
Florida Institute of Technology Florida Institute of Technology 

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech 

Theses and Dissertations 

5-2008 

Machine Learning for Host-based Anomaly Detection Machine Learning for Host-based Anomaly Detection 

Gaurav Tandon 

Follow this and additional works at: https://repository.fit.edu/etd 

 Part of the Computer Sciences Commons 

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.fit.edu%2Fetd%2F685&utm_medium=PDF&utm_campaign=PDFCoverPages


Machine Learning for Host-based Anomaly

Detection

by
Gaurav Tandon

A dissertation submitted to
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
in

Computer Science

Melbourne, Florida
May, 2008

TR-CS-2008-01



c© Copyright 2008 Gaurav Tandon
All Rights Reserved

The author grants permission to make single copies



Machine Learning for Host-based Anomaly Detection
a dissertation by
Gaurav Tandon

Approved as to style and content

Philip K. Chan, Ph.D.
Associate Professor, Computer Science
Dissertation Advisor

Debasis Mitra, Ph.D.
Associate Professor, Computer Science

Marius C. Silaghi, Ph.D
Assistant Professor, Computer Science

Georgios C. Anagnostopoulos, Ph.D.
Associate Professor, Electrical and Computer Engineering

William D. Shoaff, Ph.D.
Associate Professor and Program Chair
Computer Science



ABSTRACT

Machine Learning for Host-based Anomaly Detection

by

Gaurav Tandon

Dissertation Advisor: Philip K. Chan, Ph.D.

Anomaly detection techniques complement signature based methods for intrusion detec-

tion. Machine learning approaches are applied to anomaly detection for automated learning

and detection. Traditional host-based anomaly detectors model system call sequences to de-

tect novel attacks. This dissertation makes four key contributions to detect host anomalies.

First, we present an unsupervised approach to clean training data using novel representations

for system call sequences. Second, supervised learning with system call arguments and other

attributes is proposed for enriched modeling. Third, techniques to increase model coverage

for improved accuracy are presented. Fourth, we propose spatio-temporal modeling to detect

suspicious behavior for mobile hosts.

Experimental results on various data sets indicate that our techniques are more effective

than traditional methods in capturing attack-based host anomalies. Additionally, our super-

vised methods create succint models and the computational overhead incurred is reasonable

for an online anomaly detection system.
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Chapter 1

Introduction

Computer security research has two major aspects: intrusion prevention and intrusion detec-

tion. Intrusion prevention deals with preventing the occurrence of an attack using authen-

tication and encryption techniques. Intrusion detection, on the other hand, focuses on the

detection of successful breach of security. Together, these complementary approaches assist

in creating a more secure system.

Intrusion detection systems (IDSs) are generally categorized as misuse-based and anomaly-

based. In misuse (signature) detection, systems are modeled upon known attack patterns and

the test data is checked for occurrence of these patterns. Examples of signature-based systems

include virus detectors that use known virus signatures and alert the user when the system

has been infected by the same virus. Such systems have a high degree of accuracy but

suffer from the inability to detect novel attacks. Anomaly based intrusion detection (Denning

1987) models normal behavior of applications and significant deviations from this behavior

are considered anomalous. Though anomaly detection can detect novel attacks, it has the

drawback of not being able to discern intent; it can only signal that some event is unusual,

but not necessarily hostile, thus generating false alarms.
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Intrusion detection systems can also be categorized as network-based and host-based. As

the name suggests, network-based systems monitors network traffic. They sniff data over the

network and rules can be hard coded for valid IP addresses and ports. Machine learning

algorithms have been used to learn automated rules for various protocol headers. Host-based

systems reside in the host itself and typically monitor operating system events, such as system

call sequences. This dissertation focuses on host-based anomaly detection.

1.1 Motivation and Problem Statement

There are three focal issues that need to be addressed for a host-based anomaly detection

system: cleaning the training data, devising an enriched representation for the model(s),

and ensuring sufficient coverage to improve accuracy. All these issues try to improve the

performance of an anomaly detection system in their own ways. Additionally, there are

security issues targeted at mobile hosts that need to be addressed.

First, traditional techniques that monitor system call sequences rely on clean training data

to build their model. Current audit sequence is then examined for anomalous behavior using

some supervised learning algorithm. An attack embedded inside the training data would

result in an erroneous model, since all future occurrences of the attack would be treated as

normal. Moreover, obtaining clean data by hand could be tedious. Purging all malicious

content from audit data using an automated technique is hence imperative.

Second, normal behavior has to be modeled using features extracted from the training set.

Traditional host-based anomaly detection systems focus on system call sequences to build

models of normal application behavior. These techniques are based upon the observation

that a malicious activity results in an abnormal (novel) sequence of system calls. Recent

research (Wagner and Soto 2002; Tan and Maxion 2002) has shown that sequence-based

systems can be compromised by conducting mimicry attacks. Such attacks are possible by

2



astute execution of the exploit by inserting dummy system calls with invalid arguments such

that they form a legitimate sequence of events, thereby evading the IDS. A drawback of

sequence-based approaches lies in their non-utilization of other key attributes, namely the

system call arguments. The efficacy of such systems might be improved upon if a richer set

of attributes (return value, error status and other arguments) associated with a system call

is used to create the model.

Third, high coverage over training data is desired for a learned model. Assuming that

training data is representative of the test data, high coverage is instrumental for high accuracy.

But forcing complete data coverage results in overfitting leading to high false alarm rates.

It is thus imperative to fine tune the model to maximize coverage without loss in accuracy.

Searching the hypothesis space for alternate hypothesis and maintaining a distinction between

strong and weak learners might result in the desired configuration of high coverage but not

overfitting the model on the training data.

Fourth, hosts can be distinguished as static or mobile. There are certain security issues

that only apply to mobile hosts, such as data theft and misuse due to lost or stolen device,

and MAC spoofing in 802.11 wireless local area networks. Anomaly detection techniques for

static hosts are generally not applicable for such problems. Possible solutions may need to

model properties that are characteristic of mobile hosts, such as movement.

The problem under study thus involves an automated system to detect mal-intent on static

as well as mobile hosts.

1.2 Approach

The first problem is that of data cleaning. We invalidate the assumption of the availability

of attack-free data. Attack-based anomalies need to be purged to make the data suitable for

training by supervised learning anomaly detection algorithms. We represent a system call

3



sequence using patterns (called motifs) and their positions. Further, we map all sequences to

a single representation and use an unsupervised algorithm to detect and remove outliers for

a clean training data. We also study the effect of filtering the data.

Next, we propose using system call attributes for a richer learned model. We learn multiple

representations for system calls and their attributes using a supervised learning algorithm.

We evaluate and compare them with traditional methods on multiple data sets. We also

present an analysis of the anomalies detected by our techniques.

Further, we question the pruning of learned model and its effect on system accuracy.

We argue that pruning may result in loss of coverage, thereby reducing the detection rate.

We present techniques to increase coverage for a supervised rule learning algorithm. We

list key aspects of rule quality. We propose rule weighting that is based on rule belief, rule

replacement that replaces pruned rules for improved coverage, and a hybrid approach that

chooses the technique with higher coverage. We also study the effect of coverage on accuracy.

Finally, we model the spatio temporal contextualities for mobile hosts. The underlying

assumption is that the user would generally be at the same place around the same time.

Any misuse could result in abnormalities in these patterns. We learn a spatio-temporal

model for mobile hosts. We also present context clustering for concise models, and evaluate

our technique on real data sets for mobile phone usage as well as 802.11 wireless local area

networks. We present adaptive modeling to accommodate concept drift and curtail false

alarms further.

1.3 Key Contributions

The main contributions are:

• two distinct representations for system call sequences (called motif space and sequence

4



space respectively), in conjunction with an unsupervised learning algorithm, effectively

cleans training data free of attacks;

• enriched representations with system call attributes for improved modeling and higher

accuracy with a supervised learning algorithm;

• coverage augmenting techniques for increased detection rates than pruning;

• spatio temporal anomaly detection for mobile hosts to detect misuse.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 reviews existing literature in the domains

of anomaly detection, machine learning and context aware mobile computing. In Chapter 3

we present motif-based representations and use an unsupervised learning algorithm for data

cleaning. Chapter 4 presents argument-based representations and supervised learning al-

gorithm for anomaly detection. We propose coverage augmenting techniques in Chapter 5

and demonstrate its effectiveness in improving accuracy. Chapter 6 presents spatio tempo-

ral anomaly detection for mobile hosts. We summarize our contributions and conclude in

Chapter 7.
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Chapter 2

Related Work

Machine learning and data mining techniques have been applied to learn system behav-

ior. Some systems use attack-free or labeled training data for training (supervised learning)

whereas others have no prior knowledge of the data (unsupervised learning). Anomaly de-

tection systems can be deployed at the network level, where network traffic is monitored, as

well as the host level, which involves operating system events. Hosts can be static (fixed),

like desktop computers, or mobile, such as laptops, PDAs and mobile phones. This chapter

reviews existing techniques in host-based anomaly detection, machine learning and context

aware mobile computing.

2.1 Host-based anomaly detection

System call sequences have primarily been used for fixed-host-based anomaly detection using

techniques like n-gram databases, neural networks, finite state automaton, sequence alignment

and rule learning. Besides system calls, other features include system call arguments, Windows

registries and call stack information. This section differentiates techniques based on the

6



features used.

2.1.1 System call information

System call sequences have been used effectively for host based intrusion detection. Time-

delay embedding (tide) (Forrest et al. 1996) used a sliding look-ahead window of a fixed

length to record correlations between pairs of system calls. These correlations were stored

in a database of normal patterns, which was then used to monitor sequences during the

testing phase. Anomalies were accumulated over the entire sequence and an alarm was

raised if the anomaly count exceeded the threshold. tide forms correlations between pairs

of system calls within a certain preset window size. Parallel work (Lane and Brodley 1997a;

1997b) comprised scanning of UNIX command sequences to capture user profiles. Degree of

similarity between two different audit sequences was calculated by looking into adjacent events

within a fixed size window. Sequence time-delay embedding (stide) (Warrender, Forrest, and

Pearlmutter 1999) extended tide by memorizing all contiguous sequences of predetermined,

fixed lengths. An anomaly count was defined as the number of mismatches in a temporally

local region. A threshold was set for the anomaly score above which a sequence is flagged

anomalous, indicating a possible attack. An extension, called sequence time-delay embed-

ding with frequency threshold (t − stide), was similar to stide with the exception that rare

sequences were ignored.

Extensions to fixed length sliding windows were provided in (Wespi, Dacier, and Debar

1999; 2000), wherein a scheme was proposed to generate variable length patterns by using

Teiresias (Rigoutsos and Floratos 1998), a pattern-discovery algorithm in biological sequences.

Sequence was deemed as anomalous when the pattern coverage for the audit sequence was

below a threshold. (Jiang, Hua, and Sheu 2002) extended the variable length pattern idea

by taking into account both the intra-pattern and the inter-pattern anomalies for detecting
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intrusions. Maximal patterns were generated and adjacency lists created for all legitimate

paths traversed. A counter was used for all mismatches. An alarm was raised when the

counter exceeded the threshold.

Artificial neural networks (ANNs) were employed for both anomaly and misuse detection

(Ghosh and Schwartzbard 1999). A backpropagation network was implemented to classify

novel inputs based on similarity of known data. A leaky bucket algorithm emphasized tem-

porally co-located anomalies and an alarm was raised beyond a threshold. In (Sekar et al.

2001), each system call was noted alongwith the program counter at the time of the call.

The program counter represented the state of the finite state automaton FSA whereas the

system call corresponded to the transition in the FSA. During runtime, the matched state

was captured by the current state of the FSA. The existence of transition from the current

state to the new state was verified, failure of which led to an anomaly.

Probabilistic suffix trees were created from system call sequences in (Mazeroff et al. 2003).

Probabilities were associated with every transition. Trees were compared based upon the indi-

vidual nodes and cumulative probability was computed. An automaton was created using the

suffix tree with the suffix as the nodes and the associated probabilities along the transitions.

The lower the probability of a new trace, the higher was its anomaly score.

A sequence alignment technique from bioinformatics (Smith-Waterman Algorithm) was

adopted in (Coull et al. 2003) to compute semi-global alignment between system call se-

quences. Scores were computed by the dynamic programming algorithm. A matrix of size

m× n for sequences of length m and n respectively was created. Each element in the matrix

had a score for two sequences being aligned. Local constraints were applied to compute the

scores at every position. Reward was given for a match and penalty was applied for inserting

a gap in either sequence.

Text categorization technique was adopted for intrusion detection in (Liao and Vemuri
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2002). Program behavior was characterized using system call frequencies. A word-by-

document matrix is used for a collection of documents. k-nearest neighbor classifier algorithm

ranked the program’s neighbors and used the class labels of the k most similar neighbors to

predict the class of the current program. Similarity was calculated using Euclidean distance

and a cutoff threshold was used to assign the new document to a known class.

2.1.2 System call and related features

All the above mentioned techniques for host based systems used only system call information.

(Wagner and Soto 2002) modeled malicious sequences by adding ”no-ops” (system calls having

no effect). Even though an original malicious sequence might not be accepted by an IDS, a

modified version with no-ops was shown to evade an IDS. Some variants (like combining a

series of system calls into a single one or using replacing one with another) were used to

achieve an attacker’s goals of converting a malicious sequence into an acceptable one.

Individual system calls and their respective arguments were examined in (Kruegel et al.

2003). For each system call, a profile is created. The models were based upon string length,

character frequency distribution, structural information (for strings) using Markov models

and Bayesian probability, and token finding.

2.1.3 Non system call features

Anomaly detection using Windows registries was demonstrated in (Apap et al. 2002; Stolfo et

al. 2004). They used a technique similar to (Mahoney and Chan 2002). The process, query,

key, response and result value formed the feature space. Single attribute values as well as

pairs were checked for consistency. (Shavlik and Shavlik 2004) used a wide variety of system

features including processor time, working set size and number of semaphores. A Winnows

(Littlestone 1988) based variant was used to learn useful attributes for anomaly detection.
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The authors in (Feng et al. 2003) proposed a method that dynamically extracted return

address information from the call stack and used it for anomaly detection. Program counter

information was recorded at each system call and return addresses from call stack were stored

into a virtual stack list. The concept of virtual path abstracts the execution between two

system calls. The virtual stack list was traversed to determine the control flow. The return

address and virtual path tables were used for online detection.

2.2 Machine learning

Machine learning techniques are categorized as supervised and unsupervised. Supervised

learning uses labeled data for training whereas there is no prior knowledge of data labels in

unsupervised learning.

2.2.1 Supervised learning

An association rule mining algorithm called Aprioiri was proposed in (Agrawal and Srikant

1994). Generally used for market basket analysis, all rules that exceeded a user defined support

and confidence were added to the ruleset. Set of items exceeding the minimum support were

collected. Rules of the form {s =>I - s} were generated for each subset s of the itemset I

that exceeded the minimum confidence for the transactions in the database.

Rule learning is an important aspect of supervised learning. Incremental Reduced Error

Pruning (IREP) (Furnkranz and Widmer 1994) adopted a greedy strategy that added one

rule at a time to the ruleset. The conditions that maximized the information gain were

added to the rule until the rule covered no negative examples from the growing dataset.

Too specific rules resulted in overfitting the training data. Hence rule pruning was adopted.

Pruning consisted of deleting conditions that maximized the error. After a rule was found,

all (positive and negative) examples that were covered by the rule were deleted. These steps
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were repeated till no more positive examples were left or the rule found had a large error rate.

Another greedy separate-and-conquer strategy for forming propositional rules was pre-

sented in (Cohen 1995). The algorithm, called RIPPER (Repeated Incremental Pruning to

Produce Error Reduction), extended IREP by introducing support for missing attributes, nu-

merical variables and multiple classes. An alternative rule value metric, a stopping heuristic

for addition of further rules based on the description length and a postprocessing rule opti-

mization phase were introduced. SLIPPER (Cohen and Singer 1999) improved the efficiency

of RIPPER by introducing a boosting mechanism. SLIPPER generated a weighted ruleset.

Examples covered by a rule were not immediately removed but were given lower weights.

A set of instance-based learning (IBL) algorithms were defined in (Aha, Kibler, and Albert

1991) with a similarity function to determine the proximity between two instance, an instance

selection function for selecting examples from instances, and a classification function that

determined the relation of a new case with learned cases. IBL1 stored all example instances

and computed the closest instance. IBL2 discarded instances in the training set that were not

correctly classified. IBL3 made assumptions about the data and uses statistical methods to

weed out irrelevant or noisy instances. Two common instance-based learning techniques are

the nearest neighbor pattern classification (Cover and Hart 1967) and the k nearest neighbor

approach. The former took into only the nearest neighbor whereas the latter considered a

collection of the k nearest points and used a voting mechanism to select between them.

Time series modeling has also generated a lot of interest in the data mining commu-

nity. (Keogh and Pazzani 2000) introduced a new algorithm called Piecewise DTW (PDTW)

wherein data was reduced into equal sized frames. The mean value of the data falling within a

frame was calculated and this average value was used to represent all data within that frame.

This resulted in a piecewise constant approximation of the entire sequence and a speed up in

the execution time. A local derivative of the data was used in DTW instead of the raw data
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in (Keogh and Pazzani 2001). Warping using slope tend to map corresponding peaks and

valleys correctly between the two time series and was not effected by differences in the y-axis

values between the two time series.

Many data mining and machine learning techniques are based on batch learning, where

accumulated sets of instances are used for training. Typically, an online, incremental system

is required which can update the model with every instance. In (Blum 1997), variants of

the weighted-majority (Littlestone and Warmuth 1994) and Winnows (Littlestone 1988) al-

gorithms were used to learn and predict certain attributes of the Calendar APprentice (CAP)

data (Mitchell et al. 1994), which comprised of calendar information for two different users.

The underlying idea was to use pairs (or triples) of distinct attribute values and the predic-

tions in the last k times the attribute values were present together in an instance. All the

applicable experts voted upon the arrival of a new instance and a global algorithm predicted

the final outcome as the ones with maximum votes. Incorrectly predicting experts were pe-

nalized by reducing their weights to half. For Winnows, if an expert predicted correctly even

though the global algorithm did not, the weight of the expert was increased by 50% of their

current value. A generic dynamic weighted majority algorithm to learn concept drift was

presented in (Kotler and Maloof 2003). Normalized weights were used by the experts to vote

and a global algorithm aggregated these votes to predict the best outcome.

Associating weights with rules attempts to characterize the quality of the rules. One

aspect of quality is predictiveness, which quantifies how likely the consequent occurs when

the antecedent is observed; that is, how accurately the antecedent predicts the consequent.

Predictiveness is commonly measured by estimating P (consequent|antecedent). Another as-

pect of quality is belief, which measures the level of trust for the rule; that is, how believable

the entire rule is. For example, in association rules (Agrawal and Srikant 1994), each rule

has a confidence value and a support value — the confidence value estimates predictiveness,
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while the support value approximates belief. Many learning algorithms, including RIPPER

(Cohen 1995) and CN2 (Clark and Niblett 1989), use predictiveness to formulate rules during

the learning (training) process and/or provide confidence values for their predictions during

the prediction (test) process. Ensemble methods, including Weighted Majority (Littlestone

and Warmuth 1994) and Boosting (Schapire 1990; Freund and Schapire 1996), use belief to

combine predictions from multiple learned models. Pruning is an approach to reduce over-

fitting the training data. After learning a decision tree and converting each path in the

tree into rules, Quinlan (Quinlan 1993) removes conditions from the antecedent of a rule if

the estimated accuracy improves. Furnkranz (Furnkranz 1997) has a review of various rule

pruning techniques. For rule learning algorithms, many studies demonstrate the efficacy of

using weights (predictiveness and/or belief) over not using weights as well as pruning over

not pruning. However, we are not aware of studies in comparing using weights and pruning,

particularly in anomaly detection.

Rules can generally be learned in two ways: generate and test strategy vs. data driven

approach. Generate and test adopts a hypothesis driven approach, where a general to specific

search is usually performed in the hypothesis space. CN2 (Clark and Niblett 1989) is a general

to specific beam search algorithm that maintains the k best candidates at each step, where

rules are refined based on their accuracy on the data set. Apriori (Agrawal, Imielinski, and

Swami 1993) learns all association rules above user defined confidence and support thresholds.

It is also a generate and test approach, with only a subset of rules generated at each step are

considered for specialization in the subsequent iteration. Using a general-to-specific search,

ITRULE (Smyth and Goodman 1991; 1992) learns k (user-specified) rules that have the

highest information content based on the J-measure (mutual-information based). Different

candidate rules are formed with each attribute as the consequent. According to information-

theoretic bounds, specializations of the current rules are not explored if they will not yield
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higher information content than the top k rules found so far. Contrary to generate and

test approach, hypotheses generation is constrained by specific data instances in data driven

approach. AQ15 (Michalski et al. 1986) generates a rule to cover a specific attribute value,

and these rules are specialized at each step. After each rule, the algorithm picks another

attribute value not covered to initiate search in the hypothesis space.

2.2.2 Unsupervised learning

Clustering techniques are categorized as partitioning and hierarchical. Partitioning clustering

techniques partition the data into clusters by using some optimizing criterion. Centroid based

approaches, like k-means, and medioid based approaches (k-medioids) are examples. But they

fail on data where points of a cluster are closer to the center of another cluster.

Hierarchical techniques have a single cluster at top of hierarchy, and clusters with one

point each at the bottom. Agglomorative hierarchical techniques start from the bottom and

work their way up to the top. CURE (Guha, Rastogi, and Shim 1998) used a number of

representative points to represent a cluster instead of the center. Cluster similarity was then

measured by using the closest representative points across the two clusters. Shrinking factor

was used to converge towards center to overcome the effect of outliers. This technique was

shown to successfully find clusters of arbitrary shapes and sizes. ROCK (RObust Clustering

using linKs) (Guha, Rastogi, and Shim 2000) took into account the aggregate inter connec-

tivity across clusters. Links were defined as the number of common neighbors between points.

A random sample set was selected and a hierarchical algorithm used to cluster them. The

clusters merged were the ones that had the maximum inter connectivity. Remaining samples

were then assigned to these clusters. Chameleon (Karypis, Han, and Kumar 1999) used both

inter connectivity and closeness. It determined the neighborhoods dynamically. Smaller clus-

ters were merged only if the relative interconnectivity and relative closeness functions were
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maximized.

Outlier detection techniques are generally taxonomised as distance and density based.

(Ramaswamy, Rastogi, and Kyuseok 2000) found n topmost outliers based upon distance

from the kth nearest neighbor. A partition based algorithm was proposed which divided the

input into clusters. Bounds were computed for every point in each partition. Parititions that

did not contain the top n outliers were pruned and outliers were obtained from the remaining

partitions.

