
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

5-2004

MOOL: an Object-Oriented Programming Language with Generics MOOL: an Object-Oriented Programming Language with Generics

and Modules. and Modules.

María Lucía Barrón Estrada

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Sciences Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.fit.edu%2Fetd%2F677&utm_medium=PDF&utm_campaign=PDFCoverPages

MOOL: an Object-Oriented Programming
Language with Generics and Modules.

by

María Lucía Barrón Estrada

Maestro en Ciencias, en Ciencias Computacionales
Instituto Tecnológico de Toluca

México

Licenciado en Informática
Instituto Tecnológico de Culiacán

México

A dissertation submitted to
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
May, 2004

�

© Copyright 2004 María Lucía Barrón Estrada
All Rights Reserved

The author grants permission to make single copies ________________________

We the undersigned committee hereby recommend
that the attached document be accepted as fulfilling

in part the requirements for the degree of
Doctor of Philosophy in Computer Science

“MOOL: an Object-Oriented Programming
Language with Generics and Modules,”

a dissertation by María Lucía Barrón Estrada

Ryan Stansifer, Ph.D.
Associate Professor, Computer Sciences
Dissertation Advisor

Phil Bernhard, Ph.D.
Associate Professor, Computer Sciences

Pat Bond, Ph.D.
Associate Professor, Computer Sciences

Dennis E. Jackson, Ph.D.
Associate Professor,

William Shoaf, Ph.D.
Associate Professor and Department Head, Computer Sciences

 iii

Abstract

Title: MOOL: an Object-Oriented Programming Language with Generics and

Modules.
Author: María Lucía Barrón Estrada
Major Advisor: Ryan Stansifer, Ph.D.

Modern object-oriented languages like Java and C# do not support

parametric polymorphism and do not have a traditional module system to allow the

development of large systems. They overload the class mechanism with several

tasks and they use packages and namespaces to organize clusters of classes

providing weak control for accessing members. Other languages that support

generic programming and objects do not have a simple object model to support

object-oriented features.

In this thesis the language MOOL is presented. MOOL is a class-based

object-oriented language that supports modular programming and genericity.

The main goal in the design of MOOL was simplicity rather than efficiency.

MOOL contains separated mechanisms for different concepts like classes and

modules, which are unified in other languages. MOOL is not a pure object-oriented

language where everything is an object. Non-object features like functions and

modules are part of the language to enhance expressivity, to structure programs and

to support code reuse.

 iv

Table of Contents

Keywords ..viii

List of Figures... ix

List of Tables ... xii

Acknowledgement ..xiii

Dedication ... xiv

Chapter 1. Introduction.. 1
1.1. Problem description ... 3
1.2. Road map ... 4

Chapter 2. Modules ... 6
2.1. Concepts... 7
2.2. Modularity goals .. 9
2.3. Kinds of modules ... 11

2.3.1. Modules and interfaces.. 12
2.3.2. Libraries... 13
2.3.3. Shared data areas ... 13
2.3.4. Generic modules .. 14
2.3.5. Parametric generic modules .. 15

2.4. Examples in some programming languages... 17
2.4.1. Ada packages... 18
2.4.2. Modula-3 modules... 18
2.4.3. SML structures, signatures, and functors 20
2.4.4. Objective Caml.. 22
2.4.5. Java packages .. 23
2.4.6. C# namespaces and assemblies ... 26
2.4.7. Dylan ... 27

Chapter 3. Object-Oriented Concepts... 29
3.1. Classification of object-oriented languages ... 30

3.1.1. Passive languages .. 30
3.1.2. Active languages ... 31
3.1.3. Multimethod languages ... 33

3.2. Abstract data types and objects .. 36
3.3. Dynamic dispatch... 37

 v

3.3.1. Single dispatch... 38
3.3.2. Multiple dispatch ... 40

3.4. The special variables this and super .. 42
3.5. Inheritance.. 42

3.5.1. Single inheritance .. 43
3.5.2. Multiple inheritance... 45
3.5.3. Mixin inheritance... 47
3.5.4. Interface inheritance .. 49

3.6. Polymorphism .. 51
3.7. Types and Subtypes ... 53
3.8. Some other concepts .. 57

3.8.1. Type equivalency... 57
3.8.2. Typechecking .. 57

Chapter 4. Generics... 59
4.1. Parametric polymorphism .. 60
4.2. Kinds of genericity... 61

4.2.1. Unconstrained genericity... 62
4.2.2. Constrained genericity... 63

4.2.2.1. Simply bounded genericity ... 64
4.2.2.2. Recursively bounded genericity.. 67

4.3. Translation.. 70
4.3.1. Homogeneous .. 71
4.3.2. Heterogeneous ... 73
4.3.3. Hybrid.. 75

4.4. Examples of generics in some PL .. 77
4.4.1. Templates in C++ .. 77
4.4.2. Parameterized classes in Pizza .. 79
4.4.3. Virtual binding in BETA ... 80
4.4.4. Class substitution in BOPL ... 82

Chapter 5. Analysis and Goals ... 84
5.1. Core features .. 85
5.2. Classes or objects? ... 86
5.3. Type annotations and typechecking ... 88
5.4. Subtypes ... 89
5.5. Inheritance.. 93
5.6. Bindings ... 95
5.7. OOL without modules.. 97

5.7.1. Roles of the class in Java... 100
5.7.2. Modularity problems in object-oriented languages................. 102

5.7.2.1. Structures that need no local data.................................... 102
5.7.2.2. Structures with dependencies on other structures 106

 vi

5.8. OOL without generics .. 111
5.8.1. First approach: using the generic idiom 112
5.8.2. Second approach: specialized code for each type 114

5.9. Language design goals ... 118

Chapter 6. MOOL ... 120
6.1. Definitions.. 121
6.2. Types and Subtypes ... 124

6.2.1. Predefined boolean and numeric types.................................... 125
6.2.2. Class interfaces .. 126
6.2.3. Classes ... 127

6.2.3.1. Class variables.. 129
6.2.3.2. Fields .. 129
6.2.3.3. Constructors ... 129
6.2.3.4. Methods.. 130
6.2.3.5. Inheritance.. 130
6.2.3.6. Class hierarchy... 131
6.2.3.7. The special variables this and super 131

6.2.4. Functions ... 131
6.2.5. Subtyping rules .. 132

6.3. Expressions .. 135
6.3.1. Constant expressions ... 135
6.3.2. Literals ... 135
6.3.3. Operands.. 135
6.3.4. Function call .. 136
6.3.5. Operators ... 136

6.4. Declarations.. 138
6.4.1. Modifiers ... 139
6.4.2. Constants ... 139
6.4.3. Variables.. 140
6.4.4. Functions ... 140
6.4.5. Types ... 140
6.4.6. The import declaration .. 141

6.5. Statements .. 142
6.5.1. Assignment statement.. 142
6.5.2. Function call statement.. 143
6.5.3. Sequential composition ... 143
6.5.4. Block statement ... 144
6.5.5. Selection .. 144

6.5.5.1. The if statement ... 144
6.5.5.2. The switch statement ... 145

6.5.6. Repetition .. 146

 vii

6.5.6.1. The for statement... 146
6.5.6.2. The while statement... 147

6.5.7. The continue, return, and break statements 147
6.6. Modules and module interfaces ... 148

6.6.1. Module interface.. 148
6.6.2. Module implementation... 149
6.6.3. Classes inside modules .. 150
6.6.4. Separate compilation ... 152

6.7. Generics.. 152
6.7.1. Type variables ... 153
6.7.2. Type constraints... 154

6.7.2.1. Unconstrained genericity .. 154
6.7.2.2. Constrained genericity .. 155

6.7.3. Generic types ... 156
6.7.4. Subtyping rules for parameterized types 158

Chapter 7. Language Evaluation ... 159
7.1. Methodology .. 161
7.2. Examples approached in MOOL.. 162

7.2.1. Structures that need no local data .. 163
7.2.2. Structures with dependencies on other structures 166
7.2.3. Generics classes and interfaces ... 169
7.2.4. A generic sort function .. 172
7.2.5. Inheritance and binary methods... 175
7.2.6. A problem with mixin inheritance... 177

Chapter 8. Conclusions ... 179
8.1. The traditional “Hello World” program ... 180
8.2. Comparison of MOOL and other OOL.. 182
8.3. Contributions.. 185
8.4. Future work .. 186

References .. 187

Appendix. The Grammar of MOOL ... 198

 viii

Keywords

Class

Inheritance

Interface

Generics

Modules

Objects

Object-oriented programming

Parameterized types

Polymorphism

Programming languages: Ada, BeCecil, BETA, C#, C++, Cecil, CLOS, Dylan,

Eiffel, GJ, Jam, Java, Kevo, Mesa, MOBY, Modula-3, OCaml, Pizza,

PolyTOIL, Self, Simula, Smalltalk, and SML.

Subtype

 ix

List of Figures

Figure 2.1. Abstraction, encapsulation and information hiding.............................. 9
Figure 2.2. A software architecture design ... 12
Figure 2.3. A Math library interface and implementation in Modula-3................ 13
Figure 2.4. A module with a shared data area in Ada ... 14
Figure 2.5. A package as a data structure manager... 14
Figure 2.6. A generic package in Ada... 15
Figure 2.7. A parametric generic package in Ada... 16
Figure 2.8. An interface and module implementation in Modula-3...................... 19
Figure 2.9. Signatures, structures, and functors in SML....................................... 21
Figure 2.10. Modules in OCaml.. 23
Figure 2.11. Java packages.. 25
Figure 2.12. C# namespaces and assemblies .. 26
Figure 2.13. A module definition in Dylan ... 27
Figure 3.1. A classification of object-oriented languages..................................... 30
Figure 3.2. Prototypical objects in Self and Kevo .. 32
Figure 3.3. Overloaded generic functions in BeCecil ... 35
Figure 3.4. A class and a subclass definition in Java .. 38
Figure 3.5. Dynamic method invocation with single dispatch.............................. 39
Figure 3.6. Dynamic method lookup in BETA... 40
Figure 3.7. Executing generic functions in BeCecil ... 41
Figure 3.8. Definition of classes using single inheritance 43
Figure 3.9. A hierarchy of classes with single inheritance 44
Figure 3.10. Class definition with multiple inheritance.. 45
Figure 3.11. The diamond problem... 46
Figure 3.12. Mixin inheritance.. 48
Figure 3.13. A mixin declaration and its use to produce a new class 48
Figure 3.14. An example of multiple inheritance of interfaces............................. 49
Figure 3.15. Kinds of polymorphism .. 51
Figure 3.16. Rule of subsumption... 53
Figure 3.17. Subtype rule for functions .. 54
Figure 3.18. Subtype rules for records .. 55
Figure 3.19. Binary method problem in Eiffel and Java 56
Figure 4.1. Two Polymorphic functions in Objective Caml 60
Figure 4.2. Parameterized class stack written in Eiffel ... 62
Figure 4.3. Two instantiations of class STACK ... 63
Figure 4.4. A parameterized class with a simple bound in GJ.............................. 65
Figure 4.5. Instance creation of the parameterized class OrderedList 66

 x

Figure 4.6. A parameterized class with a recursive bound in GJ.......................... 67
Figure 4.7. Instantiation of the parameterized class OrderedList 68
Figure 4.8. Subclasses cannot be used as type parameters 69
Figure 4.9. Translation of a parameterized class... 72
Figure 4.10. A template class with two instantiations .. 74
Figure 4.11. A parameterized class with two instantiations in C#........................ 76
Figure 4.12. Stack template in C++ .. 78
Figure 4.13. A definition of a parameterized class in Pizza.................................. 79
Figure 4.14. Instantiation of the parameterized class Stack.................................. 80
Figure 4.15. Generic Stack in BETA .. 81
Figure 4.16. Stack definition and instantiation in BOPL...................................... 83
Figure 5.1. An example of a simple class in PolyTOIL.. 92
Figure 5.2. A typical definition of a class Math.. 103
Figure 5.3. Using inheritance to access a library member 104
Figure 5.4. Using composition to access a library member 104
Figure 5.5. Java definition of class Math in java.lang.Math 105
Figure 5.6. Importing static class members .. 106
Figure 5.7. Separated classes with dependencies.. 107
Figure 5.8. Classes in a package ... 108
Figure 5.9. Inner class ... 109
Figure 5.10. A stack in Java and C# using the generic idiom............................. 113
Figure 5.11. Specialization of stack for type int ... 115
Figure 6.1. Static and runtime type in MOOL .. 125
Figure 6.2. A class interface declaration in MOOL.. 127
Figure 6.3. Two class declarations in MOOL... 128
Figure 6.4. Functions and function types in MOOL ... 132
Figure 6.5. Examples of expressions with primary operators............................. 137
Figure 6.6. Examples of expressions with unary operators 137
Figure 6.7. Examples of expressions with binary operators 138
Figure 6.8. Examples of constant, variables, functions, and types 141
Figure 6.9. Example of the import declaration ... 141
Figure 6.10. Examples of the assignment statement ... 142
Figure 6.11. Sequence of statements... 143
Figure 6.12. Examples of if and switch statements... 146
Figure 6.13. Examples of for and while statements .. 147
Figure 6.14. Example of a module interface ... 149
Figure 6.15. A module implementation .. 150
Figure 6.16. A module interface and a module implementation......................... 151
Figure 6.17. Examples of unconstrained type variable 154
Figure 6.18. Some instantiations of class List<T>.. 155
Figure 6.19. A parameterized class with a constrained type parameter.............. 155
Figure 6.20. A class with a recursively bound type parameter 156

 xi

Figure 6.21. An example of a parameterized function.. 157
Figure 7.1. Library of mathematical functions in MOOL................................... 163
Figure 7.2. A program using the library of mathematical functions................... 164
Figure 7.3. Java’s Math library and two programs using the library 165
Figure 7.4. A module interface and implementation of a linked list................... 168
Figure 7.5. A module interface and implementation of a generic stack 170
Figure 7.6. Creating instances of a generic stack class 171
Figure 7.7. A module interface and implementation of a generic sort................ 173
Figure 7.8. A module implementation using a generic function......................... 174
Figure 7.9. Inheritance and binary methods in MOOL....................................... 176
Figure 7.10. Implementation of a mixin class in MOOL.................................... 178
Figure 8.1. Comparing “Hello world” in MOOL and Java................................. 180
Figure 8.2. New version of “Hello World” program .. 181

 xii

List of Tables

Table 6.1. List of keywords and reserved words .. 122
Table 6.2. List of types.. 124
Table 6.3. Predefined numeric and boolean types in MOOL 126
Table 6.4. Subtyping relation for classes and interfaces..................................... 134
Table 6.5. Primary operators... 137
Table 6.6. Unary operators.. 137
Table 6.7. Binary operators... 138
Table 6.8. Visibility of methods inside the module implementation 152
Table 6.9. Visibility of methods outside the module implementation 152
Table 8.1. Features related to types... 183
Table 8.2. Statements .. 183
Table 8.3. Features related with modules and genericity.................................... 184
Table 8.4. Other features... 184

 xiii

 Acknowledgement

I would like to express my gratitude to my advisor Dr. Ryan Stansifer. His

patience, support, and guidance during these past years helped me to accomplish

this goal.

I would also like to thank the other members of my committee Dr. Pat

Bond, Dr. Phil Bernhard, and Dr. Dennis E. Jackson for their valuable comments.

I’m grateful for the financial support I received from the Mexican

Government and Instituto Tecnológico de Culiacán. Without their support I could

not have completed this work.

Special thanks go to my family in México: To my mother, Lucia, who

always encouraged me to pursue a professional career. To my father, Eulogio, who

supported and helped me in many different ways. To my sisters Arminda, for being

my role model, Maguie, Lety, and Norma for their help, my brothers Adolfo,

Hernán, César, Javier, Eduardo, and Jesús for their unconditional love. To my niece

Lucia Margarita and her dad Jorge for being there when I needed them.

I want to thank my husband, Ramon for helping me to accomplish this

project and my daughters Naomi, Ana, and Lucia for their love and company.

Last but not least, I want to thank God from the bottom of my heart.

 xiv

Dedication

�����������	
	�����������

	���	�������		����
���	����

�
������ �
��
���� �
�
��

 1

Chapter 1.

Introduction.

In the past few years the focus of many researchers has been the inclusion

of polymorphism in the two popular object-oriented languages, Java and C#

[BCK+ 01, BCK+ 03, BOSW 98a, CS 98, EKMS 97, MBL 97, OW 97, T 97,

V 01b, and KS 01].

At the same time, the concept of module doesn’t seem to exist in these two

languages, in which the class is the only structuring mechanism for programs

[GJSB 00, C# 01]. Modules are constructs used to build large programs, supporting

encapsulation and information hiding and are of a different nature from classes.

Some researchers have recognized the importance of having a module system in

object-oriented languages [S 92, FF 98, BPV 98, AZ 01].

The lack of a module system in object-oriented languages leads to

overloading the class with different purposes. And, the absence of parametric

polymorphism obligates the programmer to implement non-natural solutions

resulting in many problems.

These two problems motivated this work. The main goal of this dissertation

is the design of a programming language that supports parametric polymorphism to

2

develop generic code, provides a module construct to safely create large programs,

and supports object-oriented programming. Our main goal in the design is

simplicity, i.e., keep the language as simple as possible.

The design of a programming language involves many decisions when

selecting the features of the language and their interaction with each other. Many

concepts are not included in the language. Out of the scope of this thesis are:

• Exception handling.

• Concurrency.

• Parallel programming.

• Implementation details.

• Formal semantic definition.

We have designed a Modular Object-Oriented Language called MOOL.

The language is designed to support the development of small or large

programs. Small programs, which express the details of algorithms and data

structures, can be created in a single module implementation with a standard

predefined module interface. The language allows the definition of several modules

and module interfaces to support “programming in the large”. Interconnected

modules and module interfaces express the way the system is organized. Object-

oriented programming is achieved by the use of classes and other features that are

3

part of the language. Parameterized types and type variables are also part of the

language to support the definition of generic code.

1.1. Problem description.

In the 1970’s modules were recognized as an important mechanism for

structuring large programs. Programming languages which incorporate modules

were designed to satisfy three important principles in the development of software:

encapsulation, information hiding, and separate compilation. A module is a static

entity that contains an interface to describe how a module can be interconnected

with other modules. Modules are neither types nor extensible structures.

Object-oriented languages appeared with Simula and were popularized by

Smalltalk and C++ in the 1980’s. Object-oriented languages and methodologies

have been widely used in the development of software over the past decade.

Designers of object-oriented languages have decided to adopt only one structuring

mechanism (the class) trying to reduce the number of concepts in the language. As

a result, the class mechanism is overloaded with several functionalities and the

concept of class is blurred. The absence of a module system in these languages

does not allow one to express some concepts naturally.

Parametric polymorphism has proven to be a valuable feature that is not part

of several widely used object-oriented programming languages. Several approaches

4

can be taken to implement generic code, but the solutions suffer from various

problems.

Our challenge is to design an object-oriented programming language that

supports the definition of modules to structure large programs and allows generic

programming to write polymorphic code that can be used with several types.

1.2. Road map.

Chapter 2 presents concepts related to modularity. It describes the module

system of some programming languages as well as other mechanisms used in some

object-oriented languages that do not have a module system.

Chapter 3 includes a classification of object-oriented programming

languages and describes the most important concepts related to object-oriented

programming languages. The chapter contains examples of these concepts in

several languages.

Chapter 4 explores concepts related to generics. It describes different kinds

of generic code and different translation approaches implemented in different

languages. It also presents examples of generic programming in several

programming languages.

Chapter 5 sets up the goals of the new language design. It analyzes the

concepts that need to be included in the language.

5

Chapter 6 introduces MOOL -Modular Object-Oriented Language. In this

chapter, the general features of MOOL are described as well as the elements that

are part of the language. The formal description of the grammar of MOOL is

presented in an appendix.

Chapter 7 is dedicated to the assessment of MOOL. It revisits the issues

mentioned in previous chapters as problems in some other languages and

approaches them in MOOL.

Finally, chapter 8 contains our conclusions, contributions, limitations of

MOOL, and future work.

 6

Chapter 2.

Modules.

Modules are the abstractions used to structure large programs. Modules

emerged in several programming languages after Parnas’ seminal papers [P 72,

P 72b]. Modules were introduced in the 70’s in Mesa [MMS 79] and popularized in

the 80’s by Modula-2 [W 83]. Many programming languages that were designed

later also incorporated this concept although they used different names for it.

Packages, clusters, and structures are the names of modules in Ada [ADA 80],

CLU [L+ 81], and Standard ML [MTH 90]. Recently, designers of modern object-

oriented languages have tried to unify this concept providing only the class to

structure programs.

This chapter contains the definition of concepts related to modules in

programming languages. It also contains a description of different kinds of modules

and some examples of the module system of several programming languages.

7

2.1. Concepts.

Modules in programming languages are recognized as an important

mechanism for structuring large programs. They allow decomposing a system into

smaller units that are easier to understand and manipulate. Modules encapsulate

abstractions and provide a mechanism for protection. Modules are conceptually

related to another concept: separate compilation. They are self-contained units and

can be used as compilation units [Ca 89].

In this section we provide definitions for concepts related to modularity.

Modularization is a process in which a program is partitioned into a group

of independent modules that expose their functionality and hide their internal

structure. “Modularization is the process of decomposing a program in small units

(modules) that can be understood in isolation by the programmers, and making

relations between these units explicit to the programmer.” [L 94]

Modular programming is a programming discipline that follows Ingalls’

modularity principle: “no part of a complex system should depend on the internal

details of any other part.” [I 78]

A compilation unit is a unit that can be received by the compiler to

translate it into target code.

“Separate compilation is the process of decomposing a program in small

units (compilation units) that can be typechecked and compiled separately by the

compiler.” [L 94]

8

A module is a static unit used to encapsulate elements, hide information

and separate compilation. Modules have two parts: a module interface and a

module implementation. Modules allow us to divide programs in smaller units. We

can develop, check, deliver, optimize, and maintain these units separately. Several

modules of a system can be developed in parallel if their module interfaces are

provided.

A module interface is a specification of the elements that are provided by

the module. It contains a subset of the definitions of the module implementation. A

module interface describes only those elements that are not hidden. A module

interface describes how the module can be plugged into another module to interact

with it.

A module implementation contains at least the definition of the elements

listed in its interface. Elements not listed in the interfaces are hidden from users of

the module. Separating the module interface form the implementation makes

possible to hide some information, which is necessary to avoid code dependencies.

Three concepts are closely related to modularity. They are: abstraction,

encapsulation, and information hiding. Abstraction is the ability to represent only

the important aspects of an entity but not its details. Encapsulation is a concept that

relates aggregation and information hiding. Aggregation allows the definition of a

set of elements in a unit. Information hiding is a design principle proposed by

Parnas [P 72]. It allows making visible only some of the elements defined in a unit.

9

Encapsulation facilitates, but does not enforce, information hiding. Information

hiding restricts the elements that can be seen in a unit helping to prevent code

dependencies. In figure 2.1 we show how these three concepts are related in the

definition of a module interface and implementation.

Figure 2.1. Abstraction, encapsulation and information hiding.

2.2. Modularity goals.

After a “software crisis” was recognized in the 1970’s, many researchers

started searching for solutions. Parnas proposed a technique for software module

specification in which the goals of the specification scheme were based on the

information hiding principle [P 72]:

methods data I

n
t
e
r
f
a
c
e

Encapsulation
(a group of elements) Information hiding

(only some elements
are visible)

Abstraction
(hide details)

10

1. The specification must provide to the intended user all the information that
he will need to use the program correctly, and nothing more.

 2. The specification must provide to the implementer, all the information about
the intended use that he needs to complete the program, and no additional
information; in particular no information abut the structure of the calling
program should be conveyed.

It is not easy to split large programs into modules. Module boundaries

depend on what we want to achieve, maintainability, performance, etc. The criteria

used to modularize a system affect the time to develop the system as well as its

flexibility and comprehensibility [P 72].

Two concepts related to the decomposition of a system into modules are

coupling and cohesion. Modules should be as independent as possible from other

modules, i.e., coupling should be minimized. Modules should enclose closely

related data types, i.e., cohesion should be maximized.

The goals in modularizing a system can be described as follows:

• Maximize encapsulation. Data and procedures that manipulate this data

must be in the same unit.

• Minimize information leaks in units. Procedures that access instance

variables must be in the same implementation unit.

• Maximize information hiding. Restrict visibility and access to data and

data types defined in units. Define separated units to describe and

implement code. Implementation units can implement one or more

interfaces. Interface units describe a set of types and the public

operations allowed in those types. Two kinds of interfaces can be

11

generated: client interfaces describe the information needed by clients to

use the unit, and specializer interfaces describe the information

provided for designers to specialize code.

• Provide default values to avoid run-time errors due to initialization.

• Restrict and control access and visibility of members.

• Separate compilation. Compilation units can be compiled at different

times, but their compilations are not independent of each other if either

unit accesses or uses any entities of the other.

2.3. Kinds of modules.

Modules are the units of decomposition in large systems but modules serve

some other purposes. Cardelli [Ca 89] describes three kinds of modules: any part of

a program that could be reused, a collection of routines that maintains an invariant,

and collections of related data types with their operations.

In this section we describe several kinds of modules that are used to solve

specific problems. The kinds of modules are:

• Modules and interfaces.

• Libraries.

• Shared data area.

• Generic modules.

• Parametric generic modules.

12

2.3.1. Modules and interfaces.

A system can be described as a set of interconnected modules where the

functionality of each module provides part of the functionality of the whole system.

A module can have several interfaces that define the connections with other

modules. Figure 2.2 shows a graphical representation of a set of interconnected

modules that describe the architecture of a system for a convenience store.

Figure 2.2. A software architecture design.

In this example, the system was modularized into 9 modules. Each module

contains one or more interfaces represented by small gray squares, which are used

to describe the interconnection with other modules.

Item Options

R
eport

N
etw

ork

Inventory

C
redit C

ard

Pum
p

Security/Hazard Door Controller

Operator

13

2.3.2. Libraries.

A library is a kind of module that encapsulates a set of constants and

functions. Libraries do not contain any data structure and they are, usually in

compiled form, for linking with other programs. The most common example of a

library is the one that contains a set of mathematical functions. Figure 2.3 shows an

example of a library definition.

�

�� �� � � �	� �
� �
 ��

���	� � � ��� ��� �� �� � � � � ��

������������������� �� �� �� � � � � ��

���� � � 	� �� � � �� ��� ! �"�� � �# $�"�� � �# ��

���%�

� � ��
� �
 ��

�

� �� # � �
� �
 ��

���� � � 	� �� � � �� ��� �! "�� � �# $�"�� � �# �� ��

���&� ' �� �

�������� (��� ����) *+,) ,��� ��- ��($�

���� � ��� ����

���%�

� � ��
� �
 ��
�

Figure 2.3. A Math library interface and implementation in Modula-3.

2.3.3. Shared data areas.

Modules that contain data structures but no functions are in this category.

This kind of module allows the definition of some data structures that are going to

be shared among several subprograms. The data structures defined in the package

are available for those subprograms that use the package. Figure 2.4 shows an

example of a module that defines a data structure that can be used by any other

module that imports it.

14

�

*� . / � 0,�� 1 �� � �2 &� � � � � ��3�

���
�4 �"��� �� ' � � �"� �� 5 ���

����� 2 � �� 6�� � �2 � �� �"��� �� ' � � �7� �0,�5 ��
�4 �"� �5 ��

���&� � � � � �"�� 77� 8 � 5 ��
�4 $�- 9�	1 �� �	�� � �"� � 5 ��
�4 �� �:�;�;$��

,�< �� 1 �� � �2 &� � � � � ��

�

Figure 2.4. A module with a shared data area in Ada.

2.3.4. Generic modules.

The Ada package shown in figure 2.5 encapsulates a data structure

(STACK) and provides an interface to access it. A program can use the package by

including a use declaration. However, the package describes a single data structure

and it is not possible to have more than one stack in a program.

�
*� . / � 0,�� ��	= ��3�
���*7- . ,< > 7,�� � � 1 � � # �
�"������ �� ' � � $��
���*7- . ,< > 7,�� � � � � # �
�"�- > ���� �� ' � � $��
���9> �. ��- ���
� �? �7,�> 7��&� � # � �� ��
,�< �� ��	= �

�
*� . / � 0,�@ - < 8 �� ��	= ��3�
���� �� � � �"�� 77� 8 � ��� 5 5 $�- 9��� �� ' � � ��
����� � �"��� �� ' � � �� ��� 5 � �"� � ��
���*7- . ,< > 7,�� � � 1 � # �
�"������ �� ' � � $��3�
���AA�� � � 1 ��) *+,) ,��� ��- ��
���,�< �� � � 1 ��
���%�
,�< �� ��	= ��

Figure 2.5. A package as a data structure manager.

When a program needs more than one data structure, it is not a good

decision to copy the package to create a new one. Ada provides a way to define a

template for packages that can be instantiated as needed. Figure 2.6 shows a

15

generic package in Ada. The package specification, shown in the left part of figure

2.6, starts with the word generic, that means the package defines a template. The

package body is exactly the same as the one defined in the right part of figure 2.5.

�
0,�,7�. �
*� . / � 0,�� ��	= ��3�
���*7- . ,< > 7,�� � � 1 � � # �
�"������ �� ' � � $��
���*7- . ,< > 7,�� � � � � # �
�"�- > ���� �� ' � � $��
���9> �. ��- ���
� �? �7,�> 7��&� � # � �� ��
,�< �� ��	= ��
�

�
*� . / � 0,�� 	� � � 2 � ��	= ��3��,B�� ��	= ��
*� . / � 0,�� � � � 2 � ��	= ��3��,B�� ��	= ��
�
�
�

Figure 2.6. A generic package in Ada.

Two instances of the generic package are defined in the right part of figure

2.6. Every instantiation of the generic package creates a copy of the data defined in

STACK and the procedures can be shared by all instances.

In this example, the elements of the stack are restricted to type INTEGER;

this generic does not have a way to generalize the type of elements that the STACK

can handle. The next section shows how this is accomplished.

2.3.5. Parametric generic modules.

Ada’s generic packages can have several types of parameters. A

type-independent package can be defined specifying a generic type parameter. This

type parameter can be used in the package. An example of a generic package that is

type independent is shown in figure 2.7. The left part shows a generic stack

16

specification where two parameters are defined: MAX is the maximum number of

elements the stack can contain and ELEMENT is the type parameter that will

receive the specific type when an instance of the package is created. It is possible to

restrict the types that can be used as arguments to instantiate the generic package.

In this example only two operations (assignment and equality comparison) are

available for ELEMENT within the package.

�
0,�,7�. �
���
�4 �"��� �� ' � � �"� �� 5 5 ��
����8 *,�� # �
� � ���3�*7�C � �,��
*� . / � 0,�� ��	= ��3�
���*7- . ,< > 7,�� � � 1 � � # �
�"����� # �
� � �$��
���*7- . ,< > 7,�� � � � � # �
�"�- > ��� # �
� � �$��
���9> �. ��- ���
� �? �7,�> 7��&� � # � �� ��
,�< �� ��	= ��

�

*� . / � 0,�@ - < 8 �� ��	= ��3�
���� �� � � �"�� 77� 8 � ��
�4 $�- 9�� # �
� � ���
����� � �"��� �� ' � � �� ���
�4 D � �"� � ��
���*7- . ,< > 7,�� � � 1 � # �
�"����� # �
� � �$��3�
���AA�� � � 1 ��) *+,) ,��� ��- ��
���,�< �� � � 1 ��
�
���%�
,�< �� ��	= ��
AA�
*� . / � 0,�@ - < 8 �
��� ��3�
����*� . / � 0,�� 	� � � � ��3��,B�� ��	= � 5 5 6��� �� ' � � $��
����*� . / � 0,��� ����# � ��3��,B�� ��	= � � 6�	1 �� �	�� � $��
����%�
�
,�< �
��� ��
�

Figure 2.7. A parametric generic package in Ada.

Two instances of the generic package are created in the package MAIN

shown in right bottom part in figure 2.7. The package named SCORES is an

instance of the generic package STACK where the maximum number of elements is

100 and the type of elements it stores are INTEGER. INITIALS is also an instance

of STACK with a maximum capacity of 32 elements of type CHARACTER.

17

2.4. Examples in some programming languages.

The module system of a programming language facilitates the design and

reuse of software. A module is a static entity that, once defined, cannot be changed.

A programming language supports modular programming if it provides facilities to

create and express a modular structure. If the language does not provide these

facilities, it is still possible to develop a modular structure but greater effort will be

required. We can say that almost any language permits modular programming but

only those with a module system support it. Many programming languages like

Mesa, Modula-2, Ada, Modula-3, and Oberon have a module construct. Leroy

[L 00] suggested that the design of a module system is independent of the base

language used and a general module system can be applied to a variety of

languages. Although he recognized that the code structuring features of object-

oriented languages overlap with a module system.

The major features of a module system are:

1) Encapsulation

2) Information hiding

3) Separate compilation.

In this section we show the features of the module system of several

languages.

18

2.4.1. Ada packages.

Ada modules are called packages. A package is a program unit that contains

a group of entities. It has two parts: a package specification and a package body,

which is the implementation. Ada packages support data abstractions when they

contain a declaration of a type and a set of operations (subprograms) on that type.

The package specification exposes the information available for clients. The

package body provides the implementation of the data abstraction. Ada packages

are considered second-class objects because they are not types. Some examples of

Ada packages are shown in sections 2.3.3, 2.3.4, and 2.3.5.

2.4.2. Modula-3 modules.

Modula-3 [N 91] provides two basic program units: modules and interfaces,

which can be generic. A collection of both modules and interfaces defines a

program. A module is a unit that implements one or more interfaces that are

exported by the module. A module defines a block where all declared entities are

visible inside itself as well as all entities declared in imported interfaces.

An interface is a unit that contains a group of declarations where variable

initialization is constant and procedure declarations specifies only its signature.

They are used to hide information and restrict access to members of the module.

Interfaces are separated from their implementation. Only the elements listed in the

19

interface are available for clients. Since interfaces do not contain implementation

details, code dependencies are avoided.

