tip2, p1 has(a: Int), pz has(a: Int)

72 = Recp; — Recp, — Bool

The expression is ill-typed since we are selecting the d¢tdm both recordx andy, ensuring
that they arenot disjoint, while attempting to concatenate them. The two base row variables in
this case ar@, andp,, but there is no need to make any assumptions during the explanation
of the conflict, since there are two trivinaspredicates that put field in bothp; andp,. We
present an extract from a hypothetical type error explanation sefsi@a in Figure 7.3 that
does not use assumptions.

The hypothetical error explanation sessions presented in figuresd/723look suspiciously
like formal proofs where we start with a set of axioms, inference ruled,tgy to arrive at a
contradiction. In fact, this is the case, and although the task of derivimgfglike the ones

presented might seem daunting, closer examination reveals that oufs’psio® always of an

139

extremely simple structure. To see this, first, observe that given baseamables we can
always use constructor predicates to calculate the values of deriveglamiables. Second,
we are only dealing with the presepalsence of single field at any time, so practically we are
working inside a propositional logic system, which greatly simplifies the applicafimference
rules. Finally, the set we are working with is conflicting, so every instantiatfaow variables

is guaranteed to make at least one predicate false.

140

Chapter 8

Conclusions

We have presented a language that supports polymorphic record operidiough basic
record operations, such as field selection, field deletion, record @wersymmetric record
concatenation, recordftierence, and record projection. We have demonstrated, through exam-
ples, how the basic operations can be used to define polymorphic relatiperators such as
join anddivide We have described the type system of the language, an application oéthe th
ory of qualified types with ML-style type inference, and presented afdgpe predicates that
describe the type-correct usage of basic operations. We have dhioatechecking the satis-
fiability of type predicates is exponential, not only in the number of row véglbut also in
the number of labels. To eliminate exponential complexity in the number of labaks ntak-
ing the language useful for practical purposes, we have imposettiaties on the set of valid
expressions in the language. We have argued, based on experigin¢dberimplementation,
that the restriction poses no obstacle in writing the kind of programs the lgaguas intended
for. We have presented a predicate satisfiability checking algorithm foe#ligcted language.
The complexity of the algorithm is polynomial in the number of record labels atitkimum-
ber of predicates, and exponential only in the number of independentadables. The latter,

we have argued, is proportional to the number of function arguments in pghjriecdunction

141

definitions, a relatively small number, thus making the algorithm practical. Teerimd&rred
types more accurate and concise, we have developed algorithms for ingpemd simplifying
types. We have illustrated how type improvement can make types more pianisalso that
type simplification finds a minimal set of type predicates. In the last chaptdraweeoutlined an
approach to explaining type errors in the presence of complex recerdtams as an extension
of a type explanation solution for ML. The type-inference algorithm, theipege satisfiability
checking algorithm, and the type improvement and simplification algorithms hakeeil im-
plemented in Haskell and thoroughly tested, which has greatly increasedmfiidence in the

results we have presented.

8.1 Future Work

Although some work has been done on the implementation of the interactivextylaaation
algorithm presented in Chapter 7, it is far from complete and definitely natrymtegral part of
the system. As with all interactive type error explanation systems, only iexgperwith actual
users can tell us how useful it really is, and suggest points for impraveme

More research needs to done on howfticeently implement polymorphic record operations,
which is something that must be addressed before any practical implemenfatierdanguage
is attempted. It is known that for the record calculus of Gaster and J@eesdr and Jones,
1996], there exists arffecient compilation method that is based on the fact dekspredicates
can be translated to integeftgets in records for runtime field access, allowing complete type
erasure at compile-time. Unfortunately, it is unlikely that such a simple fiwiest method of

compilation can be found for the stronger record calculus of the systera utinent thesis.

142

Bibliography

Alexander Aiken. Set constraints: Results, applications, and futuretidins. InPPCP’94:
Principles and Practice of Constraint Programming, Proceedjmggyes 326—335. Springer,

1994. ISBN 3-540-58601-6.

Alexander Aiken and Edward L. Wimmers. Solving systems of set constraintICS’92:

IEEE Symposium on Logic in Computer Sciemages 329-340. IEEE Press, 1992.

Malcolm P. Atkinson and Peter Buneman. Types and persistence in datplmgamming

languagesACM Computing Survey49(2):105-170, 1987. ISSN 0360-0300.

Malcolm. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and Rrristm. An
approach to persistent programming.Raadings in object-oriented database systgages

141-146. Morgan Kaufmann Publishers Inc., San Francisco, CA, U$%0.