LOF (Breunig et al. 2000), a density based outlier finding algorithm, focused on the

detection of local outliers. A concept of a local neighborhood was defined, and each object

was assigned a score (for being an outlier) based upon its density as compared to the density

of its neighbors.

2.3 Context aware mobile computing

(Chen and Kotz 2000) define context as a set of environmental states and settings that either

determines an application’s behavior or in which an application event occurs and is interesting

to the user. Context aware applications use data from low level sensors to extract features

providing useful information. Contexts are associated with these features. Actions are then

learnt using some machine learning algorithm on features from one or multiple sensors. (Ailisto

et al. 2002) model context aware applications into 5 layers:

• sensor - getting raw data

• data processing object - obtain useful information from data (features)

• semantic processing object - conversion to meaningful form for inferring context

• inference object - learning algorithm
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• application - action, service or other usable result

Active badge system (Want et al. 1992) used IR-based badges to determine the location

of an employee and forward his call to the nearest telephone. The badge worn by the person

emitted IR signals at regular intervals. These signals were noted by sensors placed at various

positions within the building and the information passed on to a centralized system which

then regulated the calls accordingly. Conference Assistant (Dey et al. 1999) gathered interests

of conference attendees by means of a form and directed them to talks related to their areas

of interests. The system retrieved time and location of events, facilitated note-taking and

presented information about the presentations.

A radio frequency system was proposed in (Bahl and Padmanabhan 2000) to determine

user location based on triangulation of signal strengths from different base stations. Sig-

nal strength probability distributions and clustering for infrastructure LANs was studied in

(Youssef, Agrawala, and Shankar 2003). A two level framework for plan recognition in an

indoor RF-based wireless network was provided in (Yin, Chai, and Yang 2004). At the first

level, a dynamic Bayesian network was used to predict user actions from raw signals. The

network used signal strength information at the base stations and actual physical locations

on the map. N-gram model was then used at the second level to infer goals from actions.

Unsupervised clustering and classification of contexts obtained from multiple sensors has

been studied in (Flanagan, Mäntyjarvi, and Himberg 2002), and fuzzy low level contextual

information was segmented to obtain high level contexts in (Himberg et al. 2001). Recognition

of audio contexts using Hidden Markov Model (HMM) was investigated in (Clarkson and

Pentland 1998) where experiments involving classification of different sounds were said to

give promising results. (Korpipaa et al. 2003) learnt context using a naive Bayes approach

using data from audio, acceleration and light sensors. Context classes were user defined and

low level sensor data was labeled to derive high level information.
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Technology for enabling awareness (TEA) 1 investigated various aspects of context aware-

ness for mobile devices. They made use of several sensors (accelerometer, microphones, touch

and temperature sensors amongst others) to gather different types of information. The status

of the cell phone was determined by the current context. Context profiles were pre-defined

and Kohonen Self Organizing Maps (SOMs) were used to to cluster the context information

from the sensors (Van Laerhoven and Cakmakci 2000). A probabilistic finite state machine

architecture (similar to a Markov chain) was used for prediction.

ContextPhone 2 used location and usage data from multiple sources within a cell phone.

They provided services like information and media sharing with annotations to form context,

apart from activity logging. A framework for learning locations of user interest and route pre-

diction was proposed in (Laasonen, Raento, and Toivonen 2004). Locations were determined

by cells that were frequented by the user and the ones where the user spent the most time.

Transitions between locations were noted. Locations were clustered and route predictions

were based upon frequency and time factors. Route clustering was also performed in (Laaso-

nen 2005), where path similarity was computed using the Jaccard measure and similar poaths

were merged. Subsequent location prediction was performed using conditional probability

and chain rule, with the probabilities conditioned upon time of day, weekday and frequency.

Reality mining (Eagle and Pentland 2006), based upon ContextPhone, took into account

the proximity, time and location information to analyze the evolution of social networks. A

Hidden Markov Model (HMM) based upon the hour of day as well as weekday/weekend crite-

rion was used alongwith an Expectation Maximization algorithm to determine user behavior.

High level location classes were used. A Gaussian mixture model was created to detect the

proximity patterns between users and correlate the patterns with relationship types (obtained

from user surveys). Since bluetooth devices are capable of device discovery, it enabled a de-

1http://www.teco.edu/tea
2http://www.cs.helsinki.fi/group/context
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vice to passively scan for nearby devices and meet up with people sharing similar interests.

Such an idea has been applied (using a similar Gaussian mixture model) for dating and match

making services in Serendipity (Eagle and Pentland 2005).

A technique to detect mobile phone cloning fraud is proposed in (Fawcett and Provost

1997), where patterns of fraud are learned and adapted to the user call behavior. Anomaly

detection has also been used to detect outliers in spatial data (Adam, Janeja, and Atluri

2004), where neighborhood relationships are modeled and outliers are identified. Suspicious

large moving objects, such as ships, have been detected as anomalies (Li et al. 2007). Though

it involves route modeling, it deals with additional attributes like speed and direction informa-

tion generally not available on laptops and mobile phones. Even if a GPS (global positioning

system) was available on these devices, an intruder will likely disable it to evade such systems.
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Chapter 3

Data Cleaning

Traditional host based anomaly detection techniques create models of normal behavioral pat-

terns and then look for deviations in test data. Such techniques perform supervised learning

that require clean or labeled training data to build models of normal behavior, which is hard

to obtain. Any amount of data collected cannot be guaranteed to be free of malice. The

data sets available are generated in constrained environments. Other evaluations use syn-

thetic data sets. Such data sets are not representative of actual application behavior, which

contains many irregularities. The need for a system to filter audit data and produce a clean

data set motivates our current research.

Unsupervised learning is an extensively researched topic in network anomaly detection

(Portnoy 2000; Eskin et al. 2002; Chan, Mahoney, and Arshad 2003; Lazarevic et al. 2003).

Network traffic comprises continuous and discrete attributes which can be considered along

different dimensions of a feature space. Distance and density based algorithms can then be

applied on this feature space to detect outliers. Due to the lack of a similar feature space,

not much work has been done using unsupervised learning techniques in host based systems.

From the modeling/detection point of view, all the above mentioned approaches for host-
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Figure 3.1: MORPHEUS approach

based systems use system call sequences. Parameter effectiveness for window based techniques

has been studied in (Tan and Maxion 2002). Given some knowledge about the system being

used, attackers can devise some methodologies to evade such intrusion detection systems.

Wagner and Soto (Wagner and Soto 2002) modeled a malicious sequence by adding no-ops

(system calls having no effect) to compromise an IDS based upon the sequence of system calls.

Such attacks would be detected if the system call arguments are also taken into consideration,

and this provides the motivation for our work.

In this chapter, we present a technique for data cleaning. The main steps are depicted in

Fig. 3.1. First, we represent system call sequence based on certain patterns called motifs and

their positions within the sequence (Tandon, Mitra, and Chan 2004). This representation

is called the motif space. Further, we represent sequences in a single feature space called

sequence space and refine the data set offline by purging anomalies using an unsupervised

learning technique on the feature space (Tandon, Chan, and Mitra 2004; 2006).
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3.1 Definitions

System call sequence Let Σ be a finite set of all distinct system calls. A system call

sequence (SCS) s is defined as a finite sequence of system calls and is represented as (c1 c2

c3 ... cn), where ci ∈ Σ, 1 ≤ i ≤ n.

After processing the audit data into process executions, system call sequences are obtained

as finite length strings. Each system call is then mapped to a unique symbol using a translation

table. Thereafter, they are ranked by utilizing prior knowledge as to how susceptible the

system call is to malicious usage. A ranking scheme similar to the one proposed by Bernaschi

et al. (Bernaschi, Gabrielli, and Mancini 2001) was used to classify system calls on the basis

of their threat levels.

Motif A motif is defined as a subsequence of length greater than p if it appears more than

k times, for positive integers p and k, within the finite set S = {s1, s2, . . . , sm} comprising m

SCSs. Motif discovery has been an active area of research in bioinformatics, where interesting

patterns in amino and nucleic acid sequences are studied. Since motifs provide a higher

level of abstraction than individual system calls, they are important in modeling system call

sequences.

3.2 Motif extraction

Two sets of motifs are extracted via auto-match and cross-match, explained next.

3.2.1 Auto-match

The set of motifs obtained through auto-match comprise frequently occurring patterns within

each sequence. For our experiments, we considered any pattern at least 2 characters long,

occurring more than once as frequent. While the set S of SCSs is the input to this algorithm,
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a set of unique motifs M = {m1,m2, . . . ,mq} is the output. It may happen that a shorter

subsequence is subsumed by a longer one. We prune the smaller motif only if it is not more

frequent than a larger motif that subsumes it. More formally, a motif mi extracted using

auto-match (1) has length ≥ 2, (2) has frequency ≥ 2, and (3) if there exists a motif mj ∈M

in a sequence sk ∈ S such that mi is a subsequence of mj but occurs independently in SCS

sk.

To illustrate this idea, consider the following synthetic sequence

acggcggfgjcggfgjxyz (3.1)

Note that in this sequence we have a motif cgg with frequency 3, and another motif cggf with

frequency 2, which is longer and sometimes subsumes the shorter motif but not always. We

consider them as two different motifs since the frequency of the shorter motif was higher than

the longer one. The frequently occurring subsequences (with their respective frequency) are

cg(3), gg(3), gf(2), fg(2), gj(2), cgg(3), cggf(2), ggfg(2), gfgj(2), cggfg(2), ggfgj(2), cggfgj(2).

The longest pattern cggfgj subsumes all the smaller subsequences except cg, gg and cgg since

they are more frequent than the longer pattern, implying independent occurrence. But cg

and gg are subsumed by cgg, since they all have the same frequency. Thus, the final set of

motifs M={cgg, cggfgj}.

3.2.2 Cross-match

Apart from frequently occurring patterns, we are also interested in patterns which do not

occur frequently but are present in more than one SCS. These motifs could be instrumental

in modeling an intrusion detection system since they reflect common behavioral patterns

across sequences (benign as well as intrusive). We performed pair-wise cross-match between

different sequences to obtain these. In other words, a motif mi extracted using cross-match

(1) has length ≥ 2, (2) appears in at least a pair of sequences sk, sl ∈ S, and (3) is maximal,
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i.e., there does not exist a motif mj ∈ M(j 6= i) such that mj ⊆ sk, sl and mi ⊂ mj . Let us

consider the following pair of synthetic sequences:

acgfgjcgfgjxyzcg (3.2)

cgfgjpqrxyzpqr (3.3)

Using cross-match between the example sequences in Eqs. 3.2- 3.3, we get the motifs cgfgj

and xyz, since these are the maximal common subsequences across the two given sequences.

A simple method for comparing amino acid and nucleotide sequences called theMatrixMethod

is described by Gibbs and McIntyre (Gibbs and McIntyre 1970). A matrix is formed with

one sequence written across and the other in the downward position on the left of the matrix.

Any common element was marked with a dot and a series of dots along a diagonal gave a

common subsequence between the two sequences. Using a technique similar to the Matrix

Method, motifs are extracted which occur across sequences but may not be frequent within a

single sequence itself.

Motifs obtained for a sequence (auto-match) or pairs of sequences (cross-match) are added

to the motif database. Redundant motifs are removed. Motifs are then ordered based upon

the likelihood of being involved in an attack. The ranking for individual system calls is used

here and motifs are ordered using dictionary sort. The motifs are then assigned a unique id

based upon their position within the ordered motif database.

3.3 Motif Space: motif-based representation of a sequence

After collecting all the motifs that exist in the set S of sequences in the motif database M ,

we represent each sequence in terms of the motifs occurring within it. For each sequence

si ∈ S, we list all the motifs occurring within it along with their starting positions within the

sequence.
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Figure 3.2: Motif-oriented representation for sequence in Eq. 3.2

This creates a two-dimensional representation for each SCS si, where the X-axis is the

distance along the sequence from its beginning, and the Y-axis is the motif ID of those motifs

present in si. A sequence can thus be visualized as a scatter plot of the motifs present in the

sequence. Fig. 3.2 depicts such a representation for the synthetic sequence in Eq. 3.2, where

the motifs cg, cgfgj and xyz are represented at the positions of occurrence within the respective

sequence. A total of 4 unique motifs (cg, cgfgj, pqr and xyz), obtained from auto-match and

cross-match of sequences in Eqs. 3.2- 3.3, are assumed in the motif database for the plot in

Fig. 3.2. At the end of this phase, our system stores each SCS as a list of all motifs present

within along with their spatial positions from the beginning of the sequence.

All the SCSs are modeled based upon the contained motifs. Malicious activity results

in alterations in the SCS which is reflected by the variations in the motifs and their spatial

positions. Plotting all the SCSs (based upon their motif-based representations) in a single

feature space could reflect the similarity/dissimilarity between them.
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3.4 Sequence Space: representing multiple sequences

After creating a motif-based representation for each sequence, all the test sequences S are

plotted in a feature space called the sequence space. In this representation we measure

the distance between pairs of SCSs along each of the two axes (motifs and their locations).

Utilizing one (arbitrarily chosen) SCS from the set S as a reference sequence s1, we measure

(dx, dy) distances for all SCSs. Thus, the sequences are represented as points in this 2D

sequence space, where the sequence s1 is at the origin (reference point) on this plot. Let s2

be any other sequence in S whose relative position with respect to s1 is to be computed. Let

x1i
(x2i

) be the position of the ith motif in s1 (s2). Inspired by the symmetric Mahalanobis

distance (Mahalanobis 1930), the distance is computed as follows:

dx =

∑

n1

i=1
(x1i

−x̄2)

σx2

+

∑

n2

j=1
(x2j

−x̄1)

σx1

n1 + n2
; dy =

∑

n1

i=1
(y1i

−ȳ2)

σy2

+

∑

n2

j=1
(y2j

−ȳ1)

σy1

n1 + n2
(3.4)

where s1 has n1 motif occurrences and s2 has n2 motif occurrences, (dx, dy) is the position

of s2 w.r.t. s1, and (x̄, ȳ) is the mean and (σx, σy) is the standard deviation along the x and

y axes. Using this metric, we try to calculate the variation in motifs and their locations in

the two sequences.

After computing (dx, dy) for all sequences in S with respect to the reference sequence

(s1), we plot them in the sequence space, as represented by the two plots in Fig. 3.3. The

origin represents the reference sequence. It is important to note that the position of another

sequence (calculated using Eq. 3.4) with respect to the randomly selected reference sequence

can be negative (in X and/or Y direction). In that case the sequence space will get extended

to other quadrants as well, as in Fig. 3.3b.
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Figure 3.3: Sequence space for two applications (a) ftpd and (b) lpr

3.5 Unsupervised training with Local Outlier Factor (LOF)

Similar sequences are expected to cluster together in the sequence space. Malicious activ-

ity is known to produce irregular sequence of events. These anomalies would correspond

to spurious points (global outliers) or local outliers in the scatter plot. In Fig. 3.3a, the

point on the top-right corner of the plot is isolated from the rest of the points, making it

anomalous. In this section we will concentrate on outlier detection, which has been a well re-

searched topic in databases and knowledge discovery (Knorr and Ng 1998; Breunig et al. 2000;

Ramaswamy, Rastogi, and Kyuseok 2000; Aggarwal and Yu 2001). It is important to note

that an outlier algorithm with our representation is inappropriate for online detection since

it requires complete knowledge of all process sequences.

LOF (Breunig et al. 2000) is a density-based outlier finding algorithm which defines a local

neighborhood, using which a degree of outlierness is assigned to every object. The number

of neighbors (MinPts) is an input parameter to the algorithm. A reachability density is
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calculated for every object which is the inverse of the average reachability distance of the

object from its nearest neighbors. Finally, a local outlier factor (LOF ) is associated with

every object by comparing its reachability density with each of its neighbors. A local outlier

is one whose neighbors have a high reachability density as compared to that object. For

each point this algorithm gives a degree to which that point is an outlier as compared to

its neighbors (anomaly score). Our system computes the anomaly scores for all the SCSs

(represented as points in sequence space). All the points for which the score is greater than

a threshold are considered anomalous and removed.

We made some modifications to the original LOF algorithm to suit our needs. In the

original paper (Breunig et al. 2000), all the points are considered to be unique and there are

no duplicates. In our case, there are many instances when the sequences are exactly the same

(representative of identical application behavior). The corresponding points would thus have

the same spatial coordinates within the sequence space. Density is the basis of our system

and hence we cannot ignore duplicates. Also, a human expert would be required to analyze

the sequence space and suggest a reasonable value of MinPts. But the LOF values increase

and decrease non-monotonically (Breunig et al. 2000), making the automated selection of

MinPts highly desirable. We present some heuristics to automate the LOF and threshold

parameters, making it a parameter-free technique.

3.5.1 Automating the parameters

MinPts

To select MinPts, we use clustering to identify the larger neighborhoods. Then, we scrutinize

each cluster and approximate the number of neighbors in an average neighborhood. We use the

L-Method (Salvador and Chan 2004) to predict the number of clusters in the representation.

This is done by creating a number of clusters vs. merge distance graph obtained from merging
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one data point at a time in the sequence space. Starting with all N points in the sequence

space, the two closest points are merged to form a cluster. At each step, a data point with

minimum distance to another cluster or data point is merged. At the final step, all points

are merged into the same cluster. The graph obtained has three distinct areas: a horizontal

region (points/clusters close to each other merged), a vertical region (far away points/clusters

merged), and a curved region in between. The number of clusters is represented by the knee

of this curve, which is the intersection of a pair of lines fitted across the points in the graph

that minimizes the root mean square error. Further details can be obtained from (Salvador

and Chan 2004).

Assume k clusters are obtained in a given sequence space using L-Method (with each

cluster containing at least two points). Let αi be the actual number of points in cluster i,

1 ≤ i ≤ k. Let ρi be the maximum pair-wise distance between any two points in cluster i; and

τi is the average (pair-wise) distances between two points in cluster i. Let βi be the expected

number of points in cluster i. Its value can be computed by dividing the area of the bounding

box for the cluster with the average area occupied by the bounding box of any two points in

the cluster (for simplicity we assume square shaped clusters). Therefore, we get

βi =

(

ρi

τi

)2

(3.5)

This gives us the expected number of points within the cluster. But the actual number of

points is ai. Thus, we equally distribute the excess points among all the points constituting

the cluster. This gives us an approximate value for MinPts (number of close neighbors) of

the cluster i (= γi)

γi =

⌈

αi − βi

βi

⌉

(3.6)

After obtaining MinPts for all k clusters, we compute a weighted mean over all clusters to
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obtain the average number of MinPts for the entire sequence space.

MinPts =

⌈

∑k
i=1 γiαi

∑k
i=1 αi

⌉

(3.7)

Only clusters with at least two points are used in this computation. But this approach

gives a reasonable value for the average number of MinPts in a sequence space if all the

points are unique. In case of duplicates, Eq. 3.5 is affected since the maximum distance still

remains the same whereas the average value is suppressed due to the presence of points with

same spatial coordinates. If there are q points corresponding to a coordinate (x, y), then each

of the q points is bound to have at least (q-1) MinPts.

Let p be the number of frequent data points (i.e. frequency ≥ 2) in cluster i. Let ψj be

the frequency of a data point j in cluster i. In other words, it is the number of times that the

same instance occurs in the data. We compute γ′ the same way as Eq. 3.6, where γ′ is the

MinPts value for cluster i assuming unique points (no multiple instance of the same data

point) in the sequence space.

γ′i =

⌈

αi − βi

βi

⌉

(3.8)

This value is then modified to accommodate the frequently occurring points (corresponding

to sequences sharing the same spatial positions in the sequence space). We compute a weighted

mean to obtain an appropriate value of MinPts in cluster i as follows:

γi =

⌈

γ′iαi +
∑p

j=1 ψj(ψj − 1)

αi +
∑p

j=1 ψj

⌉

(3.9)

Average MinPts for the entire plot can then be computed using Eq. 3.7.

Threshold

LOF only assigns a local outlier factor for a point in the sequence space which corresponds

to its anomaly score. If the score is above a user specified threshold, then it is considered

as anomalous and hence filtered from the data set. If the threshold is too low, there is a
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risk of filtering a lot of points, many of which may depict normal application behavior. On

the contrary, if the threshold is too high, some of the data points corresponding to actual

intrusions (but close to many other data points on the sequence space) may not get filtered.

We compute the threshold automatically by ordering the LOF scores and plotting them in

increasing order (with each data point along the X-axis and the anomaly/LOF score along the

Y-axis). Since the normal points are assumed in abundance, their LOF scores are ideally 1.

We are interested in the scores after the first steep rise of this plot, since these correspond to

outliers. Ignoring all the scores below the first steep rise (corresponding to normal sequences),

the cut-off value can be computed as the median of all the scores thereafter. This heuristic

gives a reasonable threshold value for the various applications in our data sets.

3.6 Training and online detection

The filtered data set obtained above provides clean data as training input to an online anomaly

detection system like stide and LERAD. stide (Sequence TIme-Delay Embedding) [35] memo-

rizes all contiguous sequences of predetermined, fixed length (n-grams) during training. This

is done by using a sliding window and adding all unique sequences to the database. During

test phase, an anomaly count is associated with n-gram mismatches and is defined as the

number of mismatches in a temporally local region for a sequence. A threshold is set for the

anomaly score above which a sequence is flagged anomalous, indicating a possible attack.

LERAD (LEarning Rules for Anomaly Detection) (Mahoney and Chan 2003) is a ran-

domized algorithm that learns rules for the normal data set. With every rule a probability

is assigned for encountering a novel value of the attribute in the consequent when the condi-

tions in the antecedent are true. A non-stationary model is assumed for LERAD frequency is

made irrelevant and only the last occurrence of an event is assumed important. The anomaly

scoring function uses the probability and time since last anomaly of the rule violated by the
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test input.

3.7 Experimental Evaluation

Our goal is to determine if our proposed representation can be used with an unsupervised

learning algorithm (namely LOF) to detect and purge out anomalies, creating a clean training

set for online detection systems. We would also like to note the change in performance after

using our filtering scheme.

3.7.1 Data sets and preprocessing

We evaluated our techniques on seven applications obtained from three different data sets:

1. The DARPA intrusion detection evaluation data set was developed at the MIT-Lincoln

Labs (Lippmann et al. 2000). We used the Solaris data from the Basic Security Module

(BSM) audit logs. For our experiments, we selected the ftpd, ps, fdformat and eject

applications to obtain a good range in the number of sequences and the number of

system calls. These applications also have a good mix of different attack types (Kendell

1999). The ftpd application comprises of R2L (guessftp, ftpwrite) and DoS (warez,

warezclient) attacks. On the other hand, ps, eject and fdformat are all U2R attacks.

