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Abstract

TITLE: Coordination Using Logical Operators In Linda
AUTHOR: James Kendall Snyder

MAJOR ADVISOR: Ronaldo Menezes, Ph.D.

During the past 20 years, research in coordination has had success in demonstrating that
distributed systems are made of two distinct parts: computation and coordination. One
of the models that has contributed to the success of coordination is LINDA. While it is an
extremely powerful coordination model, LINDA has limitations expressing parallel access
to tuple spaces. This thesis proposes an extension to LINDA called LOGOP LINDA which
combines tuple spaces using logical operators and thus enabling a single primitive to access
multiple tuple spaces in parallel. Essentially this concept replaces serial access to multiple
tuple spaces using the same primitive, tuple or template. Based on a single implementation
consisting of LINDA and LoGOP LINDA, it is shown in the empirical results that LocOP
LINDA is more expressive, scalable, and efficient at both the model and implementation

level.
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Chapter 1

Introduction

Computers exist to perform complex tasks in a short amount of time. If the software
is written correctly, tasks should be completed with correct results every time they are
executed. In addition, the more complex tasks become, the longer they will take to finish.
Decomposing these tasks and distributing them among idle computer systems normally
decreases the amount of time needed to complete the tasks.

Access to distributed shared resources such as hardware, software and data allows
users not to be restricted to a single source of failure as with a centralized resource. If the
centralized system is inaccessible, all computing power is lost. One of the first architectures
to support distributed systems is Client/Server. The client software has access to one or
more of the servers’ resources. This type of access decreases the chance of a single point
of failure. When a failure does occur, clients could access the same software or data on
the backup server. As software accessed distributed resources, it became apparent that in
order to have distributed computing, there had to be coordination among the systems.

Coordination is an important characteristic in distributed computing. It allows concur-
rent processes to synchronize and communicate with one another. Without synchronization
and communication these processes could never interact. Unknowingly to each of them,

they would be running concurrently and never be able to work together to achieve the
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intended result. As a consequence, three common models exist for coordination in a dis-
tributed system: message passing, monitors, and remote operations [And81]. In 1985,
Gelernter [Gel85] proposed a fourth model that is different from the first three: the gen-
erative model. The generative model has two distinguishing properties: communication
orthogonality and free naming. Communication orthogonality implies that a sending pro-
cess does not need to know who the receiving process is; likewise, the receiving process
does not need to know who was the sending process. This type of communication has two
important consequences: time and space uncoupling. Time uncoupling is defined as two
processes that do not have to exist at the same time in order to communicate. Space un-
coupling means any process may receive data from any other process; similarly, any process
may send data to any other process. A third effect based on space and time uncoupling is
distributed sharing. Distributed sharing allows disjoint processes to share data that exists
outside of the processes themselves; hence, the data exists in a global location accessible
by all processes. The second property is free naming: this is the type (or name) of data
being passed. This second property leads to support for continuation passing and struc-
tured naming. Support for continuation passing implies that a process can wait for data
in the globally assessable location. It will stop waiting when a second process inserts the
appropriate data into the global location. Structured naming implies that in order for a
process to retrieve data from a global location the process must know the data’s signature.
More about these concepts will be covered in Chapter 2. Gelernter states that the message
passing model most closely resembles the generative model: Message passing allows two or
more processes in a system to directly communicate amongst themselves by common shared
procedures. Hence, the generative model has some enhanced characteristics as described
above that distinguish it enough from a message passing model.

Gelernter and Carriero [GC92] argue that a complete programming model consists of
two separate pieces: a coordination model and a computation model. A computation model
allows processes to create a solution while a coordination model allows process creation,

synchronization and communication between processes. The authors state:
“A coordination model is the glue that binds separate activities into

an ensemble.” [GC92]
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Ensembles are an important concept and will be even more critical since software has
migrated from centralized computing to distributed computing. Ensembles exemplify re-
quirements of processes communicating and synchronizing to get a single task completed.
Without these requirements, tasks could never be completed by more than one process at-
tempting to work together. Furthermore, tasks would never be known to complete without
communication.

Ciancarini [Cia97] formalized the definition of coordination. He stated that in order for
two or more processes to synchronize and communicate, coordination could be described

as a triple consisting of (F, M, L):
E: Coordination Entities: An ensemble of processes that communicate with themselves.
M: Media: The mechanism in which the ensembles communicate.

L: Laws: The rules that allow ensembles to communicate using a finite number of primi-

tives.

The generative communication paved way to the LINDA coordination created by Gel-
ernter [Gel85]. This thesis extends Gelernter’s work by focusing strictly on the media and
laws of LINDA. Chapter 2 details some LINDA models that have been previously proposed.
Based on Chapter 2, Chapter 3 illustrates the motivation for this thesis followed by the
proposal in Chapter 4 of LINDA adopting logical operators creating LOGOP LINDA. An
implementation written in Java is covered in Chapter 5 followed by a chapter on empirical

results. The final chapter covers future research and a conclusion.



Chapter 2

Review

This chapter describes several models that are relevant to this thesis. The models are not
described in complete detail but to a level that supports the thesis. The differences of these
models compared to the proposal of LOGOP LINDA will be explained in detail in the next
chapter. Complete description of each model can be found in the appropriate references.
In the LINDA model, processes do not communicate directly with each other (peer to
peer) but through the use of a “bag”. A “bag” represents a medium of storage, something
that is globally assessable or well known by all processes. The concept of the “bag” implies
that the communicating processes are both time and space uncoupled. Time uncoupling
allows one process (A) to insert an “item” into a well known “bag”. At a later time,
another process (B) can retrieve that “item” from the well known “bag”. Thus, A and B
are time uncoupled. An “item” represents a value that is placed into and removed from
a “bag”. Space uncoupling allows for processes to never know from which process the
“item” came from; processes communicate through the use of the “bag”. Recall that time
and space uncoupling is a characteristic of communication orthogonality in the generative
model described earlier. Figure 2.1 is a high level picture of this concept: At time, process
A inserts an item “[dog]” into the bag. At a later time, timep, process B retrieves the item

“[dog] ” .
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Figure 2.1 High level architecture of two processes communicating via a bag

timeg time

Pr A Process B
- put([dog]) get( [dog] )

—

Bag Bag

Before moving forward, it is important to clarify the generic terms “bag” and “item”
used earlier. LINDA has several new concepts that support the foundation of its model. A
tuple, represented before as an “item”, contains an ordered list of actuals (values) and are
stored in tuple spaces (analogous to the term “bag”). Processes can retrieve a tuple from a
tuple space if and only if a template associatively matches that tuple. A template consists
of an ordered list of actuals, formals (definition of a value) or both. The concept of a
template and tuple are similar with the exception that a tuple can never physically contain
a formal: they only contain actuals. The term LINDA kernel, which can be interchanged
with LINDA system, contains tuple spaces. In other words, LINDA has the characteristics of
the generative model. The tuple space allows time and space uncoupling, and distributed
sharing among disjoint processes. The associative matching, described more in depth below
characterizes the structured naming property of the generative model.

