
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

7-2015

NAT Traversal Techniques and UDP Keep-Alive Interval NAT Traversal Techniques and UDP Keep-Alive Interval

Optimization Optimization

Christopher Daniel Widmer

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Software Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=repository.fit.edu%2Fetd%2F675&utm_medium=PDF&utm_campaign=PDFCoverPages

NAT Traversal Techniques and UDP
Keep-Alive Interval Optimization

by
Christopher Daniel Widmer

Bachelor of Science
Computer Science

Florida Institute of Technology
2009

A thesis submitted to
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Master of Science
in

Software Engineering

Melbourne, Florida
July, 2015

c© Copyright 2015 Christopher Daniel Widmer
All Rights Reserved

The author grants permission to make single copies

We the undersigned committee hereby recommend that the attached
document be accepted as fulfilling in part the requirements for the degree of

Master of Science in Software Engineering.

“NAT Traversal Techniques and UDP Keep-Alive Interval Optimization”
a thesis by Christopher Daniel Widmer

Marius C. Silaghi, Ph.D.
Associate Professor, Computer Sciences and Cybersecurity
Major Advisor

Ronaldo Menezes, Ph.D.
Associate Professor, Computer Sciences and Cybersecurity
Committee Member

Syed Murshid, Ph.D.
Professor, Electrical and Computer Engineering
Committee Member

Joerg Denzinger, Ph.D. (University of Calgary)
Associate Professor, Computer Sciences
Committee Member

Richard Newman, Ph.D.
Professor and Program Chair, Computer Sciences and Cybersecurity

ABSTRACT

NAT Traversal Techniques and UDP Keep-Alive Interval Optimization

by

Christopher Daniel Widmer

Thesis Advisor: Marius C. Silaghi, Ph.D.

NAT traversal presents a challenge to Peer to Peer (P2P) applications, as

in many instances a third party is needed to help initiate communication be-

tween two hosts when one is behind one or more NAT devices. Much work

has gone into facilitating communication across NATs using various protocols,

and several standards have been developed to this end. This thesis explores the

advantages and disadvantages of several of these standards, including protocols

for interacting with the NAT device itself (NAT Port Mapping Protocol (NAT-

PMP), Port Control Protocol (PCP), and Universal Plug and Play (UPnP)),

and those using an external server to obtain the external facing address and

port mapping of a client (Session Traversal Utilities for NAT (STUN)). The

results from a small series of performance tests are also described.

A common technique for maintaining connections through NATs is to use

some form of “keep-alive” message so that the connection mapping in the NAT

iii

device will not expire. This thesis explores several existing methods for en-

coding and scheduling keep-alive messages. In addition, it introduces a new

state-based technique, “STUN Calc Keep-Alive”, as an extension of the STUN

protocol for calculating an appropriate keep-alive interval for a User Datagram

Protocol (UDP) connection with the current network configuration and effi-

ciently adapting to NAT mapping lifetime changes. In addition to having the

algorithm run on a dedicated connection, two possible implementations for run-

ning the algorithm using a “single channel”, or on the same connection as other

application traffic, are described.

iv

Contents

List of Figures viii

List of Tables x

Glossary xi

Acknowledgements xiv

Dedication xv

1 Introduction 1

1.1 The Problem . 3

1.2 The Approach . 3

1.3 Research Objectives . 4

1.4 Thesis Outline . 5

1.5 A Note on Terminology . 5

2 NAT Traversal Background 7

2.1 Common Configurations . 7

2.1.1 NAT Configurations . 8

2.1.2 Mapping Behaviors . 11

2.1.3 Filtering Behaviors . 11

2.2 Common Problems with NATs 12

2.3 General Peer-to-Peer (P2P) NAT Traversal Methods 13

v

3 Analysis of Methods to Obtain an External Facing Address 16

3.1 Introduction . 16

3.2 Background . 17

3.2.1 NAT-PMP (NAT Port Mapping Protocol) 17

3.2.2 PCP (Port Control Protocol) 20

3.2.3 UPnP (Universal Plug and Play) 27

3.2.4 STUN (Session Traversal Utilities for NAT) 33

3.2.5 TURN (Traversal Using Relays around NAT) 39

3.2.6 Summary of Comparison 43

3.2.7 Specialized Traversal Methods 45

3.3 Related Work . 56

3.4 Objectives . 57

3.5 Motivation . 57

3.6 Tools . 58

3.7 Experimental Methods . 58

3.7.1 Assumptions . 58

3.7.2 Design . 59

3.7.3 Measurement . 61

3.7.4 Threats to Validity . 62

3.8 Analysis of Results . 62

3.9 Discussion and Conclusions . 62

4 NAT UDP Keep-Alive Interval Optimization 64

4.1 Introduction . 64

4.2 Background . 65

4.3 Related Work . 70

4.3.1 Introduction . 70

4.3.2 Necessity of Keep-Alive Messages 71

4.3.3 Existing Keep-Alive Optimization Techniques 73

4.4 “STUN Calc Keep-Alive” Overview 79

4.4.1 Overview . 79

4.4.2 Algorithm Details . 84

4.5 Comparison to Related Work 108

vi

4.6 Objectives . 111

4.7 Theoretical Analysis . 112

4.7.1 Linear Increment . 112

4.7.2 Geometric Increment . 114

4.7.3 Discussion . 115

4.8 Tools . 116

4.9 Experimental Methods . 117

4.9.1 Assumptions . 117

4.9.2 Design . 118

4.9.3 Measurement . 120

4.9.4 Threats to Validity . 122

4.10 Analysis of Results . 123

4.11 Discussion and Conclusions . 129

5 Conclusion 131

A STUN Calc Keep-Alive Pseudo-Code (Server) 136

A.1 Server Controller . 137

A.2 Server Message Wheel . 138

B STUN Calc Keep-Alive Pseudo-Code (Client) 142

B.1 Initialization . 143

B.2 Main Loop . 145

B.3 Message Handling . 150

B.4 Timeout Handling . 152

vii

List of Figures

2.1 An Example Showing Two NATs. 7

2.2 Full Cone NAT . 10

2.3 Restricted Cone NAT . 10

2.4 Port Restricted Cone NAT . 10

2.5 Symmetric NAT . 10

3.1 NAT-PMP External Address Request/Response 18

3.2 NAT-PMP Mapping Request/Response 19

3.3 PCP Message Headers . 22

3.4 PCP Option Header . 22

3.5 MAP OpCode . 24

3.6 PEER OpCode . 25

3.7 UPnP Port Mapping Data . 31

3.8 UPnP AddPortMapping() Method 32

3.9 UPnP DeletePortMapping() Method 32

3.10 UPnP GetExternalIPAddress() Method 33

3.11 Common Message Header . 34

3.12 Common Attribute Header . 35

3.13 MAPPED-ADDRESS Attribute 35

3.14 XOR-MAPPED-ADDRESS Attribute 36

3.15 ERROR-CODE Attribute . 36

3.16 A simple network setup with a STUN server. 37

3.17 ChannelData Structure . 42

3.18 Protocol Test Experiment Architecture 60

4.1 KEEP ALIVE TIMER DATA Structure 84

viii

4.2 Keep-Alive Client State Change Behavior 89

ix

List of Tables

3.1 Comparison of Protocol Characteristics 45

3.2 Protocol Response Times (ms) 63

4.1 Server Session Variables . 91

4.2 Search State Parameters . 94

4.3 Run State Parameters . 95

4.4 Refine State Parameters . 95

4.5 Client Local Variable Summary 96

4.6 Keep-Alive Connection Thread Time Intervals (ms) 123

4.7 Keep-Alive Connection Thread Message Counts and Timeouts . 123

4.8 Constant Connection Thread Message Counts 124

4.9 REFINE State Time Intervals (ms) 125

4.10 REFINE State Message Counts and Timeouts 125

4.11 Single Channel Time Intervals (ms) Found 126

4.12 Single Channel Time Unreachable (ms) 126

4.13 Single Channel Message Counts 128

4.14 Single Channel (with ZMax) Time Intervals (ms) Found 128

4.15 Single Channel (with ZMax) Session Durations (ms) 128

x

Glossary

ACK TCP Acknowledgement Packet.

ACT Access Control Table.

ALF Application Layer Framing.

ARP Address Resolution Probe.

CRLF Carriage Return and Line Feed.

CSV Comma-Separated Values.

DCCP Datagram Congestion Control Protocol.

DDNS Dynamic DNS.

DDP2P Direct Democracy P2P (software).

DHCP Dynamic Host Configuration Protocol.

DHT Distributed Hash Table.

DNS Domain Name System.

DNS-ALG Domain Name System - Application Level Gateway.

DoS Denial-of-Service.

FTP File Transfer Protocol.

GENA Generic Event Notification Architecture.

xi

H.323 Audio-Visual Network Communication Recommendations.

HTTP Hypertext Transfer Protocol.

HTTPMU Variant of HTTPU that makes use of IP multicast.

HTTPU Extension of HTTP using UDP instead of TCP for transport.

ICE Internet Connectivity Establishment.

ICE-TCP ICE over TCP.

ICMP Internet Control Message Protocol.

IETF Internet Engineering Task Force.

IP Internet Procotol.

IPv4 Internet Procotol (Version 4).

IPv6 Internet Procotol (Version 6).

NAT-PMP NAT Port Mapping Protocol.

NRT Name Relation Table.

P2P Peer to Peer.

PAL Peer to Peer Abstraction Layer.

PCP Port Control Protocol.

RFC Request For Comments (from the IETF).

RTCP RTP Control Protocol.

RTP Real-time Transport Protocol.

RTSP Real Time Streaming Protocol.

SCTP Stream Control Transmission Protocol.

xii

SDP Session Description Protocol.

SIP Session Initiation Protocol.

SMTP Simple Mail Transfer Protocol.

SNA Systems Network Architecture.

SOAP Simple Object Access Protocol.

SSDP Simple Service Discovery Protocol.

STUN Session Traversal Utilities for NAT.

STUNT Simple Traversal of UDP Through NATs and TCP too.

SYN TCP Synchronization Packet.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

TTL Time-To-Live.

TURN Traversal Using Relays around NAT.

UDP User Datagram Protocol.

UPnP Universal Plug and Play.

UPnP-IGD Universal Plug and Play - Internet Gateway Device.

VAT Virtual Address Translation Table.

VoIP Voice-over-IP.

VPN Virtual Private Network.

XML Extensible Markup Language.

XOR Exclusive OR (Logical Operator).

xiii

Acknowledgements

I would like to thank my advisor, Dr. Marius Silaghi, for his guidance, men-

torship, and patience during the course of my studies. I would also like to

thank my thesis committee members for their time and effort: Dr. Ronaldo

Menezes, Dr. Syed Murshid, Dr. Joerg Denzinger, and Dr. Richard Newman.

Additionally, I would like to thank the Computer Science and Software Engi-

neering departments for their continued hard work to better the education of

the students.

xiv

Dedication

This thesis is dedicated to my parents for their unwavering support and en-

couragement, and to my employer for providing support for higher education.

xv

Chapter 1

Introduction

NAT devices, or Network Address Translators, are devices that transparently

route traffic between an external network such as the public Internet, and de-

vices on an internal network. A common example would be routers for a cor-

porate network or a smaller home network. Devices, or “hosts”, on the internal

network behind the NAT device are assigned local addresses that are guaran-

teed to be unique only within that network. These addresses are not known to

devices outside of the NAT. A network or subnetwork that contains a unique set

of Internet Procotol (IP) addresses is known as an “address realm” [43]. In the

context of NATs, this term is commonly used to differentiate between the set

of IP addresses in use behind a particular NAT and those used on the network

outside of the NAT.

To enable communication with devices outside of the NAT, the NAT device

assigns an external facing, or public, IP address and port to each socket on the

internal host, and during communication sessions modifies the internal host’s

address and port information within the network packets. This is in effect

1

“translating” the data and allowing network traffic to flow between hosts behind

and outside of the NAT [43]. Since pure NATs only modify the transport layer,

some applications and protocols need the help of ALG’s (Application Level

Gateways) to translate addresses in the payload of the packet. In some cases

these are built into the NAT itself.

In order for the NAT device to perform this address translation, a mapping,

also known as a binding, is created from the local address and port of a host

behind the NAT to an external facing address and port that can be seen from

outside of the NAT’s local network. Most NAT devices will automatically create

a mapping when a host on the local network contacts a device outside of it.

Actions such as a computer in a corporate network accessing a public website

such as “www.google.com” fall into this category. Specialized protocols for

traversing NAT architectures such as STUN or Traversal Using Relays around

NAT (TURN) utilize this mechanism as well. Another method is for a client

behind the NAT to explicitly create a mapping to an external address and port

and set up the forwarding on the NAT device. This can be done manually

by user configuration, or programmatically by specialized protocols such as

NAT-PMP, PCP, and UPnP. One objective of this thesis is to evaluate the

performance of these various protocols.

In cases where the NAT device created the mapping automatically, the map-

ping will time out after a set period of time which is usually configurable. Client

applications generally maintain these mappings during periods of inactivity us-

ing “keep-alive” messages sent intermittently through the NAT device. The

second objective of this thesis is to explore a new method of calculating an op-

timium interval for these keep-alive messages using an extension to the STUN

2

protocol.

1.1 The Problem

The first issue addressed by this thesis is to evaluate different methods of creat-

ing an external facing address and port mapping with a NAT device, highlighting

the advantages and disadvantages of each. While some of these methods have

been studied in the past, one goal of this thesis is to provide a more focused

comparison that can serve as the basis for further research.

Mappings created automatically by NAT devices time out after a specified

period of time. As previously mentioned, this is often addressed by client ap-

plications sending periodic “keep-alive” messages to maintain the connection

when there is no data to be sent. There are suggested intervals for sending

these messages based on various protocols, such as the ones described in [33].

Some research has been done to determine the optimum keep-alive interval for

a given network architecture between two devices, but to our knowledge little

experimental data is available. The second problem examined by this thesis is

how to determine an optimium keep alive interval for a UDP connection when

the network architecture is unknown.

1.2 The Approach

Research on both the official standards specifications and related work was done

for the STUN, NAT-PMP, PCP, and UPnP protocols, both for client/server

and P2P usage. These materials were used for evaluating and comparing these

3

protocols when used for obtaining and mapping an external facing address and

port. In addition, timing tests were done using these protocols to map an

external port (automatically in the case of STUN) and obtain their external

address in order to determine if there was any performance advantage to using

a particular approach.

The exploration of existing approaches to determining the optimum keep-

alive interval, as well as the presentation and experimental evaluation of a new

algorithm in later chapters offer a look at the best ways to approach the issue

of keep-alive messages over UDP.

1.3 Research Objectives

The objectives of this thesis are summarized below.

• Summarize and compare common problems with NAT Traversal.

• Evaluate the advantages and disadvantages of using NAT-PMP, PCP,

UPnP, and STUN to obtain an external address and port mapping from

behind a NAT device.

• Experimentally evaluate the performance of NAT-PMP, PCP, UPnP, and

STUN for obtaining an external address and port mapping.

• Analyze existing research into optimum keep-alive intervals for various

protocols, as well as methods to calculate the optimum interval over UDP

for a given situation.

4

• Describe and experimentally evaluate a new extension to the STUN pro-

tocol used to calculate an optimum keep-alive interval over UDP.

1.4 Thesis Outline

This thesis is organized as follows:

• Chapter 2 introduces general concepts, configurations, and problems in-

volved in NATs, and discusses several common traversal techniques.

• Chapter 3 offers an introduction and comparison of the NAT-PMP, PCP,

UPnP, and STUN protocols, as well as an experimental evaluation of

their performance. It also explores some more specialized protocols used

for NAT traversal.

• Chapter 4 explores the need for UDP keep-alive messages when communi-

cating through NATs, describes existing methods for determing an opti-

mium keep-alive interval, and introduces and evaluates a new method for

finding an optimium value for the keep-alive interval.

• Chapter 5 offers conclusions and ideas for future work to summarize the

presented research.

1.5 A Note on Terminology

The terminology used throughout the literature reviewed for this thesis varies

in describing common concepts. For example, individual devices involved in

communication through a NAT are described as “hosts”, “peers”, “nodes”, and

5

“servers” in various pieces of literature. For the sake of clarity when discussing

the topic, the term “node” will be used in most cases to describe a device on

the network, and a “mapping” or “binding” from a private local address and

port behind a NAT to an external facing address and port will be referred to as

a “mapping”. Alternative terms will be used in situations where it makes sense

to do so.

6

Chapter 2

NAT Traversal Background

2.1 Common Configurations

As stated earlier, there are several possible types and configurations for NATs.

This section discusses some of the most common [43].

Public Internet

NAT 1

Host 1

NAT 2

External

Address(es)/

Ports

Internal

Address/Port

Host 2 Host 3

Internal

Address/Port

Internal

Address/Port

Private

Network

External

Address(es)/

Ports

Host 4 Host 5

Internal

Address/Port

Internal

Address/Port

Private

Network

Figure 2.1: An Example Showing Two NATs.

7

2.1.1 NAT Configurations

Traditional NAT Nodes in the private network behind the NAT can initiate

sessions with nodes outside of the NAT, but not vice versa. In addition to

the IP address, checksums for IP, Transmission Control Protocol (TCP),

UDP, and Internet Control Message Protocol (ICMP) headers are also

translated. There is only a mapping in the outbound direction, so only

outbound-initiated sessions are allowed with this configuration. An ex-

tension of this type is called a Basic NAT, in which a set of addresses

are set aside to be mapped to internal nodes and allow inbound commu-

nication sessions to those nodes. A further extension, known as Network

Address Port Translation (NAPT) also translates port identifiers (such as

port numbers for TCP and UDP). With this setup, multiple nodes behind

the NAT can use the same external address with different ports. Only the

address and port of either the source of destination are translated.

Bi-Directional NAT Sessions can be initiated both from a node outside the

NAT to one behind it, and vice-versa, as private addresses behind the

NAT are mapped to unqiue external facing addresses, either statically

or dynamically as needed. Nodes behind the NAT are accessible using

a Domain Name System (DNS) for address resolution. A Domain Name

System - Application Level Gateway (DNS-ALG) is also needed to assist

with address mapping. As with the Traditional NAT, only the address

and port of either the source of destination are translated.

Twice NAT Unlike the previously mentioned NAT types, in this case the IP

addresses of both the source and the destination are translated. It requires

8

DNS lookups for addresses and a DNS-ALG. This type is most useful when

addresses may be duplicated in the local network behind the NAT and the

network outside of the NAT.

Multihomed NAT A private network makes use of multiple NATs, with the

sessions going through a particular NAT device depending on the desti-

nation. This also sets up a backup in case one NAT device fails.

There are four main types of NAT behavior, although some configurations

use aspects of one or more of these in combination [23]. The original specifi-

cation for the STUN protocol [41] supplied a method to detect which of these

types the client node was behind, but this functionality was not included in

the current specification [54] due to unreliability and the existence of additional

NAT configurations used in practice.

Symmetric In this case a local address and port behind a NAT is bound to

an external facing address and port, but that external facing address and

port can only be used to communicate with one particular destination

address and port outside of the NAT. This is the most restrictive form of

NAT.

Full-Cone Like most NATs, this involves the mapping of a local address and

port behind a NAT to an external facing address and port. However,

unlike with Symmetric NATs, the external facing address and port can

be used to connect with any destination address and port outside of the

NAT. This is the least restrictive form of NAT.

Restricted-Cone This is a more restricted version of Full-Cone. The external

9

facing address and port of the node behind the NAT can only be used

to communication with a particular destination address, but any port on

that address can be used.

Port-Restricted-Cone This is another more restrictive version of Full-Cone.

Unlike Restricted-Cone, the external facing address and port of the node

behind the NAT can be used to communicate with any destination address,

but it is restricted to the port originally used for the binding.

Server 1 Server 2 Server 3

NAT

Client

Internal

Address/Port

External

Address/Port

Figure 2.2: Full Cone NAT

Server 1 Server 2 Server 3

NAT

Client

Internal

Address/Port

External

Address/Port

Figure 2.3: Restricted Cone NAT

Server 1 Server 2 Server 3

NAT

Client

Internal

Address/Port

External

Address/Port

Figure 2.4: Port Restricted Cone NAT

Server 1 Server 2 Server 3

NAT

Client

Internal

Address/Port

External

Address/Port

External

Address/Port

Figure 2.5: Symmetric NAT

10

Another way to describe the mapping and filtering behavior of NAT de-

vices is based directly on the endpoints. The descriptions below are based on

information from [23], [21], and [7].

2.1.2 Mapping Behaviors

Endpoint-Independent Mapping The mapping to an external facing ad-

dress and port for a node’s private address and port does not include the

destination endpoint, and is re-used for multiple sessions. For example, a

public mapping created for Node A to communicate with Node B outside

of the NAT can be re-used for Node A’s communication with Node C

outside of the NAT.

Endpoint-Dependent Mapping Either the address or port of the destina-

tion endpoint are included in the mapping, so there is no re-use for dif-

ferent destinations. The inclusion of destination information can include

only the address, or both the address and port.

Session-Dependent Mapping This is relevant only for TCP, and involves

the NAT device creating a new mapping if a TCP connection between a

node behind the NAT and a node outside of the NAT has been closed and

re-opened.

2.1.3 Filtering Behaviors

Endpoint-Independent Filtering No filtering is enforced on existing exter-

nal facing address and port mappings. Any external source can send data

to the mapped external facing address of a node behind the NAT.

11

Endpoint-Dependent Filtering The NAT device will filter out any data that

does not originate from the original destination of the external facing

address and port mapping. This can apply to only the destination address,

or it can apply to both the address and port.

NAT behavior can also be characterized by whether or not a NAT supports

the “hairpin” operation, where the external facing address and port mapping

can be used for communication by two nodes when both are behind the NAT

[28]. Another aspect is whether or not the NAT is deterministic. Some NATs

may produce different bindings depending on the ordering of outbound traffic.

2.2 Common Problems with NATs

In general, NATs cause issues with applications that use IP addresses in the

packet payload, although this can sometimes be relieved with the use of ALGs

(e.g. File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP),

DNS, etc). This can also cause issues with less popular transport protocols (such

as Stream Control Transmission Protocol (SCTP) and Datagram Congestion

Control Protocol (DCCP)) that may not be recognized or supported by all

NATs [43]. A related example are security protocols such as IPSec, which

include an integrity check that involves a checksum the entire payload, and are

broken by NATs due to the IP address change [23].

Applications that have separate control and data sessions that are interde-

pendent can run into issues when used over NATs [43]. This is true of protocols

such as FTP, H.323, Session Initiation Protocol (SIP) and Real Time Streaming

Protocol (RTSP) [44]. In these cases the NAT does not know which sessions

12

depend on which, so it treats them all independently. In addition, without spe-

cial handing, any application that requires that the two communicating nodes

retain the same address across sessions may be broken by a NAT, since the

NAT device has no knowledge that this is required. IP fragmentation is also a

problem, since only the first fragment contains the transport header. There are

various of methods to handle this depending on the NAT; for example, the NAT

reconstructing the packet itself, or simply guessing based on previously received

packets. Even the use of TCP as a transport protocol presents issues, as the

normal client and server roles need to be reversed to establish a connection.

P2P applications also have issues traversing NATs without help, as each

node may be behind the same NAT as the other, behind another NAT, or on a

public network. Additional issues related to NAT traversal for P2P applications

are discussed in Section 2.3.

2.3 General Peer-to-Peer (P2P) NAT Traver-

sal Methods

Because this research is done in support of P2P applications, some general in-

formation on P2P NAT traversal is presented in this section. In the Request For

Comments (from the IETF) (RFC) 5128 [28], common NAT traversal techniques

currently in use are discussed, as are some relevant security considerations when

implementing various solutions. Many of these techniques have been adapted,

extended, or included as part of more specialized techniques to facilitate NAT

traversal in additional situations. Selected research in those areas is described

13

in the Section 3.2.7. P2P applications are more affected by NATs than those

using client/server communication since both of the nodes may be behind one or

more NATs. With client/server architectures, the server is usually on a public

network and only the client is potentially behind a NAT.

Relaying In this situation, two nodes use an external node or server outside of

the NAT to relay messages between them. It is the basis of the TURN pro-

tocol, and is also used in several of the NAT traversal solutions discussed

in Section 3.2.7.

Connection Reversal With this solution, one of the nodes needs to be outside

of the NAT. Node A behind the NAT registers its public address with a

rendezvous server. Since it cannot directly contact Node A behind the

NAT, the Node B on the outside of the NAT can use the rendezvous

server to tell Node A behind the NAT to instead initiate a connection

with it.

Hole Punching This technique involves creating mappings initially using a

rendezvous server in order to learn the address of the other node. When

using UDP, the nodes can then establish a direct connection by contact-

ing the public address of the other node and also requesting that the ren-

dezvous server have the other node contact their public address. Once the

connection is established, the rendezvous server is no longer needed. For

TCP, the two nodes send each other TCP Synchronization Packet (SYN)

packets at the same time, and then respond with TCP Acknowledgement

Packet (ACK) packets to establish the connection. This is reliable as long

as the NAT devices support Endpoint-Independent Mapping. Many ap-

14

plications use this technique, making use of STUN to obtain their external

address.

Port Number Prediction This technique involves predicting the next port

number assigned based on the past behavior of the NAT device. It is not

always reliable, especially for TCP.

Some issues with these solutions are discussed in [14]. These include items

such as the need for excessive keep-alive messages for UDP connections, as well

as dealing with unknown NAT architectures.