A module imports an interface to make its entities available. A module

exports an interface if it provides bodies for its procedures. A module restricts the

visibility and accessibility of its members using interfaces to export them. When a

module does not specify an exported interface, all the elements of the module are

exported. Figure 2.8 shows an example of an interface and a module

implementation for a linked list.

�
�� �� � � �	� �# ��/ # �3����
����? � � ��
������# ��/ ,< # �3���� �� &E � 	��
����������
� �1 � �� �
���������������< < �- "�� � � �$��
���������������) *�8 �$"�&� � # � �� �����������
����� � ���
� � ��# ��/ # �3���

�

� �� # � �# ��/ # �3���
���? � � ��
�������# ��/ � @ +,�� �� &E � 	��
�����������- < ,�"�� � � ���
�����������,! ��"�# ��/ � @ +,�"� �� �# ��
������� � ���
������# ��/ ,< # �3��� ��&� �� �� ��� &E � 	��
��������
 ,� < �"�# ��/ � @ +,�"� �� �# ��
��������
� �1 � �� �
���������< < - "�� � � �$�"� ��< < � 7- . ��
���������) *�8 �$�"� ��) *�8 � 7- . ��
����� � ���
����� � � 	� �� � � ��< < � 7- . �3,+9"�# ��/ ,< # �3���- "�� � � �$�� �
����F �� ��! �"�# ��/ � @ +,��
����&� ' �� �
����������! �"� �� � G � # ��/ � @ +,6��- < ,"� - ��$��
����������! ��,! ��"� �
 ,� < ��
����������3,+9�
 ,� < �"� �! ��
����� � ���< < � 7- . ��
����� � � 	� �� � � ��) *�8 � 7- . �3,+9"�# ��/ ,< # �3����$�"�&� � # � �� �� ��
����&� ' �� �
���������� � �� � � �3,+9�
 ,� < �� �� �# ��
����� � ���) *�8 � 7- . ��
&� ' �� �
� � ��# ��/ # �3���

Figure 2.8. An interface and module implementation in Modula-3.

20

2.4.3. SML structures, signatures, and functors.

SML is a functional programming language that supports modular

programming [MTH 90]. The module system of SML is considered one of the most

powerful due to its treatment of parameterized modules as functors [L 00].

SML module system has structures, signatures, and functors. A structure is

a unit that encapsulates a collection of types and values. A signature specifies the

type of a structure, i.e., it is a “structure type” and can restrict the accessibility of

the members of a structure. The types and values declared in a structure can be

referred using qualified names, i.e., using the dot notation structureName.identifier.

A functor is a function that receives a structure as argument and produces a

structure as result, i.e., a function from modules to modules. Figure 2.9 shows an

example of a signature, a structure, and a functor in SML.

The left part of figure 2.9 contains the definition of two signatures

MONOID and POWMON, and a functor called Pow. Functor Pow receives as a

parameter a structure of type MONOID and gives as a result a structure of type

POWMON. In the right part, we see the definition of two structures RealAdd and

IntMul which type is MONOID. Two new structures, S and I, are obtained by

applying the functor Pow with arguments RealAdd and IntMul. These two

structures S and I have type POWMON.

21

�

3�0�� �> 7,�
� � � ���� ���3�0�
�������8 *,�3,����
������C � +�- *,�"�3,��(�3,��A:�3,����
������C � +�- �,�"�3,����
���,�< ��
�
3�0�� �> 7,�� � G
� � �� ���3�0�
��������. +> < ,�
� � � �����
������C � +�*- B�"�3,��(�����A:�3,����
���,�< ��
�
9> �. �- 7�� - B�
- �- �< �"�
� � � ��$�"�� � G
� � �� �
���3�7> . ��
�������8 *,�3,��� �
- �- �< �3,����
������C � +�- *,�� �
- �- �< �- *,���
������C � +�- �,�� �
- �- �< �- �,���
������9> ��*- B� � 6�$�� ��9��� 5 ��
 ,��- �,��
��������������������������������,+3,�- *,� *- B � 6��A� $6� $���
���,�< ��

�

3�7> . �> 7,�� ,� +�< < �� ����3�7> . ��
�������8 *,�3,��� �7,� +��
������9> ��- *,� 7� �"�7,� +6�7� �"�7,� +$�� �7� �D �7� ���
������C � +�- �,�� �5 �5 ��
���,�< ��
�
3�7> . �> 7,����
> +��� ���3�7> . ��
�������8 *,�3,��� �������
������9> ��- *,� �� �"����6��� �"����$�� ��� �D ��� ���
������C � +�- �,�� �� ��
���,�< ��
�
3�7> . �> 7,�� �� �� - B� � ,� +�< < $���
� �*- B � �� 6�5 $��
� �*- B � � �H � 6�� $��
�
3�7> . �> 7,���� �� - B� ���
> +�$���
��*- B� � 6�� $���
��*- B � 6�5 $���

Figure 2.9. Signatures, structures, and functors in SML.

SML modules are first-class values. They can be passed as parameters and

returned as results in functors and they can be stored in data structures.

A problem of the SML module system is related to separate compilation. As

stated in its definition, “ML is an interactive language” [MTH 90, page 1]. Leroy

attempts to apply the separate compilation technique found in Modula-2 to the

SML module system [L 94]. This cannot be directly applied because the use of

transparent types specifications prevents the complete type specification of

signatures, which is required to detect type clashes in modules. Leroy proposed the

use of manifest type declarations to provide enough type information for separate

compilation.

22

2.4.4. Objective Caml.

Objective Caml (OCaml) is a general-purpose language that supports

functional, imperative, and object-oriented programming styles [R 02]. OCaml

supports two models to structure programs: the parameterized module model and

the object model.

The parameterized module model allows decomposing a program into

software units, which are called modules. They can be developed independently

and compiled separately. Modules can be also parameterized increasing the

possibility of code reuse.

There are two ways to create modules: as compilation units and using the

module language. A compilation unit is created with two files with different

extensions: an interface file (.mli) and an implementation file (.ml). Modules as

compilation units have some drawbacks: a one-to-one relation between modules

and files exist making impossible to use several implementations of an interface,

and nested modules are not supported. The module language of OCaml is similar to

the module system of SML. It contains two kinds of modules: signatures and

structures to define interfaces and implementation respectively. A structure can be

constrained by a signature making accessible to clients of the module, only those

elements listed in the signature. Functors are also part of the module language of

OCaml and they have the same functionality than in SML. Figure 2.10 shows an

23

interface with its implementation. The example is based on an example from

[CMP 00, page 408].

�
) - < > +,��8 *,�� ��	= �� ���3�0�
�������8 *,�;� ���
������,! . ,*��- ���) *�8 �
������C � +�. 7,� �,�"�> ����A:�;� ���
������C � +�*> 3
 "�;� �A:�;� ���A:�> ����
������C � +�*- *"�;� ���A:�;� �
���,�< �����
�
) - < > +,��� �� . / �� ��3�7> . ��
�������8 *,�;� ���� �I) > �� @ +,��- *�"������) > �� @ +,�3�- 7,�"�;� �� 77� 8 �J�
������,! . ,*��- ���) *�8 �
������+,����. 7,� 3,3�3�! �� �3�3�- 7,�KA��77� 8 �� **,�< �3�3�- 7,� ��77� 8 �. 7,� �,�� �! $�
������+,��. 7,� �,� $�� ��I��- *� 5 ���3�- 7,�� �L�M�M�N��J�
������+,��*> 3
 �! �3�� �
������������9�3��- *�:� ��77� 8 �+,�0�
 �3�3�- 7,��
 ,����. 7,� 3,�3�! ��
�����������3�3�- 7,� 3��- *$�KA�! ��
�����������3��- *�KA�3> . . �3��- *�
������+,��*- *�3�
������������9�3��- *�� �5 ��
 ,��7� �3,��) *�8 �
�����������,+3,� 3��- *�KA�*7,< �3��- *���3�3�- 7,� 3��- *$$�
���,�< ����
�
OO���3�� �. ,�- 9��� �� . / �. - �3�7� ��,< �@ 8 �� ��	= �3�0�� �> 7,�
) - < > +,�� �� . / � �� � ��� �� . / �"�� ��	= �$����
�
+,��3� �� �� �� . / � �. 7,� �, $���
� �� . / � �*> 3
 �� �3� ����
�

Figure 2.10. Modules in OCaml.

2.4.5. Java packages.

The Java programming language does not have a traditional module system.

Classes and packages in Java are used to support language features that are part of

the module system in other languages. Java provides classes to structure programs

24

and packages to group related classes and interfaces under a common name. Java

packages serve three main purposes:

• Define package scope. Classes defined in the same package may share

some of their information. Packages can be nested to organize related

packages, but no special access is provided for them. Package scope

applies only to the package itself and no other nested packages.

• Define namespaces. A package can contain several definitions of

interfaces and classes. Packages have a one-to-one relation with file

directories. They are used to create naming contexts.

• Import. The elements of a package can be accessed using fully qualified

names or they can be imported. A program can import all or part of a

package. The use of a package prefix ensures that names in one context

do not conflict with names in another context.

The Java platform has several standard packages that define the core Java

classes. Figure 2.11 shows an example of a group of classes that belong to a

package.

25

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

Figure 2.11. Java packages.

Three classes are defined in the package, which is named figures. In each

file, the first statement declares that all classes and interfaces in the file are part of

the package. When many classes are defined in file, only the one whose name

coincides with the file name can be annotated as public. The name of the package

is prefixed to each element contained in the package. Classes within the package

can refer to each other members. Fields and methods that are not annotated as

private can be used in all the code within the package. Class members’ access is by

default package, which means they can be used by other classes in the package.

Some problems of the Java package mechanism are:

• Name collision. The same name can be given to different packages.

• Packages cannot completely control the access to their member classes.

• Packages do not have interfaces and cannot provide different views.

*� . / � 0,�9�0> 7,3���
*> @ +�. �. +� 33�	�7. +,�I��OO�	�7. +,��) *+,) ,��� ��- ��
J�

*� . / � 0,�9�0> 7,3��
*> @ +�. �. +� 33�� ,. �� �0+,�I��OO�� ,. �� �0+,��) *+,) ,��� ��- ��

J

*� . / � 0,�9�0> 7,3��
*> @ +�. �. +� 33�� - ����I��OO�� - �����) *+,) ,��� ��- ��
�J�

26

2.4.6. C# namespaces and assemblies.

C# provides files, namespaces, and assemblies to organize the source code.

A namespace is a logical structuring mechanism that can contain several classes

and interfaces. They are used to avoid the use of long class names. A namespace

can be imported making accessible all the classes and interfaces that it contains. An

assembly is an executable file (.exe or .dll) generated by the compiler. An assembly

is used to pack and deploy a component. Figure 2.12 shows an example borrowed

from [C# 01 p. 45].

// class library with a single class
// HelloLibrary.cs
namespace Csharp. Introduction {
 public class HelloMessage {
 public string Message {
 get { return “hello, world”; }
 }
 }
}

// application
// HelloApp.cs
using Csharp. Introduction;
class HelloApp
{
 static void Main() {
 HelloMessage m = new HelloMessage ();
 System.Console.WriteLine (m.Message);
 }
}

Figure 2.12. C# namespaces and assemblies.

The left part of figure 2.12 shows an example of a namespace named

Csharp.Introduction, which contains only a class named HelloMessage. The fully

name of this class is Csharp.Introduction.HelloMessage. The right part of figure

2.12 shows an application that uses the class HelloMessage which is available

without its fully qualified name because a using namespace directive imports it.

27

These two files can be compiled to generate a class library and an application that

uses that library.

2.4.7. Dylan.

In Dylan a module defines a namespace. It contains typically several

functions and classes. A module definition can have three kinds of clauses: export,

create and use. An export clause specifies which names are exported. Exported

elements like classes, slots, variables, and functions are available for users of the

module. A uses clause describes the modules used by the module being defined. A

create clause specifies the names declared and exported by the module. An

example of two module definitions borrowed from [S 97] is shown in figure 2.13.

�
< ,9��,�) - < > +,�07� *
 �. 3�
��> 3,�< 8 +� ���
��. 7,� �,�< 7� BA+��,6�
���������,7� 3,A+��,6�
�����������C ,7�A+��,6�
���������3/ ,BA+��,6�
���������97�) ,A7,. �6�
���������9�++A7,. �6�
���������,7� 3,A7,. �6�
�����������C ,7�A7,. ���
,�< �) - < > +,�07� *
 �. 3��
�
< ,9��,�) - < > +,�+��,3�
��> 3,�< 8 +� ���
��> 3,�07� *
 �. 36�
����) *- 7�"�I< 7� BA+��,6�
�������������,7� 3,A+��,6�
���������������C ,7�A+��,6�
�������������3/ ,BA+��,J��
,�< �) - < > +,�+��,3��
�

Figure 2.13. A module definition in Dylan.

28

The module graphics uses the module called dylan, which contains all the

basic language primitives. The module lines uses modules dylan and graphics but

the import declaration specifies that only some elements of graphics are available

(draw-line, erase-line, invert-line, and skew-line).

 29

Chapter 3.

Object-Oriented Concepts.

Objects, classes, and inheritance are some of the concepts related to object-

oriented programming. They emerged in the 1970’s with the programming

language Simula and Smalltalk [DN 81, I 78]. Now, the object-oriented concept

refers to both a methodology for software design as well as a programming

language feature. Although there is no consensus about the exact meaning of that

concept, some features are commonly recognized to be part of it. Most

object-oriented programming languages provide mechanisms for: encapsulation,

inheritance, dynamic dispatch, open recursion, and inclusion (subtype)

polymorphism. These features have a lot of variations and their combination gives

a unique flavor to each language.

In this chapter we present a classification of object-oriented programming

languages and review the different variations of the most important concepts that

distinguish an object-oriented language. We also show examples of how these

concepts are used in some specific programming languages.

30

3.1. Classification of object-oriented languages.

Three varieties of object-oriented languages are distinguished in figure 3.1,

they are: passive, active, and multimethod languages. Bruce [B 02] uses a similar

categorization with another naming convention: class-based, object-based and

multimethods languages. We adopted different names to prevent confusion with the

categories proposed by Wegner [W 87] that uses the terms object-based language

and class-based language for non-object-oriented languages.

Figure 3.1. A classification of object-oriented languages.

A brief description of each kind of object-oriented language is presented in

this section.

3.1.1. Passive languages.

Passive languages are also known as class-based languages because they

contain a class construct to describe the implementation of a group of objects.

Objects are instances of the class. All the objects generated from a class share the

Object-Oriented
Languages

Passive
Languages

Active
Languages

Multimethod
Languages

31

same behavior, which cannot be changed at runtime. The class defines a set of

values, called instance variables or fields, and a set of operations over those values,

called methods. Classes can contain also special functions called constructors to

generate and allocate instances of that class. Subclasses are specializations of

classes and they are defined using inheritance. In many languages classes and

subclasses generate types and subtypes.

Some examples of class-based languages are Java [AG 98], C# [C# 01],

C++ [S 91], Eiffel [M 92], OCaml [R 02], MOBY [FR 99b].

3.1.2. Active languages.

Active languages are also called classless or object-based languages

because they do not contain a class construct to define objects. Objects are formed

directly by constructing concrete objects called prototypes or exemplars. In these

languages, every object has its own behavior, which is set when the object is

created and, like fields, the behavior can change at runtime. Since no class

mechanism exists, these languages provide different mechanisms to derive new

objects from existing ones.

Prototype-based languages are a kind of active language. These languages

allow the user to generate “prototypical” objects that are used to create new objects.

They also allow dynamic update of methods so that an object can change its

behavior at runtime. Cloning is an operation to create a new object from a

32

prototype. All clones have the same structure but new features can be defined using

extension or delegation. Extension works like inheritance in classes. An object

created by extension inherits everything and it is independent of its parent.

Delegation allows an object to delegate certain operations to another object. An

object created by delegation retains ties to its prototype parent such that changes to

the prototype will be visible to the delegate and vice versa.

Self [US 87] and Kevo [T 93] are prototype-based object-oriented

languages with an associated programming environment. Objects in Self are made

up of slots, which can represent state or behavior. The environment provides a

graphical representation for objects. In this graphical representation, every slot has

an icon that represents data (constant or assignable) or behavior. The state of an

object can be altered only by passing messages to it. The types of variables are not

restricted so static typechecking is not possible. An example of an object in Self,

borrowed from [WS 03] is presented in the left part of figure 3.2. Another example

of a prototypical object called point written in Kevo, is presented in the right of

figure 3.2.

�

�
*- ����"A�LF �! �"A� 5 5 6�
��������������F �8 �"A� 5 5 6�
��������������
�< 7� B�"A�
���������������I3. 7,,��< 7� B� �! ,+ 3,+9�! 6�3,+9�8 $J�
�����������N��

Figure 3.2. Prototypical objects in Self and Kevo.

33

3.1.3. Multimethod languages.

Some object-oriented languages are not distinguished by the mechanism

they use to create objects, but by how they deal with dynamic dispatch. Dynamic

dispatch is divided into single and multiple dispatch.

In languages with multiple dispatch the object itself does not contain the

methods. The methods are implemented as functions, which can have the same

name as other functions but different parameters. A group of functions with the

same name and different parameters are called overloaded generic functions. A

theoretical study of this model of message sending appears in [CGL 95].

Multimethod languages are object-oriented languages with multiple

dispatch. They use overloaded generic functions to support dynamic method

invocation. When a message is sent, the name of the message and the type of the

arguments are used to select which overloaded generic function is going to be

executed. If there is only one match, it is selected but if there were more than one,

the selection of the method would be the one with the best fit. Some ambiguities

can arise in the selection of the method. Sometimes it is the programmer

responsibility to solve any ambiguity and sometimes the language contains a

mechanism to solve the ambiguity. A similar problem emerges in programming

languages with multiple implementation inheritance and similar solutions are

provided.

34

Multimethod languages do not encapsulate data and functions together, they

are separated, and sometimes they are encapsulated in modules. This separation of

data and functions increases the expressiveness of the language but it breaks

encapsulation. Most multimethods languages are classless but some of them have a

class construct that defines only data members, e.g., Dylan [S 97]. Proponents of

multimethods languages argue that languages with multiple dispatch are more

expressive than single dispatched languages because multiple dispatch is more

symmetric than single dispatch. Multiple dispatch solves the problem with binary

methods allowing covariant redefinition of parameters, and procedures. Single

dispatched methods and overloaded functions can be generalized by multiple

dispatch [CL 97].

Some examples of multimethod languages are BeCecil [CL 97], Cecil

[C 98], CLOS [BDG+ 88], and Dylan [S 97].

Figure 3.3 shows an example of an object definition and an overloaded

generic function written in BeCecil [CL 97].

BeCecil is a statically typed, classless object-oriented language with

multiple dispatch and multiple inheritance where classes and types are separated in

two different hierarchies. It supports a prototype-based model unifying classes and

objects. BeCecil is a core language designed as a subset of Cecil but it does not

include all its features. Cecil is a multimethod language with parameterized types

and a module system [C 98].

35

�
- @ P,. ��� - ���2 7,*�
� - ���2 7,*���
 ,7��3�� �8 �
- @ P,. ��	- +- 7� - ���2 7,*�
	- +- 7� - ���2 7,*���
 ,7��3�� - ���2 7,*�
	- +- 7� - ���2 7,*���
 ,7��3�	- +- 72 7,*�������������������� � ���� �	 ��
 � 	 ���

 � 	 �
�
- @ P,. ��! ���������������������������������������
! ���
 ,7��3�' ,�,7�. � > �2 7,*�
! �
 � 3�3�- 7� 0, *Q � - ���2 7,*$�"� �5 ������������
 � �

 � 	 ��
 ��
 � �	 �
! �
 � 3�) ,�
 - < � *Q � - ���2 7,*$�I�
���! 2 7,*� *$���	 �� �
 � ���	 �� ��� ��� � �� � ��
 � ��� � 	 ���
 �� �	 � �
J�
AA�3�) ,�. - < ,�- 9�- @ P,. ��! ��- �< ,9��,���3�� �. ,�C � 7�� @ +,�8 �
�
- @ P,. ��,R > � +�
,R > � +���
 ,7��3�' ,�,7�. � > �2 7,*�
,R > � +�
 � 3�) ,�
 - < � C � Q ���2 7,*6�C � Q ���2 7,*$�I�
���C � �� �C � ����������������������������������� � � �
 �	 �� � �� ��� �� � ��	 �� �
 � �� � � �	

 �
J�
,R > � +�
 � 3�) ,�
 - < � *� Q � - ���2 7,*6�*� Q � - ���2 7,*$�I�
���� �< � ,R > � + ! *� $6�! *� $$6�,R > � + 8 *� $6�8 *� $$$�
J�
�

Figure 3.3. Overloaded generic functions in BeCecil.

In the example of figure 3.3, an object called Point_rep is defined. It is

derived from any, which is a special object from which almost all objects inherit.

Another object called ColorPoint_rep is defined with multiple inheritance. A

generic function is a collection of multimethods. Generic functions x and equal are

objects that inherit from GenericFun_rep, which is a predefined object derived

from any. A generic function is extended with a has declaration. The generic

function equal is extended with two methods in the example.

36

3.2. Abstract data types and objects.

“A type is a (partial) description of behavior- a statically verifiable

interface” [B 92]. An abstract data type (ADT) is a type that contains a set of values

and a set of operations on those values. The structure or representation of the values

and the implementation of the operations are not important to the client and can be

hidden.

Transparent data types expose their representation to clients, while opaque

data types hide their representation to clients. Hiding the representation from the

client avoids code dependencies; thus the implementation can be changed without

affecting the client code. Programming languages that support ADTs usually

contain the following:

• A mechanism to separately define the declaration of an ADT from its

implementation. These two parts can be placed in different units.

• Separate compilation for the program units that declare and implement

the ADT.

• A mechanism to restrict visibility and access to the implementation part.

• A mechanism to allow the client to access the ADT.

On the other hand, an object contains state (a set of fields) and behavior (a

set of operations, called methods). The operations of an object are executed by

37

passing a message to the object, which is the name of the method to be executed. A

class is a template to define a group of objects. An object is an instance of a class.

Objects and abstract data types have some common properties but they also

have some properties that make them different. For example, the use of inheritance

in the definition of objects makes encapsulation more complex than simple data

abstraction. Objects carry with themselves the set of operations they can execute

and select the method to execute dynamically. On the other hand an abstract data

type stores the operations in a module and they are statically located. An object can

be replaced at runtime by another one that has the same interface.

3.3. Dynamic dispatch.

The selection of the method to be executed can be resolved at compile time

or at runtime. Object-oriented languages use a mechanism known as dynamic

dispatch for the selection at runtime; the method selected can change during

program execution. Static binding takes place at compile time and remains

unchanged in the execution of the program.

Dynamic dispatch is an important feature of object-oriented languages. The

definition of subclasses allows redefining methods that were inherited from

superclasses. Dynamic dispatch allows selecting dynamically the method to

execute depending on the runtime type of the object that receives the message, in

38

languages with single dispatch, or on the runtime types of one or more arguments,

in languages with multiple dispatch.

Dynamic dispatch is the default in Java while in C# and C++ must be

explicitly declared by making the methods virtual.

3.3.1. Single dispatch.

In programming languages with single dispatch, when a method is called

the selection of the method body is based on the runtime type of the designated

object who receives the message. Figure 3.4 shows the definition of a class and a

derived class which are going to be used in this example.

�
*> @ +�. �. +� 33�� - ����I�
�������! C � +6�8 C � +��
���� - ��� ����! 6�����8 $�I�! C � +�� �! ��8 C � +�� �8 �J�
���*> @ +�. �C - �< �) - C , ����< ! 6�����< 8 $�I�! C � +�D � ��< ! ��8 C � +�D � �< 8 �J�
���*> @ +�. �� �7��0��- � �7��0� $�I�7,�> 7��S! �� �SD ! C � +D �S6��8 �� �SD 8 C � +�J�
J�
�
*> @ +�. �. +� 33�	- +- 7� - ����,! �,�< 3�� - ����I�
���� �7��0�. C � +��
���	- +- 7� - ��� ����! 6�����8 6�� �7��0�. $�I�3> *,7 ! 68 $��. C � +�� �. $��
���*> @ +�. �C - �< �3,�	- +- 7� � �7��0�. $�I�. C � +�� �. �J�
���*> @ +�. �� �7��0��- � �7��0� $�I�7,�> 7��3> *,7��- � �7��0�D �S6��. - +- 7�� �SD . C � +�J�
J�
�
�

Figure 3.4. A class and a subclass definition in Java.

A common approach to select the method to execute is described as follows.

When an object receives a message, it looks for the method in its method table, if

39

the method is not there, then it goes up into its parent method table. This process is

repeated until the method is found. An example of a dynamic method invocation is

presented in figure 3.5.

%�
���� - ����*- ���� �� ��,B�� - ��� � 6� $��
��� 8 3�,) �- > ��*7���+� �*- ���� ��- 3�7��0 $$������� ��
 �� ���� �� � ��� �� �� �
�
��*- ���� � ��,B�	- +- 7� - ��� � 6� 6T7,< T$��
��� 8 3�,) �- > ��*7���+� �*- ���� ��- 3�7��0 $$�������� ��
 �� ���� �� � ���� �� �� ���� � �� ��� ��	 � �
�
�

Figure 3.5. Dynamic method invocation with single dispatch.

In the previous example, when the variable point1 contains a Point object,

the method toString executed is the one defined in Point class. On the other hand

when variable point1 contains a ColorPoint object, the method toString executed is

the one in ColorPoint class.

C++, Java, C#, and BETA are programming languages with single dispatch.

The BETA programming language has a different strategy for method

lookup [MMN 93]. When a message is sent, the execution of the method starts at

the top element of the hierarchy of objects. If the method is found it starts

execution. If the method is not found then it will go into the object hierarchy

looking for it. An example that illustrates this process is presented in figure 3.6

There are three patterns in figure 3.6, Point, ColorPoint and a pattern to use

those two patterns. Patterns are delimited by (# #). Pattern ColorPoint is defined

with inheritance using Point as parent, and it overrides the pattern Init. The

40

sentence &colorpoint1.Init; calls to execution Init of ColorPoint. This execution of

Init, will execute first the actions defined in its superpattern Point, initializing X

and Y with 0. The inner sentence following the initialization indicates that possible

actions are going to be executed in a subpattern, so the control goes to the Init of

ColorPoint where the initialization of color takes place. In this case, the inner part

of Init in ColorPoint is an empty action because no subpatterns exist. This strategy

to start looking for the method to be executed in the top of the hierarchy allows to

preserve the behavior defined in parent classes, because overriding methods must

execute first the methods they override.

�
� - ���"� U �
���4 6? �"�Q ����,0,7��
��������"K� U �< - �5 A:4 ��5 A:? �����,7�U $��
U $��
	- +- 7� - ����"�� - ���� U �
���. - +- 7�"�Q ����,0,7��
��������"K� U �< - �5 A:. - +- 7�����,7�U $��
U $��
 U �
���*- ���� �"�Q �� - �����
���. - +- 7*- ���� �"Q �	- +- 7� - �����
< - �V *- ���� �������������������������I������ +�W ,3�*- ���� �J�
�����V . - +- 7*- ���� ������������������I������ +�W ,3�. - +- 7*- ���� �J�
�����%�
U $�
�

Figure 3.6. Dynamic method lookup in BETA.

3.3.2. Multiple dispatch.

In languages with multiple dispatch the selection of the method to be

executed is based on the runtime type of one or more parameters. Multiple dispatch

41

is implemented by the definition of overloaded generic functions. A generic

function contains many implementations of a method name with different

parameter types. They are a set of overloaded functions.

Figure 3.7 shows an example where several generic functions are called.

This example uses the code presented in figure 3.3.

�
- @ P,. ��*- ���� �
*- ���� ���
 ,7��3�� - ���2 7,*�
! *- ���� $�"� �� �
8 *- ���� $�"� �� �
�
- @ P,. ��*- ���� �
*- ���� ���
 ,7��3�� - ���2 7,*�
! *- ���� $�"� �� �
8 *- ���� $�"� �� �
�
C � 7�- � "�- @ P,. ��"� �*- ���� �
C � 7�- � "�- @ P,. ��"�� �*- ���� �
,R > � + - � 6- � $������������������������AA����. -) *� 7,� *- ���� 6�*- ���� $�7,3> +���3�9� +3,�
- � �"� �! *- ���� $�
- � �"� �8 *- ����� $�
,R > � + - � 6- � $�������������������������AA�. -) *� 7,�9�,+< 3�! �� �< �8 �- 9�*- ���� ����7,3> +���3��7> ,�
�

Figure 3.7. Executing generic functions in BeCecil.

Two objects point1 and point2 are defined. They are derived from the object

Point_rep. Their instance variables x and y are initialized, which are themselves

objects derived from GenericFun_rep, and contain storage and a method to recover

their value. The generic function equal, is called to execution twice. The first time

object o1 and o2 contain point1 and point2 respectively, so generic function equal

is called with parameters of type Point_rep, while in the second call (last line of

42

code) object o1 and o2 contain objects of Int_rep which are the result of the

execution of the generic functions x and y with the same parameter point1.

3.4. The special variables this and super.

Object-oriented languages define two special variables this, sometimes

called self, and super. Variable super refers to the immediate parent class (object)

while variable this refers to the object that originated the message. These two

variables have an important role in finding the right method to be executed at

runtime.

When a method is called with super, this is still bound to the original caller.

The use of this in a method invocation represents a late-bound thus a method call

from inside an ancestor class may not be the method of the ancestor class, but the

method overridden by some descendent class.

3.5. Inheritance.

Inheritance is a language construct that allows the definition of new objects

based on existing ones. It is an important feature that encourages code reuse. Given

the definition of an object (class or prototype) a specialization of it can be

generated by specifying the differences with respect to the given one. The new

class is called a subclass, derived class, or child class, and the extended class is

called the superclass, parent, or base class.

43

 Inheritance can be classified in several ways. Single and multiple

inheritance are related with the number of classes used as parents in the definition

of new classes. Single and multiple inheritance are explained in sections 3.6.1 and

3.6.2. Another kind of inheritance, known as mixin inheritance is detailed in

section 3.6.3. Interface inheritance refers to the inheritance of types rather than

implementation and it is explained in section 3.6.4.

3.5.1. Single inheritance.

In languages with single inheritance, the definition of a new class called a

subclass is derived only from one class. The class hierarchy created by single

inheritance corresponds to a tree. Figure 3.8 shows an example of single

inheritance.

�
. +� 33�� � 7,���I����J�
. +� 33�	
 �+< � �,! �,�< 3�� � 7,���I����J�
. +� 33�	
 �+< � �,! �,�< 3�� � 7,���I����J�
�

Figure 3.8. Definition of classes using single inheritance.

In this example three classes are defined. Classes Child1 and Child2 are

subclasses of class Parent. They inherit everything from Parent. Inherited members

of the Parent class can be redefined in any subclass. The graphic representation of

single inheritance is a tree, as shown in figure 3.9.

44

Figure 3.9. A hierarchy of classes with single inheritance.

The class Parent is implicitly derived from the class at the top of the

hierarchy, which is a special class provided by the language. This special class is

named Object, ROOT, and any in Java, Modula-3, and BeCecil respectively. Every

class that doesn’t have an explicit parent is implicitly derived from the class at the

top of the hierarchy of classes.

Single inheritance has some advantages over multiple inheritance. The

relationship between classes is simple and no ambiguities need to be solved. A

disadvantage of single inheritance is that sometimes complex hierarchies of classes

can not be easily expressed.

Object

Parent

Child1 Child2

45

3.5.2. Multiple inheritance.

In multiple inheritance, a new definition is created by using two or more

previous definitions. The graphical representation of the inheritance hierarchy is a

Directed Acyclic Graph (DAG).

Complex hierarchies of classes can be expressed using multiple inheritance,

and the main disadvantage is the problems that can arise with its use, e.g., the

diamond problem. Two problems are well known, they are: name ambiguities for

methods and redundant method calls. There is no satisfactory solution for these

problems in current languages that support multiple inheritance because they

violate some other principles. Figure 3.10 shows an example of a class defined with

multiple inheritance in C++.

�
. +� 33�+��/ �I��%�J�
�
. +� 33��� 3/ �"�*> @ +�. �+��/ �I�
���C �7�> � +�< ,@ > 0(�0,�2 < � $��
J�
�
. +� 33�P- @ �"�*> @ +�. �+��/ �I�
���C �7�> � +�< ,@ > 0(�0,�2 < � $�����
J�
�
. +� 33�) 8 	+� 33�"�*> @ +�. ��� 3/ 6�*> @ +�. �P- @ I�%���J�
�
< ,@ > 0(�< �� �3A:�0,�2 < $��������OO�,77- 7X��) @ �0> - > 3�) ,�
 - < ���C - . � ��- ��
�
< ,@ > 0(�,�� �3�A:�P- @ ""0,�2 < $���OO�,! *+�. ���< ,+,0� ��- ��> 3��0�. +� 33�P- @ �
�
< ,@ > 0(�9�� �3�A:��� 3/ ""0,�2 < $�OO�,! *+�. ���< ,+,0� ��- ��> 3��0�. +� 33��� 3/ �

Figure 3.10. Class definition with multiple inheritance.

46

In this example, class myClass inherits from two classes, task and job.

These two classes have a common parent, class link. At the point in which function

get_d is called a compile time error arises, because the call is ambiguous and the

programmer must explicitly resolve this problem. In other languages like CLOS

and Self, the mechanism for resolving such ambiguities is called “linearization”. A

common approach to linearization is ordering left-to-right the inheritance graph and

the arguments of the function to resolve ambiguities automatically. The

disadvantage of this mechanism is that sometimes the selected method is not the

one intended. Eiffel provides an explicit annotation named “feature renaming” that

allows a class to rename one of the conflicting methods to disambiguate calls.

Figure 3.11 shows the class hierarchy created by the class definitions shown

in figure 3.10.

Figure 3.11. The diamond problem.

link

myClass

task job

47

3.5.3. Mixin inheritance.

Single inheritance is not enough to express complex hierarchies of the real

world and multiple inheritance adds complexity to the language which results in

error-prone programs. A mechanism called mixin intends to solve these problems.