Francois Bancilhon and Peter Buneman, editofglvances in Database Programming Lan-

guages ACM Press, New York, NY, 1990.

D. Bartels and J. Robie. Persistent objects and object-oriented degdba€e +. C++ Report

4(7):49-50, 52-56, 1992.

Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphgriagesACM Letters

on Programming Languages and Systems (LOPL2@}4):17-30, 1993. ISSN 1057-4514.

143

Frederick P. Brooks.The Mythical Man-Month: Essays on Software Engineeridgidison-

Wesley, Reading, MA, 1995.

Peter Buneman and Atsushi Ohori. Polymorphism and type inference imed&tarogramming.

ACM Transactions on Database Systef1g1):30-76, 1996. ISSN 0362-5915.

Luca Cardelli. Type systems. In Allen B. Tucker, edifbine Computer Science and Engineering

Handbook CRC Press, Boca Raton, FL, 1997.

Edgar F. Codd. A relational model of data for large shared data ba&simun. ACM13(6):

377-387,1970. ISSN 0001-0782.

Robert M. Colomb.Deductive Databases and their ApplicationBaylor & Francis, London,

UK, 1998.

William R. Cook and Ali H. Ibrahim. Integrating programming languages & dagels: What's

the problem?http://www.cs.utexas.edu/~wcook/projects/dbpl/, 2005.

Luis Damas and Robin Milner. Principal type-schemes for functional pnegraln POPL
'82: Conference Record of the Ninth Annual ACM Symposium on PriscgglBrogramming

Languagespages 207—-212, 1982.

Chris J. DateRelational Database: Writings 1985-1988ddison-Wesley, 1990.

Chris J. Datelntroduction to Database Systems (7th editioAdidison Wesley, 1999.

Chris J. Date and Edgar F. Codd. The relational and network apmeactomparison of the

application programming interfaces.HDET '74: Proceedings of the 1974 ACM SIGFIDET

144

(now SIGMOD) workshop on Data description, access and cqmiagjes 83—-113, New York,

NY, USA, 1975. ACM Press.

Chris J. Date and Hugh Darwen. Into the great divideRétational Database Writings: 1989-

1997, pages 155-168. Addison-Wesley, Reading, MA, 1992a.

Chris J. Date and Hugh DarweRelational Database Writings: 1989-199Addison-Wesley,

Reading, MA, 1992b.

Chris J. Date and Hugh DarweRelational Database Writings: 1991-199Addison-Wesley,

1995.

Chris J. Date and Hugh DarwerFoundation for Objecy Relational Databases: The Third

Manifesto Addison-Wesley, 1998.

Chris J. Date, Hugh Darwen, and David McGovetaelational Database Writings: 1994-1997

Addison-Wesley, 1998.

Klaus R. Dittrich. Object-oriented database systems: The notion and ths.ids@@n Object-

Oriented Database Systepages 3—-12. Springer-Verlag, 1991.

Benedict R. Gaster and Mark P. Jones. A Polymorphic Type Systenxfengible Records and
Variants. Technical Report NOTTCS-TR-96-3, Department of Comitéence, Notting-

ham, 1996.

Robert Harper and Benjamin Pierce. A record calculus based on symic@tigatenation. In
POPL '91: Principles of Programming Languages, Proceedjmpgges 131-142. ACM Press,

1991.

145

Rod JohnsonJ2EE Development Without EJBlungry Minds Inc, U.S., 2004.

Mark P. Jones. A theory of qualified types.BSOP’92: European Symposium on Programming,

Proceedingspages 287-306. Springer, 1992,

Mark P. Jones. Simplifying and improving qualified types.Functional Programming Lan-

guages and Computer Architectupages 160-169, 1995.

Mark P. Jones and John C. Peterson. Hugs 98: A functional prograymsysiem based on

haskell 98 - user manual, 1999. URlttp://citeseer.ist.psu.edu/334009.html.

Simon Peyton Jones and et &laskell 98 Language and Libraries, the Revised RepGam-

bridge University Press, 2003.

Brian W. Kernighan and Dennis M. RitchieThe C Programming LanguagePrentice Hall,

1978.

Won Kim. Object-oriented database systems: Strengths and weakndssesal of Object-

Oriented Programmingpages 21-29, July 1991.

Oleg Kiselyov, Ralf lammel, and Keean Schupke. Strongly typed heterogeneous collections. In
Haskell '04: Proceedings of the ACM SIGPLAN workshop on Hasgaljes 96-107. ACM

Press, 2004.

Robert Kowalski. Predicate logic as a programming languagéormation Processing74:

569-574, 1974.