If applications do not implement some type of authentication, they risk se-

curity problems, especially in situations where UDP/TCP hole punching is used

[28]. Public rendezvous servers are also vulnerable to Denial-of-Service (DoS)

attacks, as nodes can register themselves and claim to have any IP address. In

this situation there is usually not a reliable way to verify the private addresses.

The literature suggests throttling network traffic as a mitigation technique. The

use of public rendezvous servers also opens the door to man-in-the-middle at-

tacks, where an attacker could pretend to be the server and intercept client node

data. The only mitigation suggestion is to encrypt application data.

15

Chapter 3

Analysis of Methods to Obtain

an External Facing Address

3.1 Introduction

This chapter provides a summary and comparison of five protocols related to

NAT traversal: NAT-PMP, PCP, UPnP, STUN, and TURN. It also explores

some more specialized NAT traversal tecthniques designed overcome issues with

the more standardized protocols.

In addition, it describes an experiment testing the performance of the first

four of those protocols in various situations, along with a discussion of their use

in NAT environments today.

16

3.2 Background

The protocols described in this section are commonly used, well supported, and

designed to assist with NAT traversal. The first three: NAT-PMP, PCP, and

UPnP, are designed for interaction with the NAT device directly connected to

a client. They allow a client to explicitly create, renew, and destroy external

facing address and port mappings. The STUN protocol is used to create an

external facing address and port mapping automatically by creating an outoing

request to a server outside of the NAT and returning the public address and port

information to the client. The TURN protocol is used to relay messages between

clients that are behind NAT devices using an external server. An overview of

each is given below, followed by a summarized comparison.

3.2.1 NAT-PMP (NAT Port Mapping Protocol)

NAT-PMP is a UDP protocol used in NAT devices to create external facing

address mappings for nodes behind the NAT in order to allow nodes outside

of the NAT to communicate with them [29]. The server, located on the NAT

device, uses a request/response system to communicate with the clients. The

protocol supports determining a client’s external facing address, announcing

address changes, and both requesting and destroying address mappings. While

the protocol itself operates only over UDP, it supports mappings for both UDP

and TCP. It has been “superseded” by PCP, which retains backwards compati-

bility by using a version bit in the packets to signify whether the protocol being

used is NAT-PMP (version 0) or PCP (version 2). Many aspects of NAT-PMP

were inspired by the Dynamic Host Configuration Protocol (DHCP) protocol.

17

It includes a “Seconds Since Start of Epoch” field (up-time of the NAT

device) to keep track of mapping lifetimes and to aid in determining whether

or not a mapping is still valid. The protocol will only work on NATs that

are capable of creating UDP and TCP mappings independently. In order to

request a mapping, a client sends a NAT-PMP request and receives a response.

In the case where a mapping already exists for the requested port, an alternative

mapping will be returned to the client. An interesting note is that there is no

field in the packet format for addresses. This is because the protocol uses the

source IP address of the client as the internal address, as it is only meant to be

used by hosts creating their own mappings. Hosts behind the NAT can request

information about the external facing address mapping via a specialized two

byte request.

External Address Request

External Address Response

Version (8 bits, 0) OP (8 bits, 128 + 0)

Result Code (16 bits)

Seconds Since Start of Epoch (32 bits)

External IPv4 Address (32 bits)

Version (8 bits, 0) OP (8 bits, 0)

1 byte (8 bits) 1 byte (8 bits)

Figure 3.1: NAT-PMP External Address Request/Response

18

Version (8 bits, 0) OP (8 bits, UDP=1, TCP=2)

Internal Port (16 bits)

Suggested External Port (16 bits)

Requested Port Mapping Lifetime (32 bits)

Mapping Request

Reserved (16 bits)

Version (8 bits, 0) OP (8 bits, 128 + Request Value)

Internal Port (16 bits)

Mapped External Port (16 bits)

Port Mapping Lifetime (32 bits)

Mapping Response

Result Code (16 bits)

Seconds Since Start of Epoch (32 bits)

1 byte (8 bits) 1 byte (8 bits)

Figure 3.2: NAT-PMP Mapping Request/Response

Mappings are deleted by the client sending a new mapping request for a

particular port with a requested mapping lifetime of zero, or by the client simply

allowing them to time out. In the former case the server sends a response as

usual. All mappings created via NAT-PMP are bi-directional. When a NAT

device reboots, it must reset the “Seconds Since Start of Epoch” value and re-

announce its address via multicast to all clients so that they can send mapping

renewal requests sooner than planned if necessary.

NAT-PMP is only designed to work with a client behind a single NAT device.

It does not offer direct support for nested NATs. The protocol will also not work

19

in cases where the NAT device has multiple external Internet Procotol (Version

4) (IPv4) addresses, or where the router address may be different from the

device actually handling NAT functionality. It also depends on the NAT device

supporting “hairpinning”, or being aware when two clients both behind it are

trying to communicate and acting accordingly. It is the simplest of the protocols

described in this section.

3.2.2 PCP (Port Control Protocol)

PCP is an evolution of NAT-PMP and like NAT-PMP, is used to create and

maintain external address and port mappings for hosts behind NAT or firewall

devices. In addition, one of the features is an included mechanism to help

reduce the “keep-alive” network traffic normally used to keep the mappings

alive. Like NAT-PMP and Universal Plug and Play - Internet Gateway Device

(UPnP-IGD), PCP allows clients to create, renew, and destroy address and

port mappings [7]. The protocol supports most NAT configurations and can

set up mappings for common transport protocols including UDP, TCP, SCTP,

and DCCP. However, like with NAT-PMP, actual PCP messages must be sent

using the UDP protcol.

PCP uses a server/client architecture and allows communication via a re-

quest/response model. However, the request/response ratio is not always one

to one and in the case of multiple requests from a host, the ordering of re-

sponses from the server may vary. In most cases the PCP server is implemented

as part of the NAT device. However, unlike NAT-PMP, PCP supports In-

ternet Procotol (Version 6) (IPv6) and uses a 128-bit address field for the IP

20

address for both IPv4 and IPv6 addresses. Another difference is that there is

no mechanism in PCP to simply request information about an external address

mapping without requesting a new one (or renewing). Like with NAT-PMP,

the client is responsible for retransmitting request messages to ensure reliable

delivery. The mapping request includes a lifetime parameter, but the lifetime

of the actual mapping may be less than the requested length. PCP has a more

complex message structure than NAT-PMP and offers several operations, which

are described below.

21

Version (8 bits, 2) OpCode (7 bits)

OpCode-Specific Information (variable, OPTIONAL)

Requested Mapping Lifetime (32 bits)

Request Header

Reserved (16 bits)

1 byte (8 bits) 1 byte (8 bits)

 R

(1 bit)

Client's IP Address (128 bits)

PCP Options (variable, OPTIONAL)

Version (8 bits, 2) OpCode (7 bits)

OpCode-Specific Response Information (variable, OPTIONAL)

Lifetime (32 bits)

Response Header

Reserved (8 bits)

 R

(1 bit)

Epoch Time (32 bits)

PCP Options (variable, OPTIONAL)

Result Code (8 bits)

Reserved (96 bits)

.....

Figure 3.3: PCP Message Headers

1 byte (8 bits) 1 byte (8 bits)

Option Code (8 bits) Reserved (8 bits)

Data (variable, OPTIONAL)

Option Header

Option Length (16 bits)

Figure 3.4: PCP Option Header

22

Which options are appropriate depend on the Opcode-Specific Information

entry for each request or response. The Epoch Time field is based on several as-

pects of the PCP server state (e.g. uptime and external facing address change)

and is used by clients to determine if the server has lost its mappings. The

version field is currently used to distinguish the request/response as PCP (ver-

sion 2) or NAT-PMP (version 0), and allows for future PCP versions to change

the packet format. The protocol includes error definitions to indicate that the

server does not support the packet version, but does support previous versions.

The MAP opcode is used both to establish a mapping between an internal

address and port and an external facing one and to renew an existing mapping.

These mappings are endpoint-independent.

In order to renew a mapping, a new request is sent from the client containing

the currently assigned address and port as suggestions. The specified Internal

Port can be 0 to map all incoming traffic for a particular protocol. In order

to remove a mapping, a request with a MAP opcode is sent with a Requested

Mapping Lifetime of 0.

The PEER opcode is used to establish or renew an outbound mapping, from

the NAT to a remote node’s address and port. These mappings behave similarly

to the implicit outbound mappings created by NATs. The RFC suggests that

PCP servers should have an ability to disable these request types.

One specialty use of PCP is to reduce the amount of “keep-alive” network

traffic generated by applications. To do this, a client uses PCP requests with

the PEER opcode with a custom mapping lifetime. Periodic messages can then

be sent at the custom interval to extend the mapping.

There are several options that can be attached to MAP and PEER opcode

23

Mapping Nonce (96 bits)

1 byte (8 bits) 1 byte (8 bits)

Protocol (8 bits) Reserved (24 bits)...

... (continued) Reserved (24 bits)

Internal Port (16 bits)

Suggested External Port (16 bits)

Suggested External IP Address (128 bits)

.....

Mapping Nonce (96 bits)

Protocol (8 bits) Reserved (24 bits)...

... (continued) Reserved (24 bits)

Internal Port (16 bits)

Assigned External Port (16 bits)

Assigned External IP Address (128 bits)

.....

PCP MAP Request

PCP MAP Response

Figure 3.5: MAP OpCode

messages to modify the mapping behavior.

THIRD PARTY Used in both MAP and PEER opcodes. Allows a PCP

client to control mappings on internal nodes other than itself (e.g. a

situation where a node manages others).

PREFER FAILURE Used with the MAP opcode to tell the PCP server that

if the suggested address and port cannot be mapped, no mapping should

be created. This is most useful when working with other protocols such

as UPnP-IGD.

24

Mapping Nonce (96 bits)

PEER OpCode Request

1 byte (8 bits) 1 byte (8 bits)

Protocol (8 bits) Reserved (24 bits)...

... (continued) Reserved (24 bits)

Internal Port (16 bits)

Suggested External Port (16 bits)

Suggested External IP Address (128 bits)

.....

Remote Peer Port (16 bits)

Reserved (16 bits)

.....

Remote Peer IP Address (128 bits)

Mapping Nonce (96 bits)

PEER OpCode Response

Protocol (8 bits) Reserved (24 bits)...

... (continued) Reserved (24 bits)

Internal Port (16 bits)

Assigned External Port (16 bits)

Assigned External IP Address (128 bits)

.....

Remote Peer Port (16 bits)

Reserved (16 bits)

.....

Remote Peer IP Address (128 bits)

Figure 3.6: PEER OpCode

FILTER Used with the MAP opcode to indicate that incoming packets should

be filtered based on the protocol specified in the MAP request.

PCP adds many capabilities to NAT-PMP, including IPv6 support and im-

25

proved threat mitigation. The message format is more complex, allowing for

more flexibility and extensibility. A particularly interesting feature is the inclu-

sion of the Client IP Address item in PCP request messages. This allows the

NAT device to verify that the client node’s local address as seen by the client

node is actually the one assigned to it by the NAT device; in other words there

are no unexpected NAT devices between the one receiving the request and the

client node.

PCP also enhances the NAT device recovery mechanism present in NAT-

PMP (Seconds Since Start of Epoch). When using PCP, one recovery method

that works for TCP connections is for the PCP clients to send new PEER

requests with their old address and port as the suggested items. PCP also

supports “rapid recovery” which is a much quicker method [7]. This is done via

the ANNOUNCE opcode, which allows a PCP server to let the clients know

that it has lost its state via multicast to a specific address or alternatively via

unicast to known clients. This opcode can also be used by clients to check if a

server is still available. Unlike the MAP and PEER opcodes, there is no specific

payload for messages with the ANNOUNCE opcode. Another rapid recovery

feature is a mapping update, where the PCP server has not lost any mappings,

but knows that they are no longer valid. In this case the server unilaterally

sends MAP or PEER responses to its clients that have existing mappings to

update each of them with the correct new mapping.

As mentioned earlier, PCP contains mechanisms for easy operation with

other protocols. In [6], functionality is described to allow both PCP and UPnP-

IGD to co-exist on a NAT device (or any IGD).

26

3.2.3 UPnP (Universal Plug and Play)

UPnP is an extension of the “Device Plug and Play” by Microsoft, with the stan-

dard currently maintained by the Universal Plug and Play Forum. The goal is

to provide the ability to transparently add devices to a network and allow them

to communicate with the existing devices with little or no configuration [1]. The

protocol is meant to be used by all types of devices, including computers, mo-

bile devices, entertainment devices, and appliances. Communication is handled

with standard transport protocols and is meant to be agnostic to the operating

systems used on various devices. It is used extensively for media streaming and

control, and can theoretically be used over any medium that supports the band-

width needed for the protocols used. Protocols used include Extensible Markup

Language (XML), Hypertext Transfer Protocol (HTTP), Extension of HTTP

using UDP instead of TCP for transport (HTTPU), TCP/IP, etc. A short de-

scription of UPnP protocol uses and operation is below; additional protocols

are supported via bridging. Operations specific to NAT traversal are handled

with the UPnP-IGD protocol, which is described later in this section.

Summary of Communication Protocols and Uses

• HTTPU, Variant of HTTPU that makes use of IP multicast (HTTPMU),
Simple Service Discovery Protocol (SSDP), Generic Event Notification
Architecture (GENA) [Discovery]

• HTTP [Description, Events]

• Simple Object Access Protocol (SOAP) [Control]

• UDP/TCP

• IP

27

A network using UPnP has one or more control points, which are devices

that handle the discovery and control of other devices on the network. There

are several steps involved with UPnP.

Addressing When first connecting to a UPnP network, a device must obtain

an IP address via its DHCP client or use Auto IP if it cannot find a DHCP

server. The check for a DHCP server must be done periodically. The

device also tests the address using an Address Resolution Probe (ARP).

Each device may also include a DNS client to locate other devices by

identifiers other than their IP address [2].

Discovery Devices on a UPnP network use the SSDP to communicate with the

various control points (e.g. to notify them of its services). The “discovery”

message sent by the device to the control point includes a URL where

the control point can retrieve the XML encoded UPnP description of the

device.

Description The UPnP description contains information such as model and

serial numbers, manufacturer, vender-specific URLs and more. A listing

of any embedded devices and services is also included.

Control A control point gets the UPnP description in XML for all the services

offered by a device. Once this is done, it can send control messages to the

URL for a particular service. These messages and the device responses

are sent using SOAP.

Eventing Services send “event” messages (encoded in XML and GENA) when

their state changes. The delivery of these messages is controlled using a

28

subscription model to allow for multiple control points. When a device

initially “subscribes” to a service, it receives an event message containing

all of the state variables in their initial state. This allows each subscriber

to set up a model for the state of that service [2].

Presentation Some devices contain a URL for a presentation service, which

allows the control point to view status information or control the device,

depending on the particular service.

The usage of UPnP for NAT traversal is outlined in the description of UPnP

IGD1 [53]. While the most recent standard is actually UPnP IGD2 [46], the

routers used for the experiments in this thesis only support Version 1, so that

is the focus of this description.

“IGD” stands for “Internet Gateway Device”, which in this context is the

NAT device. As with normal UPnP functionality, messages are exchanged us-

ing the XML format, and use the same data types defined in the base UPnP

standards. The protocol works over UDP or TCP depending on the action. It

uses Comma-Separated Values (CSV), lists, which can contain heterogeneous

data (e.g. boolean, integer, string, etc) within the XML. Like other devices on

a UPnP network, an IGD is controlled by a UPnP control point, in most cases

the client node. The protocol can handle cases where the client node behind

the NAT and the control point for the IGD are on the same device as well as

cases where they have different IP addresses.

The protocol contains functionality for obtaining general information about

port mappings, with functions such as GetGenericPortMappingEntry() and

GetSpecificPortMappingEntry(). It also allows for the creation and deletion

29

of port mappings, with the functions AddPortMapping() and DeletePortMap-

ping(). The mappings created by the service can conflict with mappings created

by other entities, so an error code is provided in cases where a conflict is de-

tected.

Information about the IGD itself and the mapped connections are tracked

with UPnP state variables. A list of some of the more notable variables is shown

below.

• ConnectionType

• UpTime

• NATEnabled

• PortMappingLeaseDuration (range 0-604800)

• PortMappingProtocol (UDP, TCP, or vendor-defined)

• InternalClient

• InternalPort

• ExternalIPAddress

• ExternalPort

Like with the other UPnP services, events are used to communicate changes

in state variables, and actions are used to control the IGD. These actions include

functionality such as setting a new protocol, enabling and disabling port map-

ping, changing the timeouts, and getting general status information. In terms

of port mapping, unlike with NAT-PMP and PCP, an error is generated if the

“ExternalPort” for the specified port is already mapped to an internal client,

instead of like the former cases where a different port mapping is applied. One

30

item of note is the “NewLeaseDuration” action, which modifies the “PortMap-

pingLeaseDuration” variable. The NAT-PMP specification states that these

lease duration aspects are rarely used in UPnP [29], although the UPnP speci-

fication simply states that a default value must be used instead of zero. Unlike

with protocols such as NAT-PMP and PCP, the specification does not require

that the IGD retain port mappings after device resets. However, this can be

done if desired by using the control point to rebuild the mappings.

The port-mapping itself is conceptually viewed as an 8-tuple:

<PortMappingEnabled , PortMappingLeaseDuration , RemoteHost ,
ExternalPort , In te rna lPor t , PortMappingProtocol ,
I n t e r n a l C l i e n t , PortMappingDescription>

Figure 3.7: UPnP Port Mapping Data

For general use, initially a “discover” request is sent to UDP port 1900

on the NAT device to retrieve an XML listing of the UPnP services available.

Once the control URL for the needed service is acquired, the external facing

address and port mapping is done via the UPnP methods AddPortMapping(),

DeletePortMapping(), and GetExternalIPAddress(). XML Descriptions of the

SOAP messages for these methods are shown in Figures 3.8, 3.9, and 3.10 below.

31

<?xml v e r s i o n =”1.0”?>
<s : Envelope xmlns : s=

” http :// schemas . xmlsoap . org / soap / enve lope /”
s : encod ingSty l e=
” http :// schemas . xmlsoap . org / soap / encoding/”>
<s : Body>

<u : AddPortMapping
xmlns : u=”urn : schemas−upnp−org : s e r v i c e

: WANIPConnection:1”>
<NewRemoteHost></NewRemoteHost>
<NewExternalPort>3478</NewExternalPort>
<NewProtocol>UDP</NewProtocol>
<NewInternalPort >3478</NewInternalPort>
<NewInternalCl ient >192.168.1.123</ NewInternalCl ient>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>

Some Desc r ip t i on
</NewPortMappingDescription>
<NewLeaseDuration>120</NewLeaseDuration>

</u : AddPortMapping>
</s : Body>

</s : Envelope>

Figure 3.8: UPnP AddPortMapping() Method

<?xml v e r s i o n =”1.0”?>
<s : Envelope xmlns : s=

” http :// schemas . xmlsoap . org / soap / enve lope /”
s : encod ingSty l e=

” http :// schemas . xmlsoap . org / soap / encoding/”>
<s : Body>

<u : DeletePortMapping xmlns : u=”urn : schemas−upnp−org
: s e r v i c e
: WANIPConnection:1”>

<NewRemoteHost></NewRemoteHost>
<NewExternalPort>3478</NewExternalPort>
<NewProtocol>UDP</NewProtocol>

</u : DeletePortMapping>
</s : Body>

</s : Envelope>

Figure 3.9: UPnP DeletePortMapping() Method

32

<?xml v e r s i o n =”1.0”?>
<s : Envelope xmlns : s=

” http :// schemas . xmlsoap . org / soap / enve lope /”
s : encod ingSty l e=
” http :// schemas . xmlsoap . org / soap / encoding/”>
<s : Body>

<u : GetExternalIPAddress xmlns : u=”urn : schemas−upnp−org
: s e r v i c e
: WANIPConnection:1”>

</u : GetExternalIPAddress>
</s : Body>

</s : Envelope>

Figure 3.10: UPnP GetExternalIPAddress() Method

3.2.4 STUN (Session Traversal Utilities for NAT)

Unlike the protocols discussed in the previous sections, STUN is not used to

explicitly create an external facing address and port mapping. STUN is a NAT

traversal and discovery protocol that does not depend on any particular func-

tionality of the NAT devices used. It is a client/server system and is designed

to be used on its own or as part of a larger set of components in the context of

NAT traversal. STUN can be used by a node to discover its external facing IP

address in order to allow communication with other nodes that may or may not

be behind NATs [54]. It is a binary protocol and can be used over UDP, TCP,

or TCP-over-Transport Layer Security (TLS). When operating over UDP, the

STUN client must use re-transmission as a means of achieving delivery reliabil-

ity. If used as the sole protocol in a TCP connection, no re-transmission logic

is needed. STUN is known to work with full-cone NATs, restricted-cone NATs,

and port-restricted-cone NATs. It does not work with symmetric NATs. How-

ever, according to [23], this type of configuration is becoming more rare due to

its interference with several types of applications.

33

STUN supports two transaction types: request/response for two way com-

munications, and “indications” for one-off messages. The STUN server is lo-

cated on the outside of the NAT, while the clients may be behind one or more

NATs. The message format is relatively extensible, having the potential to

support many types of operations, although only one is supported by the base

protocol. The header for a STUN packet contains a “method” (specifying which

request or indication is desired), a class, and a transaction ID (used to match

requests and responses). The basic structure of the header is shown below in

Figure 3.11.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 0 STUN Message Type Message Length

Magic Cookie

Transaction ID (96 bits)

2 3 4 5 6 7 8 9 0 1 2 3 4 5

01

M M M M M C M M M C M M M M

3 2 1 06 5 411 10 9 8 7

0 1 2 3

Figure 3.11: Common Message Header

A STUN message may also contain a number of attributes. The protocol

defines a set of standard error codes that are included as attributes in STUN

messages.

In the basic operation of STUN, the client, which knows the public address of

the server, sends a binding request to the server. As the request passes through

one or more NATs, the IP address and port of the client will be translated

within the packets. When the STUN server receives the request, it sets the

“MAPPED-ADDRESS” attribute in the binding response to the client’s most

34

public facing address and sends it back to the client. An Exclusive OR (Logical

Operator) (XOR) obfuscated version of the public address is also set in the

“XOR-MAPPED-ADDRESS” attribute. This is done since some NAT devices

or ALG’s that may be in use re-write any instance of the IP address in the

packet, making the “MAPPED-ADDRESS” data not always reliable. After

this exchange, the client knows its external facing IP address and port. In order

for two nodes to set up direct communication, they both go through this process

to discover their most public facing address. After exchanging these addresses

via a signalling mechanism, they can begin communicating directly (e.g. via a

hole punching method). The structure of these attributes is shown below.

1 byte (8 bits) 1 byte (8 bits)

Type (16 bits)

Length (16 bits)

Value (variable)

Figure 3.12: Common Attribute Header

1 byte (8 bits) 1 byte (8 bits)

All Zeroes (8 bits)

Port (16 bits)

Address (32 or 128 bits)

Family (8 bits)

Figure 3.13: MAPPED-ADDRESS Attribute

35

1 byte (8 bits) 1 byte (8 bits)

All Zeroes (8 bits)

X-Port (16 bits)

X-Address (variable)

Family (8 bits)

Figure 3.14: XOR-MAPPED-ADDRESS Attribute

1 byte (8 bits) 1 byte (8 bits)

Reserved (21 bits)...

X-Port (16 bits)

Reason Phrase (variable)

... (continued)

Reserved (21 bits)
Class (3 bits) Number (8 bits)

Figure 3.15: ERROR-CODE Attribute

A simple example of two nodes initiating communication with the help of

STUN and UDP hole punching is described below and shown in Figure 3.16.

This technique will not work with symmetric NATs as the external address and

port seen by the server will be different than any usable by the other node.

1. Node 1 uses the STUN server on the public internet to obtain its external

facing address and port.

2. Using a signalling mechanism (e.g. a messaging service, a rendezvous

server, SIP, etc) Node 1 communicates its external facing address and

port and desire to connect to Node 2.

3. Node 2 then uses the STUN server on the public internet to obtain its

external facing address and port, and uses the signalling mechanism to

communicate the information to Node 1.

4. Both nodes attempt to connect to each other over UDP using the received

address and port information for the other node. With most NAT con-

36

figurations, the first message from each will be dropped, but subsequent

messages will be successful as the NAT devices for both nodes will have a

〈source, destination〉 mapping for the other and therefore allow incoming

connections from each respective node.

STUN Server
Signalling Mechanism

Public Internet

NAT 1 NAT 2

Node 1 Node 2

e.g. rendezvous server,

messaging service, etc.

Figure 3.16: A simple network setup with a STUN server.

A more sophisticated use of STUN is employed by the Internet Connectivity

Establishment (ICE) protocol [40]. Along with the TURN protocol (described in

the next section), STUN is used for NAT discovery and connectivity checks. In

some cases only STUN is used. For example, two nodes behind separate NATs

can determine if there is a connection path between them using only STUN with

37

ICE extensions. They both prepare a list of candidates from both the local client

addresses and the server reflexive addresses. One node takes on the controller

role and sends an initial offer to the second using an Session Description Protocol

(SDP) message, via an external server if both nodes are behind NATs. Since

both nodes now have candidate lists for both their addresses and those of the

node they are trying to contact, they begin connection checks using STUN

binding requests. If any valid connections are found, those can then be used for

direct communication.

In addition to allowing STUN clients to discover their external facing ad-

dress, there are several optional STUN components. These include a fingerprint

mechanism for use when STUN is multiplexed with other protocols, DNS dis-

covery of other STUN servers, a mechanism to provide message integrity, and

short and long term credential mechanisms [54]. These mechanisms are used by

other protocols that make use of STUN, such as ICE.