Associative matching means that if field, is a formal or an actual in a template then
it is equivalent to the actual in field, of the tuple. Successful associative matching implies
all fields; in the template and the tuple are equivalent. Note, too, that the tuple and
template must have the same number of fields. Table 2.1 exemplifies this concept. For
example, in row #1 the tuple has “dog” and 3 as its field’s values respectively and the
template has String and Integer as its field’s formals respectively: the template and tuple

match. In row #2, the tuple has “dog” and 3 as its field’s values respectively and the
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template has “dog” and Integer as its fields; likewise, field; of the template and tuple
match and fields is an Integer 3; therefore a successful match. On the other hand, in row
#4, the first formal is a Float in the template and it does not match the first field “dog”

(String); thus, no successful associative matching.

Table 2.1 Associative Matching of template and tuple

Row template tuple Match?
1. | [String,Integer] | [“dog”,3] yes
2. | [“dog”,Integer] | [“dog”,3] yes
3. [“dog”,3] [“dog”,3] yes
4. [Float,Integer] | [“dog”,3] no
5. | [Integer,String] | [“dog”,3] no

When there are two or more tuples in a tuple space that match a template, LINDA uses
nondeterminism to choose which tuple to retrieve. A template containing the two formals
String and Integer in field; and fields, respectively, will match zero or more tuples in a
given tuple space. If there is one tuple matching that template, then LINDA will return that
tuple. If there are two or more tuples matching that template, then LINDA will select any
tuple out of the set of matching tuples to return to the calling process. Menezes [Men98]
defines nondeterminism as follows: Given relation R, R is non-deterministic if there exists

z, y1 and yz such that £ R y1, x R y» and y1 # yo.

2.1 Linda Primitives

In LINDA, processes do not communicate directly with each other; instead through the use
of a tuple space called Universal Tuple Space. LINDA consists of two types of primitives used
for communication: setters and getters. The getter (or “get”) primitives are in, rd, inp
and rdp while the setter (or “set”) primitives are out and eval. It is these primitives that
support the last characteristic (from Chapter 1), continuation passing, in the generative

model.
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The getter primitives can be decomposed into two groups: blocking and non-blocking.
If the tuple does not immediately exist, blocking primitives will wait for a tuple that
matches a template in the tuple space. Non-blocking primitives, on the other hand,
return immediately if the tuple does not exist. The blocking getter primitives are in and
rd while the non-blocking primitives are inp and rdp. Rows #1 through #4 in Table
2.2 summarizes the syntax of these primitives. All four primitives return a single tuple
that matches the template parameter. The only difference is the in and inp primitives
physically remove the tuple from the tuple space; unlike the rd and rdp primitives, they
return a copy of the tuple leaving the original tuple in the tuple space.

The setter primitives are out and eval and their syntax is illustrated in rows #5 and
#6 of Table 2.2. The out primitive inserts the tuple into the Universal Tuple Space. The
eval primitive is more complex. A tuple is inserted into the Universal Tuple Space and is
marked as active. Each field in this tuple is a function that gets evaluated in parallel in the

LINDA kernel. Once each function is complete the active tuple becomes a normal tuple.

Table 2.2 Getter and Setter primitive syntax

Primitive | Syntax Blocking?
1. | in in (template) | Yes
2. | rd rd (template) | Yes
3. | inp inp (template) | No
4. | rdp rdp (template) | No
5. | out out (tuple) Not Applicable
6. | eval eval (tuple) Not Applicable

With the LINDA primitives defined, Figure 2.1 can be drawn using the standard LINDA
primitives of rd and out as illustrated in Figure 2.2. The definitions and concepts just

described form what is known as the original LINDA.
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Figure 2.2 Revised diagram of Figure 2.1 using LINDA Primitives rd and out

timea timeb

Process A FrocessB
out([dog]) rd( [dog] )

Universal Tuple Space] Universa Tuple Space

2.2 Multiple Tuple Spaces Linda Model

While the original LINDA is a powerful model, Gelernter realized it had a weakness: multiple
processes share a common single tuple space known as the Universal Tuple Space. This
sharing of a single tuple space creates side-effects with multiple processes. For instance,
process A out’s a tuple intended for process B. Process C is blocked on the in primitive
using a template that, unknowingly, associately matches process A’s tuple. Process C
can and does retrieve the tuple. These side-effects can be circumvented by the use of
identifiers (IDs). Thus, each tuple sent to the Universal Tuple Space had an extra field
in the tuple used as an identifier. The identifier is used to decrease the likelihood of side-
effects. However, this was not a solution but a masking of the original problem. Even
though processes may not know the explicit identifier of a particular tuple, the formal of
that identifier could be used to side effect other processes. What was needed was a way for
two or more processes to communicate via a different tuple space other than the Universal
Tuple Space.

Gelernter later revisited the LINDA model and added another primitive to allow the
creation of new tuple spaces. The revised model became known as MTS-LiNDA (Multiple

Tuple Spaces Linda). This primitive, called tsc (), returns to the calling process a handle



CHAPTER 2. REVIEW 9

(reference) of the new tuple space created inside the LINDA system. The advantage of
creating a tuple space is that it allows for better encapsulated communication between
processes. If only two processes know the handle of a tuple space, then a third process
cannot guess that handle and side effect the other two processes.

The question remains, how would process B know about the tuple space that process
A created? Process A would have to explicitly put the handle into a tuple and, using the
LINDA out primitive, send it to the Universal Tuple Space. This implies that the LINDA
primitives need to be slightly changed. Table 2.3 illustrates that all MTS-LINDA primitives
are prefixed with the destination tuple space. In the table, ts; is referenced; however, ts;
can simply be replaced with any tuple space reference including one to the Universal Tuple

Space.

Table 2.3 MTS-LINDA

original LiNnpA || MTS-LINDA

in (template) ts1.in (template)

rd (template) ts1.rd (template)

inp (template) || ts1.inp (template)

rdp (template) || ¢s;.rdp (template)

out (tuple) ts1.out (tuple)

eval (tuple) ts;.eval (tuple)

Therefore, process A that created the new tuple space could explicitly send this tuple space
value via a tuple to the Universal Tuple Space. Process B could be blocked waiting for a
tuple that associatively matches a template containing tuple space formal. If process B is
the only process blocked waiting for a tuple containing tuple space formal then no side-
effects occur. Once process B removes that tuple containing the tuple space value, process
A and B can communicate privately without having side-effects by another process.
Although processes can communicate via new tuple spaces, there can still be an un-
wanted side effect. Consider three processes A, B, and C. Assume process C and B are

blocking in the Universal Tuple Space using a template that will match a tuple space formal
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and process C is using a rd primitive and process B is using the in primitive. If process
A creates a new tuple space and sends a tuple containing a tuple space value to Universal
Tuple Space, then there is a chance process C can receive that tuple without process A and
B knowing of the retrieval. Pinakis [Pin91] proposed a solution alleviating this side effect
that provides directed communication in LINDA using capabilities. Further discussion of
directed communication is beyond the scope of this thesis.