146

Daan Leijen. First-class labels for extensible rows. Technical Repor€8t2004-51, Depart-

ment of Computer Science, Universiteit Utrecht, 2004.

Daan Leijen and Erik Meijer. Domain specific embedded compiler30'99: 2nd USENIX
Conference on Domain Specific Languagesges 109-122, 1999. Also appeared in ACM

SIGPLAN Notices 35, 1, (Jan. 2000).

Henning Makholm and J. B. Wells. Type inference, principal typingsl, lat-polymorphism
for first-class mixin modules. I'CFP’05: International Conference on Functional program-

ming, Proceedinggages 156—-167. ACM Press, 2005.

Jim Melton and Alan R. SimorSQL.: 1999 - Understanding Relational Language Components

Morgan Kaufmann, 2001.

Randy Meyers. The new C: Introducing C96/C++ Users Journal 18(10):49-53, October

2000.

Robin Milner, Mads Tofte, and Robert Harp&he Definition of Standard MIMIT Press, 1990.

Jack Minker. Logic and databases: Past, present, and fliliMagazine 18(3):21-47, 1997.

Lajos Nagy and Ryan Stansifer. Polymorphic type inference for the reitadgebra in the
functional database programming language NeorPrbteedings of the 2006 ACM Sympo-

sium of Applied Computingpages 673—-679, New York, NY, USA, 2005. ACM Press.

Atsushi Ohori. A polymorphic record calculus and its compilaticACM Transactions on

Programming Languages and Systefig(6):844—-895, 1995. ISSN 0164-0925.

147

Atsushi Ohori and Peter Buneman. Type inference in a databaseaprogng language. IbFP

'88: LISP and Functional Programming, Proceedingages 174-183. ACM Press, 1988.

Benjamin PierceTypes and Programming Languagdse MIT Press, 2002.

Francois Pottier. A constraint-based presentation and generalizatiow®fInLICS’03: Logic

in Computer Science, Proceedingsiges 331-340, 2003.

Raghu Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-UgtRdvis Vijay Saraswat
and Kazunori Ueda, editorBroceedings of the 1991 International Symposium on Logic Pro-

gramming pages 321-335. MIT, 1991.

Shuping Ran, Paul Brebner, and lan Gorton. The rigorous evaluatiBnterprise Java Bean
technology. INICOIN’01: International Conference on Information Networking, R¥ed-

ings page 93, 2001.

Manuel Reimer. Implementation of the database programming language VRduldhe per-

sonal computer Lilith Software—Practice and Experiendel(10):945-956, October 1984.

Raymond Reiter. Towards a logical reconstruction of relational databasgey. InOn Concep-

tual Modelling pages 191-233. Springer-Verlag, 1982.

Didier Remy. Type checking records and variants in a natural extension of MPOIPL '89:
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Prin@pf@egramming

languagespages 77-88, New York, NY, USA, 1989. ACM Press.

Didier Rémy. Typing record concatenation for free. ROPL’'92: Principles of Programming

Languages, Proceedinggages 166—-176. ACM Press, 1992.

148

J. A. Robinson. A machine-oriented logic based on the resolution principlgnal of ACM

12(1):23-41, 1965. ISSN 0004-5411.

Amr Sabry. What is a purely functional languagé8urnal of Functional Programming(1):

1-22,1998.

Joachim W. Schmidt. Some high level language constructs for data of tigteome ACM

Transactions on Database Syste&):247, 1977.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The implementat@ncury, an
efficient purely declarative logic programming languagellLiRS Workshop: Implementation

Techniques for Logic Programming Languag&894.

Mads Torgersen. Language integrated query: unified queryingacata sources and pro-
gramming languages. I@OPSLA '06: Companion to the 21st ACM SIGPLAN conference
on Object-oriented programming systems, languages, and applicagiages 736—737, New

York, NY, USA, 2006. ACM Press.

Jan Van den Bussche and Stijn Vansummeren. Polymorphic type inferibe hamed nested

relational calculusACM Transactions on Computational LogR005.

Jan Van den Bussche and Emmanuel Waller. Type inference in the polyimogfational alge-
bra. INPODS’99: Principles of Database Systems, Proceedipgges 80-90. ACM Press,

1999.

Ghica van Emde Boas-Lubsen and Peter van Emde Boas. Compiling hose-cléess in ibm's

business system 12 and early experiment in declarativeneSORSEM '98: Proceedings of

149

the 25th Conference on Current Trends in Theory and Practice ofrirdtics pages 68—-88,

London, UK, 1998. Springer-Verlag. ISBN 3-540-65260-4.