The original incarnation of STUN was described as a complete NAT traver-

sal solution, and was called Simple Traversal of UDP through NATs. It was

also described as able to detect NAT configurations [41]. In some network con-

figurations this version of STUN had problems working over TCP, leading to

proposed solutions such as Simple Traversal of UDP Through NATs and TCP

too (STUNT) and others discussed in [16] and [15]. STUNT attempts to achieve

NAT connections via TCP by having the nodes predict their global addresses

and use RAW sockets to read the full first SYN message. Some of the ideas

present in STUNT have been incorporated into ICE over TCP (ICE-TCP) in

order to allow ICE to work over TCP streams [27]. However, the success of

these methods is still somewhat dependent on the involved NATs complying

38

with the requirements described in [45].

The ability to detect NAT configurations was omitted from the current ver-

sion of STUN as not all NATs fit neatly into the categories recognized by STUN.

While the current version of the STUN protocol is not a complete NAT traver-

sal solution, it does provide a set of tools used for NAT discovery and traversal

by other protocols such as ICE, SIP, and BEHAVE-NAT [54]. There is also

research being done to extend the STUN protocol for more specialized uses.

Some of these pursuits are detailed in Section 3.2.7.

Unlike NAT-PMP, PCP, or UPnP, STUN depends on an external server

that is usually not part of the NAT device. This allows software applications to

use STUN without being concerned about the configuration or number of the

NAT devices on the network. When used as part of a larger system for NAT

traversal such as ICE, knowledge about the architecture of the network is also

not needed. While UPnP also involves a discovery mechanism, it is arguably

more complex and depends on the NAT devices themselves. NAT-PMP and

PCP do not have a discovery mechanism.

3.2.5 TURN (Traversal Using Relays around NAT)

While TURN was not evaluated for performance as part of this research, it is

an extension of the STUN protocol and is described here for comparison.

General Operation TURN is an extension of STUN that allows nodes be-

hind NATs to communicate regardless of the NAT architecture or configuration,

as long as they are both able to contact the TURN server. It uses a client/server

architecture, and the server is used to relay messages from the client to another

39

node [34]. However, as a result of having to relay messages between nodes,

TURN is generally slower than STUN. In the base specification, TURN sup-

ports IPv4 addresses and the transport of messages from the client is supported

over UDP, TCP, or TLS over TCP, while messages from the server to the con-

tacted node, known as the “peer”, are always sent over UDP. An extension to

support TCP messages is described in [37] and another to support IPv6 ad-

dresses in [10]. Only a client initiating communication with another node needs

to use this protocol; the contacted node simply sends and receives messages to

and from the TURN server. The protocol offers several services to provide the

relay functionality including allocations, permissions, and data channels. It also

supports the reduction of IP fragmentation via packet size [34].

As TURN is an extension of STUN, its services supplement those offered

by STUN by adding the following methods and attributes to the base STUN

protocol.

Methods Allocate, Refresh, Send, Data, CreatePermission, ChannelBind

Attributes CHANNEL-NUMBER, LIFETIME, XOR-PEER-ADDRESS, DATA,

XOR-RELAYED-ADDRESS, EVEN-PORT, REQUESTED-TRANSPORT,

DONT-FRAGMENT, RESERVATION-TOKEN

TURN uses the concept of “allocations” to track relayed connection data,

and these structures are the base association for the other concepts used. An

allocation contains information such as the relayed transport address (used for

server to node communication), the 5-tuple (client IP and port, server IP and

port, and protocol), authentication information, and permissions, among others.

Allocations are created via a STUN request/response sequence with additional

40

attributes. An allocation can also be refreshed by sending a request with a

LIFETIME attribute of 0.

A “permission” is associated with an allocation, and each allocation can have

multiple permissions associated with it. They contain both an IP address and

a time-to-expiry, and allow the specified IP address outbound communication

with the client. All permissions have an initial lifetime of 300 seconds, and can

be created and refreshed either via CreatePermission requests or ChannelBind

requests.

Once the allocations and permissions have been set up, data can be ex-

changed either though “Send” and “Data” indications, or using channels. The

Send indication is meant to be used for data originating from the client and

destined for the contacted peer. The Data indication is used for data originat-

ing from the peer and coming back to the client. Both of these indications use

the Data attribute to store the actual data being communicated.

The other data exchange method is to use Channels, which require some

initial set-up but involve less overhead for the individual messages. A channel

is set up via a ChannelBind request from the client. Each binding is made up of

a number for the channel, the transport address of the peer to contact, and the

time-to-expiry. It is specific to an allocation. In addition to setting up channels,

these requests also create or refresh a permission. Once the channel has been

established, data is sent with ChannelData messages, which have the structure

below.

41

ChannelData Structure

1 byte (8 bits) 1 byte (8 bits)

Channel Number (16 bits)

Length (16 bits)

Application Data (variable)

Figure 3.17: ChannelData Structure

An example of a basic exchange of data via a TURN server is shown below.

1. Client sends an Allocate request to the server.

2. Client receives an Allocate success response.

3. Client sends a Permission request to the server for a particular node, or

“peer” with which to communicate.

4. Client receives a Permission success response.

5. Client sends a ChannelBind request to the server to establish a commu-

nication channel with the peer.

6. Client receives a ChannelBind success response.

7. The client now sends ChannelData messages to the peer and receives re-

sponses via the established channel.

8. The connection is refreshed by the client via a Refresh Request to the

server.

9. The server responds with a Refresh success response and communication

between the client and the peer continues.

42

While TURN works in all situations, since messages are relayed through

a server, performance may suffer. This was also concluded by the authors of

[36] during their review of NAT traversal methods. As an extension of STUN,

TURN shares many of the same properties.

3.2.6 Summary of Comparison

NAT-PMP is the simplest of the protocols discussed, but as a result has the

fewest features. It allows a client to explicitly map an external facing address

and port using a user-specified external port number and a requested lifetime

for the inbound mapping. In addition, it allows a client to obtain the external

facing IP address from the NAT device using a separate request. PCP has

a more complex message format and offers support for creating both inbound

or outbound mappings, as well as a specialized message format for making

announcements to clients. The lifetime component of the mapping request for

NAT-PMP, PCP, and UPnP allows the client to reduce the number of keep-

alive messages needed, as they can simply renew when the lifetime expires. This

is especially useful with the outbound PEER mapping option offered by PCP.

In addition, PCP includes multiple ways to restore the state of a NAT if it is

powered off or reboots.

When compared to UPnP, NAT-PMP and PCP both have a more compact

message format, since UPnP uses XML. UPnP also lacks a mechanism to recover

from a NAT device reboot, although that can be mitigated by having the UPnP

control points handle the recovery. NAT-PMP and PCP require a finite lifetime

for the mapping while UPnP does not, although it can accept one if requested.

43

If a requested external facing port has already been mapped, NAT-PMP and

PCP can assign an alternative port to the client. However, UPnP will either

return a error or silently overwrite the existing mapping [29].

STUN is not designed to control the explicit mapping of ports, but it can

be used to obtain an external facing address and port mapping via an outgoing

binding request to a server outside of the NAT. Since TURN is essentially an

extension of STUN that acts as a relay server, it allows communication in all

situations, but potentially at the cost of performance.

If a node is behind a single NAT device, NAT-PMP, PCP, or UPnP would

work equally well for simple address and port mapping. However, PCP includes

several security-related enhancements as well as the PEER mapping option for

outbound connections. These make it a better choice in situations where that

type of mapping is required. The ability of NAT-PMP and PCP to automat-

ically assign an alternate external facing port may make them a better choice

in situations where the client does not know which ports may be available on

the NAT device. On the other hand, the UPnP collection of protocols includes

functionality other than NAT device port mapping, so applications that make

use of other UPnP services (such as presentation device control) may want to

take advantage of the accompanying port mapping. STUN and TURN are best

for situations where the number or configuration of NAT devices is not known

and the client needs to communicate with another node outside of its local NAT.

The characteristics of each are summarized in Table 3.1 below.

44

Supported Capability NAT-PMP PCP UPnP-IGD* STUN TURN

Control of NAT Device Yes Yes Yes No No

Multiple NAT Layers No No No Yes Yes

Requires External Server No No No Yes Yes

Message Relaying No No No No Yes

Mapping Type(s) Inbound Inbound, Outbound Inbound Auto (NAT Device) Auto (NAT Device)

Mapping for other clients No Yes Yes No No

Communication with Server UDP UDP UDP, TCP UDP, TCP, TCP-over-TLS UDP, TCP, TCP-over-TLS

Mapping Protocols (NAT) UDP, TCP UDP, TCP, SCTP,
DCCP

UDP, TCP UDP, TCP UDP, TCP

NAT Device Recovery Seconds Since Start of
Epoch

ANNOUNCE, Rapid
Recovery

Via External
UPnP Features

N/A N/A

–
* These characteristics are based on the UPnP-IGD Specification Version 1 [53].

Table 3.1: Comparison of Protocol Characteristics

3.2.7 Specialized Traversal Methods

While the protocols mentioned in Section 3.2 are useful in most situations,

research has been done to adapt these protocols to optimize NAT traversal in

more specific situations or improve NAT traversal in general, especially in the

realm of P2P applications. Many of these techniques either incorporate or are

based on the original or current STUN protocol specification. Others involve

modifications to the NAT device itself, or take a different approach entirely.

While none these techniques were involved in the experiments for this thesis,

they demonstrate some issues with the more standardized methods and propose

some interesting solutions.

Techniques Based on STUN

In addition to being extended to create the TURN protocol, the flexibility and

extensibility of the STUN protocol has led to its use for many applications,

which is one of the reasons it was chosen as the basis for the algorithm de-

scribed in Chapter 4. This section describes modifications to facilitate working

in a P2P environment. While many of these are based on the legacy STUN

specification [41], the work in still relevant in the context of the newer protocols

45

predominantly in use today.

One of these techniques makes use of the concept of user “superpeers”,

described in [51] by Wacker et al. With this technique STUN is used as a

component of a larger process to allow communication between nodes that may

or may not be behind a NAT. As a prerequisite, all of the nodes involved must

be joined to an overlay network with a Distributed Hash Table (DHT) to use

as storage for node addresses. The network also provides “multi hop” routing

between nodes. First, all of the nodes obtain their NAT configuration using

the legacy STUN protocol. This can be done either with external servers or by

“superpeers” within the network, which are STUN servers formed at runtime

from two nodes that are either behind a Full-Cone NAT or no NAT. Nodes on

the network use the DHT to find a suitable STUN server. Once a node knows

its NAT type, it chooses a suitable communication method based on that type

and that of the node being contacted. The traversal methods chosen are either

direct, hole punching, reversal, or relaying. The initial coordination for the

communication setup is done via the overlay network.

The authors noted that they plan to continue the work and evaluate per-

formance. Even though the current STUN specification no longer offers the

ability to detect the NAT configuration, this system could be used in situations

where the NAT configuration is known for at least some of the nodes, or where

another method is used to learn that information. For example, NAT device

information such as supported protocols, NAT mapping behavior, and NAT

filtering behavior could be determined by methods such as those described in

[21]. Another possibility would be to adapt the ICE protocol [40] to set up the

traversal method. The authors also mention that without UDP support this

46

system will not work, but the current STUN specification works over TCP as

well.

Another approach to adopting STUN to work in a P2P environment is called

C STUN, and is described in [57]. An external STUN server is required. The

network is divided into areas, or “communities”, each containing one or more

NAT devices. The authors define a new STUN attribute called COMMUNITY,

which is used to indicate to which area of the network a node belongs. This

new attribute is included with normal binding requests and responses used by

the client node to receive its external IP address and port.

The STUN server maintains a “watchlist” of nodes based on their commu-

nities. The first node in each list is called a “supernode” and is used to connect

to other nodes in that community via UDP. With this setup two nodes within

the same community can connect to each other via the supernodes. The list is

managed dynamically and if a supernode is detected to no longer be “alive”,

the next node in the list becomes the supernode. The server also manages the

list for efficiency by tracking requests and moving often requested nodes up the

list. For nodes in different communities, hole punching is used to establish a

direct connection between the nodes via the STUN server.

As with the previously discussed technique, this paper is based on the legacy

STUN specification. However, this technique only uses the STUN functionality

that is still available with current specification [54]. Therefore it would not need

additional support if the current specification was used instead. If knowledge of

a node’s NAT type is desired to facilitate setting up a method of communication

either via supernodes or hole punching, techniques such as those discussed for

the previous research can be used. The current STUN specification’s support

47

of TCP also opens up additional options. The authors note that it would be

more efficient to use a DHT instead of a watchlist, as is used by the previously

discussed technique.

Techniques with NAT Device Modifications

Another approach is to enhance the NAT devices themselves to support the re-

quired functionality. One example is a dynamic mapping method geared toward

heterogeneous networks, which is described in [52]. These modifications allow

the NAT devices to store the address mappings in a P2P storage system that

is mirrored on other nodes in the network. A node can find the address of any

other by contacting its NAT, which will return the address information. The

architecture is comprised of NAT devices in the “core” network as well as NAT

devices on the border of each subnetwork. The authors describe this method

as advantageous since it does not require an external server, there is no single

point of failure, and there are no redundant communication routes, which min-

imizes any effects on performance. It also supports communication over TCP.

While the authors’ criticisms of STUN are based on the legacy specification,

they make several points which still apply to the current specification, such as

the dependence on external servers and the inability to work through symmetric

NATs. They also compare their method to other NAT traversal solutions, such

as TURN, ICE, AVES, and 4+4.

The authors of [56] propose router support for a “UDP Switch”, which aids

in communication among devices behind NATs. Like many other techniques

used for NAT traversal, this one requires the use of an external server; in this

case a SIP Server. Each node publishes the address of its NAT via a REGISTER

48

command to the SIP Server. When a node wants to contact another, it obtains

the address of the corresponding NAT device via the server. The authors also

include a new SIP parameter “paddr” to the SIP INVITE message, which tells

the SIP server to return the NAT address of invited node. A new content type,

“application/x-udp-switch”, is added to SIP INFO messages as well.

Their protocol is used for communication through the UDP Switch enhanced

NAT devices. It consists of four commands, using a Session ID to manage the

switch sessions and Direction Indentifier to indicate from which node a data

message originated. As is the case with most scenarios involving NAT mappings,

once a connection is established, keep-alive messages must be sent between the

two nodes to maintain the connection.

In [50], the authors are attempting to solve a different, but related problem

than most of the other literature discussed in this section. While the majority of

the discussed techniques focus on traversing NATs, this technique is presented as

an alternative to NATs all together. The authors describe and evaluate “4+4” as

a solution to the problem of insufficient numbers of unique IPv4 addresses. The

authors state that a big issue with IPv6 will be the transition, while 4+4 allows

for an easy transition and will make traditional NAT architectures unnecessary.

The core idea is the 4+4 address, which is the concatenation of a public

and a private IPv4 address. This idea seems similar to the one presented in

[30] (discussed in the next section), but taken a step further by eliminating the

concept of the NAT. The IP packets contain two fields each for the source and

destination addresses. The data format is set up so that the outer headers will

contain addresses understood by normal IPv4 routers, and as a result packets

can be forwarded correctly. A network is divided into “realms”, which are groups

49

of networks that use the same address block with unique addresses. These are

further divided into public-address realms and private-address realms.

Modified NAT devices, known as “realm gateways” handle the translation

and routing of messages. For devices inside a private-address realm, the 4+4

address consists of the public address of the realm gateway and a local address

of the node. In terms of transitioning to 4+4, most NAT devices will only need

to be modified to swap addresses in the 4+4 header and convert ICMP (v4)

message headers. The authors discuss several advantages of 4+4 over IPv6,

including the ease transitioning in an ad-hoc manner, backwards compatibility

with IPv4, and the preservation of subnet isolation. The latter is particularly

interesting as the concept of a NAT does not need to exist in a 4+4 network,

as the realm gateways can use the 4+4 address to route a message anywhere.

The authors also evaluated an implementation testing several common pro-

tocols and existing network analysis tools, and determined that while there are

some issues, 4+4 could be a viable alternative to IPv6 if one is needed. While

this paper was published in 2003, and a need does not seem to have yet pre-

sented itself, the idea has been shown to be experimentally solid. The ideas

could also be adapted to NAT traversal in current environments.

The NAT-f (NAT-free) protocol described in [49] does not require a special

server, but does make use of a Dynamic DNS (DDNS) server for name resolution

using wildcards. DDNS servers are already commonly deployed in networks.

The protocol is implemented both in the home gateways (NAT devices) and the

“external nodes” of a network. It works over both UDP and TCP since NAT

devices map them separately. The process described in the literature is based

on a node outside of a NAT trying to contact a node behind one, but if the

50

functionality in the external node is instead implemented as part of the home

gateway, the technique will work even with both nodes located behind NATs.

The technique requires each home gateway to register itself with a domain name

on the DDNS.

There are several data structures involved in the use of this protocol. Each

home gateway contains an Access Control Table (ACT) containing the name,

internal IP address, and access control flag of all internal nodes. External nodes

contain a Name Relation Table (NRT), which stores the names of internal nodes

and their associated home gateways. In addition, external nodes contain a

Virtual Address Translation Table (VAT), which maps the virtual IP address

to the actual mapped address in a particular home gateway.

When an external node wants to contact a node behind a NAT, the first

step is DNS name resolution, with the external node saving the information in

its NRT. It then attempts to create an entry in the VAT if one does not exist

by sending a NAT-f mapping request to the internal node’s associated home

gateway. The home gateway checks its ACT and if an entry corresponding

to the requested node exists and allows external connections (via the access

control flag), the gateway creates a NAT mapping and sends the appropriate

information back to the external node that issued the request.

One notable aspect of this technique is that it works with Symmetric NAT

configurations since the NAT-f process is triggered each time the address infor-

mation changes. It also allows communication with devices that do not support

NAT-f. According to the authors it does not significantly affect the performance

of communication in the cases tested with their implementation in the FreeBSD

kernel, especially relative to other NAT traversal techniques.

51

Other Techniques

Other research focuses on solutions that make use of an external server or a

P2P network overlay to achieve NAT traversal. For example, the authors of

[35] describe a system called Autonomous NAT Traversal. They cite security

risks and added complexity as reasons for not using an external server, instead

relying on the mapping behavior of most NAT devices.

The only prerequisite for this technique is that the node (Node A) trying to

contact another node behind a NAT (Node B) must know the public address of

the NAT device for Node B. Node B is configured to regularly send either an

ICMP ECHO REQUEST or a UDP message to an unallocated IP address at

a set time interval. Since the request came from behind the NAT, an external

facing mapping is created and the NAT device will allow incoming responses to

the message. Node A can then fake an ICMP TTL EXPIRED reply, which is

routed by the NAT to Node B due to the mapping. Node B can obtain the IP

address of Node A from that reply and establish a UDP or TCP connection.

The authors provide three implementations of this technique, which were

evaluated in a variety of network configurations by volunteers. They determined

that the technique works almost all of the time in configurations where only one

node is behind a NAT, but works very rarely if both nodes are behind a NAT.

Despite this limitation, the authors note that most applications that utilize NAT

traversal have several techniques at their disposal, and this one can be included

as part of the collection and used when applicable. This could potentially

be attempted along with other protocols in a similar manner to how the ICE

protocol utilizes STUN and TURN, and only used when it is a viable choice for

52

the NAT configuration. The authors discuss the advantages and disadvantages

of using ICMP messages verses UDP, as well as the various methods attempted

for connection if both nodes are behind a NAT.

The authors of [30] describe a NAT traversal technique based on hole punch-

ing as part an a P2P eLearning system they are developing. The technique

requires no external servers, and unlike many other techniques discussed, all

of the nodes in the network are equal. However, it is only effective when each

node is behind only one NAT device. Each node has a unique identifier consist-

ing of either its global IP address and port; or if it is behind a NAT, both its

external IP address and port and private IP address and port. When a node

joins the network, it creates a mapping on its NAT device either using UPnP (if

available), or manually. To join the network, a node must know the IP address

for an existing member. Once part of the network, data is shared between the

nodes.

A structured P2P NAT traversal technique known as SMBR (Selective-

Message Buddy Relaying) is introduced in [55]. A DHT is used to keep a

list of mappings, similar to other methods discussed previously such as [51],

or the name relation table in [49]. The protocol has message types for several

scenarios. Control messages are used to establish communication with other

nodes. The connection process depends on the network configuration for each

node, and in some cases a third node can be used to help initiate a connection

between two nodes. Random selection is used when selecting helper, or “buddy”

nodes.

The authors of [42] describe a method of using nodes as NAT proxies for

connections in P2P games. This technique requires an external server, called

53

the “global tracker”, which maintains global identifiers for each node. The

system consists of two layers, Application Layer Framing (ALF) and Peer to

Peer Abstraction Layer (PAL). The PAL layer is responsible for creating proxied

connections when necessary.

The system first attempts NAT traversal via hole punching, similar to previ-

ously discussed techniques and to those used with STUNT. The hole punching

is attempted using information from the global tracker, a “buddy server”, and

port prediction. It will fall back to creating a proxy connection using another

node (or server if absolutely necessary) if the NAT hole punching is not success-

ful. The proxy technique works for both UDP and TCP traffic. Proxy nodes

are found based on a set of five nodes from a random selection. The authors

point out the difficulties of a proxy node leaving the network and offer some

mitigation techniques. Their evaluation concludes that the performance of this

method is satisfactory, but can be improved by further research.

Much research in the area of NAT traversal focuses primarily on UDP, since

a common use case is P2P applications such as Voice-over-IP (VoIP). In [12], the

authors propose a NAT traversal technique designed to solve the NAT traversal

problem for TCP, although the solution will potentially work for other transport

protocols as well. It uses UDP hole punching and IPv4 tunnels to wrap any

transport protocol (in this case TCP using IPv6 addresses) and establish a

connection between two nodes. All of the traffic of the original protocol is

packaged in UDP packets and the segments are sent through the tunnel. While

it does not explicitly require an external server, it does require that some nodes

not be behind a NAT, in this case to act in a rendezvous capacity when setting

up a connection. The two types of nodes are the “rendezvous” nodes and the

54

“client” nodes. The authors state that an overlay network of rendezvous nodes

is the basis of the system. The rendezvous nodes can be compared to the

supernodes described in [57]. While the supernodes simply act as links between

various nodes in a part of a network, like the rendezvous nodes they are essential

for making the NAT traversal technique effective. The superpeers described in

[51] are also similar in that they provide an essential service to the other nodes,

in that case supplying their external address information.

A client node begins its connection to the network by logging in to a ren-

dezvous node. This technique assumes that all clients have knowledge of ad-

dresses for stable rendezvous nodes. As with previously discussed techniques,

once the login connection is established, keep-alive messages must be sent peri-

odically in order to keep the connection active. The rendezvous node sends the

client node an IPv6 address that was chosen for it.

The technique depends on a virtual network interface created by the client

node for the tunnel, from and to which normal network traffic is forwarded.

The rendevzous nodes keep a table of all active client nodes, as well as tables

of other rendezvous nodes it is logged into and those logged into it. A timeout

value in the table is used to remove inactive sessions and avoid wasting memory.

Because rendezvous nodes are in contact with each other and maintain lists of

client nodes, they are able to assist in the UDP hole punching needed for the

connections. Experimentation showed that there is little effect on performance

with no modifications to existing software or NAT devices required. For future

work the authors look to include a DHT to improve the performance of client

nodes looking for rendezvous nodes. This is one of the few pieces of literature

reviewed that explicitly stated its goal to work with NATs even after IPv6 is in

55

wide use. Many papers, particularly ones published before 2005, assume that

once IPv6 is in wide use there will be little use for NATs.

3.3 Related Work

To our knowledge there is little research in terms of comparing these protocols

in terms of performance. Comparisons based on other factors are described in

the previous sections.

As part of their research for creating guidelines for managing SIP-based ser-

vices, the authors of [11] evaluated the STUN, UPnP, and IPFreedom protocols

for both the number of messages sent and time based performance. The former

two protocols are discussed in Sections 3.2.4 and 3.2.3, respectively. Like STUN,

the IPFreedom protocol uses a server on the outside of the NAT. The server is

used to send signal messages via TCP tunneling, while media related data is

sent with UDP.

The Vocal software was used as a SIP proxy, and Ethereal was used to obtain

network traffic data. In terms of clients, the experiment tested Grandstream

Budgetone, Windows XP Messenger, and Wave3. The SIP messages used for

analysis were REGISTER, INVITE, and BYE. STUN was found to be the

most efficient, generating the fewest extra messages (although still a significant

amount) and having the smallest performance impact. UPnP and IPFreedom

both generated many more extra messages and affected the performance in

several of the “public to private” communication scenarios. The authors point

out that while STUN is the most efficient, it does not work in all NAT situations.

As part of their evaluation for their SPM peer communication system, the

56

authors of [36] evaluated the efficiency of NAT traversal in their system, which

uses ICE. The comparison was done against the iperf benchmark using UDP

communication over routers that were manually configured to forward the nec-

essary ports. Their experiment spanned four sites and eleven network topology

setups. In all cases the nodes were able to connect using SPM and NAT hole

punching, and were within 87% network efficiency in terms of successful traffic.

3.4 Objectives

The objective of this experiment is to determine which of the following methods

(if any) are the best in terms of performance for obtaining an external address

and port mapping through a NAT: UPnP, NAT-PMP, PCP, and STUN.

3.5 Motivation

In terms of packet formats, NAT-PMP, PCP, and STUN are fundamentally

different than UPnP. The first three protocols use an efficient, well defined

binary packet format and have maximum message sizes. This allows for less

data transmitted over the network, as well as potentially easier processing by

the client and server. They are also transmitted over UDP, which has less

overhead than TCP since the connection state is not tracked.