Figure 2.3 illustrates how two processes (A and B) can communicate via a newly created
tuple space. In 2.3(a), process A creates a new tuple space. In 2.3(b), a tuple is created
and the handle of the created tuple space is out to the Universal Tuple Space. In 2.3(c),
process B uses the in primitive consisting of a template containing the formal of a tuple
space handle. In 2.3(d), process B uses the out primitive to put a tuple into tuple-space
ts1. In 2.3(e), the arrows to and from both processes illustrate the means of communication
using the LINDA primitives and tuple-space ts1. In 2.3(e), in the tsl.* statement, the *
represents the LINDA primitives from Table 2.2. At this point, a third process, process C,
can start and not side effect process A and B.

For the rest of this thesis, original LINDA and MTS-LINDA will be known simply as

LINDA.

2.3 York Linda IT Model

The York LINDA IT [RDWY96] is another coordination model that extends LINDA by
solving the multiple read problem. The multiple read problem occurs when two or more
processes are simultaneously accessing the same tuple space using the same template and
rd primitive. Since the rd primitive does not remove the tuple, it is possible for every
rd primitive call to return the same tuple; hence, this problem also occurs when a single
process is executing this primitive. The issue is: How does a single process or multiple
processes access the same tuple space using the same template efficiently and without
obstructing other processes? The question is related to which LINDA primitive to use.
A possible solution is each process could use the rd primitive. However, LINDA cannot

guarantee that each tuple retrieved will be different from any previous retrieved tuple
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because of the nondeterminism nature of LINDA. Furthermore, the same tuple could be

continuously read. Therefore, this is not a plausible solution.

Figure 2.3 Description of two processes setting up a new tuple space for communication

Process A Process A
tsl =tsc() uts.out([ts1])

s o

uTsS
uTsS Process B
Process B tsl.out(["dog",3])
tsl = uts.in([handle])
tsl
tsl
(©) (d)
UTS
tsl
ProcessB
o N
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Figure 2.4 LINDA multiple read problem

Process A

"sue" , "female"]
["larry" , "male"]

["jack" , "male"]

["patrice” , "female’]
["bob" , "male"]

["mary” , "female"]

Process B

tSl

Another possible solution is for each process to use the in primitive. However, this
solution is also problematic. The first obstacle is the in primitive removes the tuple from
the tuple space. Thus, when process A is removing tuples, process B cannot access them.
Likewise, if process B is using the in primitive, process A cannot access the ones process
B has retrieved. The second obstacle is if process A would out the tuple back into the
tuple space, process A cannot be sure that the next in would not retrieve the same tuple
because of nondeterminism.

Rowstron, et al. [RDW96] proposed a solution to the multiple read problem. They
introduced a new primitive called copy that copies all the tuples matching template in
the source tuple space to the destination tuple space. The primitive returns the number of
tuples that were copied. The syntax for this primitive is in Table 2.4. This primitive solves
the multiple read problem because it copies all tuples in bulk using one primitive call.
Thus for process A and B above, each process can create temporary tuple-spaces called s
and tss, respectively. Both processes can issue the following copy primitive below without
affecting one another. Figure 2.5 illustrates the new tuple spaces and their contents after

the copy primitive has finished. Processes A and B can now work independently and
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efficiently without obstructing the other process.
Process A: copy (ts1 , tsa , [?String, “female” ]);

Process B: copy (ts1 , ts3 , [?String, “female” ]);

Figure 2.5 copy primitive in use

copy (tsq ,tsy ,
[?String , "female"])

in(tso, [7String , "female’])

["sue" , "femal€e"]
["patrice" , "female"]

["mary, "female’ Process A

["sue" , "female"]

["arry" , "male"]
tS2
["jack" , "male"]
["patrice" , "female"]
Process B
["bob" , "male"]
[*mary" , "female"]
t83 . . n 1"
in(tsg, [7String, "female"])

copy (ts q,ts3 ,
[?String , "female"])

["sue", “female’]

["patrice" , "female"]
["'mary" , "femal€e"]

As an option to the inp primitive, Butcher [BWA94] proposed another new primitive

to move (destructive primitive) all the tuples matching template from a source tuple space
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to a destination tuple space. The primitive, called collect, returns the number of tuples

moved. The primitive’s syntax is in Figure 2.4

Table 2.4 Copy and collect syntax

Primitive | Syntax

collect | count := collect (ts; ,tsy , template);

copy count := copy (ts1 , ts2 , template);

2.4 Scopes

Merrick and Wood [MWO00] proposed a new concept called Scopes. The term SCOPE is
analogous to a set of tuple spaces with one exception, that a SCOPE can contain other
ScoPEgs: unlike LINDA, a tuple space cannot contain other tuple spaces. Thus a set
relationship is achievable using SCOPES. The contents of a SCOPE is one or more sets of
tuple spaces: A tuple space in SCOPES is known as a mame. A set can contain a single
name or a list of names. For example, SCOPE A containing [ {a} , {b} ] illustrates two
sets, each containing one name: a and b. Another example of a SCOPE is [ {a,b} , {c} ].
This, too, contains two sets of names. The first is {a,b} and the second set is {c}. For
clarity purposes, the above SCOPES are written without the curly braces as [a,b] and [ab,c].
For this section, a SCOPE is represented by a capital letter and a name is represented by a
lower case letter.

SCOPES also introduce four additional operations (&, ©, @, and @) and Table 2.5 list
examples of these operators. The @ operator does a union of two SCOPES. For example,
row #1 in Table 2.5 creates a new SCOPE containing two sets “a” and “b” represented as
[a,b]. The © operator, shown in row #4, creates a new SCOPE containing sets that are in
the left side of the operator that are not in the right side of the operator. This operator is
also known as a set difference. In row #7, the ® operator creates a new SCOPE containing
sets based on applying a cross product algorithm and then the union operator. A cross
product algorithm takes each of the sets on the right side of the operator and concatenates

it to each set on the left of the operator. The @ operator in row #9 does the cross product
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and then the set difference algorithms. Note, too, in Table 2.5 newly created SCOPES, on
the right side of the equivalent sign, contain no duplicate sets of names. In rows #2 and
#8 the equivalent statement on the right side contains only one b name and not two b

names.