Mixins are not classes, but a mechanism to create new classes from existing

ones. A mixin “class” is created with a specific purpose of being used to add

properties to other classes. They are not meant to be instantiated so no constructors

are provided. Mixins are not placed in the class hierarchy, so they stand alone, and

can be reused in many different places [B 92].

Bracha and Cook [BC 90] proposed an inheritance mechanism based on

composition of mixins that may be applied to superclasses to generate a new family

of related classes in languages with single or multiple inheritance. The main

advantage of this approach is that it does not depend on the linearization of

ancestors avoiding the problems of languages with multiple inheritance. In

languages with single inheritance, mixins can be used to model more complex

hierarchies that are related with multiple inheritance.

The use of mixins in languages with single inheritance, allows having

multiple inheritance without its problems. A graphical representation of mixin

inheritance is shown in figure 3.12. In this figure a small circle represent a mixin

and large circles represent classes. A mixin can be mix with a class that shares

some properties creating a new class.

48

Figure 3.12. Mixin inheritance.

Jam [ALZ 03] is an extension of Java with mixins. Figure 3.13 shows an

example of a mixin in Jam borrowed from [ALZ 03].

�
OO�) �! ���< ,9�����- ��
) �! ���� �< - �I�
�����
 ,7��,< �� �7��0�0,��,! � �$�����������������OO) > 3��@ ,�����
 ,�. +� 33��- �@ ,�) �! ,< �
�����
 ,7��,< �C - �< �3,��,! � � �7��0�3$������OO) > 3��@ ,�����
 ,�. +� 33��- �@ ,�) �! ,< �
���� �7��0�+� 3��,! ���
���C - �< �3,��,! � � �7��0�3$�I�
������+� 3��,! ��� �0,��,! � �$��
������3> *,7�3,��,! � 3$��
���J�
���C - �< �> �< - �$�I����3,��,! � +� 3��,! �$���J�
J�
�
. +� 33��,! �@ - ! �,! �,�< 3�	-) *- �,���I���OO�� �. +� 33�B��
 �0,��,! ��� �< �3,��,! ��
���� �7��0��,! ���
���%�
���� �7��0�0,��,! � �$�I�%�J�
���C - �< �3,��,! � � �7��0�3$�I�%�J�
J�
�
. +� 33��,! �@ - ! G ��
 � �< - �� �� �< - �,! �,�< 3��,! �@ - ! �I�J��OO��,B�. +� 33�
�

Figure 3.13. A mixin declaration and its use to produce a new class.

class1

mixin
new
class

49

In this example, the mixin called Undo requires that the class to be mixed

which contain the inherited elements. It defines a new field lastText and two

methods setText and undo. Mixing the mixin Undo with the class Textbox creates a

new class called TextboxWithUndo.

Mixins in Jam, define types, therefore classes created by mixin instantiation

have both the type of the parent class and the type of the mixin.

3.5.4. Interface inheritance.

An interface specifies a set of abstract methods and properties. It does not

contain default implementations. Interface inheritance is the process of defining a

new interface with all the methods found in one or more old interfaces. Interfaces

allow the definition of types that can have multiple implementations. Figure 3.14

shows an example of multiple inheritance of interfaces in Java.

�
*> @ +�. ����,79� . ,�� �> < ,���I�
���
� P- 7�0,�
� 8 - 7 �$��
J�
�
*> @ +�. ����,79� . ,�� 7- 9,33- 7I�
���	- > 73,3�%�
J�
�
*> @ +�. �. +� 33��,� .
 ,7�33�3�� �. ,��) *+,) ,��3�� �> < ,��6�� 7- 9,33- 7I�
����
J�
�

Figure 3.14. An example of multiple inheritance of interfaces.

50

Some languages with single implementation inheritance, like Java and C#,

allow classes to implement multiple interfaces. In this case classes inherit only

structure, not implementation. Multiple inheritance of interfaces avoid the problems

of multiple inheritance of classes, but duplication of code is sometimes needed.

Some languages offer also abstract classes. An abstract class is a class that

is not completely defined. It contains some abstract methods as well as some

implemented methods. In Java abstract classes define types and are part of the class

hierarchy. Interfaces and abstract classes in Java share some similarities but it is

recommended to use interfaces to abstract classes [B 01]. A comparison of abstract

classes and interfaces is listed next:

• Both interfaces and abstract classes define a type that permits multiple

implementations. An interface is the best way to define a type to have

multiple implementations.

• Abstract classes can be partially implemented; interfaces cannot.

• They are in different hierarchies.

• Abstract classes are easier to evolve than interfaces. (when an interface

is updated it will break all existing classes implementing it.)

• Interfaces can act as mixins (mixin interface), abstract classes cannot.

• Existing classes can be easily retrofitted to implement a new interface.

This is not the case for new abstract classes because they must be placed

in the class hierarchy.

51

3.6. Polymorphism.

In the dictionary the definition of the word polymorphism is “the quality or

state of being able to assume different forms.”

Two categories of polymorphism are recognized in programming

languages: universal polymorphism where the same code works for many different

types, and ad hoc polymorphism where different code is provided for every

different type [CW 85]. Universal and ad hoc polymorphisms are subdivided to

create four kinds of polymorphism. This is shown in figure 3.15

Figure 3.15. Kinds of polymorphism.

The two forms of ad hoc polymorphism are commonly found in many

programming languages. Overloading means to provide many different

implementations of the same function for different arguments. Coercion is an

polymorphism

universal

ad hoc

parametric

inclusion

overloading

coercion

52

operation provided to convert a type to another type to make it useful for the

context.

The two forms of universal polymorphism supply code that is executed

uniformly for a variety of types. Parametric polymorphism abstracts over types. It

is obtained when a unit (function, class or module) works uniformly over a range of

types [CW 85]. Types can be supplied as parameters to instantiate that unit.

Inclusion (subtype) polymorphism is essential to model some

object-oriented programming features. In inclusion polymorphism an object can be

seen as belonging to many different classes. In this context, an object can substitute

another object when the former is a subtype of the later. Types and subtypes as well

as the rules of the subtype relation are explained in section 3.8.

Object-oriented languages obviously favor subtype polymorphism. They

tend to ignore parametric polymorphism as they can simulate it to a limited extent.

Not all object-oriented languages support all four forms of polymorphism.

Two of the most popular ones, Java and C#, do not support parametric

polymorphism. Instead they use subtype polymorphism to simulate it. However this

technique is not type safe and runtime errors can arise. Subtype polymorphism

cannot replace parametric polymorphism in a safe manner. Proposals to include

parametric polymorphism in both languages have been analyzed recently

[BCK+ 03, C# 02].

Chapter 4 presents several approaches of parametric polymorphism.

53

3.7. Types and subtypes.

Types are an important part in programming languages. Types are useful to

represent abstractions, document programs, and detect errors at compile time. They

allow the generation of efficient code and can help to provide runtime safety.

A type is a set of values and suitable operations on those values. The

distinction of types in programming languages goes back to the 1950’s when the

first high level programming language i.e. FORTRAN, was developed. Some

languages like Pascal, and Java, require explicit type annotations while others like

SML use a type inference mechanism to discover the types of the elements.

A subtype is a type derived from another type. Subtypes are compatible

with their base types and support all their operations. A subtype can be used in any

context where an object of its supertype is expected. This notion is called

“subsumption: an object can subsume another object that has a more limited

protocol.” [AC 96]. The basic rules of subtyping are subsumption, reflexivity, and

transitivity.

The rule of subsumption is shown in figure 3.16 It states that if we have a

expression v of type S (v:S) and we know that type S is a subtype of type T (S<:T)

then v has also type T (v:T).

�

��������������������
������

Figure 3.16. Rule of subsumption.

54

In general the subtype relation is defined as follows: assume S and T are

types. Type S is a subtype of T, written as S <: T, iff the set of values of S is a

subset of the set of values of T. That means that a value of type S can be safely used

in contexts where a value of type T is expected.

Subtyping rules should be reflexive (S <: S) and transitive (S <: T and

T <: U implies S <: U).

The type of a function contains two parts (D −> R). A function S is a

subtype of a function T iff the domain of S is a supertype of the domain of T and

the range of S is a subtype of the range of T. In this context a function of type S can

be used in any context where a function of type T is expected. Figure 3.17 shows

the subtype rule for functions, which shows a contravariant relation for the domain

and covariant relation for the range.

���������������������
�

��������������������������

Figure 3.17. Subtype rule for functions.

A record S is a subtype of a record T if S has at least the same identical

fields or more than T. This is known as width subtyping and the rule is shown at

the left of figure 3.18. Depth subtyping allows variations in the type of

corresponding fields if they are in a subtype relation. This rule is presented at the

right of figure 3.18.

55

	
 �������
��Y���
 ���� ������	
 �������

��Y����
 ����

Width subtyping

�

�� � ��
 � � ���������������
�

	
 �������
��Y����
 ������	
 �������

��Y����
 ��

Depth subtyping

Figure 3.18. Subtype rules for records.

Many strongly-typed object-oriented languages like Eiffel [M 92], Java

[GJSB 00], and C# [C# 01] do not separate the class hierarchy from the type

hierarchy. They use inheritance to define the type hierarchy of objects, e.g., classes

generate types and subclasses generate subtypes. Other languages, like Objective

ML [RV 98], MOBY [FR 99], and PolyTOIL [BFSG 03] separate the class

hierarchy from the type hierarchy using structural equivalence.

Cook, Hill, and Canning [CHC 90] recommend to separate the subclass

relationship from the subtype relationship because when they are unified either the

type system of the language is not safe, e.g., Eiffel [Co 89], or the language loses

expressiveness since specialization of parameters when a method is overridden is

not possible, e.g. Java. A well-known problem to illustrate this situation is the

presence of binary methods in derived classes. Figure 3.19 shows a class definition

with a binary method and a subclass definition. The left part of figure 3.19 is

borrowed from [CHC 90] and uses Eiffel, while the right part shows the same

problem written in Java.

56

�
OO�� �99,+��
. +� 33�� �9,� �> 7,�
�����"����,0,7��3�� ��
����< �"�# �/ ,�	> 77,����3�	> 77,���
���,R - �
 ,7�"�# �/ ,�	> 77,��$�"�&- - +,� ���3�
����@ ,0���
��������� ,3> +��"� � - �
 ,7���� �	> 77,����$�
����,�< �
,�< �� �
�
. +� 33�	���
 ,7���� �7,< ,9��,�,R �9,� �> 7,�
���@ �"����,0,7��3�� ��
���,R - �
 ,7�"�# �/ ,�	> 77,��$�"�&- - +,� ���3�
����@ ,0���
��������� ,3> +��"� � - �
 ,7���� �	> 77,����$�� �< ��
����������������������� - �
 ,7�@ �� �	> 77,���@ $�
����,�< �
,�< �	�
�
*�"�� �"� ��,B�� $��
. �"�	�"� ��,B�	 $��
C �"�� �"� �. �
�
C �,R *$�����OO�� � � � � �����) ,�
 - < �,R �- 9�. +� 33�	��
�

�
OO�E � C � �
. +� 33�� �I�
������,0,7���� ��,B����,0,7 � $��
���@ - - +,� ��,R � �*$�I��
������7,�> 7�� �
 �3���� � �*��$��
���J�
J�
�
. +� 33�	�,! �,�< 3�� �I�
������,0,7�@ �� ��,B����,0,7 � $��
���@ - - +,� ��,R � �*$�I�
�������9� *���3�� �. ,- 9�	$��
���������7,�> 7�� �
 �3���� � �*��$�V V � �
 �3�@ �� � � 	$*$�@ $$��
������,+3,�7,�> 7�� �
 �3���� � �*��$��
���J�
J�
�
�

Figure 3.19. Binary method problem in Eiffel and Java.

In Eiffel, the parameter of method eq is covariantly specialized. Three

variables are defined (p, c, and v). The static type of variable v is P so v.eq(p) is

well typed. But at runtime, the program executes method eq of class C because

variable v contains an object of type C, which terminates the execution with an

error because object p doesn’t have a field b.

In the Java version, the method eq of class C cannot change its signature

because it overrides the inherited method eq. The argument must be cast before

field b is compared. The programmer has to deal with these implementation details.

57

3.8. Some other concepts.

3.8.1. Type equivalence.

Type compatibility needs to be defined to allow type checking. Two types

are compatible if they are equivalent. There are two ways to define type

equivalence: by name and by structure. In languages with name equivalence like

Ada, two variables are compatible when they are defined with the same type name.

The language must allow the definition of type names in order to support name

equivalence. Languages with structural equivalence like Modula-3, allow two

variables to have compatible types if the types used in their definition have the

same structure. These two variations have their own advantages and disadvantages.

Name equivalence is easier to implement than structural equivalence, but it is also

more restrictive.

3.8.2. Typechecking.

A program can be typechecked statically at compile time, or dynamically at

runtime. The main advantage of statically typed programming languages is that

many errors can be detected at compile time. Dynamically typed languages are

more flexible but the program can fail due to type errors at runtime.

Some features of object-oriented languages like subtyping and inheritance

make it difficult to typecheck these languages. The type system of the language

58

must specify a set of rules that allow to typechecking programs and detect type

errors.

Types can change in the type hierarchy in two ways: covariantly and

contravariantly. Types change in a covariant way when they are parallel to the type

hierarchy and in a contravariant way when they change in an opposite way to the

type hierarchy. They are called invariant when they do not change at all.

Covariance and contravariance characterize two different relations: specialization

and subtype respectively [C 95].

The addition of new members in a subclass does not pose a problem to the

type system. However, overriding a method in a subclass can generate a problem if

the return type does not change in a covariant way or the type of the parameters

does not change in a contravariant way, from the method being overridden.

Another kind of problem arises when the subclass relation is used to create the

subtype relation. These two problems and the solutions offered by several

languages are presented in [BCC+ 96].

Type safety is preserved in subclasses allowing covariant specialization for

return types, contravariant for parameters and invariant for instance variables

[B 02].

59

Chapter 4.

Generics.

Parametric polymorphism is a kind of universal polymorphism where the

same code is used for several types. Parametric polymorphism is an important

feature that increases language expressivity and clarity, and improves program

safety. In some programming languages this feature is called a generic. Generic

programming is the ability to write code once and reuse it in different

circumstances. Generic code defines an abstraction independently of the data types

to be used at runtime.

This chapter presents different kinds of genericity found in programming

languages. Different approaches to translation are described. Examples using

generics in different programming languages are presented.

60

4.1. Parametric polymorphism.

The basic idea of genericity is “substitution of type annotations” [PS 94].

Parametric polymorphism allows the definition of code that works uniformly for

different types, which can be unrelated. This form of implicit universal parametric

polymorphism is frequently found in functional languages like ML and Haskell.

Figure 4.1 shows two functions, written in Objective Caml (OCaml), that work for

any type.

�
U �+,���< ,����8 �! �� �! ���
�
 ���� 	
 ���� � ��!
 ���" ��#
 �� �$ ��
 " �
�
U �+,��
 ,� < �� �9> �. ��- ��
��LN�A:�9� �+B��
 �Z�) *�8 �+�3�Z�
��M�
 ""��A:�
 ���
�
 ��� 	
 � � �!
 ���� ���" �#
 �� �$ ��
 " �

head [1;2;3;4];;
- : int = 1

head [[1.0; 1.3; 1.5];[2.0];[3.0]];;
- : float list = [1. ;1.3 ; 1.5]

head [[“list1”;”a”];[“list2”;”b”];[“list3”]];;
- : string list = [“list1”;”a”]

head [];;
Exception: Failure "Empty list".

Figure 4.1 Two Polymorphic functions in Objective Caml.

Function head receives as a parameter a list of any type of elements and

returns as a result the first element of that list. The function is polymorphic and can

be called to execution sending as argument a list of any type. In the example, the

61

function head is called three times; the first one with a list of integer values, the

second one with a list of list of float values and the third one with a list of list of

string values and the last one with an empty list.

The addition of parametric polymorphism in statically type-checked

programming languages enhances the expressivity of the language, reduces code

maintenance, and increases safety because more errors are detected at compile

time.

4.2. Kinds of genericity.

Generic code can be unconstrained or constrained. Unconstrained genericity

means that the parameterized type would receive any type available in the system

to create an instance. On the other hand, constrained genericity means that the

parameterized types would receive as parameters only those types that agree with

the restrictions imposed.

We introduce some concepts that are needed in this section.

• A type variable is a name that stands for an indeterminate type.

• A parameterized type is a type that depends on one or more other types.

• Covariance. The type of an element in a class is replaced with a subtype

in a derived class, i.e., changes of a particular type are parallel to the

type hierarchy.

62

• Invariance. The type of an element of a class does not change in a

derived class.

• Contravariance. The type of an element of a class, is replaced with a

supertype in a derived class i.e., changes of a particular type are

opposite to the type hierarchy.

4.2.1. Unconstrained genericity.

In unconstrained genericity, any type in the system can be used as type

parameter in the instantiation of a parameterized type. There is no restriction. In

this section we use the language Eiffel to show an example of unconstrained

genericity. Eiffel defines a generic class as a class that accepts type

parameterization. Figure 4.2 shows the definition of a parameterized class in Eiffel.

�
. +� 33�� ��	= �L�N���
���9,� �> 7,���
������3�- 7,�"�� 77� 8 L�N��
������3�W ,"����,0,7�"� �5 ��
������*> 3
 �,+,) �"���$��3���
������< - ���
������������3�- 7, �3�W ,�$�"� �,+,) ����
������������3�W ,�"� �3�W ,�D �� ����
������,�< �AA�*> 3
 �
������*- *�"����3�
������< - �
���������7,3> +��"� �3�- 7, 3�W ,$��
���������3�W ,"� �3�W ,�A�� ��
������,�< �AA*- *�

,�< �AA�� ��	= �

Figure 4.2. Parameterized class STACK written in Eiffel.

63

The type parameter T defined in the class has no bounds or restrictions

imposed. That means that any type can be used as type parameter to create an

instance of class STACK. An instantiation of the generic class will create a specific

instance of the generic class. Two instantiations of class STACK are shown in

figure 4.3.

The result of these instantiations is as if two versions of the STACK class

had been written, one for each type.

�
*- ���� �� . / �"�� ��	= L� - ���N��
���,0,7� �� . / "�� ��	= L���,0,7N��

�

Figure 4.3. Two instantiations of class STACK.

4.2.2. Constrained genericity.

There are several mechanisms to restrict the type variables used in

instantiations of parameterized types. The one proposed by Cardelli and Wegner

[CW 85] called system F�, allows expressing the idea that a function can be applied

to all types that are a subtype of another. This mechanism is not powerful enough

to express all kind of constraints like the ones needed for recursive type definition.

Other more powerful mechanisms that are able to express constraints with recursive

type definitions are F-bounded quantification [CCH+ 89], where-clauses

[DGLM 95], and matching [BFSG 03].

64

F-Bounded is a type system that generalizes system F� with subtyping to

model basic features of object-oriented languages. In this system the bound of a

quantified type can depend on itself. Where clauses were proposed as an alternative

to subtyping where the type constraints are specified explicitly by listing the

required methods (name and signature) for the parameters. Matching requires the

separation of types and classes. Matching is a relation between types that

generalizes subtyping, i.e., it is less restrictive.

Modula-3 supports the definition of generic interfaces and modules and

uses interfaces to bound formal parameters to actual interfaces when the generic

unit is instantiated [N 91]. Different approaches to define constraints like virtual

types and where-clauses are used in the languages BETA and Theta respectively

[MMN 93, DGLM 95].

Examples of simple and recursive type constrains are presented in sections

4.2.2.1 and 4.2.2.2.

4.2.2.1. Simply bounded genericity.

This approach restricts the type of the parameters used in the instantiations

of parameterized types. The parameter type must be bounded to another type to

ensure that it implements some needed methods.

GJ is based on F-Bounded quantification [BOSW 98], but in this section we

do not use the recursive type constraint to show the problems that can arise when

65

simple bounds are defined. An example of a parameterized class in GJ is shown in

figure 4.4.

�
���,79� . ,�� 7< ,7� @ +,�I�
���@ - - +,� ��,R � � 7< ,7� @ +,�- �
 ,7$��
���@ - - +,� ��+,� � 7< ,7� @ +,�- �
 ,7$��
J�
�
. +� 33�� 7< ,7,< # �3�K����) *+,) ,��3�� 7< ,7� @ +,:�I�
�����+�3�� +,) ��
���%�
���*> @ +�. �C - �< ���3,7�� ��,+,) $�I�
������%�
�������9� +�3�� +,) �+, ,+,) $$%�
������%�
���J�
���*> @ +�. �@ - - +,� ��) ,) @ ,7� ��,+,) $�I�
������%�
�������9� +�3�� +,) �,R ,+,) $$�7,�> 7���7> ,��
�����%�
���J�
J�
�

Figure 4.4. A parameterized class with a simple bound in GJ.

OrderedList is a parameterized class that depends on a type parameter

called T, which is bound to Orderable. This bound restrict the types that can be

used to create instances of class OrderedList. Figure 4.5 shows some instantiations

of the parameterized class OrderedList.

66

�
. +� 33�� - �����) *+,) ,��3�� 7< ,7� @ +,�I�
�������! 68 ��
���@ - - +,� ��,R � � 7< ,7� @ +,�- �
 ,7$�I��%�J�
���@ - - +,� ��+,� � 7< ,7� @ +,�- �
 ,7$�I��%�J�
���%�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� 7< ,7,< # �3�K� - ���:�*- ���# �3��� ��,B�� 7< ,7,< # �3�K� - ���: $��
�������� - ����*� �� ��,B�� - ��� � 6� $��
������%�
������*- ���# �3����3,7� �,B�� - ��� � 6� $$��
����������
�������9� *- ���# �3��) ,) @ ,7 *� $$������
�������
���J�
J�
�

Figure 4.5. Instance creation of the parameterized class OrderedList.

The class Point implements the interface Orderable and it can be used as

type parameter to create an instance of the class OrderedList. An instance of the

generic class OrderedList is created when a variable of type OrderedList<Point> is

created.

The definition of parameterized types with simple bounds like the one used

in the previous example cause some problems when binary methods are needed in

the class. For example, the interface Orderable contains two methods, each one

with a formal parameter of type Orderable. Classes that implement this interface

are not allowed to covariantly change the type1 to specialize it due to type safe

restrictions. At runtime, a variable of any type that implements Orderable could be

1 The language Eiffel allows covariant changes of parameters, but it’s been proven that its type
system is unsound. [Co 89]

67

passed as argument and the compiler is unable to detect that error. The programmer

is responsible to write special code to ensure that the correct type is received and to

cast it to the type needed to execute the operations. This limitation can be solved

using a generalized form of parametric polymorphism with recursive bounds,

which is presented in next section.

4.2.2.2. Recursively bounded genericity.

It is possible to define type parameters with recursive constraints using

F-bounded quantification [CCH+ 89]. Using a recursive bound on the type

parameter ensures that the required arguments have the same type than the object

that receives the message, but they may not be exactly the same.

Generic Java (GJ) relies on F-Bounded quantification to allow the definition

of parameterized types [BOSW 98].

Figure 4.6 shows the definition of a generic interface Orderable and the

generic class OrderedList using a recursive bound in the type parameter.

�
���,79� . ,�� 7< ,7� @ +,�K�:I�
���@ - - +,� ��,R � ��- �
 ,7$��
���@ - - +,� ��+,� ��- �
 ,7$�J�
�
. +� 33�� 7< ,7,< # �3�K����) *+,) ,��3�� 7< ,7� @ +,K�::�I�
��OO�3�) ,�� 3�@ ,9- 7,�
J�

�

Figure 4.6. A parameterized class with a recursive bound in GJ.

68

When the interface Orderable is parameterized, it is possible to create

recursive bounds in the type parameter of a class bounded to Orderable. In

OrderedList<T implements Orderable<T>> the type parameter T is constrained to

implement an interface that is parameterized with itself. A type parameter is needed

to define an instance of OrderedList class. The type that can be used to instantiate

OrderedList is restricted to implement the parameterized interface Orderable with

itself. Figure 4.7 shows an example of a class that instantiate the OrderedList class.

�
. +� 33�� - �����) *+,) ,��3�� 7< ,7� @ +,�K� - ���:�I�
�������! 68 ��
���@ - - +,� ��,R � � - ����- �
 ,7$�I��%�J�OO�8 *,�3*,. �� +�W ,< ��- �� - ����
���@ - - +,� ��+,� � - ����- �
 ,7$�I��%�J��OO�8 *,�3*,. �� +�W ,< ��- �� - ����
���%�
�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� 7< ,7,< # �3�K� - ���:�*- ���# �3��� ��,B�� 7< ,7,< # �3�K� - ���: $��
�������� - ����*� �� ��,B�� - ��� � 6� $��
������%�
������*- ���# �3����3,7� �,B�� - ��� � 6� $$��
����������
�������9� *- ���# �3��) ,) @ ,7 *� $$������
�������
���J�
J�
�

Figure 4.7. Innstantiation of the parameterized class OrderedList.

Class Point can be used as an actual type parameter to create instances of

OrderedList because Point implements Orderable<Point>. We instantiate the class

as follows: � 7< ,7,< # �3�K� - ���:�*- ���+�3��� ��,B�� 7< ,7< ,< # �3�K� - ���: �$��

69

In GJ, when a class is defined with a recursive bound the possibility of

deriving new classes that can be used as type parameters is lost. F-Bounded

quantification and binary methods cannot be smoothly combined in languages with

nominal subtyping, like Java. We illustrate that with the example shown in figure

4.8.

. +� 33�	- +- 7� - ����,! �,�< 3�� - ����I%J�
�
� 7< ,7,< # �3�K	- +- 7� - ���:�. *# �3��� ��,B�� 7< ,7< ,< # �3�K	- +- 7� - ���:��
������������������������������OO�. -) *�+,A��) ,�,77- 7XX�. +� 33�	- +- 7� - ����< - ,3��- ���) *+,) ,���� 7< ,� @ +,K	- +- 7� - ���:�
�
OO�� �- �
 ,7�< ,9�����- ��
. +� 33�	- +- 7� �,! �,�< 3�� - �����) *+,) ,��3�� 7< ,7� @ +,K	- +- 7� :�I�%��J���
OO�. -) *�+,A��) ,�,77- 7XX���. +� 33�	- +- 7� ���
 ,7��,< �� 7< ,7� @ +,K� - ���:�� �< �. � ��- ���) *+,) ,���� 7< ,7� @ +,K	- +- 7� :

Figure 4.8. Subclasses cannot be used as type parameters.

�

The definition of class ColorPoint, generates a class that cannot be used as

type parameter of OrderedList because it inherits Orderable<Point> and it needs

Orderable<ColorPoint>. The compiler produces an error.

The definition of class ColorP is not valid either due to a restriction

imposed by the technique used in the implementation of parameterized types in GJ.

Class ColorP inherits Orderable<Point> and cannot at the same time implement

Orderable<ColorP>. The explanation is found in [BCK+ 01].

To support translation by type erasure, we impose the restriction that a class or
type variable may not at the same time be a subtype of two interface types
which are different parameterizations of the same interface. Hence, every
superclass and implemented interface of a parameterized type or type variable
can be augmented by parameterization to exactly one supertype.

70

4.3. Translation.

Parametric polymorphism in programming languages can be implemented

in three different ways:

• Heterogeneous code. Specializing the code for each instantiation.

• Homogeneous code. Generating common code for all instantiations.

• Hybrid code. A combination of homogeneous and heterogeneous code.

Each translation approach has its own advantages and disadvantages.

Instances of parameterized classes might be created at compile time, link time or

execution time. Ada and C++ use the heterogeneous translation that produces a

specialized version of the code for each different instance of the parameterized type

at compile time. The advantages of heterogeneous translation are that any type can

be used as actual parameter to create an instance and no runtime cost penalties exist

because efficient code is produced. Some disadvantages of heterogeneous

translation are: compilation is slower, the source code is needed at compile time

when an instance is defined and it can cause great memory consumption at runtime

when many different instances exist. On the other hand languages like Modula-3

and ML follow the homogenous translation where a single block of code is

generated to manipulate all possible different instances. At runtime, there is only

one block of code that is shared by all instances, but the execution performance can

be affected by the extra indirection through references.

71

4.3.1. Homogeneous.

A homogeneous translation produces a single piece of code that works

uniformly for all types. The implementation of generic code in GJ has followed the

homogeneous approach [BOSW 98b]. A technique called type erasure is used to

translate the generic code that can be executed by the Java Virtual Machine (JVM)

[BOSW 98]. The translation technique can be described in four steps:

1. Erase type parameters

2. Replace type variables with their bounding type

3. Add cast operations

4. Insert bridge methods.

In this section we explain how this technique is implemented using a source

code example.

The compiler translates a parameterized class into a class that replaces type

parameters with their bounding types, generally Object, which is the type at the top

of the class hierarchy. This is why it is called type erasure; their bound types

replace all type parameters. Sometimes bridge methods are needed to ensure that

overriding works properly. Classes that use instances of a parameterized type

require the insertion of some cast operations where methods that return the type

parameter are called to execution. This cast operations inserted by the compiler are

warranted not to fail at execution time. The resulting class is similar to a class

implementing the generic idiom.

72

Compiler

Figure 4.9 shows the translation of a parameterized class using source code.

The class in the top left of the figure, Stack, is a parameterized class with one type

parameter, <T>, that is used to define the type of some elements of the class. The

class at the top right of the figure, TestStack, is used to create an instance of the

parameterized class Stack<T> using String as the actual type parameter. When the

pop method is invoked no cast operation is needed because the type of the object

returned by pop is the one expected (String).

Figure 4.9. Translation of a parameterized class.

*> @ +�. �. +� 33�� �� . / �I�
���*7�C � �,�� � ��� �LN�3�- 7,�� ��,B�

� � ��� ��L� 5 5 N��
���*7�C � �,�����3�W ,�� �5 ��
���*> @ +�. �C - �< �*> 3
 � � ��� ��,+,) $�I�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. �� � ��� ��*- * �$�I�
������7,�> 7��3�- 7,LAA3�W ,N��
���J�
J�

*> @ +�. �. +� 33�� �� . / ����I�
���*7�C � �,��LN�3�- 7,�� ��,B��L� 5 5 N��
���*7�C � �,�����3�W ,�� �5 ��
���*> @ +�. �C - �< �*> 3
 ��,+,) $�I�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. ���*- * �$�I�
������7,�> 7��3�- 7,LAA3�W ,N��
���J�
J�

*> @ +�. �. +� 33��,3�� �� . / �I�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� �� . / ���� �
 � ��3�7��0� �� . / �� ��,B�� �� . / ���� �
 � � $��
������3�7��0� �� . / �*> 3
 SG - 7+< T$��
������3�7��0� �� . / �*> 3
 S1 ,++- 6�;$��
������� 8 3�,) �- > ��*7���+� 3�7��0� �� . / �*- * $�D �3�7��0� �� . / �*- * $$��
���J�
J

*> @ +�. �. +� 33��,3�� �� . / �I�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� �� . / �3�7��0� �� . / �� ��,B�� �� . / $��
������3�7��0� �� . / �*> 3
 SG - 7+< T$��
������3�7��0� �� . / �*> 3
 S1 ,++- 6�;$��
������� 8 3�,) �- > ��*7���+� ���� �
 � �3�7��0� �� . / �*- * $�D ��
�� �
 � �3�7��0� �� . / �*- * $$��
���J�
J

73

These two classes are translated to the classes listed in the bottom part of

the figure. All type parameters are erased from class Stack<T> and elements

annotated as T in Stack<T> are now annotated as Object in the resulting class

Stack. The class TestStack refers to the class Stack, without type parameters, and

cast operations are inserted when the pop method is invoked.

This translation technique does not allow using primitive types as type

parameters to create instances of parameterized types. They cannot be used as type

parameters because they cannot all be unified with a particular type that will allow

them to be treated uniformly. A different technique could be implemented to

support primitive types as type parameters but some changes to the JVM are

required. In order to preserve compatibility with legacy code, changes to the JVM

were avoided.

PolyJ [MBL 97] is another proposal to include parameterized types in Java.

PolyJ allows the use of primitive types as type parameters, uses where-clauses to

define constrains, and implements a homogeneous translation approach. However,

they make changes to the JVM in order to produce a more efficient translation.

4.3.2. Heterogeneous.

A heterogeneous translation produces a piece of code for every different

instantiation of the parameterized type. The only difference of each piece of code is

the type of the elements they contain. They define the same behavior for different

74

types. C++ uses a heterogeneous translation approach. A template class is defined

with some type parameters. There is no way to constrain the type parameters so

type checking is done at linking time. For every type instantiation, the compiler

will generate a specialization of the class. Figure 4.10 shows an example of a

template and two instantiations of it.

Figure 4.10. A template class with two instantiations.

�,) *+� �,�K. +� 33��:��. +� 33�� �� . / �I�
*> @ +�. "�
���� �� . / ����� �� 5 $����
���[� �� . / $�I�< ,+,�,�LN�3�� . / � �7���J�
�������*> 3
 . - �3���V $���
�������*- * �V $�����
*7�C � �,"�
�������3�W ,����OO��>) @ ,7�- 9�,+,) ,��3�- ��� �� . / ��
��������- *�����
����(�3�� . / � �7�����

J���

. +� 33�� �� . / �I�
*> @ +�. "�
���� �� . / ����� �� 5 $����
���[� �� . / $�I�< ,+,�,�LN�3�� . / � �7���J�
�������*> 3
 . - �3��9+- � ��V $���
�������*- * 9+- � ��V $�����
*7�C � �,"�
�������3�W ,����OO��>) @ ,7�- 9�,+,) ,��3�- ��
� �� . / ��
��������- *�����
���9+- � ��(�3�� . / � �7�����
J���

. +� 33�� �� . / �I�
*> @ +�. "�
���� �� . / ����� �� 5 $����
���[� �� . / $�I�< ,+,�,�LN�3�� . / � �7���J�
�������*> 3
 . - �3������V $���
�������*- * ����V $�����
*7�C � �,"�
�������3�W ,����OO��>) @ ,7�- 9�,+,) ,��3�- ��
� �� . / ��
��������- *�����
�������(�3�� . / � �7�����
J��

� �� . / K9+- � �:�
8 � +- � �� �� . / �� � �� . / K���:�
8 ���,0,7� �� . / � 5 5 $�

75

This approach generates efficient code because every instantiation produces

a specialized piece of code. On the other hand, if many different instantiations are

needed, the same code for different types is produced and the program size grows.

