
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

5-2007

Type Inference, Type Improvement, and Type Simplification in a Type Inference, Type Improvement, and Type Simplification in a

Language with User-Defined Polymorphic Relational Operators Language with User-Defined Polymorphic Relational Operators

Lajos Pál Nagy

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Sciences Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.fit.edu%2Fetd%2F678&utm_medium=PDF&utm_campaign=PDFCoverPages

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational

Operators

by

Lajos Ṕal Nagy

Master of Science
in Computer Science

Technical University of Budapest
2000

A dissertation submitted
to Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
May, 2007

c© Copyright 2007 Lajos Ṕal Nagy

All Rights Reserved

The author grants permission to make single copies

We the undersigned committee
hereby approve the attached thesis

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational Operators

by
Lajos Ṕal Nagy

Ryan Stansifer, Ph.D.
Major Advisor
Associate Professor, Computer Sciences

Philip J. Bernhard, Ph.D.
Committee Member
Associate Professor, Computer Sciences

Philip K. Chan, Ph.D.
Committee Member
Associate Professor, Computer Sciences

Jewgeni H. Dshalalow, Dr.Sci.
Committee Member
Professor, Mathematics

William D. Shoaff, Ph.D.
Associate Professor and Head
Computer Sciences

Abstract

Type Inference, Type Improvement, and Type Simplification
in a Language with User-Defined Polymorphic Relational Operators

by

Lajos Ṕal Nagy

Major Advisor: Ryan Stansifer, Ph.D.

The overarching goal of the current thesis is to pave the road towards acomprehensive solu-

tion to the decades old problem of integrating databases and programming languages. For this

purpose, we propose a record calculus as an extension of an ML-stylefunctional programming

language core. In particular, we describe: (1) a set of polymorphic record operations that are

expressive enough to define the operators of the relational algebra; (2) a type system together

with a type inference algorithm, based on the theory of qualified types, to correctly capture the

types of said polymorphic record operations; (3) an algorithm for checking the consistency (sat-

isfiability of predicates) of the inferred types; (4) an algorithm for improving and simplifying

types; and (5) an outline of an approach to explaining type errors in the resulting type system in

an informative way.

iii

Table of Contents

Page

Acknowledgment . ix

Dedication . x

Chapter 1: Introduction . 1

1.1 The Great Chasm . 1

1.1.1 Rationale for Functional Programming 4

1.1.2 Rationale for the Relational Model . 5

1.2 Problem Statement . 6

1.2.1 Main Challenges . 7

1.3 Contributions . 8

1.4 Outline of Dissertation . 9

Chapter 2: Related Work . 10

2.1 Database Programming Languages . 10

2.1.1 Orthogonal Persistence . 11

2.1.2 The Relational Approach . 13

2.2 Deductive Databases . 15

iv

2.2.1 A Simple Deductive Database . 16

2.2.2 Deductive Databases versus Functional Database Programming 18

2.3 Record Calculi and Systems with Polymorphic Relational Operators 20

2.3.1 Record Support in Mainstream Languages 21

2.3.2 Standard Record Subtyping . 22

2.3.3 Rows and Unchecked Row Extension 23

2.3.4 Present/Absent Flags . 23

2.3.5 Generalized Rows with Subtyping . 24

2.3.6 Record Concatenation with Disjointness Predicates 25

2.3.7 Kinded Record Types and Machiavelli 26

2.3.8 Qualified Types and Rows . 29

2.3.9 The LanguageD . 30

2.3.10 Type Inference for the Relational Algebra32

2.3.11 HaskellDB: Strongly Typed Database Access for Haskell 34

2.3.12 Heterogeneous Collections for Haskell 36

Chapter 3: Language Syntax and Semantics .40

3.1 Language Design Considerations .40

3.1.1 The Notion of Record and the Omission of Variants 42

3.1.2 First-class Labels . 43

3.2 Basic Record Operations . 43

3.3 Formal Semantics . 49

3.4 Sets and Relations . 53

v

3.4.1 Relation Headings . 55

3.5 Defining Relational Algebra Operators .56

3.5.1 Sample Relational Algebra Queries 58

Chapter 4: Type System . 61

4.1 Kinds . 61

4.2 Types . 62

4.3 Type-level Operations and Relations .63

4.4 Type Predicates and Qualified Types .65

4.5 Typing Basic Record Operations . 69

4.6 Typing Rules and Type Inference .. 71

4.6.1 Substitution and Unification . 71

4.7 Examples of Inferred Types .74

Chapter 5: Checking Satisfiability of Predicates76

5.1 Definition of Satisfiability . 78

5.2 Mapping to Set Expressions . 79

5.3 A Simplifying Language Restriction . 80

5.4 The Algorithm Q . 83

5.4.1 Pseudo Code for Algorithm Q . 84

5.5 A Normal Form for Set Expressions .84

5.6 Solving Set Constraints . 88

5.7 Selecting Base Sets . 90

5.8 Checking Field Type Constraints . 93

vi

5.9 Handling Nested Records . 96

5.10 Soundness and Completeness .98

5.11 Complexity of Algorithm Q . 99

5.12 Sample Run . 101

5.13 Summary . 103

Chapter 6: Type Improvement and Simplification 104

6.1 Type Improvement . 104

6.1.1 Representative Cases . 106

6.2 Algorithm for Type Improvement . 110

6.2.1 Finding the Improving Substitutionsℓ (Field Types) 110

6.2.2 Finding the Improving SubstitutionsLM (Empty Row) 111

6.2.3 Finding the Improving Substitutions≃ (Same Row) 113

6.3 Type Simplification . 116

6.3.1 Representative Cases . 118

6.4 Algorithm for Type Simplification . 122

6.4.1 Identifying Reachable Predicates . 122

6.4.2 Identifying Constructor Predicates . 124

6.4.3 Identifying Relevant Predicates . 125

6.4.4 Putting It All Together . 127

Chapter 7: Explaining Type Errors .129

7.1 Explaining Type Errors in Polymorphic Languages 130

7.2 Type Errors and Qualified Types .131

vii

7.2.1 Showing the Origins of Predicates . 134

7.2.2 Identifying Conflicting Predicates . 135

7.2.3 Revealing the Contradiction . 136

Chapter 8: Conclusions . 140

8.1 Future Work . 141

Appendix A: Overview of the Relational Model and Algebra 150

A.1 Union . 151

A.2 Intersection . 152

A.3 Difference . 152

A.4 Cartesian Product . 153

A.5 (Natural) Join . 154

A.6 Restriction . 155

A.7 Projection . 156

A.8 Division . 157

A.9 ‘Non-Standard’ Relational Operators .. . 158

A.9.1 Projecting Away and Renaming Attributes 159

A.9.2 Variations on join: semijoin, antijoin, and compose 160

A.9.3 Improved division: the Small Divide 160

A.9.4 Extension . 161

Appendix B: Proofs . 162

viii

Acknowledgment

First of all, I would like to thank my parents for their patience and understanding. I know

how hard it must have been to let their only son go to a far away country, onthe other side of the

Atlantic. I thank my sisters, Emi,́Eva, and Julcsi, for their encouragement and support.

I thank all the members of my doctoral committee. I thank Dr. Chan for pushing meharder

and demanding focus and clarity. Special thanks goes to my major advisor, Dr. Stansifer whose

knowledge, patience, professionalism, eye for detail, and last, but certainly not least, his constant

encouragement really was indispensable in helping me to write this dissertation.

I would like to thank my friend, Attila, who always lent a sympathetic ear whenever I hit

obstacles in my research (and that happened a lot).

I thank Dr. Imre Paulovits, who helped me to get to the United States and provided me with

a lot of advice on how to conduct world-class research.

Finally, I thank Yoshiko, who believed in me all the way, and wanted me to succeed. (She is

also pretty, by the way.)

ix

Dedication

To My Grandparents

x

1

Chapter 1

Introduction

Databases as separate entities of information systems emerged in the 1960s when it became

obvious that the common task of handling shared and persistent data is bestdealt with a dedicated

component, a Database Management System. Up until then, each application program did its

own data management using the facilities provided by the file system. Though thisseparation

of duties proved to be extremely beneficial in the long run, it nevertheless created its own set of

problems—most of them stemming from the difficulties of interfacing programming languages

with databases.

1.1 The Great Chasm

Programs that access data in a database are referred to asdatabase applications. Traditionally,

database applications are written in some high-level programming language (often called the

host language in this context), and use adata sub-language(theembeddedlanguage) to query

and update data in the database. (This description holds true even in the context of modern

object-oriented languages, although variouspersistenceandobject/relational mappingsolutions

blur the language boundaries somewhat.) It has long been recognized that this dualism of lan-

guages (or ‘impedance mismatch’, as it has become infamously known) causes several problems:

2

1. differences between the primitive and complex data types of the host and the embedded

languages require constant translation (mapping) between two different data representa-

tions (implementing this translation is often both laborious and error-prone);

2. there are quite different approaches to the optimization of programs as opposed to the

optimization of database operations, with very little work existing on how to perform

them jointly;

3. most databases, nowadays almost always relational, support, in the form of primitive op-

erations, ‘set-at-a-time’ (bulk) processing of data, while most programming languages,

especially for update operations, support only ‘tuple-at-a-time’ (iterative) processing;

4. the host language is disconnected from the syntax and semantics of the embedded lan-

guage which prevents compile-time checking of database operations; and

5. when dealing with concurrent access to shared data, programming languages often assume

cooperation between different entities (that are considered friendly, creating only inadver-

tent conflicts) while databases by default assume competition among different entities (that

are considered hostile, creating deliberate conflicts) which leads to widely differing views

on such issues as transaction management.

Since the late 1970s, there have been several attempts at addressing (orjust formulating)

the ‘impedance mismatch’ problem (see [Atkinson and Buneman, 1987] for and older, but quite

broad survey, and [Cook and Ibrahim, 2005] for a more recent, albeitsomewhat narrower one.)

3

Most, if not all, solutions address this problem of language dualism, they try tosolve the problem

by coming up with a single, unified language, aDatabase Programming Language(DBPL), that

can be used for both computation and data manipulation [Bancilhon and Buneman, 1990; Date

and Darwen, 1998].

We believe in the general correctness of the unified language approachto solving the

‘impedance mismatch’ problem, and consider the combination of functional programming and

the relational model of data the most promising candidate for such a unifiedlanguage. In ac-

cordance with this, we propose a record calculus (as an extension of animplicitly-typed lambda

calculus with let-bound polymorphism), that is powerful enough to express the ‘standard’ rela-

tional algebra operators and also to permit the definition of novel ones. Although far from a

full-fledged database programming language proposal, nevertheless,we hope that by exploring

a particularly complex and interesting segment of the design space, we can contribute to the

design of more ambitious programming languages.

Quick Note on Terminology

The basic building block of the relational model, the relation, is defined as a set of tuples. In

database theory, atuple (or labelled tuple) is a finite map fromattribute namesto attribute

values. The programming languages community has different names for the same concepts: a

record is a finite map fromfield names(or labels) to values. In this thesis we will mostly use

programming language terminology, unless the topic is directly related to database theory. Also,

slightly abusing standard usage, we will call operations on relationsrelational operators.

4

1.1.1 Rationale for Functional Programming

Functional programming languages are important members of a broader familyof declarative

languages. These languages are characterized by their relative closeness to mathematics both

in their syntax and their semantics. Functional languages are based onlambda calculus, which

makes formal reasoning about the properties of programs much easier than in the case of imper-

ative languages. The history of functional programming also proved several language features

extremely useful, each of which we were determined to preserve while designing our system:

1. Static Type Checking and Type InferenceThe ability to statically type check programs

without extensive explicit type annotations [Cardelli, 1997] makes for very concise pro-

grams while retaining the advantages of static type checking. Coupled with side-effect

free programming it is very often true about functional programs that “if itcompiles, then

it is correct.”

2. Higher-Order FunctionsFunctions are first-class citizens in a functional language so they

can be passed around and manipulated just like ordinary values. This abilityto define

and use higher-order functions (functions that operate on functions)allows for powerful

abstraction mechanisms that greatly enhance the expressive power of thelanguage.

3. Polymorphism (or Generic Programming)In a polymorphic functional language, it is pos-

sible to define functions that operate on arbitrary typeswhileretaining static type checking

and type inference. Polymorphism facilitates the ‘Once and Only Once’ principle of soft-

ware engineering that puts great value on avoiding duplicating functionality.

5

4. Referential TransparencyIn a pure [Sabry, 1998] functional language, functions behave

like their counterparts in mathematics, that is, they denote a value and invoking afunction

with the same list of arguments always yields the same value. In other words, alanguage

of pure functional programs isreferentially transparentwhich allows developers to use

powerful equational reasoning when thinking about programs. For example, in a referen-

tially transparent language, the expressionlet x = f (y) in g(x)+ g(x) is alwaysequivalent

in valueandeffect to the expressiong(f (y)) + g(f (y)) which cannot be said of languages

that permit functions with side-effects.

1.1.2 Rationale for the Relational Model

In the early 1970s when Codd first introduced the relational model of data[Codd, 1970], it was

not entirely obvious that relational databases would be ubiquitous thirty years later. Several

factors contributed to the eventual success of the relational model:

1. The relational model, as a formal system of logic, is equivalent in expressive power to first-

order predicate logic (without function symbols) restricted to non-recursive Horn clauses

[van Emde Boas-Lubsen and van Emde Boas, 1998]. In addition, any theory in the rela-

tional model is always guaranteed to be finite (safein relational terminology.)

2. Complex,ad hocqueries can be formulated using only the operators of the relational

algebra, which stands in sharp contrast with the more programmatic, ‘pointer-chasing’

style of querying in network and object-oriented databases.

3. Unlike first-order predicate logic (where resolution is exponential), relational algebra does

6

have an efficient evaluation algorithm (polynomial in the size of input relations).

4. Significant amount of research has gone into the optimization of relationalqueries both at

compile-time (query re-writing) and execution-time (indexes, scheduling).

5. Transaction semantics can be clearly defined in the relational model, while itcreates seri-

ous theoretical difficulties in other data models.

1.2 Problem Statement

The algebraic approach to defining relational queries (relational algebra) is purely functional by

nature, thus it seems natural to use the functional paradigm combined with therelational model

of data as the basis of a database programming language:

The goal of this thesis is to define polymorphic relational operators from a small set of

primitives in a functional programming language with full compile-time type checking, type

inference, polymorphism, and higher-order functions.

We emphasize full compile-time type checking (catching type errors at the definition site,

if the particular definition can be proven to be erroneous) to set our proposal apart from sys-

tems (like [Buneman and Ohori, 1996] and [Makholm and Wells, 2005]) which do only partial

compile-time type checking (catching more expensive type errors only at call sites, thus poten-

tially accepting erroneous, albeit unused definitions).

Another important difference between previous systems and our proposal is that we set out to

find a handful of primitive operations in terms of which most polymorphic relational operations

could be defined, as opposed to trying to canonize in the language a fixed set of primitive rela-

7

tional operators (see [Buneman and Ohori, 1996] and [Van den Bussche and Waller, 1999]). We

consider this later approach not satisfactory and decided against it. Thesyntax and semantics of

the language, the typing rules, and the type inference algorithm (not to mention proofs of sound-

ness and completeness in the system), all become unduly complex when primitiverelational

operators need to be treated as special cases every time. Even if one is willing to accept this

additional complexity, it turns out that the list of polymorphic relational operators is practically

open-ended, so every time a new relational operator is introduced that cannot be expressed using

the built-in ones, one has to change the language definition together with the typing rules and

the type checking algorithm (and every proof concerning the type systemand the type inference

algorithm would have to be re-done as well).

1.2.1 Main Challenges

The following are the main challenges one has to face when designing any language with the

properties laid out in the problem statement:

Value-Dependent TypesThe result type of a polymorphic relational operator often depends

on thevalueof its operands in a non-trivial way (for example, in the case ofnatural join, the

headingof the result is theunionof the headings of the operands—see Section A.5 for details).

As a result, the type ofnatural join, along with most other polymorphic relational operators,

cannot be expressed using only the standard Milner [Damas and Milner, 1982] type system that

forms the basis of all modern functional programming languages.

NP-hard Type CheckingAnother problem is that static type checking in a language that

supports polymorphicnatural join has been proven [Ohori and Buneman, 1988] NP-complete.

8

Even type checking for the seemingly weaker system of symmetric record concatenation and

field selection was proven to be NP-complete [Makholm and Wells, 2005]. This is a challenge

because a programming language is of little practical use unless the type checking of moderately

sized programs can be done in reasonable amount of times, that is,fast.

First-Class Attribute (Record Label) SetsThe relational operatorprojecthas two operands:

a set of attribute names and a relation. One faces a difficulty when trying to addproject to a

functional language, because it is not clear how to represent sets of attributesbothat the value

and the type level. Again, the problem withproject is that the resulttype of the operation

depends on thevalueof its operands. For example, the following relational expression using

is ill-typed, regardless of the type of relationr: π{A,B}(π{C,D}(r)). Notice that the individual

invocations ofprojectare well-typed in the Milner type system, that is, the actual arguments are

of the correct types: a set of attributes and a relation. Nevertheless, because of the actualvalue

of the arguments, the expressionas a wholeis ill-typed.

1.3 Contributions

The main contributions of this dissertation are:

1. A carefully chosen collection of basic record operations, complete with formal semantics,

that are expressive enough to define polymorphic relational operators.

2. A polymorphic type system (with a standard type inference algorithm) that isexpressive

enough to capture all the type constraints necessary to guarantee compile-time checking

of all basic record operations.

9

3. An algorithm for checking the satisfiability of type constraints generated by the type in-

ference algorithm.

4. Algorithms for improving and simplifying inferred types, where type improvement is

guaranteed to find the principal satisfiable type.

5. An outline of an algorithm for explaining type errors in the face of polymorphic relational

operators that can give rise to arbitrary systems of set constraints.

1.4 Outline of Dissertation

Chapter 2 summarizes related work in the area with emphasis on various record calculi and

system with polymorphic relational operators. In Chapter 3, we describe the syntax and formal

semantics of the core language and the basic record operations. In Chapter 4, we describe the

type system of the language and define the types of the basic record operations. Chapter 4 also

contains the description of a standard type inference algorithm for the typesystem. In Chapter 5,

we develop an algorithm for checking the satisfiability of type constraints generated by the type

inference algorithm. Chapter 6 formalizes the notions of type improvement andsimplification,

and also describes algorithms for performing type improvement and simplification. In Chapter 7,

we analyze how to best explain type-errors in the system, and propose anoutline of an algorithm

for doing so. Chapter 8 concludes the dissertation by summarizing the resultsand pointing out

possible future work. Appendix A gives an overview of the relational model and algebra, and

all the proofs are collected in Appendix B.

10

Chapter 2

Related Work

In this section we look at related work in the main problem areas identified earlier. To place

our contribution into perspective, we first have to establish a broader context for our efforts.

Since attempts at addressing interfacing issues between databases and programming languages

can be dated back to the early 1960s, it is no wonder that the work done in this somewhat

loosely defined area has been immense. Therefore, we do not even pretend to give a compre-

hensive account of all previous work, but rather settle for a general overview that will hopefully

help position the current thesis in relation to other major research directions inthe area. After

establishing the broader context we can move on to the narrower and more specific topic of de-

scribing related work in the areas of record calculi and polymorphic relational operators, where

we can take the chance to elaborate on some technologies mentioned only in passing earlier. As

a technical side note, we remark that since in the programming language community ‘labeled tu-

ples’ are almost exclusively referred to as ‘records’ we will ourselves revert to this terminology

when discussing previous work in this area.

2.1 Database Programming Languages

The idea behind Database Programming Languages (DBPLs) is to make the manipulation of

persistent data (definition/storage/retrieval) an integral part of the programming language [Ban-

11

cilhon and Buneman, 1990]. (An early survey of the area can be foundin [Atkinson and Bune-

man, 1987]. For a more recent problem statement and analysis, see [Cook and Ibrahim, 2005].)

It is important to mention here that the term Database Programming Language is not gener-

ally accepted (or recognized) as the one that correctly describes solution attempts aiming at the

integration of databases and programming languages, and, as a result, not all research efforts

place themselves into the DBPL camp or realize that they belong there. As for the programing

paradigm and the underlying persistence mechanism to use in designing an integrated language,

there never has been any real consensus among the researchers and practitioners of the DBPL

field. Nevertheless, it is possible to distinguish two chief research directions (with several vari-

ations for each) that dominated the field in the last two decades or so.

2.1.1 Orthogonal Persistence

One direction, often called theorthogonal persistence(as in “persistence is orthogonal to type”)

approach, deals with persistence from the point of view of programming languages [Atkinson

et al., 1990]. This movement hopes to close the gap between databases andprogramming lan-

guages by removing the need for a database management system (often implicitly understood

to be a relational database management system) as a stand-alone system component through

programming language extensions for persistence. Its advocates usuallyemphasize the primacy,

or the very least, the needs of application development over that of database design. In an

ideal language with orthogonal persistence, volatile and persistent values are indistinguishable

by their types, created and used by the application in the exact same way, and the actual per-

sistence mechanism (reading data from and writing data to secondary storage) is completely

12

transparent from the point of view of the programmer. Combining orthogonal persistence with

Object-Oriented programing lead to the emergence of Object Database Management Systems

(ODBMSs) [Dittrich, 1991]. ODBMSs support the storage and retrievalof objects that encap-

sulate both data and its operations but usually are tied to a single object-oriented programming

language, commonly C++ [Bartels and Robie, 1992]. Research in the ODBMS field flourished

in the early 90s but interest began to wane as prototypical systems refused to measure up to

relational systems and the long sought after theoretical foundations did notmaterialize [Kim,

1991]. The Enterprise Java Bean (EJB) technology [Ran et al., 2001], although larger in scope,

can also be categorized as an attempt to add orthogonal persistence to the Java programming

language, showing striking similarities to the ODBMS movement both in its general approach

and its general failure to meet expectations [Johnson, 2004].

Orthogonal persistence, even after decades of research, still suffers from several unsolved, or

inadequately addressed, issues that prevent it from replacing relational technology, as originally

hoped. There are several reasons for this failure to meet expectations:

• lack of a formal mathematical foundation (comparable to the relational model ofCodd

[Codd, 1970]) for the description and manipulation of persistent data;

• lack of, or poor support for, a simple but expressive query language for writing ad hoc

queries, if ad hoc queries are supported at all;

• inability, or difficulty, of sharing of data between applications, due to fact that persistent

data is often tightly coupled with a particular programming language and paradigm;

13

• data manipulation is chiefly performed in anavigational(‘pointer chasing’) rather than

a declarative(for example, relational algebra) manner, despite the fact that navigational

databases (network and hierarchical) had been proven to be inferior,both in theory and

practice, to declarative (relational) databases a long time ago [Date and Codd, 1975];

• difficulty in handling bulk data, or handling it efficiently, a fact which is often due to the

‘tuple-at-a-time’ processing nature of general purpose programming languages;

• theoretical and practical difficulty in utilizing both compile-time and run-time query opti-

mization techniques which are now commonplace in relational databases (and which are

proved to be indispensable in achieving acceptable performance); and finally

• lack of, or limited support (let alone formal foundations) for features likemultiple users,

transaction isolation, integrity constraints, distribution, security, or views, all of which

features are now taken for granted in relational databases.

2.1.2 The Relational Approach

Efforts that fall under the umbrella of therelational approachaccept the relational model and its

embodiment, the relational database management system (RDBMS), as the general foundation

for handling persistent data. As opposed to orthogonal persistence, languages belonging to the

relational approach insist that only certain data types and run-time constructs, namely, relations,

can be made persistent. Thus, the emphasis is on developing a smooth interaction between the

programming language and the underlying RDBMS, both in terms of run-time performance and

14

in terms of harmonized type systems. In essence, the relational approach isjust the next logical

step from the traditional embedded data sub-language approach that hasbeen in use from the

’70s, and which is still the most popular way of accessing data in a database(despite its well-

known shortcomings). Proposals in the area tend to extend mainstream languages with relations

and, occasionally, relational operators, like in Pascal/R [Schmidt, 1977], Modula/R [Reimer,

1984], or Machiavelli (based on ML) [Buneman and Ohori, 1996].

Adding support for records and relational algebra is often impossible without introducing

new language constructs and modifying the target language’s type system.Some languages are

more amenable to extension than others. Typically, languages with some level of support for

records and record operations handle the extension with more ease (Pascal) than those without

(Java). Recently, the language C# has been the target of such an extension effort under the name

of Language INtegrated Query (LINQ) [Torgersen, 2006], a remarkable effort, considering that

C# is an object-oriented language with no direct support for records orrecord operations. The

functional language Haskell has such an expressive type system thatit was possible to define a

relational extension as a language library in the project HaskellDB [Leijen and Meijer, 1999],

a comprehensive, type-safe, database access library, similar in spirit toLINQ (of which it can

be considered a predecessor). Although more of an exercise in pushing Haskell’s type classes

to the limit,strongly-typed heterogeneous collections(the HList library) [Kiselyov et al., 2004]

proved to be capable of expressing all practically conceivable polymorphic record and relational

operations in a statically type-safe manner.

There is one language (or, more precisely, a list of language prescriptions and proscriptions)

proposed by Date and Darwen in theThird Manifesto[Date and Darwen, 1998] that deserves

15

extra attention because it was designed from the ground up to alleviate some of the perceived

problems of database programming languages plagued by the ‘SQL Legacy’, that is, the general

shortcomings of SQL both as a language in itself and also as an implementation of relational

algebra [Date, 1990; Date and Darwen, 1992b, 1995; Date et al., 1998]. The proposal describes

a strongly-typed relational algebra language, correcting many of SQL’smistakes on the way,

where attributes in relations can be of arbitrarily complex, including user-defined, types. It also

emphasizes the importance of a unified language, that is, supporting general computation and

database access in a single language. There exist several implementations, including a full-

fledged commercial one, that are based on the principles put forward in the Third Manifesto, a

rarity in the realm of DBPLs.

2.2 Deductive Databases

The field of Deductive Databases (DDB) tries to combine logic programming, like Prolog, with

relational technology [Minker, 1997]. Strictly speaking, a Deductive Database can be catego-

rized as a Database Programming Language, but the area has such markedly different points of

interest and body of research that it is best discussed in its own section.Reiter [Reiter, 1982] was

the first to describe relational theory in terms of a logic system, pointing out that it can be de-

scribed as a sub-theory of first-order predicate calculus, more precisely, as a system of function-

and recursion-free Horn clauses. The realization that predicate logic,with certain restrictions,

can be used for programming [Kowalski, 1974] lead to the development of logic programming

languages and most prominently to the development of Prolog that is also based on Horn clauses.

It seemed natural to combine the elegance and declarative nature of logic programming with the

16

robustness and high performance of relational databases. In the combined system, predicate

logic would serve as the unifying ‘lingua franca,’ used simultaneously forapplication program-

ming, expressing database queries, and specifying integrity constraints.After all, when seen

from a logic programming point of view, a relational database is nothing but alogic theory,

where relations correspond to predicates, and tuples belonging to a relation correspond to unit

clauses of the predicates. Relational algebra queries can be directly translated to goal predicates,

where the result of the relational query corresponds to those variable substitutions that make the

goal predicate true under the logic theory represented by the database.This new approach was

christened Deductive Database since it is based on deduction (logic inference) and database

technology.

2.2.1 A Simple Deductive Database

To demonstrate the feasibility of using logic as a database programming language and to com-

pare it with relational theory, we will present a simple database together with some sample

queries in this section . The relational database consist of only two relations, ParentandFemale

(this example is taken from [Colomb, 1998]):

PARENT

Older Younger

jane lois

jim jane

FEMALE

Name

jane

lois

17

The same database expressed as a logical theory with unit clauses (usingProlog syntax):

parent(jane,lois).

parent(jim,jane).

female(jane).

female(lois).