2. Two applications (lpr and login) from the University of New Mexico (UNM) data sets

(Warrender, Forrest, and Pearlmutter 1999) were also used. The lpr application com-

prised of 2703 normal traces running lpr collected from 77 hosts running SUNOS 4.1.4

at the MIT Artificial Intelligence Lab. Another 1001 traces correspond to the execution

of the lprcp attack script. Older versions of lpr use only 1000 different names for printer

queue files. The attack takes advantage of the fact that the old files are not removed

from the queue before they can be used again. The attack works as follows: a symbolic
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link is placed to the victim file at the beginning. All the intermediary traces increment

the counter and the intruder overwrites the target file in the last trace. Traces from

the login application were obtained from a Linux machine running kernel 2.0.35. A

homegrown Trojan program was used for the attack traces.

3. We also used system call sequence logs corresponding to Microsoft excel macros in

execution used by researchers at Florida Institute of Technology (FIT) (Whittaker and

De-Vivanco 2002) and University of Tennessee at Knoxville (UTK) (Mazeroff et al.

2003). 36 normal traces correspond to statistical, chemistry and cost estimation related

Excel macros. Two malicious traces modify the registry settings and execute some other

application. Such a behavior is exhibited by the ILOVEYOU worm which opens the

web browser to a specified website and executes a program, modifying registry keys and

corrupting user files. This worm results in a distributed denial of service (DDoS) attack.

3.7.2 Outlier (anomaly) detection in sequence space

Our system creates a sequence space and plots all sequences as points with respect to other

sequences. We claim that the malicious sequences are reflected as outliers in the sequence

space. It is therefore imperative for us to evaluate if the outliers in the sequence space

correspond to actual attacks. The underlying assumption is that the bulk of the data set

constitutes of normal SCSs. We assume that the similar nature of normal behavior will cause

them to cluster together. Outliers to these clusters would be the anomalies resulting from

possible intrusions.

For the MIT-Lincoln lab data set, week 3 comprises of clean data while weeks 4 and 5

data has attacks. We are also given the timestamp for the occurrence of the attacks. After

dividing the data into different applications and their processes, we combine the data for the

3 weeks together (on a per application basis) and feed it to our system. This gives a good mix
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Table 3.1: Automated MinPts computation.

Application eject fdformat ftpd ps lpr login excel

Number of sequences 21 19 91 341 3704 16 38

Average sequence length 66.43 57.63 184.93 66.45 835.73 730.81 2862.87

MinPts 3 2 10 71 6 3 2

of normal application behavior and some sequences resulting from intrusions. We also use an

aggregation of all traces for the other data sets (UNM and FIT-UTK) on a per application

basis for similar reasons.

We created a sequence space for each application. Fig. 3.3a represents the sequence space

for the ftpd application from the DARPA evaluation data set, whereas Fig. 3.3b corresponds

to the lpr data set from UNM. The X-axis on the plots is the distance due to the motif

separation amongst sequences and Y-axis corresponds to the distance with respect to the

motifs present in the sequence. Similar sequences tend to cluster together while anomalous

sequences are represented as outliers.

We used the sequence space to detect local outliers using LOF on all the datasets. LOF

takes MinPts-nearest neighbors (the number of points comprising the neighborhood of a point)

as an input parameter and the results are very sensitive to this parameter selection. For our

experiments, we varied this parameter value as a percentage of the entire population. We

also used the MinPts value that we computed using our automated technique. These values

are listed in Table 3.1. After computing the LOF or anomaly scores, we ranked them in

descending order. All the sequences with scores greater than the threshold were considered

anomalies and evaluated for detections and false alarms.

The results from the experiments, depicted in Table 3.2, indicate that none of the MinPts

values were ideal to detect all the attacks. The two parameter values 15% and 20% seem
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Table 3.2: True positives and false positives at varied LOF MinPts values.

Application Total Number of different attacks detected (with false alarm count)

Attacks for different values of LOF MinPts (% of total population)

5% 10% 15% 20% Automated

(from Table 3.1)

eject 2 1 (1) 2 (1) 2 (0) 2 (0) 2 (0)

fdformat 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)

ftpd 6 0 (6) 0 (11) 6 (6) 6 (1) 0 (11)

ps 4 0 (6) 4 (1) 4 (1) 4 (2) 4 (49)

lpr 1 0 (123) 1 (193) 1 (198) 1 (157) 1 (97)

login 1 0 (1) 0 (2) 1 (2) 1 (2) 1 (2)

excel 2 2 (0) 0 (3) 0 (0) 0 (0) 2 (0)

Total 19 6 (137) 10 (211) 17 (207) 17 (162) 13 (159)
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to have the maximum number of detections (17 each, out of 19 total attacks). The only

attacks missed were the ones in the excel application where a reasonable value of MinPts is

best suggested as 5%. Our methodology for MinPts calculation was successful in computing

the correct number for the parameter and hence successfully detected the attack sequence as

outlier (for which the 15% and 20% values failed). The automated LOF parameter detected

all the attacks except the ones in the ftpd application. The reason for such a behavior can be

better understood from Fig. 3.3a. There are 2 main clusters in the sequence space one close

to the origin and the other towards the center of the plot. The total number of points is 91

(80 in the large cluster, 10 in the smaller one, and one spurious point far away on the top-right

corner of the plot). The MinPts value obtained by using our heuristic is 10, which seems to

be an appropriate value. Inability of LOF to detect the anomalies in this representation is

attributed to the fact that all the 10 points in the smaller cluster correspond to 6 different

attacks. Therefore, the anomaly scores for all these points are very low. This implies that

the concept of local outliers is not sufficient to capture such anomalous data points. Thus,

we need to adopt a global view to find anomalous clusters as well, which can be incorporated

in our sequence space. This would also be beneficial in detecting flooding attacks, which

would typically correspond to high density points/clusters in the sequence space. Other than

the ftpd application, the automated technique successfully detected all other attacks. This

suggests that the MinPts values computed using our heuristic are generally reasonable.

As can be observed from Table 3.2, the number of false alarms is high for the lpr application

(in the range 2.6-5.3%), which constitutes of over 3700 sequences and approximately 3.1

million system calls. The data was collected over 77 different hosts and represents high

variance in application behavior. Though we were able to capture the lpr attack invoked by

the lprcp attack script, we also detected other behavioral anomalies which do not correspond to

attacks. Our goal here is to retain generic application behavior and shun anomalies. Peculiar
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(but normal) sequences would also be deemed anomalous since they are not representative

of the general way in which the application functions, as in this case. Since program faults

and system crashes are not representative of normal behavior, purging these anomalies is

justifiable.

Our representation scheme also subsumes the ideas presented in (Warrender, Forrest, and

Pearlmutter 1999; Wespi, Dacier, and Debar 1999; 2000; Jiang, Hua, and Sheu 2002). The

underlying assumption is that similar sequences would appear together in the sequence space.

An attack modifies the course of events. This results in (a) either the absence of a motif, or (b)

altered spatial positions of motifs within the sequence due to repetition of a motif, or (c) the

presence of an entirely new motif. All these instances affect the spatial relationships amongst

the different motifs within the sequence. Ultimately, this affects the distance of the malicious

sequence with respect to the reference sequence, resulting in an outlier being plotted on the

sequence space. It is this drift within the sequence space that the outlier detection algorithm

is able to capture as an anomaly. Since the reference sequence is picked randomly, it may

so happen that the reference sequence is the attack sequence itself. This does not affect our

system since our distance metric is symmetric and the point is still classified as an outlier.

3.7.3 Effects of filtering the data

We reemphasize that our ultimate goal is to obtain clean data for other intrusion detection

systems to train on. Thus, it is important to study how well our system can clean the training

data and what effect does it have on the performance of an online detection system (in terms

of true detections as well as false alarm generation).

Only the MIT-Lincoln Labs and FIT-UTK data sets were used for this set of experiments

since they contained sufficient attacks to be used in both adulterated training and test data

sets. The lpr and login data sets from UNM comprised of only a single attack. We have
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already demonstrated in the previous section that our technique could filter them as spurious

outliers. But a single attack is not sufficient for this set of experiments, as we would like

to have attacks in both training and test data. Therefore, we did not involve those two

applications for this experiment. We combined the clean week 3 data with the mixed week

4 data of the MIT-Lincoln lab data set to obtain an unlabeled data set. We use this to

train stide and LERAD. We then tested on week 5 data (containing attacks with known

timestamps). Subsequently, we used MORPHEUS to filter out spurious data points (and

hence SCSs) from the combined data set. This marks the end of phase 5 of our system. The

sixth and final phase is next, which uses the refined data set for training stide and LERAD.

Week 5 data is used for testing purposes. As per the 1999 DARPA evaluation criteria, a

system is considered to have successfully detected an attack if it generates an alarm within 60

seconds of the occurrence of the attack. We follow the same criterion for our evaluation. For

the FIT-UTK Microsoft Excel data set, we randomly picked 33 traces (including one attack)

for training and remaining 5 traces for testing purposes.

The parameter selection for our experiments was as follows: For stide, we used a window

size of 6. A locality frame of 20 is used, that is the anomaly count keeps track of the number

of mismatches in a temporally local region comprising 20 system calls. All the parameter

values used are suggested to give best results in (Warrender, Forrest, and Pearlmutter 1999);

parameter sensitivity is studied in (Tan and Maxion 2002). For LERAD, each tuple com-

prised of the system call, its return value and error status besides other arguments. In all

cases, alarms are accumulated for the applications and then evaluated for the number of true

detections and false positives.

Fig. 3.4 depicts the number of attacks detected by stide and LERAD for the 5 applications

under study. It is observed that in both cases, the IDS was able to detect more attacks in

ftpd and ps applications after data filtering by MORPHEUS while there was no change in the
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Figure 3.4: Comparison of attack detections with and without filtering, for (i) stide and (ii)

LERAD.

performance for the other three applications (eject, fdformat and excel). This is because the

training data also contained some attacks. For the ftpd and ps applications, the attacks in the

test data were similar to the ones seen in the adulterated training data set, and were hence

missed by both the IDSs. When filtered using MORPHEUS, the attack SCSs were purged

and hence detections were possible in the test phase. For the applications eject and fdformat,

the attacks in the adulterated training and testing data sets were different in character. Hence

both the systems detected them irrespective of the filtering procedure. For excel, stide was

able to detect the worm in both cases due to similar reasons. LERAD was not able to capture

the malicious sequence due to incomplete argument information.

No false alarms were generated in any case in stide except the excel application, where

one false positive was produced in each case. For LERAD, 1 false alarm was generated for

the ps application with and without filtering. No other false positives were obtained. Overall,

the results indicate that the filtering process was instrumental in increasing the number of

detections without increasing the number of false alarms.
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3.8 Summary

Most of the traditional host based IDSs require a clean training data set which is difficult

to obtain. Our system, called MORPHEUS, addresses and attempts to solve this problem

of data filtering. We present a motif-based representation for system call sequences (SCSs)

based upon their spatial positions within the sequence. We also propose a novel represen-

tation of sequences called sequence space using a distance metric between the motif-based

representations. We also exhibited the efficacy of this feature space to filter anomalies by

integrating it with an existing unsupervised learning algorithm (called LOF) for outlier de-

tection. Experiments were performed on different applications which varied in size, operating

system (SUNOS, Solaris, Linux and Windows), and environment (simulated and live/real).

Results indicate that our system can successfully detect the vulnerability-based anomalies.

The generation of false alarms is caused by the irregularities in the data set and the results

are sensitive to the parameter selection for the outlier algorithm. We proposed heuristics

to automate the parameters to MORPHEUS MinPts (a parameter to LOF) and threshold

for raising alarms, thereby making our system parameter-free. Our automatically computed

parameter was generally able to detect the attacks producing the least false alarms in the

most irregular real data set. After filtering the anomalous points, the clean training data

set was used by an online detection system resulting in higher detection rates, implying that

MORPHEUS effectively purged the anomalies to create a better training data set.

An attacker might devise a clever technique to evade typical sequence-based anomaly de-

tection systems. Wagner and Soto (Wagner and Soto 2002) presented one such idea wherein

they were successful in modeling a malicious sequence by adding null operators to make it

consistent with the sequence of system calls. The sequence based techniques dealing with

short sub-string patterns can be bypassed by spreading the attack over longer duration (or

longer sub-sequences). MORPHEUS uses variable length motifs and also takes the relative
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positions of the motifs for anomaly detection, and is better equipped and more robust against

such evasions. In essence, our system models sequences at two different levels at the individ-

ual motif level and also at the level of spatial relationship between motifs within the audit

sequence. The latter level adds to the security of the system and would make it even harder

for the attacker to evade the system, since he has to now not only use the normal audit event

patterns, but also place those event-sequences/motifs within the respective sequence at proper

relative positions.
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Chapter 4

Enriched Representations

Most of the traditional host-based anomaly detection systems focus on system call sequences,

the assumption being that a malicious activity results in an abnormal (novel) sequence of

system calls. Recent research has shown that sequence-based systems can be compromised

by conducting mimicry attacks. Such attacks are possible by inserting dummy system calls

with invalid arguments such that they form a legitimate sequence of events.

A drawback of sequence-based approaches lies in their non-utilization of other key at-

tributes, namely system call arguments. The efficacy of such systems might be improved

upon if a richer set of attributes (return value, error status and other arguments) associated

with a system call is used to create the model. In this chapter we present a host-based

anomaly detection system that is based upon system call arguments (Tandon and Chan 2003;

2005; 2006). We learn the important attributes using a variant of a rule learning algorithm

called LERAD. We also present various argument-based representations and compare their

performance with some of the well-known sequence-based techniques.
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4.1 Learning Rules for Anomaly Detection

Algorithms for finding association rules, such as Apriori,(Agrawal, Imielinski, and Swami

1993) generate a large number of rules. This incurs a large overhead and may not be appro-

priate for online detection. We would like to have a minimal set of rules describing the normal

training data. LERAD(Mahoney and Chan 2003) is a conditional rule-learning algorithm that

forms a small set of rules. LERAD learns rules of the form:

A = a ∧B = b ∧ . . .⇒ X ∈ {x1, x2, . . .} (4.1)

where A, B, and X are attributes and a, b, x1, x2 are values for the corresponding attributes.

The learned rules represent the patterns present in the normal training data. The set {x1,

x2, . . . } in the consequent constitutes all unique values of X when the antecedent occurs in

the training data.

During the detection phase, records (or tuples) that match the antecedent but not the

consequent of a rule are considered anomalous and an anomaly score is associated with every

rule violation. The degree of anomaly is based on a probability estimation of novel (zero

frequency) events.(Witten and Bell 1991) For each rule, from the training data, the probability,

p, of observing a value not in the consequent is estimated by:

p =
r

n
(4.2)

where r is the cardinality of the set, {x1, x2, . . . }, in the consequent and n is the number

of records (tuples) that satisfy the rule during training. Since p estimates the probability of

a novel event, the larger p is, the less anomalous a novel event is. Hence, during detection,

when a novel event is observed, the degree of anomaly (anomaly score) is estimated by:

AnomalyScore =
1

p
=
n

r
(4.3)

42



A non-stationary model is assumed for LERAD only the last occurrence of an event is

assumed important. Since novel events are bursty in conjunction with attacks, a factor t is

introduced which is the time interval since the last novel (anomalous) attribute value. If a

novel event occurred recently (small value of t), a novel event is more likely to occur at the

present moment. Hence, the anomaly score is measured by t/p. Since a record can deviate

from the consequent of more than one rule, the total anomaly score of a record is aggregated

over all the rules violated by the tuple to combine the effect from violation of multiple rules:

TotalAnomalyScore =
∑ t

p
=

∑ tn

r
(4.4)

The more the violations, more significant the anomaly is, and the higher the anomaly score

should be. An alarm is raised if the total anomaly score is above a threshold.

The rule generation phase of LERAD comprises of 4 main steps:

1. Generate initial rule set: Training samples are picked up at random from a random

subset S of training examples. Candidate rules (as depicted in Eq. 4.1) are generated

from these samples.

2. Coverage test: The rule set is filtered by removing rules that do not cover/describe all

the training examples in S. Rules with lower rate of anomalies (lower r/n) are kept.

3. Update rule set beyond S: Extend the rules over the remaining training data by adding

values for the attribute in the consequent when the antecedent is true.

4. Validate the rule set: Rules are removed if they are violated by any tuple in the validation

set.

Since system call is the key (pivotal) attribute in a host based system, we modified LERAD

such that the rules were forced to have a system call as a condition in the antecedent. The

only exception we made was the generation of rules with no antecedent.
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4.2 System call and argument based representations

We conjecture that even though augmentation of attributes to system call sequences may

tend to make the hypotheses space more complex, it will also enable an algorithm to learn

the hypotheses more accurately. We now present the different representations for LERAD.

4.2.1 Sequence of system calls: S-LERAD

Using sequence of system calls is a very popular approach for anomaly detection. We used a

window of fixed length 6 (as this is claimed to give best results in stide and t-stide (Forrest et

al. 1996; Warrender, Forrest, and Pearlmutter 1999)) and fed these sequences of six system

call tokens as input tuples to LERAD. This representation is selected to explore whether

LERAD would be able to capture the correlations among system calls in a sequence. Also,

this experiment would assist us in comparing results by using the same algorithm for system

call sequences as well as their arguments. A sample rule learned in a particular run of S-

LERAD is:

(s0 = close) ∧ (s1 = mmap) ∧ (s5 = open)⇒ s2 ∈ {munmap}[
1
p

= n
r

= 455
1 ]

This rule is analogous to encountering close as the first system call (represented as s0),

followed by mmap and munmap, and open as the sixth system call (s5) in a window of size

6 sliding across the audit trail. Each rule is associated with an n/r value. The number 455

in the numerator refers to the number of training instances that comply with the rule (n in

Eq. 4.3). The number 1 in the denominator implies that there exists just one distinct value

of the consequent (munmap in this case) when all the conditions in the premise hold true (r

in Eq. 4.3).
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4.2.2 Argument based model: A-LERAD

We propose that argument and other key attribute information is integral to modeling a

good host-based anomaly detection system. We extracted arguments, return value and error

status of system calls from the audit logs and examined the effects of learning rules based

upon system calls along with these attributes. Any value for the other arguments (given the

system call) that was never encountered in the training period for a long time would raise an

alarm. A typical argument based rule is

(s0 = close)⇒ a1 ∈ {0x2, 0x3, 0x4, 0x5, 0x6}[
1
p

= n
r

= 500
5 ]

where a1 is the first argument for the first system call (close).

We performed experiments on the training data to measure the maximum number of

attributes (MAX) for every unique system call. We did not use the test data for these

experiments so that we do not get any information about it before our model is built. Since

LERAD accepts the same (fixed) number of attributes for every tuple, we had to insert a

NULL value for an attribute that was absent in a particular system call. The order of the

attributes within the tuple was made system call dependent. As we had modified LERAD

to form rules based upon the system calls, there is consistency amongst the attributes for

any specific system across all models. By including all attributes we utilized the maximum

amount of information possible.

It can be argued that inclusion of NULL values in a rule may result in the formation of

many not-so-important rules, thereby making the rule set large and incurring high time and

space overhead. But it is also important to note that even though NULL values do not seem

to be adding any useful information, they could still help to detect anomalies. Consider the

rule

(s0 = munmap) ∧ (a1 = 0x10)⇒ a3 ∈ {NULL}[
1
p

= n
r

= 2000
1 ]
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The rule has only one acceptable value for the third argument when the system call (s0) is

munmap and the first argument is 0x10. The rule has a large coverage (= 2000 tuples) in

the training data (assuming 2000 tuples is large for a given system call with respect to entire

data set). Thus, one would never expect to see any other value for the third argument when

the antecedent is true. However, an intruder could craft a mimicry attack by introducing

arbitrary argument values (without realizing what a valid value for that argument should

be), resulting in a novel value. In such a situation we could say with high confidence that it

is a highly unexpected event and hence depicts anomalous behavior. Even though the NULL

value for the argument might not determine the nature of the attack, it could be decisive in

detecting the anomaly introduced due to a slight carelessness on the part of the intruder.

4.2.3 Merging system call sequence and argument information of

the current system call: M-LERAD

The first representation we discussed is based upon sequence of system calls; the second

one takes into consideration other relevant attributes, whose efficacy we claim in this paper;

so fusing the two to study the effects was an obvious choice. Merging is accomplished by

adding more attributes in each tuple before input to LERAD. Each tuple now comprises of

the system call, MAX number of attributes for the current system call, and the previous

five system calls. The n/r values obtained from the all rules violated are aggregated into an

anomaly score, which is then used to generate an alarm based upon the threshold. A sample

rule for M-LERAD is of the form

(s0 = close) ∧ (s5 = open)⇒ a1 ∈ {0x4, 0x5}[
1
p

= n
r

= 107
2 ]

where s0 and s5 correspond to the system calls at the extremities of the sliding window and

a1 is the first argument for the current system call (i.e. close).
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4.2.4 Merging system call sequence and argument information for

all system calls in the sequence: M*-LERAD

All the proposed variants, namely S-LERAD, A-LERAD and M-LERAD, consider a sequence

of 6 system calls and/or take into the arguments for the current system call. We propose

another variant called multiple argument LERAD (M*-LERAD) in addition to using the

system call sequence and the arguments for the current system call, the tuples now also

comprise the arguments for all system calls within the fixed length sequence of size 6. Each

tuple now comprises of the current system call, MAX attributes for the current system call,

5 previous system calls and MAX attributes for each of those system calls. An actual rule

formed by M*-LERAD is

(s0 = close) ∧ (a5,2 = 4) ∧ (s4 = mmap)⇒ a3,4 ∈ {0xe000}[ 1
p

= n
r

= 117
1 ]

In the rule above, s0 and s4 are the first and fifth system calls respectively in the current

window, a5,2 is the second argument for the last system call and a3,4 is the fourth argument

for the fourth system call in the sliding window.

4.3 Experimental Evaluation

The goal is to study if our variant of LERAD with feature spaces comprising system calls and

their arguments can detect attack-based anomalies.

4.3.1 Data sets and experimental procedure

We used the following data sets for our experiments:

1. The 1999 DARPA intrusion detection evaluation data set: Developed at the MIT Lincoln

Lab(Lippmann et al. 2000), we selected the BSM logs from Solaris host tracing system
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calls that contains 33 attacks. The attack taxonomy(Kendell 1999) is briefly explained

here.

• Probes or scan attacks are attempts by hackers to collect information prior to an

attack. Examples include illegalsniffer, ipsweep, mscan, portscan amongst others.

• DoS (Denial of Service) attacks are the ones in which a host or a network service

is disrupted. For example, arppoison, selfping, dosnuke and crashiis are all DoS

attacks.

• R2L (Remote to Local) are those attacks wherein an unauthorized user gains access

to a system. Examples of R2L attacks are guest, dict, ftpwrite, ppmacro, sshtrojan

and framespoof.