1.A@B=AUB
2.A6B=A/B

3. A@B={xUy|(xy) « AxB}

4. AoB={x/y|xy)«< AxB}

Table 2.5 SCOPES examples of its operators: @, ©, @, and ®. Adapted from [MWO00]

1: [a] @ [b] = [a,b]

2: [a,b] ® [b,c] = [a,b,c]

3: [ab] @ [bc] = [ab,bc]

4: [a,b] © [b,e] = 3]

5: [ab] & [bc] = [ab]

6: [a] © [b] = [ab]

T [a,b] ® [b,c] = [ab,ac,b,bc]
8: [ab] ® [bc] = [abc]

9: [abac] @ [a] = [b,]

10: | [ab,ac] @ [b,c] = [a,ab,ac]

To summarize, the changes to the LINDA model consists of the following (Adapted from

[MWO00]):
1. A primitive NEWSCOPE for creating new scopes.

2. Four operations: @, ©, @, and ® for combining existing SCOPES.
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3. The usual LINDA primitives, out, in, and rd, are modified to incorporate scoping. The
in and rd primitives return just a single tuple and the SCOPE it was contained in.

The out primitive puts the tuple into the SCOPE.

Finally, SCOPES uses an additional matching rule. This matching rule determines if two
or more SCOPES have at least one element in common, then those SCOPES match. The

matching rule and examples are exemplified in the following:

A~BoANB#D

Table 2.6 ScoPES matching rule. Adapted from [MWO00]

a,b] ~  [by]
ab] I~ [bc]

(both contain b)

(
[a,b,c] (both contain a and b)

(

(

since ab neq bc)

abab] ~ [ab,]
a,b,ab] I~ [abc]

both contain ab)

[ B N
T E P EE
o
&

S
14

no element in common)

Row #1 containing SCOPE [a,b] and SCOPE [b,c] match because their intersection is not
empty (both have b in them). Likewise, row #3 match because both SCOPES contain a and
b in their intersection. The SCOPES in row #2 do not match because SCOPE ab does not
match SCOPE bc: the intersection is empty. This matching rule determines the visibility
of a tuple: Assume process A uses the out primitive to insert a tuple into SCOPE A. If a
second process, B, uses an in primitive to retrieve a tuple from SCoOPE B, SCOPE B could

actually remove and return the tuple that process A inserted if A ~ B.

2.5 Bonita Model

With respect to efficiency, one limitation of LINDA is its blocking primitives. As they
block, client processes cannot continue executing. As a result, Rowstron and Wood [RW97]

proposed a new model, known as BONITA, to be more efficient than LINDA. The authors
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claim that the time for a LINDA primitive to complete can be decomposed into seven

components. The sum of these times is shown in Figure 2.6.

Tpack: The time it takes to prepare the primitive in the client process.

TsendRequest: The time it takes to send the primitive over the communication medium to

the LINDA kernel.
TQueue: The time it takes for a message to be serviced.

Tprocess: The time it takes to service the primitive by finding a tuple and packaging the

result.
TBiock: The time it takes because no tuple is found.

TSendreply: The time it takes to send the resulting tuple back over the communication

medium.

TUnpack: The time it takes to interpret the result.

Figure 2.6 Total time of a blocking LINDA getter primitive

TPack + TSendRequest + TQueue + TProcess + TBlock: + TSendReply + TUnpack

They claim the LINDA primitives could be made more efficient by enabling the computa-
tional language to work in parallel with the LINDA primitives. In doing so, the formula in
Figure 2.6 could be reduced for the getter LINDA primitives and setter LINDA primitives

shown in Figure 2.7 and 2.8, respectively.

Figure 2.7 BONITA’s time for getter primitives

TPack + TUnpack:

Figure 2.8 BONITA’s time for setter primitives

TPack
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To achieve an increase in efficiency, four new primitives were created to replace the
LINDA primitives: dispatch and dispatch_bulk primitives (which are asynchronous), arrive,

and obtain. They are described below:

rqid = dispatch ( tsl , tuple | [ template , destructive | nondestructive | )

an overloaded primitive that either returns a tuple to a process or inserts a tuple into
tuple-space tsl. If template is specified then this will remove a tuple and additional
information is required: destructive or nondestructive. Destructive would actually

remove the tuple from tsl while nondestructive simply makes a copy of the tuple.

rqid = dispatchBulk ( tsl , ts2 , template, destructive | nondestructive )

requests the tuples matching template in tuple-space tsl be moved into tuple-space

ts2.
arrived(rqid) :

detects if the tuple arrives that is associated with rqid.

tuple = obtain(rqid) :

a blocking primitive that waits for the tuple associated with rqid to arrive.

For example, consider the two code fragments, 1 and 2 respectively, in Program 2.1.
Assume that retrieving a matching tuple from tuple-space ts; and the method call do-
ExpensiveCalculation() take x and y seconds to process, respectively. Since the dispatch
method on line 1a is asynchronous, it immediately returns an id. At this time, the dis-
patch method can, and is, working in parallel with the execution of line 1b in the client
process. Since both are working in parallel, by the time line 1d executes, the max(x,y)
seconds would have elapsed. Consider now the code fragment on lines 2a-2c. On line 2a,
the process executes a blocking in primitive which of course takes x seconds to process.
Once complete, the client process executes the method doExpensiveCalculation(), which

takes y seconds. By the time line 2c is executed, x + y seconds have elapsed.
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Program 2.1 BONITA’s primitive and LINDA’s primitive

(1a) id1 := dispatch( tsl , template , destructive)

(1b) doExpensiveCalculation()

(1c) tuple := obtain(idl)

(1d) wuselt(tuple) // max(x,y) seconds have elapsed

(2a) tuple := in( tsl , template )
(2b) doExpensiveCalculation()
(2¢) uselt(tuple) // x + y seconds have elapsed

2.6 Event-driven Models

Event-driven models are based on a client process registering and unregistering for occur-
rences of a tuple that matches a specific template being inserted into a specific tuple space.
As these tuples enter the tuple space, the registered client process receives notifications of
the tuple and the tuple space to which it will enter. This type of notification is not used
as a blocking (synchronizing) mechanism but for a client to register and continue process-
ing. Thus, as a client process executes, a notification can arrive by calling a predefined
method. As the event is sent to the client process, the execution flow in the client process
is interrupted and goes to the notified method.

Several LINDA derived models exist that support event-driven facilities including LIME
(Linda in Mobile Environment) [PMR99], JavaSpaces [Sun97] and TSpaces [IBM98]. Among
LIME’s primitives is one that is called reactsTo. The syntax of this primitive is T.reacts-
To (cf,p) where T is the tuple space that is registering this reaction, cf is a code fragment
containing non-reactive statements that are to be executed when a tuple matches the pat-
tern p. Hence, when a tuple is being inserted into tuple-space T that matches pattern p,
the code fragment is executed. One example of a code fragment is it can out the tuple
matching the template to another tuple space.