We can now define a view (in effect, a stored query) for the mother-child relation (using Tutorial

D syntax [Date and Darwen, 1998]):

MOTHER := (PARENT rename {Older as Mother, Younger as Child) join (FEMALE rename {Name as Mother})

The same view defined using logic:

mother(Mother, Child) :-

female(Mother), parent(Mother, Child).

However, DDBs are strictly more powerful than relational algebra, sincethey support recur-

sion, as demonstrated by the followingancestorpredicate:

ancestor(Older, Younger) :-

parent(Older, Younger).

ancestor(Older, Younger) :-

parent(Older, Intermediate),

ancestor(Intermediate, Younger).

The ancestorpredicate cannot be defined using standard relational algebra, and although the

SQL standard has embraced recursive queries lately [Melton and Simon, 2001], it still remains

something of an afterthought that does not nicely fit with the rest of the language. Contrast

this with the fact that DDBs have always put great emphasis on maintaining certain desirable

properties of database queries, like finiteness, and unequivocal semantics, which amounts to

allowing only safe forms of recursion (ones that cannot lead to infinite results or undecidability).

18

2.2.2 Deductive Databases versus Functional Database Programming

Since logic programs and databases are indistinguishable in a DDB, which is avery appealing

feature, most theoretical and practical results can be applied to both, which has made research in

the area a very fruitful one. If we add to this the fact that DDB technologycan directly leverage

the decades of research done in various areas of logic, the question arises, why choose func-

tional programming, as opposed to logic programming, as the basis for a unified language for

database programming. Despite being theoretically elegant and producing immensely exciting

results over the last three decades, the field of Deductive Databases stillsuffer from some se-

rious deficiencies, both theoretical and practical, which has prevented,among other things, the

development of a single commercially successful DDB as of this writing.

Functional programming is based on the lambda-calculus which, besides having a well-

defined and straight-forward evaluation method, easily handles higher-order functions and has

no difficulty whatsoever in accommodating relational operations. On the other hand,DDBs

have long suffered from the difficulties created by any attempt to effectively combine the stan-

dard top-down, ‘tuple-at-a-time’ execution of logic programs needed forapplication code that

might include functions and general recursion with the bottom-up, ‘set-at-a-time’ evaluation of

relational queries, which emphasizes run-time optimization, finite results, and performance [Ra-

makrishnan and Sudarshan, 1991]. In practice, the two evaluation strategies interact poorly. An

additional theoretical difficulty is that different evaluation strategies can result in different se-

mantics, and the differences among these strategies can rarely be described as simply as ‘eager

versus lazy’ in functional programming.

19

Logic programming also has some difficulty supporting higher-order predicates, a feature

that proved to be so enormously useful in functional programming in the form of higher-order

functions. The main reason for this is that logic programming is based on the well-understood

first-order predicate calculus, and higher-order predicates would lead out of this system, thus

preventing the use of its elegant and effective inference procedure (resolution). Despite this,

some logic programming languages [Somogyi et al., 1994], Mercury in particular, do support

higher-order predicates, but in a limited fashion. Although not centrally important, one must

nevertheless point out the fact that higher-order functions fit harmoniously into the syntax of

functional programs, which cannot be said of higher-order predicates in logic programs.

Finally, when attributes in relations must be referenced by position, which in fact is the case

if they are represented as logic predicates, one loses an important elementof data independence,

that is, the ability to add attributes to or remove them from relations without breaking database

programs that do not depend on the affected attributes. From the point of view of reducing

programmer errors, attribute names make explicit which attribute one refers to, while in the

positional setting of logic programming, it is easy to confuse attributes, even ina typeful logic

programming language like Mercury (for example, although predicates with arity in the dozens

are rare in logic programming, they are not at all that uncommon in relation databases). We

close this section with an example that demonstrates the potential drawbacks (from a software

engineering point of view) of having to refer to attributes by position insteadof by name (the

first view is defined using Prolog and the second view is defined using Tutorial D). In both cases

we assume that a relationCOURSEexists with several attributes (CourseNo, Subject, etc.) in it:

20

course_title(CourseNo, Title) :-

course(CourseNo, Subject, Title, Term, Instructor, Credit, Campus, Room, Hours).

COURSE_TITLE := COURSE { CourseNo, Title }

When using logic programming, we are forced to enumerate all attributes of therelation and we

also need to keep in mind which position refers to which attribute (say, thatTitle is the third

attribute). This is not the case when using Tutorial D (that is, relational algebra).

2.3 Record Calculi and Systems with Polymorphic RelationalOperators

Historically, the research community has spent serious amounts of effort on designing record

calculi. Each record calculus proposed in the literature differs in the trade-offs it makes in terms

of the level of polymorphism, the basic operations, and the complexity of the resulting type

system. Polymorphic relational operators put an additional strain on the typesystem of statically

typed languages because the result type of most of the relational operations depends on the types

of their operands in a non-trivial way. Also, the complexity of typing polymorphic relational

operators is known to be NP, irrespective of the actual type system beingused [Vansummeren,

2005]. Since relations are just sets of records, it is natural that work done in the area of record

calculi is inherently connected with work done on language extensions involving polymorphic

relational operators. In the following, we present a detailed overview ofrelated work that is

relevant to the subject of the current thesis. In our presentation, we tryto progress from less

expressive systems to more expressive ones. Naturally, not all systemsare strict supersets of, or

even meaningfully comparable to, other systems, so our ordering is at times somewhat arbitrary.

As a technical note on our usage of terminology: in order to differentiate records from simple

21

lookup tables (also associative arrays, hash maps, dictionaries, etc.) weinsist that all record

operations are checked for type correctness at compile time: that is, we require static typing of

record operations, otherwise the language construct in question does not qualify as a record in

our view.

2.3.1 Record Support in Mainstream Languages

In most mainstream languages that provide records (for example, C, C++, Java, C#, ML), oper-

ations on records are usually limited to a single one: field selection. In addition,field selection

is not polymorphic, that is, the compiler needs to know the type of each record expression at

compile time in order to decide whether field selections are type correct or not.Some of these

mainstream systems are further limited by the lack of light-weight records, thatis, the ability to

construct records ‘on-the-fly’ using record literals. For example, in C[Kernighan and Ritchie,

1978], each record type (called ‘struct’ in C) needs to be declared before it can be used (Pascal

behaves similarly), and even with pre-declared records, support forprogrammer-friendly literals

(initializers in C parlance) has only recently made it to the standard [Meyers,2000].

The following example, where we try to select the fieldcolor from the record argumentr,

illustrates Standard ML’s [Milner et al., 1990] inability to type polymorphic field selection:

- fun f r = #color r;

stdIn: ... Error: unresolved flex record

(can’t tell what fields there are besides #color)

In object-oriented languages (Java, C++, C#) objects can serve as records and field selection

can be made somewhat polymorphic through the use of inheritance or interfaces. It is important

22

to note, though, that the polymorphism of field selection does not come from the name of the

field, but rather it depends on the type of the object being used. Just likein C, record (in this case,

object) types need to be declared before being used. The following erroneous Java code segment

demonstrates that the presence and absence of record fields are determined by the nominal type

of the record (object) and not by their structural presence, thus limiting thepolymorphism of

record operations:

class A {

public int x;

public void test() {

A a = new A();

Object o = a;

a.x = 2; // Accepted by the compiler. The type of ‘a’

// indicates the presence of the field ‘x’.

o.x = 3; // Rejected by the compiler. Despite the fact that

// the field ‘x’ is present in the object ‘o’.

}

}

2.3.2 Standard Record Subtyping

A popular way of handling polymorphic record operations is to define subtyping between records

[Pierce, 2002]. The intuition is that a function that expects a record with certain fields should

accept any record that has those fields plus, possibly, some others. Polymorphic field selection

thus involves a subtyping constraint:

(r.l) :: ∀α.∀ρ ≤ Ll : αM.Recρ→ α

23

This approach has several undesirable properties. First, subtyping constraints fail to retain in-

formation on other fields in the record. Second, adding subtyping to a polymorphic type system

is known to complicate type inference and interacts poorly with other useful language features,

like overloading [Pierce, 2002]. Finally, other useful record operations, like extension or con-

catenation, cannot be described in terms of record subtyping only.

2.3.3 Rows and Unchecked Row Extension

Wand introduced the concept ofrows as basis for the recursive definition of record types in

[Wand, 1987]. A row in Wand’s system is either the empty rowLM, or an extension of a row

Ll : τ | ρM with the label and type pair (l : τ). The type of field selection in Wand’s system is:

(.l) :: ∀α.∀ρ.RecLl : α | ρM→ α

Also, it is now possible to express record extension:

〈l = | 〉 :: ∀α.∀ρ.α→ Recρ→ RecLl : α | ρM

The problem with Wand’s system is that record operations areunchecked. For example, it is

possible to extendanyrecord withany label. One consequence of this is that some programs do

not have principal types [Wand, 1988].

2.3.4 Present/Absent Flags

Rémy also used rows to handle labels not pertinent to the current operation but he also introduced

flags to keep track of what labels need to be present in (or absent from) a given row [Ŕemy,

24

1989]. In his system the type of record extension would be:

〈l = | 〉 :: ∀α.∀ρ.α→ RecLl : absρ→ RecLl : pre(α) | ρM

The type-checker is now able to deny access to undefined fields or deny the extension of

a record with a label that it already has. Rémy further developed his system in [Rémy, 1992]

to include bothsymmetric(records are disjoint) andasymmetric(records might overlap) record

concatenation. However, his method was to translate programs with record concatenation to

programs with record extension which limited the expressiveness of his system. For example, the

following expression (taken from [Ŕemy, 1992]) cannot be typed in Rémy’s systemΠ‖ because

of ML’s restrictions on polymorphism:

let reverse r s= if true then 〈r ‖ s〉 else〈s ‖ r〉

in reverse〈a = 1〉 〈b = 2〉

In other words, under certain conditions, symmetric record concatenationwas no longer com-

mutative, a serious limitation of the system in our view.

2.3.5 Generalized Rows with Subtyping

Pottier [Pottier, 2003] described a conditional type system with subtyping constraints and gen-

eralized rows, complete with a polynomial time constraint solver, with the restriction that rows

had to be ground. The paper suggested the following constrained type schemes for some poly-

morphic record operations (where the empty record has type{∂Abs}, α ranges over variables of

sortTypeand kindtype, ϕ ranges over variables of sortRowand kindfield,≤ denotes a subtyping

25

constraint, and the dot (.) separates type constraints from the type):

∀αϕ[{ℓ} : ϕ ≤ ∂(Pre α)].{ϕ} → α (field selection for labelℓ)

∀αϕ1ϕ2[{ℓ} : ∂(Pre α) ≤ ϕ2

∧ (L\ℓ) : ϕ1 ≤ ϕ2].{ϕ1} → α→ {ϕ2}

(non-strict extension with labelℓ)

∀ϕ1ϕ2ϕ3[L : Abs ≤ ϕ1?ϕ2 ≤ ϕ3

∧ L : Abs ≤ ϕ2?ϕ1 ≤ ϕ3

∧ L : Pre ≤ ϕ1?ϕ2 ≤ Abs].

{ϕ1} → {ϕ2} → {ϕ3}

(symmetric concatenation)

The type scheme above for record extension does not prevent the extension of a record with

a field that it already has, hence it is called ‘non-strict’ extension. Pottier did not discuss the

applicability of his system for describing polymorphic relational operators.

2.3.6 Record Concatenation with Disjointness Predicates

Harper and Pierce examined a second-order systemλ‖ with symmetric record concatenation in

[Harper and Pierce, 1991]. Rows were constructed using concatenation instead of the usual

extension. A row was either the empty row, a singleton label-value pair, or theconcatenation of

two rows. In their system the type predicater1#r2 meant that the rowsr1 andr2 are disjoint. The

type of label selection in their system was:

(.l) :: ∀α.∀ρ.(ρ#Ll : αM)⇒ Rec(Ll : αM ‖ ρ)→ α

26

Being second-order means thatλ‖ includes both explicit type abstraction and type application.

Record types need to be passed as arguments to functions with polymorphic record operations.

Also, the system did not include a type inference algorithm.

Makholm and Wells in [Makholm and Wells, 2005] described their system formixin mod-

ules based on the languagebowtie with symmetric record concatenation. They concluded that

full polymorphic type checking is NP-complete but came up with the result that type-checking

becomes polynomial when they ignore expressions that are either ‘dead’ (their result will never

be needed) or ‘sleeping’ (their result will only be used if put into a larger context, like unused

function definitions.)

2.3.7 Kinded Record Types and Machiavelli

Ohori [Ohori, 1995] described a type system with polymorphic field selection together with

type inference and an efficient compilation method for polymorphic record operations using

numerical label offsets. The basic idea is to assign records to different ‘kinds’ (types of types)

based on the set of fields they are expected to contain. For example, the type of field selection in

this system would have the type:

(.l) :: ∀α.∀rLl:αM.Rec r→ α

This kinded type system of records formed the basis of the language Machiavelli [Buneman

and Ohori, 1996] which was itself an extension of ML. Machiavelli was designed as a true

database programming language with direct support for polymorphic relational operators in the

language. The extensions of interest to us included: (1) sets and set operations, (2) relations

27

as sets of records, and (3) relational operatorsjoin andproject as primitives of the language.

Machiavelli also supported extensible variants, recursive record types, and a generalized version

of thejoin operator that could operate on data types other than relations. The following example

shows a function that selects young employees from a polymorphic relational variable (‘select

. . .from . . .where’ is Machiavelli’s syntax for set comprehension):

-> fun young r = select [Name=x.Name] from x <- r where x.Age < 25;

>> val young = fn: {a:: [Name: b, Age: int]} -> {[Name: b]}

Machiavelli inferred the most general type for the polymorphic functionyoung restricting

the input parameter to relations that have fieldsName andAge. The return type of the function is

a set of records with a singleName field.

Machiavelli also defines the relational operatorjoin as a primitive function of the language

and assigns it a special conditional type:

>> val join = fn : (a * b) -> c where { c = jointype(a, b) }

-> join ({[SSN=123, Name="Smith"]},

{[SSN=123, Car=Porsche], [SSN=123, Car=bmw]});

>> val it = {[SSN=123, Name="Smith", Car=Porsche],

[SSN=123, Name="Smith", Car=bmw]}

: {[SSN : int, Name : string, Car : carmake]}

The conditionc = jointype(a, b) requires the type variablec to be in a certain relation

with the type variablesa andb. The result of thejoin operation is a relation whose heading is

theunionof the headings of the relations being joined. This is the constraint that Machiavelli

captures with its conditional typing. However, if eithera or b is unbound at compile time then

Machiavelli cannot compute the value ofc so it might accept programs that contain type errors.

28

In other words, Machiavelli does not check the satisfiability of type conditions. Interestingly,

this is not a serious limitation in practice since whenever an expression evaluation involvesjoin

that means that the type variables are required to be bound so the compiler can check the type

conditions. In other words, Machiavelli restricts the type-checking of polymorphic relational

operators in a similar way asbowtie did with record concatenation in Section 2.3.6: Machiavelli

does not check ‘dead’ or ‘sleeping’ code. For example, the following function is accepted by

Machiavelli although it is ill-typed:

-> fun tricky (r,s) =

union (select x.Name from x <- join(r,s)

where x.Salary > 100000,

select y.Name from y <- s

where y.Salary = "High");

The problem withtricky is that if s has aSalary attribute of typestring then the join

of r ands cannot have aSalary attribute of typeint. Machiavelli could not catch this error

becauser ands are polymorphic, so thejointype of the relationsr ands cannot be computed

at compile time.

Machiavelli also introduces a generalizedprojectoperator that takes an arbitrary expression

and a ground type (for which equality is well-defined) and projects the expression on the given

type. For example, the following expression projects a record on one of itslabels:

-> project([SSN=123, Name="Smith", Car=Porsche], [Name : String]);

>> val it = [Name="Smith"] : [Name : string]

Although it might seem like, the functionprojectdoes not itself introduce first-class labels be-

causeproject is part of Machiavelli’ssyntax. The best way to think ofproject in Machiavelli

29

is like a type cast operator whose correctness is checked at compile time. Needless to say, this

means that there has to be a special typing rule in the type system for dealing with project.

Although Machiavelli introduced the relational operatorsjoin andprojectas primitives of the

language it suffers from the same problems as any language that try to fix the list of polymorphic

relational operators: there always will be relational operators that cannot be expressed using the

pre-defined ones. In the case of Machiavelli, neither the relational operatorgreat divide[Date

and Darwen, 1992a] norcompose[Codd, 1970] can be expressed using the primitives.

2.3.8 Qualified Types and Rows

A system for record extension based on rows is presented by Gaster and Jones in [Gaster and

Jones, 1996]. The system presented in the paper is an adaptation of Jones’s theory ofqualified

types[Jones, 1992] which is a comprehensive system of using constraints (predicates) on types

to restrict the applicability of polymorphic functions. Gaster and Jones’s system can infer the

type for expressions with polymorphic field selection, field deletion, and record extension, and

also check the satisfiability of the arising type constraints in polynomial time, but it cannot

express polymorphic relational operators. Similarly to Ohori’s system [Ohori, 1995], the authors

described an effective compilation method that calculated label offsets from thelackspredicates

that appear in the types of expressions with polymorphic record operations. The type system

of the current thesis is a direct extension of that of the system presentedin [Gaster and Jones,

1996].

30

2.3.9 The LanguageD

Date and Darwen presented a comprehensive language proposal in [Date and Darwen, 1998] that

they tentatively namedD. The proposal mainly consisted of prescriptions and proscriptions for

various language features that the authors deemed desirable for a moderndatabase programming

language based on relational algebra. In contrast with the orthogonal persistence approach,

only relational variables (representing relations in an external relationaldatabase) can be made

persistent. For demonstration purposes, the authors introduced the languageTutorial D which

embodied the language principles of they put forward. The design of Tutorial D aims at fixing

some of the chief mistakes committed by SQL, but it also includes some novel contributions.

Tutorial D is an explicitly-typed language with full compile-time type checking. Attributes

in relations can be of arbitrary types, which means that besides primitive types, user-defined

types can also be stored in the database. The language does not support variants or recursive

tuple types. The following Tutorial D code segment defines a relational variable (or relvar)

person:

VAR person REAL Relation { id Integer,

name String,

address Tuple { street String,

city String,

state StateCode,

zip ZipCode },

location GPSCoord }

KEY { id };

The above definition demonstrates several features of Tutorial D: (1) explicit type signatures;

31

(2) arbitrary user-defined types in relvars (the attributelocation is of typeGPSCoordwhich is,

presumably, a user-defined abstract data type); and (3) nested tuple types (the type of attribute

addressis a tuple type with attributesstreet, city, etc.).

Relational operators are part of the language definition with special syntax and typing rules.

Due to the explicitly typed nature of the language, the type correctness of relational operator

applications can always be checked in polynomial type during compilation (in other words, the

language does not support polymorphic type inference). Also, as opposed to SQL, relational

queries can be arbitrarily nested. An important contribution of Tutorial D was that it invigorated

interest in relational algebra with its concise and elegant syntax and semantics, an interest that

began to wane as the majority came to identify relational algebra with its most wide-spread, and

less than flawless, implementation, SQL. As such, the language Tutorial D, and the language

design principles advocated by the Third Manifesto, were a major inspirationfor the current

thesis. To convey an impression of the novelty of its approach, we list some examples that show

Tutorial D expressions along with their SQL counterpart. Throughout theexamples, we will use

Date’s familiar suppliers-parts database [Date, 1999]:

S { Sname , City } SELECT Sname, City FROM S

S JOIN SP SELECT S.S#, S.Sname, S.Status, S.City, SP.P#, SP.Qty

FROM S JOIN SP ON S.S# = SP.S#

S WHERE City = "London" { Sname } SELECT Sname FROM S WHERE City = "London"

EXTEND SP ADD (Qty + 10) AS AltQty SELECT S#, P#, Qty, Qty + 10 AS AltQty FROM SP

32

2.3.10 Type Inference for the Relational Algebra

Bussche and Waller in [Van den Bussche and Waller, 1999] directly address the problem of

type inference for polymorphic relational expressions. However, the target of type inference

is ‘pure’ relational algebra, that is, an ‘out-of-context’ version whichis not embedded in any

programming language. The type of a relational variable is simply a set of attribute names, and

no further types are assigned to the attributes themselves. Type inferenceis aimed at deriving

type formulas (including boolean formulas on attributes) that describe all thepossible schemas

under which a given relational expression is well-typed. If the type formula is unsatisfiable,

then the relational expression contains a type error and there is no schemaunder which it is

well-typed.

The following example is taken from the same paper and shows a relational expression

e= σA<5(r ⊲⊳ s) ⊲⊳ ((r × u) − v)

together with the inferred type formula that captures the constraints on relational variables in

expressione:

v : a1a2a3a4

r : a1a3

u : a2a4

s : a3a4a5

A : (r ∨ s) ∧ (r ⇒ v) ∧ ¬(r ∧ u)

7→
e : a1a2a3a4a5

A : true

The interpretation of the above type formula is that if eachai is assigned some set of attributes

(that does not include the attributeA and is disjoint from all othera j ’s) and the constraint on

33

the attributeA is true (whereA : r ∨ s is an abbreviation forA ∈ r ∨ A ∈ s) then the type of

expressione is the uniona1 ∪ a2 ∪ a3 ∪ a4 ∪ a5 andA must be ine.

Bussche and Wadler presented a type inference algorithm that could derive type formulas

for arbitrary relational algebra expressions. However, their system was not directly aimed at

solving the polymorphic type inference problem of relational algebra expressions in the context

of a functional language. They ignore the types of attributes and they do not introduce tuples and

tuple operations into their language. In a follow-up paper [Van den Bussche and Vansummeren,

2005], they extended their previous system with attribute selection and set comprehension and

used rows to describe attribute types in tuples. The paper described a typeinference algorithm

that generated type formulas, but no algorithm was provided to check the satisfiability of type

formulas. Their new system, like their earlier one, lacked the ability to define new relational

operators.

Inspired by the work of Bussche and Wadler, Nagy and Stansifer [Nagy and Stansifer, 2005]

described a functional language with polymorphic relational operators (experience with said

system influenced to design of the system presented in the current thesis). Their approach was

based on type formulas introduced by Bussche and Wadler but they incorporated constraints on

attribute types into their system. The problem with their system is that the constraint solving

phase was only hinted at and it is unclear how row unification (unifying the types of matching

attributes) is supposed to be carried out in that system. As an additional problem, the type

inference algorithm is quite complex and does not lend itself easily to correctness proofs.

34

2.3.11 HaskellDB: Strongly Typed Database Access for Haskell

Leijen and Meijer presented HaskellDB in [Leijen and Meijer, 1999] as an exercise in designing

domain specific language extensions using Haskell’s powerful abstraction mechanisms and ex-

pressive type system. The original design of HaskellDB relied on a Hugs [Jones and Peterson,

1999] (a Haskell implementation) specific language extension (sometimes referred to as Trex)

that supported a system of extensible records based on the work of Gaster and Jones [Gaster

and Jones, 1996]. From later versions of HaskellDB, this dependenceon a Hugs extension has

been removed to make it more standards compliant (at the cost of losing some of its original

elegance).

The main idea behind HaskellDB is that instead of having the programmer build SQL queries

using the traditional method of string concatenation, thus losing all effective chance at ensuring

syntactic and semantic correctness at compile time, the programmer is given facilities for build-

ing queries in a type-awareabstract syntax treeformat. To make the construction of syntactically

incorrect queries impossible, the authors used Haskell’s algebraic data types to describe the ab-

stract syntax of relational algebra (actually, SQL, but due to the high level of abstraction the

difference mattered little). HaskellDB further improved this idea by embellishing algebraic data

types with phantom types and thus preventing the construction of semantically incorrect queries.

Next, we give a hint as to how it was achieved using excerpts from the HaskellDB code base:

data PrimExpr = -- Data type for primitive expressions.

BinExpr BinOp PrimExpr PrimExpr | UnExpr UnOp PrimExpr | ConstExpr String

data BinOp = -- Data type for binary operations.

OpEq | OpAnd | OpPlus | ...

35

Writing queries directly in abstract syntax is a bit inconvenient, but thanks toHaskell, it is

possible to provide combinators that correspond to the usual SQL operators:

constant :: Show a -> a -> PrimExpr

(.+.) :: PrimExpr -> PrimExpr -> PrimExpr

(.AND.) :: PrimExpr -> PrimExpr -> PrimExpr

(.==.) :: PrimExpr -> PrimExpr -> PrimExpr

Using the above definitions, it is still possible to build semantically incorrect expressions, like

the following:

constant "3" .+. constant "b"

Phantom types take care of this problem by including the type of the expression that the abstract

syntax tree is supposed to represent in the type of the expression node (notice how the type

variablea in Expr a does not appear on the right hand side of the definition, hence the ‘phantom-

type’ name):

data Expr a = Expr PrimExpr

constant :: Show a -> a -> Expr a

(.+.) :: Expr Int -> Expr Int -> Expr Int

(.AND.) :: Expr Bool -> Expr Bool -> Expr Bool

(.==.) :: Eq a -> Expr a -> Expr a -> Expr Bool

To handle arbitrary relational expressions, a comprehension based monad was introduced

by the authors which represents the computation expressed by the query.Similar to most SQL

implementations that also use comprehension, HaskellDB cannot concisely express natural join

but rather relies on the programmer to explicitly enumerate each and every attribute that has to

36

appear in the result. The way to construct queries using this monadic combinator turned out

to be surprisingly intuitive, especially if one is familiar with Haskell’s list comprehensions, as

demonstrated by the following example (we also show the same query in TutorialD syntax):

do { r <- table s

; p <- table sp

; restrict (r!city .==. constant "London")

; restrict (r!s# .==. p!s#)

; project (sname = r!sname, p# = p!p#, qty = p!qty)

}

S JOIN SP WHERE City = "London" { Sname, P#, Qty}

The use of monadic combinators made it possible to treat relational queries asfirst class

values with the additional benefit of the ability to serialize access to the external database, a basic

feature of monads [Wadler, 1993]. The fact that queries were represented by their abstract syntax

tree also made it possible to apply traditional query optimization techniques during runtime. To

ensure full static type checking, HaskellDB required the definition of the database schema to

be available at compile time in the form of a separate Haskell module (which was typically

generated by tools that could extract schema information from the database).

2.3.12 Heterogeneous Collections for Haskell

Kiselyov et al. [Kiselyov et al., 2004] presented for Haskell an encoding of collections (more

particularly, lists) whose elements were not restricted to the same type. The encoding heav-

ily relied on Haskell’s extensible class system which is itself based on the theory of Qualified

Types [Jones, 1992]. To demonstrate the expressive power of their system, the authors presented

37

strongly typed encodings, using Haskell’s class system to represent type constraints, of an un-

precedented variety of polymorphic record operations, including, amongothers: (1) extension,

(2) field deletion, (3) symmetric concatenation, (4) the ability to ask for the setof labels (the

heading) of a record and to perform set operations on headings, (5) to combinea list of labels

and a list of values into a record, and (6) to project a record on a set oflabels. In addition, field

labels are first-class citizens in their system (due to the fact that they are encoded as singleton

types). The following example demonstrates the construction of a record describing the cow

Angus, where we first construct the record labels:

data Cow = Cow -- Type used as label name space.