• U2R (User to Root) / Data attacks are those in which a local user is able to

execute non-privileged commands, which only a super user can execute. Examples

are eject, fdformat, ffbconfig, perl, ps and xterm.

The following applications were chosen: ftpd, telnetd, sendmail, tcsh, login, ps, eject,

fdformat, sh, quota and ufsdump, due to their varied sizes (about 1500 to over 1 million

system calls). We expected to find a good mix of benign and malicious behavior in

these applications. Training was performed on week 3 data and testing on weeks 4 and

5. An attack is considered to be detected if an alarm is raised within 60 seconds of its

occurrence (same as the DARPA evaluation).

2. lpr, login and ps applications from the University of New Mexico (UNM): The lpr ap-

plication comprised of 2703 normal traces from hosts running SUNOS 4.1.4. Another

1001 traces result from the execution of the lprcp attack script. Traces from the login

and ps applications were obtained from Linux machines running kernel 2.0.35. Trojan

programs were used for the attack traces.
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3. Microsoft excel macros executions (FIT-UTK data): Normal excel macro executions are

logged in 36 distinct traces. 2 malicious traces modify registry settings and execute some

other application. Such a behavior is exhibited by the ILOVEYOU worm which opens

the web browser to a specified website and executes a program, modifying registry keys

and corrupting user files, resulting in a distributed denial of service (DDoS) attack.

The input tuples for S-LERAD were 6 contiguous system calls; for A-LERAD they were

system calls with their return value, error status and arguments; The inputs for M-LERAD

were sequences of system calls with arguments of the current system call; whereas in M*-

LERAD, they were system call sequences with arguments for all the 6 system calls. For tide,

the inputs were all the pairs of system calls within a window of fixed size 6; stide and t-stide

comprised all contiguous sequences of length 6. For all the techniques, alarms were merged

in decreasing order of the anomaly scores and evaluated at varied false alarm rates.

4.3.2 Comparison of sequence base methods

t-stide is supposed to give best results among the traditional sequence-based techniques(War-

render, Forrest, and Pearlmutter 1999). As the UNM and FIT-UTK data sets do not have

complete argument information to evaluate LERAD variants that involve arguments, we com-

pared the performance of S-LERAD and t-stide on these data sets. The ROC curves from this

set of experiments are displayed in Fig. 4.1. The X-axis in the plots corresponds to various

false alarm rates and the Y-axis represents the percentage of attacks detected. The drawback

of anomaly detection lies in the generation of false alarms. Typically, a human expert (ad-

ministrator) has to deal with all the alarms and the cost of wrongly flagging an alarm can

be quite high. Our goal is thus to detect as many attacks while minimizing the generation of

false alarms. We have therefore limited our ROCs to a maximum of 1% false alarms (0.01 on

the X-axis). Results from Fig. 4.1 show that both the techniques were able to detect all the
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Figure 4.1: ROCs for UNM And FIT-UTK data.

attacks for the UNM data without generating any false alarm. However, for the FIT-UTK

data set, there was a difference in the performance. t-stide was initially able to detect more

attacks, but S-LERAD was able to detect all the attacks at 0.1% false alarm rate.

We also performed experiments on the DARPA BSM data sets to evaluate all the tech-

niques. Fig. 4.2 illustrates the total attacks detected (Y-axis) at different false alarms rates

(X-axis). The original DARPA evaluation (Lippmann et al. 2000) used a threshold of 10 false

alarms per day. We used the same evaluation criterion for consistency. The tolerance limit of

allowed false alarms may vary from one organization to the other. A government organization

dealing with sensitive data would not want to miss any anomaly, keeping the threshold high.

On the other hand, a small company may not have the infrastructure to sustain the cost

associated with many false alarms per day, thereby preferring a lower threshold but at the

risk of missing some intrusions. In order to encompass the viability for a broader range of

organizations, we also evaluated the techniques at 0 and 5 false alarms per day. At zero false

alarms, tide, stide and t-stide detected the most attacks, suggesting that maximum devia-

tions in temporal sequences are true representations of actual attacks. But as the threshold is

relaxed, S-LERAD outperformed all the 3 sequence-based techniques. This can be attributed
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Figure 4.2: Number of detections at different false alarm rates for the BSM data.

to the fact that S-LERAD is able to generalize well and learns the important correlations

between the system calls within the given window size.

For completeness, we also present the ROC curves for various techniques in Fig. 4.3. As

can be observed from the figure, S-LERAD performs better at false alarm rates less than

0.25%. But t-stide detects more attacks at higher false alarm rates. We reiterate that our

goal is to increase the number of attack detections, minimizing the false alarms at the same

time. We also list the area under the curve (upto 1% false alarms) in Table 4.1, where higher

area implies better performance (Flach 2004). Results in the table show that overall t-stide

performs better than S-LERAD in the range of 0 to 1% false alarm rates.

There are two noteworthy points about the evaluation. Firstly, it is interesting to note

that the DARPA evaluation had a stricter requirement since 10 false alarms per day (Fig. 4.2)

corresponds to even less than 0.1% false alarms on the ROC curve (Fig. 4.3). Another point

that deserves mention is that as per the DARPA evaluation, an attack is considered detected

only if an alarm is raised within one minute of its occurrence. Thus, an alarm after 60 seconds
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Figure 4.3: ROC for BSM data.

Table 4.1: Area under curve up to 1% false alarm rates.

Technique Area (×10−4)

t-stide 46.79

S-LERAD 39.12

A-LERAD 60.25

M-LERAD 60.46

M*-LERAD 54.51
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would be considered as a false positive even though it may have resulted due to some unusual

activity by the intruder.

4.3.3 Comparison of system call sequence and argument based meth-

ods

For the DARPA BSM data set, A-LERAD fared better than S-LERAD and the other sequence-

based techniques when evaluated in terms of both absolute number (Fig. 4.2) and the per-

centage (Fig. 4.3) of false alarms, suggesting that argument information is more useful than

sequence information. Using arguments could also make a system robust against mimicry

attacks which evade sequence-based systems. It can also be seen from Fig. 4.3 that the

A-LERAD curve closely follows the curve for M-LERAD. This implies that the sequence in-

formation is redundant; it does not add substantial information to what is already gathered

from arguments. M*-LERAD performed the worst among all the techniques, as can be seen

in Fig. 4.2. The reason for such a performance is that M*-LERAD generated alarms for both

sequence and argument based anomalies. An anomalous argument in one system call raised

an alarm in six different tuples, leading to a higher false alarm rate. As the alarm threshold

was relaxed, the detection rate improved (Fig. 4.3). Table 4.1 also shows that A-LERAD

and M-LERAD perform the best under 1% false alarm rates, followed by M*-LERAD and

S-LERAD.

Generally, the better performance of LERAD variants can be attributed to its anomaly

scoring function. It associates a probabilistic score with every rule. Instead of a binary

(present/absent) value (as in the case of stide and t-stide), this probability value is used to

compute the degree of anomalousness. It also incorporates a parameter for the time elapsed

since a novel value was seen for an attribute. The advantage is twofold:

1. it assists in detecting long term anomalies;
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Figure 4.4: Types of attacks detected at 10 false alarms per day for the BSM data.

2. suppresses the generation of multiple alarms for novel attribute values in a sudden burst

of data.

Figure 4.4 plots the different types of attacks (mentioned in Sec. 4.3.1) detected at 10 false

alarms per day (criterion used in the 1999 DARPA evaluation). Different attack types (DoS,

U2R and R2L) are represented along the X-axis and the Y-axis denoted the total attacks

detected in each attack category. M-LERAD was able to detect the largest number of attacks

5 DoS, 3 U2R and 6 R2L attacks A-LERAD followed closely with 5 DoS, 2 U2R and 6 R2L

attacks. An interesting observation is that the sequence-based techniques generally detected

the U2R attacks whereas the R2L and DoS attacks were better detected by the argument-

based techniques. Our techniques were able to detect some poorly detected attacks(Lippmann

et al. 2000), warezclient being one of them. Our models also detected stealthy ps attacks.
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Table 4.2: Attacks detected by A-LERAD and AC -LERAD.

False Alarms per day Number of attacks detected

A-LERAD AC -LERAD

5 10 9

10 13 11

20 17 16

4.3.4 NULL attribute values

As described in Section 4.2.2, we inserted NULL values for attributes not present for a given

system call. The expectation is that LERAD would form a rule if the NULL attribute value

is characteristic for a system call in an application. Experiments were performed to see if

NULL attributes help in detecting anomalies or if they formed meaningless rules. We added

a constraint that the NULL values could not be added to the attribute values in the rules and

called this variant AC -LERAD (A-LERAD with constraint). Table 4.2 compares the number

of attacks detected by A-LERAD and AC -LERAD by varying the false alarm rate. Results

indicate that A-LERAD was able to detect more attacks than the constrained counterpart,

suggesting that rules with NULL valued attributes are beneficial to the detection of anomalies

corresponding to attacks.

To analyse why A-LERAD was able to perform better, two metrics were devised to char-

acterize the rule set:

1. Rule Ratio (RR): the ratio of the number of rules formed by AC -LERAD to the number

of rules formed by A-LERAD. This ratio conveys which technique formed a smaller rule

set, resulting in a lower run-time overhead.

2. Coverage Ratio (CR): Coverage is the count of the tuples in the training set that are

covered by the rule set. Since the coverage is descriptive of the number of tuples it
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Table 4.3: Comparison of rule ratio and coverage ratio.

Application Rule Ratio (RR) Coverage Ratio (CR)

ftpd 0.35 0.51

telnetd 0.33 0.33

tcsh 0.44 0.48

sendmail 0.52 0.56

quota 0.50 0.53

login 0.36 0.38

sh 0.29 0.27

eject 0.62 0.56

ps 0.50 0.55

ufsdump 0.50 0.49

describes, we would want a high value for coverage. Coverage ratio is the ratio of the

coverage of AC -LERAD to the coverage of A-LERAD.

RR should ideally be low since a small rule set is desired. The coverage ratio should be

close to 1, indicating that a comparable number of tuples are covered by AC -LERAD and

A-LERAD. Table 4.3 shows the results for various applications in the BSM log. For example,

the size of the rule set for AC -LERAD was 35% of the size of the rule set of A-LERAD for

ftpd. This implies fewer rules for AC -LERAD and hence a lower run-time overhead during the

detection phase. However, the coverage ratio was 51%. The anomaly score is higher for rules

with higher coverage (Eq. 4.3). This assists A-LERAD to assign higher scores to tuples that

violate rules and hence detect more attacks than AC -LERAD. Overall results indicate that

even though discarding NULL attribute values results in a drastic reduction in the rule set,

they also cause smaller coverage amongst the training tuples. Another interesting observation
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from Table 4.3 was that a decrease in the size of the rule set generally yields a similar decrease

in the coverage.

4.3.5 Analysis of anomalies - attack detections and false alarms

An anomaly is a deviation from normalcy and, by definition, does not necessarily identify

the nature of an attack. Anomaly detection serves as an early warning system; humans need

to investigate if an anomaly actually corresponds to a malicious activity. Table 4.4 list the

anomalous attributes that resulted in the detection of the attack. It is interesting to note

that the anomalies that led to the attacks detected by argument-based variants of LERAD, in

many cases, do not represent the true nature of the attacks. Instead, it may be representative

of behavioral patterns resulting from the execution of some other program after the intruder

successfully gained access to the host. For example, an instance of guest attack is detected by

A-LERAD not by observing attempts by the hacker trying to gain access, but by encountering

novel arguments to the ioctl system call which was executed by the hacker trying to perform

a control function on a particular device. A stealthy ps attack was detected by our system

when the intruder tried to change owner using a novel group id.

Even if the anomaly is related to the attack itself, it may reflect very little information

about the attack. Our system is able to learn only a partial signature of the attack. guessftp

is detected by a bad password for an illegitimate user trying to gain access. However, the

attacker could have made interspersed attempts to evade the system. Attacks were also

detected by capturing errors committed by the intruder, possibly to evade the IDS. ftpwrite

is a vulnerability that exploits a configuration error wherein a remote ftp user is able to

successfully create and add files and gain access to the system. An instance of this attack is

detected by monitoring the subsequent actions of the intruder, wherein he attempts to set the

audit state using an invalid preselection mask. This anomaly would go unnoticed in a system
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Table 4.4: Anomalous arguments for attacks detected by A-LERAD.

Attack Attribute anomalies

ftpwrite set audit without ownership, invalid file descriptor, invalid mmap return value,

invalid device-dependent request code

guesstelnet novel ioctl return value

ps change group ownership with anomalous group id, invalid device, inappropriate

ioctl for device

guessftp fail file open on remote system

warez invalid device-dependent request code, change ownership of file without privileges

guest inappropriate ioctl for device

warezclient not owner to set audit state

syslogd novel ioctl argument

monitoring only system calls.

We re-emphasize that our goal is to detect anomalies, the underlying assumption being that

anomalies generally correspond to attacks. Since not all anomalous events are malicious, we

expect false alarms to be generated. Table 4.5 lists the attributes responsible for the generation

of alarms and whether these resulted in actual detections or not. It is observed that some

anomalies were part of benign application behavior. At other instances, the anomalous value

for the same attribute was responsible for detecting actual malicious execution of processes.

As an example, many attacks were detected by observing novel arguments for the ioctl system

call, but many false alarms were also generated by this attribute. Even though not all novel

values correspond to any illegitimate activity, argument-based anomalies were instrumental

in detecting the attacks.
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Table 4.5: Top anomalous attributes for A-LERAD.

Attribute causing false alarm Whether some attack was detected

by the same attribute

ioctl argument Yes

ioctl return value Yes

setegid mask Yes

open return value No

open error status No

fcntl error status No

setpgrp return value No

4.3.6 Storage and computational overheads

Compared to sequence-based methods, our techniques extract and utilize more information

(system call arguments and other attributes), making it imperative to study the feasibility

of our techniques for online usage. For t-stide, all contiguous system call sequences of length

6 are stored during training. For A-LERAD, system call sequences and other attributes are

stored. In both the cases, space complexity is of the order of O(n), where n is the total

number of system calls, though the A-LERAD requirement is more by a constant factor k

since it stores additional argument information.

During detection, A-LERAD uses only a small set of rules (in the range 10-25 for the

applications used in our experiments). t-stide, on the other hand, still requires the entire

database of fixed length sequences during testing, which incur larger space overhead during

detection. We conducted experiments on tcsh application in the BSM data set, which com-

prises of over 2 million system calls in training and has over 7 million system calls in test

data. The rules formed by A-LERAD require around 1 KB space, apart from a mapping table
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Table 4.6: Computational overhead for one week training and two weeks testing.

Application Total training Testing time per

time (seconds) sample (milliseconds)

tstide ALERAD tstide ALERAD

ftpd 0.19 0.90 0.04 0.16

telnetd 0.96 7.12 0.02 0.17

tcsh 6.32 29.56 0.13 0.17

sendmail 2.73 14.79 0.05 0.17

quota 0.20 3.04 0.01 0.14

login 2.41 15.12 0.04 0.17

sh 0.21 2.98 0.03 0.16

ufsdump 6.76 30.04 0.01 0.14

to map strings and integers. The memory requirements for storing a system call sequence

database for t-stide were over 5 KB plus a mapping table between strings and integers. The

results suggest that A-LERAD has better memory requirements during the detection phase.

We reiterate that the training can be done offline. Once the rules are generated, A-LERAD

can be used to do online testing with lower memory requirements.

The time overhead incurred by A-LERAD and t-stide in our experiments is given in

Table 4.6. The CPU times have been obtained on a Sun Ultra 5 workstation with 256 MB

RAM and 400 MHz processor speed. It can be inferred from the results that A-LERAD is

slower than t-stide. During training, t-stide is a much simpler algorithm and processes less

data than A-LERAD for building a model and hence t-stide has a much shorter training time.

During detection, t-stide just needs to check if a sequence is present in the database, which

can be efficiently implemented with a hash table. On the other hand, A-LERAD needs to
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check if a record matches any of the learned rules. Also, A-LERAD has to process additional

argument information. Run-time performance of A-LERAD can be improved with more

efficient rule matching algorithm. Also, t-stide will incur significantly larger time overhead

when the stored sequences exceed the memory capacity and disk accesses become unavoidable

A-LERAD does not encounter this problem as easily as t-stide since it will still use a small

set of rules. Moreover, the run-time overhead of A-LERAD is below a couple of hundred

microseconds per sample, which is reasonable for practical purposes.

4.4 Summary

Sequence based anomaly detection systems are known to suffer from high false alarm rates.

In this paper, we portrayed the efficacy of incorporating system call argument information

and used a rule-learning algorithm to model a host-based anomaly detection system. We

performed experiments on data sets from varied operating systems and applications. We

empirically demonstrated that our sequence-based variant (S-LERAD) detects more attacks at

lower false alarm rates. It was thus able to generalize better than the prevalent sequence based

techniques, which rely on pure memorization. Results also show that our argument-based

model, A-LERAD, detected more attacks than all the sequence-based techniques, stressing

on the importance of system call arguments for modeling host based systems.

Merging argument and sequence information creates a richer model for anomaly detection,

as illustrated by the empirical results of M-LERAD. M*-LERAD detected lesser number of

attacks at lower false alarm rates since every anomalous attribute results in alarms being

raised in 6 successive tuples, leading to either multiple detections of the same attack (counted

as a single detection) or multiple false alarms (all separate entities). Results also indicated

that sequence-based methods help detect U2R attacks whereas R2L and DoS attacks were

better detected by argument-based models. Our argument-based techniques detected different
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types of anomalies. Some anomalies did not represent the true nature of the attack. Some

attacks were detected by subsequent anomalous user behavior, like trying to change group

ownership. Some other anomalies were detected by learning only a portion of the attack,

while some were detected by capturing intruder errors.

Though our techniques incur higher time overhead due to the complexity of our techniques

(since more information is processed) as compared to t-stide, they build more succinct models

that incur much less space overhead - our techniques aim to generalize from the training data,

rather than pure memorization. Moreover, under 200 microseconds per sample (during testing

phase) is reasonable for online systems, even though it is significantly longer than t-stide.
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Chapter 5

Increasing coverage to improve

detection of anomalies

Rules for normal behavior can be hard coded by a human expert, a tedious task that incurs

significant effort and cost; or automatically learned from normal data using machine learn-

ing. One such technique, called LERAD (LEarning Rules for Anomaly Detection)(Mahoney

and Chan 2003), efficiently learns a succinct set of comprehensible rules and detects attacks

unknown to the algorithm. To reduce false alarms, these rules are validated on normal held-

out data and all violated rules are discarded. However, these rules were selected initially

to cover a relatively large number of training examples and their elimination could possibly

lead to missed detections. Outright rejection of such rules (called Pruning in this paper)

reduces the coverage. This chapter presents two methods to improve rule coverage (Tandon

and Chan 2007) – we can either lessen the belief in the violated rule instead of eliminating it

(Weighting), or backtrack to find rules that cover the training examples that should be cov-

ered (Replacement). In Weighting, rules are associated with weights estimating rule belief.
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A conformed rule increases our belief in it and hence its weight is increased. On the other

hand, weight is decreased upon rule violation symbolizing decrease in trust. In Replacement,

coverage is increased by including candidate rules that cover attribute values which have lost

coverage due to pruned rules. Additionally, new rules are learned from attribute values that

are not covered. We conjecture that increasing coverage over training data would increase

the number of attack detections. Thus, we also present a third technique, called Hybrid, that

chooses between Weighting and Replacement, the one that has higher coverage on training

data.

In Section 2.2.1, we describe two aspects of rule quality: predictiveness and belief. For rule

learning algorithms, many studies demonstrate the efficacy of using weights (predictiveness

and/or belief) over not using weights as well as pruning over not pruning. However, we are not

aware of studies in comparing using weights and pruning, particularly in anomaly detection.

In this chapter, we study how rule weighting compares to pruning in a rule learning algorithm

for anomaly detection. Also, for the LERAD algorithm, two instances are randomly chosen

and rules are generated using matching attribute values, making it a data driven approach.

Hypotheses search is from general to specific, and rules are updated by adding values over

entire training data. LERAD differs from AQ15 in that it allows different attributes in

the rule consequent, whereas AQ15 learns classes based on a single attribute. Also, AQ15

generates all rules that cover a data instance. In contrast, LERAD randomly choses matching

attributes, thus generating a subset of the rules and making the algorithm more efficient. In

this chapter, we also present Replacement variant for LERAD that revisits candidate rules to

replace rules discarded during validation. Since rules generated previously are checked against

the validation set for false alarms, this step is hypotheses driven. In addition, Replacement

takes into account attribute values not covered and learns rules based on those target values,

making this step a data driven strategy and the technique a mixture of data and hypotheses
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driven methods.

5.1 Rule Pruning in LERAD

LEarning Rules for Anomaly Detection (LERAD) (Mahoney and Chan 2003) is an efficient

randomized algorithm that forms conditional rules of the form:

a1 = v11
∧

a2 = v23
∧

... => ac ∈ {vc1, vc2, ...} [p] (5.1)

where ai is the ith attribute and vij is the jth value for ai. LERAD adopts a probabilistic

framework and estimates P (C|A), where A is the antecedent and C is the consequent of the

rule A ⇒ C. During training, a set of rules R that “minimally” describes the training data

are generated and their p = P (¬C|A) is estimated, where C, though expected, is not observed

when A is observed. An estimate for novel events from data compression (Witten and Bell

1991) is used:

p = P (NovelEvent) =
r

n
. (5.2)

where n is the total number of observed events and r is the number of unique observed events.

A sample network anomaly rule for LERAD is:

SrcIp = 128.1.2.3∧DestIp = 128.4.5.6⇒ DestPort ∈ {21, 25, 80}[p=
r

n
=

3

100
] (5.3)

A data instance is a feature vector comprised of all feature attribute values, and multiple

data instances form a data set. For example, a network data set may be composed of data

instances represented by the feature vector < SrcPort,DestPort, SrcIp,DestIp >. The rule

of Eq. 5.3, which claims three distinct destination ports (21-FTP, 25-SMTP, 80-HTTP) given

the source and destination IP addresses, is satisfied by 100 data instances. One or more such

rule(s) forms the rule set. A synthetic network data set and rule set is presented in Table 5.1,

with the semantics of data instance and rule as explained above.
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Table 5.1: Example data set and rule set.

di SrcPort DestPort SrcIp DestIp

d1 80 80 128.1.2.3 128.4.5.6

d2 80 80 128.1.2.3 128.4.5.6

d3 80 25 128.3.2.1 128.4.5.6

r1: ∗ ⇒ DestPort ∈ {25, 80}[p = 2/3]

r2: SrcIp = 128.1.2.3 ⇒ DestIp ∈ {128.4.5.6}[p = 1/2]

r3: DestIp = 128.4.5.6 ⇒ SrcPort ∈ {80}[p = 1/3]

Definition 1. Let i be a data instance and j be an attribute. coverij is 1 if there exists

a rule r (Eq. 5.1) in the rule set such that instance i satisfies the condition(s) in the

antecedent of rule r and the value of attribute j in instance i is a member of the set of

values of the same attribute j in the consequent of rule r. That is, coverij indicates if

the value of attribute j in instance i is covered by a rule in the rule set. More formally:

coverij =















































1, if jth attribute value is in consequent

of a rule satisfied by ith instance

0, otherwise

(5.4)

In Table 5.1, rule r1 is applicable for all three data instances, and all DestPort values are

contained in the consequent. Hence, cover12 = cover22 = cover31=1. The attribute values

not covered by the rule set are SrcIp of data instances d1 − d3, each of which has a cover

value of 0. Similarly, cover34=0, since DestIp of data instance d3 is not covered by any rule

in the rule set.