Stijn Vansummeren. On the complexity of deciding typability in the relational algehca

Informatica 41(6):367—381, 2005. ISSN 0001-5903.

Philip Wadler. Monads for functional programming. Pnogram Design Calculi: Proceedings

of the 1992 Marktoberdorf International Summer Sch&gringer-Verlag, 1993.

Mitchell Wand. Complete type inference for simple objects.LIES'87: Logic in Computer

Science, Proceedingpages 37—-44. IEEE Press, 1987.

Mitchell Wand. Corrigendum: Complete type inference for simple objectlEEE Symposium

on Logic in Computer Science (LICS), Edinburgh, Scotjqradje 132, 1988.

150

Appendix A

Overview of the Relational Model and Algebra

In the relational model tupleis a mapping fronattributesto values of a specifitype The
headingof a tuple is a mapping from attributes to types, thus the domain of a headingtis a se
of attributes. Arelation is afinite set of tuples with matching headings. Since all tuples in a
relation have the same heading, we define the heading of a relation to béithatiples.

An integral part of the relational model is thelational algebra a set of operations on
relations. Codd in his seminal paper [Codd, 1970] identified eight reldtaperators, some-
times referred to as the original relational algebra. One of Codd’s maitecas was ensuring
the safetyof relational algebra, meaning that given finite input relations, no reldtalgabra
expression should result in an infinite relation. The safety property lioidbe algebra intro-
duced by Codd, and it is traditionally required of newly invented opera®sell. Throughout
the decades, authors introduced extended several versions ofidhwlorelational operators
along with brand new ones. In this description, we will focus on the origieglas introduced
by Codd (which will nevertheless not prevent us from discussing s@wemoperators as well),
because the list of potential relational operators is open ended. It ifidrad [Date, 1999]
to divide the original relational operators into two groups: (1) traditioealoperatorsynion

intersection difference and Cartesian produgt and (2) special relational operatoregtrict,

151

project, join, anddivide).
In the following, h(t) stands for the heading of the tupleandh(r) stands for the heading of
the relatiorr. We writet[h] for the projection of the tupleon the heading). The expressioha

denotes the value of attribuéein the tuplet.

A.1 Union

Relationalunionis a slightly restricted form of standard set union in the sense that we eequir

the heading of the two operands to be the same. Formally:

rus = {t|tervtes whereHlr)=nh(s)

An example forunion(the traditional way to represent relations pictorially is in tabular format):

A B

Name | Age| City Name | Age| City

Jones | 30 | Melbourne Jones | 45 | Miami

Jones | 45 | Miami Adams | 27 | Orlando
AUB

Name | Age| City

Jones | 45 | Miami

Jones | 30 | Melbourne

Adams | 27 | Orlando

152

A.2 Intersection

Relationalintersectionis a slightly restricted form of standard set intersection in the sense that

we require the heading of the two operands to be the same. Formally:

rns

{titerntes} wherelfr) = h(s)

An example forintersection

Name | Age| City

Name | Age| City

Jones | 45 | Miami
Smith | 30 | Melbourne
Adams | 27 | Orlando
Jones | 45 | Miami

Jones | 37 | Melbourne

ANB

Name | Age| City

Jones | 45 | Miami

A.3 Difference

Relationaldifferenceis a slightly restricted form of standard seffdrence in the sense that we

require the heading of the two operands to be the same. Formally:

rs = {t|terAtegst whereHr)=nh(s)

153

An example fodifference

Name | Age| City

Name | Age| City

Jones | 45 | Miami
Smith | 30 | Melbourne
Adams | 27 | Orlando
Jones | 45 | Miami

Baker | 37 | Melbourne

A\B

Name | Age| City

Smith | 30 | Melbourne

A.4 Cartesian Product

RelationalCartesian products similar to Cartesian product defined on sets, with the important
difference that the headings of the operands mustigjeint Another important dference is
that, unlike traditional Cartesian product, the relational versia@ommutative The reason for
this is that tuples are represented as mappings so there is no orderingadtithees, thus the
concatenation of two tuples is actually the union of two mappings, a commutataratamm.
Formally:

rxs = A{t|t[h(r)] erat[h(s)] es} wherelfr)nh(s)=0

154

An example forCartesian Product

A B

Name | Age City

Smith | 30 Orlando

Jones | 45 Melbourne
AXxB

Name | Age| City

Smith | 30 | Melbourne

Jones | 45 | Melbourne

Smith | 30 | Orlando

Jones | 45 | Orlando

A.5 (Natural) Join

Relationaljoin is a special relational operator with no corresponding set operaterreBult of
joining two input relations is an output relation whose heading is the union digheings of the
input relations and that contains ‘matching’ tuples from both input relattbas|s, those tuples
that have the same values for their common attributes. Traditionally, whenghieae relation
between common attributes is that their values must be equal, we call the opaedtiaal join,
or equi-join Unless otherwise stated, when talking abjmih we will meannatural join. It

is interesting to note here, that the definitionjaih is actually the same as that Ghartesian