-- Definition of record labels.

key = firstLabel Cow "key"

name = nextLabel key "name"

breed = nextLabel name "breed"

price = nextLabel breed "price"

-- Definition of a record.

angus = key .=. (42::Integer)

.*. name .=. "Angus"

.*. breed .=. Cow

.*. emptyRecord

Just to give a taste of the level of Haskell type magic that goes on in the background, we show

the definitions, starting from that of heterogeneous lists, that lead up to the(.*.) combinator:

38

data HNil = HNil deriving (Eq,Show,Read)

data HCons e l = HCons e l deriving (Eq,Show,Read)

class HList l

instance HList HNil

instance HList l => HList (HCons e l)

(.*.) :: HList l => e -> l -> HCons e l

(.*.) = HCons

Actually, the encoding of records uses type-level naturals annotated witha string for the label

name. Name spaces (represented by singleton types likeCow above) are used to prevent conflicts

between naturals when used as record labels. As the encoding heavily relies on Haskell’s class

system whose error reporting capability is far from perfect, special tricks had to be used in order

to improve error messages. For this purpose, the vacuous Haskell classFail was introduced

and later used to provide instances of special error-reporting classes. Erroneous situations were

represented by requiring the compiler to derive an instance for an error-reporting class (which

it could not, since the only class providing it,Fail, was vacuous), thus forcing the compiler to

provide a more useful failure indication. The following example gives a hintas to the nature of

this method:

instance Fail (TypeNotFound e) => HOccurs e HNil

where hOccurs = undefined

class Fail x -- no methods, no instances!

data TypeNotFound e -- no values, no operations!

39

Now, if we would like to ask for a list of integers from a heterogeneous list that only contains

a single boolean value, the Haskell interpreter would give a more useful error message (similar

error messages were defined for erroneous record operations):

ghci-or-hugs> hOccurs (HCons True HNil) :: Int

No instance for (Fail (TypeNotFound Int))

Naturally, as record encodings relied completely on the capabilities of available Haskell

compilers, no special purpose constraint satisfaction algorithm was provided for checking type

correctness of polymorphic record operations in general. This, however, did not prove to be

a problem, since whenever such operations are applied to actual arguments, type variables are

instantiated to actual types, thus the compiler can check the satisfiability of type constraints.

40

Chapter 3

Language Syntax and Semantics

In this chapter, we describe the syntax and the semantics of the language. We begin with the

syntax of the core language and of the basic record operations, which we follow with a section on

the considerations that shaped our design choices. Next, we provide a detailed description of the

basic record operations, together with usage examples. We continue with the formal definition

of language semantics through evaluation rules (which we include chiefly for the sake of com-

pleteness). After introducing sets and relations, we conclude the chapterwith the development

of relational algebra, from basic record operations and sets, complete with examples.

The term language is an extension of core-ML, that is, an implicitly-typedλ-calculus with

let-bound polymorphism. Figure 3.1 defines the syntax of terms where the standard core and the

record extensions are separated by a line (both variablesx and labelsl draw their values from a

countable set of namesL). For the purposes of defining formal semantics, we also definevalues

in Figure 3.2 as a subset of terms.

3.1 Language Design Considerations

Our goal was to design a language that can not only express polymorphicrelational operators,

but which would also allow the definition of user-defined ones. The decision had to be made

whatprimitives, or basic operations, need to be present in the language in order to achieve this

41

t ::= term

x variable

c constant

λx.t abstraction

t t application

let x = t in t let

〈l1 = t, ..., ln = t〉 record literal

〈l = t | t〉 record extension

t · l field selection

〈t ‖ t〉 record concatenation

〈t\t〉 record difference

t!l field deletion

t · [t] record projection

Figure 3.1: Syntax of Terms

v ::= value

c constant value

λx.t abstraction value

〈l1 = v, ..., ln = v〉 record value

Figure 3.2: Value Terms

42

goal. Since relations are sets of records (tuples are called records in theprogramming language

community), it was clear from the beginning that the language would have to based on some

form of record calculus. The particular set of basic record operations we eventually chose was

arrived at through experimentation, where we strived for a minimal set ofoperations that could

express all original relational operators and was powerful enough todefine new ones. As it will

be demonstrated later, the chosen basic operations aresufficiently expressive to describe user-

defined polymorphic relational operators. The question arises whether each is alsonecessary,

that is, whether the set of basic operations is minimal. Curiously, the answer isno. Not all basic

operations are strictly necessary and there is a proper subset of the basic operations that have the

same expressive power as the original set. Why include the additional operators then? The short

answer is: for software engineering considerations. Some operations,which are expressible in

terms of more basic ones, nevertheless, allow us to put additional constraints on their operands.

For example, althoughfield deletioncan be expressed usingrecord difference, a separatefield

deletionoperation allows us the require the presence of the field to be deleted, something that

can help catch typos in record labels (otherwise, an attempt to delete a non-existent field would

always succeed, instead of resulting in an error).

3.1.1 The Notion of Record and the Omission of Variants

A record is a collection of values (known asfields), possibly of different types, each of which is

associated with a distinctlabeldrawn from theheadingof the record. A record is thus aproduct

of values of possibly different types. The dual of product issum, and the dual of record is called

variant (or tagged union). A variant is one particular value, tagged by a label, from some fixed

43

set of possibly different types. As a result of this theoretical duality, records and variantsare

often introduced side by side and treated similarly in some systems, for example in[Buneman

and Ohori, 1996; Gaster and Jones, 1996; Leijen, 2004]. During the preliminary design phase,

a conscious decision was made toomit variants from the system, because variants, as opposed

to records, play a marginal role in relational algebra, our main topic of interest. It remains as an

interesting future work to consider the implications of adding variants to the current system.

3.1.2 First-class Labels

In a language with first-class record labels we have the ability to treat record labels as ordinary

values that can be passed in as function arguments, stored in data structures, or serve as return

values from functions. A system with first-class labels was described in [Leijen, 2004]. Un-

fortunately, the ability to pass around record labels as ordinary values, does not, in itself, allow

us to define polymorphic relational operators. Hence, after due consideration, it was decided to

omit first-class labels from the current system, mainly because the costs it would incur (chiefly,

loosing the ability to derive principle types) seemed to outweigh its possible advantages (inter-

section types, type selective functions, etc). Thus, in the current system record labels are part of

thesyntaxof the language.

3.2 Basic Record Operations

In this section we introduce the basic record operations. A word of cautionbefore we proceed. It

is important to realize that the particular syntax chosen for the basic operations is to a large extent

irrelevant from a theoretical point of view. Nevertheless, syntaxdoesplay an important role in

44

Operation Shorthand Expansion

Heading Literal 〈l1, ..., ln〉 〈l1 = (), ..., ln = ()〉

Record Restriction (e1![e2]) 〈e1\(e1 · [e2])〉

Table 3.1: Notational Shorthands

the practical usefulness of any programming language so we strived forforms that respect good

language design principles and aesthetics. The decisions for operator associativity, precedence,

and syntactic form were governed by a search for economy of expression, readability, and, above

all, the somewhat elusive notion of ‘conceptual integrity’ (as advocated in[Brooks, 1995]).

We defer the discussion of types to the next chapter so that we can concentrate on the mean-

ing of and the rationale for each basic operation here. Using the basic operations, it is possible

to define other useful record operations that are common enough to merit their own notational

shorthands. A summary of these derived operations is presented in Table3.1. A detailed de-

scription of the operations themselves follow:

• Record ExtensionRecord extension ‘e= 〈l = e1 | e2〉’ is used to extend records with new

fields. Record extension will also play an important role in type-checking record literals,

since, at the conceptual level, record extension is used to recursivelybuild records, starting

from the empty record. In order to be well-defined, the expressione2 must evaluate to a

record thatlacksthe labell. The result of record extensione is a record that defines the

same mapping as the recorde2, and in addition it maps the labell to e1. Examples of

45

behavior (the symbol ‘{’ denotes evaluation):

〈a = 1 | 〈〉〉 { 〈a = 1〉

〈b = 2 | 〈a = 1〉〉 { 〈b = 2,a = 1〉

〈b = 2 | 〈c = ”A” ,a = 1〉〉 { 〈b = 2, c = ”A” ,a = 1〉

〈b = 2 | 〈b = 1〉〉 { UNDEFINED

〈b = 2 | 〈a = 42,b = 1〉〉 { UNDEFINED

• Field SelectionField selection ‘e · l’ is used to access the fieldl in recorde. In order

to be well-defined, the expressione must evaluate to a record thathas the labell. The

result of field selection is the value for the specific field in recorde. In the syntax used

throughout the thesis, field selection is left-associative and has higher precedence than

function application, for example, ‘f x · a · b’ means ‘f ((x · a) · b)’ and not ‘((f x) · a) · b’.

Examples of behavior:

〈a = 42〉 · a { 42

〈c = ”A” ,a = 1〉 · c { ”A”

〈b = 1〉 · a { UNDEFINED

〈b = 2, c = 42〉 · a { UNDEFINED

• Record ConcatenationRecord concatenation ‘e= 〈e1 ‖ e2〉’ is used to merge two records.

This operation should more precisely be calledsymmetricrecord concatenation since the

two records are required to be disjoint. Because the records to be mergedare disjoint, the

operation is commutative (hence the name, ‘symmetric’). In order to be well-defined, both

expressionse1 ande2 must evaluate to records and they must havedisjoint headings (sets

46

of labels). The result of the concatenation of recordse1 ande2 is a record that defines the

same mapping as the recorde1 (e2) when restricted to labels ine1 (e2). The empty record

is a unit element for this operation. Examples of behavior:

〈a = 1 ‖ 〈〉〉 { 〈a = 1〉

〈〈〉 ‖ a = 1〉 { 〈a = 1〉

〈〈b = 2〉 ‖ 〈a = 1〉〉 { 〈b = 2,a = 1〉

〈〈b = 2〉 ‖ 〈b = 1〉〉 { UNDEFINED

〈〈b = 2〉 ‖ 〈a = 42,b = 1〉〉 { UNDEFINED

• Record DifferenceProbably the most versatile of the basic operations, record difference

‘e = 〈e1\e2〉’ is used to throw away those fields frome1 that also appear ine2. The

field valuesof the second operand play no role in the operation, only itslabels. The only

requirement for this operation to be well-defined is that both expressionse1 ande2 must

evaluate to records. The result of the operation is a record that definesthe same mapping

as the recorde1 but is restricted to those labels thatdo notappear ine2. The empty record

is a right unit element for this operation. Examples of behavior:

〈〈a = 1〉\〈〉〉 { 〈a = 1〉

〈〈〉\〈a = 1〉〉 { 〈〉

〈〈b = 2〉\〈a = 1〉〉 { 〈b = 2〉

〈〈b = 2,a = ”A” 〉\〈a = 1〉〉 { 〈b = 2〉

〈〈b = 2,a = ”A” 〉\〈a = ”Yoshiko” 〉〉 { 〈b = 2〉

〈〈b = 2,a = 1971〉\〈a = ”Yoshiko” 〉〉 { 〈b = 2〉

47

• Field DeletionTo remove a fieldl from a recorde we use field deletion ‘e!l’. This op-

eration is not strictly necessary since it can be expressed using recorddifference in the

following way: e!l ≡ 〈e\〈l = ()〉〉. The reason why it was included among basic oper-

ations is that, in contrast with record difference, it requires the presence of the field to

be removed, thus it is not defined on all operands. From a software engineering point of

view, it is useful if we can signal potential programmer errors as early aspossible. Trying

to remove a non-existent field can be the sign of a typo in the name of the field, thus it is

better reported. If the programmer decides that the operation is in fact correct, then field

deletion can always be re-written using the more forgiving record difference. In order to

be well-defined, the expressione must evaluate to a record thathasthe labell. The result

of field deletion is a record that defines the same mapping ase but is undefined for the

label l. In the syntax used throughout the thesis, field deletion is left-associativeand has

higher precedence than function application (but the same as field selection), for example,

‘ f x!a!b’ means ‘f ((x!a)!b)’ and not ‘((f x)!a)!b’. Examples of behavior:

〈a = 42〉!a { 〈〉

〈c = ”A” ,a = 1〉!c { 〈a = 1〉

〈b = 3, c = ”A” ,a = 1〉!c!b { 〈a = 1〉

〈b = 1〉!a { UNDEFINED

〈b = 2, c = 42〉!a { UNDEFINED

• Record ProjectionThis operation is analogous to theprojectionoperation of relational

algebra, and was introduced so that the subset relation constraint between the headings

of operands could be enforced. Record projection ‘e = e1 · [e2]’ is used to project the

48

first recorde1 on the heading of the second recorde2. Similarly to field deletion, record

projection is not strictly required since it can also be expressed using record difference:

e1 · [e2] ≡ 〈e1\〈e1\e2〉〉. The reasons for including it are similar to those offield deletion,

that is, software engineering considerations. In order to be well-defined, both expressions

e1 ande2 must evaluate to records and the heading (set of labels) ofe2 must be a subset

of the heading ofe1. The result of projecting recorde1 on e2 is a record that defines the

same mapping ase1 restricted to labels that appear ine2. It is important to note, that

the field values of recorde2 play no part in the operation. Heading literals (see Table 3.1),

often used in record projection, are simply records whose field values are of no importance

(since we are only interested in the set of labels they define). In the syntaxused throughout

the thesis, record projection is left-associative and has higher precedence than function

application, for example, ‘f x · [y] · [z]’ means ‘f ((x · [y]) · [z])’ and not ‘((f x) · [y]) · [z]’.

Also, notice the deliberate similarity in notation between field selection (projecting on a

single label) and record projection (projecting on a set of labels). Examples of behavior:

〈a = 1〉 · [〈〉] { 〈〉

〈b = 2,a = 1〉 · [〈a = 23〉] { 〈a = 1〉

〈b = 2,a = 1〉 · [〈b〉] { 〈b = 2〉

〈b = 2,a = 1〉 · [〈a = 42,b = ” B” 〉] { 〈b = 2,a = 1〉

〈b = 2,a = 1〉 · [〈c = ”C” 〉] { UNDEFINED

〈b = 2,a = 1〉 · [〈a = 3, c = ”C” 〉] { UNDEFINED

To showcase the expressive power of basic record operations, in theclosing example we

49

show howdefaultvalues for missing fields can be supplied in a statically type-safe manner:

default≡ λt.let d = 〈a = 7〉 in 〈t ‖ 〈d\t〉〉

default〈a = 2, c = True〉 { 〈a = 2, c = True〉

default〈b = 5〉 { 〈a = 7,b = 5〉

3.3 Formal Semantics

The formal meaning of programs in the language is defined through operational semantics, that

is, using evaluation rules. With regard to these evaluation rules can we say that “well-typed

programs don’t go wrong”, that is, if a term is well-typed according the type system described in

the next chapter, then the evaluation of a term will always result in a value.Figure 3.3 describes

the standard evaluation rules [Pierce, 2002] for an implicitly-typedλ-calculus with an additional

let construct. The evaluation rules follow a lazy, or more precisely ‘call-by-name’, evaluation

strategy, that is, we always reduce the leftmost, outermost redex (reducible expression) and we

never reduce inside abstractions. The substitutions used in rules(E-AppAbs)and (E-Let) are

standard capture-avoiding substitutions, as defined in [Pierce, 2002].Figures 3.4, 3.5, and 3.5

formalize the meaning of basic record operations that were described earlier (notice how record

projection and field deletion is defined in terms of record difference).

We remark that in the evaluation rules we make use of our earlier definition of values and

require certain terms to be actually values to enforce evaluation order, forexample in(E-Diff2).

Also, although we could have defined it directly, we chose to define record concatenation as a

series of record extensions to simplify presentation.

50

(E-App)
t1{ t′1

(t1 t2){ (t′1 t2)

(E-AppAbs) ((λx.t1) t2){ [x 7→ t2]t1

(E-Let) let x = t1 in t2{ [x 7→ t1]t2

Figure 3.3: Evaluation Rules for the Core Language

(E-Rec)
t j { t′j

〈l1 = t1, ..., l j = t j , ..., ln = tn〉{ 〈l1 = t1, ..., l j = t′j , ..., ln = tn〉

(E-Ext1)
t2{ t′2

〈l = t1 | t2〉{ 〈l = t1 | t′2〉

(E-Ext2)
lx < {l1, ..., ln}

〈lx = tx | 〈l1 = t1, ..., ln = tn〉〉{ 〈lx = tx, l1 = t1, ..., ln = tn〉

(E-Conc1)
t1{ t′1

〈t1 ‖ t2〉{ 〈t′1 ‖ t2〉

(E-Conc2) 〈〈l1 = t1, ..., ln = tn〉 ‖ tx〉{ 〈〈l1 = t1 | ...〈ln = tn | tx〉...〉

Figure 3.4: Evaluation Rules for Basic Record Operations

51

(E-Diff1)
t1{ t′1

〈t1\t2〉{ 〈t′1\t2〉

(E-Diff2)
t2{ t′2

〈v1\t2〉{ 〈v1\t′2〉

(E-Diff3)

lx1 ∈ {l
y
1, ..., l

y
m}

〈〈lx1 = tx
1, ..., l

x
n = tx

n〉\〈l
y
1 = ty1, ..., l

y
m = tym〉〉

{ 〈〈lx2 = tx
2, ..., l

x
n = tx

n〉\〈l
y
1 = ty1, ..., l

y
m = tym〉〉

(E-Diff4)

lx1 < {l
y
1, ..., l

y
m}

〈〈lx1 = tx
1, ..., l

x
n = tx

n〉\〈l
y
1 = ty1, ..., l

y
m = tym〉〉

{ 〈lx1 = tx
1 | 〈〈l

x
2 = tx

2, ..., l
x
n = tx

n〉\〈l
y
1 = ty1, ..., l

y
m = tym〉〉〉

Figure 3.5: Evaluation Rules for Basic Record Operations (Continued)

52

(E-Del1)
t1{ t′1

t1!l { t′1!l

(E-Del2)
l ∈ {l1, ..., ln}

〈l1 = t1, ..., ln = tn〉!l { 〈〈l1 = t1, ..., ln = tn〉\〈l = ()〉〉

(E-Proj1)
t1{ t′1

t1 · [t2] { t′1 · [t2]

(E-Proj2)
t2{ t′2

v1 · [t2] { v1 · [t′2]

(E-Proj3)

{ly1, ..., l
y
m} ⊆ {l

x
1, ..., l

x
n}

〈lx1 = tx
1, ..., l

x
n = tx

n〉 · [〈l
y
1 = ty1, ..., l

y
m = tym〉]

{ 〈〈lx1 = tx
1, ..., l

x
n = tx

n〉\〈〈l
x
1 = tx

1, ..., l
x
n = tx

n〉\〈l
y
1 = ty1, ..., l

y
m = tym〉〉〉

Figure 3.6: Evaluation Rules for Basic Record Operations (Continued)

53

3.4 Sets and Relations

Sets and set operations are not central to the current thesis, but are required in any practical

implementation and are also convenient in presenting the examples. Hence, wewill assume that

standard set operations, together with an empty set constant, are definedamong the constants of

the language. In addition to having the standard set operations defined among the constants, it is

highly desirable to provide a special syntax for set comprehensions since they greatly simplify

the definition of relational operators. The syntactic extensions for sets and set comprehensions

are described in Figure 3.7. Although we will not provide formal evaluationrules for the stan-

dard set operations (we assume that they are provided by some externallanguage), we will

nevertheless give the translation rules for set comprehension to clarify itsmeaning. The trans-

lation rules (based on the translation rules for list comprehension in Haskell[Jones and et al.,

2003]) are presented in Figure 3.8 (the set operationcunionMap is analogous to the list operation

concatMapin Haskell’s standard prelude).

A relation is simply a set of records. However, due to the way sets are typically implemented,

there is a technical issue that must be addressed when introducing relations to a programming

language. The technical issue, which is somewhat marginal to the currentthesis but which nev-

ertheless is one that still merits some attention, is the question of computable equalitybetween

values. For example, it is well-known that the problem of comparing two function values for

equality is undecidable (a reason why programming language implementations ofsets normally

cannot handle sets of functions). As a result, only values of types on which equality is defined

and computable are allowed as members in sets. Some set implementations go even further

54

q ::= qualifier

x← t generator

t guard

t ::= term

... ...

{t, ..., t} set literal

{t | q, ...,q} set comprehension

Figure 3.7: Extra Terms for Sets and Set Comprehension

(SetComp1) {t1 | True}{ {t1}

(SetComp2) {t1 | q1}{ {t1 | q1,True}

(SetComp3) {t1 | x← t2,q1, ...,qn}{ cunionMap (λx.{t1 | q1, ...,qn}) t2

(SetComp4) {t1 | t2,q1, ...,qn}{ if t2 then {t1 | q1, ...,qn} else{}

Figure 3.8: Translation Rules for Set Comprehension

when, for reasons of efficiency, they require that only values of types with anorderingdefined

on them are to be used as members of sets. It follows that record values in arelation must be

comparable to each other, at least for equality. For example, in [Buneman and Ohori, 1996]

the authors achieved this by restricting field types todescriptiontypes of ML (types for which

equality is defined) and then defining equality between records recursively as equality on fields.

55

While acknowledging the problem, we would rather not provide a complete solution for

it inside the framework of the current thesis. This is simply because doing sowould require

the bringing up of a large scaffolding, in the form of various advanced programming language

features, that would be completely extraneous to our presentation. All the same, we envision that

in a practical implementation, something along the lines of Haskell’s type class system [Jones

and et al., 2003] could be used to define records as members of the standard Ord type class (types

with ordering defined on them), with the understanding, of course, that only records whose field

types are themselves inOrd would be members ofOrd. Using type classes would also have

the advantage that records with function values in their fields would not be outlawed, unless, of

course, we tried to use them in relations.

3.4.1 Relation Headings

The definition of certain relational operators requires access to the headings of their operands.

Since the heading of a relation is simply the heading of one of its records, it might seem an

easy task to get the heading of a relation. The problem is caused by empty relations, since there

is no member record to provide the heading of the relation. The solution is to provide access

to the typeof the relation through a controlled form of type reflection. The operationrelation

headingaccesses this type and returns a record whose heading is the same as thatof the relation

in question. We will use the notationr∗ to denote the heading of relationr. Readers with a keen

eye for detail must have noticed that this kind of type reflection implies that relation values must

carry with them their type information during execution. In fact, this is what wepropose, using,

again, Haskell’s type classes to provide the necessary scaffolding.

56

3.5 Defining Relational Algebra Operators

In this section we demonstrate the expressive power of the chosen set ofbasic record operations

by providing definitions for standard (and also for some non-standard)relational operators. The

standard set operations of relational algebra (union, intersection, anddifference) are considered

to be defined among the constants of the language so we omit their definitions (with the exception

of Cartesian productwhich we define explicitly). In order to help understanding, some of the

more involved definitions are introduced with some brief explanatory remarks.

• Cartesian ProductThe definition of this operator is straightforward. Notice though, that

the application of the record concatenation operator requires that the relational operands

be disjoint:

times≡ λr.λs.{〈ts ‖ tr〉 | ts← s, tr ← r}

• RestrictionThe function parameterf , representing the restriction criteria, must return a

boolean value when applied to a record from the relationr:

restrict≡ λ f .λr.{tr | tr ← r, f tr}

• ProjectionThe record parameter ‘h’ represents the heading on which we want project the

relationr. The application of record projection guarantees thath is actually a subset of the

heading ofr:

project≡ λh.λr.{tr · [h] | tr ← r}

57

• Join The local variableh represents the intersection of the headings of relationsr ands.

This common set of attributes is then used to match pairs of records from both relations.

By the way, this comparison for equality also implies that both relations should have the

same types for their common attributes:

join ≡ λr.λs.let h = 〈r∗\〈r∗\s∗〉〉 in

{〈tr ‖ 〈ts\tr〉〉 | ts← s, tr ← r, tr · [h] == ts · [h]}

• Division The local variableh represents the unique set of attributes of relationr (its com-

putation also enforces the constraint that the heading ofs must be a subset ofr). Other-

wise, the computation of division is based directly on its text book definition:

divide≡ λr.λs.let h = r∗![s∗] in

let w1 = project h r in

let w2 = times w1 s in

let w3 = project h(minus w2 r) in minus w1 w3

• All But ... Using the terminology of [Date and Darwen, 1998], we will name the opera-

tion of projectingawaya set of attributes from a relation asallbut. The set of attributes

projected away must form a subset of the input relation:

allbut ≡ λh.λr.{tr![h] | tr ← r}

• CompositionThe definition of this operator is straightforward. We simply project away

the common attributes from the result of the join:

compose≡ λr.λs.let h = 〈r∗\〈r∗\s∗〉〉 in allbut h (join r s)

58

• Small DivideThe definition of this ternary operator is lifted almost verbatim from [Date

and Darwen, 1998]:

small≡ λq.λr.λs.

let w1 = times q rin

let w2 = minus w1 s in minus q(project q∗ w2) in

• AggregationIn order to calculate various summaries over relations, we introduce the

groupbyoperator that partitions a given relationr by grouping records that match on

the supplied headingh. A user-supplied aggregation functiong is then applied to each

partition to calculate summaries (typical aggregation functions arecount, sum, average,

minimum, andmaximum):

groupby≡ λg.λh.λr.

let p = λv. {u![h] | u← r, u · [h] == v}

in {g t (p t) | t ← project h r}

3.5.1 Sample Relational Algebra Queries

Having defined relational operators, we put them to use in this section to form complex queries

over a toy relational database. We show the queries together with their results. The sample

database consists of three relations: the relationempsfor describing employees, the relation

deptsfor describing departments, and the relationprojs for describing projects. Their definitions

59

are as follows:

depts≡ {

〈dname= ”CSE” , deptno= 1〉,

〈dname= ”PHY” , deptno= 3〉,

}

emps≡ {

〈ename= ”Smith” , age= 34, deptno= 1, empno= 1〉,

〈ename= ”Jones” , age= 28, deptno= 3, empno= 2〉,

〈ename= ”Adams” , age= 42, deptno= 3, empno= 3〉

}

projs≡ {

〈pname= ”Laser” , empno= 1〉,

〈pname= ”Robot” , empno= 3〉,

〈pname= ”Robot” , empno= 1〉

}

• Find the names of employees who are under 40:

q1≡ let c = λt.t · age< 40

in project 〈ename〉 (restrict c emps)

q1 { {〈ename= ”Jones” 〉, 〈ename= ”Smith” 〉}

60

• Find the names of employees who work in the Physics department:

q2≡ let c = λt.t · dname== ”PHY”

in project 〈ename〉 (restrict c (join emps depts))

q2 { {〈ename= ”Jones” 〉, 〈ename= ”Adams” 〉}

• Find the names of employees who work on all projects:

q3≡ let empnos= divide projs(project 〈pname〉 projs)

in project 〈ename〉 (join emps empnos)

q3 { {〈ename= ”Smith” 〉}

• Count the number of employees per department (we assume that the functionsizetells the

size of a given set):

q4≡ let cnt= λt.λs.〈count= size s| t〉

in project 〈dname, count〉 (join depts(groupby cnt〈deptno〉 emps))

q4 { {〈dname= ”PHY” , count= 2〉, 〈dname= ”CSE” , count= 1〉}

• Find the names of employees who are not assigned to any projects at all:

q5≡ let empnos= minus(project 〈empno〉 emps) (project 〈empno〉 projs)

in project 〈ename〉 (join emps empnos)

q5 { {〈ename= ”Jones” 〉}

61

Chapter 4

Type System

In this chapter, we present the type system of the language and provide types for the basic

record operations. The type system we develop here is an application of thetheory of qualified

types by Jones [Jones, 1992] and is a direct extension of a system forextensible records and

variants [Gaster and Jones, 1996] usingrows[Wand, 1987] to describe record types. The theory

of qualified types extends the standard Milner type system [Damas and Milner, 1982] of poly-

morphic types withpredicateson types toconstrain(qualify) the possible instantiations of type

variables. It also comes with a nice formal development, typing rules, type inference algorithm,

and proofs of soundness for the main components. The presentation of the type system follows

similar sections from [Gaster and Jones, 1996; Leijen, 2004].

4.1 Kinds

We will use the kind system to distinguish between different kinds of type constructors and to

ensure that types are well-formed. The set of kinds is defined with the following grammar:

κ ::= ∗ the kind of all types

| row the kind of all rows

| κ → κ arrow kinds

62

Terms of the language have types of kind∗. Arrow kinds are used in type constructors like

polymorphic sets or lists.