A proposal for adding parameterized types to Java that includes the use of

primitive types as type parameters, uses a heterogeneous translation approach

where the specialization of code is generated at loading time [AFM 97].

4.3.3. Hybrid.

A hybrid translation may produce both heterogeneous and homogeneous

code. The programmer can choose the translation mechanism, as in Pizza, or the

compiler can decide which translation is more appropriate for each instantiation.

The C# implementation of generics uses both translation approaches: code

specialization and code sharing [KS 01]. Instantiations of parameterized classes are

loaded dynamically and the code of their methods is generated on demand. They

generate unshared code for primitive instantiations and possible-shared code for the

rest. This distinction is transparent for the programmer because C#’s type system is

unified. Although value types are stored in a different way than reference types, C#

provides automatic boxing and automatic unboxing of values to avoid explicit

wrapping.

Figure 4.11 shows an example of a parameterized class and two different

instantiations.

76

C# is translated to the Intermediate Language (IL) of the Common

Language Runtime (CLR). The extension of the CLR to support generics proposed

by Kennedy and Syme [KS 01], has three main points: adding some new types to

the IL type system, introducing polymorphic forms of the IL declaration for

classes, interfaces, structs, and methods along with ways of referencing them, and

specifying some new instructions and generalization of existing instructions. This

extension of the CLR allows an efficient execution of generic code not only for C#

but for all programming languages supported by the .NET platform. A

formalization of this mechanism is presented in [YKS 04].

�

*> @ +�. �. +� 33�' � �� . / K�:�I�
���*7�C � �,��LN�3�- 7,�� ��,B��L� 5 N��
���*7�C � �,�����3�W ,�� �5 ��
���*> @ +�. �C - �< �� > 3
 ��,+,) $�I�
�������9� 3�W ,�:� �3�- 7,�# ,�0�
 $�I�
����������LN��) *�� ��,B��L3�W ,(� N��
����������77� 8 �	- *8 3�- 7,6��) *6�3�W ,$��
���������3�- 7,�� ��) *��
������J�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. ���� - * $�I���7,�> 7��3�- 7,LAA3�W ,N����J�
�
���*> @ +�. �3�� ��. �C - �< �
� ��� $�I�
������' � �� . / �K���:����� �� . / �� ��,B�' � �� . / K���: $����OO�3*,. �� +�W ,< �. - < ,�9- 7��
 �3���3�� ���� ��- ��
���������� �� . / �� > 3
 � � $��
����������8 �� ����� �� . / �� - * $��
�
������' � �� . / �K3�7��0:�3�7��0� �� . / �� ��,B�' � �� . / K3�7��0: $���OO�3
 � 7,< �. - < ,�9- 7��
 �3���3�� �. ,�
������3�7��0� �� . / �� > 3
 S
 ,++- T$��
������3�7��0�3�� �3�7��0� �� . / �� - * $��
���J�
J�

Figure 4.11. A parameterized class with two instantiations in C#.

77

The new features of the Java programming language include automatic

boxing and unboxing [BG 03]. This inclusion will automatically box and unbox

primitive values into reference types, making source code more readable.

4.4. Examples of generics in some PL.

A genericity mechanism is a language construct that allows the definition of

generic programs. There are some distinct mechanisms that have been adopted by

different languages. In this section we explore some of them.

4.4.1. Templates in C++.

A template is a pattern used to create multiple instances of something.

Templates are the genericity mechanism supported by C++. A C++ template

defines a family of types or functions [S 91]. Templates are similar to definitions of

parameterized types. A parameterized type contains one or more type parameters,

which are used to create instances of it. Figure 4.12 shows a stack template

definition written in C++ as well as some instantiations of it. The complete

implementation of the template is omitted.

78

�
�,) *+� �,�K. +� 33��:��. +� 33�� �� . / �I�
*> @ +�. "�
���� �� . / ����3�W ,$����
�
���C - �< �*> 3
 . - �3���V $���
����V �*- * $�����
*7�C � �,"�
�������3�W ,����OO��>) @ ,7�- 9�,+,) ,��3�- ��� �� . / ��
��������- *�����
����(�3�� . / � �7�����
J���
�
� �� . / K9+- � �:�
8 � +- � �� �� . / ���
� �� . / K���:�
8 ���,0,7� �� . / � 5 5 $�

Figure 4.12. Stack template in C++.

C++ implements templates by an approach called macro expansion. For

every instantiation of the template a specialized class is generated replacing the

type parameter of the template for the actual type of the instantiation. In the

example presented in figure 4.12 two instantiations of the template Stack are made

and two Stack classes are generated, one for type float and another one for type int.

Type checking is performed only on the function instance, not on the template

itself. Using templates for generic types have some advantages and disadvantages.

The main advantage of templates is that they allow an efficient implementation

because code is specialized for every type. However, this may cause ‘code bloat’,

since for every combination of parameter values that is passed to the generic type a

new instance of the template is created. However, this technique is attractive if we

are concerned with the performance of the code generated.

79

4.4.2. Parameterized classes in Pizza.

A parameterized type defines a group of related types that have similar

behavior but differ in the types they manipulate. A parameterized type is a type

definition with a list of type parameters. Eiffel uses this mechanism to define

parameterized classes. Many proposals to extend the Java programming language

with parameterized types have been made [BOSW 98, CS 98, AFM 97, EKMS 97,

MBL 97]. Pizza [OW 97] is a superset of Java that includes parametric

polymorphism, higher-order functions, and algebraic data types. Figure 4.13 shows

a parameterized class in Pizza.

�
*> @ +�. �. +� 33�� �� . / K�:�
���*7�C � �,��LN�3�- 7,�� ��,B��L� 5 5 N��
���*7�C � �,�����3�W ,�� �5 ��
���*> @ +�. �C - �< �*> 3
 ��,+,) $�I�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. ���*- * �$�I�
������7,�> 7��3�- 7,LAA3�W ,N��
���J�
J�
�

Figure 4.13. A definition of a parameterized class in Pizza.

Stack is a parameterized class that has a type parameter called T. In this

case, no constrains are defined for the parameter. Any type can be used to

instantiate the Stack class. Pizza allows the programmer to define the translation

approach to generate code. It can be a generic class -the same code for all instances,

80

or a specialized class -different code for each different type instantiation. Figure

4.14 shows an example where the parameterized class Stack is instantiated.

�

*> @ +�. �. +� 33��,3�� �� . / �I�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� �� . / K� �7��0:�3�7��0� �� . / �� ��,B�� �� . / K� �7��0: $��
������3�7��0� �� . / �*> 3
 SG - 7+< T$��
������3�7��0� �� . / �*> 3
 S1 ,++- 6�;$��
������� 8 3�,) �- > ��*7���+� 3�7��0� �� . / �*- * $�D �3�7��0� �� . / �*- * $$��
���J�
J�

Figure 4.14. Instantiation of the parameterized class Stack.

As consequence of the use of parameterized types, two kinds of classes

exist; those with type parameters and those without type parameters. In languages

with nominal subtyping, these two kinds of classes differ not only by having type

parameters but also because the subtype relationship does not extend to instances of

parameterized classes, e.g., an instance of a generic class is not a subtype of the

generic class. Another problem present in Java is that instances of parameterized

classes with binary methods inhibit the use of inheritance to derive new classes that

can be used to create instances of a parameterized class [BS 03b].

4.4.3. Virtual binding in BETA.

The BETA language supports a genericity mechanism called virtual binding

[MMN 93]. Virtual binding is expressed in BETA with virtual patterns that

contains a virtual attribute with a virtual bound.

81

A virtual pattern in BETA is similar to a parameterized class in other

languages but the type parameters are virtual attributes with bounds. When an

instance of the virtual pattern is created a final bound for the virtual attribute must

be defined. Figure 4.15 shows the definition of Stack in BETA.

�
� �� . / "� U �
����"K�� @ P,. �����������������IC �7�> � +�� ��7�@ > �,�B��
 �C �7�> � +�@ - > �< �J�
���3�- 7,"�L� 5 5 N�Q ����
����- *"Q ����,0,7��
�������"� U ��� �5 �A:��- *�U $��
���� > 3
 "� U ��
������! "Q ����
�������
 ��� �! ��
�������� ��- *D � �A:��- *��! A:�3�- 7,�L�- *N��
���U $��
���� - *"� U ��
�������� ��- *A� �A:��- *��
������� ���3�- 7,�L�- *D � N��
���U $��
U $��

Figure 4.15. Generic Stack in BETA.

The definition of Stack contains a virtual attribute T, which is the generic

parameter that is virtually bound to Object. Subpatterns can make further

restrictions by defining new bindings of the virtual attribute. An instance of the

virtual pattern is created when a final binding of the virtual attribute is done.

���� �� . / �"�� �� . / � U ��""����,0,7�U $��
�

New classes can be constructed by extending the binding, but the extended

binding must be any subpattern of its previous bound.

82

,3"�� +,) ,��� �� . / �"�� �� . / � U ���""K�� +,) ,���U $��

In this approach, there is only one type of class and the bindings can be

extended many times. However, the main disadvantage of this approach is that it

fails to preserve static type correctness [PS 94].

4.4.4. Class substitution in BOPL.

Class substitution is another approach to genericity proposed by Palsberg

and Schwartzbach [PS 94]. This approach was developed as a complement to

inheritance. It is a new subclassing construct where classes derived using

inheritance cannot be derived from generic classes and vice versa.

The construct appears in BOPL [PS 94], a simple object-oriented language.

Figure 4.16 shows a partial definition of Stack in BOPL and how subclasses are

obtained using class substitution.

83

�

. +� 33�� �� . / �
���C � 7�3�- 7,�"��77� 8 L� @ P,. ��KA�� +,) N��
���C � 7�,+,) �"� +,) ��
���C � 7��- *�"������
���) ,�
 - < �*> 3
 � �- �
 ,7�"�� +,) $��
���%3�- 7,�� �*> � �- *6�- �
 ,7$��
��������- *�"� ��- *�D � ��
������3,+9�
���,�< %�
���) ,�
 - < �*- *� �$�7,�> 7�3�� +,) �
���%�
���,�< �
,�< �
�
. +� 33����� �� . / ��3�� �� . / L� +,) KA����N��
. +� 33�&- - +� �� . / ��3�� �� . / L� +,) �KA�&- - +N�
�

Figure 4.16. Stack definition and instantiation in BOPL.

A new class IntStack is derived from the class Stack by replacing the formal

type parameter Elem by the type Int. Similarly for BoolStack.

84

Chapter 5.

Analysis and Goals.

Object-oriented technologies have proved their applicability in several areas

of software development. They are widely used in the analysis and design of

systems and programs.

Over the past two decades, existing programming languages like Ada, C,

and even COBOL among many others have embraced object-oriented features.

Examples of this evolution are Ada 95, C++, Objective C, Objective COBOL,

CLOS, and Objective ML.

The fact that many languages have evolved to include object-oriented

features motivates us to start the design of the language by including objects.

Imperative languages with extensions for objects allow program development using

a combination of procedural and object-oriented features.

The design of a programming language is often directed by requirements to

fulfill some needs. Simplicity, expressivity, powerfulness, and elegance are some

attributes considered in the design process.

85

In this chapter we explore language design keeping modularity, genericity

and objects as the main features of the language. We describe the desired features

of a language with simplicity as the most valuable attribute. We describe some

problems and analyze the approach to solve them in some object-oriented

languages that neither support modules nor parametric polymorphism. Finally we

describe the goals of our language design to combine these constructs.

5.1. Core features.

The design of a complete language involves many decisions. There are

many languages designed as descendents of other languages because they include

some of their features. We have chosen to follow this path, selecting some elements

of several languages to start with. This decision will allow programmers to become

familiar with our language easily.

We took basic elements of Java, C#, and Modula-3. For example, we

adopted the block enclosing construct { } of Java and C# avoiding the more verbose

BEGIN END of Modula-3. We reduced the number of basic types, literals, and

operators to create expressions. The number of statements was also minimized to

allow expressing basic computations. We selected a minimal core language because

these features are not the thrust of this thesis.

86

5.2. Classes or objects?

The main concept in object-oriented languages is the use of dynamic

entities that carry with themselves their own data and functionality and interact

with other entities through message passing. These entities are called objects. Two

different ways to define and create objects are supported by the two models of

object-oriented languages: passive and active languages.

In some passive object-oriented languages the class construct establishes a

syntactic scope for its elements, but some languages, like C++, allow the partial

elimination of these boundaries. A class in C++ declares as friends all functions or

classes that are allowed to have access to its elements. This strategy requires

deciding in advance which other classes or functions are going to have access to the

elements of a class. If a new class needs to be declared friend the source code needs

to be updated. C++ violates encapsulation principles because access to elements of

classes is allowed outside the class definition.

Frequently object-oriented languages with classes contain a nominal type

system. In these languages the class mechanism poses a major problem when

binary methods are part of a class and a derived class needs to override them to

specialize their behavior. The solution to this problem is not trivial if type safety

must be preserved. Either the type hierarchy must be decoupled from the class

hierarchy adding complexity to the language or the expressiveness of the language

87

is limited leaving the programmer responsible of the correct implementation of

binary methods.

It is commonly recognized that classless languages are simpler than

languages with classes because they have only one mechanism to define and

generate objects. Most of these classless languages are dynamically typed or offer

only some static type checking and no guarantee that programs won’t crash at

runtime due to type errors. The main advantage of these languages is that they can

be used for exploratory programming to rapidly prototype applications. Prototypes

enhance the flexibility of the language by allowing the object to change its behavior

at runtime.

Lieberman, Stein, and Ungar agreed in “The Treaty of Orlando” [LSU 87]

that neither model is the best for all situations.

Ungar said “that no new languages should be designed with classes” [U

88], because classless languages are simpler and more expressive. At the same

time, Lieberman [L 88] recognized that these two sharing mechanisms (inheritance

by classes and delegation) have different application areas.

The complexity of large systems seems to be better modeled with class-

based languages that provide static type checking. Wadler [W 87] expresses this in

the following paragraph.

However, when a prototypical system or untyped formalism is used to model a
complex universe, types and classes for expressing regularities in the domain
creep in by the back door, and it become preferable to introduce explicit typing
and classification schemes rather than rely on ad hoc ingenuity.

88

Regardless of the claim that object-based languages are simpler and more

expressive than class-based languages, we believe that they are not good enough to

express abstractions with a guarantee of an identical and predictable behavior for

all its instances. Furthermore their dynamic typing fails to provide a language to

develop safe and large programs that can be easily maintained.

A goal in our design is to provide a construct to define objects

incrementally facilitating code reuse. All objects created from the same entity must

provide an identical behavior at runtime and they can be typecheked at compile

time. This mechanism must be simple, should not violate encapsulation, and avoid

overlapping with other mechanism in the language.

5.3. Type annotations and typechecking.

Since the first high-level language was designed, types have been an

essential part of programming languages. They have several uses in programs.

Types delimit the set of values a variable can hold. They serve also as

documentation of a program and the compiler uses them to detect type errors and to

generate more efficient code.

Explicitly typed languages are those for which type annotations are used in

programs as opposed to implicitly typed languages where no type annotations

appear in programs and the compiler infers this information in order to check type

89

consistencies. Type annotations help the programmer to document the source code

of programs.

Programs can be checked statically at compile time, dynamically at runtime,

or a combination of both. These two approaches have advantages and

disadvantages. Statically typed languages are more restrictive than dynamically

typed ones. Yet static type checking allows detecting errors at compile time while

dynamic type checking detects errors at runtime. Dynamically typed languages are

more flexible, accepting more programs, but they spend time at runtime to do the

typechecking. Statically typed languages seem to be better for the development of

programs because more errors can be detected at compile time and no runtime

checking is needed.

Strongly typed languages offer a guarantee that no runtime type errors are

possible. “A safe language is one that protects its own abstractions” [P 02].

Our goal is to provide an explicitly typed object-oriented language that can

be used to define new types and in which programs can be type checked statically.

5.4. Subtypes.

Subtype polymorphism is fundamental in object-oriented languages. This

feature allows defining a relationship on types such that the objects of a subtype

can be seen as objects of their supertypes. Subtypes can be used safely in any

90

context where a supertype is expected because they provide the same elements as

their supertypes and perhaps more.

Object-oriented languages define the subtype relation in different ways. In

languages with nominal subtyping, the inheritance hierarchy defines the type

hierarchy, i.e. in Java subclasses define subtypes. This approach leads to impose

restrictions in derived classes in order to preserve type safety, i.e. the type

parameters of methods cannot change covariantly. On the other hand, C++

explicitly separates inheritance and subtyping [S 91]. When a class is derived with

private inheritance, it inherits the implementation but not the structure of its parent,

while a class derived with public inheritance, inherits both implementation and

structure from its parent.

In languages with structural subtyping, like OCaml and MOBY, the

hierarchy of classes does not necessarily coincide with the hierarchy of types. In

OCaml, the subtype relation must be explicitly annotated [CMP 00]. In MOBY

structural subtyping is defined for object types and nominal subtyping for class

types. Modula-3 is another language with structural equivalence, but an object type

can be annotated with a “brand” which means that its resulting type will be

different from any other type but the subtype relation is based on the inheritance

hierarchy.

Explicitly typed languages must define the type of objects separately from

the class definition. They provide more information improving readability but at

91

the same time they tend to be verbose. Implicitly typed languages do not suffer this

problem because the compiler infers the types. Separating the class hierarchy from

the type hierarchy introduces some complexity to the language. An example of this

complexity can be seen in figure 5.1.

The example presented in figure 5.1 is borrowed from [BFSG 03]. It

describes a definition of a simple class called HelloClass. The program contains

two types declarations HelloClassType and HelloType for the class and the

instances respectively. It also contain the implementation of the class HelloClass.

At the end, a variable myMood is declared, an instance of class HelloClass is

created and assigned to it; finally two methods are invoked.

This program does not contain a subclass declaration, but we can see that

defining the type of the class and the object requires a lot of code.

92

*7- 07�) �,� 38 ��
�8 *,��
���1 ,++- 	+� 33�8 *,�� �	+� 33�8 *,� �
��������I�
 � **8 �"�@ - - +�J6�������������������AA��8 *,3�- 9���3�� �. ,�C � 7�� @ +,3�
��������I�3,�
- - < �"�@ - - +�A:�C - �< ������AA��8 *,3�- 9�) ,�
 - < 3�
�����������*7���
- - < �"�C - �< �A:�C - �< �J$��
�
���1 ,++- �8 *,�� �� @ P,. ��8 *,��������AA�) ,�
 - < ��8 *,3�- �+8 �
��������I�3,�
- - < �"�@ - - +�A:�C - �< ���
�����������*7���
- - < �"�C - �< �A:�C - �< �J��
�
. - �3��
���1 ,++- 	+� 33�� �. +� 33�
������C � 7�
���������
 � **8 �� ��7> ,�"�@ - - +��
������) ,�
 - < 3�
���������3,�
- - < �� �*7- . ,< > 7,� �
 ,
,�
 - < �"�@ - - +$�
������������@ ,0���
 � **8 �"� ��
 ,
- - < ��,�< �
���������*7���
- - < �� �*7- . ,< > 7,� $�
������������@ ,0����
�����������������9�
 � **8 $��
 ,��
��������������������*7���� �7��0 S1 � C ,�� �B- �< ,79> +�< � 8 XT$��
���������������������,B+��, � $��
����������������,+3,�
���������������������*7���� �7��0 S' - �� B� 8 XXT$��
����������������,�< ��
�����������,�< ��
���,�< "�1 ,++- 	+� 33��
�
C � 7�) 8
- - < �"�1 ,++- �8 *,��
@ ,0���
���) 8
- - < �"� ��,B 1 ,++- 	+� 33$��
���) 8
- - < �*7���
- - < $��
���) 8
- - < �3,�
- - < 9� +3,$��
,�< �
�

Figure 5.1. An example of a simple class in PolyTOIL.

Structural equivalence is frequently used to define the subtype relation but

sometimes it is the programmer’s responsibility to define explicitly this relation, as

in OCaml. These languages do not suffer any problem when derived classes

specialize covariantly the arguments in binary methods, because subclasses do not

93

generate subtypes. On the other hand, languages with nominal subtyping do not

require specifying the type of objects separately from the class. They use the class

name to represent types. Matching is another relation on types that is not as strong

as the subtype relation [BPF 97]. It is an alternative relation to express type

compatibility and provide a safe implementation of classes with binary methods.

Some object-oriented languages provide interfaces as a language construct

to define some features of classes. In some languages interfaces represent the types

of objects. Objects generated from classes that implement several interfaces have

all the types they represent and can be used in any context that type is expected.

Interfaces are useful to define types and can be used to some extent to

model multiple inheritance. They may hide information listing only the elements

that are available for clients. Different classes can supply several implementations

of interfaces.

In order to keep the language simple we do not separate classes from types

but we need to include class interfaces to describe types and hide information.

Every class must implement an interface that describes the elements that are

available to clients.

5.5. Inheritance.

Inheritance is a language mechanism that allows the definition of new

entities based on existing ones. All object-oriented languages support some form of

94

inheritance. Class-based languages use classes to inherit the features of a parent

class creating new classes that can use the code of the parent or redefine it to

specialize its behavior. Object-based languages support inheritance through a

mechanism called delegation, where the new object delegates some of its

functionality to another one. Objects can change their functionality at execution

time and these changes can affect other objects.

Sometimes a class can be defined using one or more parents. In languages

with single inheritance only one entity acts as parent. When more than one entity is

used as a parent the language supports multiple inheritance. The debate about the

necessity to provide multiple inheritance in a programming language has been

going on in the literature for years. The advantage of multiple inheritance over

single inheritance is in being able to model more complex structures.

Entities can inherit structure using interfaces and implementation using

classes or delegation. Entities that inherit structure must provide implementation

before objects can be created. Multiple interfaces can serve as parents without

problem because only one implementation will be provided. The disadvantage of

multiple interface inheritance is that it is not possible to reuse code and every time

an interface is inherited an implementation for it must be provided.

Languages that allow multiple inheritance of implementation must provide

explicit solutions to the problems that can arise, i.e., name ambiguity and redundant

method calls. C++ solution relies on the programmer to solve these conflicts by

95

providing explicit delegation as shown in the example of section 3.5.2. Other

languages like Eiffel [M 92] provides a rename clause that the programmer can use

to solve name repetitions and an internal solution linearizing the conflicting

methods based on the class hierarchy and calling the first one in the sequence. The

problem is that the method selected is not always the one intended by the

programmer. None of the solutions provided by languages with multiple

inheritance of implementation seems perfectly satisfactory; the problems generated

with its use outweigh the benefits.

Another inheritance mechanism called mixins had been analyzed recently in

proposals to extend existing languages [ABC 03, ALZ 03, B 92, BPV 98, FKF 98,

P 01]. Mixins promises the benefits of multiple inheritance while avoiding its

difficulties, but some new concepts are needed in the language to support mixins.

In order to maintain simplicity, we do not consider including mixins in our

language.

Our goal with respect to inheritance is to incorporate a simple inheritance

mechanism that can be easily understood by the programmer. It must enable the

derivation of new classes as specializations of existing ones, allowing code reuse.

5.6. Bindings.

Static and dynamic bindings are allowed in most object-oriented languages.

Static binding takes place at compile time and dynamic binding at runtime. Calls to

96

procedures and functions that are statically allocated can be bound at compile.

Objects offer the possibility of dynamically selecting the method to be executed.

The incremental definition of objects makes possible reusing code previously

defined in some parent class. This code can be overridden to specialize the behavior

of objects. Special variables super and this can be used to invoke methods retaining

the binding to the parent or to the actual object independently of where they are

used.

The convention used in several object-oriented languages to define static or

dynamic method invocation is different. Some languages like C++ and C#, define

all methods to be static by default and require that dynamically located methods to

be declared as virtual. Other languages like Java, define all methods to be

dynamically located by default and require others to be declared explicitly as static.

Single or multiple dispatch defines the selection of the method to execute,

designating an object to receive the message or implementing methods as a set of

generic overloaded functions where no object is the receiver. Multimethods

languages suffer encapsulation problems or selecting the best function when the

types of the parameters do not match exactly with the type of the arguments

[BC 97, CL 97, CLCM 00, CL 94, CM 99].

The dynamic existence of objects suggests that all their methods must be

dynamically bound. Classes define behavior of objects, which is specialized in

subclasses so the redefinition of methods fits more naturally with dynamic binding.

97

Static binding should be used for those procedures or functions that are not defined

as part of classes.

5.7. OOL without modules.

Modular programming languages enable the creation of modules as units

for encapsulation, information hiding and separate compilation. Modules can be

interconnected with other modules to create large programs. A language enables

modular programming if it provides adequate mechanisms to develop units

independently and interconnect them to achieve some functionality. The module

system varies in languages. Some of them are more powerful than others, some

defines modules as first-class values and some as second-class values. However

many module systems of different languages share some commonalities.

Object-oriented languages have honed the programming concepts to just

classes and often lack a module system. The benefits of having a module system

have been recognized and many researchers are working on the inclusion of a

module system in several languages [AZ 01, BAF 03, BPV 98, FF 98, FF 98b,

MFH 01, and MFH 02].

In this section we focus primarily on Java, but almost everything applies to

C#, or for that matter C++, as well.

Java is a class-based language and it is often considered to be a language

with a small number of concepts. It was designed to be simple enough to allow

98

programmers to learn it easily [GJSB 00]. Java designers included in it ideas from

other languages and avoided the inclusion of new or untested features in the

language. In the Java programming language, the class is the most important

concept. The class supports abstraction, encapsulation, and information hiding.

Classes are used to implement many different concepts that are not directly present

in Java. Java forces its declarations to belong to the only structuring form available:

the class. This leads to overburdening the class mechanism with several

incompatible uses.

Not all classes are used to create objects. There are some classes that are not

meant to be instantiated, because they are not completely defined e.g., abstract

classes. There are other classes that are not abstract, they are completely defined,

and yet no instances can be generated because their constructors are private, e.g.,

java.lang.Math. Classes are used in several unrelated ways. This leads to much

confusion especially for beginners.

a) Classes with only a main function. There are classes that contain only a

main function. This kind of class is used to contain some declarations

and a main function, not to create instances of it, although nothing

prevents you from doing so.

b) Classes act like libraries. Some classes contain the definition of a set of

named constants or related functions. No instantiation of the class is

required to execute its methods because these methods are not related

99

with objects but with the class itself. They are accessed using their fully

qualified name. This kind of class acts like a library and requires some

annotations to differentiate it from a “normal” class.

c) Class methods act like procedures. In object-oriented languages,

methods are executed by sending a message to the object that contains the

method, but this is not always the case in Java and C#. If a method is

declared to be static, it has to be executed without sending a message but

as a call to a procedure. So there are two different ways to execute a

method: sending a message to an object using object.methodName(); or

calling it to execution in the same way you calla procedure using

ClasName.methodName();.

d) Not all classes can be extended. A class can be declared final in Java

and sealed in C#, when its definition is complete and no subclasses are

needed. Final/sealed classes cannot be extended by a subclass definition.

Final classes never have a subclass.

e) Not all classes may be used as types. A class declaration, defines a new

reference type of the name of the class. The class type can be used later to

declare variables that contain a reference to the class. But not all classes

should be used as types. We can declare a variable of type

java.lang.Math, but we cannot assign to it. It is a compile-time error

trying to apply the new operator because Math constructors have private

100

access. That means we cannot create an instance of the class and it is

meaningless to declare a variable of that class type.

5.7.1. Roles of the class in Java.

 “From a class definition, you can create any number of objects that are

known as instances of that class” [AG 98, page 1]. But you do not always create

objects from a class definition. The creation of objects is not the only role for

classes. Objects are not always needed to solve problems and the class mechanism

is overloaded with several roles.

The confusions and inconsistencies listed in the previous section are

symptoms of competing roles that classes are asked to play. We try to enumerate

these separate roles.

a) The class as a factoring commonalities mechanism. Classes are to

factor commonalities among many groups.

b) The class as a specialization mechanism. Some classes can be extended

to specialize behavior or to add new features to the class. A class

hierarchy is created when subclasses are defined.

c) The class as a template for objects. A class contains different members:

fields and methods. A class declaration defines the state and behavior that

instances of that class will have. It also defines the constructor method of

the class.

101

d) The class as a type. A class declaration declares a class type name. The

name of the class is used to define the type of a variable that will contain

the object when instantiated. Extending a class generates a subclass,

which is a subtype of the class type it extends. The type hierarchy is

unified with the class hierarchy.

e) The class as a compilation unit. The first program presented in [AG 98]

is the class HelloWorld which has no members (fields or methods), no

object is created form that class definition. The class is used only to

contain the special static method main. Many examples that do not

require the creation of objects follow this pattern using the class to create

a compilation unit with a point to start execution.

f) The class as container of named constants. The class is used as an

encapsulation mechanism. The elements in this kind of class are defined

by declaring variables as static and final and providing their values in

declarations. The class is not used to create objects.

g) The class as container of functions (libraries). General functions of the

Java runtime system and the underlying operating system are grouped in

special classes like Runtime, System, and Math [GJSB 00]. The Math

class contains only static constants and methods for common

mathematical manipulations. The access to its elements is using the dot

102

notation with the name of the class followed by the name of the function

that wants to be executed.

5.7.2. Modularity problems in object-oriented languages.

Szypersky [S 92] suggested that object-oriented languages should have a

modularity mechanism beside the class. The examples used in this section are

adapted to Java but they are based on Szypersky’s paper [S 92]. These examples

show some situations in which the use of traditional modules provides a more

appropriate solution to certain kind of problems.

5.7.2.1. Structures that need no local data.

The need to implement structures that need no local data emerges frequently

in programming languages. Object-oriented languages that have the class as the

only structuring mechanism must provide an extra element or work around to

simulate the import mechanism used in other languages. This is the case for C# and

Java. The absence of an import mechanism in object-oriented languages affects the

readability and clarity of the produced code.

A structure that contains no local data but a set of functions is usually called

a library. In this section a library of mathematical functions is defined and we

examine three ways to access its elements. A typical definition of a class that

contains a library of mathematical functions is shown in figure 5.2. We use a

103

Java-like syntax, but the class definition excludes the modifiers static and final.

This example is intended to show that without these extra elements, classes cannot

naturally act like modules.

public class Math {
 public final double PI=3.141592;
 public double sin (x: double) { … }
 public double cos (x: double) { … }
 public double tan (x: double) { … }
 …
}�

Figure 5.2. A typical definition of a class Math.

In classic object-oriented languages a simple way to access the functionality

defined in a class is by creating an object of that class and sending a message to it

in order to execute a method. Inherited methods are always available and the

special variables this and super can be used to refer to method is the superclass or

the object itself. Java provides another way to access a method of a class.

We assume that given the class Math, we need to create a class called Main

that needs to access some of the mathematical functions defined in the class Math.

We illustrate this with the next three approaches to access a member of the class

Math.

a) Using inheritance. Figure 5.3, shows this approach. The class Main

inherits class Math only to be able to use the functions defined in it.

The methods of class Math are accessed using the special variable this.

Inheritance is primarily a mechanism to specialize classes. Using

104

inheritance in this situation is misleading because Main is not a

specialization of class Math. Inheritance is used only to make available

the name space of the library.

class Main extends Math { // refers to class Math in figure 5.2
 …
 public void calculate() {
 double x,y;
 y = this.sin(x);
 }
}

Figure 5.3. Using inheritance to access a library member.

b) By Composition. In this approach, presented in figure 5.4, a variable is

defined to contain an instance of the class Math. All the methods of the

class Math are available using this variable. We could say that all

instances created from class Math are going to be exactly the same

because they do not contain state. Therefore instantiating the class is

redundant.

class Main {
 …
 public void calculate() {
 double x,y;
 Math dummy = new Math(); // refers to class Math in figure 5.2
 y = dummy.sin(x);
 }
}

Figure 5.4. Using composition to access a library member.

105

c) Static class members. We mentioned in section 5.1.1 that the class in

Java could be used as a container of functions. A modifier can precede

the definition of a class, a field, and a method. There are several

modifiers and they are used to modify the semantics of those elements.

The definition of class Math in Java shown in figure 5.5 was taken

from [GJSB 00]. This definition of class Math involves the use of the

static modifier. Java classes classify their members into class members

(static) and instance members. All the members of the Math class,

which are preceded by the modifier static, are class members. Figure

5.6 shows the implementation of class Main importing2 the static

members of the class java.lang.Math shown in figure 5.5. Class

members are invoked without a reference to a particular object or class,

but by using the name of the method directly. In this way, a Java

program does not need to create an object to execute the methods

defined in a class.

public final class Math {
 public static final double E=2.7182818284590452354;
 public static final double PI=3.14159265358979323846;
 public static double sin (double a);
 public static double cos (double a);
 public static double tan (double a);
 …
}

Figure 5.5. Java definition of class Math in java.lang.Math.

2 This feature “import static…” will be available in the next major Java release, Tiger v. 1.5. In Java v. 1.4 members of class
Math can be invoked using qualified names like Math.sin(x).

106

import static java.lang.Math; // refers to class Math in figure 5.5

class Main {
 …
 public void calculate () {
 double x,y;
 y = sin(x);
 }
}
�

Figure 5.6. Importing static class members.

These three different ways to access the elements of the library show us that

using classes to provide the functionality of modules involves the use of some

unnatural elements in the class. We notice that the absence of an import mechanism

in object-oriented languages affect the readability and clarity of the code produced.

5.7.2.2. Structures with dependencies on other structures.

The second problem presented by Szyperski in [S 92] is related with

preserving invariants. Assume that there are two classes Linkable and LinkedList

as listed in figure 5.7.