155

product with the restriction on the headings of operands being disjoint removed:

r<s = {t|tfh(r] er At[h(9)] € s}
An example forjoin:
B
A Name | Car
Name | Age Jones | Ford
Smith | 30 Jones | Porsche
Jones | 45 Adams | Toyota
Smith | Suzuki
AxB

Name | Age| Car

Smith | 30 | Suzuki

Jones | 45 | Ford

Jones | 45 | Porsche

A.6 Restriction

Relationakestrictiontakes a relation and a condition and then selects those tuples from a relation
that satisfy the given condition. The condition is represented by a fungftiamm tuples to the
logical valuedrue or false To guarantee finiteness, it is traditional to reqéite be dfectively

computable. During introduction to relational algebra, it is customary to regtiacconditional

156
expressions built using only attribute names, simple comparison operatcts ¥, etc.), and
logical connectivesA, Vv, etc.) The formal definition ofestrictionis:

oe(r) = {t|terAnd()

An example forestrictiorn

Name | Age| City

Jones | 45 | Miami

Adams | 27 | Orlando

Baker | 37 | Melbourne

7 (Age-30 Cityzmiami)(A)

Name | Age| City

Baker | 37 | Melbourne

A.7 Projection

Relationalprojectiontakes an input relation and a set of attribute names and yields an output
relation that consist of the tuples of the input relation projected on the gigenf attribute
names. It is commonly required that the given set of attribute namesblesaiof the heading

of the input relation. For this reasqgprojectioncan be thought of as ‘vertical restriction’ (in the

tabular depiction of relations, attributes form columns). The formal definision

Tay..a)(r) = {t[{as,...,an}] [ter} wherefay,...,an} € h(r)

157

An example fomprojection

Name | Age| City

Smith | 30 | Melbourne

Jones | 45 | Miami

Baker | 37 | Melbourne

micity) (A)

City

Melbourne

Miami

A.8 Division

Relationaldivisionis a special relational operator with no corresponding set operators@he
mantics of division seems a bit involved at first, but it is actually quite simple aefuliin
practice. The relational operatdivisiontakes two relations, theividendand thedivisor. It is
only defined for relations where the heading of the divisor &ilasetof that of the dividend.
The result ofdivisionis an output relation whose heading is thigerenceof the headings of the
dividend and the divisor, and that contains exactly those tuples whiam ektended with any
tuple from the divisor, will appear in the dividend in their extended formprictice division

is often used to formulate queries involving the requirement ‘all ..., fongda, “Employees

158

who work on all projects”. The formal definition divisionis:

r+s = {t|Vtse st ert[h(s)] =tsAt[h()\h(s)] =t} where l{s) c h(r)

An example fodivision

B

Name | Car B
Jones | Ford Car
Jones | Toyota Toyota
Adams | Suzuki Ford
Smith | Ford

A+B

Name

Jones

A.9 ‘Non-Standard’ Relational Operators

In this section we attempt to give a taste of the kind of diversity in relationaiadges that any
language designer must face when attempting to incorporate relationataalgtba general-
purpose programing language. We can only hope to give a sample of filbeis/aelational
operators that were proposed in the literature throughout the yealspeaposal being either a
variation on or an improvement of a previous operator, with the occasiwapbsal for a truly

novel one. We would like to emphasize that the list presented here is notetempeither can

159

it be one. There is an ongoing research in the area with new relationaltopebeing proposed,
and older ones falling out of favor. Thus, our goal here is merely to dsirate, by enumerating
operators that each legitimately could claim to be included in any practical imptatizenof
relational algebra, the inherent limitations of any approach that attempts porsumly some

specificset of relational operators as opposed to providingrieando express those operators.