UPnP control messages are transmitted via HTTP requests and responses

over TCP. The requests themselves are XML, and have no defined maximum

size. While this does not necessarily mean the messages will take longer to

process, it is a possibility.

57

3.6 Tools

For this experiment the following equipment and software was used:

• Clients running with Java 1.7 on Slackware Linux 14.1

• STUN Server running with Java 1.7 on Windows 8.1

• ASUS RT-N16 router with ASUSWRT-MERLIN firmware, using miniup-

npd for UPnP, NAT-PMP, and PCP

Since UPnP, NAT-PMP, and PCP are used for actually creating a port

mapping, the client interfaces directly with the NAT device for the test. When

using STUN, the automated functionality of the NAT device is used to create

the port mapping. A STUN server outside of the NAT completes the process

by providing the client with its external facing address and port.

3.7 Experimental Methods

3.7.1 Assumptions

• The network configuration is constant for each run for all of the protocols

tested.

• The NAT device is under a similar processing load for each run for all of

the protocols tested.

58

3.7.2 Design

There are two parts to this experiment. When testing UPnP, it was observed

that if the process was repeated within thirty seconds of finishing a previous

iteration, the resultant time was significantly smaller, even when requesting a

mapping for a different port. When the client pauses for thirty seconds or more,

the times are more stable. Although the client removes the mapping and closes

the socket used for the connection, the operating system may keep resources

open for reuse at a lower level. It is also possible that the UPnP server caches

the slot for a specified period of time. Initial tests with the other protocols

showed much smaller times that seemed to be unaffected by the lack of a pause.

However, for the sake of consistency, the clients for all of the protocols pause

for thirty seconds after completing an iteration of the test before beginning the

next one.

Figure 3.18 shows the network architecture used for these experiments. In

all cases except STUN, the client interacted directly with the NAT device to

create the external address and port mappings. For STUN, the external STUN

server was used to obtain information about the external facing address and

port mapping automatically created by the NAT device.

59

Public Internet

NAT 1

External

Address(es)/

Ports

Internal

Address/Port

Client

Private

Network

STUN

SERVER

Peer

Figure 3.18: Protocol Test Experiment Architecture

Local Tests

The first part of the experiment involves all of the protocols and is as follows:

1. Client sends a request to the NAT device or server to create the mapping.

2. Client receives a response. With PCP and STUN this is the only interac-

tion with the NAT device or server required to create the mapping.

3. In the case of NAT-PMP, the client makes another request to get the

external address, and with UPnP an extra request is needed to get both

the address and port for verification.

4. Client sends a request to a pre-determined peer address outside of the

60

NATs local network that includes its new external facing address and

port.

5. Client receives a response from the peer to confirm that the NAT address

and port mapping is active. In the case of STUN this simulates a UDP

hole punching scenario where the external address and port of the other

node is already known.

6. Client sends a request to the server to destroy the mapping (for all pro-

tocols except STUN).

The experiment was performed 1000 times for each protocol.

Geographically Dispersed Tests

The second part involves only STUN. Since UPnP, NAT-PMP, and PCP di-

rectly interact with the NAT device to actually create the external address and

port mapping, their only logical use is from the machine directly connected to

the NAT device. However, STUN is meant to be used in a variety of network

configurations. In order to get a broader view of the performance, the STUN

test was also done on a machine in a different location to test the effect of net-

work latency on the performance of the protocol. The STUN client was located

on a machine in Austria, while the STUN server and the peer used for the test

ping were located in Melbourne, FL.

3.7.3 Measurement

The timing is done on the scale of milliseconds, using Java’s

System.currentTimeMilliseconds() method. Each client records the time di-

61

rectly before sending the initial request to the NAT device or server and directly

after receiving a response. They once again record the time directly before send-

ing the request to the external peer and directly after receiving a response. In

both cases the two times are subtracted to find the time interval.

3.7.4 Threats to Validity

The primary validity concern with this experiment is that the results are imple-

mentation dependent. However, the objective is primarily to get a general idea

of the performance for each. For UPnP, NAT-PMP, and PCP, the widely used

MiniUPnP daemon acts as the server and is part of the router firmware. The

STUN server is custom built for the experiment, but processes the requests in

a straightforward manner.

3.8 Analysis of Results

The mean, median, and mode of the response times for each protocol are shown

below. The response times were as expected, with UPnP being slightly larger

possibly due to the use of TCP.

3.9 Discussion and Conclusions

As expected, all of the protocols provide very quick response times. NAT-PMP

and PCP are comparable, with STUN having a slightly slower average time.

However, this may be due to needing to traverse to an external server and back

through the NAT device instead of only using the NAT device. UPnP was

62

Protocol Mean Response Time Median Response Time Mode Response Time

UPnP 78 57 43

NAT-PMP 3 3 3

PCP 4 4 4

STUN (local) 5 3 3

STUN (distant) 209 186 172

(a) NAT Mapping Only

Protocol Mean Response Time Median Response Time Mode Response Time

UPnP 88 68 65

NAT-PMP 13 11 10

PCP 14 12 11

STUN (local) 16 11 10

STUN (distant) 424 387 373

(b) Including Peer Ping

Table 3.2: Protocol Response Times (ms)

slower, but this is most likely due to its use of the TCP protocol for handling

address and port mapping requests. NAT-PMP, PCP, and STUN use UDP for

request and response traffic. STUN was also tested with a geographically distant

server to explore the effects of network latency on the protocol’s performance.

The STUN server and “peer” for pinging were located in Melbourne, FL. The

STUN client was run from Austria. This resulted in longer response times when

making binding requests, but was still very fast.

The performance of all of these protocols when creating an external address

and port mapping is comparable. When deciding on which protocol to use, it

appears to be best to instead focus on the features provided by each (discussed

in previous sections).

63

Chapter 4

NAT UDP Keep-Alive Interval

Optimization

4.1 Introduction

There are numerous situations where a client application behind a NAT device

needs to keep an external facing address and port mapping active, even when

there is no data to be sent or received for an extended period of time. This

is especially true in the case of P2P and VoIP applications, where the client

depends on other nodes knowing their address and port so that they can be

contacted. Several methods exist within various protocols to handle the sending

and reception of keep-alive messages.

While some protocols have recommended keep-alive interval times, research

has been done to calculate the “optimium” keep-alive interval for a given client’s

environment. Ideally a minimum number of keep-alive messages will be sent,

both to reduce network traffic and to reduce the processing load of the clients

64

and servers involved in the communication. The sections below explore exist-

ing methods for sending and receiving keep-alive messages, describe existing

research to calculate the keep-alive interval, and introduce a new algorithm for

calculating a keep-alive interval while offering comparisons to existing methods.

4.2 Background

There are currently several techniques used by applications when sending “keep-

alive” messages, which in this context are messages whose purpose is solely to

keep the NAT external facing address and port mappings active for the client

node. Many NAT devices will terminate a mapping if it becomes inactive after

a certain amount of time, which will vary based on the device and configuration.

While many of these methods include recommended values for various protocols,

they all offer a way for the client to provide their own preferred keep-alive

interval value or at least note that it should be configurable.

In their analysis of VoIP systems energy efficiency, the authors of [5] discuss

the necessity of NAT keep-alive messages, as well as their being one of the major

drains of power or “waste”, along with signaling and media relaying. They

discuss various methods used by applications to maintain NAT external facing

address and port mappings, such as SIP NOTIFY requests. It is also noted

that while these messages are expensive, without knowledge of the network

architecture there may not be a better way to keep the NAT mapping alive.

In their experiments, the authors used three network configurations, the first

two of which used UDP; the first with NAT traversal and the second without.

In the second configuration, due to the absence of keep-alive message traffic,

65

the server could handle twice as many users as the first configuration. In [17],

the authors discuss various origins of energy consumption in mobile devices,

including keep-alive messages. They also discuss how many protocols can be

wrapped and sent over UDP, so longer UDP mapping lifetimes are becoming

more important. The authors used a Nokia 6630 phone and measured both the

transient current and the cumulative electric charge while using the phone on

various networks. They were able to measure the energy consumption of a single

keep-alive message, and concluded that keep-alive messages were a significant

factor in the energy consumption of the device. They suggest that network

operators can aid in preserving the battery life of devices using the network by

setting the NAT and firewall configurations to have reasonable timeout values.

The authors of [13] use a simplified version of the STUN protocol along with

“superpeers”, STUN servers, and “timeout” servers to assess various attributes

of the network configurations of nodes on a P2P network. They collected data

over a month long period, using a sample of 3500 peer nodes. Their experiments

determined that 90% of the nodes tested were behind some type of NAT or

firewall. They also found that out of their sample, 62% of the timeout values

were between two and two and a half minutes, and 25% were between one minute

and two minutes. A significant number of nodes were also found to be behind

a NAT configuration that makes P2P communication difficult. They concluded

that there is a growing number of nodes behind NATs and firewalls that are

participating in P2P activity, but, as stated earlier, much of the infrasture is

still not P2P friendly.

In [31], the authors discuss keep-alive messages as a challenge to their new

NetServ node architecture and propose a “Nat KeepAlive Responder” module

66

to handle the messages. The module would be set up on NetServ routers and

respond to keep-alive requests on behalf of the SIP server by spoofing the server’s

IP address in the response. This would at least alleviate the stress on the server

from many users constantly issuing keep-alive requests. This idea is similar

to one presented in [5] where the SIP user agents are embedded in routers.

However, with that solution the purpose is to bypass the need for keep-alive

messages all together by taking advantage of the router’s known public address.

The author of the patent [19] describes a system to manage keep-alive mes-

sages for wireless devices based on one or more servers and “network boundary

components”, or NAT devices. The motivation appears to be saving battery

power in the mobile devices by minimizing their involvement in the keep-alive

process. Two implementations are described. In both cases, keep-alive mes-

sages are sent from the server on a set interval to the NAT device. In the

first implementation, the NAT device forwards the keep-alive message to the

client, and the client only contacts the NAT device if it does not receive an

expected message. The NAT device can then resend the message or reset the

session depending on the configuration. The second implementation involves an

enhanced NAT mechanism and does not require any communication from the

client. In that case the packets are not transmitted past the NAT device, and it

handles the session renewal without contacting the client. This is achieved via

a Time-To-Live (TTL) attribute on the keep-alive packet that is calculated to

only be large enough to reach the appropriate NAT device. Since the client is

not involved, keep-alive messages can be sent more frequently, creating a more

“robust” connection.

There are various methods of sending keep-alive messages depending on the

67

protocols used by the application. In [26], both a Carriage Return and Line Feed

(CRLF) (for TCP) and a STUN (for UDP) keep-alive technique are discussed in

the context of supporting SIP messages. The core of the technique is a ping from

the client to the server to keep the NAT binding active. Instead of attempting

to find an interval to use for sending the keep-alive messages, default intervals

are suggested. The authors also state that clients or servers may want to do

their own interpolation of the interval. With the CRLF technique, the client

sends double CRLF messages at 10 second intervals and the server responds

with a single CRLF response. The STUN method consists of Binding Requests

and Binding Responses, with messages from the client sent at random intervals

between 24 and 29 seconds. In lieu of the default values, the client can supply

their own timeout interval via the Flow-Timer header in a SIP registration

message.

Another keep-alive technique using SIP messsages is described in [22]. Unlike

the previously discussed method, this includes a new SIP parameter, “keep”.

This parameter indicates a willingness to receive keep-alive messages and pro-

vides a recommended interval value. Keep-alive messages can either be associ-

ated with a SIP registration or with a dialog. In the first case, the messages

are sent until the registration is ended. In the latter case, the lifetime is either

negotiated up front or lasts until the dialog ends. These keep-alive messages

can either be CRLF or STUN, depending on the transport protocol used.

The “keep” SIP parameter used to define the keep-alive messages in this

context contains a place for a recommended frequency for the messages (inter-

val value), measured in seconds. The interval between each message should be

randomly distributed between 80% and 100% of the recommended value. How-

68

ever, this recommended value is not required, and the frequency determination

can fall back to the methods discussed in [26]. The “keep” parameter is more

versatile than using the previously mentioned Flow-Timer header, but in the

case where they are both used, the specification states that the same value be

used for both.

The subject of keep-alive messages is also discussed in [40]. The authors dis-

cuss various keep-alive message formats based on the peer type such as STUN

indications, Real-time Transport Protocol (RTP) No-ops, error messages, or

some other means. The recommendation is that the frequency should be con-

figurable, but have a default of 15 seconds. There is also a recommendation to

have the frequency set to the largest value permitted by the network setup. In

[25], as part of an outline of behaviors that NAT devices should exhibit when

dealing with UDP traffic, the authors state that for general use, an external ad-

dress and port mapping lifetime must last at least two minutes, and a lifetime

of more than five minutes is recommended. As seen by the recommended keep-

alive intervals from other publications and the results from [13], many NAT

devices have shorter mapping lifetimes by default.

In [33], the authors discuss various methods for sending keep-alive messages

for applications using RTP. These include empty transport packets, STUN in-

dications, and RTP messages with invalid or empty data fields that are ignored

by the receiver. However, the authors point out that RTP implementations

do not always ignore messages as they should per the standard, so the latter

method may cause issues. The recommended method is to multiplex RTP pack-

ets with RTP Control Protocol (RTCP) packets, as this reduces the number of

ports needed and in some cases the keep-alive functionality can be handled

69

with RTCP. In terms of the keep-alive interval, the recommendation is 15 sec-

onds for UDP and for TCP the recommended interval is 7200 seconds, with the

understanding that the values should be configurable.

4.3 Related Work

4.3.1 Introduction

In addition to the different methods of handling keep-alive messages, research

has been done to find the optimum interval to use for sending keep-alive mes-

sages. This is due to the drawbacks involved with keep-alive messages, such

as the resources used to process the messages on the server and considerations

such as battery life on the client.

Many factors add to the difficulty of calculating a keep-alive inteval for a

particular network configuration. In addition to the different types of possible

NAT configurations discussed in Section 2.1.1, the actual external address and

port mapping lifetimes for different NAT devices can vary considerably. The

study described in [24] shows the results from testing the behavior of several

routers and firmware versions, including the NAT behavior. The experiments

were performed by having each test node connected both through the NAT

device and through a “management link” to help coordinate message sending

and data collection for measurements.

For mapping over UDP connections, the authors tested the mapping lifetime

in the following cases: when only one message is sent from the client with no

reply, when the server responds with multiple messages, and when there are mul-

70

tiple back-and-forth messages between the client and server. They determined

that many routers modify or renew the mapping lifetime for a connection based

on both incoming messages and outgoing messages. In most cases the lifetime

resulting from the inbound server messages is longer than the initial lifetime

from the single client ping, although in other cases it was shorter. When there

are multiple back-and-forth messages, some routers extend the lifetime even

more upon renewal while most renew it by the same length as they did with

the first server response. The actual length of the lifetime varies by router. The

authors state that due to the wide range of behaviors and the large percentage

of routers that do not adhere to Internet Engineering Task Force (IETF) recom-

mendations, there is not a set of devices that can be targeted by developers as

being “better” behaved. These variations in behaviors could be due to a com-

bination of different default settings and the NAT device internally handling

UDP connections using various states, such as UNREPLIED and ASSURED as

described in [3].

These inconsistencies make determining a usable keep-alive interval difficult,

especially for mobile devices that may change networks frequently. The tech-

niques discussed in this section strive to address these issues. The new technique

described in Section 4.4 builds on these existing ideas to determine an optimum

keep-alive interval in a variety of situations.

4.3.2 Necessity of Keep-Alive Messages

Keep-Alive messages are a necessity in many situations, due in part to the varia-

tions with NAT mapping behavior discussed in the previous section. Connecting

71

to another node on a network through one or more NAT devices can be prob-

lematic and time consuming, especially for P2P applications, as is described in

Section 2.2.

The common use case for keep-alive messages are situations where the ar-

chitecture of the network is either not known, or where the client is on a mobile

device that changes networks frequently. In these cases connecting to another

node can be expensive in terms of both network traffic and time. The general

approach in these situations is to use a variation of ICE or a less formalized set

of steps to attempt a connection to the other node, which can result in wasted

messages and lost time during the attempted connection.

When an application needs to exchange data with another node at a slower

rate than the NAT mapping lifetime allows, these long connection attempts

become a problem. For example, if an application experiences periods of time

where it only sends messages once every few minutes, but the mapping lifetime

of a NAT device along the network path is only 30 seconds, the node sending

the message will need to re-establish the connection to the recipient node each

time it sends a message.

In this case, sending a keep-alive message through the connection to prevent

a timeout once it has been established both prevents a node from being inacces-

sible and allows application data to flow through the connection when necessary.

Whether or not the cost of maintaining the keep-alive message traffic outweighs

the inconvenience of continually re-establishing the connection depends on the

application.

In situations where a node only interacts with a single NAT device, one of

the previously discussed protocols for explicitly establishing mappings directly

72

with the NAT device is a better solution (NAT-PMP, PCP, or UPnP). With

the functionality offered by these protocols, the node can specify the lifetime of

the mapping and therefore send renewal requests at a rate more fitting for the

situation instead of having to work around the automatic mapping lifetime of

the NAT device.

4.3.3 Existing Keep-Alive Optimization Techniques

One area in which this research is particularly active is in P2P applications.

The authors of [39] describe and evaluate three algorithms to help extend the

length of keep-alive messages in a P2P network based on the amount of time

each node has been in the network. In the context of their research they are

using keep-alive messages to determine whether or not nodes are still part of the

network, however the ideas can be used to help with address and port mappings

in NATs in P2P networks, potentially both by the server and the client. They

cite research stating that nodes which have been on the network for a longer

period of time are more likely to remain on the network ([47], [48], [9]).

The first algorithm is the Probabilistic Keep-Alive Algorithm. It uses a

fixed value for the interval, but each of the node’s connections to other nodes

is handled independently. For each connection, after each period of the interval

ends, a keep-alive message may or may not be sent based on the probability

that the node is still online, which in turn is based on the time the node has

been online and the time it was last observed. This results in fewer keep-

alive messages on the network overall. The second algorithm is the Predictive

Keep-Alive Algorithm. It gradually increases the keep-alive interval for each

73

connection based on the amount of time the associated node is on the network.

The third algorithm, the Probabilistic Keep-Alive Algorithm With a Budget,

keeps a “budget” of bandwidth to use for keep-alive messages. The node sets

the keep-alive interval for each connection from that bandwidth allotment based

on the time each connected node has been on the network, with nodes that have

been on the network longer getting less bandwidth.

The authors evaluated these algorithms using real P2P data from RedHat9

and LegalTorrents. Overall these methods risk increasing the maximum delay

of failure detection due to fewer keep-alive messages, but decrease the mean and

median delay. These methods could also be used for calculating the keep-alive

interval for normal use between two nodes, especially in situations where one

of the nodes involved is part of a complex NAT configuration where the needed

keep-alive value could change based on external factors such as network traffic.

Two techniques for optimizing the keep-alive interval are described in [38]

and are expanded on in the patents described later in this section. The first is the

iGlance algorithm, which was used as part of the iGlance VoIP application. The

original source for the iGlance algorithm could not be located. With this method

two connections are used: one for normal traffic that uses a known “safe” keep-

alive value, and a test connection to evaluate potential new keep-alive values.

For each keep-alive message sent on the test connection, if a response is received,

the interval between messages is doubled, and the normal connection keep-alive

interval is set to the old interval used by the test connection. If no response

is received, the interval between keep-alive messages is halved. This allows the

live stream to always use a safe interval value and at the same time reduce the

amount of network traffic resulting from keep-alive messages.

74

The authors improve on the basic iGlance technique by checking both the

normal and test connections for failures and introducing a binary search element.

As with iGlance, a normal and a test connection are used. Instead of only

sending a keep-alive message on the test connection during the test interval,

the message is sent on the normal connection as well. Testing both connections

for failure allows the application to determine if there is another network issue

or if the receiver is no longer on the network. While a failure on only the test

connection indicates a NAT mapping timeout, a failure on both connections

potentially indicates one of the situations mentioned previously.

When there is a successful response on the test connection, that interval be-

comes the lower bound for a binary search. When there is a failure only on the

test connection, the current interval becomes the upper bound for the search.

The keep-alive interval for the test connection is then set to the midpoint be-

tween the lower and newly found upper bound lower+upper
2

. The search process

is repeated until the optimium value is found, with a maximum of 2[log2t] iter-

ations. Because this was devised in the context of P2P applications interacting,

the authors also added a “gossip” feature, where a node will alert others if it

detects that another node is not responding. Using the binary search method

has the added benefit of a more accurate result for the optimum interval.

In [32], the authors propose a technique that uses extensions to the STUN

protocol to determine the lifetime of a NAT mapping as part of a larger NAT

discovery method. The client uses two source ports. First, the client sends a

normal Binding Request from the first port. After a specified amount of time T,

on the second port it sends another Binding Request with a RESPONSE-PORT

attribute, both creating a new binding and instructing the server to deliver the

75

response to the first port. If the client receives a response on the first port, it

knows the binding to the first port is still active. Otherwise the binding has

expired. For each change of T, the client repeats the process of sending the

Binding Requests from both ports. Like with the technique just discussed [38],

the optimium time interval is determined with a binary search of the T values,

from the point where a response is received to a point where one is not. The

number of iterations or recommended precision are not specified and left up to

the implementer. A downside of this technique is inconsistent results due to

NAT device reboots or network traffic.

The authors of the patent [20] use a method similar to the ones previously

discussed and that seems to be based on [38] and [39]. Their system involves a

server, one or more clients, and one or more “network devices”, which are defined

as devices such as NATs or firewalls. A client maintains two connections to the

server, one for normal data communication, and one for testing the keep-alive

interval value. The keep-alive interval starts out with a known “safe” value, and

is incremented by a pre-defined amount for the test connection. If a response is

received on that connection, the interval is increased once again and the process

is repeated. If no acknowledgment is received, the data connection is checked

for connectivity. If a response has been received on that connection, the test

connection keep-alive interval is decremented. The amount of the decrement is

suggested to be the midpoint between the last known “safe” value and the new

upper bound, similar to iGlance or possibly suggesting a binary search method.

If there has been no response on the data connection, the system assumes a

network failure has occurred.

This process repeats until the interval for the test connection is less than

76

or equal to the interval for the data connection. When that is the case the

“optimium” keep-alive interval value has been found. There are a few aspects

that differentiate this method from the others discussed. The first is that after

the optimium value has been found, it is uploaded to the server, which then dis-

tributes it to other clients. Depending on the situation, the final keep-alive value

could be calculated based on several clients, although an aggregation method

for doing so is not described. This method also contains provisions to handle

intervals for individual network devices (if they can be uniquely identified) as

well as the situation where a known interval value ceases to work. Uploading the

keep-alive interval value to the server and distributing it to clients may result in

issues if there are NAT devices on the network which change the mapping life-

time based on the amount network traffic, or if the network topology changes.

The authors note that one of the advantages of sharing the keep-alive interval

with other clients is battery power conservation for clients running on portable

devices, which is a concern they share with the authors of [5], which is discussed

in Section 4.2.

To our knowledge, there is not much mention of optimizing keep-alive inter-

vals using a single channel in the literature. Existing methods use a secondary

channel for testing the keep-alive timeout value and perform normal data trans-

mission over the primary channel. However, there are some published ideas

that involve adapting keep-alive behavior based on network traffic for various

scenarios.

For example, the patent [8] describes a technique for adaptable keep-alive

intervals. Similar to other keep-alive optimization attempts, one of the goals

is to reduce the number of keep-alive messages and cut down on network traf-

77

fic. In this context the technique will be used to monitor traffic on “Enterprise

Extenders”, which are devices that allow network traffic based on Systems Net-

work Architecture (SNA) to be transmitted over an IP network. When a long

period of inactivity is detected, the system can double the keep-alive interval

up to a set maximum value. The authors note that alternative adjustments

to the interval could be made instead. Conversely, the timer interval is set to

the normal value when normal network traffic resumes. In terms of the normal

keep-alive message flow, if there is no response, the keep-alive message is sent

repeatedly until a pre-determined maximum retry count is reached, in which

case the connection is terminated.

Another approach is taken in RFC 3519 [18], which describes a method of

IP-in-IP tunneling to allow Mobile IP usage through a NAT device. The tunnel

extensions contain a “keep-alive interval” setting. While no dynamic adjustment

is done, the RFC states that the keep-alive message should only be sent if there

has been no network traffic through the connection for a specified amount of

time. This prevents unneccessary network traffic.

The patent described in [4] is focused on adapting the transmission of keep-

alive messages from a client while being connected to a Virtual Private Network

(VPN) over UDP. The focus is on mobile phones, but the authors note that the

technique could be applied to any type of device. The core of the technique

is a configurable timeout value. The mobile device (client) will enter a “power

saving” mode and stop connection roaming scans and keep-alive messages if no

traffic is detected during the specified length of time. When traffic is again

detected, the device re-establishes a connection on the highest priority connec-

tion and resumes generation of keep-alive traffic. This is achieved via a “Power

78

Conservation Logic” component, which includes a power timeout timer and a

re-registration module on the mobile device. If the NAT mapping has expired

during the period of inactivity, the the mobile device communicates with the

VPN server to associate the new IP address and port mapping with the existing

VPN session.

4.4 “STUN Calc Keep-Alive” Overview

4.4.1 Overview

This section describes a new technique for determining the optimum keep-alive

interval for use with the NAT devices on a network, and the next discusses

the similarities and differences to the techniques discussed previously. Like the

technique in [32], this is an extension of the STUN protocol. It consists of four

new methods and one attribute. Responsibilities for the process are split among

three logical entities: the client, the server controller, and the server message

wheel. A brief description of that breakup is below.