Definition 2. For the entire data set, coverage is defined as the fraction of attribute values

covered by the rule set. Let N be the total number of instances, and M the number of
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Input: sample set (Ds), training set (Dt), and validation set (Dv)

Output: LERAD rule set R

1. generate candidate rules from Ds and evaluate them

2. perform coverage test - select a “minimal” set of candidate rules that covers Ds:

(a) sort candidate rules in increasing order of probability of being violated

(b) discard rules that do not cover any attribute values in Ds

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

Figure 5.1: Main steps of LERAD algorithm

distinct attributes, then coverage is formally defined as:

coverage =
1

N ×M

N
∑

i=1

M
∑

j=1

coverij (5.5)

The example in Table 5.1 has three data instances (d1 − d3) and four attributes. Eight

attribute values are covered by the 3 rules in the rule set, resulting in a coverage value of

0.67.

5.1.1 Training Candidate Rules and Coverage Test

For describing the LERAD algorithm, we use the following notation. Let D be the entire

data set, and DT be the training set with normal behavior and DE be the evaluation (test)

data set with normal behavior as well as attacks such that DT ∪DE = D and DT ∩DE = ∅.

Training data is further partitioned into subsets Dt (training data set) and Dv (validation

held-out data set) respectively such that Dt ∪Dv = DT , Dt ∩Dv = ∅, and |Dt| > |Dv|. Also,

let R be the rule set learned after training.

The LERAD algorithm consists of four main steps as illustrated in Fig. 5.1. Step 1 intends
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Table 5.2: Example training data subset Ds = {di} for i = 1..3 and rules rk (k = 1..3)

generated from Ds. Consequent attribute values in data instances are marked by (rk) in

coverage test.

di SrcPort DestPort SrcIp DestIp

d1 80 80 (r2) 128.1.2.3 128.4.5.6

d2 80 80 (r2) 128.1.2.3 128.4.5.6

d3 80 25 (r1) 128.3.2.1 128.4.5.6

r1: ∗ ⇒ DestPort ∈ {25, 80}[p = 2/3]

r2: SrcIp = 128.1.2.3 ⇒ DestPort ∈ {80}[p = 1/2]

r3: SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6 ⇒ DestPort ∈ {80}[p = 1/2]

to generate and evaluate candidate rules from a small data sample Ds (such that |Ds| ≪ |Dt|),

which allows efficient training. Step 2 selects a small set of predictive rules that sufficiently

describe Ds. This allows learned models to be small. This step, called coverage test, is based

on two heuristics. First, rules with lower p = P (¬C|A) are preferred. Second, a rule can

cover multiple instances in Ds, but an instance does not need to be covered by more than

one rule. Hence, rules are sorted based on p and evaluated in ascending order (Step 2a). For

each rule, instances covered by the rule are marked. If a rule cannot mark any remaining

unmarked instances, it is removed. That is, rules with lower p are retained and rules that

do not contribute to covering instances not covered by previous rules with lower p values

are discarded (Step 2b). More specifically, since rules can have different attributes in the

consequent, the attribute of an instance, not the entire instance, is marked. Hence, a rule is

removed only if it cannot mark any unmarked attribute of any instance.

Table 5.2 contains example data and candidate rules to help illustrate the algorithm. Rules

r2 and r3 in the table have a lower p (1/2) than r1, so r2 or r3 is evaluated first. Rule r2
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is arbitrarily picked before r3, and marks DestPort of d1 and d2. Then r3 cannot mark any

attribute and is removed. Finally, r1 marks DestPort of d3. At this point, rules r2 and

r1 are selected. This procedure guarantees at least one attribute of all instances in Ds are

marked by a subset of candidate rules. Also, rules that are subsumed by more general rules

are automatically removed due to a higher p.

The selected rules are then updated using the much larger set Dt (Step 3 in Fig. 5.1) by

updating the consequent and p. If the antecedent of a rule matches an instance in Dt and

the consequent of the rule does not contain the corresponding value, the value is added to

the consequent. p is updated by updating the number of instances that match the antecedent

in Dt (n) and values in the consequent (r). The validation set Dv is used in Step 4, and is

described next in context of Pruning.

5.1.2 Validating Rules

To reduce overfitting the training data, machine learning algorithms use a separate held-out

data to validate the trained model. LERAD uses validation set Dv for the rules learned from

Dt. For each rule rk ∈ R and instance d ∈ Dv, one of three cases apply:

1. The rule is conformed when all conditions in the antecedant as well as the consequent are

satisfied by the instance. For example, instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6,

DestPort = 80] conforms to the rule in Eq. 5.3.

2. The rule is violated if the antecedant holds true but the consequent does not. The rule

in Eq. 5.3 is violated by the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort

= 23].

3. The rule is not applicable for the instance if any condition in the antecedant is not

satisfied, an example instance being [SrcIp = 128.1.5.7, DestIp = 128.4.5.6, DestPort =
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21].

A conformed rule (case 1) is not updated but the associated p value is modified. Given

instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort = 80], the rule in Eq. 5.3 has new p

value of 3/101 upon conformance. For rule violation (case 2), the rule is eliminated from the

rule set (Step 4 in Fig. 5.1) since Dv is normal and each anomaly is a false alarm. Inapplicable

rules (case 3) are left unchanged along with their p values. This version of LERAD is referred

to as Pruning for the remainder of the paper.

5.1.3 Scoring Anomalies

During the monitoring stage, LERAD uses the learned rules to assign an anomaly score to

each data instance. During detection, given a data instance d, an anomaly score is generated

if d violates any of the rules. Let R′ ⊂ R be the set of rules that d violates. The anomaly

score is calculated as:

AnomalyScore(d) =
∑

rk∈R′

1

pk

, (5.6)

where rk is a rule in R′ and pk is the p value of rule rk representing its predictiveness. The

reciprocal of pk reflects a surprise factor that is large when anomaly has a low likelihood (small

pk). Intuitively, we are less surprised if we have observed a novel value in a more recent past.

Let tk be the duration since the last novel value was observed in the consequent of rule rk. A

non-stationary model is proposed and each violated rule rk assigns a score:

Scorek =
tk
pk

. (5.7)

Total anomaly score is accumulated over all violated rules:

AnomalyScore(d) =
∑

rk∈R′

tk
pk

. (5.8)

The tk factor also accommodates the “bursty” nature of network traffic (Paxson and Floyd

1995), so that multiple successive anomalies generate a single high scoring alarm.
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We claim that Pruning reduces rule coverage, resulting in lower accuracy. We propose

two solutions to increase coverage: retain pruned rules with lower rule belief using Weighting,

or revisit candidate rules to replace pruned rules, called Replacement. These solutions are

discussed in the next two sections.

5.2 Rule Weighting

LERAD performs a coverage test to minimize the number of rules (Step 2 in Fig. 5.1). Thus

each selected rule covers a relatively large number of examples in the training set Dt. But

removing a rule that causes false alarms also removes coverage on a relative large number of

training examples, which can lead to missed detections. Thus, there is a trade off between

decreasing false alarms and increasing missed detections.

We propose associating a weight with each rule in the rule set to symbolize rule belief.

Violated rules are penalized by reducing their weights, whereas conformed rules are rewarded

with increase in their respective weights. A sample rule using our method is of the form:

SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6⇒ DestPort ∈ {21, 25, 80}[p= 3/100, w = 1.0]

(5.9)

The semantics of this rule is similar to the rule in Eq. 5.3, but a new w value is introduced

for the rule weight to represent belief in the rule. p and w are distinct and independent

entities — p is the probability of not seeing a value in the consequent when the conditions

in the antecedant hold true (i.e. probability of the rule being violated) and corresponds to

predictiveness from Section 2.2.1; weight w, on the other hand, approximates the belief of the

entire rule.
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Input: sample set (Ds), training set (Dt), and validation set (Dv)

Output: LERAD rule set R

1. generate candidate rules from Ds and evaluate them

2. coverage test - select a “minimal” set of candidate rules that covers Ds:

(a) sort candidate rules in increasing order of probability of being violated

(b) discard rules that do not cover any attribute values in Ds

3. train the selected candidate rules on Dt and assign weight of unity

4. validate rules on Dv

(a) increase weight on rule conformance (increase rule belief)

(b) decrease weight on rule violation (reduce rule belief)

Figure 5.2: Rule Weighting in LERAD

5.2.1 Validating Rules

The training is similar to Pruning, as seen in Fig. 5.2. The main difference lies in the validation

step (Step 4 in Fig. 5.2). Instead of making a binary decision of retaining or eliminating a

rule, we keep a rule but update its associated weight. The rule consequent and p value may

also be updated. For conformed rules (case 1 in Sec. 5.1.2), p is updated similar to Pruning

but has an additional w value. Rule violation (case 2 in Sec. 5.1.2) results in updating the rule

as well as probability p. For the instance [SrcIp = 128.1.2.3, DestIp = 128.4.5.6, DestPort =

23], the rule in Eq. 5.9 is modified as:

SrcIp = 128.1.2.3
∧

DestIp = 128.4.5.6⇒ DestPort ∈ {21, 23, 25, 80}[p= 4/101, w]

(5.10)

How weights are updated for conformed and violated rules (case 1 and 2 respectively from

Sec. 5.1.2) is discussed next. No action is taken for inapplicable rules (case 3).
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5.2.2 Weighting Strategies

We propose associating a weight to each rule r ∈ R, where weights symbolize rule belief.

Violated rules are penalized by reducing their weights, whereas conformed rules are rewarded

with increase in their respective weights. Next, we present three weighting schemes used in

our experiments.

Winnow-Specialist-based Weight Update

Winnow is an incremental weight updating algorithm for voting experts (Littlestone 1988),

which correspond to rules in our case. Our first weighting strategy is similar to the Winnow

specialist variant of (Blum 1997). Initially all rule weights are assigned a value 1, signifying

equality of belief across the rule set. For any data instance d ∈ Dv, a rule r ∈ R must either

hold good or be inapplicable (in which case it abstains from voting). Any rule violation in

Dv corresponds to a false alarm (since Dv comprises of non-attack data) and reduces trust

in the culprit rule. If a rule formed during training is not useful, it is likely to be violated

many times. Such rules are penalized by multiplicative decay of their weight. On the other

hand, if a rule is conformed by a data instance d ∈ Dv when other rule(s) were violated, it

stresses upon validity of the rule and increases trust. Since the rule formed during training

is expected to hold true in validation as well, we increase its weight by a small fraction. The

intent is to levy a heavy penalty by decreasing the weight by a factor α when the rule is

violated, but increase the weights by factor β for a conformed rule.

The strategy to update weights is formally defined by the following weight update function:

wk =















































wk × α, if rk ∈ R is violated

wk(1 + β), if rk ∈ R is conformed but

rj ∈ R is violated (j 6= k)

(5.11)
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where α, β ∈ ℜ, 0 ≤ α < 1 and 0 ≤ β ≤ 1. Assuming α = 0.5 and inital weight 1, the weight

is equal to 0.5 the first time the rule is violated. It is reduced to 0.25 upon second violation

and so on. On the other hand, weight is updated as 1.5, 2.25, 3.375 (β = 0.5) for the first

three conformances respectively, when there was atleast one rule violation for the same data

instance. Theoretical bounds for the parameters have been presented in (Littlestone 1988;

Blum 1997). It can be noted that Pruning is a special case of this weighting strategy, with

α = β = 0.

Equal Reward Apportioning

This is a variant of the Winnow-Specialist-based approach explained above. One can observe

from Eq. 5.11 that the weights for correct rules are incremented by a constant factor β. This

results in varied weight increments across conforming rules. For example, given α = β =

0.5, current weights 1.0 and 0.5 of two conforming rules r1 and r2 are updated as 1.5 and

0.75 respectively. The Winnow-Specialist-based scheme thus favors rules with already higher

weights by increasing their weights even more, resulting in potential imbalance. Moreover,

the amount of weight increase is independent of whether a high or low belief rule was violated.

The Equal Reward Apportioning scheme adopts an impartial approach towards all con-

forming rules, irrespective of their current weights. This weighting scheme aggregates the

total weight reduction due to violation of rules, and rewards the conforming rules by equally

distributing the consolidated weight mass amongst them. For each instance in d ∈ Dv, the

total penalty TP is computed as:

TP =
∑

rk∈Rv

(1 − α)wk, (5.12)

where Rv ⊆ R is the set of rules violated by d and α ∈ ℜ (0 ≤ α < 1). Let Rc ⊆ R be the set
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of conformed rules. The weights are updated as follows:

wk =































wk × α, if rk ∈ R is violated

wk + TP
|Rc|

, if rk ∈ R is conformed

(5.13)

The amount of weight increase for conforming rules is thus dependent on the amount of

weight decreased for violated rules. Following the example above, if the violated rule r3 has

weight 0.6, weights for conformed rules r1 and r2 are incremented by the same amount (0.15),

resulting in weights 1.15 and 0.65 respectively. On the other hand, if a higher trust rule is

violated, say rule r4 with weight 1.0, it provides greater boost to the conforming rules r1 and

r2 by incrementing their weights by 0.25 each.

Weight of Evidence

Weight of evidence is defined as the measure of evidence provided by an observation in favor

of a target attribute value as opposed to other values for the same target attribute. This

measure is based on information theory and has been applied in classification tasks based on

event associations (Wang and Wong 2003). Mathematically, it is the difference in the mutual

information when the target attribute Y takes a certain value y and when it doesn’t, given

some observed value x for the attribute X :

W (Y = y/Y 6= y | X = x) = I(Y = y;X = x)− I(Y 6= y;X = x), (5.14)

where I(a; b) is the mutual information of a and b and is computed as:

I(a; b) = P (a, b)log
P (a, b)

P (a)P (b)
. (5.15)

We cannot apply Eq. 5.14 directly to our problem since we are not trying to predict a single

target value. Rather, we want to measure the gain provided by an observation for the target

value to be from a finite set of values. The weight of evidence for the kth rule is reformulated
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as:

wk(Y ∈ {y1, y2, . . . , yn}/Y 6∈ {y1, y2, . . . , yn} | X
¯
)

= I(Y ∈ {y1, y2, . . . , yn}; X
¯
)− I(Y 6∈ {y1, y2, . . . , yn}; X

¯
)

(5.16)

where {y1, y2, . . . , yn} is the set of values for the target attribute Y of the rule rk; and X
¯

corresponds to the conditions in the antecedent.

We used this scheme to associate weights with the rules in the rule set. The weight is

computed for each rule r ∈ R based on the evidence in Dv. Contrary to the previous two

incremental weighting techniques, this involves batch weighting where evidence is consolidated

from Dv as a whole. Moreover, weight of evidence can be positive, negative or zero. A positive

value reflects high trust in the rule whereas a negative or zero value implies otherwise. Only

rules with positive weights are kept and the remaining may be eliminated. One can also

scale the values by a linear shift of the axis such that all weights are positive. Now the

high belief (positive weight of evidence) rules have high positive weights, whereas the low

(negative/zero weight of evidence) trust rules have low positive weights. Due to its simplicity

and intuitiveness, we used the former approach for our experiments.

5.2.3 Scoring Anomalies

Each rule assigns an anomaly score to a test instance d ∈ DT , a higher score implying

more critical aberration. Different algorithms adopt different scoring schemes, the simplest

being incrementing the anomaly score by unity. The anomaly score for the test instance

is aggregated over all the rules in the rule set. A rule may abstain from assigning a score

if it is not applicable (i.e. the antecedent does not hold true). We incorporate the weight

representing rule trust to compute the anomaly score:

AnomalyScore(d) =
∑

rk∈R′

(wk × Scorek), (5.17)
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where Scorek is due to violation of rule rk and wk is the weight of the violated rule. Thus,

each rule assigns an anomaly score proportional to its weight, and all the scores are aggre-

gated to compute the total anomaly score. Modified anomaly score for LERAD follows from

Eqs. 5.7, 5.17:

AnomalyScore(d) =
∑

rk∈R′

wktk
pk

. (5.18)

Thus, anomaly score in Weighting incorporates both the predictiveness and belief aspects of

rule quality.

5.3 Rule Replacement

Weighting introduces the additional aspect of rule belief and increases rule coverage over

training data by retaining previously pruned rules. Alternatively, one can revisit rules re-

jected during coverage test (Step 2 in Fig. 5.1). In this section, we present the Replacement

technique that substitutes pruned rules with new rules to increase coverage over training data.

Replacement increases coverage in two ways:

• by considering rules with lower predictiveness that were rejected during coverage test,

and

• by generating new candidate rules from instances in the training data set with attribute

values not covered.

Since rules generated previously are checked against the validation set for false alarms, the

former approach is hypotheses driven. The latter approach takes into account attribute values

not covered and learns rules based on those target values, making it a data driven strategy

and the replacement technique a mixture of data and hypotheses driven methods.

The main steps of Replacement are presented in Fig. 5.3. Steps 1-4 are same as Pruning

with the exception of Step 2b, where rules that do not increase coverage are retained in a
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Input: sample set (Ds), training set (Dt), and validation set (Dv)

Output: LERAD rule set R

1. generate candidate rules from Ds and evaluate them

2. select a “minimal” set of candidate rules that covers Ds (i.e. coverage test):

(a) sort candidate rules in increasing order of probability of being violated

(b) Rpool = rules that do not cover any consequent attribute values

(c) select remaining rules as candidate rules

3. train the selected candidate rules on Dt

4. eliminate the rules that cause false alarms on Dv

5. while (rule violations in Dv ∧ Rpool 6= ∅ ∧ candidate rules ∈ Rpool ∧ coverage

< 1.0)

(a) if (candidate rule increases coverage in Dt)

add candidate rule to R and remove it from Rpool

(b) validate the rule set on Dv and eliminate rules violated

6. generate new candidate rules from Du, which are instances in Ds with attribute

values not covered

7. select a “minimal” set of candidate rules that covers Du

8. eliminate violating rules on Dv and add remaining rules to R

Figure 5.3: Rule Replacement in LERAD
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Table 5.3: Example training data subset Du = di i = 4, 5, representing attribute values not

covered for DestPort.

di SrcPort DestPort SrcIp DestIp

d4 25 80 128.1.2.3 128.7.8.9

d5 25 80 128.1.2.3 128.0.3.5

rule pool Rpool, instead of eliminating them. The validation phase (Step 4) may prune rules

with high predictiveness, resulting in significant loss of coverage. Rules from Rpool can then

be re-evaluated to increase coverage over training data (Step 5). Rules that increase the

coverage are added to the rule set in Step 5a. It can be noted that such rules will have lower

predictivess than the rules in Rule Pruning. Step 5b validating the new rules against Dv.

Rules causing false alarms are eliminated, and remaining rules from Rpool are considered in

the subsequent iteration. This loop terminates when no rules remain the pool, or all attribute

values are covered, or the entire rule set conforms to the validation data set. At the end of each

iteration, coverage increases or remains the same. To maximize coverage, all candidate rules

are considered in each iteration, except those already in the rule set or pruned in validation

in previous iterations. Additionally, new candidate rules are learned from instances with

attribute values that are not covered (Step 6). Only data instances with not yet covered

values are used in this step to generate new candidate rules, which are constrained to have

those values in the rule consequent. Generalizations and rules with higher predictiveness are

preferred to keep the rule set small (Step 7). Step 8 involves pruning rules that cause false

alarms on the validation data set. Anomalies are scored as shown in Eq. 5.8 for the Pruning

strategy.

Consider the synthetic data and rules from Table 5.2. Coverage test removes r3 (SrcIp =

128.1.2.3
∧

DestIp = 128.4.5.6 ⇒ DestPort ∈ {80}[p = 1/2]), which is now added to the
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rule pool Rpool. Assume rule r2 (SrcIp = 128.1.2.3⇒ DestPort ∈ {80}[p = 1/2]) is pruned

during validation step. This reduces the cover value of attribute DestPort from three to one

instance. Replacement allows rules from the pool to substitute for pruned rules in order to

increase coverage. Thus, r3 is added to the rule set, increasing the attribute Cover back to

three instances in Table 5.2. In addition, assume a couple more data instances of Table 5.3 that

lose coverage due to pruned rules r2. Note that r3 does not apply to these data instances.

New rules are generated from these samples (Step 6 in Fig. 5.3) by constraining the rule

consequent to include DestPort values of d4 and d5 and generating the antecedent through

matching attributes such that the rule is satisfied by these instances. An example rule that

covers the two data instances is:

SrcIp = 128.1.2.3
∧

SrcPort = 25⇒ DestPort ∈ {80}[p = 1/2]. (5.19)

If the new candidate rule conforms to Dv, it is added to the final rule set R.

5.4 Hybrid Approach

In the previous sections, we presented Weighting and Replacement for increasing rule coverage.

In this section, we present the Hybrid approach that chooses among the two techniques based

on which one has higher coverage on the training data. Weighting rule set comprises of rules

with high predictiveness but can have low belief. Replacement may constitute many rules with

low predictiveness. Combining the two approaches can result in rules with low predictiveness

and low belief, and thus avoided. Thus, Hybrid picks one or the other based on coverage.

The main steps of the hybrid approach are presented in Fig. 5.4. Rule sets Rw and Rr

are generated in Steps 1 and 2 using algorithms of Figs. 5.2 and 5.3 respectively. Let cw

be the coverage of weighting rule set and ci be the coverage of ith iteration in Replacement

(cr after all iterations). Thus, coverage for pruning is c1. It can be noted that cw ≥ c1
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Input: sample set (Ds), training set (Dt), and validation set (Dv)

Output: LERAD rule set R

1. generate rule set Rw using Weighting steps of Fig. 5.2

2. generate rule set Rr using Replacement steps of Fig. 5.3

3. compute cw = attribute value coverage of Rw over Dt

4. compute cr = attribute value coverage of Rr over Dt

5. if (cw ≥ cr)

R← Rw

else

R← Rr

Figure 5.4: Hybrid approach in LERAD
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Figure 5.5: Coverage comparsion for Pruning, Weighting and Replacement for (a) UNIV TCP

and (b) UNIV PKT.
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and ci+1 ≥ ci. But the relation between cw and cn depends on the data set, as depicted in

Figs. 5.5a-b. Fig. 5.5a shows coverage over all iterations for UNIV TCP data set (data set

details presented in Section 5.5.1). Rule weighting has higher coverage than Replacement.