107

class Linkable {
 Linkable next; // non-private access required
 Object node;
 Linkable (Object o) {
 node = o;
 next = null;
 }
}
class LinkedList {
 Linkable head = null;
 void add(Object y) {
 Linkable x = new Linkable(y);
 x.next = head; // access next
 head = x;
 }
 boolean empty() { return head == null; }
}

Figure 5.7. Separated classes with dependencies.

These two classes are not related by inheritance. Class LinkedList needs to

have access to the next field of class Linkable. To allow this access, the field next

must be declared public. This violates the encapsulation principle because now any

class in the system has access to that field. Classes Linkable and LinkedList are

closely related but there is no way to express this relation with flat namespaces.

Approaches to solve this problem in C++ and Java are presented next.

a) Friend functions. C++ provides friend functions to solve this problem.

A friend function is a function defined outside the class and it has

access to the elements of the class. The advantage of this approach is

that a relation between classes can be established by declaring them to

be friends. A disadvantage is that friends have to be declared in

108

advance. If we need to give access to another function, i.e. declares

another friend, the class has to be updated and recompiled.

b) Packages. In Java a package is a collection of related classes and

interfaces providing access protection and namespace management

[GJSB 00]. Member variables annotated with package access level

allows classes in the same package to access the members. This level of

access assumes that classes in the same package are trusted friends.

Figure 5.8 shows these classes. A disadvantage in this approach is that

all classes in the package will have access to member variables. Access

cannot be targeted to a specific class or method.

package LinkList;

class Linkable {
 Linkable next; // access limited to package
 Object node;
 Linkable (Object o) {
 node = o;
 next = null;
 }
}
public class LinkedList {
 Linkable head = null;
 void add(Object y) {
 Linkable x = new Linkable(y);
 x.next = head;
 head = x;
 }
 boolean empty() { return head == null; }
}

Figure 5.8. Classes in a package.

109

c) Nested classes. A nested class is a class that is defined inside another

class. A syntactic relationship between two classes is established when

a class is declared as a nested class of another. Figure 5.9 shows this

relationship. Class Linkable is declared as a nested class of LinkedList.

This solution is quite serviceable. But the addition of nested classes

makes the LinkedList class serve two different roles: incorporation and

instantiation.

class LinkedList {

 private static class Linkable { // nested class
 Linkable next;
 Object node;
 Linkable (Object o) {
 node = o;
 next = null;
 }
 }

 Linkable head = null;
 void add(Object y) {
 Linkable x = new Linkable(y);
 x.next = head;
 head = x;
 }
 boolean empty() {
 return head == null;
 }
}

Figure 5.9. Inner class.

Modula-3 and Ada 95 provide a module mechanism to solve these problems

in a more natural manner, but they do not support object-oriented programming to

110

the extent that Java and C# does. The presence of records and pointers in those

languages overlaps with objects providing more than one way to approach a

problem. The resulting mix lacks elegance.

In MOBY [FR 99b] classes and modules are neatly separated. The class

mechanism supports only a minimal set of features that are inherently related to

classes. And all the features of Java packages are supported by the module

mechanism.

Ancona and Zucca criticized the lack of a module system in Java and

similar object-oriented languages. They proposed a true module system called

JavaMod, which is constructed on the top of a Java-like language [AZ 01]. Their

module language provides a construct to define basic modules, which are

collections of related classes, module interfaces, which are specification of the

services a module provides, and a set of operators like merge, renaming, and

hiding, to combine software components. This module language allows expressing

generic types, mixin classes, and mutually recursive class definitions defined in

independent modules.

The separation of classes and modules is a hard problem because they both

share capabilities to abstract and encapsulate information. We aim to separate these

two constructs giving each one different properties to provide different features.

Our module system should support the following language features:

111

• Separate the module interface from its implementation.

• Control the visibility of module members outside the module.

• Define the interconnection of module interfaces and implementations.

• Provide support to define and manage namespaces.

• The ability to group definition of types, values, functions, classes, etc.

• Modules shouldn’t be first-class values they are not types.

5.8. OOL without generics.

Despite the benefits of having a mechanism to support genericity many

object-oriented languages had omitted this feature providing only some of the

forms of polymorphism described in section 3.6.

Two of the most popular object-oriented languages, Java and C# do not

support parametric polymorphism and its absence is recognized as a defect. Other

languages that support parametric polymorphism, like SML, do not support object-

oriented features.

Both parametric polymorphism and object-oriented features are important

elements that facilitate programming. New programming languages supporting

these two elements had been designed recently [BFSG 03, P 01, OW 97]. Several

proposals to extend Java and C# were developed recently. The main extension

proposed for Java is the inclusion of parametric polymorphism [AFM 97,

112

BCK+ 01, BCK+ 03, BD 98, BOSW 98a, EKMS 97, V 01b]. ML extensions to

include object-oriented features are presented in [FR 99, RV 98].

Users of object-oriented languages without generics have to find a

workaround to create generic code. Two distinct approaches can be used to

workaround this problem:

• Simulate parametric polymorphism with inclusion polymorphism.

• Write different code for each type.

These two approaches have some disadvantages. When subtype

polymorphism is used to simulate parametric polymorphism cast operations must

be inserted and they can fail at runtime. Inheritance and genericity are two distinct

mechanisms that should be separated in the language. Genericity defines the same

code for different types while inheritance defines different code for the same family

of types. On the other hand, repeating the same code for different types is not a

good alternative due to maintainability costs and memory consumption.

These two alternatives are explained in section 5.8.1 and 5.8.2, which are

part of previous work presented in [BS 03].

5.8.1. First approach: using the generic idiom.

A typical way to implement a generic class in Java and C# is using the top

element of the class hierarchy of objects that serves as a polymorphic

representation. In this way, all the elements derived from that hierarchy might be

113

manipulated in that class. An example of a stack implemented in Java and C# using

this technique is presented in figure 5.10.

Java Object-based Stack C# Object-based Stack
�
*> @ +�. �. +� 33�� �� . / �I�
���*7�C � �,�� @ P,. �LN�3�- 7,� ��,B�� @ P,. �L� 5 N��
���*7�C � �,�����3�W ,� �5 ��
���*> @ +�. �C - �< �*> 3
 � � @ P,. ��,+,) $�I�
�������9� 3�W ,�:� �3�- 7,�+,�0�
 $�I�
���������� @ P,. �LN��) *�� ��,B�� @ P,. �L3�W ,(� N��
���������� 8 3�,) �� 77� 8 . - *8 � 3�- 7,6�5 6��) *6�5 6�

3�- 7,�+,�0�
 $��
���������3�- 7,� ��) *��
������J����
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. �� @ P,. ��*- * $�I�
��������7,�> 7��3�- 7,LAA3�W ,N������
���J�
�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� �� . / �! �� ��,B�� �� . / $��
�������! �*> 3
 �,B����,0,7 � � $$��
����������,0,7�8 �� � ���,0,7$�! �*- * $��
���J�
J�

��
*> @ +�. �. +� 33�� �� . / �I�
���*7�C � �,�- @ P,. �LN�3�- 7,� ��,B�- @ P,. �L� 5 N��
���*7�C � �,�����3�W ,� 5 ��
���*> @ +�. �C - �< �� > 3
 - @ P,. ��,+,) $�I�
�������9� 3�W ,�:� �3�- 7,�# ,�0�
 $�I�
���������- @ P,. �LN��) *�� ��,B�- @ P,. �L3�W ,(� N��
����������77� 8 �	- *8 3�- 7,6��) *6�3�W ,$��
���������3�- 7,�� ��) *��
������J�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. �- @ P,. ��� - * $�I�
������7,�> 7��3�- 7,LAA3�W ,N��
���J�
�
���*> @ +�. �3�� ��. �C - �< �
� ��� $�I�
������� �� . / �! �� ��,B�� �� . / $��
������! �� > 3
 � � $��
����������8 �� � ���$�! �� - * $��
���J�
J�

Figure 5.10. A stack in Java and C# using the generic idiom.

The problem with this approach is that the programmer has to keep track of

the kind of elements that are stored and to recover them using cast operations.

Another problem in Java, but not in C#, is that not all the types are derived from a

single topmost class. Hence not all the types can be used in the instantiations, e.g.,

primitive types, but only those derived from the topmost class.

In figure 5.10 we see that both languages are very similar. In both programs

it is necessary to explicitly cast the value that is popped from the stack before it can

114

be assigned to y (last line of code in main method of both programs

y = (Integer) x.pop(); and y = (int) x.Pop();) because the elements stored in the

stack are of type object and must be cast to Integer in Java and to int in C# to make

them compatible with the type of variable y which is receiving the value.

In the Java program the value 17 needs to be explicitly wrapped3 in the

Integer type that is derived from the Object type before it can be sent as argument

to the push method. Java separates reference types from primitive types. Primitive

types need to be wrapped into reference types in order to be used as arguments in

this approach.

In C# the value 17 needs to be dynamically allocated or boxed in order to be

used as argument. This boxing, which is an implicit coercion, is automatically

inserted by the compiler. C#’s type system is unified in that a value of any type can

be treated as an object. Every type in C# is, directly or indirectly, derived from the

object class, which is the ultimate base class of all types.

The main disadvantage of this approach is that the programmer, in order to

recover the elements, must insert cast operations that could fail at runtime.

5.8.2. Second approach: specialized code for each type.

Safer programs without cast operations can be written by specializing the

code for each type. A “copy and paste” of source code is performed and the types

3 In the new version of Java (Tiger v.1.5) automatic boxing will be provided and this explicit
wrapping won’t be necessary because the compiler will make an implicit coercion.

115

are changed to create a specialized version of the class. Two problems are present

in this approach: maintainability costs and ‘code bloat’.

Figure 5.11 shows an example of a specialization of stack to work with

integer (int) types. The difference between this implementation and the previous

one shown in figure 5.10 is that the type of the elements has changed from object to

int.

Java Object-based Stack C# Object-based Stack
�
*> @ +�. �. +� 33�� �� . / �I�
���*7�C � �,����LN�3�- 7,� ��,B����L� 5 N��
���*7�C � �,�����3�W ,� �5 ��
���*> @ +�. �C - �< �*> 3
 � ����,+,) $�I�
�������9� 3�W ,�:� �3�- 7,�+,�0�
 $�I�
������������LN��) *�� ��,B����L3�W ,(� N��
���������� 8 3�,) �� 77� 8 . - *8 3�- 7,6�5 6��) *6�5 6�

3�- 7,�+,�0�
 $��
���������3�- 7,� ��) *��
������J����
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. �����*- * $�I�
��������7,�> 7��3�- 7,LAA3�W ,N������
���J�
�
���*> @ +�. �3�� ��. �C - �< �) � ��� � �7��0�LN�� 703$�I�
������� �� . / �! �� ��,B�� �� . / $��
�������! �*> 3
 � � $��
�����������8 �� ��! �*- * $��
���J�
J�

��
*> @ +�. �. +� 33�� �� . / �I�
���*7�C � �,����LN�3�- 7,� ��,B����L� 5 N��
���*7�C � �,�����3�W ,� 5 ��
���*> @ +�. �C - �< �� > 3
 ����,+,) $�I�
�������9� 3�W ,�:� �3�- 7,�# ,�0�
 $�I�
������������LN��) *�� ��,B����L3�W ,(� N��
����������77� 8 �	- *8 3�- 7,6��) *6�3�W ,$��
���������3�- 7,�� ��) *��
������J�
������3�- 7,L3�W ,D D N�� �,+,) ��
���J�
���*> @ +�. ������ - * $�I�
������7,�> 7��3�- 7,LAA3�W ,N��
���J�
�
���*> @ +�. �3�� ��. �C - �< �
� ��� $�I�
������� �� . / �! �� ��,B�� �� . / $��
������! �� > 3
 � � $��
����������8 �� ��! �� - * $��
���J�
J�

Figure 5.11. Specialization of stack for type int.

Type casting is unnecessary when specialized code is provided. The cast

operation on the last line of code is not necessary anymore because the type of the

elements that are in the stack are the same as the variable y, which receives the

116

value. It is not necessary to wrap 17 into the Integer type because the formal

parameter of the method push is a primitive type int.

Providing specialized code for each type is not a good option. If a bug is

detected the source code of all specialized classes must be updated. Another

problem is memory consumption at runtime when many instances of specialized

classes are allocated in memory.

Parametric polymorphism is an important feature that increases language

expressivity and clarity, and improves program safety. It does not appear currently

in either Java or C#, but it will be included soon in both languages [BCK+ 03,

C# 02, KS 01]. Although several mechanisms for generics exist, the most likely

approach to be used in Java and C# is based on passing types as parameters.

The proposal to add generics to the Java programming language includes

two new forms of types: parameterized types and type variables. A homogeneous

translation approach by type erasure to translate these new elements to Java

bytecode is described in [BCK+ 03]. The technique used in the translation erases

the type variables and insert cast operations that are guaranteed not to fail at

runtime. Due to this technique it is not possible to use primitive types to instantiate

parameterized classes. The main advantage of this approach is that only one piece

of code exists at execution time for all instances. Some disadvantages are that

primitive types cannot be used as type parameters and the code generated is not as

efficient as specialized code. An beta version of the new Java compiler supporting

117

generics is available online4, the final version is expected to be released in the

summer of this year5. C# is also in the process of being updated to include generics

[C# 02]. C# is translated to an intermediate language (MSIL) that is part of the

.NET Common Language Runtime (CLR). The implementation of generics in the

.NET platform includes two translation approaches: a homogeneous translation can

be shared for all instantiations of reference types and a heterogeneous translation

specializes code for those types that are not references [YKS 04, KS 01]. This

translation approach provides a balance between efficiency and code explosion. It

also makes available the run-time types of parameterized types, which won’t be

possible in Java.

The mechanisms used to implement parametric polymorphism vary in

several programming languages. Modula-3 provides generic units, which can be

instantiated to generate a normal module or interface to include in a program. Ada

follows a similar approach with generic packages. C++ templates allow creating

generic classes that can be instantiated with different types to generate a specialized

class that works for that particular type. The heterogeneous translation approach

used for templates in C++ has as disadvantage that they can cause code bloat when

many instances of the template are needed. Its main advantage is that the code

generated is very efficient because it is translated for a specific type. Ada also uses

a heterogeneous translation approach to generate instances of generic units.

4 http://.java.sun.com/developer/earlyAccess/adding_generics/
5 http://java.sun.com/j2se/1.5/index.jsp

118

Generic programming is a valuable feature that should be supported in any

programming language. Our language must have a mechanism to support

parametric polymorphism directly. Our goal is to include the necessary elements in

the language that support the development of generic programming.

5.9. Language design goals.

In this section we summarize the desired features of our language.

• Simplicity. The language must be simple in order to be easily

understood and learned.

• Expressivity. Several language features must be part of the language to

support different mechanism.

• Encapsulation. Modules and classes will support various language

features without overlapping.

• Modules. Modules and module interfaces will be part of the language. A

module construct defines a static closed entity of a group of elements.

Module interfaces will describe the interconnection of modules and the

elements available for clients.

• Genericity. The concepts needed to support generic programming will

be part of the language. They must be typechecked at compile time.

• Classes. A class construct to define the commonalities of a set of

objects. Specialization of classes must be done using inheritance.

119

• Inheritance. A simple inheritance mechanism to support single

implementation inheritance and multiple interface inheritance.

• Interfaces. An interface construct to define the visible elements of

classes and support structure inheritance.

• Types and Subtypes. Interfaces will specify the type of classes and

derived classes will generate subtypes.

• Explicit type annotations. Type annotations will be explicit. They help

to make code clearer and document programs.

• Binding. Elements defined in modules will be statically bound.

Dynamic binding will be the default for methods in classes.

• Static type checking. To detect type errors at compile time.

 120

Chapter 6.

MOOL.

MOOL - Modular Object-Oriented Language - is intended to be a simple,

general-purpose, statically typed, class-based, object-oriented programming

language. It provides a class construct to define and generate objects, a module

construct with interface and implemenation separated to create large programs, and

supports the definition of generic code using parameterized types. The main

features of MOOL are:

Modules. Modules are static units to encapsulate elements, hide

information and separate compilation. Modules contain two parts: a module

interface that describes the signature of the module and the module

implementation that contains the implementation of the signature.

Types. There is only one kind of type in MOOL: reference types.

Everything is a reference to an object of certain type.

Object-Oriented. MOOL includes common features in object-oriented

languages like: classes, inheritance, polymorphism, dynamic dispatch, and late

binding.

Objects. Objects are instances of classes that are created dynamically at

execution time.

121

Classes. Classes are templates that encapsulate data and procedures. They

have two main roles: extension and instantiation. A class factors commonalities;

and can be specialized with inheritance. A class is used to generate objects

dynamically. The class mechanism is not used to support namespace management

nor visibility control.

Class interfaces. A class interface is used to declare the visible elements of

a class.

Polymorphism. Two kinds of universal polymorphism are provided.

Parametric polymorphism is supported with parameterized types and type

variables. Subtype polymorphism is provided to be able to use objects of a subtype

where objects of its supertype are expected.

Subtyping. Nominal subtyping is provided for classes and interfaces, i.e.

subclasses generate subtypes.

6.1. Definitions.

The complete definition of the language using an extended BNF grammar

and the conventions are presented in the appendix at the end of this document. A

brief description of the basic elements of the language is presented in this section.

Many of the elements are borrowed from Java [GJSB 00], C# [C# 01], Modula-3

[N 91], and MOBY [FR 99].

122

Program. A MOOL program is a set of compilation units. A compilation

unit is either a module interface or a module implementation. A program specifies a

sequence of statements to be executed in some order.

Comments. Comments are used to document programs and do not generate

code at compile time. Only one kind of comments is supported in MOOL. They are

called single line comments. A comment starts with the two characters ‘//’, and end

with the end-of-line character.

Identifiers. Identifiers are names used to define and refer to some elements

in a program such as variables, functions, types, etc. Identifiers must start with a

letter, followed by letters, or digits. They can have any length but they cannot be

the same as any keyword or reserved word.

Keywords and Reserved words. Keywords and reserved words are words

that have a special meaning in the language and cannot be used as identifiers. They

are listed in table 6.1.

@ - - +,� �� 9� +3,� ���,0,7�� *7- �,. �,< ��

@ 7,� / � 9�,+< 3� ���,79� . ,� 7,�> 7��

. � 3,� 9+- � ��) � ��� 3
 � < - B�

. +� 33� 9- 7�) ,�
 - < 3� 3�7��0�

. - �3�� 9> �. ��- ��) - < > +,� 3> *,7�

. - �3�7> . �- 73� �9� �,B� 3B��.
 �

. - ����> ,� �) *+,) ,��3� �> ++� �
 �3�

< ,9� > +�� ������ - @ P,. �� �7> ,�

,+3,� �) *- 7�� - 9� C - �< �

,! �,�< 3�� ��3�� �. ,- 9� - C ,77�< ,� B
 �+,�

Table 6.1. List of keywords and reserved words.

123

Variable. A variable is name representing a value of certain type. The type

of the variable defines the set of possible values of the variable and the set of

operations that can be performed on it. An optional initial value can be specified at

declaration or a default value will be assigned. MOOL is strongly typed which

means that the set of operations that can be performed on a type is enforced at

compile time.

Scope. A module block defines the scope of a program. The scope is the

region of the program over which a declaration is valid. Nested scopes can be

defined with blocks and redefinitions of identifiers hide the previous definition of

them. Identifiers are valid in the scope they are defined.

Static error. A static error is one detected at compile time. These errors are

most frequently violations to the language definition (malformed identifiers, bad

number or type of arguments in function calls, invocation of a method not

supported).

Expression. An expression is a construct in the language in which a

combination of operators and operands specify a computation that produces a

value.

124

6.2. Types and Subtypes.

MOOL is a strongly typed language, which means that all expressions are

type-consistent and it is guaranteed that the programs accepted by the compiler will

execute without type errors [CW 85].

MOOL is a statically typed language, which means that every expression in

the language has a statically determined type. Values of different types can be

assigned to variables only if their types are compatible. Some rules and the subtype

relation between types define type compatibility.

There are some predefined types created to hold numeric and boolean

values. There is also a special reference value called null. The user can create other

reference types. The main reference type in MOOL is the class, but interfaces,

arrays, and functions are also reference types. Table 6.2 shows the classification of

types in MOOL.

Reference types Types

� 7,< ,9��,< �

���,0,7�
9+- � ��
@ - - +,� ��
�> ++�

� 3,7�< ,9��,< �

	+� 33��8 *,�
���,79� . ,��8 *,�
� > �. ��- ���8 *,�
�77� 8 ��8 *,�

Table 6.2. List of types.

Reference types are allocated on the heap. They hold the address of an

element allocated on the heap or null.

125

All types in MOOL belong to a hierarchy of types defined in the language.

The top element of the hierarchy of types is called object. Object variables are

defined with a static type, and a runtime type is assigned at execution time when an

object is created. Figure 6.1 shows an example of this.

�
� !
 ""�� - �����# $!�# �
 �"��� - ����I%J�
� !
 ""�	- +- 7� - ����� ��
 �"�� - �����# $!�# �
 �"��	� - ����I%J�
� - ����*���������������������������������������OO��
 ,�3�� ��. ��8 *,�- 9�*��3�� - ����
*�� �
 �% �	- +- 7� - ��� $���������������OO�� ���
 �3���) ,��
 ,�7> ���) ,��8 *,�- 9�*��3�	- +- 7� - ����
�

Figure 6.1. Static and runtime type in MOOL.

Type ColorPoint is a subtype of type Point because class ColorPoint is a

specialization of class Point and subclasses define subtypes. See section 6.2.5 for

an explanation of the subtyping rules.

6.2.1. Predefined boolean and numeric types.

There are three basic types called value types: integer, float, and boolean.

Value types contain a raw value and the space needed to store it depends on its

representation. Value types and their range of values are presented in table 6.3.

126

Type Range Comments

�
 ��� �� � A� � 6� H � %D � � 6� H � � � �0�,< �C � +> ,�

�!�
 �� \� �� �]�� 5 �^� � %�\�� �� �]�� 5 �� � � �

� � � !�

 � 9� +3,%�7> ,� # - 0�. � +�C � +> ,�

Table 6.3. Predefined numeric and boolean types in MOOL.

6.2.2. Class interfaces.

Both classes and modules have interfaces. In this section we refer only to

interfaces for classes. Module interfaces are defined in section 6.6.1.

A class interface is a type declaration that provides a specification rather

than an implementation for its members. Interface types are used to provide

multiple inheritance in MOOL. Any class interface implemented by a class is a

supertype of that class. A class interface declaration has the form:

� !
 ""��
 ��� �
 � ���< ,���9�,7�L�8 *,� � 7�) ,�,73NL� ! �,�< 3���,79� . ,3N����,79� . ,&- < 8 �,. �

The interface identifier must be unique in the module where it is defined.

The identifier may be followed by an optional list of type parameters to declare a

parameterized interface type. ExtendsInterfaces is an optional part that allows an

interface to extend other interfaces. All the interfaces listed in the ExtendsInterfaces

part are supertypes of the interface being created. The InterfaceBodyDec part

127

declares the members of the interface. Interface members can be constants or

methods declarations.

An example of a class interface declaration is shown in figure 6.2.

��
� !
 ""��
 ��� �
 � ���� �0> 7,�I�
������� ���) - C ,� �
 ��� �� �< ! 6< 8 $��
������� ���< 7� B $��
J

Figure 6.2. A class interface declaration in MOOL.

6.2.3. Classes.

MOOL is a class-based object-oriented language. It contains a construct to

define classes as extensible templates that encapsulate state and behavior. Classes

in MOOL have three distinct roles: class definition, class specialization, and object

creation.

A class may inherit from another class and it may implement one or more

class interfaces. Inheritance allows building a hierarchy of classes that can be used

as a mechanism for code reuse. A derived class can override an inherited method

but it must be explicitly declared. It can also shadow some members but it must be

explicitly declared to avoid unintentional shadowing of members.

A class declaration provides a class type that can be used to declare object

variables of that type. Classes are used to generate objects dynamically. All objects

created with a specific class have the same behavior at runtime and it cannot be

128

modified. Objects are created applying the new operator to a class constructor. A

class declaration has the form:

� � !
 ""��< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� > *,7	+� 33N����,79� . ,3�	+� 33&- < 8 �,. �

TypeParameters is an optional part that specifies that the class is generic.

Generic classes are explained in detail in section 6.7.3. SuperClass is an optional

part that specifies the direct superclass of the class. Interfaces specifies the list of

interfaces that are implemented by the class. ClassBodyDec contains the

declarations of the members of the class and the implementation of its constructors

and methods. Classes have four kinds of members: class variables, fields,

constructors, and methods. A class body declaration is defined as follows.

� 	�I	+� 33F � 7�� @ +,3J�L� �,+< 3# �3�N�	- �3�7> . �- 73# �3��L
,�
 - < 3# �3�N���

An example of two classes is shown in figure 6.3.

�
� !
 ""�� �0> 7,��# $!�# �
 �"��� �0> 7,�	�
������!�"��
���������� - ����. ,��,7��
���� �
 "�� & � �� �"�
��������� �0> 7,� $�I. ,��,7�! �� �5 ��. ,��,7�8 �� 5 �J�
��������� �0> 7,� �
 ��� �� �! 6�8 $�I�
�������������. ,��,7�! �� �! ��. ,��,7�8 �� 8 ��
��������J�
���# ��� � �"�
���������� ���) - C ,� �
 ��� �� �< ! 6�< 8 $�I%J�
���������� ���< 7� B $�I%�J�
�

�
� !
 ""�	�7. +,�� ��
 �"�� �0> 7,��# $!�# �
 �"��	�7. +,�	�
������!�"��
���������
 ��� �� �7� ��- ��
���� �
 "�� & � �� �"�
��������	�7. +,� $�I��� �" 5 65 65 $�J�
��������	�7. +,� �
 ��� �� �7$�I��� �" 5 65 67$��J�
��������	�7. +,� �
 ��� �� �! 6�8 6�7$�I�"& $ �� ! 68 $���� �"�7� ��- � 7�J�
���# ��� � �"�
���������!�
 ��� 7,� � $�I��OO��) *+,) ,��� ��- ��- 9�� 7,� ��J�
��������� ��� � ������ ���< 7� B $�	��
����������������OO�,B��) *+,) ,��� ��- ��- 9�< 7� B�
�����������
��

Figure 6.3. Two class declarations in MOOL.

�

129

6.2.3.1. Class variables.

Class variables are special members that are shared by all instances of the

class. They are allocated once for the lifetime of the program.

6.2.3.2. Fields.

Fields are also called instance variables. Each object has a copy of the fields

declared in the class. Fields are initialized explicitly or with default values. A field

declaration can hide an inherited field if it has the same name and type but the

declaration has to be preceded by the shadow access modifier. Fields and methods

members can be accessed inside the class using their names or using the special

variable this with the dot notation this.member.

6.2.3.3. Constructors.

A constructor is a special function that has the same name as the class and

does not specify a return type. A constructor is used in the creation of instances of

the class. A class can contain many constructors with different signatures.

Constructors must be part of a class declaration in a module interface if they are

meant to be available for users or specializers.

130

6.2.3.4. Methods.

Methods are functions defined inside a class. They implement the behavior

of objects. All methods of a class are available inside the module that contains the

class definition. A class can contain two or more methods with the same name if

their signatures are different. A method with the same name and signature than one

inherited may override it, if it is annotated as override. A method can hide an

inherited method with the same name and signature if it is annotated as shadow

and not override. Both methods will be available using a complete qualified name.

By default all methods can be overridden in subclasses and they are dynamically

dispatched.

6.2.3.5. Inheritance.

MOOL provides single implementation inheritance and multiple interface

inheritance. A class hierarchy is build with the definition and specialization of

classes. By default all classes are derived from a special class called object. A class

inherits from another class and implements one or more interfaces.

MOOL uses nominal subtyping, which means that classes define types and

subclasses define subtypes.

131

6.2.3.6. Class hierarchy.

Classes are organized in a hierarchy with class object at the top. The class

hierarchy is created defining new classes from existing ones. Classes that do not

explicitly extend another class, implicitly inherit from object. The class hierarchy

does not organize the structure of a program; it is defined to allow code reuse and

incremental definition of classes.

6.2.3.7. The special variables this and super.

The keywords this and super are special variables to refer to a specific

object. These keywords can be used only in the context of instance methods or

constructors.

Keyword super refers to the immediate superclass. It is used to invoke

methods from the superclass.

Keyword this refers to the object that received the message in a message

invocation or to the one being created in a constructor.

6.2.4. Functions.

A function specifies a group of computations. It receives a set of actual

parameters and returns a result. A function type is used to declare variables that

hold functions. Functions can be passed as arguments to other functions. A function

type and a function declaration are as follows.

132

� �&
 � ���
 � �8 *,�M��� ��$���< ,���9�,7�� - 7) � +� � 7�) ,�,73�
� �8 *,�M��� ��$��< ,���9�,7�L�8 *,� � 7�) ,�,73N�� - 7) � +� � 7�) ,�,73� �M&+- . / $�

Functions can be generic. Generic functions are explained in section 6.7.3.

A function declaration without a Block is used in module interfaces and it specifies

the signature of the function. A function declaration with a Block is used in module

implementations and it contains the signature followed by its implementation.

Figure 6.4 shows some examples of functions and functions types.

�
�&
 � ���
 ��
 ��� �� �) � ! � �
 ��� �� �! 6��
 ��� �� �8 $�����������������������OO�9> �. ��- ���8 *,�< ,. +� 7� ��- ��
�
 ��� �� �� @ 3� �
 ��� �� ��$��OO����) - < > +,����,79� . ,�
�
�
 ��� �� �� @ 3� �
 ��� �� ��$�I���� ��K�5 $�I���� ��(A� $�J�����& �
 ����J���OO����) - < > +,��) *+,) ,��� ��- ��
�
 ��� �� �) � ! ���� �
 ��� �� �! 68 $�I���� ! :8 $�I���& �
 �! ���!"�����& �
 �8 ��J�J���������OO�9> �. ��- ��) � ! �����

) � ! �� �8 �� �) � ! ���OO�9> �. ��- ��C � 7�� @ +,�

Figure 6.4. Functions and function types in MOOL.

6.2.5. Subtyping rules.

In this section we describe the rules to define the subtype relation.

All types in MOOL are derived from object including the basic types. This

means that all types are subtypes of object and object is supertype of all types.

� �8 �8 *,�K"�� � ��� ��
�

We use the symbol <: to denote the subtype relationship between two types.

Assume S and T are types; S <: T means that S is a subtype of T and T is a

133

supertype of S. The subtype relation is reflexive and transitive. These two rules are

expressed as follows:

� - 7�� ++��8 *,3��6���K"����
 � ��) ,� �3�� �8 ��8 *,����3�� �3> @ �8 *,�- 9���3,+9���
� - 7�� ++��8 *,3�� 6�_ 6�� 6�3> .
 ��
 � ��� �K"�_ �� �< �_ �K"�� ��) *+�,3��
 � ��� �K"�� ��

The subsumption rule states that if an expression has type S then it has also

all the types of its supertypes. That means that an expression of a subtype can stand

as an element of any of its supertypes. This rule is as follows.

� - 7�� ++��8 *,3��6� �� �< �C � 7�� @ +,�C ���9�C "� �� �< �� K"���
 ,��C "��
�

• Subtyping for classes and interfaces. The subtyping relationship between

classes is defined explicitly when a class is declared. A class that extends another

class is a subtype of the extended class. If a class doesn’t extend another class, it

implicitly extends object. A class is also a subtype of any class interface it

implements.

Definitions of subclasses must follow the subtype rule for functions when a

method is overridden to ensure type safety.

MOOL allows changes of types in subclasses as follows:

 Invariant – No changes allowed for fields

 Covariant – Covariant changes for result type of functions.

 Contravariant- Contravariant changes for function arguments.

134

Suppose we have some declarations of classes and interfaces. Table 6.4

shows the types and subtypes created by each definition.

�,. +� 7� ��- �� �8 *,� � > *,7�8 *,3� 	-)) ,��3�

� !
 ""���I��J� ��
� @ P,. ��

��
��
 ,7���97-) �- @ P,. ���) *+�. ��+8 �

� !
 ""�&�� ��
 �"���I%J� &�
� @ P,. ��

��
&�

��
 ,7���97-) ���

�
 ��� �
 � ���4 �I%J� �4 �
� @ P,. ���

�4 �
�

�
 ��� �
 � ���? �� ��
 �"��4 �I%J� �? �
� @ P,. ��

�4 �
�? �

�

� !
 ""�	��# $!�# �
 �"��? �I%J� 	�
� @ P,. ��

�? �
�4 �

��
 ,7���97-) �- @ P,. ���) *+�. ��+8 �

� !
 ""���� ��
 �"�&��# $!�# �
 �"��? �I%J� ��

� @ P,. ��
��
&�
�4 �
�? �

��
 ,7���97-) �&�

Table 6.4. Subtyping relation for classes and interfaces.

• Subtyping rule for function types. A function type has the form � � � where

� represents the arguments of the function and � represents the result. The subtype

rule for function types is defined as follows.

� - 7�� ++��8 *,3�` 6a 6` b6�� �< �a b"�` �c �a �K"�` b�c �a b��99� ` bK"�` $�� �< � a �K"�a b$���

�

That means that the function arguments change in a contravariant way while

the function result change in a covariant way.

135

6.3. Expressions.

An expression is a formula to compute a value. Expressions are evaluated

by executing the operations in the order established by the precedence of the

operators they contain. In this section we present the set of operators of MOOL and

how they are combined to create expressions.

6.3.1. Constant expressions.

Constant expressions can be evaluated statically at compile time or at

initialization of classes. The values generated by them are constants and they

cannot be changed during execution of the program.

6.3.2. Literals.

Literals are representation of primitive values or null. Some examples are

integer 23, -100, float 3.14, boolean true and false, etc. The null literal is the only

value of the null type.

6.3.3. Operands.

An operand represents a value. Operands are represented in expressions as

variables, constants, literals, etc. The type of the operands restricts the operations

applied on them.

136

6.3.4. Function call.

A function call could be an expression or part of it if it returns a value. An

example of this is a call to the max function, which takes as arguments two integers

and return the greatest of them.