Client The client is always in one of three states: SEARCH, RUN, or REFINE.

It initiates the process by sending a request to the server. In the event of

a timeout, it alerts the server to stop the current session and calculates

a new interval value. If the client is configured in “single channel” mode,

it will also alert the server to “reset” the next scheduled message for a

session when other traffic is detected on the connection.

Server Controller The server controller processes the requests from the client

and maintains a hash table with relevant information for each session.

79

Each session represents a NAT address and port binding. The server

controller is responsible for adding and removing sessions from the message

wheel.

Server Message Wheel The message wheel is a separate thread on the server.

It maintains an ordered list of sessions for which to send keep-alive mes-

sages based on a priority queue, and is responsible for sending the messages

out to the clients for each session.

The client begins the process in the SEARCH state, generating a new ses-

sion ID and sending a STUN CALC KA REQUEST message to the server. The

server then creates a new session for the message wheel. Under normal condi-

tions a client will send an explicit STUN CALC KA STOP REQUEST message

to the server to end a session.

The message wheel sends out keep-alive messages for each session based on

a priority queue. The sessions are organized based on a “NextSendTime” value

which contains the scheduled send time of the next message. If there is a delay

before the next message, the wheel will sleep for the appropriate amount of

time, but may be interrupted by any new sessions. If the wheel is interrupted

during a wait, it adds the current session back into the priority queue, pops the

top item in the queue (which may or may not be the same session) and restarts

the wait. After sending a message, the wheel will update the keep-alive interval

(T) based on the current iteration in the session (K), the original constant delta

(∆T), and the current value of the divisor (Z). It may also update Z and the

direction of the search based on the parameters of the session. In addition,

the wheel handles scheduling the next message and updating the appropriate

80

session information.

In the SEARCH state, the client waits for STUN CALC KA RESPONSE

messages from the server. Unlike most of the other keep-alive optimization

techniques described, the client does not respond to the successful reception of

a message. When there is a timeout while waiting for a message, the client

will send a STUN CALC KA STOP REQUEST message to the server, revert

back to the last known good time interval, and increase the time interval based

on K, ∆T , and Z. The client will then start a new session based on the

new parameters. Z is used as a cutoff point for the adjustment and is increased

based on the ZMult parameter each time it is used. Once Z reaches a pre-defined

value (e.g. 1000, signifying an adequate precision), the client will switch to the

RUN state. Alternatively, the client will end the session and switch to the

RUN state if ∆TMin is reached. If the client receives a message with a non-

matching session ID (most likely from an old session), it will immediately send

a STUN CALC KA STOP REQUEST message to the server to terminate that

session.

When in the RUN state, the client sends a STUN CALC KA REQUEST

message to the server to begin a session and waits for a timeout, similar to the

SEARCH state. However, when a timeout occurs, instead of calculating a new

time interval value T , the client will increment the failure count, and determine

whether or not to switch to the REFINE state based on the current failure rate

of the messages.

The REFINE state is a simplified version of the SEARCH state behavior

that can either increment or decrement the time interval. The client will begin

with the current interval T , and decrement the value (using the BACKWARD

81

direction) by K × ∆T
z

, where K is the number of timeouts experienced so far.

Once a valid keep-alive value is found, the REFINE state will switch to the

FORWARD direction, adjust Z, and increment the time interval until it expe-

riences a timeout. At that point the time interval is set to the last known good

time, and the client enters the RUN state.

The REFINE state was added due to some inconsistencies discovered when

testing with the Linksys WRT-54G router. Even though one or two pings will

be successful for a particular interval, the next one may not be if the interval

value is “borderline” on the mapping lifetime value used by the NAT device.

While not documented, it is possible that the router adjusts the NAT mapping

lifetime based on other traffic. This state is also useful for mobile devices that

may change networks frequently and need to quickly re-adjust the keep-alive

value for a running application. This allows for a backwards adjustment with-

out restarting in the SEARCH state. The ∆T and ZMult parameters for the

REFINE state are independent of those for the SEARCH state, and ∆T should

be significantly smaller.

This technique also provides the ability for the client to “build up” to the

current keep-alive time interval in both the RUN state and the REFINE state

by specifying the appropriate parameters in the KEEP ALIVE TIMER DATA

STUN attribute when initiating a session. This allows the system to utilize func-

tionality on routers that use a longer address and port mapping lifetime value

for UDP connections that have had several messages travel through the NAT

device instead of just one (such as routers that use “assured” UDP sessions).

82

Single Channel Operation The normal usage of the STUN Calc Keep-Alive

optimization technique is on a dedicated connection, much like the other keep-

alive optimization techniques discussed. However, it can also be run on the same

connection as normal application data. While the time taken to determine an

appropriate keep-alive interval will be longer due to the interference of the other

traffic, as long as there are a few pauses longer than the NAT mapping lifetime,

an interval will be found. If the channel is particularly noisy, Z and ZMax can

be adjusted to limit the number of adjustments of Z to help find a value more

quickly.

While operating on the same channel as application data, the client SEARCH

state works much as it does when using its own connection. However, when an

unrecognized message is received, a STUN CALC KA RESET REQUEST mes-

sage is sent to the server, resetting the timer for the next keep-alive message

scheduled to be sent to the client. There are three configurable settings to limit

the number of reset messages sent: the maximum number of reset tries, the

minimum amount of time before sending another reset message, and the delay

before sending a message. These are described in more detail along with the

pseudo-code for this functionality.

While this technique is able to find a keep-alive interval, it is not optimal

since despite the minimum wait time and send delay, there is a potential for a

large number of RESET messages to be sent, depending on the pattern of the

other network traffic. While it was not tested for this thesis, a potentially more

optimal single-channel implementation is described in Section 4.4.2.

83

4.4.2 Algorithm Details

In order to support the keep-alive optimization process, four new methods and

one new attribute are added to the STUN protocol.

KEEP ALIVE TIMER DATA Attribute

The new attribute is called KEEP ALIVE TIMER DATA and has the structure

shown in Figure 4.1 below.

[0] Version

1 byte (8 bits) 1 byte (8 bits)

[3] Session ID

[9] Number Of Repeats

[14] Z

[1] Action After Max [2] Session Iteration (k)

1 byte (8 bits) 1 byte (8 bits)

[4] [5] [6] [7] [10] Z Size Type [11] Z Multiplier

 Size Type

[12] T Size Type [13] Delta T

 Size Type

[8] Reserved

[15] Z Multiplier

[16] Time (T)

[17] MaxTime

[18] Delta T

[19] Delta T After Max

Figure 4.1: KEEP ALIVE TIMER DATA Structure

[0] Version (1 byte) The version identifier for the protocol.

[1] Action After Maximum Time (ActionAfterTMax) (1 byte) Specifies what

action to take after “Maximum Time” is reached (if it is set). The possible

values are 0 for MAINTAIN CURRENT, 1 for STAY CONSTANT, 2 for

84

CHANGE TO FORWARD, and 3 for CHANGE TO BACKWARD. Only

the latter three are specified directly by the client.

[2] Session Iteration (K) (2 bytes) Signifies the current message iteration

for the session. It is used by the message wheel on the server to update

the “Interval Time” after each iteration of a session, and by the client to

re-calculate the Interval Time after a timeout. This may not be a true

indicator of the overall iteration, as the value may be reset or held constant

depending on the session parameters.

[3] Session ID (4 bytes) An unique identifier for the keep-alive session. A

client and server may take part in a large number of sessions before an

optimium keep-alive value is found. Each time the client experiences a

timeout while in the SEARCH or REFINE states or changes state it will

start a new session.

[4] Uses Starter Message (1 bit) Determines whether or not a message will

be sent to the client immediately after a request to begin a new session is

received by the server. In normal usage this will always be set in order to

achieve the best precision.

[5] Server Adjusts Z (1 bit) Indicates whether or not the server message

wheel should adjust the value of Z. If set, the wheel will adjust Z before

the next “Interval Time” calculation if the next value is one that has al-

ready been tested. This is used to perform a binary search. When this

value is set, it implies a constant K value for the session.

[6] Increment Type (1 bit) Determines the type of increment to use when

85

adjusting the “Interval Time”. It is set to 0 for LINEAR and 1 for GEO-

METRIC.

[7] Direction (1 bit) Determines the direction of the “Interval Time” change

for this session. It is set to 0 for FORWARD and 1 for BACKWARD.

[8] Reserved (4 bits) Reserved for future use. Currently used to align the data

on a 4 byte boundary.

[9] Repeat Count (1 byte) Specifies the number of times to repeat each “In-

terval Time” value before making an adjustment.

[10,11,12,13] (4 bits each) These specify the size type of Z, ZMult, T and TMax,

and ∆T and ∆TAfterTMax, respectively. The value n is specified for a

size of 2n bytes. Valid values are 0 for a size of 1 byte, 1 for 2 bytes, 2 for

4 bytes, 3 for 8 bytes, and 4 for 16 bytes.

[14] Z (size depends on [10]) Specifies the Z value. This is used to adjust the

“Interval Delta”.

[15] Z Multiplier (ZMult) (size depends on [11]) Specifies the multiplier for

Z. This is used to adjust Z and the “Interval Delta” when the “Server

Adjusts Z” flag is set.

[16] Interval Time (T) (size depends on [12]) Stores the current value of the

keep-alive interval. This can be adjusted by the client or server depending

on the state and the other parameters.

[17] Maximum Time (TMax) (size depends on [12]) Specifies when the “build-

up” process is complete. When “Interval Time” reaches this value, the

86

server message wheel will change actions if appropriate.

[18] Interval Delta (∆T) (size depends on[13]) Stores the current delta for

the time. This is modified locally by the client after a timeout as a new

basis for incrementing the keep-alive interval. It can also be modifed

locally by the server if the “Server Adjusts Z” flag is set. The value

specified in this data structure should be the original. The client and

server will determine the current value based on Z.

[19] Interval Delta After Maximum Time (∆TAfterTMax) (size depends

on [13]) Specifies the delta to use after “Maximum Time” is reached. It

can be modified locally by the server if the “Server Adjusts Z” flag is set,

but like ∆T , only the original should be included in this data structure

unless the client is in the REFINE state.

New STUN Methods

The new methods all make use of this new attribute.

STUN CALC KA REQUEST Used by the client to initiate a keep-alive

optimization session. The server determines whether or not to increment

the time for each response in the session based on the Interval Delta

value, and may make adjustments based on the parameters of the included

KEEP ALIVE TIMER DATA attribute described above.

STUN CALC KA RESPONSE Used by the server to “ping” the client dur-

ing a keep-alive optimization session. Unlike the STUN Binding Response,

instead of sending this response once, the server will continue to send this

87

response message at intervals determined by the parameters of the keep-

alive optimization session. The messages will continue to be sent until the

client issues a stop request.

STUN CALC KA STOP REQUEST Used by the client to signal the server

to end a keep-alive optimization session. These messages prevent the

server from sending stray messages from a previous session to a client.

Since the optimium interval is determined based on keeping the mapping

alive with the keep-alive message traffic, extra messages can skew the

calculation.

STUN CALC KA RESET REQUEST Used by the client to signal the

server to reset the scheduled send time of the next message for a keep-

alive optimization session. These messages are sent only when the client

is configured in “single channel” mode, and are sent when other traffic is

detected on the same connection as the keep-alive session messages.

The state changes for the client are shown in Figure 4.2 below.

88

Send

STUN_CALC_KA_REQUEST

to Server

Timeout?

Wait for KeepAlive Ping from

Server

Current State?

Change state to

RUN

Calculate new t value

z > Z

Start new Session

Error ratio

greater than

tolerance?

Change state to

REFINE

Direction?

Calculate new t value

Current State?

MAX Iterations?

SEARCH REFINE

RUN

Send
STUN_CALC_KA_STOP_REQUEST

to Server

No

Yes

Yes

No

Yes

Send
STUN_CALC_KA_STOP_REQUEST

to Server

In

"Build-Up"?

Backward

Forward

Switch to BACKWARD

Direction
Yes

No

At MAX Pings?

REFINE

RUN

Direction?

Yes

Switch to FORWARD

Direction

Backward

Send
STUN_CALC_KA_STOP_REQUEST

to Server

No

Action

No

Action

SEARCH

No

Action

No

Action
No

Yes

No

Action No

No

Forward

MAX

T T MIN<
OR

?

INPUT
t, T, etc.

Figure 4.2: Keep-Alive Client State Change Behavior

89

After a client sends a STUN CALC KA REQUEST, if UsesStarterMessage

is TRUE, the server sends the first STUN CALC KA RESPONSE immediately,

regardless of the value of T . This is done to establish the timeout interval as

accurately as possible. Depending on the network configuration, the initial re-

quest may take several seconds to reach the server. If the server then delays

for a period of time T before sending the first response, the timeout interval

calculation would be off by that number of seconds. The immediate message

sent by the server mitigates this issue by establishing the session with a start

time known to the server.

The data structures and select pseudo-code for the operation of the Server

Controller, the Server Message Wheel, and the state-based Client are described

in the following sections. More complete pseudo-code descriptions and examples

are shown in Appendices A and B and referenced where appropriate.

Server Controller

When the server receives a request for a new STUN CALC KA session, it creates

a session based on the request parameters and adds the session to the wheel

as shown in Algorithm 1. When it receives a RESET or STOP message, it

interrupts the wheel thread and allows the wheel to handle the action. Each

session is identified by a SessionKey triple 〈ClientAddress, ClientPort, ID〉.

The Session data structure is shared by both the Controller and the Message

Wheel on the server. In addition to a SessionKey object, the structure con-

tains many items based on information from The KEEP ALIVE TIMER DATA

data structure shown in Figure 4.1. Those items include NextAction (from

ActionAfterTMax), K, UsesStarterMessage, ServerAdjustsZ, IncrementType,

90

Direction, MaxRepeats (from RepeatCount), Z, ZMult, T , TMax, ∆T , and

∆TAfterTMax.

Additional items used to track the session state are shown below.

Variable Description

NextSendT ime The send time of the next scheduled message

InitialK The K value when the session started

ClientK (Kl) The K value to send to the client

IsF irstSessionMessage
TRUE if the current queued message is

the first of the session

Original∆T ∆T value when the session started

Original∆TAfterTMax ∆TAfterTMax value when the session started

TMaxWasReached TRUE when TMax has been reached.

InnerRepeatCount
Tracks inner repeats when MaxRepeats > 0

Reset when MaxRepeats is reached

OuterRepeatCount Tracks outer repeats when MaxRepeats > 0

Table 4.1: Server Session Variables

1 when STUN CALC KA REQUEST(KeepAliveT imerData) do
2 if Session is New then
3 Add to Session Hash Table

4

5 when STUN CALC KA STOP REQUEST(ID)
6 Remove Session from Session Hash Table
7

8 when STUN CALC KA RESET REQUEST(ID)
9 Reset Timer for Next Session Message

Algorithm 1: Server Controller Behavior

91

Server Message Wheel

The wheel contains several controller methods to handle the MessageQueue,

which is the priority queue used for scheduling messages, and the Session-

HashTable, containing data for all of the sessions. The latter data structure

is shared with the Server Controller thread. An overview of the methods is

shown below.

After obtaining a session from the priority queue, the wheel first sends the

message after waiting the appropriate amount of time.

1 when Wheel Session s do
2 if s.NextSendT ime > SystemTime() then
3 pause the thread until the correct time
4 if thread is interrupted then
5 MessageQueue.add(s)
6 s← MessageQueue.pop()
7 CONTINUE

8 send to(ClientAddress, STUN CALC KA RESPONSE)

The wheel then checks whether or not the value of T needs to be updated

on this iteration. If it does, the adjustment is calculated according to the

“CalcNextTime” procedure described in Appendix A.2. Once the appropriate

adjustments are made, the “NextSendTime” is set for the session, and the local

variables are updated. If ServerAdjustsZ is set, K is kept constant to allow a

binary search.

The Wheel then checks whether or not TMax was reached after the adjust-

ment. If so, it updates the session variables and direction as described in the

“AdjustAfterMaxTime” procedure detailed in Appendix A.2. After all calcula-

tions are done and the session has been updated, the wheel adds it back into

the priority queue.

92

1 if s.UsesStarterMessage AND s.IsF irstSessionMessage then
2 ShouldCalcNextT ime← FALSE
3 else
4 ShouldCalcNextT ime← TRUE
5 if s.IsF irstSessionMessage = TRUE AND s.ServerAdjustsZ = FALSE then

// Initial adjustment for ∆T if ServerAdjustsZ is FALSE.

6 if s.TMaxWasReached = TRUE then

7 s.∆TAfterTMax ← s.Original∆TAfterTMax

s.Z
8 else

9 s.∆T ← s.Original∆T
s.Z

10

11 if s.T 6= s.TMax AND ShouldCalcNextT ime = TRUE then
12 CalcNextTime(s)
13

14 s.NextSendT ime← s.T + SystemTime()
15 if s.ServerAdjustsZ = FALSE and ShouldCalcNextT ime = TRUE then
16 s.K ← s.K + 1
17

18 if s.TMax > 0 AND s.T ≥ s.TMax AND ShouldCalcNextTime = TRUE then
19 AdjustAfterMaxTime(s)
20

21 MessageQueue.add(s)

Each session is stored with both “inner” and “outer” iteration counts to

allow coordination with the RUN and REFINE states of the client. The “Cal-

cNextTime” procedure will only make adjustments (other than incrementing

counts) when the InnerRepeatCount variable is equal to the MaxRepeats pa-

rameter. This allows the same T value to be repeated for an arbitrary number

of iterations.

When the adjustment criteria is met, the Server Message Wheel will update

T , and if ServerAdjustsZ is set, also update Z and the appropriate ∆T value.

Client (Dual Channel)

The client initiates a new session, both when first starting the keep-alive op-

timization process and after each timeout. The input parameters for client

initialization are shown below.

93

Input: ServerAddress, SearchParams, RunParams, RefineParams, T , State,
UsesStarterMessage

1 SearchParams: 〈 ∆T , ∆TMin, Z, ZMax, ZMult, IncrementType 〉
2 RunParams: 〈 FailureTolerance, RepeatCount 〉
3 RefineParams: 〈 ∆T , Z, ZMult, PingsPerAttempt 〉

Algorithm 2: Client Initialization Parameters

Additional details about the sets of parameters for each state are described

in the tables below.

Parameter Description

∆T The base delta value for modifying the interval T

∆TMin

Optional. The client will stop the search when ∆T

reaches this value

Ignored when set to 0

Z Used as the divisor for ∆T after a timeout

ZMax

Optional. The client will stop the search when Z

reaches this value

Ignored when set to 0

ZMult Multiplier for Z after a timeout

IncrementType
Specifies type of multiplication

(LINEAR or GEOMETRIC)

Table 4.2: Search State Parameters

94

Parameter Description

FailureTolerance Acceptable ratio of failures to successes

RepeatCount
The number of runs before exiting the state

When set to 0, the client will run indefinitely

Table 4.3: Run State Parameters

Parameter Description

∆T The base delta value for modifying the interval T

Z Used as the divisor for ∆T

ZMult Multiplier for Z

PingsPerAttempt The number of pings to try for each T value

Table 4.4: Refine State Parameters

The client uses several local variables to help track the status of the keep-

alive interval optimizaton. The core variables are described in Table 4.5 below,

and expanded on in the text that follows.

TMax is not used in the SEARCH state, but because of the “build up”

process, the RUN and REFINE states initially set TMax to T , and set T to

SearchParams.∆T . This allows the client to build up to the actual T value

using the smaller value of the delta. When T reaches TMax, the client sets

BuildingUpToT ime to FALSE, and treats the calculations accordingly.

As part of the initialization, the client also establishes the BaseMessageCount

based on whether or not the UsesStarterMessage parameter is set. This value

(set to either 0 or 1) is used as a base for the client to determine whether or not

any T values have been successful for a particular session.

95

Variable Description

T The current value of the keep-alive interval

TMax

Maxinum known value for T

Used in REFINE and RUN states for “build-up”

LastGoodT
The last known T value that did not result

in a timeout

ΩK

The K value to use when multiplying based on

IncrementType (LINEAR ←K, GEOMETRIC ← 2K)

Direction
The current search direction

(FORWARD or BACKWARD)

TimeoutCount The total number of timeouts

BaseMessageCount
The number of messages to skip before

calculations start (0 or 1)

SessionMessageCount The number of messages received for the session

TotalMessageCount The total number of messages received

RunCount
The number of messages received while

in the RUN state

RefineCount
The number of messages received while

in the REFINE state

RefineT imeoutCount
The number of timeouts for the current

T value in the REFINE state

RefineMinV alueFound
TRUE of a valid T value has been found

in the REFINE state

StartNewSession TRUE if a message should be sent to the server

BuildingUpToT ime TRUE if in T has not yet reached TMax

ExitOnNextMessage
TRUE if the state should change after the next

iteration. Used with the ∆TMin parameter

Table 4.5: Client Local Variable Summary

The “ClientLoopStart” functionality of the client determines what needs

to be done both directly after initialization and after the last server message

or timeout event is processed. The client first checks to see whether or not

96

the state should be changed based on the current values of SearchParams.∆T
Z

and

SearchParams.∆TMin. If those exit criteria are met, the process will continue

for one more iteration to allow the current T value to be checked. It will

also check if the condition Z > ZMax has been met and will change the state

immediately if that is the case.

When sending a message, this procedure packages the current keep-alive

state data into a KEEP ALIVE TIMER DATA data structure (shown in Fig-

ure 4.1) and sends it to the server to initiate a new session. With the test

implementation this functionality was built as the main program loop. A high-

level summary of this functionality is show below.

1 procedure ClientLoopStart do
2 if ExitOnNextMessage = TRUE then
3 T ← LastGoodT
4 Switch to RUN State

5

6 if IN SEARCH State then
7 if SearchParams.∆T

Z ≤ SearchParams.∆TMin then
8 ExitOnNextMessage← TRUE
9 if SearchParams.ZMax > 0 AND Z > SearchParams.ZMax then

10 T ← LastGoodT
11 Switch to RUN State

12

13 if StartNewSession = TRUE then
14 Generate New Session ID
15 SessionMessageCount← 0
16 sendto(ServerAddress, STUN CALC KA REQUEST)

17

18 TimeOut← CalculateNextTimeout()
19 alarm timeout(TimeOut)
20

If StartNewSession is TRUE, then the client will send a session start re-

quest to the server. Otherwise the client simply sets the new timeout period

and waits for the next message from the server. In each case the time to wait for

a reply from the server is calculated in the “CalculateNextTimeout” procedure

97

described in Appendix B.2.

When the client receives a message from the server, it first verifies that the

message is a STUN message of the correct type. In dual channel mode (normal

operation), it simply discards unrecognized messages. In single channel mode,

it handles them as described in Section 4.4.2.

If UsesStarterMessage is true, the first message is discarded as well, as its

only purpose is to create the external address and port mapping on the NAT

device. Otherwise the client processes the message and adjusts its variables

accordingly.

1 when STUN CALC KA RESPONSE(CalcKaResponse r) from ServerAddress do
2 if not correct message type then
3 CONTINUE
4 if not correct (ID) then
5 sendto(ServerAddress, STUN CALC KA STOP REQUEST)
6 CONTINUE

7

8 SessionMessageCount← SessionMessageCount + 1
9 TotalMessageCount← TotalMessageCount + 1

10 K ← r.K
11

12 if UsesStarterMessage = TRUE AND SessionMessageCount = 1 then
// Take no action. Message still counts towards total.

98

For the SEARCH state, the client simply updates its local variables based

on state information from the server. In the RUN state, the client will check if

the session is currently “building up” to TMax, update the status accordingly,

and also send a STOP request if RunParams.RepeatCount has been reached.

1 if State = SEARCH then
2 Update Z, LastGoodT , and T from Server
3

4 if State = RUN then
5 Update Z, LastGoodT , and T from Server
6 if BuildingUpToT ime = TRUE then
7 if T ≥ TMax then
8 BuildingUpToT ime← FALSE
9 Increment RunCount

10 else
11 Increment RunCount
12 if RunParams.RepeatCount > 0 AND RunCount ≥ RunParams.RepeatCount

then
13 sendto(ServerAddress, STUN CALC KA STOP REQUEST)
14 Exit Optmization Process

99

For the REFINE state, the client first checks to see if it is currently “building

up” to TMax, much like for the RUN state. It then checks whether or not

the current repeat iteration has reached RefineParams.P ingsPerAttempt. If

so, it will set LastGoodT and either switch to the FORWARD direction (if

currently moving BACKWARD), or take no action. In the REFINE state, Z is

only adjusted locally on the client. Regardless of the local Z value, the client

will always send a Z value of 1 to the server. Since Z is only adjusted once

throughout this process, there is no ∆TMin parameter for the REFINE state.

Unlike the SEARCH state, the REFINE state always resets K to 0, regardless

of the value of SearchParams.IncrementType.

1 if State = REFINE then
2 Update Direction From Server
3 if BuildingUpToT ime = TRUE then
4 Update T From Server
5 if T ≥ TMax then
6 BuildingUpToT ime← FALSE
7 Increment RefineCount

8 else
9 Increment RefineCount

10 if RefineCount ≥ RefineParams.P ingsPerAttempt then
11 Reset RefineCount
12 Update T and LastGoodT From Server
13 if Direction = BACKWARD then
14 Reset RefineT imeoutCount
15 Reset K
16 RefineMinV alueFound← TRUE
17

18 Z ← Z ×RefineParams.ZMult

19 T ← T + RefineParams.∆T
Z

20 Switch to FORWARD Direction
21

22 sendto(ServerAddress, STUN CALC KA STOP REQUEST)
23 StartNewSession← TRUE
24 goto ClientLoopStart

25 else
26 if T 6= TServer then
27 Reset RefineCount
28 Update T From Server

100

If a new session has not been started, the client will then resume listening

for messages.