4.2 Types

We define the setCκ of type constructors of kindκ as:

Cκ ::= χκ constants

| ακ variables

| Cκ′→κ Cκ′ applications

Types are now defined simply asτ ::= C∗. We assume the following initial set of type construc-

tors is defined (presented in distfix notation):

Int ::: ∗ integers

Bool ::: ∗ booleans

Unit ::: ∗ unit

{ } ::: ∗ → ∗ set type

→ ::: ∗ → ∗ → ∗ function space

LM ::: row empty row

Ll : | M ::: ∗ → row→ row row extension

Rec ::: row→ ∗ record type

Types are well-formed only when type constructors are fully applied (we forbid partial ap-

plication of type constructors) to arguments of correct kinds. For example:

• The result of applying the type constructor→ of kind ∗ → ∗ → ∗ to typesInt of kind ∗

andBool of kind ∗ is Int → Bool. In general, function types are constructed by applying

63

the function type constructor→ to argumentsτ1 andτ2, both of kind∗. Also, instead of

writing→ τ1 τ2 for the result of the application, it is customary to use the infix notation

τ1→ τ2 (where the→ operator associates to the right).

• The result of applying the type constructorRec of kind row → ∗ to the empty rowLM of

kind row is the record typeRecLM of kind ∗.

• The result of applying the type constructorrow extensionto a typeτ of kind ∗ and a rowr

of kind row is the rowLl : τ | rM. Since there are no first-class labels in the language, we are

actually talking about a family of type constructors, one for each possible label. Notice,

that the syntactic construction of rows permits the building of ill-formed rows (rows with

duplicate labels), something that we will have to prevent using type predicates.

4.3 Type-level Operations and Relations

In this section we introduce some type-level operations and relations on rows that are needed in

the rest of the thesis, some of which has already appeared elsewhere [Gaster and Jones, 1996;

Leijen, 2004]. An important property of the operations and relations presented in this section is

that they all are simple—they have polynomial complexity. In the following definitions, as in

the rest of the thesis, the meta variabler stands for type expressions of kindrow.

64

The syntactic order of labels is irrelevant in deciding equality between rows, formally:

Ll1 : τ1 | Ll2 : τ2 | rMM = Ll2 : τ2 | Ll1 : τ1 | rMM

Label deletion removes a labell from a row:

Ll : τ | rM − l = r

Ll1 : τ1 | rM − l2 = Ll1 : τ1 | r − l2M

Row concatenation is defined as:

r ‖ LM = r

r1 ‖ Ll : τ | r2M = Ll : τ | r1M ‖ r2

Difference of rows is defined as:

r\LM = r

r1\Ll : τ | r2M = (r1 − l)\r2

Intersection is thus simplyr1∩r2 ≡ r1\(r1\r2). Notice though, that due to the way row difference

is defined, row intersectionis notcommutative: the field types of the resulting row are ‘coming

from’ the first operand.

Much like [Gaster and Jones, 1996] we define amembershiprelation (l : τ) in r which holds

if the labell with typeτ appears in rowr:

(l : τ) in Ll : τ | rM
(l1 : τ1) in r l1 , l2

(l1 : τ1) in Ll2 : τ2 | rM

65

π ::= predicate

r ≃ r row equality

r lacks l lacks (for each label l)

r has (l : τ) has (for each label l)

r#r disjoint

r ≤ r subset

Figure 4.1: Syntax of Type Predicates

4.4 Type Predicates and Qualified Types

Basic record operations are well-defined only if the types of the operands satisfy certain con-

straints. Following the theory of qualified types [Jones, 1992] we will usepredicateson types to

capture these constraints. The syntax of predicates is presented in Figure 4.1.

The predicaterow equalityis separated by a line from the rest for a good reason: all other

predicates (serving only as notational shorthands) can be expressedin terms ofrow equality.

Why include these ‘derived’ predicates then? The answer is that they make for more readable

(programmer-friendly) predicates, and, more importantly, they are of great help in type simplifi-

cation, as we will see in Chapter 6. An explanation of the meaning of predicates follows:

• Therow equalitypredicate requires two rows to be equal, up to permutation of labels.

• The lackspredicate requires the absence of a label from a row.

• Thehaspredicate requires the presence of a label with a specific type in a row.

66

Predicate Shorthand Expansion

lacks r lacks l r ≃ r − l

has r has (l : τ) Ll : τ | LMM ≃ r\(r − l)

disjoint r1#r2 r1 ≃ r1\r2

subset r1 ≤ r2 LM ≃ r1\r2

Table 4.1: Expansion of Derived Predicates

• Thedisjoint predicate requires two rows to have disjoint headings.

• Thesubsetpredicate requires the heading of one row to be a subset of the heading of some

other row.

The formal semantics of predicates is defined by the entailment relation in Figure4.2. We

only have to formalize therow equalitypredicate, since all other predicates are just notational

shorthands that expand torow equalitypredicates, as defined in Table 4.1. Notice how we

make use of type-level operations and relations on rows, introduced in Section 4.3, to define

expansions for derived predicates and also to formalizerow equalityin the entailment relation.

The definition ofrow equalityis based on that in [Gaster and Jones, 1996].

A derivation of predicateπ from a finite set of predicatesP, written asP π, proves that

when all predicates inP hold, then the predicateπ must hold as well. The entailment relation

naturally extends to finite sets of predicates, that is, when all predicates in afinite setP hold,

then all predicates in the finite setQ must hold as well, if there is a derivation fromP for each

67

(taut)
π ∈ P

P π

(rowEqEmpty) P LM ≃ LM

(rowEqVar) P ρ ≃ ρ

(rowEqHead)
(l : τ) in r1 P r2 ≃ (r1 − l)

P r1 ≃ Ll : τ | r2M

Figure 4.2: Entailment Relation

predicate inQ. Formally: P Q ≡ ∀π ∈ Q.P π.

The theory of qualified types allows us to use any set of predicates,as long aswe can prove

that the entailment relation is monotone, transitive, and closed under substitution:

Theorem 4.4.1.The entailment relation in Figure 4.2 is:

1. monotone: Q⊆ P⇒ P Q,

2. transitive: P T ∧ T Q⇒ P Q, and

3. closed under substitution: P Q⇒ sP sQ.

68

Now we are in the position to introducequalified types, types that are qualified by a set of

type predicates. Like in [Gaster and Jones, 1996], we distinguish between types,τ, described in

Section 4.2, and type schemes,σ (types with universally quantified type variables). Formally:

ϕ ::= τ | π⇒ ϕ qualified types

σ ::= ϕ | ∀α.σ type schemes

Since the order of predicates and quantified type variables does not matterwe introduce the

following abbreviations:

π1⇒ ...⇒ πn⇒ τ ≡ π⇒ τ ≡ P⇒ τ

∀α1....∀αn.ϕ ≡ ∀α.ϕ

Universal quantification, hence polymorphism, is restricted by constraintson types, captured by

the set of predicatesP.

Like in [Leijen, 2004], for qualified types to be well-formed, we require that only row vari-

ables or the empty row appear in types and not arbitrary row expressions. This is an important

technical necessity, because the unification algorithm, used during type inference, does not know

how to unify arbitrary row expressions (like row concatenation). Row expressions thus appear

only in type predicates. For example, instead of writing something likeRec(ρ1 ‖ ρ2), we have

to writeρ3 ≃ (ρ1 ‖ ρ2)⇒ Recρ3.

69

Operation Surface Syntax Core Syntax

Empty Record 〈〉 c〈〉

Record Extension 〈l = e1 | e2〉 ((cl= e1) e2)

Field Selection (e·l) (c·l e)

Record Concatenation 〈e1 ‖ e2〉 ((c‖ e1) e2)

Record Difference 〈e1\e2〉 ((c\ e1) e2)

Field Deletion (e!l) (c!l e)

Record Projection (e1 · [e2]) ((c[] e1) e2)

Table 4.2: Translations of Record Operations to Core Syntax

4.5 Typing Basic Record Operations

The theory of qualified types assumes that the term language is core-ML, that is, an implicitly-

typed lambda calculus with let-bound polymorphism. Thus, the special syntacticconstructs for

records and record operations have to be translated to core syntax before type-checking can take

place. The translation rules are presented in Table 4.2, with the understanding that record literals

are treated as series of record extensions, that is, where each record literal 〈l1 = e1, ..., ln = en〉

is treated as the equivalent expression〈l1 = e1 | ...〈ln = en | 〈〉〉...〉.

There is one constant function corresponding to each record operation in the translation, and

it is the types of these constants that will capture the meaning of record operations for type-

checking purposes. Notice, that during the translation, record labels disappear from the syntax

of the language as they get incorporated into the names of the constants corresponding to the

70

Operation (Constant) Predicates Type

Empty Record(c〈〉) RecLM

Record Extension(cl=) ρ2 ≃ Ll : α | ρ1M, ρ1 lacks l α→ Recρ1→ Recρ2

Field Selection(c·l) ρ1 has (l : α) Recρ1→ α

Record Concatenation(c‖ ρ3 ≃ ρ1 ‖ ρ2, ρ1#ρ2 Recρ1→ Recρ2→ Recρ3

Record Difference (c\) ρ3 ≃ ρ1\ρ2 Recρ1→ Recρ2→ Recρ3

Field Deletion (c!l) ρ1 has (l : α), ρ2 ≃ ρ1 − l Recρ1→ Recρ2

Record Projection(c[]) ρ3 ≃ ρ1 ∩ ρ2, ρ2 ≤ ρ1 Recρ1→ Recρ2→ Recρ3

Table 4.3: Qualified Types for the Basic Record Operations

record operations. This clarifies what we meant when we said that record operations referring to

record labels form afamilyof operations (one for each label).

The qualified type schemes (predicates together with types) for the constants representing the

basic record operations, introduced by the translation to core syntax, are presented in Table 4.3

(all type variables in the predicates and in the types are assumed to be universally quantified.)

Notice how, in the type predicates for basic operations, the construction ofrows at the type level

mirrors the construction of records at the value level. This property of thepredicates will play

an important part in checking the satisfiability of predicates in Chapter 5.

71

4.6 Typing Rules and Type Inference

In this section we present the typing rules and the type inference algorithmW for the theory of

qualified types as developed by Jones [Jones, 1992]. A type assignment A is a finite map from

term variablesx to type schemesσ:

A ::= {x1 : σ1, ..., xn : σn}

The notationAx stands for the type assignmentA with the assumption onx removed. We

abbreviateAx ∪ {x : σ} asAx, x : σ. Figure 4.3 shows the standard typing rules for the theory

of qualified types (ftv returns the set of free type variables). The typing judgementP | A ⊢ e : σ

asserts that the expressione has type schemeσ when the predicatesP are satisfied and types of

the free variables ineare given by the type assignmentA. Notice that the typing rules treat sets of

predicates as ‘black boxes’, that is, the type inference algorithm is neutral towards the concrete

system of predicates being used. This ‘pluggability’ of the system is its greatest advantage since

the same set of typing rules (and type inference algorithm) can be used without modification in

different contexts.

4.6.1 Substitution and Unification

A substitution is a map from type variables to type constructors, and it is the identity function

for all but a finite set of variables. We restrict ourselves tokind preservingsubstitutions: that is,

to substitutions that map type variables to type constructors of the same kind. For a substitution

that maps a type variableα to a type constructorC we will write [α 7→ C], for the identity

substitution we will writeid and for the composition of substitutionss andt we will write st.

72

(const) P | A ⊢ c : σc

(var)
(x : σ) ∈ A

P | A ⊢ x : σ

(→ E)
P | A ⊢ e : τ′ → τ P | A ⊢ e′ : τ′

P | A ⊢ e e′ : τ

(→ I)
P | Ax, x : τ′ ⊢ e : τ

P | A ⊢ λx.e : τ′ → τ

(⇒ E)
P | A ⊢ e : π⇒ ϕ P π

P | A ⊢ e : ϕ

(⇒ I)
P∪ {π} | A ⊢ e : ϕ

P | A ⊢ e : π⇒ ϕ

(∀E)
P | A ⊢ e : ∀α.σ

P | A ⊢ e : [α 7→ τ]σ

(∀I)
P | A ⊢ e : σ α < ftv(A) ∪ ftv(P)

P | A ⊢ e : ∀α.σ

(let)
P | A ⊢ e : σ Q | Ax, x : σ ⊢ e′ : τ

P∪ Q | A ⊢ let x = e in e′ : τ

Figure 4.3: Typing Rules

A substitutions is called aunifier of type constructorsC1 andC2 if sC1 = sC2. A unifier s

is amost general unifierif for all unifiersu of constructorsC1 andC2 there exists a substitution

73

C id
∼ C

α < ftv(C)

α
[α7→C]
∼ C

α < ftv(C)

C
[α7→C]
∼ α

C1
u
∼ D1 uC2

u′
∼ uD2

C1C2
u′u
∼ D1D2

Figure 4.4: Kind Preserving Unification

t such thatu = ts. Since types are represented as Herbrand terms we can use the standard kind

preserving unification algorithm, as shown in Figure 4.4, to calculate most general unifiers. We

writeC1
u
∼ C2 for the most general unifieru of C1 andC2. The following theorem is by Robinson

[Robinson, 1965]:

Theorem 4.6.1.The algorithm in Figure 4.4 returns a most general unifier if it exists. It fails

precisely when there’s no such unifier.

With the given unification algorithm we can directly use the type inference algorithm W for

qualified types by Jones [Jones, 1992]. For completeness we include thetype inference algo-

rithm in Figure 4.5. The type inference rules can be interpreted as an attribute grammar where

each judgment of the formP | sA⊢W e : τ is a semantic rule where assignmentA and expression

e are inherited, while the predicatesP, the substitutions, and the typeτ are synthesized. The

algorithmW calculates principal types with respect to the typing rules presented in Figure 4.3.

In the (letW) rule, we use a generalization function that quantifies free variables notpresent

in the type assignment:

gen(A, ϕ) = ∀α.ϕ whereα = ftv(ϕ)\ftv(A)

74

(varW)

(x : ∀α.P⇒ τ) ∈ A

fresh(β) s= [α 7→ β]

sP | A ⊢W x : sτ

(→ EW)

P | sA⊢W e : τ Q | tsA⊢W e′ : τ′

(tτ) u
∼ (τ′ → α) fresh(α)

u(tP∪ Q) | utsA⊢W e e′ : uα

(→ IW)
P | sAx, x : α ⊢W e : τ fresh(α)

P | sA⊢W λx.e : sα→ τ

(letW)

P | sA⊢W e : τ σ = gen(sA,P⇒ τ)

Q | tsAx, x : σ ⊢W e′ : τ′

Q | tsA⊢W let x = e in e′ : τ′

Figure 4.5: Type Inference AlgorithmW

Jones proves that the type inference algorithmW in Figure 4.5 is both sound and complete with

respect to the typing rules in Figure 4.3 [Jones, 1992]:

Theorem 4.6.2.The algorithm in Figure 4.5 infers a principal type for a given expression e and

assignment A. It fails precisely when no type exists for e under the assignment A.

4.7 Examples of Inferred Types

To give a taste of the type system, in this section we provide some expressionsalong with their

inferred types (separated from the expression with a single line). As the type inference algorithm

75

does not check the satisfiability of predicates (a problem, addressed in detail in the next chapter)

some expression, though incorrect, do have types inferred for them. More complex expressions

(like join) also demonstrate how unwieldy inferred types can grow and thus the needfor type

improvement and type simplification.

1. Selecting a field from a record literal:

〈a = 2, b = True〉·a

P = ρ1 has (a : Int), ρ2 lacks b, ρ1 ≃ Lb : Bool | ρ2M, LM lacks a, ρ2 ≃ La : Int | LMM

τ = Int

2. Concatenating two records then extending the result:

λx.λy.〈a = 7 | 〈x ‖ y〉〉

P = ρ1 lacks a, ρ2 ≃ La : Int | ρ1M, ρ1 ≃ (ρ3 ‖ ρ4), ρ3#ρ4

τ = Recρ3→ (Recρ4→ Recρ2)

3. A quite complex expression:Join

join ≡ λr.λs.let h = 〈r∗\〈r∗\s∗〉〉 in

{〈tr ‖ 〈ts\tr〉〉 | ts← s, tr ← r, tr · [h] == ts · [h]}

P = ρ4 ≃ (ρ1\ρ8), ρ8 ≃ (ρ1\ρ2), ρ5 ≃ (ρ1\ρ6), ρ6 ≃ (ρ1\ρ4), ρ4 ≤ ρ1, ρ4 ≃ (ρ1\ρ8),

ρ8 ≃ (ρ1\ρ2), ρ5 ≃ (ρ2\ρ7), ρ7 ≃ (ρ2\ρ4), ρ4 ≤ ρ2, ρ4 ≃ (ρ1\ρ8), ρ8 ≃ (ρ1\ρ2),

ρ3 ≃ (ρ1 ‖ ρ9), ρ1#ρ9, ρ9 ≃ (ρ2\ρ1)

τ = {Recρ1} → {Recρ2} → {Recρ3}

76

Chapter 5

Checking Satisfiability of Predicates

The type inference algorithmW ignores the satisfiability of predicates, a serious challenge

since the power of the language derives in part from the expressiveness of type predicates, hence,

we begin the chapter with formalizing the notion of satisfiability and stating that the problem of

checking satisfiability is NP-complete both in the number of row variables and in the number

of labels. In order to remove exponential complexity in the number of labels, we introduce

a language restriction, but argue that the majority of useful programs still remain valid under

the restriction. Next, we develop an algorithm (algorithm Q) for checking satisfiability in the

restricted system. The algorithm consists of two main parts: (1) a set constraint solver, and (2) a

field type constraint solver. Nested records require special treatment, so we follow the general

description of algorithm Q with a section on how to handle them. We conclude the chapter with

a semi-formal complexity analysis, where we mainly argue for the practical usefulness of the

algorithm, despite its exponential complexity.

Let us begin our discussion on satisfiability with a motivating example. Take the following

expression:

e ≡ 〈a = 1〉·b

We are trying to select a field from a record literal that does not possessthat field, that is, we

77

violate the precondition of thefield selectionoperation. If we attempted to evaluate the expres-

sione using the evaluation rules presented in Chapter 3, we would get stuck before reaching a

value term, hence, the expressione is ill-typed. The problem isnot thatfield selectionis applied

to something other than a record (it is applied to a record), but rather that the record in question

does not have the fieldb. The standard Milner type system can express the first constraint, that

field selectionmust be applied to a record, but it cannot express the second one, thatthe field

being selected must be present in the record. Type predicates are usedto capture these addi-

tional constraints on types, constraints that cannot be expressed usingthe Milner type system

only. Let’s look at the type inferred by the type inference algorithmW for the expressione:

ρ1 ≃ La : Int | LMM, ρ1 has (b : α) ⇒ α

Since the type inference algorithm is an extension of the standard Damas-Milner one, if the al-

gorithm succeeds in inferring a type for an expression, then none of theconstraints expressible

in the Milner type system are violated in the expression (a basic property of type inference).

Nevertheless, it isstill possible that some constraints, expressed using type predicates, are vio-

lated by the expression in question. In the case of the concrete example, it iseasy to see that

there is no instantiation of the row variableρ1 that would simultaneously satisfy both predicates:

that ρ1 must be equal toLa : Int | LMM and thatρ1 must have the fieldb. In other words, the

type predicates inferred for the expressione areunsatisfiable(a notion we formalize later). In-

formally, when a set of predicates is unsatisfiable it means that the preconditions of some basic

record operations are violated (and vice versa).

In the rest of the chapter, we formalize the notion of satisfiability of predicates, propose a

78

language restriction to eliminate one source of exponential complexity in checking satisfiability,

describe the algorithmQ for checking the satisfiability of predicates, and analyze the complexity

of the proposed algorithm.

5.1 Definition of Satisfiability

In this section we formalize the notion of satisfiability of predicates and prove that the problem

of checking satisfiability is NP-complete. We define the satisfiability of a set of predicatesP as:

sat P iff ∃u.u ∈ {s | s ∈ Subst, sP}

That is, a set of predicatesP is satisfiable if there is at least one instantiation of row variables

that makes all predicates in the set true (that is, entailed by the entailment relation).

Theorem 5.1.1.Given a term e, where P| sA⊢W e : τ, the problemsat P is NP-complete.

Even more importantly, we observe, based on the reductions used in the proof, that the

decision procedure is exponentialboth in the number of row variablesand in the number of

labels mentioned inP.

We could now add the requirementsat P to the (letW) rule of the type inference algorithm W

to ensure satisfiability of predicates for inferred types. This extension ofthe algorithm, neces-

sary it might seem, is nevertheless a non-obvious step, since it changes the complexity of type-

checking from the Damas-Milner ‘quasi-linear’ (that is, exponential in theory, but overwhelm-

ingly linear in practice) to NP-complete. However, checking the satisfiability ofpredicates is

polynomial, if all record operations are performed on operands with ground types, which is al-

ways the case in expressions that can cause the evaluation of record operations. Exploiting this

79

fact, it is possible to keep the type-checking algorithm polynomial, by accepting programs with

type errors that are guaranteed not to interfere with evaluation, an approach taken both in [Bune-

man and Ohori, 1996] and [Makholm and Wells, 2005]. We do not side-step the exponential

complexity caused by type-checking polymorphic record operations, rather, by introducing cer-

tain restrictions, we offer a system that is almost as expressive as the unrestricted system, and

though still NP-complete, we argue that exponential complexity rarely arisesin practice.

5.2 Mapping to Set Expressions

Rows describe sets of labels and predicates on rows can be thought of as set constraints. We

would like to formalize this intuition by introducing a mappingφ from row expressions to set

expressions. The language of set expressions that is used as the target of the mapping is:

e ::= ∅ | {l} | x | (e∪ e) | (e∩ e) | (e\e)

With the above definition in mind, we define the mappingφ from row expressions to set

expressions inductively (notice the convention of mapping row variableρi to set variableρ′i):

φ(LM) = ∅

φ(ρi) = ρ′i

φ(r − l) = φ(r)\{l}

φ(Ll : τ | rM) = {l} ∪ φ(r)

φ(r1 ‖ r2) = φ(r1) ∪ φ(r2)

φ(r1\r2) = φ(r1)\φ(r2)

80

The following examples show the results of applyingφ to various row expressions:

Row Expression Set Expression (φ)

ρ1 ‖ ρ2 ρ′1 ∪ ρ
′
2

La : Int | Lb : Bool | ρ1MM {a} ∪ ({b} ∪ ρ′1)

ρ1 ‖ La : Int | LMM ρ′1 ∪ ({a} ∪ ∅)

(ρ1 − b) ‖ (ρ1\La : Int | ρ2M) (ρ′1\{b}) ∪ (ρ′1\({a} ∪ ρ
′
2))

We extendφ to substitutions (restricted to row variables):

φ(s) = [φ(ρi) 7→ φ(r i)]

... and predicates (we treat all derived predicates in their expanded form, hence we only have to

handle row equality):

φ(r1 ≃ r2) = (φ(r1) = φ(r2))

Thusφ(s) is a mapping from set variables to set expressions, whileφ(P) is a system of set

constraints. An important property of our mapping is expressed by the following lemma:

Lemma 5.2.1. Under all substitutions s, for a row expression r and a labelℓ, ℓ ∈ φ(sr) if and

only if (ℓ : τ) in sr for someτ.

Informally, what the lemma says is that the mappingφ is well-behaved, in the sense that the

presence/absence of fields in row expressions is preserved by the mapping.

5.3 A Simplifying Language Restriction

Theorem 5.1.1 asserts that checking the satisfiability of predicates is exponential in the number

of labels appearing (mentioned) in the predicates. Our goal in this section is toremove this

81

source of complexity from the system, for it would be unreasonable to put an a priori upper

bound on the number of labels appearing in expressions.

One obvious solution would be to require all fields with the same label to have thesame type,

in the manner of Haskell. Although this would achieve our goal (we do not prove this here), it

would make the system too inflexible. From the programmer’s point of view, unrelated field

selections would be forced to have the same type, greatly reducing the usefulness of the system.

Our solution is to require only those field selections thatare potentially related through

record constructionto have the same type. We try to make this restriction clear through the

following example, which, though is type-correct under the unrestricted system, violates our

restriction:

f ≡ λt.λu.λv.〈t ‖ u〉·a == 10∧ 〈t ‖ v〉·a == True

We require the two field selections to have the same type because they can potentially refer to

the same field, as it is the case whent has fielda. On the other hand, the following, modified,

example passes our restriction, since nowt cannot have the fielda (we extendt with the fielda)

so the two field selections are not related:

f ′ ≡ λt.λu.λv.〈t ‖ u〉·a == 10∧ 〈t ‖ v〉·a == True

∧〈a = 7 | t〉 == 〈a = 7,b = 5〉

Extendingt with the fielda is just a roundabout way of saying that the recordt cannot havea.

Naturally, in a full-fledged language with type ascription, there is no need for such workarounds,

instead, the programmer could achieve the same effect by simplyascribingthe intended type to

82

the given term (in this caset). For example (using Haskell-like syntax):

f ′′ ≡ λt.λu.λv.〈(t :: ρ lacks a⇒ Recρ) ‖ u〉·a == 10∧ 〈t ‖ v〉·a == True

With the above restriction imposed, checking satisfiability of predicates is polynomial in the

number of labels. We will show this by presenting an algorithm with the requiredcomplexity

in the sections that follow. Formally, satisfiability in the restricted system, as captured by the

algorithm for satisfiability, relates to satisfiability in the unrestricted system as:

satALG P iff sat P∧ ∀s′ ∈ ⌈P′⌉.∃s ∈ ⌈P⌉.φ(s′) = φ(s)

where we getP′ from P by replacing all occurrences of base typesχ∗ with type variablesα∗i ,

fresh for each occurrence. In effect,P′ is a form ofP, where the field type constraints have been

relaxed. Informally, what the definition says is that for each satisfying substitutions forP′ there

must exist a satisfying substitution forP that assigns the same set of labels to each row variable.

SincesatALG P impliessat P, butsat P does not implysatALG P, the algorithm for satisfiability

is sound but not complete with respect to the unrestricted system.

With the restriction imposed, the algorithm still correctly type-checks all examples provided

in the thesis, including the definitions of polymorphic relational operators, and a host of useful

programs with record and relational operations. Actually, we claim even more. We claim that

the restriction, in some sense, actuallyimprovesthe language by rejecting programs that are

rarely useful in practice.

83

5.4 The Algorithm Q

Type predicates can be unsatisfiable, either because there are conflicting constraints on the pres-

ence/absence of record fields, or because there are conflicting type constraints on record fields.

Thus, we will first check ifφ(P) is satisfiable (since obviously¬sat φ(P) implies ¬sat P),

then, using information gathered from the previous step, we will move on to check field type

constraints. Special care needs to be taken to handle nested records, which we will address af-

ter discussing the first two phases. The algorithm Q we are about to describe implements the

language restriction explained in Section 5.3.

There already exist several decision procedures to solve a system ofset constraints [Aiken

and Wimmers, 1992; Aiken, 1994], however, none of them hasall of the properties that we

find important. Our algorithm exhibits all of them: (1) mixing set constraint solving with uni-

fication, (2) producing a normal form that can be directly used for type simplification and im-

provement, (3) being compositional, or resumable, that is, adding a new setconstraint does not

require starting over, (4) having good error-reporting capabilities by clearly identifying con-

flicting constraints, and (5) exploiting assumptions on external database schemas (explained in

Section 5.11).