On the other hand, Replacement betters the coverage of Weighting in the fourth iteration for

UNIV PKT data set, as evident from Fig. 5.5b. Assuming higher coverage leads to higher

accuracy, the Hybrid approach selects the technique with the higher coverage. Anomalies are

scored using Eq. 5.8 for Replacement or Eq. 5.18 if Weighting is selected. For Replacement,

a jump in coverage can be noted during the last iteration in Fig. 5.5. This increase is due

to new candidate rules learned from attribute values that were perviously not covered (Steps

6-8 in Fig. 5.5).

5.5 Empirical Evaluation

In this section, we evaluate and compare the Pruning, Weighting, Replacement, and Hybrid

schemes for anomaly detection.

5.5.1 Experimental Data

In addition to the three data sets described in Chapter 4, we evaluated the techniques on the

following two data sets:

1. The DARPA/Lincoln Laboratory intrusion detection evaluation network data set (IDE-

VAL) (Lippmann et al. 2000) contains 201 labeled instances of 58 attacks. Since one day

of inside traffic is missing, and there are one queso and four snmpget attacks against the

router which are not visible from inside the local network, the total number of detectable

attacks is 185. Refer (Kendell 1999) for attack taxonomy.
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2. Over 600 hours of traffic collected on a university departmental server (UNIV) over 10

weeks, comprising of six labeled attacks - port/security scan from inside the firewall, an

external HTTP proxy scan, an external DNS version probe, Nimda HTTP worm, Code

Red II HTTP worm, and the Scalper worm. The port/security scan has two parts; first

an attempt to retrieve the password file by a cgi-bin/htsearch exploit, followed by a port

scan, with open ports probed further to test for vulnerabilities.

5.5.2 Experimental Procedures

We considered three attribute sets for each of the two network data sets: reassembled TCP

streams (TCP) which reads attributes of the inbound side of unsolicited (client to server)

reassembled TCP sessions; inbound client IP packets (PKT) which uses the first 32 pairs of

bytes in each IP packet as attributes. The data sets will hereafter be referred to as IDEVAL

TCP, IDEVAL PKT, UNIV TCP, and UNIV PKT respectively. For the IDEVAL data, we

performed training on week 3, which contains no attacks, and testing on weeks 4 and 5. For

UNIV data, we tested on weeks 2 through 10, using the previous week as training. By chance,

there are no known attacks in week 1. However, there are generally attacks in the training

data which could mask detections in the test data.

For host based data sets, we used system calls and related attributes to create application-

based models, consisting of return value, error status and other arguments. Only BSM data

set had complete argument information. For the UNM and FIT-UTK datasets, the sliding

window of contiguous system calls was used, with a window size of 6, as this is claimed to

give best results (Warrender, Forrest, and Pearlmutter 1999).
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5.5.3 Evaluation Criteria

We evaluate and provide comparison for accuracy of models, computational and storage over-

heads.

Accuracy. For IDEVAL data set (both network and host), an attack is counted as

detected if one or more alarms identifies the target address within 60 seconds of any portion

of the attack (same as the 1999 DARPA evaluation criterion). Any other alarm is a false

alarm. For the UNIV network traffic, we use the criterion that the technique must exactly

identify at least one of the packets or TCP sessions involved in the attack. For the UNM and

FIT-UTK host data sets, flagging an anomaly anywhere within the attack trace was used to

be consistent with previous evaluations.

A Receiver Operating Characteristic (ROC) curve is an effective representation for model

evaluation. We use ROC curves for studying the trend in percentage of attacks detected at

different false alarm rates. We also list the areas under the ROC curve, where higher area

implies better performance (Flach 2004). The area under the curve is normalized for the false

alarm rate. Since the drawback of anomaly detection is the generation of false alarms, we

focus on small false alarm rates (up to 1%).

Storage and Computational Overhead. To evaluate the viability of our technique for

online usage, we measure its space and computational requirements. The storage overhead

includes the size of the stored model, i.e. rules learned. We also measure the CPU time

during the training and testing phases to determine the effectiveness of the techniques.

5.5.4 Accuracy of Weighting, Replacement and Hybrid

The ROC curves for the Pruning, Weighting, Replacement and Hybrid variants of LERAD

are presented in Fig. 5.6. The respective areas under ROC curve are listed in Tables 5.4, 5.5

- values greater than that of Pruning are highlighted. The values in the table are not the Y
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Figure 5.6: ROC (upto 1% false alarm rates) for Pruning, Weighting, Replacement and Hybrid.
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axis (detection rate) on the ROC curve, but represent the percentage of the maximum area

under the curve upto the respective false alarm rate. The random detector has the same

false alarm rate and true positive rate for any threshold (x=y line for ROC). Since Weight of

Evidence had the highest accuracy in weighting, it was used in conjunction with Replacement

for Hybrid.

Figs. 5.6a-b present the ROC curves for the IDEVAL network data. Fig. 5.6a suggests

that all techniques generally detect same number of attacks for IDEVAL TCP. Even their area

under ROC curves are close to each other. But looking at the actual number of detections at

1% false alarm rate, Weighting and Hybrid variants detected 7 new attacks for IDEVAL TCP;

whereas six extra attacks were detected by Replacement. For IDEVAL PKT, Replacement

and Hybrid improved the AUC of Pruning by 33%.

For the UNIV data set (Figs. 5.6c-d), Weight of Evidence generally outperformed Pruning

in all cases. Replacement had higher AUC than Pruning and all weighted variants at 1%

false alarm rate. Hybrid selected Weighting for UNIV TCP and Replacement for UNIV PKT

because of higher coverage on the resepective data sets. Weighting, Replacement and Hybrid

schemes detected one more attack than Pruning for both UNIV data sets - the Code Red

II worm was detected using tcp streams whereas the packet data detected the DNS version

probe. An interesting observation for all LERAD variants on IDEVAL and UNIV network data

sets was that PKT data detected more attacks than TCP data for all false alarm rates ≤ 1%.

Evaluating the attacks detected by TCP and PKT, we saw a significant overlap between the

two with some attacks being detected by only one of the attribute set.

The ROC curves for the host datasets are presented in Figs. 5.6e-g. For the BSM data,

Weight of Evidence detected most attacks at 0.1% false alarm rate (approx. 50% more attacks

than Pruning) whereas Winnow-Specialist had maximum area under curve at 1% false alarm

rate, detecting 60% additional attacks than Pruning. Replacement did marginally better than
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Table 5.4: Area under ROC curve (in %) upto 0.1% false alarm rate. Results better than

Pruning are in bold-face. Random detector has area = 0.05% (at 0.1% false alarm rate).

Data set 0.1% False Alarm Rate

Pruning Winnow Equal Weight of Replacement Hybrid

Specialist Reward Evidence

Apportioning

IDEVAL TCP 27.2 26.2 26.5 25.8 17.5 25.8

IDEVAL PKT 38.6 44.2 38.9 37.5 39.9 39.9

UNIV TCP 15.9 4.3 4.3 15.9 8.3 15.9

UNIV PKT 23.1 21.0 35.0 28.2 31.6 31.6

BSM 56.5 78.3 63.9 84.7 59.1 84.7

FIT-UTK 50.0 95.0 95.0 95.0 95.0 95.0

UNM 100.0 100.0 100.0 100.0 100.0 100.0

Number of times

better/tie/worse — 3/1/3 4/1/2 3/2/2 4/1/2 4/2/1

than Pruning

Average

improvement (%)

over Pruning — 9.6 13.3 25.7 8.6 29.2

[excluding UNM]
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Table 5.5: Area under ROC curve (in %) upto 1% false alarm rate. Results better than

Pruning are in bold-face. Random detector has area = 0.5% (at 1% false alarm rate).

Data set 1% False Alarm Rate

Pruning Winnow Equal Weight of Replacement Hybrid

Specialist Reward Evidence

Apportioning

IDEVAL TCP 57.5 55.8 57.5 57.3 54.1 57.3

IDEVAL PKT 61.1 62.1 61.8 61.0 81.1 81.1

UNIV TCP 59.3 57.0 57.0 65.3 68.6 65.3

UNIV PKT 60.1 66.5 75.7 73.8 76.7 76.7

BSM 60.6 92.7 71.6 92.5 63.5 92.5

FIT-UTK 62.5 96.3 96.3 96.3 96.3 96.3

UNM 100.0 100.0 100.0 100.0 100.0 100.0

Number of times

better/tie/worse — 4/1/2 4/2/1 4/1/2 5/1/1 5/1/1

than Pruning

Average

improvement (%)

over Pruning — 18.8 15.9 23.3 21.5 29.0

[excluding UNM]
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Pruning, with only one additional attack detection. Hybrid had same accuracy as Weighting

and a total of 12 new attacks were detected (at 1% false alarm rate), including fdformat,

ffbconfig, guest, syslogd, httptunnel, 4 distinct secret attacks, portsweep, eject and selfping

exploits. On the FIT-UTK data, Weighting, Replacement and Hybrid had greater area under

ROC curve than Pruning at 0.1% and 1% false alarm rates, though all techniques successfully

captured the 2 malicious macro executions at 1% false alarm rate. Accuracy was the same

for the UNM data set, where all techniques detected 3 attacks.

The second last row of Tables 5.4- 5.5 lists the number of times the respective strategy

did better, same and worse than Pruning. Results indicate that Weighting, Replacement and

Hybrid generally have greater accuracy than Pruning. This suggests that the rules discarded

by LERAD might be effective in detecting attack based anomalies. At 0.1% false alarm rate,

Hybrid outperformed Pruning four times and was worse once. Equal Reward Apportioning

and Replacement also had higher AUC on four data sets but lower AUC on 2 data sets.

At 1% false alarm rate, Equal Reward Apportioning, Replacement and Hybrid had same or

better accuracy than Pruning on six occassions, and were worse only once; whereas Weight

of Evidence and Winnow-specialist had higher AUC five times and lower AUC for two data

sets. Overall, Hybrid had better accuracy than Pruning on most data sets at both 0.1% and

1% false alarm rates.

Though the second last row of the table gives us the number of times our techniques better,

same or worse than Pruning, it fails to capture the magnitude of gain or loss in accuracy. This

is captured in the last row of the tables, which denotes the average percentage of improvement

in the AUC over Pruning, and is defined as:

1

|datasets|

∑

|datasets|

(
AUCx −AUCPruning

AUCPruning

)× 100, (5.20)

where x ∈ {Weighting,Replacement,Hybrid}. The UNM data set is excluded from calcu-

lating the average improvement in Tables 5.4 and 5.5 because improvement over Pruning’s
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Table 5.6: Coverage comparison of Weighting and Replacement

Data set Weighting Replacement

IDEVAL TCP 0.91 0.86

IDEVAL PKT 0.43 0.64

UNIV TCP 0.90 0.77

UNIV PKT 0.39 0.58

BSM 0.87 0.85

FIT-UTK 0.87 0.85

UNM 0.88 0.88

100% AUC is not possible and all the methods have 100% AUC (no loss in accuracy). Among

the weighted variants, Weight of Evidence had the best accuracy among all weighting tech-

niques - an improvement of 25.7% and 23.3% over Pruning at 0.1% and 1% false alarm rate

respectively. Replacement had a gain of 8.6% at 0.1% false alarm rate, compared to an im-

provement of 21.5% at 1% false alarm rate. But Hybrid performed the best, with the most

average improvement in accuracy of about 29%.

5.5.5 Coverage vs. Accuracy

We measured the coverage of Weighting and Replacement techniques on the various data

sets. The results are compiled in Table 5.6, where bold values are better. Results show that

Weighting has higher or same coverage except both PKT data sets (IDEVAL and UNIV),

where Replacement had higher coverage.

The Hybrid approach selects Weighting or Replacement based on coverage on training

data. It assumes higher coverage yields higher accuracy (AUC). Is this assumption supported?

Which data sets have higher accuracy with higher coverage at 0.1% and 1% false alarm rates,
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Figure 5.7: Accuracy vs. Coverage at (a) 0.1% and (b) 1% false alarm rates. X-axis represents

difference in coverage and Y-axis is the difference in AUC for Weighting and Replacement.

and how does that explain the performance of Hybrid? Results are depicted in Fig. 5.7.

The X-axis, denoted as ∆Coverage, represents the difference in coverage of Weighting and

Replacement :

∆Coverage = Coverageweighting − Coveragereplacement (5.21)

The Y-axis (∆AUC) represents the difference in accuracy for the two techniques:

∆AUC = AUCweighting −AUCreplacement (5.22)

The correlation between accuracy and coverage is positive if increasing (decreasing) cover-

age increases (decreases) accuracy. The correlation is negative when increased (decreased)

coverage leads to decreased (increased) accuracy. In Figs. 5.7a-b, positive correlations are

represented by data points in quadrants I and III, whereas negative correlations are denoted

by points on quadrants II and IV. Both techniques were identical for the UNM data set, hence

marked as origin in Figs. 5.7a-b. IDEVAL TCP and BSM data sets are represented by data

points in Quadrant I, where rule weighting had higher coverage and accuracy than Replace-
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ment. Replacement did better (in terms of accuracy) than Weighting with increased coverage

for IDEVAL PKT and UNIV PKT, and are represented by data points in Quadrant III. The

only data set showing a negative correlation was UNIV TCP at 1% false alarm rate Fig. 5.7b.

This is due to the fact that rule weighting had higher coverage than Replacement (0.90 vs.

0.77 - Table 5.6), but lower accuracy. Table 5.4 depicts accuracy of 15.9% for Weighting and

8.3% for replacement at 0.1% false alarm rate, and 65.3% and 68.6% respectively at 1% false

alarm rate (Table 5.5). Hybrid picks the less accurate model for UNIV TCP at 1% false alarm

rate. For the data set, Weighting has higher coverage over Replacement, but Hybrid has AUC

of Replacement and not Weighting, as seen in Tables 5.4- 5.6. But for all other cases, the

higher coverage selection by Hybrid yields higher accuracy. In our experiments, there is only

one instance of negative correlation between coverage and accuracy, indicating that increased

coverage generally increases accuracy. This supports our motivation for Hybrid, that for a

given data set, algorithm with higher coverage yields higher accuracy.

But how does coverage affect accuracy across data sets, for the same algorithm? From

Tables 5.4- 5.6 and Figs 5.7a-b, note that for Hybrid, the two TCP data sets have the

highest coverage (≥ 90%), but they have the least accuracy. This can be explained by the

fundamental aspects that affect accuracy: (i) data representation, i.e. the features used; (ii)

knowledge/model representation; and (iii) the learning algorithm, which finds the best model

to fit the data. Since the knowledge/model representation (LERAD rules) and the learning

algorithm (LERAD) are the same, the data representation attributes to lower AUC for TCP.

Results indicate that TCP header doesn’t model network data as well as PKT for intrusion

detection. Since the exploits are not detectable at the TCP header level, any increase in

coverage does not affect the accuracy. Thus, data sets with higher coverage might not have

higher accuracy for a given algorithm. Our claim for Hybrid yielding higher accuracy with

higher coverage is only applicable across techniques on the same data set.
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Table 5.7: New attacks detected by weighting schemes at 1% false alarm rate.

Factor contributing Data set: attack(s) detected

to attack detection

Conformed rule(s) with IDEVAL TCP: yaga, sechole

increased rule belief

IDEVAL TCP: arppoison, syslogd, perl, crashiis, secret

Violated rule(s) with UNIV TCP: codered

reduced rule belief UNIV PKT: bindver

BSM: fdformat, ffbconfig,guest, syslogd, httptunnel,

secret, portsweep, eject, selfping

5.5.6 Additional Attacks Detected by Weighting and Replacement

beyond Pruning

Both Weighting and Replacement inherently differ on how the rule set coverage is increased

over the training data. We conjecture that increased coverage can result in higher attack

detections. In this section, we analyze additional attack detections and study if the additional

rules are main contributors to new attack detections.

The increase in detections for all weighted variants (Winnow-specialist, Equal Reward Ap-

portioning and Weight of Evidence) is caused by an increase in the anomaly score, which could

result from: (a) increased belief for conformed rules, and/or (b) scores from rules discarded by

Pruning but retained (with reduced belief) by the weighted variants. We analyzed the attacks

detected using the 3 weighting schemes that were missed by Pruning at 1% false alarm rate.

The results are listed in Table 5.7. Most of the new attacks detected are due to rules that

were eliminated by Pruning, and support our claim for retaining the rules but reducing their

belief in Weighting. The Perl attack was detected in IDEVAL TCP due to an anomalous

93



payload attribute that was part of the exploit. Syslogd is a Denial of Service attack that was

flagged due to an invalid source whereas crashiis involved an unusual request. The Code Red

II HTTP requests for /default.ida (GET /default.ida?NNNN...) in the UNIV TCP data set

are captured by anomaly in the application payload. fdformat and ffbconfig vulnerabilities

are buffer overflow attacks that are detected by encountering unusual arguments in the BSM

data. The syslogd exploit violated a rule due to syslog segmentation fault.

Two attacks were detected by increasing the weight of existing rules: yaga is detected by

long duration times due to the TCP connection not being closed after crashing and rebooting

the target; whereas the sechole exploit is detected by an anomaly in the application payload.

Rule weighting also reinforced the detection of attacks already detected by Pruning. This was

attributed to large rule weights for some rules, resulting in further increase of the anomaly

score. Also, there were multiple alarms for the same attack due to violation of rules introduced

by the weighted variants but absent in Pruning.

Replacement substitutes violated rules with low predictiveness rules. Additional rules are

also generated from attribute values previously not covered, as shown in Steps 6-8 of Fig. 5.3.

The increase in attack detections for Replacement is thus attributed to (a) candidate rules

replacing pruned rules, and (b) new candidate rules learned from attribute values that were

not covered. We analyzed the attacks detected by the replacement scheme that were missed

by Pruning at 1% false alarm rate. Table 5.8 lists all the new attacks detected in each of the

two categories. As seen from the table, existing candidate rules that replace pruned rules are

able to detect most new attacks.

5.5.7 Computational and Storage Overhead

Besides using different weight updation formulae, another distinction between the three

weighting schemes discussed in Section 5.2.2 is the number of rules retained. Winnow Special-
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Table 5.8: New attacks detected by Replacement at 1% false alarm rate.

Factor contributing Data set: attack(s) detected

to attack detection

Existing candidate IDEVAL TCP: ppmacro, xsnoop, fdformat, xterm

rule(s) from rule pool IDEVAL PKT: netcat breakin, warez, sshtrojan, warezclient, portsweep,

phf, tcpreset, sendmail, ipsweep, eject, processtable, perl, crashiis,

apache2, guest, anypw, xterm, guest, snmpget, back, yaga, sqlattack,

syslogd, guesspop

UNIV TCP: codered

UNIV PKT: bindver

BSM: fdformat

New rule(s) from IDEVAL TCP: selfping

attribute values IDEVAL PKT: mailbomb, casesen, insidesniffer, dosnuke, xterm, perl,

not covered earlier ncftp, selfping, loadmodule, ppmacro

95



Table 5.9: Computational overhead: training phase.

Data set No. of Total training time

instances (seconds)

Pruning Winnow Equal Wt. of Replace Hybrid

Reward Evidence

IDEVAL TCP 35452 2.06 2.52 2.18 2.56 15.44 18.19

IDEVAL PKT 280281 3.98 6.27 7.86 12.60 496.89 514.92

UNIV TCP 141162 8.69 9.57 9.16 10.56 53.98 62.39

UNIV PKT 1305873 18.15 23.48 23.33 45.25 203.79 241.19

BSM 1261252 90.55 107.15 107.81 101.27 475.89 562.89

FIT-UTK 94759 0.91 0.95 0.98 1.27 1.08 1.45

UNM 3128 0.05 0.04 0.04 0.06 0.06 0.10

ist and Equal Reward Apportioning schemes suggest keeping all the rules that were previously

discarded by Pruning, whereas Weight of Evidence keeps a subset thereof. Replacement rein-

troduces candidate rules and generates new ones from data not covered by initial candidate

rules. This may result in larger rule sets and increased execution times for Weighting, Re-

placement and Hybrid techniques. To check the viability of the techniques for online usage,

we studied the overhead involved with all the above techniques, both in terms of storage (size

of rule set) and the CPU times for training and testing. Experiments were performed on a

SUN Ultra 60 workstation with 450 MHz clock speed and 512 MB RAM.

The time requirements for training are listed in Table 5.9. Among the weighting methods,

most notable difference existed for IDEVAL PKT data set, where Equal Reward Apportioning

was twice and Weight of Evidence took thrice the time than Pruning. Compared to Prun-

ing and Weighting, Replacement has significantly higher times, due to the high number of
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Table 5.10: Storage requirements: size of rule set.

Data set Number of rules

Pruning Winnow Equal Reward Weight of Replacement Hybrid

Specialist Apportioning Evidence

IDEVAL TCP 52 71 71 71 160 71

IDEVAL PKT 100 108 108 106 554 554

UNIV TCP 45 88 88 88 94 88

UNIV PKT 48 80 80 75 293 293

BSM 155 176 176 176 359 176

FIT-UTK 11 12 12 12 12 12

UNM 36 36 36 36 36 36

iterations for the algorithm. Additional rules are also generated from data without rule set

coverage. Hybrid is even worse, since it needs to learn both weighting and replacement models

before selecting one based on higher coverage. In the worst case, the time taken by Weighting

was approx. 45 µsec/instance for Weight of Evidence vs. 14 µsec/instance for Pruning in

the case of IDEVAL PKT; Replacement took 1773 µsec/instance for the same data set. Since

training can be performed offline, higher training times are acceptable. The time require-

ments for training can be reduced further by terminating the loop (Step 5 in Fig. 5.3) early,

when there is no increase in coverage even though there might be rule violations in validation

phase.

Storage of the model is determined by the number of rules in the rule set. Table 5.10

lists the number of rules generated for the various data sets. For all data sets except FIT-

UTK and UNM, the number of rules is based on per week of data. Amongst the network

data sets, the least overhead was obtained for IDEVAL PKT where the increase was roughly
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6-8% for various weighting strategies. UNIV TCP presented the maximum overhead, where

the number of rules almost doubled for all weighted schemes, and six times for Replacement.

Hybrid selects Weighting or Replacement based on higher coverage on training data. Thus, the

rule set would be same as Weighting or Replacement, depending upon the technique selected.