A.9.1 Projecting Away and Renaming Attributes

It is customary to define an operation for projectamgayattributes analogously to projection.
As in the case of projection, we will again require that the set of attribuieg Ipeojected away

be a subset of the heading of the relation in question. Formally:

~

Mag..ay() = {t[h(\{as,...,an}] Iter} wherefay,...,an} € h(r)

Although omitted by Codd in his original paper, it soon became obvious thatmizg of
attributes is an important operation so it is almost always included in any impletioentd
relational algebra. The heading of the relation being renamed must hagldl thttribute name
and the new attribute name must not appear in the heading in order for ttagiop¢o be well

defined. Formally:

pap(r) = {tla/b] |ter} where ae h(r) and bg h(r)

160

A.9.2 \Variations on join: semijoin, antijoin, and compose

The compositionof relationsr and s is defined to be the join of and s with the common

attributesprojected awayrom the result of the join. Formally:

~

r<s = ﬁ'(h(r)nh(r))(r > S)

The semijoinof relationsr and s, written asr x sis defined similarly to join, except, we

project the result of the join on the heading of the first operanBprmally:

r<s = n(h(r))(r > S)

Theantijoin of relationsr ands, written asr > sis the dual of semijoin in the sense that it is

the restriction of to all the tuples thatio nothave a matching pair ia Formally:

res = {tfh()]t[h(r)] € r At[h(9)] ¢ s}

A.9.3 Improved division: the Small Divide

Date and Darwen describe their improved version of the division opérgfDate and Darwen,
1998]. The original version of Codd only worked on relations wheralitisor was a subset of
the dividend. It also gave somewhat counterintuitive results when faitegbathological cases.
For example, when asking for suppliers that supglypurple parts (an example, taken from
[Date and Darwen, 1998]), and there are no purple parts in our inyembgically speaking,
suppliers that do not suppBny parts at all should also be returned. To handle cases like this,

a generalized version of division, called tBenall Divide a ternary relational operator was

161

introduced, defined in the following way:

gd(a,r.s) = d\rn@)((@xr)\s) where Kg) nh(r) =0 and K(s) = h(q) U h(r)

A.9.4 Extension

A common operation in relational algebra is to extend a relation with a new attrilbhatsewalue
is computed from other attributes for each tuple. The way to do this is to pravigection that
takes a tuple and yields the value of the new attribute (again, the functiofddb®dfectively

computable to ensure the safety of the resulting algebra). Formally:

exir,a, f) = ({t|t[h(r)] er Ata= f(t)} where a¢ h(r)

An example forextension

Name | Age| Monthly

Jones | 45 4,500
Adams | 27 3,200

Baker | 37 4,000

ext(A, Yearly, (At.t-Monthlyx 12))

Name | Age| Monthly | Yearly

Jones | 45 4,500 | 54,000
Adams | 27 3,200 38,400

Baker | 37 4,000 | 48,000

162

Appendix B

Proofs

Theorem 5.1.1.Given a term e, where PsA+-" e: r, the problensat P is NP-complete.

Proof. Membership in NP follows from the observation that given a ground instah®, all
predicates on rows can be checked in polynomial type.

Completeness is shown by reduction from SAT. We provide twiedint reductions, one
which uses a constant number of distinct labels, and one which usestamomumber of poly-
morphic variables. This way we demonstrate that exponential complexityisfiaiility check-
ing can be causeeélither by the number of polymorphic variables by the number of distinct
labels.

Complexity in Number of Variabléghe reduction presented here uses only a constant num-
ber of distinct labels (actually, just one) to show the complexity of satisfiabttigcking purely
in the number of polymorphic variables.

First, we define auxiliary functions for heading union, intersection, angptement (relative

to the arbitrarily chosen base <a}):

union X y= ((X\y) || y)
intersection X y= (X\(xX\y))

complement e ((a)\e)

163

The corresponding types of the auxiliary functions show that operapieriermed at the value

level are correctly mirrored at the type level by appropriate operatindgpeedicates on row
variables:

union:: p3 = p1\p2, pa = p3 |l p2, p3to2 =
Recp; — Recpy — Recpy
intersection:: p3 =~ p1\p2, pa = p1\p3, =

Recp; — Recpy, — Recp,

complement: p, = (&), p3 = p2\p1, =
Recp; — Recps

Using the definitions of row operations (Section 4.3) and type predicadesi@8 4.4) it is
easy to verify that the auxiliary functions do perform the correspondiéh@gerations both at
the valueand at the type level. For example, the typeusfion(a) () will be (a)).