84

5.4.1 Pseudo Code for Algorithm Q

The steps of the algorithm for satisfiability are summarized in the following high-level outline:

1. Identify base variables inφ(P)

2. Map row predicatesP to set constraintsφ(P)

3. Identify independent (base) variables inφ(P)

4. Calculate normal form (̂ψ) for set expressions inφ(P)

5. Solve set constraintsφ(P) now in normal form (orfail)

6. Build row construction graphG from P

7. Identify connected components inG using output from Step 5

8. Unify field types belonging to the same component (orfail)

9. If row variables unify in Step 8, add new set constraints and resume atStep 5, otherwise

finish

5.5 A Normal Form for Set Expressions

Let L be the universal set of all labels withbase sets H1, ...,Hn ⊆ L. We define 2n regions

R0, ...,R2n−1 by Rj =
⋂

i Ĥi whereĤi = Hi if the ith bit is set in the binary representation ofj,

andĤi = Hi otherwise. Informally, regions are just the contiguous areas of a Venn diagram, as

illustrated in Figure 5.1 and Table 5.1 for two base sets.

85

Figure 5.1: Regions Defined by Base SetsH1 andH2

R0 = H1 ∩ H2

R1 = H1 ∩ H2

R2 = H1 ∩ H2

R3 = H1 ∩ H2

Table 5.1: Regions Defined by Base SetsH1 andH2

The following theorem can be found in many textbooks on set theory:

Theorem 5.5.1.For base sets H1, ...,Hn and regions R0, ...,R2n−1 defined as above:

1. L =
⋃

i Ri ,

2. regions are pair-wise disjoint, and

3. any set expression on H1, ...,Hn, built using only set union, intersection, complement, and

difference, is equivalent to the union of some regions
⋃

i∈IRi .

86

An important corollary of the theorem that will be exploited later is that, since regions parti-

tionL , each labelℓ belongs toexactly oneof the regionsRi .

We define a mappingψB from homogeneousset expressions (set expressions without label

constants) toprovisional normal formswhereB is a set of base setsH1, ...,Hn, andR0, ...,R2n−1

are regions defined on the base sets:

ψB(∅) = ∅

ψB(Hi) =
⋃

i∈IRi whereI = {k | Rk ⊆ Hi}

ψB(e∩ f) = ψB(e) ∩ ψB(f) =
⋃

i∈(Ie∩I f) Ri

ψB(e∪ f) = ψB(e) ∪ ψB(f) =
⋃

i∈(Ie∪I f) Ri

ψB(e\ f) = ψB(e)\ψB(f) =
⋃

i∈(Ie\I f) Ri

It is important to note that we use the definitions of regions to decide whetherRj ⊆ Hk holds

for some regionRj and some base setHk (it is easy to check thatRj ⊆ Hk holds if and only if

Rj = ... ∩ Hk ∩ ...).

We remark here that provisional normal forms can be effectively implemented by their index

sets (I) represented as bit vectors (of length 2n) thus allowing the performance of set opera-

tions on provisional normal forms as bit-wise logical operations on bit vectors. Bit vectors also

provide a succinct way of representing provisional normal forms (a useful fact in discussing ex-

amples). For example, in bit vector notation,0101 stands for
⋃

i∈{1,3}Ri , that is, a region appears

in the union if the corresponding bit is set in the bit vector. Further examples(assuming there

are two base sets, hence, four regions) are presented in Table 5.2.

Provisional normal forms cannot handle label constants in set expressions. For this reason,

we extend our normal form withlabel presenceindex setsIℓ for each labelℓ ∈ LP, whereLP

87

Set Expression Provisional Normal Form (ψB) Bit Vector

∅
⋃

i∈∅Ri 0000

H1
⋃

i∈{1,3}Ri 0101

H2
⋃

i∈{2,3}Ri 0011

H1 ∪ H2
⋃

i∈{1,2,3}Ri 0111

H1 ∩ H2
⋃

i∈{3}Ri 0001

H1\H2
⋃

i∈{1}Ri 0100

H1
⋃

i∈{0,2}Ri 1010

Table 5.2: Examples for Provisional Normal Forms

stands for the set of labels appearing inP. These presence sets, like index sets, are determined

by the set expression at hand. The format of our normal form thus becomes:

ψ̂B(e) =
⋃

i∈Ie

(Ri\LP) ∪
⋃

ℓ∈LP

⋃

i∈Ie
ℓ

Ri ∩ {ℓ}

We defineψ̂B inductively as:

For ψ̂B(∅), let I = ∅,with Iℓ = ∅ for all ℓ ∈ LP.

For ψ̂B({l}), let I = ∅,with Il = {0, ...,2n − 1} andIℓ = ∅ for all l , ℓ ∈ LP.

For ψ̂B(H j), let I = {k | Rk ⊆ H j}, with Iℓ = I for all ℓ ∈ LP.

ψ̂B(e∩ f) = ψ̂B(e) ∩ ψ̂B(f) =

⋃
i∈Ie∩I f (Ri\LP) ∪

⋃
ℓ∈LP

⋃
i∈Ie

ℓ
∩I

f
ℓ

Ri ∩ {ℓ}

The cases for̂ψB(e∪ f) etc. are defined analogously.

An important property of the normal form defined byψ̂ is that the union (intersection, etc.) of

88

two expressions in normal form is again in normal form. Furthermore, the following lemma

guarantees that̂ψ preserves the meaning of set expressions:

Lemma 5.5.2. For a set expression e and labelℓ, ℓ ∈ e iff ℓ ∈ ψ̂B(e).

The index setIe
ℓ

for a labelℓ in the normal form ofψ̂B(e) of a set expressione plays an

important part in the algorithm, since it tells us exactly which one of the regions alabel must

belong to in order to belong to a set expression:

Lemma 5.5.3. For a set expression e and a labelℓ ∈ LP, ℓ ∈ e iff ℓ ∈
⋃

i∈Ie
ℓ
Ri , whereIe

ℓ
is

defined by the normal form̂ψB(e).

Although formidable looking, normal forms can also be concisely represented by their index

sets (I together withIℓ for eachℓ ∈ LP) represented as a collection of bit vectors (of length 2n),

in other words, as a bit matrix, thus allowing the performance of set operations on normal forms

as bit-wise logical operations on these bit matrices. Furthermore, in the bit matrix notation

we will use the generic label name ‘*’ to mark the index set for all unmentionedlabels inP.

Examples for normal forms in bit matrix notation are presented in Table 5.3 for predicates:

P = ρ3 ≃ La : Int | ρ1M, ρ4 ≃ ρ3\ρ2

where there are two base sets (ρ′1 andρ′2), and alsoLP = {a}, that is, only the labela is mentioned

in P.

5.6 Solving Set Constraints

If no labels appear in the set of constraintsP, thenP is trivially satisfiable by the substitution

that maps each row variable to the empty row (an observation also made in [Vanden Bussche

89

Set Expression Normal Form Bit Matrix

∅
⋃

i∈{}Ri\{a} ∪
⋃

i∈{}Ri ∩ {a}
a:0000
*:0000

ρ′1
⋃

i∈{1,3}Ri\{a} ∪
⋃

i∈{1,3}Ri ∩ {a}
a:0101
*:0101

ρ′2
⋃

i∈{2,3}Ri\{a} ∪
⋃

i∈{2,3}Ri ∩ {a}
a:0011
*:0011

{a} ∪ ρ′1
⋃

i∈{1,3}Ri\{a} ∪
⋃

i∈{0,1,2,3}Ri ∩ {a}
a:1111
*:0101

({a} ∪ ρ′1)\ρ′2
⋃

i∈{1}Ri\{a} ∪
⋃

i∈{0,1}Ri ∩ {a}
a:1100
*:0100

Table 5.3: Examples for Normal Forms in Bit Matrix Notation

and Waller, 1999]).

Otherwise,φ(P) is a collection of set equality constraints of the forme = f that we no set

out to solve. Using Lemma 5.5.2,e = f iff ψ̂B(e) = ψ̂B(f). Now, using Lemma 5.5.3,ℓ ∈ e iff

ℓ ∈
⋃

i∈Ie
ℓ
Ri , and similarlyℓ ∈ f iff ℓ ∈

⋃
i∈I f

ℓ

Ri . Now supposeℓ ∈ Rk wherek ∈ Ie
ℓ

andk < I f
ℓ
.

This would imply thatℓ ∈ e while ℓ < f , which would violate the constrainte = f . Thus, it

must be the case thatℓ < Rk. In general,ℓ cannot belong to any of the regionsIe
ℓ
⊎ I

f
ℓ

without

violating the constrainte= f .

The last observation leads us to an algorithm to check the satisfiability of the set constraints

φ(P) as follows:

1. InitializeΘ(ℓ) to {0, ...,2n − 1} for eachℓ ∈ LP.

2. For each set equality constraint (e = f) ∈ φ(P), and for eachℓ ∈ LP, perform the update

Θ(ℓ)← Θ(ℓ)\(Ie
ℓ
⊎ I

f
ℓ
), whereIe

ℓ
andI f

ℓ
are defined bŷψB(e) andψ̂B(f), respectively.

90

3. If Θ(ℓ) = ∅ for anyℓ, thenφ(P) is not satisfiable, otherwise it is satisfiable.

Θ(ℓ) tells us which regions the labelℓ can be in. Before processing any of the set equalities,ℓ

can be in any of the regions, hence the initial value forΘ(ℓ) is the set of indexes of all regions.

By processing the set equalities the algorithm ‘narrows down’ the set of regions each label can

belong to. IfΘ(ℓ) = ∅, thenℓ cannot be in any of the regions, a contradiction, meaning that

the constraints are inconsistent. From an error-reporting point of view,the algorithm can report

(1) exactly which labels have inconsistent constraints on them (those for which Θ(ℓ) = ∅),

and (2) exactly which set equalities are responsible for the inconsistency(those that caused the

update of someΘ(ℓ) to∅).

Observe, that the global constraints captured byΘ can also be represented by a set expression

in normal form (using the special name ‘*’ for unmentioned labels):

ψ̂(Θ) =
⋃

i∈Θ(∗)

Ri\LP ∪
⋃

ℓ∈LP

⋃

i∈Θ(ℓ)

Ri ∩ {ℓ}

This will be convenient in Chapter 6 when we will introducecleansednormal forms usingΘ.

5.7 Selecting Base Sets

In order to solve set constraints, we need to convert set expressionsto normal form. But to do

that we first need to select base sets in terms of which all set expressionscan be expressed. The

näıve approach would be to take all the variables (that stand for unknowns sets) appearing in

φ(P) as base sets, but since the number of regions is exponential in the numberof base sets, it is

crucial to keep their number small.

A closer examination of the structure of predicates generated by the base operations reveals

that most row variables inP only name other row expressions and thus could be completely

91

1. Initialize Deps(X) to {vs(e) | (X = e) ∈ φ(P)} for all X ∈ vs(φ(P)), and initializeBVP to

vs(φ(P)).

2. If there isV ∈ BVP with a dependency setd ∈ Deps(V) such thatd , ∅ andV < d

(a non-recursive dependency), then

(a) updateBVP← BVP\{V},

(b) and for allX ∈ BVP, update

Deps(X)← {d ∈ Deps(X) | V < d}

∪ {dX\{V} ∪ dV | dX ∈ Deps(X),V ∈ dX,dV ∈ Deps(V),V < dV}

3. If BVP has changed then goto Step 2, otherwise stop.

Figure 5.2: Algorithm for Identifying Base Variables

eliminated by substitution. Those variables that cannot be substituted away,independentvari-

ables, will form a suitable collection of base sets. We make a slight shift of terminology now

as we start talking about basevariablesinstead of base sets. The reason for this shift is that we

would like to emphasize the fact that base sets will correspond to certain setvariables inφ(P)

and that we are going to identify these set variables by analyzing the set constraints inφ(P).

We assume, without loss of generality, that the right-hand side of all equations in φ(P) is

either a single variable or the empty set. Letvs(e) stand for the set of variables appearing

in e. The set of independent variables inφ(P) can be identified (actually, approximated) by the

algorithm presented in Figure 5.2.

92

When the algorithm terminates,BVP will be the set of independent variables that now can

be used as base variables in calculating normal forms for set expressions (of course, now set

equalities must be processed in order of their dependencies to ensure that the normal form of a

given variable is available in expressions that use that variable).

To clarify how the algorithm works, we present a sample run of the algorithmon the set of

constraints{A = B, B = C ∪ D, A = A∩C}. Deps(X) describes the set of dependency sets for

variableX while BVP is our current approximation of base variables. Since the dependenciesof

variables that are no longer inBVP are never considered again, we will only show dependencies

for variables that are still inBVP. The initial values ofDepsandBVP are:

BVP = {A, B, C, D}

Deps(A) = {{B}, {A, C}}

Deps(B) = {{C, D}}

Deps(C) = {}

Deps(D) = {}

Next, in Step 2 of the algorithm, we discover that the variableA has a dependency{B} that is

not empty and that does not haveA as a member. After performing the updates, described in

Step 2.a and Step 2.b, the new values ofDepsandBVP are:

BVP = {B, C, D}

Deps(B) = {{C, D}}

Deps(C) = {}

Deps(D) = {}

Our next candidate for elimination is variableB since it has a non-empty, non-recursive depen-

93

dency. After performing the necessary updates:

BVP = {C, D}

Deps(C) = {}

Deps(D) = {}

There are no more suitable candidates for substituting away, so we return our approximation

of base variables, the set{C,D}. We talk about approximation, since it can be the case that

a variable we identified as base variable is in factnot an independent variable, that is, it can

be expressed in terms of other variables. However, this is not a serious problem, since all we

care about is to quickly select a suitably small set of base variables in terms of which all other

variables can be expressed using our normal form.

5.8 Checking Field Type Constraints

Type predicates on rows reflect the way records are constructed using basic record operations.

Thus, it is possible to build a ‘goes into’, or row construction, graphG, showing which records

contribute fields to some other record, by analyzing the predicates. If we learn about the type of

a field in a given record, we can deduce, by looking at the graph, that some other record must

also have the same type for the given field. For example, in the record expressione = 〈x ‖ y〉,

if the field a has typeInt in x, then it must also have the same type ine. Notice that field type

information flows in the other direction as well, that is, if we discover the type ofe·a, then we

learned the type ofa in x or y (since only one of them can havea), henceG is undirected.

The row equality predicates inP that we are interested in when building our graphG are one

of the forms:

94

1. ρi ≃ Lℓ : τ | ρ jM

2. ρi ≃ (ρ j ‖ ρk)

3. ρi ≃ (ρ j\ρk)

The vertices of the graphG are row variables, and an edge between two vertices signals a

potential equality of some field types in the connected rows. Formally,G = (V,E), where

V = ftvrow(P), andE is defined as follows:

(ρi ≃ Lℓ : τ | ρ jM) ∈ P⇒ (ρi , ρ j) ∈ E

(ρi ≃ (ρ j ‖ ρk)) ∈ P⇒ (ρi , ρ j) ∈ E ∧ (ρi , ρk) ∈ E

(ρi ≃ (ρ j\ρk)) ∈ P⇒ (ρi , ρ j) ∈ E

Vertices are labelled with field type information as follows:

ρi(ℓ) = {τ | (ρi ≃ Lℓ : τ | ρ jM) ∈ P}

The row construction graphG is used to determine which field types must unify. Given a

labelℓ, and connected verticesρ1 andρ2, if ℓ ∈ φ(ρ1) and alsoℓ ∈ φ(ρ2), then the fieldℓ must

have the same type in both rows, that is, all types inρ1(ℓ) ∪ ρ2(ℓ) must unify. In general, for

a given labelℓ, if we can decide whetherℓ ∈ φ(ρi) for each vertexρi , then we can identify

connected componentsCℓ
j in G whereρi ∈ Cℓ

j impliesℓ ∈ φ(ρi). Vertices that belong to the same

componentCℓ
j must have the same field type forℓ, that is, all types in

⋃
ρi∈Cℓ

j
ρi(ℓ) must unify.

In order to identify the connected componentsCℓ
j , we need to be able to answer the question

whetherℓ ∈ φ(ρi). More precisely, we are asking the question: does ‘ρi has fieldℓ in all valid

instantiations ofρi ’ follow from the set of type predicatesP? We can answer this question by

95

taking advantage of a by product of the set constraint solving algorithm inSection 5.6, that is,

Θ(ℓ), which tells us to which regionsℓ can belong to. Using Lemma 5.5.3,ℓ ∈ ψ̂B(φ(ρi)) if and

only if ℓ belongs to one of the regions in the index setIφ(ρi)
ℓ

.

Now the question ‘isℓ in φ(ρi)?’ can be answered in three different ways:

1. If Θ(l) ⊆ Iφ(ρi)
ℓ

, thenyes.

2. If Θ(l) ∩ Iφ(ρi)
ℓ
= ∅, thenno.

3. Otherwise,maybe.

In order to proceed without resorting to back-tracking (that is, branching on everymaybe

answer), and thus to exponential complexity in the number of labels; our algorithm takes a

maybeanswer foryesand considers ambiguous cases as if the labelℓ has positively appeared in

the given row. This greatly simplifies the algorithm and is at the heart of the language restriction

discussed earlier.

Once we identified all the field types that must unify we perform unification and if it fails,

then we can conclude that the predicates inP are not satisfiable due to conflicting field type

constraints. In case of success, the resulting (referred to asimproving) substitutionsP will play

an important part in type improvement, as discussed in Chapter 6.

96

Figure 5.3: Connected Components for Fielda

To further understanding, in Figure 5.3 we show a row construction graph with connected

components for fielda encircled. The graph is generated by the following expression:

if z1·a then 〈x2 ‖ z1〉3·a elseg 〈a = 2 | x2〉4 〈x2 ‖ y5〉6

where numerical superscripts link vertices to their corresponding record expressions. The re-

sulting substitution in this case issP = [α 7→ Bool].

5.9 Handling Nested Records

Consider the following example using nested records:

e ≡ if x == y then f ((x·a)·b) elseg 〈b = 2 | y·a〉

Although not immediately obvious, the expressione is ill-typed since it has conflicting pres-

ence/absence constraints on the fieldb. Both x andy are records (we select the fielda from

both) of the same type (we compare them for equality) meaning that the fielda must have the

same type in both of them. However, given the same record type for fielda, we cannot simul-

taneously select from it (requiring its presence) and extend it with (requiring its absence) the

field b.

97

The problem is that in the set constraint solving phase, the algorithm does not yet know the

important constraint that the record types for fielda must be the same. This additional constraint

is discovered only in the field type constraint checking phase.

To correctly handle nested records, we have to continue analyzing the improving substitution

sP returned by the field type constraint checking phase. The basic idea is that if sP maps one row

variableρx to anotherρy, then we have to enforce the additional set constraintφ(ρx) = φ(ρy).

Formally, we define the additional set constraints as

K = {φ(ρx) = φ(ρy) | [ρx 7→ ρy] ∈ sP}.

We can process the additional set constraintsK without re-checking all previous set constraints.

If the system of set constraintsφ(P) extended withK is unsatisfiable, we fail. Otherwise, we

apply the improving substitutionsP to P and move on to the field type constraint checking phase.

We repeat this cycle untilK = ∅, which is guaranteed to happen since each substitution reduces

the number of type variables inP. If the algorithm successfully terminates, the improving substi-

tution eventually returned is defined to be thecompositionof improving substitution from each

cycle.

Nested records raise the possibility of recursive record types. Take the following expression:

er ≡ λt.t.a == t

The type of fielda in the recordt is the same as the type oft itself. There is nothing in the design

or the assumptions of algorithm Q that would prevent it from handling recursive record types,

and indeed it does handle them correctly. It is an altogether different question whether recursive

record types serve any useful purpose and whether they should be included in the language. It

98

remains as future work to consider the pros and cons of recursive record types in the context of

a purely functional database programming language.

5.10 Soundness and Completeness

The following theorem states that algorithm Q, described in the previous sections, correctly iden-

tifies sets of predicates that are not satisfiable (with regard to the entailment relation presented

in Section 4.4):

Theorem 5.10.1(Soundness). If ¬sat P then Algorithm Q will report failure.

Completeness, because of the language restriction presented in Section 5.3, is a bit trickier

business. As it stands, algorithm Q isdeliberatelynot complete, since it rejects programs that

are well-typed but violate the language restriction. However, it is possible tomodify the type

system in such a way that it coincides with the algorithm. The main idea is to usetwo rows (not

just one) to describe record types: one for fieldpresenceand one for fieldtypes. Then we can

modify the type of record concatenation so that it requires all fields (present or absent) in its

operands to have the same type:

〈 ‖ 〉 :: ρ3 ≃ ρ1 ‖ ρ2, ρ1#ρ2⇒

Recρ1 ρ4→ Recρ2 ρ4→ Recρ3 ρ4

With the modified type system in mind, we can state the following theorem:

Theorem 5.10.2(Completeness). Assuming a modified type system with two rows per record

type, ifsat P then Algorithm Q will succeed.

99

5.11 Complexity of Algorithm Q

The determining factors in the complexity of constraint satisfiability checking are

1. the number of predicates (p),

2. the number of base variables (n ≤ p), and

3. the number of labels (l ≤ p).

Each predicate is of sizeO(1) (the typing of basic operations guarantee this). Furthermore,

we assume that field types are ofO(1) so that unification can be considered a unit operation.

Next, we proceed with a detailed complexity analysis of the algorithm.

Converting to set constraints isO(p). Identifying base variables isO(p2): in each iteration

(requiringO(p) steps) we get rid of one variable, and there can be at mostp variables). Calcu-

lating the normal forms and processing the predicates isO(2nlp), since each bit matrix used to

represent normal forms is of sizeO(2nl) (there are 2n regions and there is one presence set for

each label). Building the row construction graphG is O(p) (assuming an efficient graph rep-

resentation using hash tables and adjacency lists), since it consists of analyzing each predicate

and building the graph. Finding the connected components inG for each label (with checking

label presence for each vertex) is againO(2nlp) (each presence check isO(2n) with O(p) vertices

andO(l) labels, while findingl connected components using depth-first search isO(lp)). Without

nested records, the complexity of algorithm is thusO(2nlp). Since the presence of nested records

might require restarting the algorithm, in the worst-caseO(p) times (for each row variable), we

conclude that the complexity of algorithm Q isO(2nlp2).

100

The algorithm is clearly exponential in the number of base variables (which determines the

number of regions used in describing normal forms) so we would like to put forward arguments

as to why we rarely expect to see this exponential complexity arise in practice. The gist of our

argument for practicality hinges on the fact that the number of base variables is proportional to

the number of function parameters from polymorphic function definitions. Tosee this, all one

has to consider is that independent row variables (ones that are not theresult of some type-level

operation) can only originate from polymorphic function arguments (informally, uncertainty

must come from the ‘outside’). Functions that take even as many as a dozenarguments are

quite rare in practice, so we expect the algorithm to perform well on average programs. Our

expectation is also supported by the experience we gained when using the implementation of

the algorithm. Also, we would like to re-iterate here the importance of the language restriction

introduced in Section 5.3 that removed one source of exponential complexity(on the number of

labels).

In database programming, it is quite common to refer to relations defined in some external

database. With the language presented in this paper, it now becomes possible to do this without

access to database schema information, relying on the type-checking algorithm to enforce that

external relations are used in a consistent manner. From a complexity pointof view, this poses

a new problem, since database applications regularly use dozens (if not hundreds) of external

relations so our previous argument for practicality (upper bound on polymorphic function ar-

guments) no longer holds. However, this only has to be the case if we treat database schemas

as completely unstructured, which would ignore the useful fact that most relational databases

are normalized (to some extent, at least). In fact, if we impose the strict condition on database

101

schemas thatany two relations can have at most one attribute in common, then the number ofdis-

tinct regions becomesquadraticin the number of external relations, making the type-checking

algorithm practical again. Severe as it might seem, the restriction is not completely unrealistic,

since database schemas in third normal form and using numeric surrogate keys often already

satisfy the condition, and if not, can be brought into conformance by normalizing, introducing

surrogate keys, and renaming attributes.

5.12 Sample Run

In this section we provide a sample run of the algorithm on a simple expression toclarify each

step of the algorithm. The expression we are going to analyze is the following ill-typed expres-

sion:

λx.x!a == x!b

The inferred type is:

P = ρ1 has (a : α), ρ2 ≃ ρ1 − a, ρ1 has (b : β), ρ2 ≃ ρ1 − b

τ = Recρ1→ Bool

First, we convert the predicates to their expanded forms:

P = La : α | LMM ≃ ρ1\(ρ1 − a), ρ2 ≃ ρ1 − a, Lb : β | LMM ≃ ρ1\(ρ1 − b), ρ2 ≃ ρ1 − b

Next, we convert the predicates to set constraintsφ(P) :

φ(P) = {a} ∪ ∅ = ρ′1\(ρ
′
1\{a}), ρ

′
2 ≃ ρ

′
1\{a}, {b} ∪ ∅ = ρ

′
1\(ρ

′
1\{b}), ρ

′
2 ≃ ρ

′
1\{b}

By analyzing the set constraints, we can identify the set of base variables, in this case:B = {ρ′1}.

102

Set Expression Bit Matrix

∅

a:00
b:00
*:00

{a}

a:11
b:00
*:00

{b}

a:00
b:11
*:00

ρ′1

a:01
b:01
*:01

(ρ′2 =) ρ′1\{a}

a:00
b:01
*:01

ρ′1\(ρ
′
1\{a})

a:01
b:00
*:00

(ρ′2 =) ρ′1\{b}

a:01
b:00
*:01

ρ′1\(ρ
′
1\{b})

a:00
b:01
*:00

Table 5.4: Normal Forms in Bit Matrix Notation

In order to process the set constraints, we need to calculate the normal forms of set expres-

sions, presented in Table 5.4. There is one base variable that defines tworegions, and there are

two labels (a andb) mentioned inP, which means that our bit matrices are relatively small.

All that remains is to process set constraints, now with both sides of the equation in nor-

mal form. Initially, there are no constraints on the presence of labels in any of the regions, so

Θ(a) = 11 andΘ(b) = 11 . Next, we process the set constraints (order is not important):

103

1. First, let’s process constraint{a} ∪ ∅ = ρ′1\(ρ
′
1\{a}), now in normal form:

a:11
b:00
*:00 =

a:01
b:00
*:00

Thus, we learn that labela cannot appear in regionR0 (since that would violate the equa-

tion), and we updateΘ(a) to 01 .

2. Processing set constraint{b} ∪∅ = ρ′1\(ρ
′
1\{b}) is analogous to the previous step, with the

result of updatingΘ(b) to 01 .

3. Finally, we process set constraint (ρ′2 =) ρ′1\{a} = ρ
′
1\{b} (= ρ′2):

a:00
b:01
*:01 =

a:01
b:00
*:01

From this we learn that neithera nor b can be in regionR1. Thus, we updateΘ(a) to 00

andΘ(b) to 00 .

Now that we have processed all the set constraints, we can conclude, by looking atΘ, that

they are unsatisfiable since bothΘ(a) = ∅ andΘ(b) = ∅. Not only that, we can report that we

have inconsistent presence/absence constraints for labelsa andb.

5.13 Summary

In this chapter we described algorithm Q, an algorithm for checking the satisfiability of predi-

cates derived by type inference algorithmW. The internal data structures built by algorithm Q,

especiallyΘ andG, will play an important role in the coming chapters, since they capture useful

information about the structure of the predicates, the relation between row variables, and the

‘relevance’ of each predicate.

104

Chapter 6

Type Improvement and Simplification

The types inferred by the type inference algorithmW (presented in Chapter 4) are not always

as accurate or concise as they could be. In this chapter we formalize the notions of accuracy

andconcisenessof qualified types, and develop algorithms thatimproveandsimplifysaid types.

The idea of treating type improvement and simplification as orthogonal to type inference in

the framework of the theory of qualified types was discussed by Jones in [Jones, 1995]. The

definitions (but not the algorithms, since they are specific to our system) presented in this chapter

were inspired by Jones’s work.