Weighting is selected for all data sets except IDEVAL PKT and UNIV PKT, resulting in

a smaller rule set for Hybrid than Replacement. Considering the large amount of data used

during training (1-9 weeks) and the number of attributes involved, the size of the weighted and

replacement rule sets formed is fairly reasonable. For Weighting, we could additionally limit

the rule set size by eliminating a rule which has been violated a certain number of times or

with weight below a threshold. For Replacement, rule set size can be reduced by terminating

iterations earlier and/or ignoring new rules below a certain predictiveness threshold. Host

data sets displayed lower storage overhead. For the BSM data, the weighted rule set was

over 13% larger than Pruning. Replacement produced 359 rules compared to 155 for pruning.

Since 11 different applications were modeled in BSM data, this corresponds to an average of

16 rules/application for weighting and 33 rules/application for Replacement, which is small

for one week of training data. Number of rules was same for UNM data, whereas the weighted

and replacement rule set size exceeded by one rule for FIT-UTK data set.

The time taken during test phase is also dependent on the rule set size. The more the rules,

the higher is the number of sanity checks to be made for each test instance. Typically, the

time taken should be low for online detection. The results obtained from our experiments are

presented in Table 5.11. Due to larger rule sets, Weighting, Replacement and Hybrid schemes

have longer execution times, making them computationally more expensive than Pruning.

The maximum overhead for Weighting was 5.99 µsec/instance on UNIV TCP data set, and

19.32 µsec/instance for Replacement on IDEVAL PKT. Thus, the overhead is only a fraction

of a millisecond per instance, reasonable for an online system.
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Table 5.11: Computational overhead: testing phase.

Data set No. of Total testing time

instances (seconds)

Pruning Winnow Equal Wt. of Replace Hybrid

Reward Evidence

IDEVAL TCP 178099 7.72 8.76 8.26 8.65 9.56 8.74

IDEVAL PKT 534763 3.02 3.90 3.68 3.20 13.35 13.22

UNIV TCP 143403 7.64 8.50 8.21 8.41 8.97 8.65

UNIV PKT 1310493 7.70 8.64 8.21 8.18 16.61 16.37

BSM 1889680 113.93 121.34 121.63 120.97 187.31 120.66

FIT-UTK 13745 0.10 0.10 0.10 0.09 0.10 0.10

UNM 7283 0.06 0.06 0.06 0.06 0.06 0.06

5.6 Summary

Machine learning research has been pursued to learn anomaly rules for intrusion detection.

LERAD is one such algorithm that can characterize normal behavior in logical rules by finding

associations among nominal attributes. It forms a small set of “easy to comprehend” rules

that characterize the data. The algorithm is very efficient and effective in capturing anomaly

based attacks. A separate held-out data is used to validate the rules. Any violations result

in the rule being eliminated. We conjecture that discarding rules with possibly high coverage

can lead to missed detections. In this paper we propose three techniques to increase rule

coverage: Weighting, Replacement and Hybrid.

Weighting retains violated rules in the rule set and associates a belief value with each

rule. Weights are representative of rule belief in our strategy. A conformed rule increases rule

trust and hence the weight is increased. On the other hand, weight is decreased upon rule
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violation. Three weighting schemes are presented - Winnow-specialist-based weighting, Equal

Reward Apportioning and Weight of Evidence. Replacement collects rules ignored in coverage

test in a rule pool. These rules are reevaluated to replace pruned rules and increase coverage.

The steps of validation, pruning, and replacement are repeated until certain exit criterion

is met. Furthermore, new rules are learned from remaining attribute values that were not

covered. We also present Hybrid technique that selects between Weighting and Replacement

based on higher coverage on training data.

We evaluated Pruning, Weighting, Replacement and Hybrid LERAD variants on various

network and host data sets. Empirical results show that weighted and replacement rules detect

more attack-based anomalies than pruning at less than 1% false alarm rates. The weighted

strategies accounted for 7 more attack detections for IDEVAL TCP data set, whereas Replace-

ment detected 6 extra attacks than Pruning. For Weighting, the most significant improvement

was in the case of BSM data, where detected 12 new attacks (60% more than Pruning) were

detected. Replacement performed best on IDEVAL PKT data set, where it detected 32%

more attacks than pruning. At 0.1% false alarm rate, Equal Reward Apportioning outper-

formed Pruning in 5 data sets and generally performed the best. Replacement had the best

accuracy on our data sets at 1% false alarm rate, where it did better than Pruning on seven

data sets. Generally, all proposed techniques were better than Pruning in terms of AUC as

well as number of attack detections at 1% false alarm rate.

We studied the effect of coverage on accuracy. Results indicate that increased coverage

generally resulted in better accuracy. That is the reason why Hybrid did better than Weight-

ing and Replacement, as shown in Fig. 5.7. We also analyzed the new attack detected by

Weighting and Replacement based LERAD variants. For Weighting, these were attributed to

high anomaly scores resulting from (a) violations of rules discarded by Pruning but retained

by weighted variants with reduced belief; and (b) increased belief for existing rules due to the
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weight update functions. The former factor contributed to most new attack anomalies. For

Replacement, detections are attributed to (a) candidate rules replacing pruned rules, and (b)

new candidate rules learned from attribute values that are not covered. Our analysis shows

that most of the new attack anomalies are detected by the first factor.

We also computed overheads incurred due to Weighting and Replacement. Training times

are generally higher for Replacement as it involves multiple iterations, the worst in our ex-

periments being 1773 µsec/instance. For Weighting, it was 30 µsec/instance. But training

can be performed offline. Since previously discarded rules are retained (for Weighting) and

additional rules are added (for Replacement), rule sets tend to be larger. This has direct

effect on the test phase - the larger the rule set, the higher is the testing overhead. But this

overhead is minimal – 6 µsec/instance for Weighting and 19 µsec/instance for Replacement.
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Chapter 6

Detecting Suspicious Behavior

for Mobile Hosts

Mobile devices like cellular phones, smartphones and Pocket PCs are rapidly gaining popular-

ity worldwide, featuring increased storage capacity, greater application support, and reduced

price. Smartphones and PDAs are increasingly used by employees to connect to corporate

networks, retrieve and store important data. Data stored on a device is often not encrypted

and no security mechanism is adopted by the user. Losing a phone or having it stolen is

currently the biggest risk that a mobile consumer faces (Dedo 2004; Goode 2006). Over 55

million mobile phones were estimated lost worldwide in 2006 alone and projections for the

total number over the subsequent five years exceed 500 million handsets (Goode 2006). A

lost device may contain personal and confidential company data that can be accessed by an

unauthorized user. The device can be misused, leading to identity theft, data leakage (e.g.

social security numbers of employees or customers), impersonation, and high service charges

to the subscriber. Although the user can notify the loss to the network operator and have
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the device disabled or data wiped out,

Wireless networks enable users to connect to a network without any physical connection.

802.11 wireless local area networks (WLANs) allow mobile hosts to join a network without

being inside a building, hence bypassing traditional physical security. Publicly available tools

like NetStumbler (Netstumbler 2004) can locate available WLANs while driving around in the

neighborhood, called war driving (Flickenger 2003). Security experts have identified many

WLAN attacks; they include ARP poisoning, MAC/IP spoofing, man-in-the-middle, session

hijacking, and replaying (Peikair and Fogie 2003; Welch and Lathrop 2003). These attacks

generally try to redirect traffic and masquerade as legitimate users with stolen identity.

This chapter focuses on security issues for mobile hosts, such as ones mentioned above.

The goal is an automated system to detect suspicious behavior. Mobile hosts have an inherent

property of movement across multiple locations. Considering the mobile nature of the prob-

lem, we propose STAD (Spatio Temporal Anomaly Detection). STAD monitors user location

at different time intervals and learns a probabilistic model. We assume that the device is used

by a single user, and will interchangeably use the terms user and device. Our goal is to learn

mobility patterns for a user, who would generally be at the same location at a given time.

For example, an employee is typically at work from 9 a.m. to 6 p.m. during weekdays, and

at home most of the remaining time. Even the weekends may generate potential patterns like

weekly kids’ soccer games, and grocery shopping. A machine learning algorithm could model

these contexts and make predictions to determine any anomalies. A lost or stolen phone, or

an unauthorized WLAN user, might result in contextual anomalies for the given model, either

in terms of location, or time, or both.

We present the problem as one dealing with sparse data, a well researched topic in nat-

ural language processing that has been applied to language modeling, text compression and

information retrieval problems. In addition to the anomaly detectors, we present a Kullback-
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Figure 6.1: Mobile Anomaly Detection: For authorized user A, mobile context is learned over

a period of time (t1 − t3). Subsequent locations (at times t4 − t6) are validated against the

model. An unauthorized user U is likely to be inconsistent with the spatio-temporal model

for user A.

Leibler divergence based agglomorative hierarchical clustering to merge day profiles for re-

duced storage. We evaluate and compare STAD with Markov chains on real WLAN and

mobile phone data sets. Results show that our proposed schemes are effective in capturing

spatial temporal anomalies introduced by an unauthorized user, and incur minimal compu-

tational overhead for online usage.

6.1 Detecting spatio temporal anomalies for mobile hosts

This section introduces the framework for detecting abnormalities attributed to unauthorized

users. We describe how probabilities are learned and anomalies are scored. The scenario is

represented in Fig. 6.1. For an authorized user A, cell tower communicates with a mobile

device and captures its location. The information is sent to a centralized server, where
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a model is learned for the device location over different time intervals. The device may

communicate with multiple cell towers, but all contextual information is routed to the server

for model learning. Though cell ID data lacks the physical topology and proximity of the

actual locations, it is a reasonable location estimate and easy to extract. In Fig. 6.1, the

model is created for locations at time instances t1 − t3. The learned model is then used to

maintain conformity for device (time t4 − t6 in the figure). Now consider the possibility of

device theft by unauthorized user U. Any subsequent usage (Fig. 6.1 time instance t6 ) by U

would most likely be inconsistent with the model in terms of location and time, raising an

alarm. The device can then be locked by the network operator using a PIN that can only be

unlocked by the operator or the authentic user via a challenge-response mechanism. Recent

work (Li et al. 2007) deals with detecting suspicious large moving objects, such as ships.

Though it involves route modeling, it deals with additional attributes like speed and direction

information generally not available on laptops and mobile phones. Even if a GPS (global

positioning system) was available on these devices, an intruder will likely disable it to evade

such systems.

We propose tracking the frequency of the mobile phone at various locations within a fixed

time interval. The frequency is then normalized across all possible locations and probability

approximated at each of those locations during the time period. The probability of a mobile

phone m at location l during time interval t is estimated by:

P t
m(l) =

freqt
m(l)

∑

l

freqt
m(l)

(6.1)

P t
m is called the spatial probability distribution of m at time t. To reduce the data

size and complexity and ease computation, we suggest using time intervals. For example, an

interval size (δ) of 10 minutes results in 144 intervals per day (η). This creates a profile for a

single day. Thus, for any day of week d, a profile consists of η spatial probability distributions
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(Eq. 6.1) denoted formally as

Profiled
m = (P d,1

m , P d,2
m , · · · , P d,η

m ) (6.2)

where d ∈ D = {Sunday,Monday, Tuesday,Wednesday, Thursday, Friday, Saturday}.

During the monitoring (test) phase, we use the learned profile (spatial probability distri-

butions) to estimate the likelihood of each data record in the test set. To include some state

information of where the mobile phone was previously, we consider a time window W previous

to the current time instance to estimate the probability of current location lc at current time

instant tc. Time windowW is measured by number of minutes in this paper and is a parameter

to our algorithm. Let w be the number of time instances (data records) in W (minutes). Let

tc−w+1 to tc be the w instances in time window W . We denote P d,W
m (lc−w+1, lc−w+2, · · · , lc)

as P d,W
m (lW ), and approximate it using probability chain rule as:

P d,W
m (lW ) = P d,tc

m (lc|lc−1, · · · , lc−w+1)×

P
d,tc−1

m (lc−1|lc−2, · · · , lc−w+1)×

· · · × P
d,tc−w+1

m (lc−w+1)

(6.3)

The probability of a sequence of states is thus denoted as the product of probabilities of a

state conditioned upon the previous states in the sequence. Storing all such probability values

imposes an overhead and also increases the computational complexity.

6.1.1 Naive Approach

For simplicity and because the independence assumption of the Naive Bayes classifier gen-

erally seems to work well (Domingos and Pazzani 1997), we assume independence between

subsequent locations, resulting in P d,tc
m (lc|lc−1, · · · , lc−w+1) = P d,tc

m (lc). The likelihood of mo-

bile phone m over the time window W is thus approximated as the product of the marginal
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probabilities:

P d,W
m (lW ) =

c
∏

i=c−w+1

P d,ti

m (li) (6.4)

To avoid the underflow in multiplication, we use log likelihood instead:

log(P d,W
m (lW )) =

c
∑

i=c−w+1

log(P d,ti

m (li)) (6.5)

For anomaly detection systems, an anomaly score denotes the degree of abnormality for the

test data instance. An anomaly score can be calculated for m and location lc using the

negative log likelihood of aggregated spatial probability distribution over a window W :

AnomalyScored,W
m (lW ) = −log(P d,W

m (lW ))

= −
c

∑

i=c−w+1

log(P d,ti
m (li))

(6.6)

The lower the likelihood of a location given the current context, the higher is the anomaly

score.

The independence assumption of the Naive approach is not always valid, since to get to

a specific location one typically traverses a fixed set of locations. The assumption is relaxed

with Markov Chains, described next.

6.1.2 Markov Chain

In Markov Chain, the current state depends only on the previous state. This technique

involves a probability transition matrix comprising of single step transition probabilities for

all observed states. The spatial probability distribution of Eq. 6.1 is modified as

P t
m(lj |lk) =

P t
m(lj ,lk)
P t

m(lk) =
freqt

m(lj ,lk)
∑

k′
freqt

m(lk,lk′ )
(6.7)

For the Markov Chain, P d,tc
m (lc|lc−1, · · · , lc−w+1) = P d,tc

m (lc|lc−1). The probability estimate

for the sequence of traversed states of Eq. 6.3 is now revised as

P d,W
m (lW ) = P d,tc

m (lc|lc−1)× P
d,tc−1

m (lc−1|lc−2)× · · · × P
d,tc−w+1

m (lc−w+1) (6.8)
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Log likelihood is used to prevent underflow and the modified anomaly score is the negative

log likelihood of aggregated spatial probability distribution:

AnomalyScored,W
m (lW ) = −log(P d,W

m (lW ))

= −logP
d,tc−w+1

m (lc−w+1)−
c

∑

i=c−w+2

log(P d,ti
m (li|li−1))

(6.9)

The Naive approach in Sec. 6.1.1 can be considered as zero-order Markov Chain, whereas this

section describes first-order Markov Chain. We limit ourselves to lower order Markov Chains

for ease of computation. Higher order Markov Chains can also be considered with higher time

and space complexity.

6.1.3 STAD

A mobile phone could be within the proximity of multiple cell towers, as shown in Fig. 6.2.

The signal strength may vary due to distance and undergo attenuation due to obstructions

such as buildings. The mobile phone may transmit to the cell tower with the maximum

signal strength (C3 in the figure). Similarly, a 802.11 based laptop may be in the vicinity

of multiple access points, and may connect to one with the highest signal strength from the

current orientation, or the optimal access point for load balancing. Thus, a physical location

may correspond to multiple cell towers or access points. Though we expect to aggregate

information for connectivity with all cell towers corresponding to a single location over a

period of time, the frequency information may not always be an accurate estimate. Both the

approaches discussed so far can flag valid but low frequency events as anomalous, resulting in

higher false alarms. Next, we present an approach called STAD (Spatial Temporal Anomaly

Detection) to alleviate false alarms due to low probability events. STAD only considers novel

events in calculating the anomaly score. That is, no matter how frequent/likely an event has

been observed, it is considered normal and has no contribution to the anomaly score. For
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Figure 6.2: A mobile device may transmit to a subset of cell towers in proximity, resulting in

inaccurate probability estimates.

example, an employee heading to work uses an alternate route when there is traffic congestion

on the regular route. A low occurrence frequency may still flag the event as anomalous using

naive and Markov Chain approaches, resulting in a false positive. But it would be deemed

normal in STAD. Thus, cell towers C1 and C2 in Fig. 6.2 would also correspond to valid

locations despite low frequency.

For STADn (or nth order STAD), only smoothed probability for novel event P d,W
m (li|li−1 · · · li−n)

is estimated. We investigate zero and first order STAD in this paper, called STAD0 and

STAD1 respectively. STAD0 maintains the subsequent location independence assumption of

Naive approach, whereas the assumption is relaxed in STAD1 and the current state depends

on the previous state. STAD assigns negative logarithm of the novel probability estimate as

the anomaly score for the current test instance. For STAD0, it is

Score0i =































−log(P d,ti
m (li)), if freqd,ti

m (li) = 0

0, otherwise

(6.10)
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The anomaly score for lc is aggregated over a time window W (lW ) of w instances to ignore

spurious anomalies. For STAD0, it is computed as:

AnomalyScored,W
m (lW ) =

c
∑

i=c−w+1

Score0i (6.11)

For STAD1, which assumes that the current state is dependent on the previous, the anomaly

score for the current test instance is calculated as:

Score1i =































−log(P d,ti
m (li|li−1)), if freqd,ti

m (li, li−1) = 0

0, otherwise

(6.12)

The anomaly score for lc over window W (lW ) is calculated as:

AnomalyScored,W
m (lW ) = Score0c−w+1 +

c
∑

i=c−w+2

Score1i (6.13)

An alarm is generated on exceeding a threshold.

6.1.4 AEMI (Augmented Expected Mutual Information)

Correlations between successive locations can also be learned using mutual information, and

is computed as:

I(l1, l2) = p(l1, l2)log
p(l1, l2)

p(l1)p(l2)
. (6.14)

Though mutual information considers the mutual dependence between the locations, it does

not take into account their independent occurrence. Augmented Expected Mutual Informa-

tion (AEMI) (Chan 1999) accounts for both the mutual dependence and independence of the

random variables (locations in our case). It is calculated as:

AEMI(l1, l2) = I(l1, l2)−
∑

(A=l1,B=l̄2),(A=l̄1,B=l2)

I(A,B). (6.15)

The first term provides the supporting evidence for the contextual succession and dependence

for l1 and l2, whereas subsequent terms subtract counter evidence. Higher AEMI values
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Figure 6.3: Adaptive user modeling for valid novel locations for authorized user.

indicate higher dependence between the random variables. We also experimented with a

spatio-temporal anomaly detector based on joint probability of successive locations using

AEMI as the correlation function. The anomaly score is aggregated over the window W as:

AnomalyScored,W
m = −

c−1
∑

i=c−w+1

AEMI(li, li+1) (6.16)

6.2 Adaptive Modeling

In addition to real-time monitoring, a desirable property of anomaly detectors is adaptability.

A researcher attending a conference in a new city will constantly violate the learned model,

flooding the device with false alarms and overwhelming the user. To suppress false alarms,

it is imperative for systems to be adaptive. One such system is depicted in Fig. 6.3, which

invokes a challenge/response mechanism for user alarm. Once authenticated (i.e. false alarm),

the spatial day profile of Eq. 6.2 is updated with the novel location and frequency incremented

for revised smoothed probability estimates. For STAD, as explained in Sec. 6.1.3, models are

built using the training set only. For adaptive-STAD, models are udpated with instances from
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the test set once they are verified in an online manner. That is, performance of adaptive-

STAD is still based on unseen instances in the test set, but once the instances are seen and

verified, they are incorporated into the model. This enables the system to adapt to concept

drift and reduce subsequent false alarms. If user cannot verify authenticity, the device may

be locked.

6.3 Smoothing probability values

Our techniques use probability estimate of novel events to score anomalies. Variance reduc-

tion techniques are required to compute the non-zero unobserved event probability estimate.

In the event of a novel location, spatial probability distribution underestimates the proba-

bility of the new value by assigning it a value 0, resulting in an undefined anomaly score

(Eqs. 6.6, 6.9, 6.11, 6.13). This problem of data sparseness is similar to the one in maximum

likelihood estimator of a language model in natural language processing.

Let s be the number of times a device was present at a specific location l in a given time

interval. Thus, s = freq(l). We denote n as the total frequency count =
∑

l freq(l); and

r as the number of distinct locations for the device. Furthermore, let fk be the number of

distinct locations with frequency count equal to k at a given context. It can be observed that

∑

k fk = r and
∑

k kfk = n.

Witten and Bell (Witten and Bell 1991) studied different schemes to deal with the zero

frequency problem in adaptive statistical coding applied to text compression . They found

the following estimate (due to (Moffat 1988)) to give the best results:

P (l) =































s
n+r

, if l is observed

r
n+r

, otherwise

(6.17)

This is referred to as Method C in the original paper. The rationale is to increase the
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probability of novel events with the number of distinct observations. For example, given two

10-integer sequences S1 = 〈1, 0, 0, 0, 0, 1, 1, 0, 0, 0〉 and S2 = 〈1, 2, 1, 0, 5, 7,−8, 12, 0, 9〉, S2 is

more likely to encounter a novel subsequent value than S1, since there is more randomness

and variability in S2 than S1. In Eq. 6.17, note that the sum of all smoothed probability

values (including novel events) is unity.

6.4 Spatio-temporal context clustering

Our anomaly detectors create a model for each day of the week. Typically, a high volume

of data is tracked by such a system in real time. Thus, small models are desired. Merging

similar day profiles together reduces the storage overhead. For example, an executive assistant

with a relatively same schedule from Monday to Friday may result in a succint model for all

weekdays. Similarly, a professor teaching same classes on Tuesday and Thursday can have a

similar model for those two days.

Each individual day profile is an object during clustering, and each day has the same

representation as the day profile in Eq. 6.2. That is, for η intervals per day and N locations

per interval, each object has η N × N spatial distributions. The distance between a pair of

spatial distributions is estimated using Kullback Leibler divergence, which is a measure of the

relative entropy between two distributions. Kullback Leibler divergence KL between spatial

distributions p1 and p2 is calculated as:

KLt(p1||p2) =
∑

i

pt
1(i)log

pt
1(i)

pt
2(i)

(6.18)

Since Kullback Leibler divergence is not symmetric [KLt(p1||p2) 6= KLt(p2||p1)], it cannot

be used as-is to measure distance for clustering similar spatial distributions. Thus, we define

distance ∆t(p1, p2) between p1 and p2 as:

∆t(p1, p2) = KLt(p1||p2) +KLt(p2||p1) (6.19)
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The ∆ value is normalized in the computation above. It can be noted that ∆ is symmetric

for a given distribution pair p1 and p2. The total distance between a pair of profiles (objects)

Profiled1
m and Profiled2

m for days d1 and d2 respectively is computed using Euclidean distance:

D(Profiled1

m , P rofile
d2

m ) =

√

√

√

√

η
∑

i=1

∆i(pd1

i , p
d2

i )
2

(6.20)

Our clustering method is an agglomorative hierarchical approach (Jain and Dubes 1988).