JavaSpaces, written using the Java programming language, is Sun Microsystem’s imple-
mentation of LINDA. In addition to the implementation of the LINDA primitives, this model
has an event-driven application programming interface (API). The JavaSpace interface has

a method allowing events to be registered. This method, called on a javaspace (analogous
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to a tuple space), is called notify(). One of the parameters is the template that will be
matched against the tuples entering into the javaspace. Another parameter is an instance
of a class that a developer writes that implements the RemoteEventListener interface for
a client process. The RemoteEventListener interface has one method called notify() that

is passed a RemoteEvent object:
void notify(RemoteEvent theEvent)

Before a tuple that matches a registered template is inserted into a javaspace that has
an event listener, the client process is immediately notified of that tuple. The event-
driven capability in JavaSpaces sends the event notification to the registered client process.
Program 2.2 illustrates an example of an event-driven implementation. Note on line 15 of
the example a method called take() is executed: For JavaSpaces, this method is analogous

to the in primitive in LINDA. The data type Entry on line 15

Program 2.2 JavaSpaces event-driven model

(¢D) public class Example implements RemoteEventListener

@ A

3 JavaSpace aJavaSpace;

4

(5 public Example()

(6) {

(7) e

(8) aJavaSpace.notify( template, .. , this , .. , null);
(9) e

(10) }

an

(12)

(13) public void notify(RemoteEvent theEvent)

(14) {

(15) Entry tuple = aJavaSpace.take( template , .. , ..);
(16) ces

7 }

(18)

(19) }

TSpaces, created by IBM and written in the Java programming language, is also based

on LINDA. It, too, has developed an event-driven API that is associated with a single tuple
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space object. Registering for an event involves invoking the eventRegister() method for
that tuple space. Two parameters of particular interest are the template and the callback
object. The template is used for matching every tuple coming into a particular tuple space.
The callback object is an instance of a class that implements the Callback interface. This
interface contains one method: call(). One of the parameters of this method is the tuple
matching the template. Another parameter is the tuple space name where the tuple came
from. Like JavaSpaces, the event-driven capability in TSpaces sends events externally to

the registering client process. Program 2.3 is an example of this event model.

Program 2.3 TSpaces event-driven model

(1) public class Example implements Callback

@ A

(3

4 public Example()

(5) {

(6) .

4P tupleSpace.eventRegister( .. , template , this , .. );

(8

(9) }

(10)

(GRD) public boolean call( .. , String tupleSpaceName , .. ,
SuperTuple tuple , .. )

(12) {

(13) -

(14) }

(15)

(16) 1

2.7 Conclusion

This chapter discussed some semantics and descriptions of the LINDA model. The pre-
liminary foundation of LINDA and its primitives were conceptualized. Finally, SCOPES,
Boni1TA, YORK LINDA IT and Event-driven models were described. Note that these models
focused the semantics of their primitives returning a single tuple. Additionally, semantics

for sending a tuple to a tuple space involved one tuple space at a time.
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Motivation

This chapter focuses on the differences of the semantics described in Chapter 2. While all
the described models are descendants, none completely addresses the issue of expressing
multiple-tuple-space primitives. For clarification, accessing multiple tuple spaces at once
means several different tuple spaces or the same tuple space several times being accessed
using the same primitive. Furthermore, defining semantics that express accessing multiple
tuple spaces at once could produce efficient and scalable primitives. Efficiency is defined as
the amount of time it takes to execute a particular primitive. For a consecutive list of the
same getter primitives using the same template accessing several tuple spaces, a scalable
primitive implies that it is not necessary to execute the same primitive more than once: it

is sufficient to somehow combine those tuple spaces and execute a single primitive call.

3.1 Linda Model

This section covers the getter and setter primitives provided by LINDA. Some differences
and expressiveness of this model are exposed that pertain to the proposal of this thesis.

Another motivation for this thesis is the difference of expressiveness with SCOPES.

22
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3.1.1 Linda Model Setter Primitives

A common architecture in software is the producer/consumer: A single process “produces”
topics that subscriber-processes have requested. Figure 3.1 illustrates process P (a pro-
ducer) sending n topics to consumer processes Cy ... C,,. Consumers generally subscribe
to and unsubscribe from a producer process’s topics. Naive implementations of a common
producer process can end up sending n copies of the same topic to n different consumers. If
these topics are all the same, could one topic simply be broadcasted to n consumers? Yes,
LINDA feasibly expresses sending a topic to a single tuple space and multiple consumers
retrieving a copy of that topic (via the rd primitive). Taken one step further, a problem
with this approach is how would the producer easily know that the last consumer has re-
trieved the tuple and the producer can remove the tuple. Menezes states that tuples are
not garbaged collected: tuple spaces are [Men98]. What is also important is a producer
in LINDA sending the same topic to n different tuple spaces: It would have to make n out

primitive calls. If n is large, this could create a scalability issue.

Figure 3.1 Producer/Consumer Architecture

Consumer;

Consumer,

Producer

Consumer,,

LINDA supports the producer/consumer architecture through the use of the setter and
getter primitives discussed earlier. Figure 3.2 illustrates this architecture where the pro-
ducer sends two identical items to each of the two consumers’ tuple space. “Subscription”
means that a consumer does a “get” using the in primitive and a template! matching the

produced item. Code is shown in Figures 3.3 and 3.4 for the producer and two consumers,

1 This example purposely overlooks how the producer knows there are two consumers and for what they
have subscribed.
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respectively.

24

Figure 3.2 LINDA producer/consumer architecture

tuple-space tsl
tsl.out(?item)
tsl.out([item]
Producer
ts2.out([item])
ts2.in(7item)
tuple-space ts2

Consumer 1

Consumer 5

Figure 3.3 LINDA producer code from Figure 3.2

while (true) do
item = computelt();
ts1.out(newT uple(item));
tso.out(newT uple(item));

end

Figure 3.4 LINDA consumer code for Consumer; and Consumers, respectively, from

Figure 3.2
while (true) do while (true) do
item = ts;.in([?item]); item = tsq.in([?item]);
doSomething(item); doSomething(item);
end end

The code in Figure 3.3 illustrating LINDA’s ability to send the “item” serially to different
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tuple spaces has limitation on scalability. If the number of consumers is large, then LINDA’s
out semantics state that for each consumer, there must be an out primitive executed by
the producer. How well can this primitive scale? What is needed is semantics that allow
more than one tuple space, possibly the same tuple space, to be accessed with one primitive
call using the same tuple or template.

For the code in Figure 3.3, Property 3.1.1 reflects the scalability of consecutive serial

calls using the LINDA’s out primitive with the same tuple.