6.1 Type Improvement

We will begin with a motivating example. Take the following expression:

e ≡ λx.λ f .7+ f (x·a) (x·a)

The type inferred for expressione is:

P⇒ τ ≡ ρ1 has (a : α), ρ1 has (a : β)⇒ Recρ1→ (α→ β→ Int)→ Int

By analyzing the structure ofe, we can conclude that the two input parameters of the function

f must be of the same type, that of the fielda in the recordx. Thus, a more accurate type for

105

expressionewould be (P′ is aset, thus repeated predicates have been removed):

P′ ⇒ τ′ ≡ ρ1 has (a : α)⇒ Recρ1→ (α→ α→ Int)→ Int

The original principal typeτ is not as accurate as it could be, because the type inference

algorithm does not (since it cannot) take into consideration certain additional type equality con-

straints (here, equality of field types) that follow from the type predicatesP. As a result, there are

instances ofτ where the type predicatesP are not satisfiable, for example, those instances that

map type variablesα andβ to conflicting types. Thus, although the principal typeτ is strictly

more general than the improved typeτ′, this additional generality is illusory since we are forced

to map type variablesα andβ to the same type anyway in order to satisfy the type predicatesP.

A more accurate (or improved) type is thus one that takes into accountat least someof

the type equality constraints that follow from the type predicates, but are hidden from the type

inference algorithm. The type that has takenall such constraints into account is theprincipal

satisfiable type. Next, we develop these notions formally.

Recall from Section 4.4, that for a type to be well-formed only row variables(or the empty

row) can appear in it and not arbitrary row expressions. According tothis rule, the typesRecLM

andRec ρ1 → Rec ρ2 are well-formed, while the typesRec (ρ1 − l) andRec (ρ1 ‖ ρ2) are

not. In order to preserve the well-formedness of types during type improvement, we define a

row-restrictedsubstitution as a substitution that maps row variables to other row variables (orto

the empty row): that is, a row-restricted substitution does not map row variables to arbitrary row

expressions. For example, the substitution [ρ1 7→ ρ2] is row-restricted, while the substitution

[ρ1 7→ La : Int | ρ2M] is not.

106

Next, we define the set of satisfiable instances of a typeτ with regard to predicatesP as:

⌊τ⌋P = {sτ | s ∈ Subst, sP}

We call a row-restricted substitutions an improvingsubstitution, and the typesτ an improved

type, if the substitution does not change the set of satisfiable instances of the type:

⌊sτ⌋sP = ⌊τ⌋P

We call the improving substitutions the principal improvingsubstitution, and the typesτ the

principal satisfiable type, if for all improving substitutionsu there exists a row-restricted substi-

tution t such thatuτ = tsτ. Observe, that the principal satisfiable type is unique (up to renaming

of type variables, of course), but the principal improving substitution is not necessarily so (for

example, if [α 7→ β] improves the typeα → β → Int, so does [β 7→ α]). This hardly matters in

practice, sinceanyprincipal improving substitution will give the principal satisfiable type.

Jones states in [Jones, 1995] that in general (under an arbitrary system of predicates) it

can be undecidable to find the principal satisfiable type and sometimes it does not even exist.

Fortunately, this is not the case with the type system presented in this thesis. For all well-typed

expressions of the language, a principal satisfiable typedoesexists and itcanbe found using the

algorithm we describe later (in Section 6.2).

6.1.1 Representative Cases

Before we develop the algorithm for type improvement, we present three examples that embody

the three main ‘sources’ of additional type equality constraints that are hidden from the type

inference algorithm, and thus are not reflected in the inferred type.

107

Field Type Constraints

Take the following expression:

e1 ≡ λx.λy.if 〈x ‖ y〉·a == 3 then x·a elsey·b

The type inferred for expressione1 is:

ρ3 has (a : Int), ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2, ρ1 has (a : α), ρ2 has (b : α)

⇒ Recρ1→ Recρ2→ α

In this example, we select the fielda from the concatenation of recordsx andy to compare it

to an integer (thus pinning down its type). Hence, the fielda must have typeInt in either xor

y (since they are disjoint). But we also selecta from x, meaning thatx must havea, which,

together with our previous observation, implies that the expressionx·a has typeInt. Thus, we

can conclude from the constraints on field types that the return type of the functione1 cannot

be anything butInt. The row-constrained substitution [α 7→ Int] is therefore an improving

substitution. As a matter of fact, the improving substitutions1 = [α 7→ Int] also happens to be a

principal improving substitution since it takesall type equality constraints into account.

The type inference algorithm is too general to perform the kind of reasoning we did in the

previous paragraph and as a result the constraint that the type variableα is in fact equal toInt is

hidden from it. In general, when two field selections refer to the same record field the resulting

types must unify. As the above example tries to demonstrate, it is often a non-trivial task (since

it can involve reasoning with arbitrary record expressions) to decide whether two field selections

actually refer to the same field. Field type equality constraints are thus potentialsources of

improving substitutions.

108

Empty Row Constraints

A markedly different kind of ‘hidden’ constraint is when one row variable is constrained to be

equal to the empty row by the type predicates. Take, for example, the following expression:

e2 ≡ λx.〈x ‖ x〉

The type inferred for expressione2 is:

ρ2 ≃ (ρ1 ‖ ρ1), ρ1#ρ1

⇒ Recρ1→ Recρ2

In this expression, we concatenate the recordx to itself. Record concatenation requires its

operands to be disjoint, soρ1, the type ofx, must be a row that is disjoint with itself. There

is only one row that is disjoint with itself, and that is the empty rowLM, thus the type of both

the recordx and the return value is the empty recordRecLM. As a consequence, the improving

substitution in this case iss2 = [ρ1 7→ LM, ρ2 7→ LM] (which also happens to be a principal one).

Clearly, the case represented by the expressione2 has nothing to do with field type constraints

(no fields are even mentioned in it), rather, it is the result of a field presence/absence constraint,

namely, disjointness. In general, type predicates can constraint a particular row variable to be

equal to the empty row under any valid instantiation of the type, thus we can improve the type by

substituting said row variable with the empty row. Discovering empty row constraints is again

outside the scope of the type inference algorithm, and thus it too provides a potential opportunity

for type improvement.

109

Same Row Constraints

Type predicates can constrain two row variables to be the same in ways that are not accessible

to the type inference algorithm. Consider the following expression:

e3 ≡ λx.λ f . f 〈a = 7 | x〉 〈a = 2 | x〉

The type inferred for expressione3 is:

ρ1 lacks a, ρ2 ≃ La : Int | ρ1M, ρ3 ≃ La : Int | ρ1M

⇒ Recρ1→ (Recρ2→ Recρ3→ α)→ α

The two input parameters of the functionf are extensions of the same recordx with the field

a of type Int, therefore, the parameters should be of the same type. We could draw the same

conclusion by looking at the type predicates and realizing that the right-hand sides of the row

equalities defining row variablesρ2 andρ3 are exactly the same. Using our observations, we can

improve the type inferred fore3 by the improving substitutions3 = [ρ3 7→ ρ2], which is also a

principal improving substitution.

In general, by analyzing the type predicates it can sometimes be concluded that some row

variables must always refer to the same row (because, for example, theyconsist of the same

fields and the have matching types for all of their fields). In these cases, we can improve the

type by substituting away some row variables by other (equivalent) row variables. Like in the

previous cases, the type inference algorithm is not aware of these additional type constraints so

they can be exploited for potential type improvement.

110

6.2 Algorithm for Type Improvement

In order to find the principal satisfiable type, we will have to take into consideration all type

equivalence constraints implied by the type predicates. The three main sources of these ad-

ditional type constraints (field type, empty row, and same row) were outlined inthe previous

section so now we can concentrate on identifying the principal improving substitution that takes

all three sources into account. We proceed by breaking the problem up into finding the three

improving substitutions:sℓ, sLM, and s≃, that capture the consequences of all the field type,

empty row, and same row constraints, respectively. The composition of the three substitutions

s= sℓsLMs≃ will be a principal improving substitution which, when applied to the type, will yield

the principal satisfiable type. In the rest of the section we assume that we are trying to improve

the qualified typeP⇒ τ and that it has already been established (using the algorithm described

in Chapter 5) thatP is satisfiable.

6.2.1 Finding the Improving Substitution sℓ (Field Types)

Finding the substitutionsℓ is easy, since it has already been done by the algorithm for checking

the satisfiability of predicates, that is, algorithm Q. Among other things, algorithm Q must also

check field type constraints (since they might be unsatisfiable) by trying to unify types that refer

to the same field (see Section 5.8). The resulting substitution is exactly the one that we are

looking for, because it takesall field type constraints into account.

111

6.2.2 Finding the Improving Substitution sLM (Empty Row)

In order to decide which row variables are necessarily equal to the empty row, we will again take

advantage of information gathered by algorithm Q. Take examplee2 from Section 6.1.1:

e2 ≡ λx.〈x ‖ x〉

The set of predicates for expressione2 is:

P ≡ ρ2 ≃ (ρ1 ‖ ρ1), ρ1#ρ1

The system of set constraintsφ(P) is (with thedisjoint predicate expanded for processing):

φ(P) ≡ ρ′2 = ρ
′
1 ∪ ρ

′
1, ρ

′
1 = ρ

′
1\ρ
′
2

AnalyzingP we can see that there is one base variableρ1 (sinceρ2 can be expressed in terms of

ρ1), and thus two regionsR1 = ρ
′
1 andR2 = ρ

′
1. Next, we convert set expressions to normal form

(notice, that in order to calculate the normal form ofρ′2, we use the normal form ofρ′1):

Set Expression Normal Form

ρ′1 *:01

ρ′2 (= ρ′1 ∪ ρ
′
1) *:01

ρ′1\ρ
′
2 *:00

When algorithm Q tries to satisfy the set constraintρ′1 = ρ′1\ρ
′
2 (in normal form: *:01 =

*:00) it discovers that the regionR2 must be empty, since it appears on the left-hand side

but not on the right-hand side. In other words, the constraint on unmentioned labels is that

they cannot appear in regionR2. Algorithm Q records this asΘ = *:10 . Now, if regionR2 is

112

constrained to be empty, then it can be removed from the normal form ofρ1 without changing its

meaning, yielding the normal form*:00 . But *:00 is exactly the normal form of the empty

set! Thus, we can conclude that setρ′1 must be the empty set in order to satisfy the constraints

in φ(P), and, consequently, the rowρ1 must be equal to the empty row in order to satisfy the

predicates inP.

In general, we would like to be able to tell, simply by looking at its normal form, whether

a set (and thus the corresponding row) is constrained to be empty. As the previous example

shows, in order to do this, we have to take into consideration the global labelpresence/absence

constraints, captured by the algorithm Q. When we apply the consequences of the global label

presence/absence constraints to a normal form, we say wecleanseit, turning it into acleansed

normal form. Formally, for some set expressione, we define the cleansed normal form as:

ψ̂c(e) = ψ̂(e) ∩ Θ

For example, the cleansed normal form ofρ′2 is *:00 (that is, unsurprisingly,ρ′2 is also empty).

Obviously, cleansing normal forms only makes sense once we have processed all set constraints,

that is, after algorithm Q has finished (sinceΘ must reflectall label presence/absence con-

straints).

Now, if the cleansed normal form of a set is equal to the empty set, then the corresponding

row variable is necessarily equal to the empty row and can be safely substituted away. Formally,

we define the improving substitutionsLM as (whereρ ∈ ftvrow(P)):

sLM = {[ρ 7→ LM] | ψ̂c(φ(ρ)) = ψ̂(∅)}

113

6.2.3 Finding the Improving Substitution s≃ (Same Row)

A simple way of finding rows that are necessarily the same would be to comparetheir normal

forms for equality. After all, one might reasonably expect that two set expressions whose normal

forms match represent the same set. This is in fact the case, but, unfortunately, there are cases

where two set expressions represent the same set, yet, their normal forms do not match. For

example, the set expressionse1 = X ∪ a ande2 = a (assumingX is the only base variable) have

normal forms
a:11
*:01 and

a:11
*:00 , respectively. Now, if the setX is constrained to be the empty

set, then it is easy to see that setse1 ande2 are exactly the same. Thus, when looking for sets that

are the same, what we need to compare is not the normal forms, but rather the cleansed normal

forms (since they take global field presence/absence constraints into consideration).

When the cleansed normal forms of two set variables are the same, it means that under all

substitutions they have the same set of labels. The problem is, that this does not guarantee

that the corresponding rows also have matching fieldtypes. Therefore, in order to decide row

equality, we have to take field types into consideration as well. This is possible,since during

satisfiability checking, algorithm Q builds a row construction graphG (see Section 5.8) which

contains information on field types in individual rows. As part of checkingfield type constraints

the algorithm also calculates connected components for each fieldCℓ
i . Rows belonging to a

componentCℓ
j must have the same, unique typeτ(Cℓ

j) for field ℓ (these unique field types are

determined through unification, whose result, the substitutionsℓ, we discussed in Section 6.2.1).

114

With the aforementioned in mind, after algorithm Q has finished, it now makes sense to ask

for the type of fieldℓ in rowρ (for which type we will use the notationρ·ℓ to mirror field selection

on records). Formally:

ρ·ℓ = τ(Cℓ
k) whereρ ∈ Cℓ

k

Two row variables, whose corresponding set variables have matching cleansed normal forms

and whose field types are the same for all labels mentioned inP, are considered the same and one

can be safely substituted away with the other. The following is the definition of the improving

substitutions≃ (whereρx, ρy ∈ ftvrow(P)):

s≃ = {[ρx 7→ ρy] | ψ̂c(φ(ρx)) = ψ̂c(φ(ρy)), ∀ℓ ∈ Labels(P).ρx·ℓ = ρy·ℓ}

Actually, the above definition is incorrect, since it generates mappings between any two pairs in

a set of equivalent row variables. Thus, ifρ3 is equal toρ2 and also toρ1, it will include both

mapping [ρ3 7→ ρ2] and [ρ3 7→ ρ1]. To make the substitution well-defined, we assume there

exists some arbitrary ordering on row variables (for example, lexicographical), and require that,

if there are several mappings for a row variable ins≃, then it should map to the smallest one

(according to the chosen ordering).

To further understanding, we walk through the steps of finding the improving substitution

for the example presented in Section 6.1.1:

e3 ≡ λx.λ f . f 〈a = 7 | x〉 〈a = 2 | x〉

The type predicatesP inferred for expressione3 are:

P ≡ ρ1 lacks a, ρ2 ≃ La : Int | ρ1M, ρ3 ≃ La : Int | ρ1M

115

The system of set constraintsφ(P) is (with thelackspredicate expanded for processing):

φ(P) ≡ ρ′1 = ρ
′
1\{a}, ρ

′
2 = {a} ∪ ρ

′
1, ρ

′
3 = {a} ∪ ρ

′
1

The only base variable isρ′1, so the normal forms of the relevant set expressions are as follows:

Set Expression Normal Form

ρ′1

a:01
*:01

ρ′1\{a}
a:00
*:01

ρ′2 (= {a} ∪ ρ′1)
a:11
*:01

ρ′3 (= {a} ∪ ρ′1)
a:11
*:01

After algorithm Q has processed the constraints inφ(P), the global constraints are:Θ =
a:10
*:11 .

(The only relevant constraint in this case isρ′1 = ρ
′
1\{a}, that is, the fact thatρ′1 lacks fielda.)

Using the value ofΘ we can calculate the cleansed normal forms of the set variables:

Set Expression Cleansed Normal Form

ρ′1

a:00
*:01

ρ′2

a:10
*:01

ρ′3

a:10
*:01

By looking at the cleansed normal forms, we can conclude that setsρ′2 andρ′3 represent the same

set of labels, and, consequently, rowsρ2 andρ3 have the same set of fields.

116

Figure 6.1: Row Construction Graph, Expression:λx.λ f . f 〈a = 7 | x1〉2 〈a = 2 | x1〉3

Next, we have to check whether the field types of rowsρ2 andρ3 match. The row construc-

tion graph (with vertices labelled with types for fielda and connected components encircled)

for predicatesP is presented in Figure 6.1 (like in Section 5.8 numerical superscripts link ver-

tices to their corresponding record expressions). By looking at the picture, we can conclude that

the type of fielda in ρ2 is Int, that is,ρ2 ·a = Int, and, similarly,ρ3 ·a = Int. Thus, rowsρ2

andρ3 are indeed the same, so we can substitute one away with the other using the improving

substitution [ρ3 7→ ρ2].

6.3 Type Simplification

While experimenting with the language and the type system, one quickly discovers that quite of-

ten the inferred type includes predicates that are superfluous. Informally, a superfluous predicate

does not capture any relevant information, that is, it does not put any additional constraint on the

type variables that is not already captured by other predicates. Take thefollowing, motivating

example:

e1 ≡ 〈a = 7 | 〈〉〉

117

The type inferred fore1 is:

LM lacks a, ρ1 ≃ La : Int | LMM⇒ Recρ1

Obviously, the predicateLM lacks a is trivially true under all instantiations, thus it does not

constrain the set of satisfiable instances in any way. Therefore, the following type is equivalent

to the previous one:

ρ1 ≃ La : Int | LMM⇒ Recρ1

Formally, two sets of predicatesP andQ are equivalent if they define the same set of satisfi-

able instances (this definition slightly differs from the one offered by Jones in [Jones, 1995]):

P ∼ Q iff ⌊τ⌋P = ⌊τ⌋Q

A predicateπ is thus superfluous ifP ∼ P\{π}. A set of predicatesP is minimal if there is no

predicate inP that is superfluous.

Although, in general, it is difficult to say under what conditions should one set of predicates

be considered simpler than some other (different metrics give different results, not to mention

one’s subjective taste), we nevertheless decided to settle on one particular measure: the number

of predicates in the set. Thus, in this thesis, type simplification will always mean (unless other-

wise stated) disposing of superfluous predicates and thus reducing the number of predicates in

the type. Formally, the set of predicatesP is simpler thanQ, written asP ≤ Q, if P ⊆ Q and

P ∼ Q. Since findinga minimal set of predicates is easier than finding thesmallestminimal

set (because finding the smallest set would require enumeratingall minimal subsets ofP), what

we will be looking for during type simplification is notthe minimum (smallest), but rathera

minimal (irreducible) set of predicates. Thus, there will be no ‘principal simplified type.’

118

From now on, when we present inferred types, we will assume that satisfiability checking

(described in Chapter 5) and type improvement (described in sections 6.1 and 6.2) have already

taken place, that is, the presented types will always be principal satisfiable types.

6.3.1 Representative Cases

In this section, we present several examples for type simplification, wherewe arrive at a minimal

set of predicates using semi-formal reasoning. Bear in mind, that our goal is not to give an

exhaustive list of cases to be handled later, but rather to demonstrate the various ways a predicate

can become superfluous.

Constant Predicates

In some cases, there are no row variables mentioned in the predicates that cannot be substituted

away using row equality predicates. Take the following example:

e1 ≡ 〈a = 7 | 〈b = 2 | 〈〉〉〉·b

The improved type for expressione1 is:

ρ1 has (b : Int), ρ1 ≃ La : Int | ρ2M, ρ2 lacks a,

ρ2 ≃ Lb : Int | LMM, LM lacks b

⇒ Int

In this example, we select a field from a record literal that is completely determined at compile-

time. Intuitively, if the operation is type-correct, the type of the expression should simply be

the type of the selected field without any type predicates whatsoever. Moreformally, observe

119

that there are no independent row variables in the predicate set:ρ2 is Lb : Int | LMM, andρ1 (an

extension ofρ2) is La : Int | Lb : Int | LMMM. In other words, we are dealing with constant pred-

icates that are necessarily true (since we already checked that they aresatisfiable). Necessarily

true predicates do not capture any relevant type constraints, hence thetype of expressione1 after

type simplification is simplyInt.

Predicate Cancellation

Sometimes, the precondition of some basic operation is guaranteed by the postcondition of some

other basic operation. In this situation, the predicate expressing the precondition becomes su-

perfluous. Take the following example:

e2 ≡ λx.〈a = 2 | x!a〉·a

The improved type for expressione2 is:

ρ2 lacks a, ρ2 ≃ ρ1 − a
(1)
, ρ1 has (a : α),

ρ3 has (a : Int), ρ3 ≃ La : Int | ρ2M
(2)

⇒ Recρ1→ Int

In this example, there are two instances of predicate cancellation (cancellingpairs of predicates

highlighted): (1) we extend the recordx!a with the fielda that the record is guaranteed to lack,

and (2) we select from the record〈a = 2 | ...〉 the fielda that the record is guaranteed to have.

Actually, the only constraint expressione2 puts on recordx is that it must have the fielda.

Consequently, the simplified type of expressione2 is: ρ1 has (a : α)⇒ Recρ1→ Int.

120

Unreachable Predicates

A quite common case is when some predicates become superfluous because the type variables

they constrain are no longer reachable (a notion we will make more precise later) from the Milner

type. Take the following example:

e3 ≡ λx.let f = λy.〈x ‖ y〉 in x

The improved type for expressione3 is:

ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2⇒ Recρ1→ Recρ1

In expressione3, inside the functionf , we concatenate the recordx to the recordy, but there

is no way to supply the value ofy from the outside world sincef never escapes the scope of

the let expression. A closer examination of the situation reveals that the row variable ρ2 is not

mentioned in the type and cannot be constructed fromρ1, that is,ρ2 is unreachable (and so is

ρ3). As a result, the type predicates, although they are not constant, do notconstrain the type of

recordx in any way. The simplified type ofe3 is thus onlyRecρ1→ Recρ1.

Parallel Construction

When a row is constructed in several different ways from the same rows, it often happens that

only certain predicates are required to describe the construction of the row, making predicates

that lie on ‘parallel construction paths’ superfluous. Take the following example:

e4 ≡ λx.λy.if True then 〈x ‖ y〉 else〈〈x\y〉 ‖ y〉

121

The improved type for expressione4 is:

ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2, ρ3 ≃ (ρ4 ‖ ρ2), ρ4#ρ2, ρ4 ≃ (ρ1\ρ2)

⇒ Recρ1→ Recρ2→ Recρ3

Predicates mirror the construction of records at the level of rows. For instance, the rowρ3 is

constructed in two different ways (as a result of constructing the same record in the two branches

of the if expression). Observe, however, that only one way of construction isactually needed

in this situation, because in both cases the resulting record is the concatenation of the recordsx

andy. Consequently, during type simplification, we have a choice between two minimalsets of

predicates (representing the two different ways of construction):

• ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2⇒ Recρ1→ Recρ2→ Recρ3

• ρ3 ≃ (ρ4 ‖ ρ2), ρ1#ρ2, ρ4 ≃ (ρ1\ρ2)⇒ Recρ1→ Recρ2→ Recρ3

The type simplification algorithm halts as soon as it has found a minimal set of predicates,

and there is no guarantee that it will find the smallest possible set. Thus, the actual minimal set

chosen by the algorithm can be considered somewhat of an accident of implementation.

122

6.4 Algorithm for Type Simplification

The goal of type simplification is to find a minimal set of predicates by removing superfluous

predicates from a given set of predicatesP. The algorithm for type simplification consists of the

following steps: (1) identifyreachablepredicates using the Milner type; (2) identifyrelevant

predicates among reachable predicates; and (3) provide support using constructorpredicates for

unsupported row variables appearing in the relevant predicates or in theMilner type. In the rest

of the chapter, we assume that satisfiability checking and type improvement have already taken

place before attempting type simplification.

6.4.1 Identifying Reachable Predicates

Informally, reachablepredicates are those predicates that may directly or indirectly constrain

some type variables appearing in the Milner type. Predicates that are not reachable are guaran-

teed to be superfluous, since they capture constraints on type variables that cannot be instantiated

through unification. Take the following expressions and their improved types:

Expression Improved Type

e1 ≡ 〈a : Int | 〈〉〉·a
P1 ≡ ρ1 has (a : Int), LM lacks a, ρ1 ≃ La : Int | LMM

τ1 ≡ Int

e2 ≡ λx.x!a
P2 ≡ ρ1 has (a : α), ρ2 ≃ ρ1 − a

τ2 ≡ Recρ1→ Recρ2

e3 ≡ λx.let f = λy.〈x ‖ y〉 in x·a
P3 ≡ ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2, ρ1 has (a : α)

τ3 ≡ Recρ1→ α

123

For expressione1, there are no type variables in the Milner typeτ1 (sinceInt is a monotype), so

no predicate inP1 is reachable. For expressione2, both predicates inP2 are reachable since they

constrain row variablesρ1 andρ2 appearing in the Milner typeτ2. As for expressione3, only the

predicateρ1 has (a : α) is reachable.

To better understand why unreachable predicates are necessarily superfluous, take for exam-

ple the predicateρ1#ρ2 from P3. Sinceρ2 is unknown, and there isno waythat it can become

known, what predicateρ1#ρ2 says is that rowρ1 is disjoint withsomeother rowρ2. But we do

not know anything about rowρ2! Hence, we can safely ignore predicateρ1#ρ2 since it is always

true that rowρ1 is disjoint withsomerow ρ2.

We can calculate the set of reachable predicatesRch⊆ P, relative to some typeτ, using the

following algorithm (wherervs is the set of currently reachable row variables, and predicates

like lacksor hasare processed in their expanded form):

1. InitializeRch= ∅, andrvs= ftvrow(τ).

2. If there is a predicateπ = (r1 ≃ r2) ∈ P, such that the row expressionr1 is not a single row

variable and∅ , ftvrow(r1) ⊆ rvs (or the same holds for row expressionr2), then update:

(a) Rch← Rch∪ {π}

(b) rvs← rvs∪ {ftvrow(π)}

3. If Rchhas changed in the last iteration, go to Step 2, otherwise, halt.

The restriction in Step 2 of the algorithm, that we do not consider a row equalitypredicate reach-

able if the reachable side consists of only a single row variable, makes the definition of reachable

124

predicates much tighter. For example, without the restriction, the predicateπ = ρ1 ≃ (ρ2 ‖ ρ3)

would be considered reachable, even if onlyρ1 appears in the Milner type, which is undesirable,

since predicateπ is completely irrelevant unless we know something about bothρ2 andρ3. Also,

notice that, according to the algorithm, if a predicate does not contain row variables (the set of

free row variables on both sides ofrow equalityis empty), then it cannot be reachable. Finally,

if the there are no row variables in the Milner typeτ, then the set of reachable predicates is

necessarily empty.

6.4.2 Identifying Constructor Predicates

In Section 5.7 we presented an algorithm for identifying base variables in a set of predicates.

Informally, base variables are independent row variables, that is, rowvariables in terms of which

all otherderived(non-base) row variables can be expressed. Take for example the following set

of predicates:

P ≡ ρ3 ≃ ρ1 − a, ρ1 has (a : α), ρ4 ≃ ρ2 ‖ ρ1, ρ2#ρ1

The base variables inP areρ1 andρ2, while the derived variables areρ3 andρ4. The predicates

Ctr ⊆ P that are used to ‘construct’ all derived row variables are calledconstructorpredicates.

In the above example, there are two constructor predicates:Ctr = ρ3 ≃ ρ1 − a, ρ4 ≃ ρ2 ‖ ρ1.

We remark that, since the set of base variables is not unique (explained in Section 5.7), neither

are the set of constructor predicates. For instance, take predicatesρ1 ≃ ρ2− a, ρ2 ≃ La : α | ρ1M:

either row variableρ1 or ρ2 can be used as the base variable, the choice being arbitrary.

125

6.4.3 Identifying Relevant Predicates

As algorithm Q processes set equality constraints inφ(P) (see Section 5.6), it records the con-

sequences (in the form of disallowing the presence of certain labels in certain regions) of said

constraints. However, not all constraints convey new information aboutthe problem. Only when

the normal forms on the two sides of a set equality constraint are different, can we learn some-

thing new. However, in the case of constructor predicates, the two sides always have the same

normal form, since we use one side to define the other side (a derived variable). In a sense,

constructor predicates are assumed to be true and we check the remaining predicates against

them. Now, if the processing of a non-constructor predicate leaves the global presence/absence

constraintsΘ unchanged, then the predicate in question is irrelevant, in the sense that its con-

sequences follow from the predicates processed before it. Unfortunately, since it depends on

the processing order, this approach does not, in itself, necessarily finda minimal set of relevant

predicates.