6.3.5. Operators.

An operator is a symbol used to define an operation between one or more

values. Binary operators are left associative. The set of MOOL operators are

classified according to the number of operands involved and the way they are

applied.

Primary operators have the highest precedence of all. They refer the

selection of values. These operators are classified as member selection and

application. They are shown in Table 6.5 and some examples are presented in

figure 6.5.

Unary operators are applied to a single operand. They are shown in table 6.6

and some examples are presented in figure 6.6.

Binary operators use two operands as arguments. All binary operators are

left associative except the assignment operator. Parenthesis may be used to define

explicitly precedence for some operations. Binary operators are presented in table

6.7 and some expressions using binary operators are shown in figure 6.7.

137

Description Symbol Notation
) ,) @ ,7�3,+,. ��- �� �� �< �) ,) @ ,7�

9> �. ��- �� �$� 9> �. ��- �� �) , *� 7�) ,�,73$���

� 77� 8 � L�N� � 77� 8 � �) ,L��< ,! N���

��3�� �. ,�. 7,� ��- �� �,B� �,B�	+� 33� �) , *� 7�) ,�,73$�

Table 6.5. Primary operators.

�
*- ����! �����������������������������OO�9�,+< �3,+,. ��- ��
. - +- 7� - ����< 7� B $�����������OO) ,�
 - < �3,+,. ��- ��
3R 7 ! $����������������������������OO�9> �. ��- ��. � ++�
< � �� L�N���������������������������OO�� 77� 8 �,+,) ,���

 �% �	- +- 7 � H $�������������OO���3�� �. ,�. 7,� ��- ��
�

Figure 6.5. Examples of expressions with primary operators.

Description Symbols
*+> 3��,0� ��- �� D �A�

&��B�3,�. -) *+,) ,��� [�

- 0�. � +�. -) *+,) ,��� X�

. � 3�� �8 *,$�

� 7,9�! O*- 3�9�! ���. 7,) ,��� D D �

� 7,9�! O*- 3�9�! �< ,. 7,) ,��� AA�

Table 6.6. Unary operators.

�
�D D �������������OO�*- 3�9�! ���. 7,) ,���
A� ��������������OO��,0� ��- ��
X�< - �,�������OO�+- 0�. � +�. -) *+,) ,���
 � - ���$�. *���OO�. � 3��

�

Figure 6.6. Examples of expressions with unary operators.

138

Description Symbols

> +��*+�. � ��C ,� (�O�d � �

�< < ���C ,� D �A�

� ,+� ��- �� +� :��K��:� ��K� ����3�� �. ,- 9��

� R > � +��8 �� � � ��X� �

�� ��� V V �

� ,0� ��- �� X�

��. +> 3�C ,�� � �� MM�

�33�0�) ,���� � ��

Table 6.7. Binary operators.

�
 �>) �K� �5 $�V V � �>) �K� �� 5 $���OO�� �< ��
 ��� � �� $�MM� 9+� 0$����������������������OO���. +> 3�C ,�- 7�
� � �� �� 5 ��������������������������������OO�� 33�0�,) ,���
,7�) ,�,7�� �� �(�3�W ,����OO�� 33�0�) ,���� �< �) > +��+�. � ��C ,�
�

Figure 6.7. Examples of expressions with binary operators.

6.4. Declarations.

A declaration introduces a name for a variable, a constant, a function, or a

type that is valid in a scope delimited by the block that contains it. Repeated names

for variables are not allowed in the same scope. A declaration can be preceded by

an access modifier, which makes it available outside the scope of its definition.

139

6.4.1. Modifiers.

All the elements listed in a module interface are public by default. All

elements in a module implementation can be used inside the module.

Access modifier. There is one access modifier called protected. Any

element of a class interface annotated as protected can be used in derived classes.

Protected members are not available for clients.

Member modifier. There is one member modifier called shadow. A field

or method of a class can be annotated as shadow if it has the same name as one

inherited. It is used to hide the inherited member. Both members are available for

access. The member defined in the parent class can be accessed using a fully

qualified name, casting the object to its parent class, or using super. The new

member can be accessed with the dot notation.

Method modifier. There is one method modifier called override. A

method annotated as override, overrides an inherited method. The signature of the

method must follow the subtyping rules defined in section 6.2.5.

6.4.2. Constants.

A constant declaration introduces a name for a value. A constant declaration

and an example follows.

� � �
 "���8 *,��< ,���9�,7�'��	- �3�� ! *7,33�- ��(��
� � �
 "��9+- � ��� ��� �� �� � ��

140

6.4.3. Variables.

A variable declaration introduces an identifier and its type. An initial value

can be defined or a default value will be assigned. Variable declaration and an

example follow.

 �8 *,��< ,���9�,7�L'��� ! *7,33�- ��N�(��
� �
 ��� �� �! �� �5 ��

�

6.4.4. Functions.

A function declaration defines a function signature in a module interface or

a function implementation in a module implementation. A function declaration and

an example are shown next.

� �8 *,M�� ��$��< ,���9�,7�L�8 *,� � 7�) ,�,73N�� - 7) � +� � 7�) ,�,73� �M&+- . / $�
� �
 ��� �� �) � ! �
 ��� �� �! 6��
 ��� �� �8 $��

6.4.5. Types.

Three type declarations are defined: functions, classes, and interfaces. These

types are declared as follow.

� �&
 � ���
 � �8 *,MC - �< $��< ,���9�,7�� - 7) � +� � 7�) ,�,73���
� !
 ""��< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� > *,7	+� 33N����,79� . ,3�	+� 33&- < 8 �,. �
� !
 ""��
 ��� �
 � ���< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� ! �,�< 3���,79� . ,3N����,79� . ,&- < 8 �,. �
��

Some examples are presented in figure 6.8.

141

� �
 "���!�
 ��� ��'�� �� � ����������������OO�. - �3�� ���< ,. +� 7� ��- ��
���OO�C � 7�� @ +,3�< ,. +� 7� ��- �3�
�
 ��� �� �� ���
�!�
 ��@ �� �� �5 ���
) �) � ! �� �) � ! ���,0,7��
��OO�9> �. ��- �3��
�&
 � ���
 ��
 ��� �� �) � �
 ��� �� �C � +� 6��
 ��� �� �C � +� $���
�
 ��� �� �) � ! ���,0,7� �
 ��� �� �C � +� 6��
 ��� �� �C � +� $�I�
�������� C � +� �:�C � +� $�I����& �
 �C � +� ��
������!"�����& �
 �C � +� ��
�����J�
J�
� !
 ""�� 7� . ��- ����# $!�# �
 �"��� 7� . ��- ��I������OO�. +� 33�< ,. +� 7� ��- ��
�������!�"�
��������
 ��� �� ��>) �� �5 ��
��������
 ��� �� �< ,��� �� ��
����� �
 "�� & � �� �"�
�������� 7� . ��- � �
 ��� �� ��6�< $�I�>) �� �����< ,��� �< ��J�
����# ��� � �"�
������%�
}

Figure 6.8. Examples of constant, variables, functions, and types.

6.4.6. The import declaration.

An import declaration makes available all the elements listed in the module

interface to be used in the module. Some examples of import statements are

presented in figure 6.9. An import declaration has the form:��

� �# $ � � ���< ,���9�,7�L��< ,���9�,7N�L� 3��< ,���9�,7N��

�
�# $ � � ��� 8 3�,) ��
�# $ � � ��
� �
 ��
�# $ � � ��� �� . / (�
�

Figure 6.9. Examples of the import declaration.

�

142

6.5. Statements.

Statements execute actions. They are used to control the flow of execution

of a program. Some statements are simple and some others contain other statements

as part of their structure. In this section we present the statements supported in

MOOL.

6.5.1. Assignment statement.

An assignment statement has the form LHS = RHS. It requires checking

type compatibility between the expression at the LHS and the value generated by

the expression at the RHS. The assignment is valid if the type of the receiver can

hold the type of the value generated. The general form of an assignment is as

follows:

� � ! *7,33�- ���'�� ! *7,33�- ��

�

If the types of the LHS and RHS expressions are not compatible, an error is

signaled. Some examples of assignments are presented in figure 6.10.

�
< � 8 3L� N�� �S
- �< � 8 T�
*7�. ,�� �� �� � �
*- ����! �� �� �

i++ OO��
 ,�) ,� ���0�- 9��
 �3��3����� ���D �� �

Figure 6.10. Examples of the assignment statement.

143

6.5.2. Function call statement.

A function call has the form:

� � ! *7,33�- �� �. �> � +� � 7�) ,�,73$�

�

ActualParameters is a sequence of zero or more values, which are going to

be assigned to the formal parameters defined in the function using positional

binding. The parameters are passed by value. In the case of integer, float, and

boolean types, the values are copied to the formal parameters such that changes to

them do not affect the actual arguments. Other reference types are also passed by

value, but changes to the formal parameters will be reflected in the actual

parameters because the formal parameters become aliases.

6.5.3. Sequential composition.

Statements are executed sequentially in the order they are defined unless an

error occurs. A sequence of statements separates each statement with a semicolon.

Figure 6.11 shows a sequence of statements.

�
. � �� D @ ��
! �� �3R > � 7, � $��
*7���# ��, - �# ,�0�
 $��
�

Figure 6.11. Sequence of statements.

144

6.5.4. Block statement.

A block statement is delimited by curly brackets and may contain local

variable declarations and a sequence of statements. A block is treated as one single

statement and it is executed by executing in order each statement or declaration

contained in it. A block is defined as follows:

� &+- . / �
� � 	�I# - . � +F � 7�� @ +,�,. +� 7� ��- �J�� �� �,) ,��3���

The block statement defines a scope where the local variables declared

inside are valid.

6.5.5. Selection.

There are two selection statements in MOOL. The first one is the traditional

if statement which allows the selection of one of two possible statements. The other

one is a switch statement, which allows the selection of one of several statements.

These two selection statements are presented in the next two sections.

6.5.5.1. The if statement.

The if statement contains an expression and a body, delimited by curly

brackets. The body contains a statement and an optional else part. The execution of

the if statement is as follows: the expression is evaluated and yields a boolean

result, if the result is true then the first statement inside the body is executed, if the

145

result is false then the statement after the else is executed. In both cases, the

execution continues with the statement after the body of the if statement.

An if statement is defined as follows.

� ��� � ! *7,33�- �$�	�� �� �,) ,���(�L�!"��� �� �,) ,��N���
�

An example of the if statement is shown in figure 6.12.

6.5.5.2. The switch statement.

A switch statement contains an expression and a body. The body defines a

set of cases and a default clause. The set of cases defines the values for which

specific actions are defined. In a switch statement the expression is evaluated and

then depending on its value a matching case is selected to continue the execution of

the program. If no matching case exists, then the default clause is selected. In both

cases the execution continues with the next statement following the switch

statement. The value generated by the expression must be integer or boolean.

The switch statement definition is as follows:

� ���"% ��� � ��� ! *7,33�- ���� B��.
 &+- . / �
� � B��.
 &+- . / �
� ���	�I	� 3,J��,9� > +�� �� �,) ,�����
� 	� 3,�
� ����
 "��	- �3�# �3��"�� �� �,) ,���
� �,9� > +�� �� �,) ,���
� ������
 & !��"�� �� �,) ,���

An example of a switch statement is presented in figure 6.12.

146

�

��� �� �:�@ �$�I�. �� �� ��
�!"���. �� �@ ��
J��
�

"% ��� � ��� 703��	��
�����
 "���5 �"�*�� ��,B�4 �$�
�����
 "���� �"�*�� ��,B�? � 703$�
�������
 & !��"�*�� ��,B�� @ P,. � �$�
��
�

Figure 6.12. Examples of if and switch statements.

6.5.6. Repetition.

Two repetition statements are part of MOOL. They are called for and while.

6.5.6.1. The for statement.

The for statement contains a controlling-loop part and a block.The

controlling-loop part is delimited by parenthesis and contain three parts (ForInit,

Expression, and ForUpdate) separated by semicolons. The execution of the for

statement is a s follow. First it executes the initialization part, and then evaluates

the expression. If the expression yields a true value, the block is executed. When

the block is finished the for update part is executed and the expression is evaluated

again. The block is executed repeating the process until the values of the expression

is false. Then the execution continues in next statement following the block. An

example is shown in figure 6.13. The for statements has the form:

� �� � � L� - 7����N��L� ! *7,33�- �N���L� - 7� *< � �,N$�&+- . / �

147

6.5.6.2. The while statement.

The while statement executes the expression and if its value is true executes

the block that is part of it coming back to evaluate the expression and repeat the

process until the expression gets a false value. The while statement has the form:

 while (Expression) Block

An example of a while statement is presented in figure 6.13.

�
�� � � �
 ��� �� ��� 5 ����K�) � ! ���D D $�I�
������ �*7���# ��, �$�J�
�
% � �!�� ��K�) � ! �$�I� �
����� �*7���# ��, �$��
����D D ��
J��
�

Figure 6.13. Examples of for and while statements.

6.5.7. The continue, return, and break statements.

The break statement ends a loop execution and continue the execution in

the next statement. The continue statement returns the execution to the control loop

part. The return statement is used to finalize the execution of a function, defining

the value to be returned.

These statements are defined as follows.

. - ����> ,�
7,�> 7��� ! *7,33�- ���
@ 7,� / �

148

6.6. Modules and module interfaces.

A module is the basic unit to create a simple program or to create a code

fragment that can be combined with other modules to create larger programs.

Modules are units to encapsulate elements, hide information and separate

compilation.

Modules contain two parts: a module interface describes the signature of the

module and the module implementation contains the implementation of the

signature.

Modules define the namespace structure to refer to qualified names. They

define two scopes: internal and external. Module interfaces show the elements of

the module that are visible outside the module. By default all members of a module

interface are public. Some members of classes can be annotated as protected, in that

case members are available only for specialization. A module implementation

contains the definition of all the elements shown in the module interface as well as

some other elements that are only visible inside the module. A module

implementation can contain an initialization part (init Block), which is used to

initialize the elements of the module before they are loaded to execution.

6.6.1. Module interface.

A module interface is a specification of the services a given module

provides to others. A module interfaces reveals the public parts of a module.

149

Information hiding can be achieved by restricting the interface to contain only a

subset of the elements defined in the module implementation.

A module interface declaration has the form:

� �& !���
 ��� �
 � ���< ,���9�,7�
- < > +,&+- . / �

�

The language contains a module interface called IMain, which contains the

main function. The main function receives an array of string elements and its result

is void. Any module may implement IMain providing code for the main function.

The main function is the point where the program starts execution. This module

interface is presented in figure 6.14.

�
�# � �& !���
 ��� �
 � ���
� ���I�
������� ���#
 �
 � "�� �
 � �LN�� 703$��
J�

Figure 6.14. Example of a module interface.

6.6.2. Module implementation.

A module can implement several module interfaces. The interfaces

implemented by a module are exported by it. A module implementation can contain

constants, variables, and types (functions, classes, and interfaces).

The elements declared inside a module are valid in the scope they are

declared. All elements listed in the module interface are public elements unless

150

they are annotated as protected. The module exports the interfaces listed in the

ModuleInterfaces part. A module implementation has the form:

� �& !���< ,���9�,7�
- < > +,���,79� . ,3�
- < > +,&+- . / �

An example of a module implementation is presented in figure 6.15.

�
� �& !��1 ,++- ��# $!�# �
 �"��
� ���I�
����) *- 7��� 8 3�,) ��
����� ���#
 �
 � ��� �
 � �LN�� 703$�I���
�������� �*7���# ��, S1 ,++- �B- 7+< XT$�� ��
���J�
J�
�

Figure 6.15. A module implementation.

6.6.3. Classes inside modules.

Classes have three main purposes; factor commonalities, serve as a base for

specialization, and create objects. On the other hand the main role of modules is to

be used as organizational units and to create scopes.

Modules define two scopes; internal and external. The combination of

modules and classes provides control over class members’ visibility. Listing a class

interface in a module interface allows hiding some members of the class in the

module implementation. A class declared in the module interface can annotate its

members as protected. By default, all members are public. The combination of

151

members that are listed or not listed in the module interface gave us several views

of them in different scopes.

We illustrate this in the example shown in figure 6.16.

�
� �& !���
 ��� �
 � ���
� �I�
�
����� !
 ""��
 ��� �
 � ���	� �I�
����������� ���) � �$��
���������$ � � ��� ������ ���) � �$��
�����J�
�
���� !
 ""�	� �� ��
 �"�� � ��� ���# $!�# �
 �"��	� I�
������� �
 "�� & � �� �"�
�����������	� �$��
���J�
J��
�

�
� �& !��
� ��# $!�# �
 �"��
� �I�
���� !
 ""�	� �I�
���������!�"�
��������%�
������� �
 "�� & � �� �"�	�
�����������	� � �$�I�%J�
������# ��� � �"�
��������� ���) � �I%J�
��������� ���) � �I%J�
��������� ���) � �I%J�
�����J�
����OO�- �
 ,7�,+,) ,��3�- 9�) - < > +,�
� �
J�

Figure 6.16. A module interface and a module implementation.

The module interface IM1 contains two declarations, a class interface and a

class. In the class interface IC1 two methods with different access (public and a

protected) are declared. The module implementation M1 contains the complete

definition of class C1. Class C1 contains three methods, but only two of them were

listed in the class interface IC1 in module interface IM1. All members of a class

are visible inside the module and they are available for objects and derived classes.

A protected member of the class listed in the class interface is visible outside the

module only for derived classes.

The example in figure 6.16 contains a definition of class C1 with three

methods: m1, m2, and m3. Tables 6.8 and 6.9 show how these members are

152

available for users and derived classes inside and outside the module

implementation.

 Derived
classes

Users

,) @ ,7�) � �� C �3�@ +,� C �3�@ +,�

,) @ ,7�) � ��� C �3�@ +,� C �3�@ +,�

,) @ ,7�) � ��� C �3�@ +,� C �3�@ +,�

Table 6.8. Visibility of methods inside the module implementation.

 Derived
classes

Users

,) @ ,7�) � � C �3�@ +,� C �3�@ +,�

,) @ ,7�) � ��� C �3�@ +,� � - �AC �3�@ +,�

,) @ ,7�) � ��� � - �AC �3�@ +,� � - �AC �3�@ +,�

Table 6.9. Visibility of methods outside the module implementation.

6.6.4. Separate compilation.

Module interfaces make separate compilation type-safe. They help to keep

large programs well structured and they provide a mean to hide implementation and

avoid dependencies.

6.7. Generics.

Generics are abstractions over types. MOOL provides support for the

definition of generic types, and type variables. Generic types are also called

153

parameterized types. They could be parameterized classes, parameterized

interfaces, and parameterized functions.

In this section we present the definition of type variables, and generic types

with different kinds of constraints, and how they can be used to create instances of

them.

6.7.1. Type variables.

A type variable is an identifier with the same features as other identifiers

but it stands for a type. Type variables are introduced in parameterized types to

represent a type parameter. Types are sent as parameters to create an instance of the

parameterized type.

Type variables are defined after the identifier of the type declaration and

they can contain bounds to other types to constraint the type that can be used in

instantiations. Section 6.7.2 describes different kinds of constraints.

Figure 6.17 shows an example of two parameterized types that contain a

type variable. A type variable called T is used in the declaration of the

parameterized types IList and List. The type parameter T is enclosed in < > and it

defines that the class is a parameterized type that receives a type parameter to

create instances of it.

154

�
� !
 ""��
 ��� �
 � ���# �3��K�:�I�
�����
 ,� < � �$��
���C - �< �. - �3 ��,+,) $��
J�
� !
 ""�# �3��K���:���# $!�# �
 �"��# �3��K���:�I�
������!�"�
�������%�
���� �
 "�� & � �� �"�
������# �3�K�:� $�I%J�
���# ��� � �"�
��������
 ,� < � �$�I�%����J���
������C - �< �. - �3� ��,+,) $�I%��J�
���%�
J�

Figure 6.17. Examples of unconstrained type variable.

6.7.2. Type constraints.

Generic code can be defined for all the types available in the system or for

some of them that hold some properties. The former is called unconstrained

genericity and the later is called constrained genericity. [M 86]

6.7.2.1. Unconstrained genericity.

Generic code that can be instantiated with any type available in the system

is called unconstrained. An example of using unconstrained genericity is the

generic class presented in figure 6.17. The type variable T used in there does not

contain constraints. That means that the generic class List can be instantiated using

as actual type parameter any type available in the system. Some examples of

instances of List<T> are shown in figure 6.18.

155

�

�3�K�"�� �
 � �:���) ,3�� �
 �% �# �3��K�"�� �
 � �: �$��
�3�K�� - ����:�*- ���# �3��� �
 �% �# �3�K�� - ����: �$��
�3�K�
 ��� ��:�C � +> ,3�� ��,B�# �3�K�
 ��� ��: $��
�

Figure 6.18. Some instantiations of class List<T>.

6.7.2.2. Constrained genericity.

When the types used to instantiate generic types need to be bound to other

types it is called constrained genericity.

In the example shown in figure 6.19 the type variable is bound to an

interface and as result the types used in the instantiation are constrained to hold this

relationship. In this example, class Point implements the interface IOrderable.

Class Point can be used as a type parameter to create an instance of the generic

class OrderedList because class Point is bounded to IOrderable and that is a

requisite of the type parameter of class OrderedList.

�

�
 ��� �
 � ���� 7< ,7� @ +,�I�
�������
 ��� �� �. -) *� 7,�- � � ��� ��,+,) $��
J�
�

�
 ��� �
 � ���� 7< ,7,< # �3��K���:�I�
��������7,) - C , $��
�������� �����3,7�� ��,+,) $��
J�
� !
 ""�� 7< ,7,< # �3�K����# $!�# �
 �"��� 7< ,7� @ +,�:��# $!�# �
 �"��� 7< ,7,< # �3��K��:�I%J�
�

� !
 ""�� - �����# $!�# �
 �"��� 7< ,7� @ +,�I�%��J�
�

� 7< ,7,< # �3�K� - ���:�- +*�� �
 �% �� 7< ,7,< # �3�K� - ���: $��
�

Figure 6.19. A parameterized class with a constrained type parameter.

156

It is possible to restrict the type parameters using recursive bounds. This

kind of bound is useful when a binary method is defined inside the interface or

class and we want to restrict the type of the actual parameters of that method to be

the same type as the object that receives the message.

We change some elements of figure 6.19 to define a class with a recursive

bound, which is shown in figure 6.20.

�

�
 ��� �
 � ���� 7< ,7� @ +,�K�:�I�
�������
 ��� �� �. -) *� 7,�- ��,+,) $��
J�
� !
 ""�� 7< ,7,< # �3�K����# $!�# �
 �"��� 7< ,7� @ +,K�:�:��# $!�# �
 �"��� 7< ,7,< # �3��K��:�I%J�
�
� !
 ""�� - �����# $!�# �
 �"��� 7< ,7� @ +,�K� - ���:�I�%��J�
�
� 7< ,7,< # �3�K� - ���:�- +*�� �
 �% �� 7< ,7,< # �3�K� - ���: $��
�

Figure 6.20. A class with a recursively bound type parameter.

6.7.3. Generic types.

In MOOL classes, class interfaces, and functions can be defined to be

generic. A generic type contains a list of type parameters with specific bounds. The

bounds of the type parameters restrict the types of the actual parameters when an

instance of the generic type wants to be created.

Generic functions. A generic function is a function that has a list of type

parameters. A generic function is called in a similar way to that of a non-generic

function, except for the type parameters. In the example shown in figure 6.21 the

157

functions swap is a generic function. Function swap receives a type parameter

called T and three formal parameters

�
�� ���3B� *K�:� ���L�N�� 6��
 ��� �� ��6��
 ��� �� �P$�I��
���������,) *�� �� L�N��
������� L�N�� �� LPN��
������� LPN�� ��,) *��
J�
�

Figure 6.21. An example of a parameterized function.

Generic classes. A generic class contains a list of type parameters enclosed

in < >. The type parameters can be bounded to other types. The definition of a

generic class is as follows:

� !
 ""��< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� > *,7	+� 33N����,79� . ,3�	+� 33&- < 8 �,. �

Examples of the definition of a generic class are shown in figures 6.17,

6.19, and 6.20.

Generic class interfaces. A generic class interface contains a list of type

parameters enclosed in < >. The type parameters can be bounded to other types.

The definition of a generic interface is as follows:

� !
 ""��
 ��� �
 � ���< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� ! �,�< 3���,79� . ,3N����,79� . ,&- < 8 �,. �
�

Examples of generic class interfaces are IOrderedList of figure 6.19 and

IOrderable of figure 6.20.

158

6.7.4. Subtyping rules for parameterized types.

The direct supertypes of a parameterized class are:

• The type listed in the extends clause and

• The types listed in the implements clause.

The direct supertypes of a type variable are the types listed in its bounds.

The subtypes of a type T are those that have type T as a supertype.

Subtyping does not extend through parameterized types. This means that if

S and T are types and C is a parameterized type, if S<:T does not imply

C<S> <: C<T>.

 159

Chapter 7.

Language Evaluation.

“Language design is decision making.”
Niklaus Wirth.

Language design is a complex activity filled with tradeoffs. Language

features that have proved their success in some languages are not always suitable

for other languages.

Wirth gave us a list of demands a language designer frequently encounters

when designing a programming language [W 87b]. Some of them are closely

related with the language itself while some others are related with the translator

(compiler) used to generate executable code. However, as he noticed, some of those

points are contradictory and it is the designer’s responsibility to decide where to put

the emphasis. On the other hand, Hoare argues that good language design can be

summarized in five phrases: simplicity, security, fast translation, efficient object

code, and readability [H 87].

The characteristics most crucial in the design of a programming language

are simplicity and safety.

160

The design of MOOL was driven with these two features in mind.

Simplicity as the main feature of the language will allow programmers to easily

learn and use the language, while safety provides a guarantee that errors are going

to be detected at either compile time or runtime.

Some languages equate simplicity with the number of different concepts

they provide. However reducing the number of concepts to a minimum may require

the same construct being used for several purposes, which leads to an unnatural

way to express different abstractions. We aim to separate classes and modules,

which are two concepts that have been thrown together in modern object-oriented

languages. We believe that these two constructs will allow us to express two

different abstractions in a more natural way.

On the other hand, there are languages that provide different constructs for

every different kind of abstraction burdening the language with many concepts that

are difficult to understand and which can be used to approach several solutions for

the same problem. Users of these kind of languages, tend to master only a subset of

the language. We limited the inclusion of many constructs in order to maintain a

balance of concepts with well-defined roles.

The flexibility provided by some languages has a price, which is usually the

lack of safety at runtime. Unsafe languages do not guarantee that programs

accepted by the compiler are free from runtime errors while safe languages are

those that protect their abstractions guaranteeing that programs accepted by the

161

compiler are going to execute free of type errors. Types play an important role in

language safety. They can be statically or dynamically checked to achieve language

safety, although some runtime checks are performed in statically typechecked

languages, e.g., array-bounds or downcast operations.

In previous chapters we pointed out problems in other languages. Now we

compare how well MOOL does in solving these problems.

7.1. Methodology.

In this section we describe the process we are going to follow to compare

the features of MOOL with respect to other programming languages with similar

characteristics. We aim to evaluate MOOL using an ad hoc methodology.

There can be no qualitative measure since the complexity or simplicity of a

construct is relative to some extent. Instead we have written example programs

illustrating that the combination of features in MOOL are more natural overall that

existing languages.

Our language, presented in chapter 6, contains a combination of features of

modular and object-oriented languages, and allows the definition of generic code.

It is not our intention to describe or evaluate every feature or construct in

the language since some of them are borrowed from other languages and are well

understood. Our evaluation process is conducted only for some features that

162

distinguish MOOL from other programming languages. This process has three

basic steps:

1. Identify some language features that are needed to support modular,

object-oriented or generic programming.

2. Describe how these features are supported in MOOL using a program.

3. Compare the solution in MOOL with respect to other languages and list

the advantages and disadvantages that MOOL’s solution offers.

7.2. Examples approached in MOOL.

We selected six issues grouped into three areas. They are listed as follows:

• Modularity .

o Structures that need no local data. (Section 5.7.2.1)

o Structures with dependencies on other structures (Section 5.7.2.2)

• Genericity.

o Generic classes and instances. (Section 5.8)

o A generic sort function.

• Object-Oriented.

o Inheritance and binary methods. (Section 3.7)

o Implementing mixin inheritance. (Section 3.5.3)

We approach each of these problems in the next sections.

163

7.2.1. Structures that need no local data.

A library is defined with modules in MOOL. A module interface contains

the definition of all the elements that are available for clients. A module

implementation provides code for all elements listed in the interface it implements.

The elements of a module are statically allocated. We restrict visibility and hide

implementation by providing the module interface and implementation in separated

files.

Figure 7.1 shows the module interface and module implementation of a

library of mathematical functions.

�
OO�� ,��- 9�) � �
 ,) � ��. � +�9> �. ��- �3��
OO��� �< ��>) ,7�. �. - �3�� ��3�
�
� �& !���
 ��� �
 � ���
� �
 �I�
�
������ �
 "���
 ��� �� �
�4 �� ��� �� � � H � ��
������ �
 "���!�
 ��� �� �� �� � � � � ��
������ �
 "���!�
 ��� ��� �� �� � � � � ��
�
������
 ��� �� �� @ 3� �
 ��� �� �! $���
������!�
 ��3��� �!�
 ��! $���
������!�
 ��. - 3� �!�
 ��! $���
���%�
J�
�

�
OO��) *+,) ,�� ���- ��- 9����,79� . ,��
� �
 �
�
� �& !��
� �
 ��# $!�# �
 �"��
� �
 �I�
����OO�) *+,) ,��3�� @ 3- +> �,�C � +> ,�9> �. ��- ��
������
 ��� �� �� @ 3� �
 ��� �� �! $�I�
���������9� ! K5 $�I�! � ��! (A� $��J�
��������7,�> 7��! ��
�����J�
���OO��) *+,) ,��3�3���9> �. ��- ��
������!�
 ��3��� �!�
 ��! $�I%J�
����OO��) *+,) ,��3�. - 3�9> �. ��- ��
������!�
 ��. - 3� �!�
 ��! $�I%�J�
���%�
J�
�

Figure 7.1. Library of mathematical functions in MOOL.

All the elements listed in the module interface are available for clients of

the module. All members of the module implementation that are listed in the

module interface keep the same access modifier defined in the interface. Constant

164

elements are defined only once either in the module interface or module

implementation. New elements can be introduced in the implementation but they

will not be available for users who import the module because they do not appear in

the module interface.

A program that uses the library of mathematical functions is shown in

figure 7.2.

�
� �& !���,3���# $!�# �
 �"��
� ���I�
������# $ � � ��
� �
 ��
������� ���) � ��� 3�7��0�LN�� 703$�I�
����������!�
 ��! �� �� �� ��
����������!�
 ��8 ��
���������%�
���������8 �� �3�� ! $��
�����J�
J�

Figure 7.2. A program using the library of mathematical functions.

The module Test imports the library Math. All the functions and constants

defined in the module interface IMath are available in this program. No extra

mechanisms are needed to access the elements of the Math library.

The Java version for this library is shown in the left part of figure 7.3. In the

right part, there are two versions of a program that uses the library.

165

�
$ & � !�� ���

 !�� !
 ""�
� �
 �I�
���$ & � !�� �"�
 ��� ���

 !��� & � !��

� � � �� � � � � � � � � � � � 5 � � � � � � ��
���$ & � !�� �"�
 ��� ���

 !��� & � !��

� �� � �� � � � � � H � � � � � � � � � � � � H ��
���$ & � !�� �"�
 ��� ��� & � !��3��� �� & � !��� $��
���$ & � !�� �"�
 ��� ��� & � !��. - 3� �� & � !��� $��
���$ & � !�� �"�
 ��� ��� & � !���� �� �� & � !��� $��
���%�
J�
�

�
�# $ � � ��P� C � �+� �0�
� �
 ���
� !
 ""��,3��I�
����$ & � !�� ��� ���. � +. > +� �,� $�I��
������������ & � !��! 68 ��
����������8 �� �
� �
 �3�� ! $��OO�> 3��0�R > � +�9�,< ���) ,�
����J�
J�
AA�
OO�> 3��0��) *- 7��3�� ��. �
�# $ � � ��"�
 ��� �P� C � �+� �0�
� �
 ���
� !
 ""��,3��I�
������$ & � !�� ��� ���. � +. > +� �,� $�I��
������������ & � !��! 68 ��
����������8 �� �3�� ! $���
����J�
J�
�

Figure 7.3. Java’s Math library and two programs using the library.

The Java library Math contains some special annotations that modify the

semantic of the class definition. The class Math is annotated as final, which means

it cannot be extended. No instances of this class can be created because no

constructors are provided. Members of the class are annotated as public static final

to define constants, and as public static to define methods that act like procedures.

In the right part of figure 7.3 there are two versions of a program that uses

the library. The one at the top import the elements of the library but requires

specifying each function with its fully qualified name. The one at the bottom uses a

new import mechanism that will be available in the next version of Java (1.5)

[BG 03, JSR 201]. The import static mechanism allows importing static members

of a class and referring to them without their fully qualified name.

166

The main advantage of Java in this respect is that Java has only one

structuring mechanism (the class) which is used to simulate the behavior of

modules. Its main disadvantage is that all the annotations required in the class and

its members obfuscate its meaning. None of the special annotations used in Java for

the class, its members or the import declaration are required in the MOOL being

this an advantage of MOOL over Java and other object-oriented languages that

have only classes. The semantic definition of modules declares them as containers

that encapsulate other elements and hide information. Visibility is controlled by the

module interface and the import declaration makes the elements of the imported

module available to use.

7.2.2. Structures with dependencies on other structures.

Sometimes the implementation of a structure requires the use of other

structures. These two structures can be defined in the same module providing

access to their elements without violating encapsulation.

In this section we present a MOOL implementation of a linked list. We use

the same example as the one presented in section 5.7.2.2.

In the left of figure 7.4 is the module interface that describes the class

LinkedList, which can be used to create linked lists of any kind of object. The

module implementation is in the right of figure 7.4.