Using the auxiliary functions we can now define a reduction from an arpibraolean for-

mula F with boolean variablegbs, b, ..., by} to a corresponding terre™ with free variables

{X1, X2, ..., Xn} @s follows:

e = Tr(F)==Tr(true) where
Tr(true) = (a)
Tr(fals® = ()
Tr(b) = %
Tr(¢1V ¢2) = (union Tr(¢1) Tr(¢2))
Tr(¢1 A ¢2) = (intersection T(p1) Tr(¢2))

Tr(=¢) = (complement T))

164

The translation fronf to €F is clearly polynomial. Also, since each auxiliary function is well-
typed and is used in a type-correct way, it must be the caséihasA " e : Bool whereP,
captures the type constraints on row variables, @hgrovides the type assignment for the free
variablesx; in €".

We now prove thasat Py if and only if F is satisfiable. First, observe thét is an iso-
morphism between two boolean algebras, logic operations and set opsratitere the typé)
corresponds to the empty set af@jl to the universal set. IF is satisfiable, then there is a truth
assignmenM(b;) which maps each; to eithertrue, or falsesuch thatM(F) = true. SinceTr is
an isomorphism, a type assignmenivhereA(x;) has type offr(M(b;)) will ensure thaflr(F)
has type offr(true) proving thatsat o,. The other direction is proved in a symmetric way.

Complexity in Number of LabelM/e now provide a reduction from an arbitrary boolean
formulaF to a terme™ that uses only a constant number of variables (in this case, only four).
Without loss of generality we assume tlratises only operationgegationandconjunction

We assume the following constants to be defined:

b : Bool— Bool
i Int—Int
* 11 1 f2— P2 (infix)
The constantd andi will be used to ‘fix’ the type of record fields, while the functio# will

be used to build a single expression out of a set of expressions. Wedun&dour variables

165

{w1, W, Wz, Wy} and define the following shorthands on them:
X1 = (Wi || W)
X2 = (W1 || Wz)
X3 = (W || Wy)

X4 = (W3 || Wa)

To simplify the presentation of our argument, we will use tables to show field ypecord
expressions, where rows correspond to record expressionsaslto fields, and cells show
the type of the given field in the given record expression. Also, we wilthe convention of
referring to the type of fieldt in x; asa;. For example, the constraints on field types generated
by the expression:

var(Ii) = (X1-|i) * (b X2-|i) * (i X3'|i)

can be represented by the following table:

X1| @
X2 | Bool
X3 | Int

Because records; andws, are disjoint (we concatenate themyn= (wy || wp)) andl is in
X1, it follows thatl must be in exactly one ofy, andws,. If | € wy, then it has to have typgool
in X1, becauseq,-1 = (wy || ws)-1 has typeBool. Similarly, if | is in wsp, then it must have type
Int in x;. Labels introduced using this technique will correspond to the booledables and
subexpressions of the formuta where the typ&ool (Int) in x; for a given label will represent

the logical valudalse(true).

166

Next we show how to represemégationandconjunction Negation is a simple matter, once
we realize that for any given labElthe type ofl in x4 is the ‘negation’ of its type irxs, that is
x1-1 has typeBoolif and only if x4-1 has typdnt (andxz - has typdnt if and only if X4:| has type
Bool). Exploiting this, we can define the ‘negation’ of a labglthat is, a label, wherex; -1,

has typdnt if and only if x; 11 has typeBool:

not(ly, I2) = (Xa-11== x1-12)

Conjunction is a bit more involved. Suppose we would like to represent thgunction’ of
labelsl; andl,. That is, we would like to define a lablglwherex; -I3 has typdnt if and only if

x1-11 andxz-l> both have typént. We claim that the following expression achieves exactly this:

and(ly, Iz, l5) = €1« e« &3

where ({x, ty fresh
€1 = (Xa-ly== X1 * (I X2 €x) * (Xa-l3== X3-{x)
& = (Xa-l2==X1-fy) = (i X2-y) * (X1-l3== X3-{y)

€3 = (X1-13) * (X1-11== X2:13) * (X1:12== X3:13)

To better understand what is going on, we show the tabular representéttbe field type

constraints:

fx gy |3

X1 | a1 | a2 | a3
Xo | Int|Int| a;

X3 | a3 | a3 | a2

First, observe, that through the constructiond, in any given column a type appearing in

the first row must be equal to exactly one of the types that appear in toedsecthe third row.

167

With this in mind, we first show that if either; or a2 is Bool, thenaz must also bdool. For, if
a1 is Bool, thenas must also béool sincea; is equal to eithemt or a3 in columnéy. Similarly
if 7 is Bool, thenas is alsoBool because of columfy. Next, if botha; anda, arelint, thenas
must belnt, because of columiz. On the other hand, itz is Bool, then either; or a2 must be
Bool, because of columiz. And finally, if a3 is Int then bothy; anda, must belnt, because of
columnsty anddy.