1 StartNewSession← FALSE
2 goto ClientLoopStart

101

When experiencing a timeout, in all cases the first step for the client is to

send a STOP request to the server in order to terminate the current session.

1 when TIMEOUT do
2 sendto(ServerAddress, STUN CALC KA STOP REQUEST)
3 Increment TimeoutCount

When in the SEARCH state, the client will update Z to synchronize the

value with the server, and set ServerAdjustsZ if it is not already set to allow

the server to help with the search and avoid unnecessary timeouts.

1 if State = SEARCH then
2 Z ← Z × SearchParams.ZMult

3 if ServerAdjustsZ = TRUE then
4 if SessionMessageCount > BaseMessageCount then
5 Z ← Z × SearchParams.ZMult

6 else
7 ServerAdjustsZ ← TRUE

8 T ← LastGoodT + ΩK × SearchParams.∆T
Z

Timeout handling in the RUN state involves checking whether or not the

total timeout count is within the set failure tolerance. If not, the client will exit

to the REFINE state. If there is a build up sequence involved, the client also

updates T to TMax to give the REFINE state the appropriate starting value.

1 if State = RUN then
2 if TimeoutCount

TotalMessageCount+1 > RunParams.FailureTolerance then

3 if BuildingUpToT ime = TRUE AND T < TMax then
4 T ← TMax

5 Switch to REFINE State

When in the REFINE state, the client is attempting to stabilize on a value

as soon as possible. If there is a timeout while moving BACKWARD, T is

decremented to allow the search for a valid T value to continue. If moving

FORWARD, the client checks whether or not the session is still “building up” to

TMax and whether or not a good value for T has been found. If currently building

up and no T value has been found, the current T value becomes the starting

102

point of the search and the direction switches to BACKWARD. Otherwise, a

minimum good value for T has been found, so the client falls back to that value

and exits to the RUN state.

1 if State = REFINE then
2 Increment RefineT imeoutCount
3 Reset RefineCount
4 Reset K
5 if Direction = BACKWARD then
6 Keep BACKWARD Direction

7 T ← T −RefineT imeoutCount× RefineParams.∆T
Z

8 LastGoodT ← T

9 else if Direction = FORWARD then
10 if BuildingUpToT ime = TRUE AND RefineMinV alueFound = FALSE then
11 Switch to BACKWARD Direction
12 T ← TMax

13 T ← T −RefineT imeoutCount× RefineParams.∆T
Z

14 LastGoodT ← T

15 else
16 T ← LastGoodT
17 Switch to RUN State

In all cases the client will then start a new session.

1 StartNewSession← TRUE
2 goto ClientLoopStart

Client (Single Channel)

In single channel mode, instead of ignoring unrecognized traffic, the client sends

RESET messages to tell the server to reset the timer on the next message for the

current keep-alive session. This allows the client to determine (to some extent)

the NAT binding lifetime of the NAT device as long as there are some pauses

in traffic on the connection that are longer than that lifetime.

Three configurable parameters guide the client’s behavior:

MAX RESET TRIES, MIN RESET INTERVAL, and RESET DELAY. The pa-

rameters were set to the values 10, 5000 ms, and 2000 ms respectively for the

103

experiments described in this paper.

The client keeps a count of the number of RESET messages sent, and uses

RESET DELAY to attempt to minimize the number of messages sent. Once

MAX RESET TRIES has been reached, the client reacts in much the same way

as it does during a timeout in the SEARCH state. Z is first adjusted, and then

T . This allows the client to try out a smaller interval and possibly get a better

T value due to the smaller increment. The RESET message count is reset every

time MAX RESET TRIES is reached.

The MIN RESET INTERVAL setting is the amount of time the client waits

before sending another RESET message after one has been sent. If this value

has not been reached, the client will reset the timer on the next scheduled

RESET messsage. This helps mitigate the extra traffic created by the RESET

messages, while still minimizing extra keep-alive messages from the server.

As mentioned earlier, this implementation may not be optimal due to the

potentially large number of RESET messages generated. An alternate imple-

mentation is described in the next section.

104

1 when other network traffic detected do
2 if ResetCount < MAX RESET TRIES then
3 if SystemTime()− LastResetAttempt > MIN RESET INTERV AL then
4 SendReset()
5 LastResetAttempt ← SystemTime()
6 ResetCount← ResetCount + 1

7 else
// ResetCount is incremented after the scheduled RESET is sent.

8 if reset is scheduled then
9 ResetScheduledReset(RESET DELAY)

10 else
11 ScheduleReset(RESET DELAY)

12 else
13 sendto(ServerAddress, STUN CALC KA STOP REQUEST(ID))
14 K ← K + 1
15 Z ← Z × SearchParams.ZMult

16 switch IncrementType do
17 case LINEAR
18 ΩK ← K
19 case GEOMETRIC
20 ΩK ← 2K

21 if ServerAdjustsZ = TRUE then
22 Z ← Z × ZMult

23 T ← LastGoodT + ΩK × SearchParams.∆T
Z

24 ResetCount← 0
25

26 StartNewSession← TRUE
27 goto ClientLoopStart

28 CONTINUE

Algorithm 3: Client Single Channel Handling Behavior

Client (Single Channel Alternate Implementation)

While this variation of the single channel client was not implemented and tested

for this thesis, it is in theory a more optimal solution for determining an appro-

priate keep-alive interval value while running on the same channel as normal

application data.

This technique requires an addition to the KEEP ALIVE TIMER DATA

structure described in Section 4.4.2. One of the reserved bits can instead be

used as a SingleMessage flag. When set, the server would only send one keep-

105

alive message (two if the UsesStarterMessage flag is also set) to the client

before ending the session based on the parameters of the keep-alive session

request.

Instead of sending a RESET message to the server when non-keep-alive

traffic is received, the client simply then ignores the next response from the

server. In that case when the server message is received, the client initiates

another session using the unchanged T value. Otherwise, the client updates the

current value of T based on the maximum length of time so far with no traffic,

and then initiates a new session. The client also tracks the amount of time

between each piece of traffic received. When a timeout is experienced, aside

from resetting the new timestamps and adjusting K, Z and T are updated the

same way as with the other client implementations.

Pseudo-code for this alternate implementation for the portion of the client

that handles incoming traffic is shown below. This version does not show han-

dling of “starter” messages, or adjustments to the total and session message

counts.

106

1 IncrementType← INPUT: IncrementType (LINEAR or GEOMETRIC)
2 T ← INPUT: Starting Time Interval
// The timestamp of the previous message received

3 LastReceivedT imeStamp← 0
// The timestamp of the message just received

4 NewReceivedT imeStamp← 0
// The last time interval that had no traffic

5 NewT ← 0
// If TRUE, the next message from the server does not trigger a change in T

6 IgnoreNextServerMessage← FALSE
// The last known good value of T. Used the same as for dual channel mode

7 LastGoodT ← T
// The number of iterations for non-ignored server communication

8 K ← (1 OR 0) based on LINEAR or GEOMETRIC IncrementType
// Indicates whether or not to send a new session request

9 StartNewSession← TRUE
10 when message received do
11 NewReceivedT imeStamp← SystemTime()
12 if LastReceivedT imeStamp > 0 then
13 NewT ← NewReceivedT imeStamp− LastReceivedT imeStamp
14 LastReceivedT imeStamp← NewReceivedT imeStamp

// Update T if the time interval with no traffic is the longest so far

15 if NewT > T then
16 T ← NewT
17 LastGoodT ← T

// By default there is no new session (e.g. for other traffic and

incorrect session ID’s)

18 StartNewSession← FALSE
19 if message is non-keep-alive traffic then
20 IgnoreNextServerMessage← TRUE
21 else
22 if correct (ID) then
23 if IgnoreNextServerMessage = TRUE then
24 IgnoreNextServerMessage← FALSE
25 else
26 LastGoodT ← T
27 if ServerAdjustsZ = TRUE then
28 Z ← Z × ZMult

29 switch IncrementType do
30 case LINEAR
31 ΩK ← K
32 case GEOMETRIC
33 ΩK ← 2K

34 T ← LastGoodT + ΩK × SearchParams.∆T
Z

35 if ServerAdjustsZ = FALSE then
36 K ← K + 1

37 StartNewSession← TRUE

// Resume listening for messages, first starting a new session if

appropriate

38 goto ClientLoopStart with SingleMessage flag set

Algorithm 4: Client Single Channel Handling Behavior (Alternate)
107

4.5 Comparison to Related Work

While the STUN Calc Keep-Alive technique has much common ground with

existing research in the area of keep-alive intervals, there are a number of dif-

ferences. The first is that both a STUN client and a STUN server are heavily

involved in the interval optimization process. In the existing techniques dis-

cussed, there was primarily one agent controlling the process. In the case of the

STUN enhancement, it was the client [32]. Many of the other algorithms are

meant for P2P environments and therefore simply have a node go through the

process for each connection to the other nodes. For the STUN Calc Keep-Alive

technique, once the client initiates the process, it only needs to contact the

server in the event of a timeout based on its state. The NAT mapping is kept

active by the server’s messages to the client. This technique is intended for use

with UDP, but could be adapted to work with TCP in the future.

Much of the “heavy lifting”, such as keeping a timer of when to send keep-

alive messages and actually sending the keep-alive messages is done by the

server. This is advantageous as it saves processing power and battery life on

the client, which may be running on an embedded or mobile device with limits

on both. The other techniques rely on the client responding to each ping from

the server to signify that the connection is still alive.

Another difference of STUN Calc Keep-Alive is the state based management

of the client. The client switches states based on feedback from the server.

It begins in the SEARCH state, which has the same goals as the previously

discussed techniques. Once an “optimium” keep-alive interval has been found,

it switches to the RUN state. It also includes the REFINE state to make

108

adjustments to the keep-alive interval when needed by searching backwards.

These states are discussed in greater detail in Section 4.4.1.

The STUN Calc Keep-Alive technique can also be used incrementally when

appropriate in the SEARCH state. The previously mentioned techniques find

the maximum timeout value by either adding a constant value to the current

keep-alive interval or by doubling the current interval value. With this tech-

nique, the growth of the interval is determined based on the number of successful

responses for the current “session” (K) as well as a pre-defined constant delta

value (∆T). STUN Calc Keep-Alive also allows for a “buffer” segment of time

to account for network latency. When a client discovers that a NAT address

and port mapping linked to a session has timed out while in the SEARCH state,

the time interval T is re-adjusted as follows: T ← LastGoodT ime + ΩK × ∆T
Z

,

where ΩK is based on the number of successful iterations for the session (K or

2K), and Z is a variable that helps determine the cutoff point in the search.

The server can also be instructed to adjust Z itself in order to perform a binary

search using this formula without constant timeouts from the client.

Another unique feature is the ability to keep the reliability of the keep-

alive interval within a certain threshold. This is achieved using the RUN and

REFINE states. With the exception of [8], in the techniques discussed if there

is a timeout it is assumed that there is either a network problem or that the

NAT mapping has been lost. During the RUN state of the STUN Calc Keep-

Alive technique, the server sends keep-alive messages to the client at a constant

interval. If the client experiences a timeout, it increments an internal failure

count. It then uses the following method to determine whether or not it should

change to the REFINE state: RunFailureCount
TotalMessageCount+1

, where TotalMessageCount is

109

the number of successful responses for the current session. This allows for drops

of UDP packets that sometimes occur and for establishing an acceptable rate of

failure for the keep-alive interval. Like with the SEARCH state, the RUN state

allows for an adjustable “buffer” to avoid needing to recalculate the keep-alive

interval when there are minor changes in the mapping time, related to either

network traffic levels or adjustments made by the NAT device itself.

In terms of the existing STUN extension described in [32], the primary

difference is the distribution of responsibility. That technique uses a custom

attribute and normal STUN binding requests and responses for data gathering,

with the client doing most of the work. The STUN Calc Keep-Alive technique

uses additional STUN methods in addition to a new STUN attribute. While

this does add some complexity, as already discussed it also shifts some of the

processing responsibility to the server. Using the server to slowly increase the

interval without creating a new mapping for each timeout test also allows the

STUN Calc Keep-Alive technique to take advantage of situations where the

NAT device uses a longer lifetime for established UDP traffic, and allows the

client to automatically “build up” to a certain interval time without needing to

re-enter the SEARCH state; a feature not present in the other techniques.

Unlike the techniques described in [38], [20], and [8], the STUN Calc Keep-

Alive technique is meant to be used on an individual client basis. It does not

include any way for the server to send the optimum keep-alive interval value to

other clients, as each session (one per NAT mapping) is handled individually.

The latter two techniques also seem to involve stopping the process once the

interval is found. The STUN Calc Keep-Alive technique is meant to run con-

tinually in the background of the client and the server to re-adjust the interval

110

as needed.

The single channel keep-alive interval determination features of the STUN

Calc Keep-Alive technique have different goals than existing keep-alive tech-

niques that operate on or monitor the same channel as the data. While the

techniques described in Section 4.3.3 enable, disable, or adjust the frequency of

keep-alive messages based on the amount of current network traffic, the tech-

nique presented in this chapter aims to find the largest NAT mapping timeout

value despite the presence of other network traffic. The version that was imple-

mented and tested for this thesis takes a more active role by sending RESET

messages, while the alternate proposed implementation is more passive. The

goal for the former is for the value to be as close as possible to what would be

found if the technique were run on its own connection without any interference.

The latter shares the goal of eventually finding the maximum NAT mapping

lifetime, but in a more passive manner. It works to simply find the largest

keep-alive interval needed at the current time until larger windows of time with

no traffic become available.

4.6 Objectives

The objectives of these experiments are to evaluate the STUN Calc Keep-Alive

method described in the previous section for determining an optimum keep-alive

interval. The goals are to evaluate the following:

• The “optimality” of the results of running the SEARCH state of the tech-

nique compared to others when run on a dedicated channel.

111

• The ability of the technique using the REFINE state to settle on a stable

keep-alive interval even on routers with inconsistent behavior.

• The ability of the technique to determine a reliable keep-alive interval in

a single channel situation where other data is being multiplexed with the

keep-alive messages.

4.7 Theoretical Analysis

4.7.1 Linear Increment

This formula is used to first perform a linear increment of the ∆T value to find

the upper bound on the address and port mapping lifetime, and then perform

a binary search to determine the actual timeout value.

The formula used to find the upper bound is as follows:

TUpper =
n∑

k=1

k × ∆T

z

The constant can be moved out of the summation:

TUpper =
∆T

z
×

n∑
k=1

k

It can then be moved to the other side of the equation, and the summation
simplified.

TUpper × z

∆T
=

n∑
k=1

k

=
n(n + 1)

2

112

2× TUpper × z

∆T
= n2 + n

The equation can be solved for n using the quadratic formula:

0 = n2 + n− 2× TUpper × z

∆T

n =
−1 +

√
(1)2 − 4× 1× (−2×TUpper×z

∆T
)

2× 1

=
−1 +

√
1 +

4×2×TUpper×z

∆T

2

The positive root is the number of messages needed to find the upper bound.
For the binary search, z always starts out as 1, so the formula can be further

simplified:

n =
−1 +

√
1 +

8×TUpper

∆T

2

Once the upper bound has been found, to perform a binary search z is mul-
tiplied by 2 each iteration. The result of z being multiplied by 2 is represented
with 2n, where n is the number of iterations.

∆T = 2n

log2∆T = n

Thus the total maximum number of steps required to find the keep-alive
interval are:

n = log2∆T +
−1 +

√
1 +

8×TUpper

∆T

2

113

4.7.2 Geometric Increment

This formula is used to perform a geometric increment of the ∆T value to find

the upper bound on the address and port mapping lifetime. Once the upper

bound is found, a binary search is performed like with the Linear Increment.

The formula used to find the upper bound is as follows:

TUpper =
n∑

k=0

2k × ∆T

z

Like with the linear increment, the constant can be moved out of the
summation:

TUpper =
∆T

z
×

n∑
k=0

2k

It can then be moved to the other side of the equation, and the summation
simplified.

TUpper × z

∆T
=

n∑
k=0

2k

=
1− 2n+1

1− 2

=
1− 2n+1

−1

−1× TUpper × z

∆T
= 1− 2n+1

−1× TUpper × z

∆T
− 1 = −2n+1

1× TUpper × z

∆T
+ 1 = 2n+1

114

Take the natural log of both sides to eliminate the exponent.

ln

(
TUpper × z

∆T
+ 1

)
= ln

(
2n+1

)
= (n + 1)× ln (2)

ln (
TUpper×z

∆T
+ 1)

ln (2)
= n + 1

ln (
TUpper×z

∆T
+ 1)

ln (2)
− 1 = n

For the binary search, z always starts out as 1, so the formula can be further
simplified:

ln (
TUpper

∆T
+ 1)

ln (2)
− 1 = n

Once the upper bound has been found, to perform a binary search z is mul-

tiplied by 2 each iteration, following the same process described for the Linear

Increment in Section 4.7.1. This results in the following maximum number of

steps:

n = log2∆T +
ln (

TUpper

∆T
+ 1)

ln (2)
− 1

4.7.3 Discussion

The geometric increment method can potentially find the upper limit of the NAT

mapping lifetime with fewer messages, depending on the difference between the

lifetime and the initial ∆T value. In situations where there is no knowledge of

the NAT mapping lifetime or a small ∆T value is used, this is the better option.

115

The other keep-alive optimization techniques discussed use a basic geometric

increment (doubling the initial value of T for each iteration).

Since the other techniques described involve two messages for each iteration,

a ping and a reply, in the worst case scenario the total number of messages

exchanged will be double the result of the equations above. Since the client

only responds in the event of a timeout when using the STUN Calc Keep-Alive

SEARCH state, there is the potential for fewer overall messages as not all pings

will include a response.

4.8 Tools

For these experiments the following equipment and software was used:

• Wireshark

• STUN Client running with Java 1.7 on Slackware Linux 14.1

• STUN Server running with Java 1.7 on Windows 8.1

• Linksys WRT-54G router with standard firmware

• ASUS RT-N16 with ASUSWRT-MERLIN firmware

The Linksys WRT-54G router was inconsistent in terms of the time that a

NAT mapping was kept alive, which provided the motivation for the addition

of the REFINE state to the algorithm. Running the algorithm multiple times

resulted in slightly different values, and in some cases the interval found would

only work for one or two iterations. It also did not have a configurable UDP

lifetime value. This is in contrast to the ASUS RT-N16 router, which was much

more consistent in its NAT mapping lifetime values. While the RT-N16 router

116

had an option to configure both the UNREPLIED and ASSURED UDP lifetime

values, regardless of the setting it always functioned with the UNREPLIED

value at 30 seconds. This prevented any comparison tests being performed

using a different mapping lifetime on this router.

The ASUS RT-N16 router also had “NAT Acceleration” (also known as

CTF, or cut-through-forwarding) enabled by default. This appeared to use in-

formation in addition to the normal UNREPLIED and ASSURED UDP time-

out settings and adapt the timeout based on other parameters. Because it

gave inconsistent results, it was disabled for these experiments to allow a valid

comparison between the keep-alive optimization algorithms.

4.9 Experimental Methods

4.9.1 Assumptions

While the algorithm itself is adaptive to changing lifetime values, for the pur-

poses of the experiment the following conditions were satisfied.

• The UDP mapping lifetime value of the NAT devices on the route be-
tween the client and the server do not change during the course of each
run, although the “ASSURED” timeout value may be different than the
“UNREPLIED” timeout value.

• The configuration of the network between the client and the server does
not change during the course of each run.

• The client and server are both connected to the network constantly for
each run.

• The routers both adjust the NAT mapping lifetime based on incoming as
well as outgoing traffic for existing connections.

117

4.9.2 Design

Several sets of experiments were run to evaluate the STUN Calc Keep-Alive

technique and compare it to existing methods. For the experiments involving

the REFINE and RUN states on the Linksys WRT-54G router, the repeat count

was set to five. Initial testing with that router indicated that if the keep-alive

messages are returned five times with the same timeout interval during the RUN

state, then that interval would work consistently.

Optimality of Keep-Alive Interval

For the first experiment two other keep-alive optimization techniques were im-

plemented for comparison. The first is a heavily client-based method described

in [32]. It uses normal STUN binding requests and responses, and two ports on

the client to make the appropriate calculations using a binary search to narrow

down the address and port mapping lifetime. The second method utilizes the

ability of the modified server for the STUN Calc Keep-Alive method to use a

delay in sending responses. It sends a new request after each timeout, and like

the previous method uses a binary search to determine the mapping lifetime.

This method is similar to those described in Section 4.3.3.

In each case, one thread on the client ran the appropriate keep-alive algo-

rithm on a connection to the server, while a second thread ran a “constant”

keep-alive session on another connection. The second thread updated its keep-

alive interval based on new findings from the first. The purpose of this was

to simulate the normal data channel for an application and evaluate any effect

from the keep-alive technique in use on the number of needed keep-alive mes-

118

sages over a period of time. The STUN Calc Keep-Alive algorithm was run

using the geometric increment method to better match the search path taken

by the other two algorithms. The test was run 400 times with the UDP map-

ping lifetime value set to 30 seconds. For all of the algorithms tested, an initial

value of 5000 ms was used, with the STUN Calc Keep-Alive algorithm having

a matching ∆T . This value was chosen to allow a good fit for a variety of NAT

mapping lifetime values, as common mapping lifetimes for UDP range from 15

seconds to two minutes.

REFINE State

The second test evaluated the ability of the technique’s REFINE state to find a

stable value. The technique was run with the client and server on opposing sides

of the Linksys WRT-54G router, which appears to be somewhat inconsistent

in terms of NAT mapping lifetimes, with variations of over 100 milliseconds

between sessions. The UDP mapping lifetime of this router is 90 seconds.

The algorithm was started in the REFINE state at a value known to be too

large (90100 ms) and run 35 times to verify that the REFINE state was always

able to stabilize on a value. The REFINE state ∆T value used was 100 ms,

while the SEARCH ∆T was 50000 ms in order to minimize the “build up” time.

The ∆T value is small to in order to allow small adjustments to the T value.

On a router with more consistent behavior, ∆T could be set even smaller.

Single Channel

The third set of tests evaluated the performance of the STUN Calc Keep-Alive

algorithm when used in a single channel situation. For this test the server

119

generated traffic and sent it to the client from the same port being used by the

keep-alive algorithm. Tests were run both using a random traffic generator, and

with four sets of real traffic data: two from Direct Democracy P2P (software)

(DDP2P) and two from Skype. The traffic data was gathered using Wireshark.

Two additional tests were run setting ZMult and ZMax to limit the number

of times that the algorithm timed out before accepting the last known good

time. These tests were done using the first DDP2P data set, which included a

significant amount of network traffic noise. Each test was run 82 times using

a UDP mapping lifetime of 30 seconds. The number of tests is due to time

constraints experienced while running the experiments.

The tests were run with the geometric increment type and MAX RESET TRIES

set to 10, MIN RESET INTERVAL set to 5000 ms, and RESET DELAY set

to 2000 ms. These values were chosen based on initial tests to attempt to min-

imize the number of RESET messages while still finding a reasonable T value.

The 2000 ms RESET DELAY prevents extraneous messages from being sent for

busy traffic sets, while retaining some precision by sending a RESET message

when there is a gap in traffic.

4.9.3 Measurement

The test configuration of the STUN client keeps count of all incoming messages,

sent messages, timeouts, and the duration of the session. When UsesStarterMessage

is set, in order to accurately gage the timeout, once the message wheel on the

server queues up a new session, it sends the first message immediately to estab-

lish the beginning of the interval.

120

For the first set of experiments, the total number of sent and received mes-

sages, the number of timeouts, and the total time taken to determine the keep-

alive interval were analyzed for each of the three optimization algorithms. The

mean, median, and mode of the final keep-alive interval value found were also

compared.

Measurement for the second experiment testing the REFINE state involved

verifying that the algorithm was able to find a stable keep-alive value on the

WRT-54G router using the REFINE state. The final keep-alive interval found

and message counts were measured.

For the third set of experiments, the number of RESET messages, the keep-

alive interval values found, and the time taken to gather them were the primary

data points measured.

In addition, a “time unreachable” metric was also gathered. To find this

value, the client kept track of all T values that resulted in a timeout, in each

instance adding the new value to a sum total. At the end of the process, the

client multiplied the final value of T by the number of timeouts, and subtracted

that from the sum total of timeout T values. The resulting value is the total

time that the client was “unreachable” from outside of the NAT. The formula

is shown below:

TUnreachable =
∑

TT imedOut − TimeoutCount× T

With the test implementation, the timeout for the client is set to include

a buffer due to the possibility of a delayed RESET message causing a server

response message to arrive after a timeout. In this situation the client would

121

miss a message when in actuality it successfully travelled through the NAT.

Since RESET DELAY was set to 2000 ms for these experiments, the timeout

buffer value was 2010 ms. The adjusted formula for “time unreachable” is as

follows:

TUnreachable =
∑

TT imedOut − TimeoutCount× T

+ TimeoutCount× TIMEOUT BUFFER

4.9.4 Threats to Validity

The primary threat to the validity of these results is that only two routers were

used in the experiments, and they have known differing behaviors. The lack of

variety in NAT lifetime mapping values is also a limiting factor. As discussed in

earlier sections, there are a variety of different NAT mapping behaviors displayed

depending on the router and firmware, and the NAT mapping behavior of many

routers is not well documented.