Property 3.1.1 (Scalability of LINDA’s out primitive.) Let S be a set of tuple-spaces ts1,

tsa, ... , tsn. ThenV ts;, where i = 1..n, 3 n out primitive calls being erecuted.

Consider now LINDA’s eval primitive and rewriting the code in Figure 3.3 to be a
producer using an eval primitive. Figure 3.5 illustrates this code. LINDA is trying to
achieve sending the same results of fi(z1),f2(22), ... ,fn(%s) to both ¢s; and ts,. Consider
that each eval’s fi(x;) in Figure 3.5 returns an object consisting of the date and time.
Furthermore, consider that f,(z,) is an expensive function taking no less than x seconds
to process. Then, the values for fi(z1) for each eval will be different by no less than x
seconds. Again, two different tuples will be placed into ts; and tss. Therefore, LINDA
cannot provide a good solution.

In addition to the above argument, if the client is multi-threaded, further data anomalies
could occur between the execution of the first eval and the second eval in Figure 3.5.
Consider that thread A is executing the while loop in Figure 3.5. Thread A could have
just finished the execution of the first eval primitive when thread B starts and changes a
data value affecting the result of fa(x2). When thread A resumes, the result of f2(z2) in the
second eval primitive will be different from the first eval primitive. One solution could be
that f2(z2) needs to be considered a critical method and thus allowing only one thread to
be executed. However once the first eval primitive is complete ( f2(22) has completely been
evaluated), thread B can enter into that method and thus causing the same data anomaly
for the second eval primitive. Another solution could be that the two eval primitive calls
are the critical section and thus thread B needs to be aware of this. However as more
solutions are proposed, it must be asked: What is the real reason that the second eval has

this data anomaly? fa(z2) already needs to be a critical method because of its execution
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in the first eval primitive. The real problem is that the eval primitive does not allow
the tuple resulting from the evaluation of each f;(x;) to be sent to two tuple spaces using
one primitive call. The solution and this type of expressive power will be illustrated in the
next chapter.

As with the out primitive, semantics is an issue with the eval. It can be argued that
if fi(z1) needs to be executed twice and f,(zy) is an expensive function to execute once
let alone twice, then why use the eval and not just an out primitive. Recall one of the
benefits of the eval primitive is that each f;(x;) is executed in parallel in the LINDA kernel.
Unarguably, the computational language can implement its own generic parallel processing
algorithm so that each f;(z;) can execute in parallel (outside the LINDA kernel). However,
why should the computational language implement another algorithm to duplicate parallel
and synchronization that LINDA inherently provides just to avoid using the eval primitive?
In addition, this solution does not solve the semantics argument described above with the
out primitive using Property 3.1.1. It will be shown later how LoGOP LINDA feasibly

solves this problem.

Figure 3.5 LINDA producer code using the eval primitive

while (true) do
tsl'eval([fl (-1'1)7 f2(.fL'2), EE) fn(mn)]):
ts?'eval([fl (-1'1)7 f2(.fL'2), EE) fn(mn)]):

end

3.1.2 Linda Model Getter Primitives

Figure 3.6 illustrates a process called P; blocking on both ts; and tse at the same time
using the in primitive. Because LINDA can also do synchronization, P, cannot proceed
until receiving a tuple from both ts; and ts; matching template. How can LINDA express

this situation?
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Figure 3.6 P, and P; both executing an out that will match template

tsl
P2 tsL.out(tuple)
D tsl.in(template)
I:)1
PBD ts2.out(tuple) ts2.in(template)
ts2

|

Figure 3.7 LINDA consumer code for P; in Figure 3.6

tuplel = ts;.in(template);
tuple2 = tsy.in(template);

proceed();

Consider the code in Figure 3.7 that synchronizes on both tuple-spaces ts; and tsy and
once both primitives unblock, calls a method proceed() for further processing. The code
first blocks on ts; and then on tss. If the order of blocking in the tuple spaces is important,
then this is a justifiable solution. As the code is currently written in Figure 3.7, the total

time for both in primitives to retrieve existing tuples would be:
time; + times

where time; is the time for the first in primitive and timey is the time for the second

in primitive. However, if order of blocking is not important, then the total time for both
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primitives to retrieve existing tuples would still be the same.
If order is not important, why could not the two primitives be done in parallel? If the

primitives could be done in parallel, the total time for retrieval would be
max(time; , times)

Furthermore, speculating on scalability, if n tuple spaces were involved, the time for a

non-parallel solution would be:
Yo time;
Whereas a parallel solution time would be:
max ( time; , times , ... , timey,)

If order is not important, it can be argued there is a coordination pattern that LINDA
cannot achieve due to serial access to tuple spaces. Figure 3.8 illustrates a time line of this
access. Consider at time;, process P; begins blocking on the first in primitive in Figure

3.7. Immediately after time;, process P3 does a
tsp.out ( tuple);

at times. And at a much later time, ¢times, another process (P from Figure 3.6) starts up

and begins to block on
tsp.in ( template);

Since Py is the only process blocking on tss and a tuple exists from process P3 that pre-
sumably matches template, it will remove the matching tuple and proceed. At this point
a side effect occurs because of serial access to tuple spaces and the blocking characteristic
of the in primitive.

To avoid the blocking, Figure 3.7 is rewritten using the inp primitive and is now shown

in Figure 3.9.
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Figure 3.8 Side effect using in. The ellipses in the time line represent “at a much later

time
P, tsl.in(template); ]
time

P ts2.out(tuple);

3
time

P, - - - - |ts2.in(template);
P,removes the

tuple from ts2
side-effecting B

time,
P, tsl.out(tuple);
|—>Ti me

time”

Figure 3.9 LINDA consumer code

while ( Either tuplel or tuple2 is null ) do
if ( tuplel is null ) then
tuplel = ts_1.inp (template);
fi
if ( tuple2 is null ) then

tuple2 = ts_2.inp (template);

end

process();

Because the inp primitive is nonblocking, it immediately returns a null if a tuple is not
found matching template. The code in Figure 3.9 suffers from another efficiency problem:
a polling mechanism [Hoa85]. The while loop coupled with an inp primitive is doing
a continuous poll for the data. Polling can be quite expensive and be architecturally
prohibitive. Another issue of the polling is the number of tuple spaces: As they increase,
the efficiency decreases; hence, it suffers from a lack of scalability.

The only feasible solution is for LINDA to execute each in primitive in parallel. Exe-

cuting an in primitive in parallel solves both problems of scalability and polling. Figure
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3.10 solves the timing problem noted in Figure 3.8.