In order to find a minimal set of relevant predicates, we have to extendΘ, so that we can

capture theevolutionof label presence/absence constraints. The idea is, that after each update

of Θ, we also record which predicate caused the change (this information will also form the

basis of error-reporting in Chapter 7). Actually, we need to do more: when updatingΘ with the

consequences of some predicateπ, we need to check whether itsubsumesthe consequences of

some previous predicate (which we are now able to do, using the log of updates toΘ). Consider

the following set of predicates:

P ≡ ρ3 ≃ ρ1 ‖ ρ2, ρ1 lacks a, ρ3 lacks a

126

Set Expression Normal Form

ρ′1

a:0101
*:0101

ρ′2

a:0011
*:0011

ρ′3 (= ρ′1 ∪ ρ
′
2)

a:0111
*:0111

ρ′1\{a}
a:0000
*:0101

ρ′3\{a}
a:0000
*:0111

Table 6.1: Normal Forms for Set Expressions inP

Sinceρ1 is a subset ofρ3, the predicateρ3 lacks a subsumes the predicateρ1 lacks a. To

see how we can discover this fact, take a look at the steps taken by algorithmQ:

1. Convert predicatesP to set constraintsφ(P) = {ρ′3 = ρ
′
1 ∪ ρ

′
2, ρ

′
1 = ρ

′
1\{a}, ρ

′
3 = ρ

′
3\{a}}.

2. Identify the set of base variables asBV = {ρ1, ρ2}. The set of constructor predicates is

thusCtr = {ρ3 ≃ ρ1 ‖ ρ2}.

3. Calculate the normal forms of the set expressions in Table 6.1 (we processes thelacks

predicate in its expanded form).

4. After processing the constraintπ1 ≡ ρ
′
1 = ρ

′
1\{a}, the global constraints areΘ =

a:1010
*:1111 .

(We do not have to process the constructor predicateρ′3 = ρ′1 ∪ ρ
′
2, since we used it to

define the normal form ofρ′3.) In other words, we learned that the fielda cannot be in

regionsR1 andR3, that is, inρ′1.

127

5. Next, the constraintπ2 ≡ ρ′3 = ρ′3\{a} changes the global constraints toΘ =
a:1000
*:1111 .

However, the information gathered from the constraintπ2 subsumes that of constraintπ1.

This is because the set of ‘forbidden’ regions{1, 3} implied byπ1 for labela, is a subset of

the set of the forbidden regions{1, 2, 3} implied byπ2 for the same label. The constraint

π2 captures all the constraints asπ1, thus it makesπ1 superfluous.

We can now definerelevantpredicatesRel ⊆ Rchas those non-constructor predicates that

cause an update to the global constraintsΘ during set constraint solvingandwhose effect on the

global constraints is not subsumed by some other predicate (which we ensure by keeping track

of the evolution of global constraints).

6.4.4 Putting It All Together

After we have identified relevant predicates, we are still not done, as thelast step is to provide

support for row variables mentioned in the relevant predicates or in the Milner type. The problem

is that relevant predicates, by definition, exclude constructor predicates, so using only relevant

predicates in the simplified type might result in ‘dangling’ row variables, that is, row variables

without support (way of construction). For instance, consider the expressione ≡ λx.x!a. The

improved type for expressione is P⇒ τ ≡ ρ2 ≃ ρ1 − a, ρ1 has (a : α) ⇒ Recρ1 → Recρ2.

The row variableρ1 is the only base variable, and predicateρ2 ≃ ρ1 − a is the only constructor

predicate. The only relevant predicate in this case isRel= ρ1 has (a : α). However, it would be

incorrect to useρ1 has (a : α) ⇒ Recρ1 → Recρ2 as the simplified type, since it leaves row

variableρ2 dangling. The problem is thatP / Rel, which violates the fundamental requirement

128

of type simplification, that it should not alter the set of satisfiable instances.

The way to handle dangling row variables is to use constructor predicates toprovide support

for them. Since constructor predicates, by definition, are able to construct all derived (non-base)

row variables from base row variables, we can use them to construct dangling row variables. In

the following algorithm,P′ denotes the simplified set of predicates being built,drv is the set of

dangling row variables,BV is the set of base variables,Ctr is the set of constructor predicates,

andRel is the set of relevant predicates. We also assume that each constructor predicate has the

row variable on its left-hand side:

1. InitializeP′ = Relanddrv = (ftvrow(Rel) ∪ ftvrow(τ))\BV.

2. If drv = ∅, then halt.

3. With a row variableρ ∈ drv and predicateπ = (ρ ≃ r) ∈ Ctr, update:

(a) P′ ← P′ ∪ {π}

(b) drv← (drv∪ ftvrow(π))\{ρ}\BV

4. Goto Step 2.

Observe, that in the initialization step, we do not consider base row variables as dangling, since,

by definition, they cannot (and need not) be constructed from other rowvariables.

When the above algorithm finishes,P′ will be a minimal set of predicates that defines the

same set of satisfiable instances asP, formally, P′ ≤ P and there is noQ ⊂ P′ such thatQ ∼ P.

We callP′ ⇒ τ thesimplifiedtype.

129

Chapter 7

Explaining Type Errors

In this chapter, we will turn to the problem of generating informative error messages for

ill-typed expressions. We do not present a fully-fledged algorithm (it could well be the subject

of a separate dissertation on its own), only a proposal for explaining complex errors using an

interactive approach. There has been a lot of research on how to generate useful error messages

in polymorphic languages, including a proposal for an interactive Q&A-likesystem by Beaven

and Stansifer in [Beaven and Stansifer, 1993]. Pure unification basedtype inference algorithms

are actually constraint solvers where the constraints are all type equality constraints. In a quali-

fied type system the type checking algorithm has to deal with both type equality constraintsand

predicates on row variables. Type errors in these systems translate to an unsatisfiable, conflicting

constraint set. The chief task of the type checker is to somehow report thecauseof the conflict

in a way that the programmer will find it useful in locating the error in her program. The type

system of the language presented in this thesis is an extension of that of ML,thus it felt natural

to base the type explanation algorithm off one designed for ML [Beaven and Stansifer, 1993],

which we will briefly discuss in the next section.

130

7.1 Explaining Type Errors in Polymorphic Languages

The type inference algorithmW presented in Section 4.6, like most type checking algorithms, is

syntax directed and compositional: the type of an expression is calculated bottom-up from the

types of its subexpressions. When type inference fails in ML, the reasonfor failure is always

a unification failure: two types that should be the same fail to unify. The result of successful

type unification is a substitution that summarizes the consequences of type equalities. The type

assignment provides the context in which type inference takes place, oneof its roles being the

communication of type constraints between different subexpressions of an expression, that is,

between different branches of the abstract syntax tree. In practice, during type checking there is

always an initial context (type assignment) which contains type bindings forthe primitives and

library functions of the language.

The general approach taken in [Beaven and Stansifer, 1993] is to augment data structures

used by the type inference algorithm with information that can later be used byexplanation

functions to pinpoint the cause of type errors. Nodes in the abstract syntax tree are annotated by

the type inferred for their subexpressions by the type inference algorithm. This way we can now

what types were unified as a consequence of each expression. Nodes that represent identifiers are

treated somewhat differently, because we also have to keep track of type variable renamings that

take place whenever a generic type variable (introduced by let-bound polymorphism) in the type

of the identifier is instantiated. Substitutions are represented as a list of atomic bindings of type

variables to types. This ensures that there is always a single cause for any binding, simplifying

error explanation. Each atomic binding is annotated with a pointer into the abstract syntax tree

131

to the node that caused the unification call that resulted in the binding in question. This way we

can trace the evolution of a type to its final form.

There were two explanation functions defined in [Beaven and Stansifer,1993]: Whyand

How. The functionWhy tries to explain why a certain expression was assigned the type it

was assigned, while the functionHow attempts to answer the question how a type variable

got assigned a certain type. The functionWhyuses structural information from the annotated

abstract syntax tree to answer questions, while the functionHowuses annotated atomic bindings

to follow the evolution of types (representing information flow between different parts of an

expression). Rather than providing a detailed treatment of the explanation functions, we adhere

to the old adage of “a picture is worth a thousand words” (not a Chinese proverb!) and present

a sample interaction with the system in Figure 7.1 (taken from [Beaven and Stansifer, 1993]).

The expression that caused the type error (attempting to add an integer to a boolean) for which

we are seeking explanation is the following:

(fn a => +((fn b => if b then b else a) true, 3))

The explanation functions in the original paper were not interactive (theysimply generated a

depth-first traversal of all the reasons leading to a type error), but they could easily be converted

to ask the user which branch of the explanation should be explored next. Obviously, as programs

get larger, this Q&A style becomes more advantageous.

7.2 Type Errors and Qualified Types

The theory of qualified types extends the standard Milner type with type predicates to constrain

the instantiation of universally quantified type variables (see Chapter 4). The ability to statically

132

A type error was detected in the application ‘(+ (#,3))’.

The domain of the function ‘+’ is not unifiable with the type of the argument ‘((# true) ,3)’.

Domain of function is ‘(int*int)’.

The argument has type ‘(bool*int)’.

**Why does the function ‘+’ have type ‘((int*int)->int)’?

The identifier ‘+’ was assigned type ‘((int*int)->int)’ as part of the initial environment.

**Why does the argument ‘((# true) ,3)’ have type ‘(bool*int)’?

Type of the pair ‘((# true) ,3)’ is determined by type of each element.

**Why does the first element ‘((fn b => #) true)’ have type ‘bool’?

The type of an application is the range of the function.

The function ‘(fn b => if #)’ has type ‘(bool->bool)’.

**Why does the fuction ‘(fn b => if #)’ have type ‘(bool->bool)’?

The type of a function definition is determined by the type inferred for

the formal parameter ‘b’ and by the type of the function body ‘if b then b else a’.

**Why does formal parameter ‘b’ have type ‘bool’?

The type of a formal parameter is inferred from its use.

The variable ‘b’ was initially assigned type variable ‘’b’.

**How did type variable ‘’b’ come to be bound to type ‘bool’?

This binding arose during analysis of ‘if b then b else a’.

Since the expression ‘b’ must have type ‘bool’ and the type variable ‘’b’ is its type,

then the type variable ‘’b’ must stand for ‘bool’.

**Why does the expression ‘b’ have type ‘bool’?

[Elided.]

**Why does functions body ‘if b then b else a’ have type ‘bool’?

The type of a conditional is determined by the the types of its branches which must unify.

**Why does the "then" branch ‘b’ have type ‘bool’? [Elided.]

**Why does the "else" branch ‘a’ have type ‘bool’? [Elided.]

**Why does the second element ‘3’ have type ‘int’?

All Integer constants have type ‘int’.

Figure 7.1: Explanation of a Type Error

133

type check basic record operations derives from the fact that we canprecisely describe their

types using type predicates. As a direct consequence, the type inference algorithmW alone is

not able to decide whether an expression is ill-typed or not. In other words, being accepted by

algorithmW is a necessary but not sufficient condition for well-typedness. It is the task of the

satisfiability checking algorithm Q (see Chapter 5) to ensure that there existsan instantiation of

type variables that make all type predicates true. If there is no such instantiation, then the type

predicates are unsatisfiable, and thus should be rejected by the type checker. When an expression

is ill-typed because of a type unification failure, we can use the approach presented in [Beaven

and Stansifer, 1993] to explain the type error. On the other hand, if it is ill-typed because of the

unsatisfiability of predicates, we need a different approach.

The problem of how to explain why a set of type predicates (in our case, row predicates) can

be broken into the following, somewhat orthogonal, subproblems: (1) showing which expression

introduced originally the predicates in the final predicate set; (2) identifyinga conflicting set of

predicates; and (3) revealing, step by step, the conflict (contradiction)in the conflicting set.

Before we develop algorithms for addressing these problems, we would liketo emphasize that

what we are trying to do is explaining type errors caused by the unsatisfiability of predicates.

The reason for this is that, if the type inference algorithmW itself fails, then the approach

described in [Beaven and Stansifer, 1993], without theslightestof modifications, is 100 per cent

applicable to task of explaining type errors in our system (another triumph ofmodularity for the

theory of qualified types). That is, in the cases we will handle, the type inference algorithm has

successfully derived a qualified type for the ill-typed expression in question.

134

7.2.1 Showing the Origins of Predicates

Each type predicate that appears in the final set of predicates returnedby the type inference

algorithm must have been introduced by some subexpression. After its original introduction, a

type predicate can change several times as type variables in the predicate go through an evolution

similar to the one experienced by type variables in the type assignment. The approach in [Beaven

and Stansifer, 1993] takes care of keeping track of how type variablesget bound to their final

type, so all that needs to be done is to augment type predicates with a pointer into the abstract

syntax tree to the expression that introduced them into the current predicates set, and a list of

instantiations of generic type variables used in the predicate. This way eachpredicate can be

traced back to its original source and form, and then, using information on the evolution of type

variables, can be shown to acquire its final form.

The information where a predicate is originated from becomes interesting when reviewing

the set of predicates that caused the conflict. The investigative user thencould be provided the

option to be presented with explanations on how each predicate has come into being, and got

into its current form. The functionWherecould be used to answer the question where a certain

predicate comes from.

The above described rosy situations is bit complicated by the fact that it is possible that

predicates that have been introduced by different expressions, ‘collapse’ into a single predicate

because of the result of type substitutions. For example, the predicate setρ1 lacks a, ρ2 lacks a

becomes simplyρ1 lacks a if we apply the substitution [ρ2 7→ ρ1] to it. In other words, some

predicates in the final set might actually stand for several predicates, introduced at different

135

points of the program. Can this create problem? As it turns out, hardly. Afterall, the main

problem is that the expressions in the program generated a conflicting setof predicates, and it

does not really matter if more than one expression contributed a certain predicate to the final set,

as long as we can link the predicate to at least one of its contributors, which we can.

7.2.2 Identifying Conflicting Predicates

From the point of view of error explanation, it is beneficial to be able to work with a minimal set

of conflicting predicates (that is, where no subset is unsatisfiable). To reveal the contradiction

in a larger set of predicates, it is useful to be presented with a smaller subset that still exhibits

the conflict. Recall that we have already faced a similar problem during typesimplification (see

Chapter 6) when we were trying to identify a minimal set of predicates that expresses the same

constraints as some larger set. As it turns out, the exact same algorithm, without modification,

works when the predicates in question are not satisfiable. This is due to the particular way algo-

rithm Q identifies unsatisfiable sets of predicates: when there are conflictingpresence/absence

constraints on a particular field, it manifests itself as a global constraint tellingus that the partic-

ular field cannot appear in any of the regions. From the point of view of type simplification, this

a perfectly legitimate constraint, so it is meaningful to ask: “what is a minimal subset of pred-

icates that still expresses the same (contradictory) constraints on the field inquestion?” When

there are several fields with conflicting presence/absence constraints, we can identify separate,

and most likely different, conflicting sets for each. The user then could be presented with a

choice to choose for which field we should present and explain the conflicting set of predicates.

136

7.2.3 Revealing the Contradiction

After identifying a minimal conflicting set of predicates for some fieldℓ, the next step is to

showwhy they are in conflict. As it turns out, this is simpler than it might seem at first. After

all, when there is a conflict, it means that there is no instantiation of row variables that would

satisfy the predicates. Because the conflict concerns the presence/absence of fields in rows, it is

possible to provide a step by step explanation by making assumptions on the base row variables,

then proceeding with the evaluation of constructor predicates, until some relevant predicate is

violated (using the classification of predicates introduced in Chapter 6). In other words, we

depend on algorithm Q and the algorithms used for type simplification to break uppredicates

into various categories so that we can explain the contradiction. Informally,base row variables

are like independent variables in a system of equations, and we reveal that the equations are

unsolvable by considering all possible combinations of values for the independent variables.

Luckily, since we are only interested in the presence/absence of a particular fieldℓ (we are not

even interested in its type), the number of possibilities is onlytwo per row variable. Take, for

example, the following ill-typed expression (we concatenate the recordx to itself, forcing it to

be the empty record, so it cannot have the fielda):

e1 ≡ λx.〈x ‖ x〉·a

The type inferred for expressione1:

P1 ≡ ρ2 has (a : α), ρ2 ≃ (ρ1 ‖ ρ1), ρ1#ρ1

τ1 ≡ Recρ1→ α

137

The conflicting set in this case is the whole ofP1. To clarify how the error explanation could

work, we present an extract from a hypothetical type error explanation session in Figure 7.2.

[Elided.]

The following predicate set is in conflict for field ‘a’:

(a) r2 has (a:a)

(b) r2 = (r1 || r1)

(c) r1#r1

Explanation:

(1) r1 has (a:b) Assumption.

Contradiction! (1) + (c)

(1) r1 lacks a Assumption.

(2) r2 = (r1 || r1) (b)

(3) r2 lacks a (1) + (2)

Contradiction! (3) + (a)

Figure 7.2: Explaining Predicate Conflicts Using Assumptions

It is not always necessary to make assumptions when explaining the contradiction in a set of

type predicates. Actually, in most cases, the contradiction can be revealedwithout complicating

the explanation with any assumptions at all. The reason for this is that there can betrivial type

predicates that simply require the presence/absence of a particular field in a base row variable.

In that case, there is no need to make the opposite assumption since it will obviously fail. Take

the following ill-typed expression:

e2 ≡ λx.λy.〈x ‖ y〉·a+ x·a == y·a

138

[Elided.]

The following predicate set is in conflict for field ‘a’:

(a) r1#r2

(b) r1 has (a:Int)

(c) r2 has (a:Int)

Explanation:

(1) r1 has (a:Int) (b)

(2) r2 has (a:Int) (c)

Contradiction! (1) + (2) + (a)

Figure 7.3: Explaining Predicate Conflicts Without Assumptions

The type inferred for expressione2:

P2 ≡ ρ3 has (a : Int), ρ3 ≃ (ρ1 ‖ ρ2), ρ1#ρ2, ρ1 has (a : Int), ρ2 has (a : Int)

τ2 ≡ Recρ1→ Recρ2→ Bool

The expression is ill-typed since we are selecting the fielda from both recordsx andy, ensuring

that they arenot disjoint, while attempting to concatenate them. The two base row variables in

this case areρ1 andρ2, but there is no need to make any assumptions during the explanation

of the conflict, since there are two trivialhaspredicates that put fielda in bothρ1 andρ2. We

present an extract from a hypothetical type error explanation sessionfor e2 in Figure 7.3 that

does not use assumptions.

The hypothetical error explanation sessions presented in figures 7.2 and 7.3 look suspiciously

like formal proofs where we start with a set of axioms, inference rules, and try to arrive at a

contradiction. In fact, this is the case, and although the task of deriving proofs like the ones

presented might seem daunting, closer examination reveals that our ‘proofs’ are always of an

139

extremely simple structure. To see this, first, observe that given base rowvariables we can

always use constructor predicates to calculate the values of derived row variables. Second,

we are only dealing with the presence/absence of single field at any time, so practically we are

working inside a propositional logic system, which greatly simplifies the application of inference

rules. Finally, the set we are working with is conflicting, so every instantiationof row variables

is guaranteed to make at least one predicate false.

140

Chapter 8

Conclusions

We have presented a language that supports polymorphic record operations through basic

record operations, such as field selection, field deletion, record extension, symmetric record

concatenation, record difference, and record projection. We have demonstrated, through exam-

ples, how the basic operations can be used to define polymorphic relationaloperators such as

join anddivide. We have described the type system of the language, an application of the the-

ory of qualified types with ML-style type inference, and presented a set of type predicates that

describe the type-correct usage of basic operations. We have showed that checking the satis-

fiability of type predicates is exponential, not only in the number of row variables, but also in

the number of labels. To eliminate exponential complexity in the number of labels, thus mak-

ing the language useful for practical purposes, we have imposed a restriction on the set of valid

expressions in the language. We have argued, based on experience with the implementation,

that the restriction poses no obstacle in writing the kind of programs the language was intended

for. We have presented a predicate satisfiability checking algorithm for therestricted language.

The complexity of the algorithm is polynomial in the number of record labels and inthe num-

ber of predicates, and exponential only in the number of independent row variables. The latter,

we have argued, is proportional to the number of function arguments in polymorphic function

141

definitions, a relatively small number, thus making the algorithm practical. To make inferred

types more accurate and concise, we have developed algorithms for improving and simplifying

types. We have illustrated how type improvement can make types more precise,and also that

type simplification finds a minimal set of type predicates. In the last chapter, wehave outlined an

approach to explaining type errors in the presence of complex record operations as an extension

of a type explanation solution for ML. The type-inference algorithm, the predicate satisfiability

checking algorithm, and the type improvement and simplification algorithms have allbeen im-

plemented in Haskell and thoroughly tested, which has greatly increased our confidence in the

results we have presented.

8.1 Future Work

Although some work has been done on the implementation of the interactive type explanation

algorithm presented in Chapter 7, it is far from complete and definitely not yet an integral part of

the system. As with all interactive type error explanation systems, only experience with actual

users can tell us how useful it really is, and suggest points for improvement.

More research needs to done on how to efficiently implement polymorphic record operations,

which is something that must be addressed before any practical implementation of the language

is attempted. It is known that for the record calculus of Gaster and Jones [Gaster and Jones,

1996], there exists an efficient compilation method that is based on the fact thatlackspredicates

can be translated to integer offsets in records for runtime field access, allowing complete type

erasure at compile-time. Unfortunately, it is unlikely that such a simple and efficient method of

compilation can be found for the stronger record calculus of the system in the current thesis.

142

Bibliography

Alexander Aiken. Set constraints: Results, applications, and future directions. InPPCP’94:

Principles and Practice of Constraint Programming, Proceedings, pages 326–335. Springer,

1994. ISBN 3-540-58601-6.

Alexander Aiken and Edward L. Wimmers. Solving systems of set constraints. In LICS’92:

IEEE Symposium on Logic in Computer Science, pages 329–340. IEEE Press, 1992.

Malcolm P. Atkinson and Peter Buneman. Types and persistence in database programming

languages.ACM Computing Surveys, 19(2):105–170, 1987. ISSN 0360-0300.

Malcolm. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, and R. Morrison. An

approach to persistent programming. InReadings in object-oriented database systems, pages

141–146. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

François Bancilhon and Peter Buneman, editors.Advances in Database Programming Lan-

guages. ACM Press, New York, NY, 1990.

D. Bartels and J. Robie. Persistent objects and object-oriented databases for C++. C++ Report,

4(7):49–50, 52–56, 1992.

Mike Beaven and Ryan Stansifer. Explaining type errors in polymorphic languages.ACM Letters

on Programming Languages and Systems (LOPLAS), 2(1-4):17–30, 1993. ISSN 1057-4514.

143

Frederick P. Brooks.The Mythical Man-Month: Essays on Software Engineering. Addison-

Wesley, Reading, MA, 1995.

Peter Buneman and Atsushi Ohori. Polymorphism and type inference in database programming.

ACM Transactions on Database Systems, 21(1):30–76, 1996. ISSN 0362-5915.

Luca Cardelli. Type systems. In Allen B. Tucker, editor,The Computer Science and Engineering

Handbook. CRC Press, Boca Raton, FL, 1997.

Edgar F. Codd. A relational model of data for large shared data banks.Commun. ACM, 13(6):

377–387, 1970. ISSN 0001-0782.

Robert M. Colomb.Deductive Databases and their Applications. Taylor & Francis, London,

UK, 1998.

William R. Cook and Ali H. Ibrahim. Integrating programming languages & databases: What’s

the problem?http://www.cs.utexas.edu/∼wcook/projects/dbpl/, 2005.

Luı́s Damas and Robin Milner. Principal type-schemes for functional programs. In POPL

’82: Conference Record of the Ninth Annual ACM Symposium on Principles of Programming

Languages, pages 207–212, 1982.

Chris J. Date.Relational Database: Writings 1985-1989. Addison-Wesley, 1990.

Chris J. Date.Introduction to Database Systems (7th edition). Addison Wesley, 1999.

Chris J. Date and Edgar F. Codd. The relational and network approaches: Comparison of the

application programming interfaces. InFIDET ’74: Proceedings of the 1974 ACM SIGFIDET

144

(now SIGMOD) workshop on Data description, access and control, pages 83–113, New York,

NY, USA, 1975. ACM Press.

Chris J. Date and Hugh Darwen. Into the great divide. InRelational Database Writings: 1989-

1991, pages 155–168. Addison-Wesley, Reading, MA, 1992a.

Chris J. Date and Hugh Darwen.Relational Database Writings: 1989-1991. Addison-Wesley,

Reading, MA, 1992b.

Chris J. Date and Hugh Darwen.Relational Database Writings: 1991-1994. Addison-Wesley,

1995.

Chris J. Date and Hugh Darwen.Foundation for Object/ Relational Databases: The Third

Manifesto. Addison-Wesley, 1998.

Chris J. Date, Hugh Darwen, and David McGoveran.Relational Database Writings: 1994-1997.

Addison-Wesley, 1998.

Klaus R. Dittrich. Object-oriented database systems: The notion and the issues. InOn Object-

Oriented Database System, pages 3–12. Springer-Verlag, 1991.

Benedict R. Gaster and Mark P. Jones. A Polymorphic Type System for Extensible Records and

Variants. Technical Report NOTTCS-TR-96-3, Department of Computer Science, Notting-

ham, 1996.

Robert Harper and Benjamin Pierce. A record calculus based on symmetricconcatenation. In

POPL ’91: Principles of Programming Languages, Proceedings, pages 131–142. ACM Press,

1991.

145

Rod Johnson.J2EE Development Without EJB. Hungry Minds Inc, U.S., 2004.

Mark P. Jones. A theory of qualified types. InESOP’92: European Symposium on Programming,

Proceedings, pages 287–306. Springer, 1992.

Mark P. Jones. Simplifying and improving qualified types. InFunctional Programming Lan-

guages and Computer Architecture, pages 160–169, 1995.

Mark P. Jones and John C. Peterson. Hugs 98: A functional programming system based on

haskell 98 - user manual, 1999. URLhttp://citeseer.ist.psu.edu/334009.html.

Simon Peyton Jones and et al.Haskell 98 Language and Libraries, the Revised Report. Cam-

bridge University Press, 2003.

Brian W. Kernighan and Dennis M. Ritchie.The C Programming Language. Prentice Hall,

1978.

Won Kim. Object-oriented database systems: Strengths and weaknesses.Journal of Object-

Oriented Programming, pages 21–29, July 1991.

Oleg Kiselyov, Ralf L̈ammel, and Keean Schupke. Strongly typed heterogeneous collections. In

Haskell ’04: Proceedings of the ACM SIGPLAN workshop on Haskell, pages 96–107. ACM

Press, 2004.

Robert Kowalski. Predicate logic as a programming language.Information Processing, 74:

569–574, 1974.

146

Daan Leijen. First-class labels for extensible rows. Technical Report UU-CS-2004-51, Depart-

ment of Computer Science, Universiteit Utrecht, 2004.

Daan Leijen and Erik Meijer. Domain specific embedded compilers. InDSL’99: 2nd USENIX

Conference on Domain Specific Languages, pages 109–122, 1999. Also appeared in ACM

SIGPLAN Notices 35, 1, (Jan. 2000).

Henning Makholm and J. B. Wells. Type inference, principal typings, and let-polymorphism

for first-class mixin modules. InICFP’05: International Conference on Functional program-

ming, Proceedings, pages 156–167. ACM Press, 2005.

Jim Melton and Alan R. Simon.SQL: 1999 - Understanding Relational Language Components.

Morgan Kaufmann, 2001.

Randy Meyers. The new C: Introducing C99.C/C++ Users Journal, 18(10):49–53, October

2000.

Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press, 1990.

Jack Minker. Logic and databases: Past, present, and future.AI Magazine, 18(3):21–47, 1997.