In addition, these experiments were done with only one router acting as a

NAT device between the client and server, whereas there could potentially be

several NAT devices on the network route depending on the network configura-

tion.

122

4.10 Analysis of Results

Optimality of Keep-Alive Interval

Metric Measure STUN Calc KA Server Binary Search Client Binary Search

Timeout Interval

Mean 29991.41 29989.58 29986.82

Median 29992 29990 29987

Mode 29992 29990 29990

Session Duration
Mean 450831.59 615215.02 572275.17

Median 455097.5 505192 540283.5

Table 4.6: Keep-Alive Connection Thread Time Intervals (ms)

Metric Measure STUN Calc KA Server Binary Search Client Binary Search

Received

Mean 16.55 15.70 34.03

Median 17 14 34

Mode 17 14 33

Sent

Mean 8.22 19.80 38.66

Median 8 18 38

Mode 8 17 38

Timeouts

Mean 3.24 4.11 4.60

Median 3 4 5

Mode 3 4 5

Table 4.7: Keep-Alive Connection Thread Message Counts and Timeouts

While in theory STUN Calc Keep-Alive is more accurate than techniques

that rely on a back-and-forth client ping, in terms of this experiment the tested

algorithms all seem very close. The STUN Calc Keep-Alive algorithm did find

the highest average keep-alive interval, however the difference between the final

keep-alive interval compared to the other algorithms was smaller than the total

123

range of values found. The STUN Calc Keep-Alive algorithm appears to have a

slightly shorter session duration overall, and the Server Binary Search included

some significantly longer sessions that brought up the mean.

The Client Binary Search both sent and received the largest number of

messages due to its need to establish a new binding for each timing attempt. A

notable difference among the algorithms is the number of sent messages. Since

in this case the search path taken by the STUN Calc Keep-Alive algorithm

involved a small number of timeouts, only a small number of sent messages

were needed since the client only communicates with the server to initiate or

stop a session and when it experiences a timeout. Had the search path resulted

in the final keep-alive interval value being closer to the original “min” value

used for the search, therefore causing the client to experience more timeouts,

the difference in sent messages between the STUN Calc Keep-Alive and the

Server Binary Search algorithms would be smaller.

Metric Measure STUN Calc KA Server Binary Search Client Binary Search

Received

Mean 19.33 24.45 23.82

Median 20 22 24

Mode 20 22 24

Table 4.8: Constant Connection Thread Message Counts

There did not seem to be a significant difference in the number of messages

received by the “constant” runner thread accompanying the search thread. This

is most likely because while they took different search paths depending on the

exact NAT mapping lifetime that the router gave their sessions, they were all

doing a binary search.

124

REFINE State

A small series of tests was performed to verify that the client was able to de-

termine a stable keep-alive interval value using the REFINE state 100% of the

time. Once the REFINE state finished running, the new keep-alive value was

verified with the RUN state in each case.

Metric Measure Time

Timeout Interval

Mean 88334.29

Median 88550

Mode 88550

Session Duration
Mean 2899027.63

Median 2843284

Table 4.9: REFINE State Time Intervals (ms)

Metric Measure Count

Received

Mean 36.43

Median 36

Mode 36

Sent

Mean 15.43

Median 16

Mode 16

Timeouts

Mean 6.71

Median 7

Mode 7

Table 4.10: REFINE State Message Counts and Timeouts

125

Single Channel

The STUN client performed well with the single channel capability enabled for

determining the keep-alive interval. As expected, despite the delays in sending

RESET messages, the network traffic increases significantly when attempting to

determine the keep-alive interval, especially with noisy data sets. The algorithm

was able to converge on a keep-alive interval value in all cases in spite of the

network traffic noise.

Measure DDP2P 1 DDP2P 2 Skype 1 Skype 2 Random

Mean 29925.44 29958.48 29990.51 29990.38 29922.00

Median 29992 29990 29990 29992 29988

Mode 29994 29990 29990 29992 29988

Table 4.11: Single Channel Time Intervals (ms) Found

Metric Measure DDP2P 1 DDP2P 2 Skype 1 Skype 2 Random

Without TO Buffer

Mean 695.63 10086.27 10022.14 10022.47 10284.67

Median 12 10023 10023 10020 10031

Mode 8 10023 10023 10020 10031

With TO Buffer

Mean 4655.00 16587.75 16548.43 16722.47 12298.22

Median 4020 16053 16053 16053 12044

Mode 4020 16053 16053 18060 12045

Table 4.12: Single Channel Time Unreachable (ms)

In Table 4.12 above, “TO” signifies “timeout”.

Using the RESET messages, the algorithm was able to find a keep-alive value

similar to those found using a dedicated channel. However, the traffic noise did

126

affect the final keep-alive interval values found using several of the data sets.

The “time unreachable” metric is comparable among most of the traffic

patterns with the exception of “DDP2P 1”. For the rest of the patterns, the large

value appears to be due to a timeout with an attempted keep-alive interval of

40000 ms. The actual NAT mapping lifetime is around 30000 ms, and the large

difference adds significantly to the time during which the client is unreachable.

With the “DDP2P 1” data set, during the majority of the tests the client reached

MAX RESET TRIES before there was a lapse in traffic large enough for the

40000 ms attempt to time out, so only smaller intervals were attempted and

able to result in a timeout.

The algorithm was able to determine similar keep-alive interval values in vari-

ous network traffic conditions. The “random” traffic generator and the “DDP2P

2” data set included somewhat large gaps in traffic, while the remaining sessions

contained significantly more noise in addition to some gaps of various lengths.

Since the traffic used for each test was different, a comparison of the session

duration among the different conditions is not appropriate.

Aside from the number of RESET messages, the other message counts re-

mained within a reasonable range (in relation to the dual channel mode results)

while operating within the different sets of traffic conditions. The “sent” mes-

sages in Table 4.13 consist of both the START and STOP messages sent to the

server.

127

Metric Measure DDP2P 1 DDP2P 2 Skype 1 Skype 2 Random

Received

Mean 18.53 18.37 18.19 18.44 18.11

Median 19 18 18 19 18

Mode 19 18 18 19 19

Sent

Mean 8.22 8.23 8.30 8.32 9.06

Median 8 8 8 8 9

Mode 8 8 8 8 8

Timeouts

Mean 2.23 3.23 3.25 3.33 3.56

Median 2 3 3 3 3

Mode 2 3 3 3 3

Reset

Mean 40.01 32.05 54.16 45.01 37.78

Median 40 33 55 45 37

Mode 40 33 55 45 33

Table 4.13: Single Channel Message Counts

Measure No ZMax ZMax = 16 ZMax = 64

Mean 29925.44 28024.69 29323.38

Median 29992 29375 29843

Mode 29994 29375 29843

Table 4.14: Single Channel (with ZMax) Time Intervals (ms) Found

Measure No ZMax ZMax = 16 ZMax = 64

Mean 877032.59 645251.52 775621.19

Median 903705 715699 788761

Table 4.15: Single Channel (with ZMax) Session Durations (ms)

Using the “DDP2P 1” data set, additional tests were run with two different

128

ZMax values. These cutoff points allowed the algorithm to return with a keep-

alive interval more quickly, but at the cost of precision. This test is only relevant

for this implementation, as the alternate implementation described in Section

4.4.2 is more passive and has little reason to end the search prematurely as it

adjusts its activity along with the network traffic level.

4.11 Discussion and Conclusions

While the STUN Calc Keep-Alive technique was not shown to be more accurate

during these experiments, when running in the SEARCH state it has been

shown to provide comparable results to traditional keep-alive interval calculation

techniques. Testing the technique using a client and server with a high network

latency between them could possibly better illustrate any improved optimality.

The number of sent messages for the STUN Calc Keep-Alive algorithm included

both the START and STOP messages. This number could potentially be further

reduced in some situations by having a single message that both stops the

existing session and begins a new one. The current implementation uses separate

messages in order to stop the existing session as quickly as possible.

The REFINE state was shown to stabilize on a keep-alive value, even with

a starting time several seconds too large. The primary imagined uses of the

client in the REFINE state are to maintain a keep-alive connection on routers

that are inconsistent (e.g. those that adjust NAT mapping lifetimes based on

external factors), or to more quickly find a new keep-alive value if a device

changes networks or is otherwise confronted with a new NAT mapping lifetime

with which the current keep-alive interval will not work.

129

While the experiment to evaluate the “Single Channel” mode of the algo-

rithm used incoming network traffic from the server as the “noise”, in practice

the technique could be used with outgoing traffic as well, as an application

would be aware of any outgoing traffic. The values of MAX RESET TRIES,

MIN RESET INTERVAL, and RESET DELAY chosen for the experiment were

meant to strike a balance between precision and a reasonable number of RE-

SET messages. However, the number of RESET messages turned out higher

than ideal. A larger value for MIN RESET INTERVAL might help alleviate

the issue. The original incarnation of this mode exited the search after the first

time MAX RESET TRIES was reached. This may be desirable if a keep-alive

interval is needed quickly, or if the connection has a large amount of traffic with

few gaps. It can be achieved with the current algorithm by setting ZMax to

a value less than Z, so the Z > ZMax condition is met on the first occurance.

Despite the larger than expected number of RESET messages, the “Single Chan-

nel” mode has been shown to be a viable option for determining a keep-alive

interval, despite being sub-optimal.

The use case for this mode is narrower than that for the normal “Dual

Channel” mode, but may be useful depending on the application and the NAT

device. For example, many applications that utilize UDP use a single socket for

multiple purposes and multiplex the data. Even if the various communication

channels have different destination locations, some NAT devices may maintain

a single NAT mapping lifetime for that set of connections based on the source

address and port. It could also be the case that a client needs to communicate

with a server that is also multiplexing data, with both using the same endpoints

for multiple tasks.

130

Chapter 5

Conclusion

Due to the the limitations of the IPv4 internet protocol concerning the number

of possible unique addresses, a technology called Network Address Translation

(NAT) has been used to provide a gateway between the Internet and private

intranets. This technology introduces a number of challenges to P2P protocols;

challenges that will continue after the introduction of IPv6 due to the large

amount of legacy equipment and knowledge. The contributions of this thesis

are as follows:

• An overview of general information about NAT devices and how external

facing address and port mappings are created and maintained for use with

various protocols (e.g. UDP and TCP).

• Comparison of features and a timing evaluation of several protocols, in-

cluding NAT-PMP, PCP, UPnP, and STUN for use creating or maintain-

ing NAT mappings.

• A survey of existing methods to calculate an optimal keep-alive interval

131

value for a given network configuration.

• Proposing the STUN Calc Keep-Alive method for calculating a keep-alive

interval value, including its theoretical and experimental comparison with

existing techniques.

Obtaining the External Address One of the goals of this thesis was to

evaluate the different methods available for creating an external address and

port mapping on a NAT device. The NAT-PMP, PCP, UPnP, and STUN

protocols were all discussed and weighed according to their advantages and

disadvantages.

The protocols were also tested for performance when obtaining an external

address and port mapping.

NAT UDP Keep-Alive Interval Optimization Method We introduce a

flexible keep-alive interval optimization method for use over UDP. One of the

distinguishing features is that the server sends the keep-alive messages, and the

client only responds in the event of a timeout. With most existing methods,

the client responds to each ping from the server to verify that the connection

is still active. Depending on the number of timeouts, the method presented in

this thesis results in fewer messages from the client overall, thus resulting in less

network traffic and potential power savings for the client.

Having the server send keep-alive messages with its own timer instead of

relying on responses from the client also allows for more consistent results, and

possibly more precise results in situations where the NAT device uses a differ-

ent NAT mapping lifetime for “assured” UDP sessions than for new sessions.

132

The TMax and ActionAfterTMax elements of the KEEP ALIVE TIMER DATA

attribute structure allow a client to re-use a keep-alive interval that takes advan-

tage of NAT devices utilizing a separate lifetime for connections in the afore-

mentioned “assured” UDP state. Both the RUN and REFINE states of the

client can use these values along with the specified ∆T to “build up” to the

actual interval value needed.

The technique’s REFINE state allows the client to adapt to a NAT device

with an inconsistent address and port mapping lifetime or to a change in net-

works without having to restart the search. When the algorithm is in the RUN

state, and the number of timeouts reaches a preset failure threshold, it moves

to the REFINE state and begins to search backwards. This is potentially useful

especially for mobile devices that change networks frequently. For devices that

remain on the same network for longer periods of time, the REFINE state allows

for reasonably quick adjustments of the keep-alive interval, as some NAT de-

vices change the mapping lifetime depending on external factors such as traffic

load.

This thesis also presented a variation of the STUN Calc Keep-Alive tech-

nique that works using the same connection as application data. This is achieved

using RESET messages which are sent to the server to “reset” the timer for the

next message in a keep-alive optimization session based on the amount of unre-

lated network traffic as well as multiple parameters. While the implementation

tested is not optimal due to the potentially large number of RESET messages

generated, an alternate implementation that takes a more passive approach is

described as well.

133

Future Work In terms of comparing NAT traversal techniques, newer meth-

ods such as ICE could be evaluated in more detail and compared to the methods

discussed for creating the address and port mapping explicitly (UPnP, PCP,

and NAT-PMP), in addition to those discussed that utilize the NAT device to

automatically obtain their external address and port mapping in order to initi-

ate communication with a peer via another method (e.g. STUN). The protocols

could also be evaluated when working with TCP connection mappings.

The STUN Calc Keep-Alive technique has the potential for additional func-

tionality. For example, when the ServerAdjustsZ flag is set, the server wheel

assumes that K will remain constant in order to facilitate a binary search. If

one wishes to have the server modify Z while also incrementing K as usual, a

flag could be added to the KEEP ALIVE TIMER DATA attribute structure in

place of one of the reserved bits. Work could also be done to utilize the “build

up” functionality while the client is in the SEARCH state.

For the “Single Channel” mode, one could research more into reducing the

number of RESET messages sent, perhaps by more intelligently estimating the

delay before the next keep-alive message from the server and dynamically adjust-

ing the MIN RESET INTERVAL or RESET DELAY values. In addition, the

alternate implementation for the Single Channel mode could be implemented

and tested. In theory that is a better solution as it does not generate extra traf-

fic with RESET messages, yet it allows the client to eventually find the NAT

mapping lifetime.

134

In addition, all variations of the STUN Calc Keep-Alive technique could be

tested on various routers to verify that it works in as many situations as possible.

NAT devices vary greatly in their behavior for maintaining the address and port

mappings for UDP connections, so testing the algorithm on a variety of devices

is advantageous.

Concluding Remarks Traversing NATs presents a challenge for many pieces

of software, especially P2P applications, as NAT devices make it difficult to de-

termine one’s own external facing address in order to communicate with others.

Fortunately, many options exist to mitigate these issues. This thesis explores

some of those options, including protocols for explicitly creating and maintain-

ing an external facing address and port mapping, as well as other protocols that

are used to obtain one’s external facing address and set up communication via

another method (e.g. UDP hole punching). The STUN Calc Keep-Alive tech-

nique is also introduced, meant to be an adaptive algorithm that can respond

to changes in networks or even NAT mapping lifetime changes within the same

device. The REFINE state allows adjustments to be made to the keep-alive

interval when a timeout is encountered without restarting the search for a new

interval, while the RUN state simply maintains a keep-alive session with reg-

ularly timed messages. Given the variation and unpredictability in mapping

lifetime behaviors among NAT devices, and the increasing number of mobile

devices and P2P applications in use, the ability to generate keep-alive messages

at an efficient interval will most likely remain a need for the foreseeable future.

135

Appendix A

STUN Calc Keep-Alive
Pseudo-Code (Server)

This chapter contains more detailed pseudo-code for the various procedures and
other pieces of functionality described in Section 4.4.2 for the Server.

136

A.1 Server Controller

1 when STUN CALC KA REQUEST(KeepAliveT imerData ka) from ClientAddress do
2 INPUT: 〈 ActionAfterTMax, K, ID, UsesStarterMessage, ServerAdjustsZ,

IncrementType, Direction, RepeatCount, Z, ZMult, T , TMax, ∆T , ∆TAfterTMax 〉
3

4 if ID not in SessionHashTable then
// Create a session based on the request parameters

5 Session s = new Session(ka)
// Initialize other state variables.

6 s.Kl ← s.K
7 s.InitialK ← s.K
8 s.IsF irstSessionMessage← TRUE
9 s.Original∆T ← s.∆T

10 s.Original∆TAfterTMax ← s.∆TAfterTMax

11 s.TMaxWasReached← FALSE
12 s.InnerRepeatCount← 0
13 s.OuterRepeatCount← 0
14

15 SessionHashTable.add(〈ClientAddress, ClientPort, ID〉, Session)
16

// The Wheel will reference the SessionHashTable using

〈ClientAddress, ClientPort, ID〉 for the relevant information.

17 Wheel.add(s)

18

19 InterruptWheel()

20 when STUN CALC KA STOP REQUEST(ID) from ClientAddress do
21 if ID in SessionHashTable then
22 SessionHashTable.remove(ID)
23 Wheel.remove(ID)
24 InterruptWheel()

25 when STUN CALC KA RESET REQUEST(ID) from ClientAddress do
26 if ID in SessionHashTable then
27 Wheel.reset(ID)
28 InterruptWheel()

Algorithm 5: Server Controller Behavior

137

A.2 Server Message Wheel

Input: ID, Session s
1 procedure add() do
2 if s.UsesStarterMessage = TRUE then

// The first send time is immediate to establish the address and port

binding.

3 s.NextSendT ime← SystemTime()

// Otherwise it is set up in the main wheel loop.

4 MessageQueue.add(s)
Input: ID

5 procedure remove() do
6 MessageQueue.remove(ID)

Input: ID
7 procedure reset() do
8 Session s ← SessionHashTable.get(ID)
9 s.NextSendT ime← SystemTime() + s.T

Algorithm 6: Server Wheel Behavior (Session Management)

138

1 when Wheel Session s do
2 SendRealKToClient← TRUE
3 if s.NextSendT ime > SystemTime() then
4 pause the thread until the correct time unless interrupted with a new session
5 if thread is interrupted then
6 MessageQueue.add(s)
7 s← MessageQueue.pop()
8 CONTINUE

9 if session has been removed then
10 CONTINUE
11 send to(ClientAddress, STUN CALC KA RESPONSE(ID, Kl, T , ∆T , Direction,

Z, ServerAdjustsZ))
12

13 if s.UsesStarterMessage = TRUE AND s.IsF irstSessionMessage = TRUE then
14 ShouldCalcNextT ime← FALSE
15 else
16 ShouldCalcNextT ime← TRUE
17 if s.IsF irstSessionMessage = TRUE AND s.ServerAdjustsZ = FALSE then

// Initial adjustment for ∆T if ServerAdjustsZ is FALSE.

18 if s.TMaxWasReached = TRUE then

19 s.∆TAfterTMax ← s.Original∆TAfterTMax

s.Z
20 else

21 s.∆T ← s.Original∆T
s.Z

22

23 if s.T 6= s.TMax AND ShouldCalcNextT ime = TRUE then
24 CalcNextTime(s, SendRealKToClient)
25

26 s.NextSendT ime← s.T + SystemTime()
27 if s.ServerAdjustsZ = FALSE and ShouldCalcNextT ime = TRUE then
28 s.K ← s.K + 1
29

30 if SendRealKToClient = TRUE then
31 Kl ← s.K
32

33 if s.TMax > 0 AND s.T ≥ s.TMax AND ShouldCalcNextTime = TRUE then
34 AdjustAfterMaxTime(s)
35

36 MessageQueue.add(s)

Algorithm 7: Server Wheel Behavior (Message Management)

139

1 procedure CalcNextTime(Session s, Boolean SendRealKToClient) do
2 if s.MaxRepeatCount > 0 AND s.InnerRepeatCount < s.MaxRepeatCount AND

s.NextAction = MAINTAIN CURRENT then
3 s.InnerRepeatCount← s.InnerRepeatCount + 1
4 SendRealKToClient← FALSE

5 else
6 if s.MaxRepeatCount > 0 then
7 Kl ← s.OuterRepeatCount
8 SendRealKToClient← FALSE

9 else
10 Kl ← s.K
11 s.InnerRepeatCount← 0
12 s.OuterRepeatCount← s.OuterRepeatCount + 1

// Adjust Z using the appropriate ∆T value.

13 if s.ServerAdjustsZ = TRUE then
14 s.OuterRepeatCount← 1
15 Kl ← s.InitialK
16 SendRealKToClient← FALSE
17 s.Z ← s.Z × s.ZMult

18 if s.TMaxWasReached = TRUE then

19 s.∆TAfterTMax ← s.Original∆TAfterTMax

s.Z
20 else

21 s.∆T ← s.Original∆T
s.Z

// Select the ∆T value for the new calculation for T.
22 if s.TMaxWasReached = TRUE then
23 ∆Tl ← s.∆TAfterTMax

24 else
25 ∆Tl ← s.∆T
26 if ∆Tl > 0 then
27 switch s.IncrementType do
28 case LINEAR
29 IntervalChange← Kl ×∆Tl

30 case GEOMETRIC
31 IntervalChange← 2Kl ×∆Tl

// Modify T with the new value based on the session direction.

32 switch s.Direction do
33 case FORWARD
34 s.T ← s.T + IntervalChange
35 case BACKWARD
36 s.T ← s.T − IntervalChange

Algorithm 8: CalcNextTime Procedure

140

1 procedure AdjustAfterMaxTime(Session s) do
2 s.TMaxWasReached← TRUE
3 s.OuterRepeatCount← 0
4 s.T ← s.MaxT
5 s.NextSendT ime← SystemTime() + s.T

// Reset max time.

6 s.TMax ← 0
7 SendRealKToClient← FALSE
8 Kl ← s.OuterRepeatCount
9 switch s.NextAction do

10 case MAINTAIN CURRENT
// No change.

11 case STAY CONSTANT
12 s.K ← GetBaseK(s)
13 case CHANGE TO FORWARD
14 s.K ← GetBaseK(s)
15 s.Direction← FORWARD

16 case CHANGE TO BACKWARD
17 s.K ← GetBaseK(s)
18 s.Direction← BACKWARD

19 s.NextAction← MAINTAIN CURRENT

Algorithm 9: AdjustAfterMaxTime Procedure

1 Function GetBaseK(Session s) : Number is
2 switch s.IncrementType do
3 case LINEAR
4 KBase ← 1
5 case GEOMETRIC
6 KBase ← 0

7 RETURN KBase

Algorithm 10: GetBaseK Function

141

Appendix B

STUN Calc Keep-Alive
Pseudo-Code (Client)

This chapter contains more detailed pseudo-code for the various procedures and
other pieces of functionality described in Section 4.4.2 for the Client.

142

B.1 Initialization

Input: ServerAddress, SearchParams, RunParams, RefineParams, T , State,
UsesStarterMessage

1 INPUT: SearchParams 〈 ∆T , ∆TMin, Z, ZMax, ZMult, IncrementType 〉
2 INPUT: RunParams 〈 FailureTolerance, RepeatCount 〉
3 INPUT: RefineParams 〈 ∆T , Z, ZMult, PingsPerAttempt 〉
4 procedure Initialize() do
5 t← 0 // Identifier for the session ID

6 ID ← IDt // The new session ID

7 T ← T // The keep-alive interval value

8 switch State do
9 case SEARCH

10 Z ← SearchParams.Z
11 TMax ← 0 // Not used in this state

12 ActionAfterTMax ← STAY CONSTANT
13 Direction← FORWARD
14 RepeatCount← 0

// For binary search, this changes after the first timeout

15 ServerAdjustsZ ← FALSE
// Used only for the current "single channel" implementation

16 ResetCount← 0

17 case RUN
18 Z ← 1
19 TMax ← T
20 T ← SearchParams.∆T
21 ActionAfterTMax ← STAY CONSTANT
22 Direction← FORWARD
23 RepeatCount← RunParams.RepeatCount
24 ServerAdjustsZ ← FALSE // Not used in this state

// Used to keep count for termination if a max number of runs is

specified

25 RunCount← 0

26 case REFINE
27 Z ← RefineParams.Z
28 TMax ← T
29 T ← SearchParams.∆T
30 ActionAfterTMax ← CHANGE TO BACKWARD
31 Direction← FORWARD
32 ServerAdjustsZ ← FALSE // Not used in this state

33 RepeatCount← RefineParams.P ingsPerAttempt
// Tracks the number of "pings" for the current T value

34 RefineCount← 0
// Used as a multiplier when calculating a new T value

35 RefineT imeoutCount← 0
// Set to TRUE once a good T value is found

36 RefineMinV alueFound← FALSE

Algorithm 11: Client Initialization (Part One)

143

1 ...
// Used to help calculate the next timeout interval in the REFINE state

// Set to TRUE after the maximum number of pings is reached

2 RefineP ingsReached← FALSE
// Indicates if the time changed after RepeatCount was reached

3 TimeChanged← FALSE
// Indicates if a ‘‘build up’’ cycle was just completed

4 JustCompletedBuildUpCycle← FALSE
5

// The number of session messages to ignore before acting

6 if UsesStarterMessage then
7 BaseMessageCount← 1
8 else
9 BaseMessageCount← 0

10

// The starting iteration value

11 switch SearchParams.IncrementType do
12 case LINEAR
13 K ← 1
14 case GEOMETRIC
15 K ← 0

16

// The increment method to use for SEARCH and ‘‘build up’’

17 IncrementType← SearchParams.IncrementType
// The last known good T value

18 LastGoodT ← 0
// The total number of timeouts

19 TimeoutCount← 0
// The number of received messages for the session

20 SessionMessageCount← 0
// The total number of received messages.

21 TotalMessageCount← 0
// The default is to always start in "build up" mode

22 BuildingUpToT ime← TRUE
// Exit the optimization process after the next iteration

23 ExitOnNextMessage← FALSE
// Used to avoid an infinite loop if last attempted T value times out

24 LastAttemptStarterSkipped← FALSE
25

26 StartNewSession← TRUE
27 goto ClientLoopStart

Algorithm 12: Client Initialization (Part Two)

144

B.2 Main Loop

1 procedure ClientLoopStart do
2 if State changed then

// In this instance Initialize() should avoid calling this procedure

again, as it will simply resume after Initialize() finishes

3 Initialize()

4

5 if ExitOnNextMessage = TRUE then
6 if SessionMessageCount > BaseMessageCount OR

LastAttemptStarterSkipped = TRUE then
7 sendto(ServerAddress, STUN CALC KA STOP REQUEST(ID))
8 T ← LastGoodT
9 State← RUN

10 BREAK

11 else
// This flag prevents an infinite loop from occuring if the last

T value times out.