Figure 3.10 Parallel execution of the LOGOP LINDA in primitive in Figure 3.6 for P,
time;
P, in(tsLAND ts2,
template);

time
P3 ts2.out(tuple);
time;

P, lock tuple .
time, * No side-effect by R,

Py L ts2in(template); | mey
P, tsl.out(tuple);
'—>Ti me

Note that under time; in Figure 3.10, the in primitive, accessing tuple-spaces tsl and ts2,
is executed and both are blocking on their respected tuple spaces at the same time. Thus
at times, Py locks the tuple (inserted by Ps) in tuple-space ts2. The concept of locking a
tuple will be explored further in Chapter 4.

The important concept between Figures 3.8 and 3.10 is the concept of “at a much later
time”. For both diagrams, the calculation of time starts after P3 executes the out (t¢sa,
tuple). This “later time” is the same quantity in both 3.8 and 3.10. Conceptually, the
second in primitive from Figure 3.7 suffers from not being able to execute because the first
in primitive is blocking. In addition, note the ellipses from Figures 3.8 and 3.10. They

both start immediately after P3 executes
tse.out (tuple)

Again the advantage allowing P; to lock a matching tuple in tuple-space ts, (and eventually

remove it) is depicted in Figure 3.10.

3.1.3 Scopes Model

The authors of the SCOPE concept covered in the previous chapter never mention in their
semantics efficiency and scalability of their model. However, their proposal is primarily

about the semantics of overlapping tuple spaces: in other words the concept of orthogonal
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tuple spaces in the context of Venn diagrams [MWO00]. Additionally, the authors offer
another interpretation of overlapping tuple spaces: the orthogonal intersection of tuple
spaces is a hidden area. These interpretations are what makes SCOPES a powerful extension
to LINDA.

Consider the SCOPES code in Figure 3.11. When the & operator is used, an additional
data structure for the new SCOPE needs to be updated on the server. Furthermore, the
operators do not remove actual SCOPES from existing SCOPES: Based on the semantics,
the operators create new SCOPES not containing certain names or other SCOPES. In a large

scale environment, this could prove prohibitive.

Figure 3.11 SCOPES producer code

combinedScope = (a ® b);

while (true) do
item = computelt();
out(combinedScope, [item));

end

Recall from Chapter 2 in Table 2.5 that the ® and @ eliminate duplicate names when
a new SCOPE is created from existing SCOPES. This type of semantics prohibits ever being
able to express inserting n copies of a single tuple into a SCOPE using a single primitive
call.

While Scoprgs offers this expressiveness to block on a single SCOPE, it does not express
well what gets returned based on the SCOPES’ contents. When using an in primitive,
ScoPEs will remove and return a single tuple that matches template and the SCOPE
where it is found [MWO00]. However, this is not scalable. Consider that a SCOPE contains
two sets, name; and names, and because of associative matching in LINDA, name; and
names could both contain different tuples that match template. However, SCOPES would
only remove from either name; or names but not from both. It will be shown later that
LocOP LINDA returns the proper number of tuples and tuple spaces listed in the primitive.

Since SCOPES consists of multiple sets, this implies that a tuple can go into x number



CHAPTER 3. MOTIVATION 32

of different sets’ name using one out primitive call. This is scalable and also efficient;
however, this one tuple is shared by all sets. However, how can SCOPES put the same
tuple into the same SCOPE x times using one out primitive call? Recalling the examples
of SCOPE operations from Table 2.5, the answer is SCOPES cannot express this effectively

due to the results in lines 2 and 8 shown below from that table:
2: [a,b] @ [b,c] = [a,b,c]
8: [ab] ® [bc] = [abc]

In the first example (row labeled #2), note the equivalent SCOPE only contains one “b”;
likewise the same is shown in row labeled #8. So retrieving x tuples or inserting x tuples
requires x number of primitive calls. It will be shown later that LoGOP LINDA solves this

limitation of scalability and efficiency.

3.2 Bonita Model

Recall that the BoNITA Model proposed better efficiency by introducing asynchronous

primitives. Consider Figure 3.12 (which is a rewrite of code from Figure 3.3).

Figure 3.12 BONITA producer code

while (true) do
item = computelt();
dispatch(tsy, [item]);
dispatch(tss, [item]);

end

Rowstron and Wood [RW97] state that the time factor for the asynchronous dispatch
primitive is:
TPack

Figure 3.12 has two dispatch calls. This implies that the total time inside the while loop

for each iteration is:
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2 * TPack

Although the dispatch primitive is asynchronous, it does not express well when the same
tuple needs to be sent to different tuple spaces or several copies of the same tuple need to
be placed into a single tuple space. Property 3.2.1 states the time it takes for n dispatch

calls to be made.

Property 3.2.1 (Number and time of BONITA’s dispatch primitive calls in setter mode.)
Let S be a set of tuple spaces tsy, tsa, ... , ts,. ThenV ts;, where i = 1..n, 3 a dispatch

primitive being called. Therefore, the time taken for all n dispatch calls is Z?:l Tpack-

The BoNITA model also claimed in Section 2.5 that its asynchronous dispatch method

can retrieve a tuple from a tuple space in

TPack + TUnpack

time. If the process expresses that n tuples need to be retrieved using the same template
from a single tuple space or n different tuple spaces then the total time taken is going to

be

Z?:l (TPack + TUnpack)

Furthermore, it will take n primitive calls. Such time efficiency and number of primitive
calls can be better. In fact, by defining new semantics that will access multiple tuple spaces
with a single (either getter or setter) primitive call could prove more expressive and may
even, during runtime, provide better time efficiency.

While BONITA expresses powerful efficiency through the use of asynchronous primi-
tives, this thesis takes a different approach and will be explained during the discussion of

semantics covered in Chapter 4.

3.3 York Linda IT Model

Recall the YOrRK LINDA IT [RW96] has two additional primitives called copy and collect.

While these are considered bulk primitives, there are scalability concerns when tuples
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from more than one source tuple spaces need to be copied or moved into more than one
destination tuple spaces. For example, if there are five tuple spaces and at time t each
need to copy their own tuples matching template to the other four tuple spaces, then there

will be 5 * 4 primitive calls. Program 3.1 lists the pattern of primitive calls.

Program 3.1 YORK LINDA IT copy primitive
(1) count = copy( tsl, ts2, template );

(2) count = copy( tsl, ts3, template );
(3) count = copy( tsl, ts4, template );
(4) count = copy( tsl, tsb, template );
(5) count = copy( ts2, tsl, template );

(6) count = copy( ts2, ts3, template );

(17) count = copy( tsb, tsl, template );
(18) count = copy( tsb, ts2, template );
(19) count = copy( tsb, ts3, template );
(20) count = copy( tsb, ts4, template );

If n tuple spaces do this, then there would be n * (n-1) primitive calls: This would not scale
well if n is a large number. Furthermore, on row #5, when ts, copies its contents back into
ts1, tsy will receive copies of the same tuples that it sent to ts, in row #1. This contradicts
the initial coordination pattern in which the tuples in the five tuple spaces were to copy
their contents at time t over to the other four tuple spaces. Time t for row #1 and row
#5 are different thus creating an incorrect result for the pattern. Semantics that achieve
the desired results of accessing multiple source and destination tuple spaces at once would

alleviate the coordination pattern just described.