167

The implementation contains an extra class named Linkable, with two

fields, a constructor, and no methods. This class is used to define the nodes of the

linked list in a structure containing the element and the link to the next element.

The class LinkedList has access to the fields of class Linkable because they

are defined in the same module. But class Linkable is not part of the module

interface so its scope is limited to the module implementation.

Our module construct is a container that encapsulates elements and hide

some of them by providing a module interface that list only those elements that are

available for users. No implementation details are revealed.

168

�
� �& !���
 ��� �
 � ���# ��/ # �3��I�
������� !
 ""��
 ��� �
 � ���# ��/ ,< # �3��I��
����������� � ��� ��7,) - C ,� $��
������������ ���� < < � � ��� ��,+,) $��
����������� � � !�

 �,) *�8 � $��
������J��
������ !
 ""�# ��/ ,< # �3���# $!�# �
 �"��# ��/ ,< # �3�I�
��������� �
 "�� & � �� �"�
������������# ��/ ,< # �3�� �$���
�����J�
J�

) - < > +,�# ��/ # �3����# $!�# �
 �"��# ��/ # �3��
����� !
 ""��
 ��� �
 � ���# ��/ � @ +,�I�J�
����� !
 ""�# ��/ � @ +,��# $!�# �
 �"��# ��/ � @ +,�I�
���������!�"�
���������- @ P,. ���- < ,�� ��> ++��
���������# ��/ � @ +,��,! ��� ��> ++��
������� �
 "�� & � �� �"�
����������# ��/ � @ +,� - @ P,. ��,+,) $�I��- < ,�� �,+,) ��J�
����J��OO�. +� 33�# ��/ � @ +,�
�
����� !
 ""�# ��/ ,< # �3��I�
���������!�"�
���������# ��/ � @ +,�
 ,� < � �
 & !!��
������� �
 "�� & � �� �"�
����������# ��/ ,< # �3�� �$I�J�
������# ��� � �"�
����������� � ��� ��7,) - C , $�I�
��������������� � ��� ���,) *�� �
 ,� < ��
������������������
 ,� < �� � �
 & !!$�I����& �
 �
 & !!���
����������������!"��I��
 ,� < �� �
 ,� < ��,! ���
�������������������������& �
 ��,) *���J�
���������������J�
����������J�
������������ ���� < < � � ��� ��,+,) $�I�
��������������# ��/ � @ +,���� ��,B�# ��/ � @ +, ,+,) $��
�����������������,! ��� �
 ,� < ��
���������������� �"�
 ,� < �� ����
�����������J�
����������� � � !�

 �,) *�8 �$�I�
������������������& �
 � �� �"�
 ,� < �� � �
 & !!$��
�����������J�
���J���OO�. +� 33�# ��/ ,< # �3��
J�

Figure 7.4. A module interface and implementation of a linked list.

Java provides two different solutions for this problem, which were

presented in section 5.7.2.2. The first one defines package scope for the elements of

classes that are in the same package. The access to the elements of a class is not

restricted to a specific class but to all classes that are in the package. The second

169

solution (nested classes) allows using the class as a container of other classes

modifying its semantic.

Consistency in the use of modules is the main advantage of MOOL.

Modules have a well-defined role and are used in a consistent way without need to

provide extra annotations or elements that change their semantics.

Despite the similarities of modules and classes as units of encapsulation and

information hiding, it is possible to separate them using two distinct constructs with

specific roles. We believe that it is better two have two different constructs than to

have only one with many modifiers. This separation causes less confusion.

7.2.3. Generic classes and interfaces.

In this section we define a generic stack using unconstrained genericity. The

example contains: a module interface to describe the stack signature, a module

implementation to define the generic stack, and a client program which uses the

stack to create instances of it.

Figure 7.5 contains the module interface and implementation of a generic

stack. The module interface describes a generic class interface IGenStack and a

generic class GenStack. Class interface IGenStack and class GenStack have both a

type parameter T with no bounds, which means that any type can be used as

argument to create an instance of the class. The type variable T is used to define the

type of some elements of the class and the interface.

170

�
� �& !���
 ��� �
 � ��
�' ,�� �� . / �I�
����� !
 ""��
 ��� �
 � ���' ,�� �� . / �K�:I�
�����������*- * $��
���������� ���*> 3
 ��,+,) $��
��������� � � !�

 �,) *�8 � $��
����J��
���� !
 ""�' ,�� �� . / K�:��# $!�# �
 �"��' ,�� �� . / K�:�I�
������� �
 "�� & � �� �"�
���������' ,�� �� . / K�:� $��
���������' ,�� �� . / K�: ����,0,7�) � ! $��
���J��
J�

�
� �& !��
' ,�� �� . / ��# $!�# �
 �"�
�' ,�� �� . / �I�
����# $ � � ���77� 8 ��
���� !
 ""�' ,�� �� . / K�:�I�
����������!�"�
������������LN�3�- 7,�� �
 �% ��L� 5 N��
������������
 ��� �� �3�W ,�� �5 ��
�������� �
 "�� & � �� �"�
�����������' ,�� �� . / K�: �$I����& �
 ��� �"��J��������
�����������' ,�� �� . / K�: �
 ��� �� �) � ! $I��
���������������������������3�- 7,�� �
 �% ��L) � ! N��
������������������������������& �
 ��� �"��J����
������# ��� � �"�
��������������*- * $�I����& �
 �3�- 7,LAA3�W ,N��J�
��������������� ���*> 3
 ��,+,) $�I�
������������������� 3�W ,�:� �3�- 7,�+,�0�
 $$�I��
���������������������I���LN��) *�� �
 �% ��L3�W ,(� N��
������������������������. - *8 3�- 7,6��) *6�3�W ,$��
������������������������3�- 7,�� ��) *��
���������������������J�
����������������J�
����������������3�- 7,L3�W ,D D N�� �,+,) ��
�������������J�
������������� � � !�

 �,) *�8 $�I�
�������������������& �
 � 3�W ,�� � �5 $��
������������J�
���J��OO�. +� 33�' ,�� �� . / �
J�OO�) - < > +,�
�

Figure 7.5. A module interface and implementation of a generic stack.

In the module implementation the generic class GenStack contains two

constructors to define instances of the class providing any type argument. These

two constructors have different signatures. The first one does not have arguments

and the class fields are going to retain their initial values. The second one receives

an integer, which is used to define the initial size of the stack. The class contains

also the implementation of all the methods defined in the interface using the type

variable T to define the type of some elements.

171

An example of a program using the generic class GenStack is shown in

figure 7.6.

�

� �& !���,3�� �� . / ��# $!�# �
 �"��
� ���I�

����# $ � � ��
' ,�� �� . / ��

����� ���) � ��� $�I�
 GenStack <integer> iStack = new GenStack<integer>(); // creates a stack of 10 integer elements
 GenStack<string> sStack = new GenStack< string >(100); // creates a stack of 100 float elements

 iStack.push(17);
 integer y = iStack.pop(); // cast operation is not needed before assignment
 …
 sStack.push(“hello”); …
���J�

J�

Figure 7.6. Creating instances of a generic stack class.

In this program, the generic class GenStack is instantiated twice. The first

instance of stack creates a stack of integers with space to hold initially 10 elements.

The second instance creates a stack of string elements that have initially space for

100 elements.

Neither Java nor C# support the definition of generic types as they are now.

Both languages have plans to release new versions of the languages that include

generics types [BG 03, C# 02]. In section 5.8 we described two approaches

followed in Java and C# to implement generic code.

The first approach uses the generic idiom to simulate parametric

polymorphism with subtype polymorphism but this approach requires the use of

cast operations to recover the elements from the stack and there is no warranty that

all the elements of a stack are of the same type, since any kind of element can be

172

inserted. In addition Java do not support the use of primitive types as elements of

the stack, because they are not unified with the type Object.

The second approach provides specialized code for every type, which is

inappropriate for maintenance. Besides maintainability cost, the approach generates

many copies of the same code at runtime. The advantages of this approach are that

no cast operations are needed and the specialized code has good performance at

runtime.

The design of generics for Java has some constraints [JSR 014] that affect

the final result, i.e. exact types of generic types are not available at runtime,

primitive types cannot be used as type parameters, etc. A summary of the features

of the genericity mechanism is presented in [BS 03].

The genericity mechanism of MOOL is based on that of Java. However

MOOL does not suffer the restrictions imposed in Java because we do not have to

preserve compatibility. All types can be used as type parameters to instantiate

generic classes because all types belong to the same hierarchy of types.

We haven’t described the translation approach but it seems feasible to

implement a hybrid translation similar to the one for C# presented in [YKS 04,

KS 01].

7.2.4. A generic sort function.

A generic sort function of arrays of any type is described in this section.

173

Figure 7.7 shows a module interface that contains the declaration of a

generic function signature. The generic function sort has a type parameter T

recursively bounded to an interface named IComparable. Function sort receives as

argument an array of elements of type T.

OO�. +� 33����,79� . ,��	-) *� 7� @ +,��3�< ,9��,< �����
OO�) - < > +,�' ,����,79� . ,3��
OO����. +� 33����,79� . ,��	-) *� 7� @ +,�K�:�I�
OO������������
 ��� �� �. -) *� 7,� ��,+,) $���
OO�����J�
�
� �& !���
 ��� �
 � ���' ,�,7�. � - 7��I�
�����# $ � � ��' ,����,79� . ,3��
������ ���3- 7��K���# $!�# �
 �"�
�������������������������	-) *� 7� @ +,K�:: �LN�< $��
J

�
� �& !��' ,�� - 7���# $!�# �
 �"��' ,�,7�. � - 7��I�
������ ���3- 7��K���# $!�# �
 �"��	-) *� 7� @ +,K�::� �LN�< $I�
�������� � � !�

 �< - �,�� ��
 !"���
�������% � �!�� X< - �,$�I�
������������< - �,�� ��� & ���
�������������� � � �
 ��� �� ��� 5 ���K< � �� �+,�0�
 $�A� ���D D $�I�
������������������ �< � �� L�N�. -) *� 7, �< � �� L�D � N$�K�5 $�I�
��������������������I����,) *�� �
 �% ��� < � �� L�N$��
�����������������������< � �� L�N�� �< � �� L�D � N��
�����������������������< � �� L�D � N�� ��,) *��
�����������������������< - �,�� ��
 !"���
��������������������J�
���������������J�
������������J��OO9- 7�
�������J��OOB
 �+,�
����J��OO�3- 7��
J��OO�) - < > +,�
�

Figure 7.7. A module interface and implementation of a generic sort.

The module implementation of the generic function sort is in the right of

figure 7.7. Any type implementing the interface IComparable for itself can be used

as type parameter to instantiate the generic function sort.

An example of a program using the generic function sort is presented in

figure 7.8. The main function of module SortingData defines an array of integer

elements named scores. After the initialization process, the generic function sort is

instantiated with a type parameter integer, which is the type of the elements of

174

scores. The function is executed with the array scores as actual parameter. Finally

the elements of the array are printed.

� �& !��� - 7���0�� �� ��# $!�# �
 �"��
� ���I�
����# $ � � ��� 8 3�,) 6�' ,�� - 7���
�
�OO�B,�� 33>) ,��
 � �����,0,7��) *+,) ,��3��	-) *� 7� @ +,K���,0,7:�
�
���C - �< �#
 �
 �$�I�
�������
 ��� �� �L�N�3. - 7,3�� �
 �% ��
 ��� �� �L� 5 5 N��
�����OO���*> ��< � �� ����� 77� 8 �3. - 7,3�
�������� � � �
 ��� �� ��� 5 ���K3. - 7,3�+,�0�
 $�A� ���D D $�I�
�������%�� �7,� < 3. - 7,3L�N$��
������J�
�����3- 7�K�
 ��� ��:� 3. - 7,3$��
�����OO�*7�����
 ,�,+,) ,��3�- 9�� 77� 8 �3. - 7,3�
�������� � � �
 ��� �� ��� 5 ���K3. - 7,3�+,�0�
 $�A� ���D D $�I�
�������%�� �*7���# ��, S�� - 3���- ��SD ���D �S�F � +> ,�S�D �3. - 7,3L�N$��
������J�
���J�
J

Figure 7.8. A module implementation using a generic function.

Java allows the definition of generic methods inside classes, which may not

be parameterized. Generic methods can be annotated as static to act like functions.

The instantiation of a generic method requires no type parameters because they are

inferred from the arguments. For every call of the generic method the compiler will

“infer the most specific type argument that make the call type-correct” [B 04].

In MOOL generic functions are elements described in modules. No special

annotations are needed for the functions or for the call of them. Generic functions

can be instantiated in any module that imports the module where the generic

function is implemented.

175

7.2.5. Inheritance and binary methods.

The type system of object-oriented languages with nominal subtyping poses

a problem when classes with binary methods are used to create subclasses. Section

2.8 shows the problems described by Cook et al. in [CHC 90].

MOOL is an object-oriented language with nominal subtyping and single

dispatch. In order to preserve type safety, we adhere to the rules described to allow

changes of types in subclasses. If a subclass overrides a method, the types of the

parameters can change only in contravariant way.

This decision restrict the expressiveness of the language because the

arguments of methods can not change covariantly but preserves type safety as in

the case of Java and C#. A disadvantage of this restriction is that binary methods

are difficult to implement in subclasses and it is the responsibility of the

programmer to implement them correctly.

An example of a class with a binary method and a subclass is presented in

figure 7.9.

The argument of the equal method cannot be changed in the subclass and if

we want to compare objects of these two classes, Point and ColorPoint, some extra

operations are needed as shown in the equal method of class ColorPoint.

176

�
� �& !���
 ��� �
 � ���&��� 78
,�
 - < 3�I�
����# $ � � ��
	- +- 7��
����� !
 ""��
 ��� �
 � ���� - ����I�
���������
 ��� �� �0,�4 $��
���������
 ��� �� �0,�? $��
��������� � � !�

 �,R > � +� �� - ����*$��
����J��
����� !
 ""��
 ��� �
 � ���	- +- 7� - ����� ��
 �3��� - ����I�
��������	- +- 7�0,�	- +- 7 $��
���J�
��� !
 ""�� - �����# $!�# �
 �"��� - ����I�
������� �
 "�� & � �� �"�
���������� - ���� $��
���������� - ���� ����,0,7�! 6����,0,7�8 $��
���J��
��� !
 ""�	- +- 7� - ����� ��
 �"�� - �����# $!�# �
 �"�
�	- +- 7� - ����I�
������� �
 "�� & � �� �"�
���������	- +- 7� - ���� $��
���������	- +- 7� - ���� ����,0,7�! 6����,0,7�8 6�	- +- 7�. $��
���J��
J�

�
� �& !��
&��� 78
,�
 - < 3��# $!�# �
 �"��&��� 78
,�
 - < 3�I�
����# $ � � ��
	- +- 7��
����� !
 ""�� - ����I�
���������!�"�
������������,0,7�! � 5 ��
������������,0,7�8 � 5 ��
������� �
 "�� & � �� �"�
���������� - ���� $�I����& �
 ��
 �3�J�
���������� - ���� ��
 ��� �� �! 6����,0,7�8 $�I�
���������������������� �"�! �� �! ���� �"�8 �� �8 �����& �
 ��� �"�J�
������# ��� � �"�
���������
 ��� �� �0,�4 $�I����& �
 ��� �"�! ��J�
���������
 ��� �� �0,�? $�I����& �
 ��� �"�8 ��J�
��������� � � !�

 �,R > � +� �� - ����*$�I��
�������������������7,�> 7�� �
 �3�! � � ! �V V ��
 �3�8 � � 8 $��J�
���J��
���� !
 ""�	- +- 7� - ����I�
���������!�"�
���������	- +- 7�. � 	- +- 7�&# �	= ��
������� �
 "�� & � �� �"�
���������	- +- 7� - ���� $��I3> *,7��7,�> 7���
 �3��J�
���������	- +- 7� - ���� ����,0,7�! 6����,0,7�8 6�	- +- 7�. $�I��
��������������3> *,7 ! 68 $����
 �3�. � . ��7,�> 7���
 �3���J�
������# ��� � �"�
��������	- +- 7�0,�	- +- 7 $�I�7,�> 7���
 �3�. �J�
��������� ��� � ���"�� � � !�

 �,R > � + �� - ����*$I��
���������������9� *���3�� �. ,- 9�	- +- 7� - ����$�I7,�> 7��
������������������� 3> *,7�,R > � + *$V V �
 �3�. � � 	- +- 7� - ���$*�. $��
��������������,+3,���7,�> 7��3> *,7�,R > � + *$��
��������������J�
��������J�
���J�
�
���C - �< �) � ��� � �7��0LN�� 703$�I�
������� - ����*�� ��,B�� - ��� � 6� $��
������	- +- 7� - ����. *�� ��,B�	- +- 7� - ��� � 6� 6	- +- 7�� � �$��
������*�,R > � + . *$��
�����. *�,R > � + *$���
����%�
���J��
J�

Figure 7.9. Inheritance and binary methods in MOOL.

177

7.2.6. A problem with mixin inheritance.

The example of mixin inheritance presented in section 2.6.3 cannot be

directly represented in MOOL due to limitations of our inheritance mechanism. A

mixin is a special kind of “class” that is partially defined. It can be mixed with

regular classes to generate new classes but it cannot be used for instantiation.

Mixins could be included in MOOL by creating a new construct to define

them and a mechanism to restrict the kind of classes that can be mixed to create

new classes.

MOOL contains a simple inheritance mechanism, which allows simple

implementation inheritance (a subclass has at most one parent class) and multiple

interface inheritance (a class can implement several interfaces). We use these two

inheritance properties to implement the example of section 2.6.3 in MOOL. Figure

7.10 shows this implementation.

The class interface IUndo extends the class interface IText inheriting its

signature. The class Textbox is defined to implement class interface IText. A new

class TextboxWithUndo is defined by inheriting the implementation of class

Textbox and the interface IUndo. There is no conflict in the inheritance of these two

elements because both Textbox and IUndo descend from IText.

The resulting class TextboxWithUndo has the same behavior in both

approaches (MOOL and Jam). The advantage of Jam is that the mixin Undo can be

178

mixed many times with different classes reusing the same implementation, which is

not possible in MOOL because we cannot inherit from multiple classes.

�
� !
 ""��
 ��� �
 � ����,! ��I�
���3�7��0�0,��,! � �$��
����� ���3,��,! � 3�7��0�3$�������
J�
� !
 ""��
 ��� �
 � ���� �< - �,! �,�< 3���,! ��I�
����� ���> �< - $���
J�
�
� !
 ""��,! �@ - ! ��# $!�# �
 �"���,! ��I��
������!�"�
������3�7��0��,! ���
���� �
 "�� & � �� �"�
�������,! �@ - ! $�I��� �"��,! ��� ��> ++��J�
�������,! �@ - ! 3�7��0�3$�I��� �"��,! ��� �3��J�
���# ��� � �"�
������3�7��0�0,��,! � �$�I����& �
 ��� �"��,! ���J�
�������� ���3,��,! � 3�7��0�3$�I��� �"��,! ��� �3�J�
J�
�
. +� 33��,! �@ - ! G ��
 � �< - �,! �,�< 3��,! �@ - ! ��) *+,) ,��3��� �< - �I�
������!�"�
������3�7��0�+� 3��,! ���
���� �
 "�� & � �� �"�
�������,! �@ - ! G ��
 � �< - $�I�3> *,7���� �"�+� 3��,! ��� ��> ++��J�
�������,! �@ - ! G ��
 � �< - 3�7��0�3$�I�3> *,7 3$���� �"�+� 3��,! ��� ��> ++��J�
���# ��� � �"�
�������� ���> �< - $�I��
 �3�3,��,! � +� 3��,! �$��J�
������� ��� � ���"��� ���3,��,! � 3�7��0�3$�I��+� 3��,! ��� �0,��,! � �$��3> *,7�3,��,! � 3$��J�
�J�
�

Figure 7.10. Implementation of a mixin class in MOOL.

Mixins represent another kind of abstraction that can be used in

programming languages. Many studies related with mixin-based programming had

been conducted [BC 90, BL 91, B 92, FKF 98,.ALZ 03] but no production

language has implemented them.

 179

Chapter 8.

Conclusions.

We have designed MOOL, which is a new general-purpose programming

language where the roles of classes and modules are separated and generic

programming is supported.

MOOL enables object-oriented programming defining hierarchies of classes

with single implementation inheritance and multiple interface inheritance. MOOL

enables also the implementation of large programs providing modules - static units

of encapsulation, information hiding, and reuse - and module interfaces to describe

their interconnection. Generic programming is sustained by parameterized classes,

class interfaces and functions.

Our language is similar to other programming languages in many ways. We

adopted a similar Java and C# syntax which both descend from C. We can say that

MOOL’s module system is based on the module system of Modula-3 and the class

mechanism is a simpler version of Java and C# classes.

180

8.1. The traditional “HelloWorld” program.

The traditional “hello world” program is presented in figure 8.1. There are

two implementations, one in MOOL and another one in Java taken from [AG 98].

�
� �& !��1 ,++- G - 7+< ��# $!�# �
 �"��
� ���I�
������# $ � � ��� 8 3�,) ��
������� ���#
 �
 � 3�7��0�LN�� 703$�I�
���������� �*7���# ��, S1 ,++- �G - 7+< XT$��
���J�
J

�
� !
 ""�1 ,++- G - 7+< �I�
�����$ & � !�� �"�
 ��� ��� ���#
 �
 � � �7��0�LN�� 703$�I�
��������� 8 3�,) �- > ��*7���+� S1 ,++- �G - 7+< XT$��
���J�
J

Figure 8.1. Comparing “Hello world” in MOOL and Java.

In MOOL the HelloWorld program is defined using a module that

implements the predefined module interface IMain, which contains only the

definition of the main function. The HelloWorld module imports the library System,

which contains a set of input/output operations. The program starts its execution

with the first line of the body of the main function. A call to the function printLine

with a string literal as actual argument is executed.

In Java the HelloWorld program is implemented in a class that contains

only a main function, which is annotated with two modifiers: public and static.

The class is not meant to be a template to generate objects; it doesn’t contain fields

or methods. But there is no other way to implement this program in Java because

the class is the only structuring mechanism available.

181

The Java version of the HelloWorld program had provoked a debate among

Computer Science professors in several universities [W 01, W 02, XB 03]. Is the

HelloWorld program adequate to start teaching object-oriented programming?

Should the program be changed to define a class with a method and then create

another program (class) that creates an object and send a message to execution?.

Left part of figure 8.2 shows these two programs taken from [W 01].

The method printHello of class HelloWorld in left of figure 7.2 is annotated

as public static, which makes it a class member, and it can be executed by sending

a message to an object of class HelloWorld (see right part of figure 8.2) or directly

using a fully qualified name HelloWorld.printHello(); as noted in [W 02].

�
� !
 ""�1 ,++- G - 7+< �I�
����$ & � !�� �"�
 ��� ��� ���$ � �
 �) �!!� � $�I�
��������� 8 3�,) �- > ��*7���+� S1 ,++- 6�G - 7+< XT$��
���J�
J�
� !
 ""�� 3,1 ,++- �I�
����$ & � !�� �"�
 ��� ��� ���#
 �
 � � �7��0�LN�� 703$I�
��������1 ,++- G - 7+< �) 8 1 ,++- �� ��,B�1 ,++- G - 7+< $��
��������) 8 1 ,++- �*7���1 ,++- $��
���J�
J

�
� !
 ""�� 3,1 ,++- �I�
����$ & � !�� �"�
 ��� ��� ���#
 �
 � � �7��0�LN�� 703$�I�
��������1 ,++- G - 7+< �) 8 1 ,++- ��
���J�
J�
�

Figure 8.2. New version of “Hello world” program.

Is the new program (UseHello) object-oriented? It seems that the program

UseHello suffer the exact same problem of the original version of the HelloWorld

program.

182

Why is this small Java program so confusing? Maybe the problem is that

Java is not a pure object-oriented language and some of these features introduce

confusion to most of us. As Cardelli noticed “Java represents a healthy reaction to

the complexity trend, but is more complex than many people realize.” [Ca 96]

8.2. Comparison of MOOL and other OOL.

In this section we summarize the features of MOOL, comparing them with

the features of other languages like Modula-3, Java, C#, and MOBY.

We have separated the comparison in several tables to make it more

readable. Table 8.1 shows a comparison of features related to types. Table 8.2

shows a comparison of the statements provided by the languages. Table 8.3 shows

a comparison of the features related with modules and genericity. Table 8.4 present

a comparison of several other features that are present in these programming

languages.

183

* �
 �& ��� + � �& !
 ,-� . / � 0
 �
 � + � 1 2 � + � � 3 �

�8 *,�
� ��- �� ��- �3�

8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

*7�) ���C ,�
�8 *,3�

���,0,7�
3> @ 7� �0,�

,�>) ,7� ��- ��
.
 � 7�

@ - - +,� ��
9+- � ��

����
3
 - 7��
+- �0�
@ 8 �,�
3@ 8 �,�
> ����

> 3
 - 7��
> +- �0�
9+- � ��

< - > @ +,�
< ,. �) � +�

.
 � 7�
@ - - +�
3�7> . ��
,�>) �

�

@ 8 �,�
3
 - 7��
����

+- �0�
.
 � 7�
9+- � ��

< - > @ +,�
@ - - +,� ��

�

&- - +�
����

- �0�
���,0,7�
� +- � ��

�- > @ +,�
� ! �,�< ,< �

	
 � 7�
� �7��0�
� ! ��

� 7< ,7�
,�>) ,7� ��- ��

@ - - +,� ��
���,0,7�
9+- � ��

�
�
�

� > �-) � ��. �
@ - ! ��0�O�
> �@ - ! ��0�

�- � 8 ,3� �- ��8 ,��
 � �� $�

� 8 ,3�

7,9,7,�. ,�
�8 *,3�

*- ���,7�
- @ P,. ��

*- ���,7�
- @ P,. �3�
3�7��0�
. +� 33�

. +� 33�
���,79� . ,�

� 77� 8 �
- @ P,. �3�

� ,9�
� �7�

- @ P,. ��
�

. +� 33�
. +� 33����,79� . ,�

- @ P,. ��

Table 8.1. Features related to types.

* �
 �& ��� + � �& !
 ,-� . / � 0
 �
 � + � 1 2 � + � � 3 �

� 33�0�) ,��� 8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

*7- . ,< > 7,�. � ++� 8 ,3� 8 ,3� 3�� ��. �) ,�
 - < 3� � 8 ,3�

@ +- . / � @ ,0��A,�< � I�J� I�J� I�J� I�J�

,! . ,*��- �3� 8 ,3� 8 ,3� 8 ,3� 8 ,3� �- �

�9� 8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

. � 3,� 3B��.
 $� 8 ,3� 8 ,3� 8 ,3� �- � 8 ,3�

+- - *� < - $� 8 ,3� 8 ,3� 8 ,3� �- � �- �

9- 7� 8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

B
 �+,� 8 ,3� 8 ,3� 8 ,3� �- � 8 ,3�

7,*,� �� 8 ,3� � �- � < - �B
 �+,$� �- � �- �

�8 *,. � 3,� 8 ,3� �- � �- � ��3�� �. ,- 9$� �- � �- �
 ��3�� �. ,- 9$�

Table 8.2. Statements.

184

� * �
 �& ��� + � �& !
 ,-� . / � 0
 �
 � + � 1 2 � + � � 3 �

) - < > +,3�) - < > +,3� 8 ,3� �- � �- � 8 ,3� 8 ,3�

� �< � �,3�,< �) - < > +,3� �- � � � 8 ,3� �- �

) - < > +,� ���,79� . ,3�O�
3�0�� �> 7,3�

8 ,3� �- � �- � 8 ,3� 8 ,3�

���,79� . ,3� *� . / � 0,3�O�
��) ,3*� . ,�

) - < > +,3$� 8 ,3� 8 ,3�) - < > +,3$�) - < > +,3$�

� �,3�,< �
� . / O��) ,3� . ,3�

�- � 8 ,3� 8 ,3�) - < > +,3$� �- �

0,�,7�. 3�) - < > +,3� 8 ,3� �- � �- � 8 ,3� �- �

�) - < > +,����,79� . ,� 8 ,3� �- � �- � � �- �

� 9> �. ��- �3� 8 ,3� �- � �- � 8 ,3� 8 ,3�

� . +� 33,3� �- � �- ��8 ,�� �- ��8 ,�� 8 ,3� 8 ,3�

� ���,79� . ,3� � �- ��8 ,�� �- ��8 ,�� 8 ,3� 8 ,3�

�) ,�
 - < 3� �- � �- ��8 ,�� �- ��8 ,�� 8 ,3� 8 ,3�

� *� 7�) ,�,73�� ++- B,< � � ++��8 *,3� � ++��8 *,3� 7,9,7,�. ,3�� � ++��8 *,3� � ++��8 *,3�

Table 8.3. Features related with modules and genericity.

* �
 �& ��� + � �& !
 ,-� . / � 0
 �
 � + � 1 2 � + � � 3 �

� �� ��. �
�8 *,.
 ,. / ��0�

8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

3�7- �0+8 ��8 *,< � 8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

�) *+,) ,��� ��- ��
��
 ,7��� �. ,�

3��0+,� 3��0+,� 3��0+,� 3��0+,� 3��0+,�

���,79� . ,�
��
 ,7��� �. ,�

�) > +��*+,�) > +��*+,�) > +��*+,�) > +��*+,�

- @ P,. �A) - < ,+� . +� 33� . +� 33� . +� 33� . +� 33� . +� 33�

< 8 ��) �. �
< �3*� �.
 �

3��0+,� 3��0+,� 3��0+,� 3��0+,� 3��0+,�

&��< ��0� 3�� ��. � *7- . ,< > 7,3$�
< 8 ��) �. �) ,�
 - < 3$�

< ,9� > +��3�� ��. �
< 8 ��) �. �C �7�> � +�

< ,9� > +��
< 8 ��) �. �

3�� ��. �3�� ��. �

3�� ��. �
 *7- . ,< > 7,3$�

< 8 ��) �. �
) ,�
 - < 3$�

3�� ��. �
 *7- . ,< > 7,3$�

< 8 ��) �. �
) ,�
 - < 3$�

- C ,7+- � < ��0� 8 ,3� 8 ,3� 8 ,3� � 8 ,3�

�,3�,< �. +� 33,3� �- � 8 ,3� 8 ,3� �- � �- �

0� 7@ � 0,�
. - ++,. ��- ��

8 ,3� 8 ,3� 8 ,3� 8 ,3� 8 ,3�

> ��9�,< ��8 *,�
38 3�,) �

�- � 8 ,3� �- � �- e � 8 ,3�

3> @ �8 *��0� 3�7> . �> 7� +� �-) ��� +� �-) ��� +� 3�7> . �> 7� +� �-) ��� +�

. +� 33� �8 *,� 8 ,3O�- @ 7� �< $� 8 ,3� 8 ,3� �- � 8 ,3�

*� 7�) ,�,7�
*� 33��0�

C � +> ,�
7,9,7,�. ,�

C � +> ,� C � +> ,� � C � +> ,�

Table 8.4. Other features.

185

8.3. Contributions.

In this section we enumerate our contributions more precisely. They are:

• The design of a new programming language that provides genericity,

modules and object-oriented features.

• A model to include classes and modules in a programming language.

• A simple class mechanism that supports a minimal set of features that

are inherently related to classes.

• A simple module system with two constructs: module interfaces and

module bodies, which are used to encapsulate, hide information and

code reuse.

• A mechanism to provide parameterized types (classes, interfaces and

functions) to develop generic programming.

• A model to provide a unified type system where all types are derived

from the same hierarchy of types.

• The definition of MOOL using an extended BNF grammar.

186

8.4. Future work.

There are many paths to follow to extend our research presented in this

dissertation. Some of them are:

• Define the formal semantics of the language. An operational semantics

can be defined and a translator can be implemented.

• The translator can generate an intermediate language that may be easily

directed to Java bytecode or the MSIL of the .NET platform.

• Define a sound type system for MOOL to provide static typechecking to

detect errors at compile time. This process reduces testing and

debugging sessions.

• Extend the language with new features like exceptions, threads, mixins,

or multiple dispatch with overloaded functions to implement binary

methods.

 187

References.

[ABC 03] Eric Allen, Jonathan Bannet, and Robert Cartwright. A First-Class

Approach to Genericity. In Proceedings of OOPSLA’03,
Conference on Object-Oriented Programming, Systems, Languages
and Applications, Anaheim, California, October 2003.

[AC 96] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer
Verlag. 1996.

[ADA 80] United States Department of Defense. Reference manual for the
Ada programming language. GPO 008-000-00354-8, 1980.

[AFM 97] Ole Agesen, Stephen Freund, and John C. Mitchell. Adding type
parameterization to the JavaTM Language. In Proceedings of
OOPSLA’97, Conference on Object-Oriented Programming,
Systems, Languages and Applications, Atlanta, Georgia, October
1997, pages 215-230.

[AG 98] Ken Arnold and James Gosling. The JavaTM Programming
Language. Addison Wesley. 1998.

[ALZ 03] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam -
Designing a Java Extension with Mixins. In ACM Transaction on
Programming Languages and Systems (TOPLAS) Volume 25, Issue
5, pages 641-712. September 2003. Previous version on Università
di Genova, Dipartimento di Informatica e Scienze
dell’Informazione, Technical Report DISI-TR-99-15. 1999.

[AZ 01] Davide Ancona and Elena Zucca. True Modules for Java-Like
Languages. Università di Genova, Dipartimento di Informatica e
Scienze dell’Informazione, Technical Report DISI-TR-00-12. In
Proceedings of ECOOP'01, European Conference on Object-
Oriented Programming, Budapest, Hungary, June 2001. Volume
2072 Lecture Notes in Computer Science, Springer, 2001.

[B 01] Joshua Bloch. Effective JavaTM Addison Wesley. 2001.

[B 02] Kim Bruce. Foundations of Object-Oriented Languages Types and
Semantics. MIT-Press 2002.

188

[B 04] Gilad Bracha. Generics in the Java Programming Language. March
9, 2004. Available online at http://java.sun.com/j2se/1.5.0/lang.html

[B 92] Gilad Bracha. The Programming Language JIGSAW: Mixins,
Modularity, and Multiple Inheritance. PhD Thesis. University of
Utah, Salt Lake City, UT, USA 1992.