12 LastAttemptStarterSkipped← TRUE

Algorithm 13: ClientLoopStart (Part One)

145

1 ...
// The calls to build the STUN CALC KA REQUEST objects omit the SizeType

in this description. The ordering of the arguments otherwise

corresponds to those in Figure 4.1.

2 if StartNewSession = TRUE then
3 t← t + 1
4 ID ← IDt

5 SessionMessageCount← 0

6 switch State do
7 case SEARCH

// As an alternative to checking ZMax, check for exit based on

SearchParams.∆TMin

8 if SearchParams.∆T
Z ≤ SearchParams.∆TMin then

9 ExitOnNextMessage← TRUE
10

11 if SearchParams.ZMax > 0 AND Z > SearchParams.ZMax then
12 T ← LastGoodT
13 State← RUN
14 BREAK

15 BuildingUpToT ime← FALSE
16 if StartNewSession = TRUE then
17

18 request ← STUN CALC KA REQUEST(V ersion, STAY CONSTANT,
K, ID, UsesStarterMessage, ServerAdjustsZ, IncrementType,
FORWARD, 0, Z, SearchParams.ZMult, T , 0, SearchParams.∆T , 0)

19

20 sendto(ServerAddress, request)
21 StartNewSession← FALSE

22 TimeOut← CalculateNextTimeout()
23 alarm timeout(TimeOut)

24 case RUN
25 if StartNewSession = TRUE then
26 BuildingUpToT ime← TRUE
27 TMax ← T
28 T ← SearchParams.∆T
29

30 request ← STUN CALC KA REQUEST(V ersion, STAY CONSTANT,
K, ID, UsesStarterMessage, ServerAdjustsZ, IncrementType,
FORWARD, RunParams.RepeatCount, Z, 1, T , TMax,
SearchParams.∆T , 0)

31

32 sendto(ServerAddress, request)
33 StartNewSession← FALSE

34 TimeOut← CalculateNextTimeout()
35 alarm timeout(TimeOut)

Algorithm 14: ClientLoopStart (Part Two)

146

1 ...
2 case REFINE
3 if StartNewSession = TRUE then
4 BuildingUpToT ime← TRUE
5 TMax ← T
6 T ← SearchParams.∆T
7 if FirstRefineT ime = TRUE then

// The current interval value already timed out in the RUN

state.

8 TMax ← TMax − RefineParams.∆T
Z

9 FirstRefineT ime← FALSE

10 if ActionAfterTMax = STAY CONSTANT then
11 ActionAfterTMax ← CHANGE TO BACKWARD
12

13 request ← STUN CALC KA REQUEST(V ersion, ActionAfterTMax, K, ID,
UsesStarterMessage, ServerAdjustsZ, IncrementType, FORWARD,
RefineParams.P ingsPerAttempt, 1, 1, T , TMax, SearchParams.∆T ,
RefineParams.∆T)

14

15 sendto(ServerAddress, request)
16 StartNewSession← FALSE

17 TimeOut← CalculateNextTimeout()
18 alarm timeout(TimeOut)

Algorithm 15: ClientLoopStart (Part Three)

147

1 procedure CalculateNextTimeout() do
2 switch State do
3 case SEARCH

// The client sets the time for the start of the session, so in

this case T is known.

4 if SessionMessageCount ≤ BaseMessageCount then
5 TimeOut← T + TIMEOUT BUFFER

// Otherwise the next value of T must be calculated.

6 else
7 switch IncrementType do
8 case LINEAR
9 ΩK ← K

10 case GEOMETRIC
11 ΩK ← 2K

12 if ServerAdjustsZ = TRUE then
13 Zl ← Z × SearchParams.ZMult

14 else
15 Zl ← Z

16 TimeOut← T + ΩK × SearchParams.∆T
Zl

+ TIMEOUT BUFFER

17 case RUN
18 if SessionMessageCount ≤ BaseMessageCount then
19 TimeOut← T + TIMEOUT BUFFER
20 else
21 switch IncrementType do
22 Kl ← SessionMessageCount−BaseMessageCount− 1
23 case LINEAR
24 ΩKl

← Kl

25 case GEOMETRIC
26 ΩKl

← 2kl

// If currently ‘‘building up’’, a ∆T is being used and Ωkl

is significant.

27 if BuildingUpToT ime = TRUE then
28 TimeOut← T + ΩKl

× SearchParams.∆T
Z + TIMEOUT BUFFER

29 if TimeOut− TIMEOUT BUFFER > TMax then
30 TimeOut← TMax + TIMEOUT BUFFER

// Otherwise the ΩKl
is not needed since the time is

constant.

31 else
32 TimeOut← T + TIMEOUT BUFFER

Algorithm 16: CalculateNextTimeout Procedure (Part One)

148

1 ...
// While this is the structure used for the test implementation,

depending on the application a simpler implementation could be used.

2 case REFINE
3 if SessionMessageCount ≤ BaseMessageCount then
4 TimeOut← T + TIMEOUT BUFFER
5 else

// When ‘‘building up’’, the SEARCH state ∆T is used.

6 if BuildingUpToT ime = TRUE then
7 switch IncrementType do
8 Kl ← SessionMessageCount−BaseMessageCount− 1
9 case LINEAR

10 ΩKl
← Kl

11 case GEOMETRIC
12 ΩKl

← 2kl

13 TimeOut← T + ΩKl
× SearchParams.∆T + TIMEOUT BUFFER

14 if TimeOut− TIMEOUT BUFFER > TMax then
15 TimeOut← TMax + TIMEOUT BUFFER

// Otherwise the REFINE state ∆T is used.

16 else
17 if (RefineCount < RefineParams.P ingsPerAttempt - 1 AND

RefineP ingsReached = FALSE) OR JustCompletedBuildUpCycle =
TRUE then

18 TimeOut← T + TIMEOUT BUFFER
19 else if RefineP ingsReached = TRUE then
20 RefineP ingsReached← FALSE
21 if TimeChanged = FALSE then
22 switch IncrementType do
23 case LINEAR
24 ΩK ← K
25 case GEOMETRIC
26 ΩK ← 2k

27 TimeOut←
T + ΩK ×RefineParams.∆T + TIMEOUT BUFFER

28 else
29 TimeChanged← FALSE
30 TimeOut← T + TIMEOUT BUFFER

31 else
32 switch IncrementType do
33 case LINEAR
34 ΩK+1 ← K + 1
35 case GEOMETRIC
36 ΩK+1 ← 2k+1

37 TimeOut← T +ΩK+1×RefineParams.∆T +TIMEOUT BUFFER

Algorithm 17: CalculateNextTimeout Procedure (Part Two)

149

B.3 Message Handling

1 when STUN CALC KA RESPONSE(CalcKaResponse r 〈 ID, K, T , ∆T , Direction, Z,
ServerAdjustsZ 〉) from ServerAddress do

2 if not correct message type then
3 CONTINUE
4 if not correct (ID) then

// This is an old session, so alert the server to terminate it.

5 sendto(ServerAddress, STUN CALC KA STOP REQUEST(ID))
6 CONTINUE

7

8 TotalMessageCount← TotalMessageCount + 1
9 SessionMessageCount← SessionMessageCount + 1

10 K ← r.K
11

12 if SessionMessageCount ≤ BaseMessageCount AND T 6= 0 then
// Take no action. Message still counts towards total.

13 else
14 switch State do
15 case SEARCH OR RUN
16 Z ← r.Z
17 LastGoodT ← r.T
18 T ← LastGoodT
19 if State = RUN then
20 if BuildingUpToT ime = TRUE then
21 if T ≥ TMax then
22 BuildingUpToT ime← FALSE
23 RunCount← RunCount + 1

24 else
25 RunCount← RunCount + 1
26 if RunParams.RepeatCount > 0 AND

RunCount ≥ RunParams.RepeatCount then
27 sendto(ServerAddress,

STUN CALC KA STOP REQUEST(ID))
28 EXIT

Algorithm 18: Incoming Message Handling (Part One)

150

1 ... case REFINE
2 Direction← r.Direction
3 if BuildingUpToT ime = TRUE then
4 T ← r.T
5 if T ≥ TMax then
6 JustCompletedBuildUpCycle← TRUE
7 BuildingUpToT ime← FALSE
8 RefineCount← RefineCount + 1

9 else
10 RefineCount← RefineCount + 1
11 if RefineCount ≥ RefineParams.P ingsPerAttempt then
12 if T 6= r.T then
13 TimeChanged← TRUE
14 JustCompletedBuildUpCycle← FALSE
15 RefineP ingsReached← TRUE
16 RefineCount← 0
17 LastGoodT ← r.T
18 T ← LastGoodT
19 if Direction = BACKWARD then
20 RefineMinV alueFound← TRUE
21 RefineT imeoutCount← 0
22 Z ← Z ×RefineParams.ZMult

23 T ← T + RefineParams.∆T
Z

24 K ← 0
25 Direction← FORWARD
26 ActionAfterTMax ← CHANGE TO FORWARD
27 sendto(ServerAddress,

STUN CALC KA STOP REQUEST(ID))
28 StartNewSession← TRUE
29 goto ClientLoopStart

30 else
31 if T 6= r.T then

// Server updated the time, so reset local iteration

count.

32 RefineCount← 0
33 T ← r.T

34

35 StartNewSession← FALSE
36 goto ClientLoopStart

Algorithm 19: Incoming Message Handling (Part Two)

151

B.4 Timeout Handling

1 when TIMEOUT do
2 sendto(ServerAddress, STUN CALC KA STOP REQUEST(ID))
3 TimeoutCount← TimeoutCount + 1
4 switch State do
5 case SEARCH
6 Z ← Z × SearchParams.ZMult

7 if ServerAdjustsZ = TRUE then
8 if SessionMessageCount > BaseMessageCount then
9 Z ← Z × SearchParams.ZMult

10 else
11 ServerAdjustsZ ← TRUE
12 switch IncrementType do
13 case LINEAR
14 ΩK ← K
15 case GEOMETRIC
16 ΩK ← 2K

17 T ← LastGoodT + ΩK × SearchParams.∆T
Z

18 case RUN
19 if TimeoutCount

TotalMessageCount+1 > RunParams.FailureTolerance then

20 if BuildingUpToT ime = TRUE AND T < TMax then
// Set T to the maximum so that REFINE can start from that

point.

21 T ← TMax

22 FirstRefineT ime← TRUE
23 State← REFINE

Algorithm 20: Timeout Handling (Part One)

152

1 ...
2 case REFINE
3 RefineT imeoutCount← RefineT imeoutCount + 1
4 RefineCount← 0
5 K ← 0
6 if Direction = BACKWARD then
7 Direction← FORWARD
8 ActionAfterTMax ← CHANGE TO BACKWARD

9 T ← T −RefineT imeoutCount× RefineParams.∆T
Z

10 LastGoodT ← T

11 else if Direction = FORWARD then
12 if BuildingUpToT ime = TRUE AND RefineMinV alueFound =

FALSE then
13 Direction← FORWARD
14 ActionAfterTMax ← CHANGE TO BACKWARD
15 T ← TMax

16 T ← T −RefineT imeoutCount× RefineParams.∆T
Z

17 LastGoodT ← T

18 else
19 T ← LastGoodT
20 State← RUN

21

22 StartNewSession← TRUE
23 goto ClientLoopStart

Algorithm 21: Timeout Handling (Part Two)

153

Bibliography

[1] Understanding universal plug and play. White paper, Microsoft, June 2000.

[2] UPnP device architecture v1.1. Technical report, UPnP Forum, October
2008.

[3] Oskar Andreasson. ”UDP Connection State”. http://www.iptables.

info/en/connection-state.html#UDPCONNECTIONS, 2008. [Online; Ac-
cessed: 22-Mar-2015].

[4] Stephen W. Babin. Method of pausing keep-alive messages and roam-
ing for virtual private networks on handheld devices to save battery
power, March 2010. U.S. Classification 370/318, 455/574; Interna-
tional Classification H04B1/38; Cooperative Classification H04L29/12471,
H04L67/145, H04L69/28, H04L61/2553, Y02B60/50; European Classifica-
tion H04L61/25A6A, H04L29/12A4A6A, H04L29/06T.

[5] Salman Abdul Baset, Joshua Reich, Jan Janak, Pavel Kasparek, Vishal
Misra, Dan Rubenstein, and Henning Schulzrinnne. How green is IP-
telephony? In Proceedings of the first ACM SIGCOMM workshop on Green
networking, pages 77–84. ACM, 2010.

[6] Mohamed Boucadair, Reinaldo Penno, and Dan Wing. Universal plug and
play (UPnP) internet gateway device - port control protocol interworking
function (IGD-PCP IWF). RFC 6970, RFC Editor, July 2013.

[7] Mohamed Boucadair, Paul Selkirk, Reinaldo Penno, Dan Wing, and Stuart
Cheshire. Port control protocol (PCP). Request for Comments 6887, RFC
Editor, April 2013.

[8] Patrick G. Brown and Randall T. Kunkel. Adaptible keepalive for enter-
prise extenders, October 2007.

[9] Fabian E. Bustamante and Yi Qiao. Friendships that last: Peer lifespan
and its role in P2p protocols. In Web content caching and distribution,
pages 233–246. Springer, 2004.

154

[10] Gonzalo Camarillo, Oscar Novo, and Simon Perreault. Traversal using
relays around NAT (TURN) extension for IPv6. Request for Comments
6156, RFC Editor, April 2011.

[11] Samir Chatterjee, Bengisu Tulu, Tarun Abhichandani, and Haiqing Li. SIP-
based enterprise converged networks for voice/video-over-IP: implementa-
tion and evaluation of components. Selected Areas in Communications,
IEEE Journal on, 23(10):19211933, 2005.

[12] E.P. Duarte, K.V. Cardoso, M.O.M.C. de Mello, and J.G.G. Borges. Trans-
parent communications for applications behind NAT/firewall over any
transport protocol. In 2011 IEEE 17th International Conference on Par-
allel and Distributed Systems (ICPADS), pages 935–940, December 2011.

[13] L. DAcunto, J. A. Pouwelse, and H. J. Sips. A measurement of NAT
and firewall characteristics in peer-to-peer systems. In Proc. 15-th ASCI
Conference, volume 5031, pages 1–5. Advanced School for Computing and
Imaging (ASCI), 2009.

[14] Bryan Ford, Pyda Srisuresh, and Dan Kegel. Peer-to-Peer Communication
Across Network Address Translators. CoRR, abs/cs/0603074, March 2006.
arXiv: cs/0603074.

[15] Saikat Guha and Paul Francis. Characterization and measurement of TCP
traversal through NATs and firewalls. In Proceedings of the 5th ACM SIG-
COMM Conference on Internet Measurement, IMC ’05, page 1818, Berke-
ley, CA, USA, 2005. USENIX Association.

[16] Saikat Guha, Yutaka Takeda, and Paul Francis. NUTSS: A SIP-based
approach to UDP and TCP network connectivity. In Proceedings of the
ACM SIGCOMM Workshop on Future Directions in Network Architecture,
FDNA ’04, page 4348, New York, NY, USA, 2004. ACM.

[17] H. Haverinen, J. Siren, and P. Eronen. Energy Consumption of Always-On
Applications in WCDMA Networks. In Vehicular Technology Conference,
2007. VTC2007-Spring. IEEE 65th, pages 964–968, April 2007.

[18] Henrik Levkowetz and Sami Vaarala. Mobile IP Traversal of Network Ad-
dress Translation (NAT) Devices. Request for Comments 3519, RFC Edi-
tor, April 2003.

155

[19] Shai Herzog. Cost reduction of NAT connection state keep-alive, Oc-
tober 2013. U.S. Classification 370/395.2, 370/401, 370/465; Interna-
tional Classification H04L12/28; Cooperative Classification H04W52/0229,
H04W92/02, H04W76/045, H04W48/08, H04L61/25, H04W28/06,
H04L29/1233, H04L69/28, Y02B60/50.

[20] Shai Herzog, Rashid Qureshi, Jorge Raastroem, Xuemei Bao, Rajeev
Bansal, Qian Zhang, and Scott Michael Bragg. Determining an effi-
cient keep-alive interval for a network connection, February 2013. U.S.
Classification 709/228, 370/241, 370/251, 370/401, 370/465, 709/224,
709/203; International Classification G06F15/16; Cooperative Classifica-
tion H04L65/1066, H04L69/28, H04L69/163, H04L67/2842, H04L69/16,
H04L67/14, H04L67/145, H04L67/141, H04L67/28.

[21] S. Holzapfel, M. Wander, A Wacker, L. Schwittmann, and T. Weis. A new
protocol to determine the NAT characteristics of a host. In 2011 IEEE In-
ternational Symposium on Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), pages 1651–1658, May 2011.

[22] Christer Holmberg Homberh, Christer and Ericsson. Indication of support
for keep-alive. Request for Comments 6223, RFC Editor, April 2011.

[23] Geoff Huston. Anatomy: A look inside network address translators. The
Internet Protocol Journal, 7(3):232, 2004.

[24] Seppo Htnen, Aki Nyrhinen, Lars Eggert, Stephen Strowes, Pasi Sarolahti,
and Markku Kojo. An experimental study of home gateway characteris-
tics. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 260–266. ACM, 2010.

[25] Cullen Jennings and Francois Audet. Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP. Request for Comments 4787,
RFC Editor, January 2007.

[26] Cullen Jennings and Rohan Mahy. Managing client initiated connections
in the session initiation protocol (SIP). Request for Comments 5626, RFC
Editor, October 2009.

[27] Jonathan Rosenberg, Ari Keranen, Bruce B. Lowekamp, and Adam Roach.
TCP Candidates with Interactive Connectivity Establishment (ICE). Re-
quest for Comments 6544, RFC Editor, March 2012.

156

[28] Dan Kegel, Pyda Srisuresh, and Bryan Ford. State of peer-to-peer (P2P)
communication across network address translators (NATs). Request for
Comments 5128, RFC Editor, March 2008.

[29] Marc Krochmal and Stuart Cheshire. NAT port mapping protocol (NAT-
PMP). Request for Comments 6886, RFC Editor, April 2013.

[30] K. Kuramochi, T. Kawamura, and K. Sugahara. NAT traversal for pure
P2P e-learning system. In Third International Conference on Internet and
Web Applications and Services, 2008. ICIW ’08, pages 358–363, June 2008.

[31] Jae Woo Lee, Roberto Francescangeli, Jan Janak, Suman Srinivasan,
Salman A. Baset, Henning Schulzrinne, Zoran Despotovic, and Wolfgang
Kellerer. NetSerV: active networking 2.0. In Communications Workshops
(ICC), 2011 IEEE International Conference on, pages 1–6. IEEE, 2011.

[32] Bruce B. Lowekamp and Derek C. MacDonald. NAT behavior discovery
using STUN. Request for Comments 5780, RFC Editor, May 2010.

[33] X. Marjou, A. Sollaud, and France Telecom Orange. Application mecha-
nism for keeping alive the NAT mappings associated with RTP/RTP con-
trol protocol (RTCP) flows. Technical report, RFC 6263, June, 2011.

[34] Philip Matthews, Rohan Mahy, and Jonathan Rosenberg. Traversal using
relays around NAT (TURN): relay extensions to session traversal utilities
for NAT (STUN). Request for Comments 5766, RFC Editor, April 2010.

[35] A. Muller, N. Evans, C. Grothoff, and S. Kamkar. Autonomous NAT
traversal. In 2010 IEEE Tenth International Conference on Peer-to-Peer
Computing (P2P), pages 1–4, August 2010.

[36] V. Oliveira, A. Pina, and T. Sa. Simple peer messaging for remote user
domains interconnection. In 2012 International Conference on High Per-
formance Computing and Simulation (HPCS), pages 315–321, July 2012.

[37] Simon Perreault and Jonathan Rosenberg. Traversal using relays around
NAT (TURN) extensions for TCP allocations. Request for Comments 6202,
RFC Editor, November 2010.

[38] Richard Price and Peter Tino. Adapting to NAT timeout values in p2p
overlay networks. In Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–6. IEEE, 2010.

157

[39] Richard Price, Peter Tio, and Georgios Theodoropoulos. Still alive: Ex-
tending keep-alive intervals in p2p overlay networks. Mobile Networks and
Applications, 17(3):378–394, 2012.

[40] Jonathan Rosenberg. Interactive connectivity establishment (ICE): A
methodology for network address translator (NAT) traversal for offer/an-
swer protocols. Request for Comments 5245, RFC Editor, April 2010.

[41] Jonathan Rosenberg, Rohan Mahy, Christian Huitema, and Joel Wein-
berger. STUN - simple traversal of UDP through network address transla-
tors. Request for Comments 3489, RFC Editor, March 2003.

[42] D. Seah, Wai Kay Leong, Qingwei Yang, B. Leong, and A. Razeen. Peer
NAT proxies for peer-to-peer games. In 2009 8th Annual Workshop on Net-
work and Systems Support for Games (NetGames), pages 1–6, November
2009.

[43] Pyda Srisuresh and Matt Holdrege. IP network address translator (NAT)
terminology and considerations. Request for Comments 2663, RFC Editor,
August 1999.

[44] Pyda Srisuresh and Matt Holdrege. Protocol complications with the IP
network address translator. Request for Comments 3027, RFC Editor,
January 2001.

[45] Pyda Srisuresh, Senthil Sivakumar, Kaushik Biswas, Bryan Ford, and
Saikat Guha. Behavioral Requirements for TCP. Request for Comments
5382, RFC Editor, October 2008.

[46] Barbara Stark, Matthew Schmitz, Mark Baugher, Warrier Ulhas, Prakash
Iyer, Victor Lortz, Cathy Chan, Mika Saaran, Erwan Nedellec, Fabrice
Fontaine, and Dongshin Jung. WANIPConnection:2 service - standardized
DCP. Technical report, UPnP Forum, September 2010.

[47] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer
networks. In Proceedings of the 6th ACM SIGCOMM conference on Inter-
net measurement, pages 189–202. ACM, 2006.

[48] Daniel Stutzbach, Reza Rejaie, and Subhabrata Sen. Characterizing un-
structured overlay topologies in modern P2p file-sharing systems. Network-
ing, IEEE/ACM Transactions on, 16(2):267–280, 2008.

[49] H. Suzuki, Y. Goto, and A. Watanabe. External dynamic mapping method
for NAT traversal. In International Symposium on Communications and
Information Technologies, 2007. ISCIT ’07, pages 723–728, October 2007.

158

[50] Zoltn Turnyi, Andrs Valk, and Andrew T. Campbell. 4+4: An archi-
tecture for evolving the internet address space back toward transparency.
SIGCOMM Comput. Commun. Rev., 33(5):4354, October 2003.

[51] A. Wacker, G. Schiele, S. Holzapfel, and T. Weis. A NAT traversal mech-
anism for peer-to-peer networks. In Eighth International Conference on
Peer-to-Peer Computing , 2008. P2P ’08, pages 81–83, September 2008.

[52] Bo Wang, Xiangmin Wen, Sun Yong, and Zheng Wei. A novel NAT traver-
sal mechanism in the heterogeneous environment. In Eighth IEEE/ACIS
International Conference on Computer and Information Science, 2009.
ICIS 2009, pages 161–165, June 2009.

[53] Ulhas Warrier, Prakesh Iyer, Frederic Pennerath, and Gert Marynissen.
WANIPConnection:1 Service - Standardized DCP. Technical report, UPnP
Forum, November 2001.

[54] Dan Wing, Philip Matthews, Jonathan Rosenberg, and Rohan Mahy. Ses-
sion traversal utilities for (NAT) (STUN). Request for Comments 5389,
RFC Editor, October 2008.

[55] Pinggai Yang, Jun Li, Jun Zhang, Hai Jiang, Yi Sun, and E. Dutkiewicz.
SMBR: A novel NAT traversal mechanism for structured peer-to-peer com-
munications. In 2010 IEEE Symposium on Computers and Communica-
tions (ISCC), pages 535–539, June 2010.

[56] Jianwei Zhang, Renjie Pi, Fuzhou Yao, Jicheng Quan, and Yunfei Guo.
Router UDP switch support NAT traversal. In 2nd International Confer-
ence on Pervasive Computing and Applications, 2007. ICPCA 2007, pages
568–570, July 2007.

[57] Zepeng Zhang, Xiangming Wen, and Wei Zheng. A NAT traversal mech-
anism for peer-to-peer networks. In 2009 International Symposium on In-
telligent Ubiquitous Computing and Education, pages 129–132, May 2009.

159

	NAT Traversal Techniques and UDP Keep-Alive Interval Optimization
	tmp.1675434693.pdf.EvQ7e