All day profiles are disjoint clusters input to Alg. 1. During each iteration, two most simi-

lar clusters (profiles) are merged (Step 3). Cluster similarity is measured using the distance

function in Eq. 6.20. Distance between exactly same profiles is zero. Merging entails combin-

ing the spatial distributions for the profiles with the minimum distance (Step 4). Individual

spatial distributions are then replaced by the merged profile. Associated cluster distances are

recomputed in Step 5. The stopping criterion for the algorithm (in Step 2) can be the number

of desired clusters k or a distance threshold θ for merging most similar clusters.

Input:
⋃

d∈D Profiled
m, as defined in Eq. 6.2

Output:
⋃

d′⊆D Profiled′

m

Compute pairwise cluster distances using Eq.6.20

while (stopping criterion not met) do

Identify clusters with minimum pairwise distance

Merge minimum distance profiles into Profiled′

m

Recompute pairwise cluster distances with merged cluster

end

Algorithm 1: Clustering day profiles

6.4.1 Space complexity analysis of learned model

Clustering merges similar contexts and creates a succint learned model, which is used to

validate data during testing phase. For STAD0, the space complexity of the stored model is
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O(ηCN), where η is the number of time intervals per day, C is the number of clusters, and N

is the number of locations per interval. For STAD1, the space complexity is O(ηCN2). But

the probability matrix is generally sparse and can be implemented more efficiently. AEMI

has the same complexity as STAD1, since all counter-evidence from Eq. 6.15 is computed on

the fly from the joint probability matrix. In the worst case, C = Cmax, which is the same as

no clustering. In our case, Cmax = 7 (number of days/week).

6.5 Empirical Evaluation

6.5.1 Experimental Data and Procedures

To evaluate and compare the spatio-temporal anomaly detection techniques, we used publicly

available real WLAN and mobile phone data. The WLAN data set comprises of syslog records

collected from mobile users at Dartmouth College campus between April 1, 2001 and June 30,

2004 (Kotz, Henderson, and Abyzov 2005). MAC address, access point name, and associated

timestamp information was logged. We divided the data set based on the type of most

frequented locale (building). The locale where a user spends the most time is deemed as her

home locale. The six locales we used were ACA (academic), ADM (admin), ATH (athletic),

LIB (library), RES (residential) and SOC (social). We maintain a distinction between same

and other locale – users from same home locale are expected to be harder to distinguish

from self, whereas users from other locale should be more dissimilar from self. We conducted

experiments on data from 5344 Dartmouth campus wireless users spanning over the 3 year

period.

Over 500,000 hours of mobile phone data was collected at the MIT campus (Eagle and

Pentland 2006) using the Context Phone framework (Raento et al. 2005). 89 different users,

ranging from freshmen to graduate students to faculty members at the university, were the
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subjects in the experiments. We extracted the location and time data - location corresponds

to the cell id (for cellular networks), and timestamp was broken into day of the week and time

of the day features. A sampling rate of 1 second/instance was used in our experiments.

To quantify the efficacy of the anomaly detectors, we used location data for all devices

with at least one week of training data. Disjoint training and test sets were created for

each user. Since we do not have explicit labels for bad behavior, for each mobile device, we

pretend that the behavior of unauthorized users is similar to the other mobile devices. That

is, given a trained model for a mobile device, test data from randomly selected 25 users were

used to approximate behavior of unauthorized users. For the Dartmouth data, we also had

the distinction between same and other locale. Thus, experiments were performed with 25

users selected from each of the two categories to represent malicious behavior. The confusion

matrix is presented in Table 6.1. A test data sample from device B is validated against all

models. Any alarm against model A is a true positive and against model B is a false alarm.

No alarm against model B is a true negative, but not flagging an anomaly against model A

is considered an undetected malicious attack on the device.

Time interval δ (Sec. 6.1.1) is a parameter to our techniques. Coarse-grained values reduce

sparseness, but tend to include multiple contexts. On the other hand, fine-grained values are

focused on specific context but exacerbate the issue of data sparseness, thereby increasing

the number of false alarms. Larger interval sizes also accommodate spurious anomalies better

than smaller intervals. We present results with δ=60 minutes, though values from 15-60

minutes yielded similar results. The time window W (Eq. 6.4) is another parameter for our

techniques. Small W value flags anomalies at an early stage thereby minimizing loss, hence

we chose W=10 minutes. A conservative distance threshold θ=0.5 was used for clustering.
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Table 6.1: Confusion matrix in the context of anomaly detection for mobile devices

Actual Prediction

Unauthorized user Authorized user

Unauthorized user True Positive False Negative

Authorized user False Positive True Negative

6.5.2 Evaluation Criteria

Generating an alarm for any event corresponding to a malicious user is trivial. We used

a stricter evaluation that all events from an unauthorized user are evaluated separately,

and correctly detecting malicious usage for a single event (high anomaly score) does not

automatically count as success for all other events from the same user. Thus, each event

interval is evaluated independently of the others, thereby making it harder for the anomaly

detectors. Computer security techniques are typically evaluated using a Receiver Operator

Characteristic (ROC) curve that plots the rate of correct anomalies detected (i.e. different

device) alongwith the false alarm (i.e. same device) rate. The area under the ROC curve

(AUC) is also calculated. A larger AUC value is desired as it is representative of the total

percentage of true positives detected at the cost of varied false alarm rates. In addition to

model accuracy, we compared the time requirements and storage overhead.

6.5.3 Comparison of accuracy

We evaluated and compared the five anomaly detection techniques – Naive, Markov Chain

(MC), STAD0, STAD1 and AEMI – on the Dartmouth 802.11 WLAN and MIT mobile phone

data sets. For WLAN data, we maintain a distinction between same and other locale, as

discussed in Sec. 6.5.1. The ROC curves are presented in Fig. 6.4. The random detector has

the same false alarm rate and true positive rate for any threshold (represented by the diagonal
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Figure 6.4: ROC curves for mobile anomaly detection.
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Figure 6.5: ROC curves for mobile anomaly detection with FAR ≤ 0.01.
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x = y in the ROC curve). The ROC curve for Dartmouth (same locale) in Fig. 6.4a indicates

that STAD1 and Markov chain (MC) performed the best till 0.35 false alarm rate (FAR), after

which AEMI had the highest accuracy. For Dartmouth (other locale) in Fig. 6.4b, STAD1

and MC had maximum detections at FAR ≤ 0.25, but were overtaken by STAD0, Naive

and AEMI at higher FAR. A similar trend was noticed in the ROC for the MIT data set

(Fig. 6.4c), where STAD1 does best below FAR=0.1, and thereafter surpassed by STAD0 and

AEMI.

Since the drawback of anomaly detection is the generation of false alarms, we focus on

small FAR. Hence we analyze the ROC curves up to 1% FAR in Figs. 6.5a-c. Accuracy,

measured in terms of respective areas under the ROC curve (AUC ), is listed in Table 6.2

for FAR ∈ {0.001, 0.01, 1}. AUC values in square brackets are with clustering. The random

detector has AUC of 0.05 × 10−5, 0.05 × 10−3 and 0.5 respectively. For Dartmouth (same

locale), STAD1 and Markov perform best at FAR=1; whereas lower order techniques STAD0

and Naive had maximum detections at FAR=1 in Dartmouth (other locale) data. This result

is expected, as users from same locale would be more similar and tracking transitions should

distinguish users better. This is also consistent with Dartmouth (other locale), where STAD0

and Naive had maximum detections at FAR=1. But at FAR ≤ 0.01 (Figs. 6.5a,b), we noticed

that STAD0 and Naive approach outperformed all other techniques irrespective of the locale.

On the contrary, for MIT mobile phone data set, STAD1 and MC had highest accuracy at

FAR=0.001,0.01.

In Sec. 6.4.1, we presented a theoretical analysis for reduced storage requirements with

model clustering. It is thus imperative to study its effect on model accuracy. Table 6.2 lists

the AUC values (within square brackets) for all methods with clustering. For Dartmouth data,

the worst case AUC reduction was 2.5% for Naive with clustering at FAR=0.001. Remainder

AUC values with clustering were same or better, with the highest increase of 10.8% for AEMI
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Table 6.2: Area under ROC curve (AUC) upto various false alarm rates (FAR). AUC values

with clustering is in square brackets. Bold values represent maximum AUC among all methods

(without clustering) at given FAR.

Data set Method AUC

×10−5 ×10−3

FAR=0.001 FAR=0.01 FAR=1

Random 0.05 0.05 0.50

Dartmouth Naive 10.76 [10.48] 1.56 [1.56] 0.81 [0.81]

(same MC 5.67 [6.10] 1.18 [1.25] 0.82 [0.82]

locale) STAD0 10.79 [10.61] 1.57 [1.57] 0.81 [0.82]

STAD1 5.67 [6.11] 1.18 [1.25] 0.82 [0.82]

AEMI 4.55 [4.61] 0.83 [0.92] 0.80 [0.80]

Dartmouth Naive 11.11 [10.58] 1.61 [1.60] 0.82 [0.82]

(other MC 5.80 [5.97] 1.20 [1.20] 0.81 [0.81]

locale) STAD0 11.32 [10.72] 1.62 [1.60] 0.83 [0.82]

STAD1 5.80 [5.97] 1.20 [1.20] 0.81 [0.81]

AEMI 4.30 [4.51] 0.74 [0.98] 0.81 [0.81]

MIT Naive 2.20 [2.30] 0.71 [0.69] 0.83 [0.83]

MC 13.50 [13.60] 2.89 [2.86] 0.81 [0.81]

STAD0 2.20 [2.30] 0.71 [0.69] 0.81 [0.81]

STAD1 13.50 [13.60] 2.89 [2.86] 0.80 [0.80]

AEMI 0.70 [0.70] 0.39 [0.38] 0.82 [0.82]
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at FAR=0.01, followed by 7.7% increase for STAD1 at FAR=0.001. For MIT data, the

maximum AUC reduction with clustering was 2.8% for Naive and STAD0 at FAR=0.01. But

at lower FAR(=0.001), there was an AUC increase of 4.5%. In general, the percentage gain

in accuracy was more with clustering as compared to no clustering.

The main questions posed by the results were: (i) why one set of techniques did better

on Dartmouth data set and another set on the MIT data, and (ii) why AEMI performed the

worst at FAR ≤ 1% for all data sets. Answer for the first question can be explained by

the inherent nature of mobility in the two data sets. Dartmouth data set as gathered from

laptops, which typically have lower degree of mobility in comparison to the mobile phones of

MIT data set. The mobile stations in WLAN are not as mobile as the users themselves; for

instance, users do not carry their laptops to the restrooms, or a colleague’s office for a quick

chat. Mobile phones, on the other hand, are a wearable sensor that people generally carry

with them all the time. Since the phone is more mobile than a laptop, STAD1 fared better

than STAD0 on the MIT data set. Conversely, the higher AUC of STAD0 than STAD1 in

Dartmouth data is attributed to limited mobility of the 802.11 devices such as laptops.

To understand the poor performance of AEMI at low FAR, we analyzed the false alarms

further. For Dartmouth data, there were approx. 125% more novel joint probability values

on an average compared to the marginal probability values that accounted for anomalies in

test data. In hindsight, the behavior was expected. A device can be within range to multiple

access points or cell towers at any instant. Thus, the frequency information may not be a

true representation of the accessible access points or towers. The problem is exacerbated by

extending it into higher order, where transitions between access points or cell towers are noted.

Thus, training data for the example in Fig. 6.2 may only cover one transition (C1 → C2),

but the test data may comprise of other valid transitions, which would be wrongly flagged

as anomalies. This resulted in a sparse joint probability space. The computation of AEMI
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Figure 6.6: Cumulative fraction of mobile users for various AUC values.

comprises of three joint probability values (Eq. 6.15), resulting in poor performance.

Another observation from the ROC curves and AUC is the similarity in the accuracy of

STAD0 with Naive method and STAD1 with MC. At less than 1% FAR, STAD0 demonstrated

higher accuracy than Naive approach for Dartmouth (same locale) data, whereas performance

was same in other two data sets. STAD1 and MC were at par with each other on all three

data sets. These results support our claim for STAD that frequency of observed events may

be ignored for computing the anomaly score. Further, for Dartmouth data, AUC for other

locale was generally higher than same locale. This was expected since users from same locale,

in contrast to other locale, are expected to be more similar to self and relatively harder to

detect.

Different users behave differently. Some are more predictable than others. We studied

the trend in the cumulative fraction of users above AUC value ∈ [0,1]. Results are shown in

Figs. 6.6a-c. Though the average AUC for all techniques at FAR=1 is in the range 0.80-0.83

(Table 6.2), the figure suggests appropriateness of STAD for some users with much higher

AUC. For Dartmouth (same locale) data, approx. 42% users for STAD0 and 45% for STAD1

had AUC value exceeding 0.90. For Dartmouth (other locale), AUC ≥ 0.90 was achieved by

45% users with STAD0 and 41% of the users with STAD1. For MIT data, similar scores were

122



Table 6.3: AUC comparison for original and adaptive (ad-STAD) STAD.

Data set Method ad-STAD AUC [original STAD AUC]

×10−5 ×10−3

FAR=0.001 FAR=0.01 FAR=1

Dartmouth STAD0 51.99[10.79] 6.94[1.57] 0.92[0.81]

(same locale) STAD1 4.29[5.67] 1.17[1.18] 0.87[0.82]

Dartmouth STAD0 98.37[11.32] 9.84[1.62] 0.98[0.83]

(other locale) STAD1 28.67[5.80] 12.00[1.20] 0.98[0.81]

MIT STAD0 49.05[2.20] 7.35[0.71] 0.93[0.81]

STAD1 32.90[13.50] 7.13[2.89] 0.93[0.80]

achieved by 16% and 24% users with STAD0 and STAD1 respectively. These results suggest

applicability of our techniques to at least a significant percentage of users who demonstrate

higher predictability in mobility patterns.

Adaptive STAD. An important aspect of security systems is adaptability. Similar to

STAD, adaptive STAD (ad-STAD) validates unseen test data for model violations. Unlike

STAD, it updates the model with locations that have already been seen and verified, as

explained in Sec. 6.2. Table 6.3 lists and compares the AUC values of adaptive STAD (ad-

STAD) with the original versions. Results show a significant reduction in the number of false

alarms and increase in the number of detections in most data sets. The most significant

improvement was for MIT data, which demonstrated a 22 fold increase in AUC for STAD0 at

FAR=0.001. Generally, adaptive STAD0 performed the best with the highest AUC, indicating

its effectiveness to adapt to concept drift and curtail false alarms.
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Table 6.4: Average training and testing rates (µseconds/instance).

Data set Technique Training rate Testing rate

Dartmouth Naive 0.005 0.415

MC 0.006 0.432

STAD0 0.005 0.414

STAD1 0.006 0.430

AEMI 0.006 0.432

MIT Naive 0.135 0.407

MC 0.137 0.409

STAD0 0.135 0.404

STAD1 0.137 0.408

AEMI 0.137 0.416

6.5.4 Time and space requirements

Time requirements for training and testing. For anomaly detection system to be ef-

fective, it should be able to detect misuse in real-time. For completeness, we computed

time requirements for model creation (training) as well as model validation (testing) for the

anomaly detection techniques. Experiments were performed on a 2GHz Pentium M proces-

sor, 1 GB RAM PC running Windows XP. The results are compiled in Table 6.4. Training

was very fast, with fraction of a microsecond rates. In addition to these values, cluster-

ing added an average overhead of 27.68 µseconds/instance for Dartmouth data, and 77.36

µseconds/instance for MIT data set. Though training can be performed offline, but online

testing is desired to minimize loss. For testing, STAD0 had minimum time requirements –

0.414 µseconds/instance for Dartmouth and 0.405 µseconds/instance for MIT data. This was

expected as only novel events contribute towards scoring anomalies. Our techniques incur low
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computational overhead, making them reasonable for an online system.

Reduced storage for trained model. We proposed context clustering using an agglo-

morative hierarchical approach with Kullback-Leibler-based distance metric in Sec. 6.4. Clus-

tering collapses similar days into a single cluster, thereby reducing the space requirements.

For Dartmouth data, clustering produced 5.94 clusters per user, i.e. a 15.14% reduction in

model storage over approach with no clustering. For MIT data set, average number of clusters

was 5.28, reducing storage by 24.57%.

6.6 Summary

To alleviate the problem of MAC spoofing and lost or stolen mobile devices, we presented an

automated technique called STAD to detect spatial temporal anomalies for mobile devices.

Our technique creates smoothed stochastic user models from training data and flags model

violations on disjoint test data. We performed experiments on real WLAN and mobile phone

data sets. Predictive accuracy was measured on unseen instances of the test set. STAD0

performs best when the degree of mobility is low, as in Dartmouth WLAN data. STAD1 had

highest accuracy for higher degree of mobility, as one depicted in MIT mobile phone data.

Over 40% users in Dartmouth data set and 16-24% in MIT data set had AUC ≥ 0.9, suggesting

applicablity of our technique to a significant percentage of users. We used Kullback-Leibler

divergence based agglomorative hierarchical clustering to merge profiles for reduced storage.

In our experiments, there was a 15-25% reduction in the size of the learned model. The test

time requirements for our technique was approx. 0.4 µsecond per instance, making it viable

for online usage. We demonstrate the efficacy of adaptive-STAD to reduce false alarms and

increase detections, with a 22-fold improvement for MIT data at FAR=0.001.
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Chapter 7

Conclusions

Anomaly detection techniques complement signature-based methods for intrusion detection.

Though capable of detecting novel attacks, they suffer from generation of false alarms. Net-

work traffic as well as operating system events on a host can be monitored for anomaly

detection. Network and host systems have different characteristics that are targeted to de-

tecting different types of attacks. This dissertation presents several methods of improving the

accuracy of host-based anomaly detection systems. Next, we summarize our findings from

the various investigations.

7.1 Results and Contributions

Most of the traditional supervised learning based IDSs require a clean training data set which

is difficult to obtain. Training data comprised of attacks results in an erroneous model for

supervised anomaly detection, and all subsequent occurrence of the attack would be missed. It

is thus important to purge all anomalies from the training data. In Chapter 3, we presented

a motif-based representation for system call sequences based upon their spatial positions
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within the sequence. Our system, called MORPHEUS, also created a single representation

for all sequences called sequence space - using a distance metric between the motif-based

representations. An unsupervised local outlier algorithm was used to purge this data void of

all attacks and other anomalies. This offline procedure created a clean training data set. We

also presented heuristics to automate parameter selection for the outlier detection algorithm.

Our automated technique successfully detected local outliers, but failed to capture attack-

based clusters. We also demonstrated the efficacy of data cleaning in conjunction with two

anomaly detectors, namely t-stide and LERAD. With our technique, the number of detections

increased by 100-300% for data sets used in our experiments.

Merging argument and sequence information creates a richer model for anomaly detection.

This relates to the issue of feature extraction and utilization for better behavioral modeling

in a host-based system. In Chapter 4, we portrayed the efficacy of incorporating system call

argument information and used a rule-learning algorithm (LERAD) to model a host-based

anomaly detection system. We proposed four variants: system calls within a fixed size window

(S-LERAD), arguments for the current system call (A-LERAD), system calls within a fixed

size sliding window and arguments for the current system call (M-LERAD), and all system

calls and correpsonding arguments within a fixed window (M*-LERAD). Experiments on well

known data sets indicated that our argument-based model, A-LERAD, detected more attacks

than all the sequence-based techniques. Our sequence-based variant (S-LERAD) was also

able to generalize better than the prevalent sequence based techniques, which rely on pure

memorization. We also analyzed the alarms and attributed attack detections to partial attack

signature, behavioral patterns of the intruder, or some peculiarity in the program execution.

LERAD is a supervised algorithm for anomaly detection that uses rule pruning to avoid

overfitting. But pruning of learned model may adversely affect system accuracy. In Chapter 5,

we argued that pruning may result in loss of coverage, thereby reducing the detection rate.
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We presented three techniques to increase coverage - rule weighting, rule replacement and

hybrid approach. We listed predictiveness and belief as two key aspects of rule quality. We

proposed rule weighting wherein rules pruned earlier were retained. Additionally, rules with

higher belief had higher weight. Rule replacement, on the other hand, replaced pruned rules

with other candidates for improved coverage. The hybrid approach chose between weighting

and replacement, depending on which technique had higher coverage. Generally, the hybrid

approach detected most attacks at low false alarm rates. We studied the effect of coverage

on accuracy and found that, for a given data set, higher coverage did correspond to higher

accuracy in most cases.

In addition to the security threats for static hosts like desktop computers, there are key

security issues targeted only towards mobile hosts. These include misuse of lost or stolen

mobile device and MAC spoofing in wireless LANs. We motivate an anomaly detector for

such issues in Chapter 6, where we modeled spatio temporal contextualities for mobile hosts.

The underlying assumption was that the user would generally be at the same place around

the same time. Any abnormalities could be due to misuse. We evaluated our technique on

real data sets for mobile phone usage as well as 802.11 wireless local area networks. Our

techniques had AUC ≥ 90% for over 40% wireless LAN users and 24% mobile phone users.

Context clustering produced concise models, with 15-25% reduction in model size. We also

stressed on the importance of adaptive modeling to accommodate concept drift and curtail

false alarms further.

7.2 Future Work

The data cleaning procedure can be integrated with a hybrid of signature and anomaly based

systems for better accuracy and the ability to detect novel attacks. A semi-supervised ap-

proach could be used with our representations to achieve the same. Our system can also be
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used for user profiling and detecting masquerade. In terms of efficiency, the only bottleneck in

our system is the motif extraction phase where cross-match is performed pair-wise. Speed-up

is possible by using other techniques like suffix trees.

We used system call attributes for creation of richer models for anomaly detection. But our

argument and sequence based representations assume fixed size tuples. A possible extension

to variable length attribute window for more accurate modeling. More sophisticated features

could also be devised from the argument information.

For rule weighting, the rule set size can be limited by eliminating a rule which has been

violated many times and its weight falls below a user-defined threshold. We are also exploring

other linear weight update functions. An alternate approach for learning is to minimize the

rule set after pruning the violated rules. This might reduce the training time, but we suspect

that it will also eliminate high coverage (more general) rules, resulting in a larger rule set

comprising more specific rules, thereby increasing the test time. We intend to evaluate and

compare the accuracy of such a learner.

In the case of spatio-temporal modeling for mobile hosts, coarser contexts could be defined

such as beginning/mid/end of month, week and day. Incorporating such features might be

sufficient for anomaly detection, especially for low variance users. STAD can also be used

in conjunction with collision detection techniques (Fawcett and Provost 1997), and multi-

modal biometric systems. In addition to detecting misuse for mobile hosts, the technique can

also be applied to other domains such as credit card fraud and tracking employee access in

government and other high security buildings.
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