Now we are ready to define a reduction from a boolean forrRueith boolean variables
{b1, by, ..., by} to a corresponding expressieh. One technical remark before the formal defini-
tion: the translation of a boolean subexpresshaeturns gpair of an expressiomand a record
label by which the translated subexpression can subsequently bedei@r During the transla-
tion we introduce fresh record labels for subexpression as needmphtdor boolean variables
bi for which we use the fixed record labéisand fortrue andfalse for which we use the fixed

labelsl; andl; respectively:

Tr(true) = (i x;-li ly)

Tr(falsd = (b xl1. 1)

Tr(ky) = (var(l), l)

Tr(~¢) = (€5 * NOWL,,).) (¢ fresh) where
(€5, ly) = Tr(¢)

Tr(g1 A ¢2) = (&g, * €4, * ANALy, . L4, 0).€) (€ fresh) where
(€415 Lg1) = Tr(e2)

(€55, Ly,) = Tr(¢2)

168

Using Tr, we definee” as:

e =ex(i x1-r)

where (e ¢g) = Tr(F)

The translation fronF to € is clearly polynomial. Also, it is easily verified that must
have an inferred type since the functidns, =, and &=) were all used in a type-correct way.
This means tha®, | sSA-W € : Int whereP, captures the type constraints on field types, sAd
provides the type assignment for the free variallasw,, wa, wy} in ",

We now prove thasat P, if and only if F is satisfiable. IfF is satisfiable, then there is a
truth assignmeni that maked- true. Let’s define a type assignmeXitwherel; has typelnt
in wy if M(by) = true, otherwisd; has typeBoolin wy. Since we demonstrated earlier that the
expressions fonegationandconjunctionare isomorphic to the corresponding logic operations
at the level of field types (witBool representindalseandInt representingrue) it follows that
there can be no inconsistencies regarding field type constraiRfstimat isP, is satisfiable. The

other direction is proved in a symmetric way. m|

Lemma 5.5.2. For a set expression e and labglf € e iff ¢ € yg(e).

Proof. We will proceed by induction on the form of the set expressiofiRecall, that each label
¢ belongs to exactly one regid®.)

If e = 0 then, by definition ofyg:

¥8(2) = Uico R\LP U Urer, Uieo R N {0} = @

If e = {¢} then, by definition ofjg:

,,,,,

169

If e = H; then, by definition ofjg:

UB({€)) = Uierk) Rty R\LP U Urels Uitk Rery) RN 18} =
(Hj\Lp) U UreL, Hj N {6} = (Hj\Lp) U (Hj N Lp) = H;j
If e= f N g, then by the induction hypothesis, the lemma holdsJg(f) andyg(g), which,
combined by the definition of intersection on sets, yields that the lemma holdg ey

We handle set union andftirence analogously to set intersection. m]

Lemma 5.5.3. For a set expression e and a lab&k Lp, { € eiff £ € Uid? R, whereZ7is

defined by the normal forgg(e).

Proof. Recall the definition of/g(€) (we name the parts so that we can refer back to them):

N1 = Uiere R\Lp
N2 = UreLp Uiers R 0 {£}
UB(€) = N UN,
Using Lemma5.5.2% c e & ¢ € yg(e).
Also, sincef € Lp, then obviously ¢ Ny, thust € yg(e) © Le N & (€ Uiere R N {£).

But(e Uid? Rn{tte e Uid‘; R, which is exactly what we set out to prove.

Theorem 5.10.1(Soundness)If —sat P then Algorithm Q will report failure.

Sketch.Recall, thatsat P means that there is a substitutisthat makes- sPtrue.
First, from Lemma5.2.1, ip(P) is not satisfiable, theR cannot be satisfiable since they both

put the same constraints on label presence and absence. Themtfisieg the argument from

170

Section 5.6, if algorithm finds the system of set constrai(i® unsatisfiable, theR cannot be
satisfiable.

Second, if¢(P) is satisfiableP can still be unsatisfiable due to inconsistent field type con-
straints. Algorithm Q takes field type constraints into account by analyzingtheonstruction
graphG. Now, would it be possible for algorithm Q to fifélsatisfiable, when in fact it is not?
That would mean that some field type equalities were not taken into accoem avtalyzing
graphG. But this is not possible, since all relations between rows have beenitdkeaccount
when building the graph. Thus, we can conclude that algorithm Q will f&llif not satisfiable.

O

	Type Inference, Type Improvement, and Type Simplification in a Language with User-Defined Polymorphic Relational Operators
	tmp.1675434090.pdf.Eadfu