Lajos Nagy and Ryan Stansifer. Polymorphic type inference for the relational algebra in the

functional database programming language Neon. InProceedings of the 2006 ACM Sympo-

sium of Applied Computing, pages 673–679, New York, NY, USA, 2005. ACM Press.

Atsushi Ohori. A polymorphic record calculus and its compilation.ACM Transactions on

Programming Languages and Systems, 17(6):844–895, 1995. ISSN 0164-0925.

147

Atsushi Ohori and Peter Buneman. Type inference in a database programming language. InLFP

’88: LISP and Functional Programming, Proceedings, pages 174–183. ACM Press, 1988.

Benjamin Pierce.Types and Programming Languages. The MIT Press, 2002.

François Pottier. A constraint-based presentation and generalization ofrows. InLICS’03: Logic

in Computer Science, Proceedings, pages 331–340, 2003.

Raghu Ramakrishnan and S. Sudarshan. Top-Down vs. Bottom-Up Revisited. In Vijay Saraswat

and Kazunori Ueda, editors,Proceedings of the 1991 International Symposium on Logic Pro-

gramming, pages 321–335. MIT, 1991.

Shuping Ran, Paul Brebner, and Ian Gorton. The rigorous evaluationof Enterprise Java Bean

technology. InICOIN’01: International Conference on Information Networking, Proceed-

ings, page 93, 2001.

Manuel Reimer. Implementation of the database programming language Modula/R on the per-

sonal computer Lilith.Software—Practice and Experience, 14(10):945–956, October 1984.

Raymond Reiter. Towards a logical reconstruction of relational databasetheory. InOn Concep-

tual Modelling, pages 191–233. Springer-Verlag, 1982.

Didier Rémy. Type checking records and variants in a natural extension of ML. In POPL ’89:

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principlesof programming

languages, pages 77–88, New York, NY, USA, 1989. ACM Press.

Didier Rémy. Typing record concatenation for free. InPOPL’92: Principles of Programming

Languages, Proceedings, pages 166–176. ACM Press, 1992.

148

J. A. Robinson. A machine-oriented logic based on the resolution principle.Journal of ACM,

12(1):23–41, 1965. ISSN 0004-5411.

Amr Sabry. What is a purely functional language?Journal of Functional Programming, 8(1):

1–22, 1998.

Joachim W. Schmidt. Some high level language constructs for data of type relation. ACM

Transactions on Database Systems, 2(3):247, 1977.

Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The implementation of mercury, an

efficient purely declarative logic programming language. InILPS Workshop: Implementation

Techniques for Logic Programming Languages, 1994.

Mads Torgersen. Language integrated query: unified querying across data sources and pro-

gramming languages. InOOPSLA ’06: Companion to the 21st ACM SIGPLAN conference

on Object-oriented programming systems, languages, and applications, pages 736–737, New

York, NY, USA, 2006. ACM Press.

Jan Van den Bussche and Stijn Vansummeren. Polymorphic type inference for the named nested

relational calculus.ACM Transactions on Computational Logic, 2005.

Jan Van den Bussche and Emmanuel Waller. Type inference in the polymorphic relational alge-

bra. InPODS’99: Principles of Database Systems, Proceedings, pages 80–90. ACM Press,

1999.

Ghica van Emde Boas-Lubsen and Peter van Emde Boas. Compiling horn-clause rules in ibm‘s

business system 12 and early experiment in declarativeness. InSOFSEM ’98: Proceedings of

149

the 25th Conference on Current Trends in Theory and Practice of Informatics, pages 68–88,

London, UK, 1998. Springer-Verlag. ISBN 3-540-65260-4.

Stijn Vansummeren. On the complexity of deciding typability in the relational algebra. Acta

Informatica, 41(6):367–381, 2005. ISSN 0001-5903.

Philip Wadler. Monads for functional programming. InProgram Design Calculi: Proceedings

of the 1992 Marktoberdorf International Summer School. Springer-Verlag, 1993.

Mitchell Wand. Complete type inference for simple objects. InLICS’87: Logic in Computer

Science, Proceedings, pages 37–44. IEEE Press, 1987.

Mitchell Wand. Corrigendum: Complete type inference for simple objects. InIEEE Symposium

on Logic in Computer Science (LICS), Edinburgh, Scotland, page 132, 1988.

150

Appendix A

Overview of the Relational Model and Algebra

In the relational model atuple is a mapping fromattributesto values of a specifictype. The

headingof a tuple is a mapping from attributes to types, thus the domain of a heading is a set

of attributes. Arelation is a finite set of tuples with matching headings. Since all tuples in a

relation have the same heading, we define the heading of a relation to be that of its tuples.

An integral part of the relational model is therelational algebra, a set of operations on

relations. Codd in his seminal paper [Codd, 1970] identified eight relational operators, some-

times referred to as the original relational algebra. One of Codd’s main concerns was ensuring

the safetyof relational algebra, meaning that given finite input relations, no relational algebra

expression should result in an infinite relation. The safety property holdsfor the algebra intro-

duced by Codd, and it is traditionally required of newly invented operatorsas well. Throughout

the decades, authors introduced extended several versions of the original relational operators

along with brand new ones. In this description, we will focus on the originalset, as introduced

by Codd (which will nevertheless not prevent us from discussing some newer operators as well),

because the list of potential relational operators is open ended. It is traditional [Date, 1999]

to divide the original relational operators into two groups: (1) traditional set operators (union,

intersection, difference, andCartesian product), and (2) special relational operators (restrict,

151

project, join, anddivide).

In the following,h(t) stands for the heading of the tuplet, andh(r) stands for the heading of

the relationr. We writet[h] for the projection of the tuplet on the headingh. The expressiont.a

denotes the value of attributea in the tuplet.

A.1 Union

Relationalunion is a slightly restricted form of standard set union in the sense that we require

the heading of the two operands to be the same. Formally:

r ∪ s ≡ {t | t ∈ r ∨ t ∈ s} where h(r) = h(s)

An example forunion(the traditional way to represent relations pictorially is in tabular format):

A

Name Age City

Jones 30 Melbourne

Jones 45 Miami

B

Name Age City

Jones 45 Miami

Adams 27 Orlando

A ∪ B

Name Age City

Jones 45 Miami

Jones 30 Melbourne

Adams 27 Orlando

152

A.2 Intersection

Relationalintersectionis a slightly restricted form of standard set intersection in the sense that

we require the heading of the two operands to be the same. Formally:

r ∩ s ≡ {t | t ∈ r ∧ t ∈ s} where h(r) = h(s)

An example forintersection:

A

Name Age City

Smith 30 Melbourne

Jones 45 Miami

B

Name Age City

Jones 45 Miami

Adams 27 Orlando

Jones 37 Melbourne

A ∩ B

Name Age City

Jones 45 Miami

A.3 Difference

Relationaldifferenceis a slightly restricted form of standard set difference in the sense that we

require the heading of the two operands to be the same. Formally:

r\s ≡ {t | t ∈ r ∧ t < s} where h(r) = h(s)

153

An example fordifference:

A

Name Age City

Smith 30 Melbourne

Jones 45 Miami

B

Name Age City

Jones 45 Miami

Adams 27 Orlando

Baker 37 Melbourne

A\B

Name Age City

Smith 30 Melbourne

A.4 Cartesian Product

RelationalCartesian productis similar to Cartesian product defined on sets, with the important

difference that the headings of the operands must bedisjoint. Another important difference is

that, unlike traditional Cartesian product, the relational version iscommutative. The reason for

this is that tuples are represented as mappings so there is no ordering on theattributes, thus the

concatenation of two tuples is actually the union of two mappings, a commutative operation.

Formally:

r × s ≡ {t | t[h(r)] ∈ r ∧ t[h(s)] ∈ s} where h(r) ∩ h(s) = ∅

154

An example forCartesian Product:

A

Name Age

Smith 30

Jones 45

B

City

Orlando

Melbourne

A × B

Name Age City

Smith 30 Melbourne

Jones 45 Melbourne

Smith 30 Orlando

Jones 45 Orlando

A.5 (Natural) Join

Relationaljoin is a special relational operator with no corresponding set operator. The result of

joining two input relations is an output relation whose heading is the union of theheadings of the

input relations and that contains ‘matching’ tuples from both input relations,that is, those tuples

that have the same values for their common attributes. Traditionally, when the required relation

between common attributes is that their values must be equal, we call the operation natural join,

or equi-join. Unless otherwise stated, when talking aboutjoin we will meannatural join. It

is interesting to note here, that the definition ofjoin is actually the same as that ofCartesian

155

product, with the restriction on the headings of operands being disjoint removed:

r Z s ≡ {t | t[h(r)] ∈ r ∧ t[h(s)] ∈ s}

An example forjoin:

A

Name Age

Smith 30

Jones 45

B

Name Car

Jones Ford

Jones Porsche

Adams Toyota

Smith Suzuki

A Z B

Name Age Car

Smith 30 Suzuki

Jones 45 Ford

Jones 45 Porsche

A.6 Restriction

Relationalrestrictiontakes a relation and a condition and then selects those tuples from a relation

that satisfy the given condition. The condition is represented by a functionθ from tuples to the

logical valuestrue or false. To guarantee finiteness, it is traditional to requireθ to be effectively

computable. During introduction to relational algebra, it is customary to restrict θ to conditional

156

expressions built using only attribute names, simple comparison operators (=, ,, >, etc.), and

logical connectives (∧, ∨, etc.) The formal definition ofrestriction is:

σθ(r) ≡ {t | t ∈ r ∧ θ(t)}

An example forrestriction:

A

Name Age City

Jones 45 Miami

Adams 27 Orlando

Baker 37 Melbourne

σ(Age>30∧City,Miami)(A)

Name Age City

Baker 37 Melbourne

A.7 Projection

Relationalprojection takes an input relation and a set of attribute names and yields an output

relation that consist of the tuples of the input relation projected on the givenset of attribute

names. It is commonly required that the given set of attribute names be asubsetof the heading

of the input relation. For this reason,projectioncan be thought of as ‘vertical restriction’ (in the

tabular depiction of relations, attributes form columns). The formal definitionis:

π{a1,...,an}(r) ≡ {t[{a1, ...,an}] | t ∈ r} where{a1, ...,an} ⊆ h(r)

157

An example forprojection:

A

Name Age City

Smith 30 Melbourne

Jones 45 Miami

Baker 37 Melbourne

π{City}(A)

City

Melbourne

Miami

A.8 Division

Relationaldivision is a special relational operator with no corresponding set operator. These-

mantics of division seems a bit involved at first, but it is actually quite simple and useful in

practice. The relational operatordivision takes two relations, thedividendand thedivisor. It is

only defined for relations where the heading of the divisor is asubsetof that of the dividend.

The result ofdivisionis an output relation whose heading is thedifferenceof the headings of the

dividend and the divisor, and that contains exactly those tuples which, when extended with any

tuple from the divisor, will appear in the dividend in their extended form. Inpractice,division

is often used to formulate queries involving the requirement ‘all ...’, for example, “Employees

158

who work on all projects”. The formal definition ofdivision is:

r ÷ s ≡ {t | ∀ts ∈ s.∃tr ∈ r.tr [h(s)] = ts∧ tr [h(r)\h(s)] = t} where h(s) ⊂ h(r)

An example fordivision:

B

Name Car

Jones Ford

Jones Toyota

Adams Suzuki

Smith Ford

B

Car

Toyota

Ford

A ÷ B

Name

Jones

A.9 ‘Non-Standard’ Relational Operators

In this section we attempt to give a taste of the kind of diversity in relational operators that any

language designer must face when attempting to incorporate relational algebra into a general-

purpose programing language. We can only hope to give a sample of the various relational

operators that were proposed in the literature throughout the years, each proposal being either a

variation on or an improvement of a previous operator, with the occasionalproposal for a truly

novel one. We would like to emphasize that the list presented here is not complete, neither can

159

it be one. There is an ongoing research in the area with new relational operators being proposed,

and older ones falling out of favor. Thus, our goal here is merely to demonstrate, by enumerating

operators that each legitimately could claim to be included in any practical implementation of

relational algebra, the inherent limitations of any approach that attempts to support only some

specificset of relational operators as opposed to providing themeansto express those operators.

A.9.1 Projecting Away and Renaming Attributes

It is customary to define an operation for projectingawayattributes analogously to projection.

As in the case of projection, we will again require that the set of attributes being projected away

be a subset of the heading of the relation in question. Formally:

π̂{a1,...,an}(r) ≡ {t[h(r)\{a1, ...,an}] | t ∈ r} where{a1, ...,an} ⊆ h(r)

Although omitted by Codd in his original paper, it soon became obvious that renaming of

attributes is an important operation so it is almost always included in any implementation of

relational algebra. The heading of the relation being renamed must have theold attribute name

and the new attribute name must not appear in the heading in order for the operation to be well

defined. Formally:

ρa/b(r) ≡ {t[a/b] | t ∈ r} where a∈ h(r) and b< h(r)

160

A.9.2 Variations on join: semijoin, antijoin, and compose

The compositionof relationsr and s is defined to be the join ofr and s with the common

attributesprojected awayfrom the result of the join. Formally:

r Ẑ s ≡ π̂(h(r)∩h(r))(r Z s)

The semijoinof relationsr and s, written asr X s is defined similarly to join, except, we

project the result of the join on the heading of the first operand,r. Formally:

r X s ≡ π(h(r))(r Z s)

Theantijoin of relationsr ands, written asr ⊲ s is the dual of semijoin in the sense that it is

the restriction ofr to all the tuples thatdo nothave a matching pair ins. Formally:

r ⊲ s ≡ {t[h(r)] | t[h(r)] ∈ r ∧ t[h(s)] < s}

A.9.3 Improved division: the Small Divide

Date and Darwen describe their improved version of the division operatorin [Date and Darwen,

1998]. The original version of Codd only worked on relations where thedivisor was a subset of

the dividend. It also gave somewhat counterintuitive results when facedwith pathological cases.

For example, when asking for suppliers that supplyall purple parts (an example, taken from

[Date and Darwen, 1998]), and there are no purple parts in our inventory, logically speaking,

suppliers that do not supplyanyparts at all should also be returned. To handle cases like this,

a generalized version of division, called theSmall Divide, a ternary relational operator was

161

introduced, defined in the following way:

gd(q, r, s) ≡ q\π(h(q))((q× r)\s) where h(q) ∩ h(r) = ∅ and h(s) = h(q) ∪ h(r)

A.9.4 Extension

A common operation in relational algebra is to extend a relation with a new attribute whose value

is computed from other attributes for each tuple. The way to do this is to providea function that

takes a tuple and yields the value of the new attribute (again, the function should be effectively

computable to ensure the safety of the resulting algebra). Formally:

ext(r,a, f) ≡ {t | t[h(r)] ∈ r ∧ t.a = f (t)} where a< h(r)

An example forextension:

A

Name Age Monthly

Jones 45 4,500

Adams 27 3,200

Baker 37 4,000

ext(A,Yearly, (λt.t·Monthly∗ 12))

Name Age Monthly Yearly

Jones 45 4,500 54,000

Adams 27 3,200 38,400

Baker 37 4,000 48,000

162

Appendix B

Proofs

Theorem 5.1.1.Given a term e, where P| sA⊢W e : τ, the problemsat P is NP-complete.

Proof. Membership in NP follows from the observation that given a ground instance of P, all

predicates on rows can be checked in polynomial type.

Completeness is shown by reduction from SAT. We provide two different reductions, one

which uses a constant number of distinct labels, and one which uses a constant number of poly-

morphic variables. This way we demonstrate that exponential complexity of satisfiability check-

ing can be causedeither by the number of polymorphic variablesor by the number of distinct

labels.

Complexity in Number of VariablesThe reduction presented here uses only a constant num-

ber of distinct labels (actually, just one) to show the complexity of satisfiability checking purely

in the number of polymorphic variables.

First, we define auxiliary functions for heading union, intersection, and complement (relative

to the arbitrarily chosen base set〈a〉):

union x y= 〈〈x\y〉 ‖ y〉

intersection x y= 〈x\〈x\y〉〉

complement e= 〈〈a〉\e〉

163

The corresponding types of the auxiliary functions show that operationsperformed at the value

level are correctly mirrored at the type level by appropriate operations and predicates on row

variables:

union :: ρ3 ≃ ρ1\ρ2, ρ4 ≃ ρ3 ‖ ρ2, ρ3#ρ2⇒

Recρ1→ Recρ2→ Recρ4

intersection:: ρ3 ≃ ρ1\ρ2, ρ4 ≃ ρ1\ρ3, ⇒

Recρ1→ Recρ2→ Recρ4

complement:: ρ2 ≃ LaM, ρ3 ≃ ρ2\ρ1, ⇒

Recρ1→ Recρ3

Using the definitions of row operations (Section 4.3) and type predicates (Section 4.4) it is

easy to verify that the auxiliary functions do perform the corresponding set operations both at

the valueandat the type level. For example, the type ofunion 〈a〉 〈〉 will be LaM.

Using the auxiliary functions we can now define a reduction from an arbitrary boolean for-

mula F with boolean variables{b1,b2, ...,bn} to a corresponding termeF with free variables

{x1, x2, ..., xn} as follows:

eF ≡ Tr(F) == Tr(true) where

Tr(true) = 〈a〉

Tr(false) = 〈〉

Tr(bi) = xi

Tr(φ1 ∨ φ2) = (union Tr(φ1) Tr(φ2))

Tr(φ1 ∧ φ2) = (intersection Tr(φ1) Tr(φ2))

Tr(¬φ) = (complement Tr(φ))

164

The translation fromF to eF is clearly polynomial. Also, since each auxiliary function is well-

typed and is used in a type-correct way, it must be the case thatPv | sA ⊢W e : Bool wherePv

captures the type constraints on row variables, andsAprovides the type assignment for the free

variablesxi in eF .

We now prove thatsat Pv if and only if F is satisfiable. First, observe thatTr is an iso-

morphism between two boolean algebras, logic operations and set operations, where the typeLM

corresponds to the empty set andLaM to the universal set. IfF is satisfiable, then there is a truth

assignmentM(bi) which maps eachbi to eithertrue, or falsesuch thatM(F) = true. SinceTr is

an isomorphism, a type assignmentA whereA(xi) has type ofTr(M(bi)) will ensure thatTr(F)

has type ofTr(true) proving thatsatσv. The other direction is proved in a symmetric way.

Complexity in Number of LabelsWe now provide a reduction from an arbitrary boolean

formula F to a termeF that uses only a constant number of variables (in this case, only four).

Without loss of generality we assume thatF uses only operationsnegationandconjunction.

We assume the following constants to be defined:

b :: Bool→ Bool

i :: Int → Int

∗ :: β1→ β2→ β2 (infix)

The constantsb and i will be used to ‘fix’ the type of record fields, while the function ‘∗’ will

be used to build a single expression out of a set of expressions. We introduce four variables

165

{w1,w2,w3,w4} and define the following shorthands on them:

x1 ≡ 〈w1 ‖ w2〉

x2 ≡ 〈w1 ‖ w3〉

x3 ≡ 〈w2 ‖ w4〉

x4 ≡ 〈w3 ‖ w4〉

To simplify the presentation of our argument, we will use tables to show field types in record

expressions, where rows correspond to record expressions, columns to fields, and cells show

the type of the given field in the given record expression. Also, we will use the convention of

referring to the type of fieldl i in x1 asαi . For example, the constraints on field types generated

by the expression:

var(l i) ≡ (x1·l i) ∗ (b x2·l i) ∗ (i x3·l i)

can be represented by the following table:

l i

x1 αi

x2 Bool

x3 Int

Because recordsw1 andw2 are disjoint (we concatenate them inx1 ≡ 〈w1 ‖ w2〉) andl is in

x1, it follows thatl must be in exactly one ofw1 andw2. If l ∈ w1, then it has to have typeBool

in x1, becausex2 · l ≡ 〈w1 ‖ w3〉· l has typeBool. Similarly, if l is in w2, then it must have type

Int in x1. Labels introduced using this technique will correspond to the boolean variables and

subexpressions of the formulaF, where the typeBool (Int) in x1 for a given labell will represent

the logical valuefalse(true).

166

Next we show how to representnegationandconjunction. Negation is a simple matter, once

we realize that for any given labell, the type ofl in x4 is the ‘negation’ of its type inx1, that is

x1·l has typeBool if and only if x4·l has typeInt (andx1·l has typeInt if and only if x4·l has type

Bool). Exploiting this, we can define the ‘negation’ of a labell1, that is, a labell2 wherex1 · l2

has typeInt if and only if x1·l1 has typeBool:

not(l1, l2) ≡ (x4·l1== x1·l2)

Conjunction is a bit more involved. Suppose we would like to represent the ‘conjunction’ of

labelsl1 andl2. That is, we would like to define a labell3 wherex1·l3 has typeInt if and only if

x1·l1 andx2·l2 both have typeInt. We claim that the following expression achieves exactly this:

and(l1, l2, l3) ≡ e1 ∗ e2 ∗ e3

where (ℓx, ℓy fresh)

e1 ≡ (x1·l1== x1·ℓx) ∗ (i x2·ℓx) ∗ (x1·l3== x3·ℓx)

e2 ≡ (x1·l2== x1·ℓy) ∗ (i x2·ℓy) ∗ (x1·l3== x3·ℓy)

e3 ≡ (x1·l3) ∗ (x1·l1== x2·l3) ∗ (x1·l2== x3·l3)

To better understand what is going on, we show the tabular representationof the field type

constraints:

ℓx ℓy l3

x1 α1 α2 α3

x2 Int Int α1

x3 α3 α3 α2

First, observe, that through the construction ofxi ’s, in any given column a type appearing in

the first row must be equal to exactly one of the types that appear in the second or the third row.

167

With this in mind, we first show that if eitherα1 or α2 is Bool, thenα3 must also beBool. For, if

α1 is Bool, thenα3 must also beBoolsinceα1 is equal to eitherInt orα3 in columnℓx. Similarly

if α2 is Bool, thenα3 is alsoBoolbecause of columnℓy. Next, if bothα1 andα2 areInt, thenα3

must beInt, because of columnl3. On the other hand, ifα3 is Bool, then eitherα1 or α2 must be

Bool, because of columnl3. And finally, if α3 is Int then bothα1 andα2 must beInt, because of

columnsℓx andℓy.

Now we are ready to define a reduction from a boolean formulaF with boolean variables

{b1,b2, ...,bn} to a corresponding expressioneF . One technical remark before the formal defini-

tion: the translation of a boolean subexpressionφ returns apair of an expressionand a record

label by which the translated subexpression can subsequently be referred to. During the transla-

tion we introduce fresh record labels for subexpression as needed, except for boolean variables

bi for which we use the fixed record labelsl i , and fortrue andfalse, for which we use the fixed

labelslt andl f respectively:

Tr(true) = (i x1·lt, lt)

Tr(false) = (b x1·l f , l f)

Tr(bi) = (var(l i), l i)

Tr(¬φ) = (eφ ∗ not(ℓφ, ℓ), ℓ) (ℓ fresh) where

(eφ, ℓφ) = Tr(φ)

Tr(φ1 ∧ φ2) = (eφ1 ∗ eφ2 ∗ and(ℓφ1, ℓφ2, ℓ), ℓ) (ℓ fresh) where

(eφ1, ℓφ1) = Tr(φ1)

(eφ2, ℓφ2) = Tr(φ2)

168

UsingTr, we defineeF as:

eF ≡ e∗ (i x1·ℓF)

where (e, ℓF) = Tr(F)

The translation fromF to eF is clearly polynomial. Also, it is easily verified thateF must

have an inferred type since the functionsb, i, ∗, and (==) were all used in a type-correct way.

This means thatPl | sA⊢W eF : Int wherePl captures the type constraints on field types, andsA

provides the type assignment for the free variables{w1,w2,w3,w4} in eF .

We now prove thatsat Pl if and only if F is satisfiable. IfF is satisfiable, then there is a

truth assignmentM that makesF true. Let’s define a type assignmentA′ wherel i has typeInt

in w1 if M(bi) = true, otherwisel i has typeBool in w2. Since we demonstrated earlier that the

expressions fornegationandconjunctionare isomorphic to the corresponding logic operations

at the level of field types (withBool representingfalseandInt representingtrue) it follows that

there can be no inconsistencies regarding field type constraints inPl , that isPl is satisfiable. The

other direction is proved in a symmetric way. �

Lemma 5.5.2. For a set expression e and labelℓ, ℓ ∈ e iff ℓ ∈ ψ̂B(e).

Proof. We will proceed by induction on the form of the set expressione. (Recall, that each label

ℓ belongs to exactly one regionRi .)

If e= ∅ then, by definition of̂ψB:

ψ̂B(∅) =
⋃

i∈∅Ri\LP ∪
⋃
ℓ∈LP

⋃
i∈∅Ri ∩ {ℓ} = ∅

If e= {ℓ} then, by definition of̂ψB:

ψ̂B({ℓ}) =
⋃

i∈∅Ri\LP ∪
⋃

i∈{0,...,2n−1}Ri ∩ {ℓ} = L ∩ {ℓ} = {ℓ}

169

If e= H j then, by definition of̂ψB:

ψ̂B({ℓ}) =
⋃

i∈{k | Rk⊆H j }
Ri\LP ∪

⋃
ℓ∈LP

⋃
i∈{k | Rk⊆H j }

Ri ∩ {ℓ} =

(H j\LP) ∪
⋃
ℓ∈LP

H j ∩ {ℓ} = (H j\LP) ∪ (H j ∩ LP) = H j

If e= f ∩ g, then by the induction hypothesis, the lemma holds forψ̂B(f) andψ̂B(g), which,

combined by the definition of intersection on sets, yields that the lemma holds forψ̂B(e).

We handle set union and difference analogously to set intersection. �

Lemma 5.5.3. For a set expression e and a labelℓ ∈ LP, ℓ ∈ e iff ℓ ∈
⋃

i∈Ie
ℓ
Ri , whereIe

ℓ
is

defined by the normal form̂ψB(e).

Proof. Recall the definition of̂ψB(e) (we name the parts so that we can refer back to them):

N1 =
⋃

i∈Ie Ri\LP

N2 =
⋃
ℓ∈LP

⋃
i∈Ie

ℓ
Ri ∩ {ℓ}

ψ̂B(e) = N1 ∪ N2

Using Lemma 5.5.2,ℓ ∈ e⇔ ℓ ∈ ψ̂B(e).

Also, sinceℓ ∈ LP, then obviouslyℓ < N1, thusℓ ∈ ψ̂B(e)⇔ ℓ ∈ N⇔ ℓ ∈
⋃

i∈Ie
ℓ
Ri ∩ {ℓ}.

But ℓ ∈
⋃

i∈Ie
ℓ
Ri ∩ {ℓ} ⇔ ℓ ∈

⋃
i∈Ie

ℓ
Ri , which is exactly what we set out to prove.

�

Theorem 5.10.1(Soundness). If ¬sat P then Algorithm Q will report failure.

Sketch.Recall, thatsat P means that there is a substitutions that makes sPtrue.

First, from Lemma 5.2.1, ifφ(P) is not satisfiable, thenP cannot be satisfiable since they both

put the same constraints on label presence and absence. Therefore,reusing the argument from

170

Section 5.6, if algorithm finds the system of set constraintsφ(P) unsatisfiable, thenP cannot be

satisfiable.

Second, ifφ(P) is satisfiable,P can still be unsatisfiable due to inconsistent field type con-

straints. Algorithm Q takes field type constraints into account by analyzing therow construction

graphG. Now, would it be possible for algorithm Q to findP satisfiable, when in fact it is not?

That would mean that some field type equalities were not taken into account when analyzing

graphG. But this is not possible, since all relations between rows have been takeninto account

when building the graph. Thus, we can conclude that algorithm Q will fail ifP is not satisfiable.

�

	Type Inference, Type Improvement, and Type Simplification in a Language with User-Defined Polymorphic Relational Operators
	tmp.1675434090.pdf.Eadfu