[BAF 03] Lujo Bauer, Andrew W. Appel, and Edward W. Felten.
“Mechanisms for Secure Modular Programming in Java.” In
Software--Practice and Experience 33:461-480, 2003. Previous
version in 1999.

[BC 90] Gilad Bracha and William Cook. Mixin-Based Inheritance. In
Proceedings of the Joint ACM OOPSLA ’90, Conference in Object-
Oriented Programming, Systems, Languages, and Applications and
the European Conference on Object-Oriented Programming,
Ottawa, Canada, October 1990.

[BC 97] John Boyland and Giuseppe Castagna. Parasitic Methods: An
Implementation of Multi-Methods for Java. In Proceedings of
OOPSLA’97, Conference on Object-Oriented Programming,
Systems, Languages and Applications, Atlanta, Georgia, October
1997.

[BCC+ 96] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, the Hopkins
Objects Group, Gary T. Leavens, and Benjamin Pierce. “On binary
methods.” In Theory and Practice of Object Systems, 1(3): 221-242,
1996.

[BCK+ 01] Gilad Bracha, Norman Cohen, Christian Kemper, Steve Max,
Martin Odersky, Sven-Eric Paintz, David Stoutamire, Kresten
Thorup, and Philip Wadler. Adding generics to the JavaTM
Programming Language: Participant Draft Specification. April 27,
2001. Available online at http://java.sun.com

[BCK+ 03] Gilad Bracha, Norman Cohen, Christian Kemper, Martin Odersky,
David Stoutamire, Kresten Thorup, and Philip Wadler. Adding
generics to the JavaTM Programming Language: Public Draft
Specification, Version 2.0. June 23, 2003. Available online at
http://java.sun.com

189

[BD 98] Boris Bokowski and Markus Dahm. Poor Man’s genericity for Java.
In Clemens Cap, editor, Proceedings JIT'’98, Java-Informations-
Tage. Springer-Verlag, 1998.

[BDG+ 88] Daniel G. Bobrow, Linda G. DeMichiel, Richard P Gabriel, Sonya
E. Keene, Gregor Kiczales, and David A. Moon. Common Lisp
Object System Specification. ACM SIGPLAN Notices, Volume 23,
Issue SI, September 1988.

[BFSG 03] Kim B. Bruce, Adrian Fiech, Angela Schuett, and Robert van Gent.
PolyTOIL: A Type-Safe Polymorphic Object-Oriented Language.
ACM TOPLAS volume 25, number 2, March 2003, pages 225-290.
Early version appears in Proc. ECOOP '95, European Conference
on Object-Oriented Programming, Aarhus, Denmark; August 1995
in Lecture Notes in Computer Science 952, Springer-Verlag, 1995.

[BG 03] Joshua Bloch and Neal Gafter. Forthcoming JavaTM Programming
Language Features. Presentation in JavaOne Conference. June
2003.

[BL 91] Gilad Bracha and Gary Lindsrom. Modularity meets inheritance.
University of Utah, Technical Report UUCS-91-017. October 1991.

[BOSW 98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip
Wadler. GJ Specification. Manuscript, 1998. Available at the GJ
web site. URL http://www.cs.bell-
labs.com/who/wadler/pizza/gj/index.html

[BOSW 98a] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip
Wadler. GJ: Extending the Java Programming Language with type
parameters. Manuscript, March 1998, revised August 1998.

[BOSW 98b] Gilad Bracha, Martin Odersky, David Stoutamire and Philip
Wadler. Making the future safe for the past: Adding Genericity to
the Java Programming Language (GJ) In Proceedings of OOPSLA
'98, Conference on Object-Oriented Programming, Systems,
Languages and Applications, Vancouver, British Columbia,
Canada. October 1998.

[BPF 97] Kim B. Bruce, L. Peterson, Adrian Fiech. Subtyping is not a good
"Match" for object-oriented languages. In Proceedings of FOOL '97
Workshop on the Foundations of Object-Oriented Languages, Paris,
France; 1997.

190

[BPV 98] Kim B. Bruce, Leaf Petersen, and Joseph Vanderwaart. Modules in
LOOM: Classes are not enough. Manuscript. William College,
1998.

[BS 03] Maria Lucia Barron-Estrada and Ryan Stansifer. A Comparison of
Generics in Java and C#. In Proceedings of ACM Southeast
Regional Conference. Savanna, Georgia, April 2003.

[BS 03b] Maria Lucia Barron Estrada and Ryan Stansifer. Inheritance,
Genericity and Binary Methods in Java. In Computacion y Sistemas,
Volumen VII, numero 2. Mexico, DF. December 2003.

[C 95] Giuseppe Castagna. “Covariance and contravariance: Conflict
without a cause.” In ACM Transactions on Programming
Languages and Systems, Volume 17, number 3, pages 431-447,
May 1995.

[C 98] Craig Chambers and The Cecil Group. The Cecil Language
Specification and Rationale. Version 3.0. Department of Computer
Science and Engineering, University of Washington. December 9,
1998. Available online at
http://www.cs.washington.edu/research/projects/cecil/www/cecil.ht
ml

[Ca 89] Luca Cardelli. Typefull programming. Research report 45, DEC
Systems Research Center, Palo Alto, CA. May 1989.

[Ca 96] Luca Cardelli. Bad Engineering properties of Object-Oriented
Languages. ACM Computing Surveys, volume 28 issue 4es, Article
150. December 1996. Special issue: position statements on strategic
directions in computing research.

[Co 89] William Cook. A Proposal for Making Eiffel Type-Safe. In
Proceedings ECOOP '89, European Conference on Object-
Oriented Programming, Nottingham, UK, pages 57-70. July 1989.
Cambridge University Press Cambridge 1989.

[C# 01] Standard ECMA-334. C# Language Specification [Online]
http://www.ecma.ch December 2001.

[C# 02] Microsoft. New C# Language Features. White paper presented by
Anders Hejlsberg at OOPSLA 2002. Available online at
http://www.gotdotnet.com/team/csharp/learn/Future/default.aspx

191

[CCH+ 89] Peter Canning, William Cook, Walter Hill, John C. Mitchell, and
Walter Olthoff. F-bounded quantification for object-oriented
programming. In Functional Programming Languages and
Computer Architecture, pages 273–280, September 1989.

[CGL 95] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. “A
calculus for overloaded functions with subtyping.” In Information
and Computation 117,1,115-135 1995. A preliminary version in
Proceedings of the 1992 ACM Conference on LISP and Functional
Programming (San Francisco, June 1992)

[CHC 90] William R. Cook, Walter L. Hill, and Peter S Canning. Inheritance
Is Not Subtyping. In Proceedings of ACM Symposium on Principles
of Programming Languages, pages 125-135, san Francisco,
California, January 1990.

[CL 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules
for Multimethods. In Proceedings of OOPSLA ’94, Conference on
Object-Oriented Programming, Systems, Languages and
Applications, pages 1-15, Portland, Oregon, October 1994.

[CL 97] Craig Chambers and Gary T. Leavens. BeCecil, a Core
Object-Oriented Language with Block Structure and Multimethods:
Semantic and Typing. In Proceedings of Fourth International
Workshop on Foundations of Object-Oriented Languages(FOOL 4)
Paris, France, January 1997. Early version on Technical Report
#UW-CSE-96-12-02. December 1996. Available online at
http://www.cs.washington.edu/research/projects/cecil/www/pubs/B
eCecil.html

[CLCM 00] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd
Millstein. Multi-Java: Modular Open Classes and Symmetric
Multiple Dispatch for Java. Iowa State University. Technical Report
#00-06a. April 2000

[CM 99] Craig Chambers, and Todd Millstein. Modular Statically Typed
Multimethods. In Proceedings of ECOOP ’99, European
Conference on Object-Oriented Programming, Lisbon, Portugal,
June 1999. Volume 1628 Lecture Notes in Computer Science, pages
279-303. Springer-Verlag Berlin Heidelberg 1999.

192

[CMP 00] Emmanuel Chailloux, Pascal Manoury, and Bruno Pagano.
Developing Applications With Objective Caml. O’REILLY, Paris,
France. 2000.

[CS 98] Robert Cartwright and Guy L. Steele. Compatible Genericity with
Run-Time Types for the JavaTM Programming Language.
(NextGen) In Proceedings of OOPSLA '98, Conference on Object-
Oriented Programming, Systems, Languages and Applications,
Vancouver, British Columbia, Canada. October 1998.

[CW 85] Luca Cardelli and Peter Wegner. “On understanding Types, Data
Abstraction and Polymorphism.” In ACM Computing Surveys,
volume 17, number 4, pages 471-522, December 1985.

[DGLM 95] Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers.
Subtypes vs. where clauses: Constraining parametric
polymorphism. In Proceedings of OOPSLA '95 Conference on
Object-Oriented Programming, Systems, Languages and
Applications pages 156-158. Austin, Texas, October 1995.

[DN 81] Ole-Johan Dahl and Kristen Nygaard. “The Development of the
{Simula} Languages.” In History of Programming Languages,
edited by Richard L. Wexelblat, pages 439-480. Academic Press,
New York. 1981.

[EKMS 97] Mark Evered, James L. Keedy, Gisela Menger, and Axel
Schmolitzky. Genja – A New Proposal for Parameterized Types in
Java. In Proceedings of Technology of Object-Oriented Languages
and Systems, 25, Melbourne, Australia, 1997.

[FF 98] Matthew Flatt, Matthias Felleisen. Units: Cool modules for HOT
Languages. In Proceedings of the ACM SIGPLAN '98 Conference
on Programming Language Design and Implementation. 1998.

[FF 98b] Robert B. Findler and Matthew Flat. Modular Object-Oriented
Programming with Units and Mixins. In Proceedings of the third
ACM SIGPLAN International Conference on Functional
Programming (ICFP '98), Baltimore, Maryland, USA, September
27-29, 1998.

193

[FKF 98] Matthew Flatt, Shriram Krishnamurthi, Matthias Felleisen. Classes
and mixins. In Proceedings of PoPL’98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Diego, California. 1998.

[FR 99] Kathleen Fisher and John Reppy. Foundations for MOBY classes.
Technical Memorandum, Bell Labs, Lucent Technologies, Murray
Hill, NJ, February 1999.

[FR 99b] Kathleen Fisher and John Reppy. The design of a class mechanism
for MOBY. In Proceedings of ACM SIGPLAN’99 Conference of
Programming Language Design and Implementation, pages 37-49,
Atlanta, Georgia, May 1-4, 1999.

[GJSB 00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The JavaTM
Language Specification. Second Edition. Addison Wesley, Boston
Mass., 2000.

[H 87] Charles Antony Richard Hoare. “Hints on Programming Language
Design.” In Programming Languages: A Grand Tour, edited by
Ellis Horowitz, Computer Science Press, 1987, pages 31-40.
Reprinted from SIGACT/SIGPLAN Symposium on Principles of
Programming Languages, October 1973.

[I 78] Daniel H. Ingalls, “The Smalltalk-76 Programming System: Design
and Implementation,” Conference Record of the Fifth Annual ACM
Symposium on Principles of Programming Languages, Tucson,
Arizona, January 1978, pages 9-16.

[JSR 014] Sun Microsystems. Adding Generic Types to the JavaTM
Programming Language. Java Specification Request JSR-000014,
1998. [Online] URL http://www.jcp.org/en/jsr/detail?id=14
Approved in 1999.

[JSR 201] Sun Microsystems. Extending the Java Programming Language
with Enumerations, Autoboxing, Enhanced for loops and Static
Import. Java Specification Request JSR 201. Available online at
http://jcp.org/en/jsr/detail?id=201

194

[KS 01] Andrew Kennedy and Don Syme. Design and Implementation of
Generics for the .NET Common Language Runtime. In Cindy
Norris and James B. Fenwick Jr. editors, Proceedings of the ACM
SIGPLAN ’01 Conference on Programming Languages Design and
Implementation (PLDI 01), pages 1-12, New York, NY. June 2001.
ACM Press. Appears as volume 35, number 5 of SIGPLAN Notices.

[L 00] Xavier Leroy. A modular module system. In Journal of Functional
Programming, 10(3):269-303, 2000. Research Report 2866 INRIA
April 1996.

[L 88] Henry Lieberman. Position statement for OOPSLA’88 Panel on
Sharing Mechanisms. In Proceedings OOPSLA ’88, Conference on
Object-Oriented Programming, Systems, Languages and
Applications page 359. In ACM SIGPLAN Notices, volume 23,
issue 11, September 25-30, 1988.

[L 94] Xavier Leroy. Manifest types, modules and separate compilation. In
ACM Symposium on Principles of Programming Languages 1994,
pages 109-122. ACM Press, 1994.

[L+ 81] Barbara Liskov et al. CLU Reference Manual. LNCS 114 Springer
Verlag, Berlin, 1981.

[LSU 87] Henry Lieberman, Lynn Andrea Stein, and David Ungar. The
Treaty of Orlando. In Addendum to the Proceedings of OOPSLA
’87, Conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 43,44. Orlando, Florida,
October 1987.

[M 86] Bertrand Meyer. Genericity versus Inheritance. In Proceedings of
OOPSLA ’86, Conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 391-405. Portland,
Oregon, USA. September 1986.

[M 92] Bertrand Meyer. The Eiffel Language. Prentice Hall. 1992.

[MBL 97] Andrew C. Myers, Joseph A. Bank, and Barbara Liskov
Parameterized Types for Java (PolyJ). In Proceedings 24th ACM
Symposium on Principles of Programming Languages, pages 132-
145, Paris, France, January 1997.

195

[MFH 01] Sean McDirmid, Matthew Flatt, Wilson C. Hsieh Jiazzi: New-Age
Components for Old-Fashioned Java. In Proceedings of the 16th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA ’0).pages 211-222.
Tampa Bay, Florida, USA. October 2001.

[MFH 02] S. McDimid, M. Flatt, and W.C. Hsieh. Expressive modular linking
for object-oriented languages. Technical report UUCS-02-014,
2002

[MMN 93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen
Nygaard. Object Oriented Programming in the BETA Programming
Language. Addison-Wesley, June 1993.

[MMS 79] J.G. Mitchell, W. Maybury, and R. Sweet. Mesa Language Manual.
XEROX PARC CSL-79-3, April 1979.

[MTH 90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of
Standard ML. The MIT Press, Cambridge, Massachusetts. 1990.

[N 91] Greg Nelson, editor. Systems Programming with Modula-3.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[OW 97] Martin Odersky, Philip Wadler. Pizza into Java: Translating theory
into practice. In Proceedings 24th ACM Symposium on Principles of
Programming Languages, pages 146–159, Paris, France, January
1997.

[P 01] Amit Jayant Patel. OBSTACL: A language with objects, subtyping
and classes. PhD thesis, Stanford University. Stanford, California,
USA. December 2001.

[P 02] Benjamin Pierce. Types and Programming Languages. The MIT
Press, Cambridge, Massachusetts, 2002.

[P 72] David Lorge Parnas. A Technique for Software Module
Specification with Examples. Communications of the ACM,
Volume 15, Number 5, pages 330-336, May 1972.

[P 72b] David Lorge Parnas. On the Criteria To Be Used in Decomposing
Systems Into Modules. Communications of the ACM, Volume 15,
Number 12, pages 1053-1058, December 1972.

196

[PS 94] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type
Systems. Willey 1994.

[R 02] Didier Rémy. Using, Understanding, and Unraveling the OCaml
Language. In Gilles Barthe, editor, Applied Semantics. Advanced
Lectures. Volume 2395 of Lecture Notes in Computer Science,
pages 413--537. Springer Verlag, 2002.

[RV 98] Didier Rémy and Jérôme Vouillon. Objective ML: An effective
object-oriented extension of ML. In Theory and Practice of Object
Systems, 4(1):27-50, 1998.

[S 91] Bjarne Stroustrup. The C++ Programming Language. Addison-
Wesley, 1991.

[S 92] Clements Szypersky. Import is not inheritance; why we need both:
modules and classes. In Proceedings of ECOOP ’92, European
Conference on Object-Oriented Programming, Utrecht, The
Netherlands, June/July 1992. Volume 615 of Lecture Notes in
Computer Science, pages 19-32, Springer-Verlag Berlin Heidelberg
1992.

[S 97] Andrew Shalit. The Dylan Reference Manual. 1997. HTML version
available at http://www.gwydiondylan.org/drm/drm_1.htm

[T 93] Antero Taivalsaari. A Critical View of Inheritance and Reusability
in Object-Oriented Programming. PhD Thesis. University of
Jyväskylä, Finland, December 1993.

[T 97] Kresten Krab Thorup. Genericity in Java with Virtual Types. In
Proceedings of ECOOP’97, 11th European Conference on Object-
Oriented Programming, Jyväskylä, Finland, June 1997.Volume
1241 of Lecture Notes in Computer Science, pages 444–471,
Springer-Verlag, Berlin Heidelberg 1997.

[US 87] David Ungar and Randall B. Smith. Self: The Power of Simplicity.
In Proceedings OOPSLA ’87, Conference on Object-Oriented
Programming, Systems, Languages and Applications. In ACM
SIGPLAN Notices, pages 227-242, December 1987.

[U 88] David Ungar. Are classes obsolete?. A panelist perspective. In
Proceedings OOPSLA ’88, Conference on Object-Oriented
Programming, Systems, Languages and Applications page 358. In

197

ACM SIGPLAN Notices, volume 23, issue 11, September 25-30,
1988.

[V 01b] Mirko Viroli. Parametric polymorphism in Java: an Efficient
Implementation for Parametric Methods. In Proceedings of SAC’
01, 16th ACM Symposium on Applied Computing, Las Vegas,
Nevada, USA, March 2001, pages 610-619.

[W 01] Ralph Westfall. Hello, World Considered Harmful. Technical
opinion in Communications of the ACM. Volume 44, number 10,
pages 129-130. October 2001.

[W 02] Conrad Weisert. Pseudo Object-Oriented Programming Considered
Harmful. ACM SIGPLAN Notices. Volume 37 (4) April 2002.

[W 83] Niklaus Wirth. Programming in Modula-2. Texts and Monographs
in Computer Science, Springer-Verlag 1983.

[W 87] Peter Wegner. Dimensions of Object-Based Language Design. In
Proceedings OOPSLA ’87, Conference on Object-Oriented
Programming, Systems, Languages and Applications. In ACM
SIGPLAN Notices, pages 168-182, December 1987.

[W 87b] Niklaus Wirth. “On the Design of Programming Languages.” In
Programming Languages A Grand Tour, edited by Ellis Horowitz,
pages 23-30. Computer Science Press, 1987. Reprinted from IFIP
Congress 74, 386-393, North-Holland, Amsterdam, North Holland
Publishing Company.

[WS 03] Mario Wolczko and Randall B. Smith. Prototype-Based Application
Construction Using SELF 4.0. Available online at
http://research.sun.com/research/self/release_4.0/Self-
4.0/Tutorial/index.html Downloaded in December 2003.

[XB 03] Cong-cong Xing and Boumediene Belkhouche. On Pseudo Object-
Oriented Programming Considered Harmful. Technical opinion in
Communications of the ACM. Volume 46, number 10, pages 115-
117. October 2003.

[YKS 04] Dachuan Yu, Andrew Kennedy, and Don Syme. Formalization of
Generics for the .NET Common Language Runtime. In Proceedings
31th ACM Symposium on Principles of Programming Languages,
pages, Venice, Italy, January 2004.

 198

Appendix.

The Grammar of MOOL.

This section presents the grammar for MOOL. This grammar uses the

following BNF conventions:

 [x] Denotes zero or one occurrence of x.

 { x } Denotes zero or more occurrences of x.

 x | y Denotes one of either option x or y.

 x y Denotes sequence, x followed by y.

 x & y Denotes x or y or x y.

 () Used to group elements.

Terminal symbols are represented in bold font.

Non-terminal symbols are represented in the LHS followed by ::=.

199

Basic productions.

�. . ,33
- < �9�,7�� ""� �$ � � ��� ����

&- - +,� �# ��,7� +�� ""� ��� & ��M��
 !"��

� > ++# ��,7� +�� ""� �
 & !!�

��0���� ""� �4�M���M���M�-�M�5 �M�6 �M�7 �M�8 �M�9 �M�: �

��0��3�� ""� ���0���I��0��3J�

� >) @ ,7� ""� ���0��3�M���0��3����0��3��

,��,7� ""�
 �M� �M� �M��M��M��M� �M� �M��M��M� �M!�M# �M
 �M� �M$ �M; �M� �M"�M��M& �M��M% �M �M< �M= �
M�> �M1 �M. �M? �M@ �M* �MA �M) �MB�M0�MC �M3 �M+ �MD �M� �ME �MF �MG �M��M��MH �
MI �MJ �MK �M2 �ML�

� �
 ,7	
 � 7� ""� �&+� �/ � *� . ,�M��MM�M��M(�M��M��MN�MO�MP�MQ�M	�M��MR�MS �MT �MU �M��M��MV �M��M�W�M�,�M�
'�

	
 � 7� ,R > ,�. ,� ""� �# ,��,7�M���0���M�� �
 ,7	
 � 7�

	-)) ,��3� ""� �NN�I	
 � 7� ,R > ,�. ,J�

�< ,���9�,7�� ""� �# ,��,7�I�# ,��,7�M���0���J�

��,7� +� ""� �� >) @ ,7�M�&- - +,� �# ��,7� +�M� > ++# ��,7� +�

_ > � +�9�,< �< ,���9�,7� ""� ��< ,���9�,7�L���< ,���9�,7N��

� � 7�) ,�,7�W ,< �< ,���9�,7� ""� ��< ,���9�,7���8 *,# �3���

�8 *,� �) ,� ""� �� � ��� ��M��< ,���9�,7�L���< ,���9�,7NM�� � 7�) ,�,7�W ,< �< ,���9�,7�

�< ,���9�,7# �3�� ""� ��< ,���9�,7�IM��< ,���9�,7�J�

&� 3�. �8 *,� ""� ��
 ��� �� �M��!�
 ��M�� � � !�

 ��

�8 *,� ""� � �&� 3�. �8 *,�M��8 *,� �) ,�$�I�P�Q�J�

�8 *,# �3�� ""� ��8 *,�I�M��8 *,J�

Compilation unit productions

� 7- 07�) � ����� ""� �
- < > +,���,79� . ,�M�
- < > +,�) *+,) ,��� ��- ��

- < > +,���,79� . ,�� ""� �# � �& !���
 ��� �
 � ���< ,���9�,7�
- < > +,&+- . / �

- < > +,�) *+,) ,��� ��- ��� ""� �# � �& !���< ,���9�,7��
- < > +,���,79� . ,3�
- < > +,&+- . / ��

�

200

- < > +,&+- . / � ""� �	�I�) *- 7��,. +� 7� ��- �J�I
- < > +,�,. +� 7� ��- �3J�L
- < > +,����N���

- < > +,�,. +� 7� ��- �3�� ""� �	- �3�� ���,. +� 7� ��- ��M�' ,�,7�. � > �. ��- ��,. +� 7� ��- ��M�
�8 *,3�,. +� 7� ��- ��M�F � 7�� @ +,�,. +� 7� ��- ��

- < > +,���,79� . ,3� ""� ��# $!�# �
 �"��< ,���9�,7# �3��(�

�) *- 7��,. +� 7� ��- �� ""� ��# $ � � ���< ,���9�,7�L��< ,���9�,7N�L� 3��< ,���9�,7N(�

- < > +,������ ""� ��
 ���&+- . / �

	- �3�� ���,. +� 7� ��- ��� ""� �� �
 "���8 *,��< ,���9�,7�'�	- �3�� ! *7,33�- ��(�

' ,�,7�. � > �. ��- ��,. +� 7� ��- �� ""� � �8 *,�M��� ��$��< ,���9�,7�L�8 *,� � 7�) ,�,73N�
� - 7) � +� � 7�) ,�,73� �(�M�&+- . / �$�

�8 *,3�,. +� 7� ��- �� ""� �	+� 33�,. +� 7� ��- ��M����,79� . ,�,. +� 7� ��- ��M�� > �. ��- ��8 *,�

F � 7�� @ +,�,. +� 7� ��- �� ""� ��8 *,��< ,���9�,7�L�'�� ! *7,33�- ��N�(�

�

� - 7) � +� � 7�) ,�,73� ""� ����L� � 7�) ,�,73N����

� � 7�) ,�,73� ""� �� � 7�) ,�,7�IM�� � 7�) ,�,7J�

� � 7�) ,�,7� ""� ��8 *,��< ,���9�,7�

Type productions

	+� 33�,. +� 7� ��- �� ""� �� !
 ""��< ,���9�,7�L�8 *,� � 7�) ,�,73N�L� > *,7. +� 33N����,79� . ,3�
	+� 33&- < 8 �,. �

���,79� . ,�,. +� 7� ��- �� ""� �� !
 ""��
 ��� �
 � ���< ,���9�,7�L�8 *,� � 7�) ,�,73N�
L� ! �,�< 3���,79� . ,3N����,79� . ,&- < 8 �,. �

� > �. ��- ��8 *,� ""� ��&
 � ���
 � �8 *,�M��� ��$��< ,���9�,7�� - 7) � +� � 7�) ,�,73�(�

�

� > *,7	+� 33� ""� �� ��
 �"��< ,���9�,7�8 *,� � 7�) ,�,7�

���,79� . ,3� ""� ��# $!�# �
 �"����,79� . ,3# �3��

� ! �,�< 3���,79� . ,3� ""� �� ��
 �"����,79� . ,3# �3���

	+� 33&- < 8 �,. � ""� �	�I	+� 33F � 7�� @ +,3J�L� �,+< 3# �3�N�	- �3�7> . �- 73# �3��L
,�
 - < 3# �3�N���

���,79� . ,&- < 8 �,. � ""� �(�M�	�I�� > �. ��- �
,�
 - < �,. +� 7� ��- ��J����

�

���,79� . ,3# �3�� ""� ��< ,���9�,7�8 *,� � 7�) ,�,7�IM��< ,���9�,7�8 *,� � 7�) ,�,7J�

201

�< ,���9�,7�8 *,� � 7�) ,�,7� ""� ��< ,���9�,7�L�8 *,� � 7�) ,�,73N�

�8 *,� � 7�) ,�,73� ""� ����8 *,� � 7�) ,�,7# �3����

�8 *,� � 7�) ,�,7# �3�� ""� ��8 *,� � 7�) ,�,7�IM��8 *,� � 7�) ,�,7J�

�8 *,� � 7�) ,�,7�� ""� ��8 *,F � 7�� @ +,�&- > �< 3�

�8 *,F � 7�� @ +,� ""� ��< ,���9�,7�

&- > �< 3� ""� �L� > *,7	+� 33�V ����,79� . ,3N�

�

	+� 33F � 7�� @ +,3� ""� �F � 7�� @ +,�,. +� 7� ��- ���

� �,+< 3# �3�� ""� ����!�"��� �,+< �,. +� 7� ��- ��I�� �,+< �,. +� 7� ��- �J��

� �,+< �,. +� 7� ��- �� ""� �L"�
 �� % N��8 *,��< ,���9�,7�� �� ! *7,33�- ��(�

	- �3�7> . �- 73# �3�� ""� �� �
 "�� & � �� �"�	- �3�7> . �- 7�,. +� 7� ��- ��
I	- �3�7> . �- 7�,. +� 7� ��- �J��

	- �3�7> . �- 7�,. +� 7� ��- �� ""� ��< ,���9�,7�� - 7) � +� � 7�) ,�,73� &+- . / �M��$�

,�
 - < 3# �3�� ""� �# ��� � �"��
,�
 - < �,. +� 7� ��- ��I
,�
 - < �,. +� 7� ��- �J��

,�
 - < �,. +� 7� ��- �� ""� �L� ��� � ����W�"�
 �� % N�� > �. ��- �
,�
 - < �,. +� 7� ��- ��

�

� > �. ��- �
,�
 - < �,. +� 7� ��- �""� �L�. . ,33
- < �9�,7N� �8 *,�M��� ��$��< ,���9�,7�� - 7) � +� � 7�) ,�,73�
 &+- . / �M��$��

&+- . / � ""� �	�I# - . � +F � 7�� @ +,�,. +� 7� ��- �J�� �� �,) ,��3���

- . � +F � 7�� @ +,�,. +� 7� ��- �� �""� ��8 *,��< ,���9�,7�L�'�� ! *7,33�- �N�(�

Statements productions

� �� �,) ,��3� ""� �L� �� �,) ,���I�(�� �� �,) ,��JN�

� �� �,) ,��� ""� ��33�0�) ,��� �� �,) ,���M�&+- . / �M�&7,� / � �� �,) ,���M�
	- ����> ,� �� �,) ,���M�� ! *7,33�- �� �� �,) ,���M�� - 7� �� �,) ,���M�
	� ++� �� �,) ,���M��9� �� �,) ,���M�� B��.
 � �� �,) ,���M�
� ,�> 7�� �� �,) ,���M�G
 �+,� �� �,) ,���M���

�33�0�) ,��� �� �,) ,��� ""� �� ! *7,33�- ���33�0�� *,7� �- 7�� ! *7,33�- ����

&7,� / � �� �,) ,��� ""� �� ��
 � ��

	- ����> ,� �� �,) ,��� ""� �� �
 ��
 & ��

202

� +3,	+� > 3,�� ""� ��!"��� �� �,) ,����

� ! *7,33�- �� �� �,) ,��� ""� �� ! *7,33�- ��

� - 7� �� �,) ,��� ""� ��� � ���L� - 7����N�(�L� ! *7,33�- �N�(�L� - 7� *< � �,N���� �� �,) ,���

	� ++� �� �,) ,���� ""� �� ! *7,33�- ������. �> � +� � 7�) ,�,73����

�9� �� �,) ,��� ""� ������ ! *7,33�- ���	�� �� �,) ,���L(�� +3,	+� > 3,N���

� ,�> 7�� �� �,) ,��� ""� ����& �
 �L�� ! *7,33�- ��N�

� B��.
 � �� �,) ,��� ""� �"% ��� � ���� ! *7,33�- ����� B��.
 &+- . / �

G
 �+,� �� �,) ,��� ""� �% � �!���� ! *7,33�- ���� �� �,) ,���

�

�. �> � +� � 7�) ,�,73� ""� �L� ! *7,33�- ��I�M�� ! *7,33�- ��JN�

	� 3,� ""� ��
 "��	- �3�# �3����� �� �,) ,�����

	- �3�# �3��� ""� �# ��,7� +�I6�# ��,7� +J�

�,9� > +�� �� �,) ,��� ""� ����
 & !������ �� �,) ,���

�,3�0�� �- 7� ""� ��< ,���9�,7�

� - 7����� ""� ��8 *,��< ,���9�,7�� �� ! *7,33�- ���

� - 7� *< � �,� ""� ��< ,���9�,7�� �� ! *7,33�- ��

� B��.
 &+- . / � ""� �	��I	� 3,J���,9� > +�� �� �,) ,�����

Expression productions

	- �3�� ! *7,33�- ��� ""� �� ! *7,33�- ��

� ! *7,33�- �� ""� ���< � ! *7,33�- ��I�� 7� *,7� �- 7���< � ! *7,33�- �J�

��< � ! *7,33�- �� ""� �� ,0� ! *7,33�- ��I��< � *,7� �- 7�� ,0� ! *7,33�- �J�

� ,0� ! *7,33�- �� ""� �I� - �� *,7� �- 7J�� ,+� ! *7,33�- ���

� ,+� ! *7,33�- �� ""� ��< < � ! *7,33�- ��I� ,+� *,7� �- 7��< < � ! *7,33�- �J�

�< < � ! *7,33�- �� ""� �
> +�� ! *7,33�- ��I�< < � *,7� �- 7�
> +�� ! *7,33�- �J�

> +�� ! *7,33�- �� ""� �� �� 78 � ! *7,33�- ��I
> +�� *,7� �- 7�� �� 78 � ! *7,33�- �J�
L��3�� �. ,� ! *7,33�- �N�

� �� 78 � ! *7,33�- �� ""� � ��M,,�� �� 78 � ! *7,33�- ��I�M,J� �� 78 � ! *7,33�- ��M�
� �
 ,7� �� 78 � ! *7,33�- ��

203

��3�� �. ,� ! *7,33�- �� ""� ��� �� 78 � ! *7,33�- ���
 "�

 � �� ���8 *,�

� �
 ,7� �� 78 � ! *7,33�- �� ""� �� 7�) � 78 � ! *7,33�- ��I� ,+,. �- 7JI��M,,��M�[�� �� 78 � ! *7,33�- ��M�
	� 3�� ! *7,33�- ��

� 7�) � 78 � ! *7,33�- �� ""� ��< ,���9�,7�M�# ��,7� +��M��� ! *7,33�- ���M��� �"�L���. �> � +� � 7�) ,�,73��N�M�
"& $ �� �� > *,7� > 99�! �M�
 �% �� ! *7,3�- ���

� ,+,. �- 7� ""� ��77� 8 �. . ,33�M����. �> � +� � 7�) ,�,73��M��� ! *7,33�- ��

�77� 8 �. . ,33� ""� �P�� ! *7,33�- ��Q�IP�� ! *7,33�- ��Q��J�

	� 3�� ! *7,33�- �� ""� ���� ! *7,33�- ��M��8 *,���� �� 78 � ! *7,33�- ��

� > *,7� > 99�! � ""� ����. �> � +� � 7�) ,�,73���M���< ,���9�,7��L���. �> � +� � 7�) ,�,73���N�

�33�0�� *,7� �- 7� ""� �'��

� ,+� ��- �� +� *,7� �- 7�� ""� �''�M�R'�M��'�M��'�M���M���

� 7� *,7� �- 7� ""� �WW�

��< � *,7� �- 7� ""� �V V �

� - �� *,7� �- 7� ""� �X�

�< < � *,7� �- 7� ""� �D �M�A�

> +�� *,7� �- 7� ""� �(�M�O�M�d �

�
�

	MOOL: an Object-Oriented Programming Language with Generics and Modules.
	Microsoft Word - Barron Dissertation abril-26.doc