3.4 Event-driven Models

The Event-driven JavaSpaces and TSpaces models discussed in Section 2.6 both allow one

notification at a time to be called back to the client process that has registered the event.
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Furthermore, if several registrations exist across different tuple spaces, the semantics do
not support receiving a group of events in a single notification.

The LIME semantics of reactsTo executes a code fragment containing non-reactive
statements based on a tuple matching a template entering into a tuple-space T. Assume
the non-reactive code calls back on the client process and several tuple spaces each have a
reactsTo listener for the same template. If a tuple is placed in each tuple space matching
the template at the same time, then the client process will be notified in serial of all events.
If a client process is blocked on receiving event notifications, then at a single point in time
the client process will unblock when only one event has occurred. However, since several
events occurred at the same time, the client process will proceed when it receives the first
event. It may be incorrect for the client process to proceed with only one event when
several occurred at the same time.

Although semantics for an event model discussion in this thesis does not exist, further

discussion of this topic will be continued in Chapter 7.

3.5 Conclusion

All models discussed is this chapter have limitations of expressiveness and in most cases
execute too many primitive calls. The number of executed primitive calls can be improved.
The next chapter addresses how LocOP LINDA solves these differences with better ex-
pressiveness and decreased number of primitive calls; in addition, without increasing or
decreasing the number of LINDA primitives, a new concept will be introduced for LINDA
called parallel primitives: using a single getter primitive to access and retrieve from more
than one tuple space simultaneously and for a single setter primitive to access more than

one tuple space simultaneously when the same template and tuple, respectively, is specified.



Chapter 4

Logical Operators

Chapter 3 illustrated the differences of semantics with certain LINDA models. These dif-
ferences are the main motivation behind the proposal of LoGOP LINDA. This chapter
defines the semantics of LoGOP LINDA operations. Additionally, some of the coordination
patterns that are achievable by LogOp LINDA will be covered.

It is important to understand that LOoGOP LINDA does not combine primitives but
combines tuple spaces. For example, the following could be combined into one primitive

call

in ( ts1,template)

in ( tss,template)
as such

in ( combine(tsy, ts2) , template)

whereas the following can be combined into three separate calls

in ( tsy,template)

in ( tsq,template)

rd ( ts3,template)

rd ( tso,template)

36
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out ( sy, tuple)
out ( ts1, tuple)
out ( ts4, tuple)
as such
in ( combine ( ts1, ts2) , template)
rd ( combine ( ts3, ts2) , template)
out ( combine ( tss, tsy, ts4) , tuple)

How tuple spaces are combined is the basis of this thesis and will be explored in detail
throughout this chapter. In addition, when tuple spaces are combined, the primitive does

not force order of how tuple spaces are processed: the tuple spaces are processed in parallel.

4.1 Semantics

LocOP LINDA is an extension of LINDA! and does not add any new primitives. The
semantics described below will be an extension of the semantics described in Table 2.2.
Because LoGgOP LINDA deals with multiple tuple spaces per primitive, Table 2.3 will be
modified and merged into the discussion to show how LoGOP LINDA semantically accesses
multiple tuple space. The logical operators covered are And, Or, and Not.

In this section, the remove or copy characteristics of in/rd and inp/rdp respectively
have no effect on the semantics of each primitive because the logical operator affects what
tuple spaces are accessed and not whether a tuple is removed or copied from them. In
addition, this chapter will compare and contrast the properties listed in the previous chap-
ters to new properties addressed in this chapter. Because LOGOP LINDA combines two
or more tuple spaces for the in, inp, rd, rdp primitives, a list of pair values are returned
and will consist of the tuple itself along with the tuple space where the tuple is found.
Similarly the in and inp primitives are still blocking primitives while rd and rdp are still

nonblocking primitives. The value returned from the collect and copy primitives will be

1For clarification, LINDA will contain primitives from the original LINDA, MTS-LINDA and YORK LINDA
II.
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a list of countPair. A countPair contains the number tuples copied/moved and the source
tuple space.

Processes create new tuple spaces by using the tsc primitive and such processes can put
that new tuple space into an existing tuple space by creating a tuple containing the new
tuple space actual and using the out primitive to put the tuple into the Universal Tuple
Space or other existing tuple spaces that have been created. The process can retrieve tuples
containing a tuple space actual by using the getter primitives and specifying a tuple space
formal. The term “well known tuple spaces” is in context of the client process executing
a LocOP LINDA primitive. A client process can obtain tuple space handles through two
mechanisms. First, the process creates a new tuple space using the tsc method, or second,
the process retrieved a tuple containing a tuple space handle. Based on these mechanism,
as it executes, the client process knows several existing tuple spaces in the LocOP LINDA
kernel: These tuple spaces are termed well known. Furthermore, if the client process is
executing a non-tsc primitive, its well known tuple spaces do not and cannot change: An
external client process or the kernel cannot remove a well known tuple space from another
client process. Furthermore, even garbage collection cannot reclaim a tuple space inside

the kernel because a handle is stored inside the client process [Men98].

4.2 And Logical Operator

Table 4.1 contains code that will aid in discussion of the And operator. The in and rd
primitives in Table 4.1 return a list of pairs to the calling process from each of the tuple
spaces (ts1, ... ,tSp) that matches template. Since these primitives are blocking, they will
not return until one tuple has been obtained from each tuple space listed. The inp and
rdp primitives are non-blocking and they return a list of pairs of minimum length 0 (when
no tuples match the template) up to n, where n is the number of tuple spaces that are
checked. The out primitive places tuple into each of the tuple spaces (ts1, ... ,ts,) listed.
The eval is similar to the LINDA eval primitive. However, once the tuple is created, it is
placed inside each of the tuple spaces listed. For each tuple space that is in the source list of

collect, its tuples that match template are moved to each listed destination tuple space.
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The collect returns a list of countPair. Each countPair consists of the number of tuples
moved from the source tuple space and the tuple space itself. The copy primitive works
similarly to the collect but just copies the tuples matching template. For example, when
out (A (ts1,ts2),[“henry”,“male”]) executes, the tuple will be placed in both tuple-spaces
ts; and tsp. Assume that fi(z1) returns “mike” and fao(z2) returns “male”, then when
eval (A (ts1,ts2),[f1(21),f2(22)]) is executed, the tuple [“mike”, “male”] will be placed into
both ts; and tss.

Table 4.1 Code to aid in the semantics of the LoGOP LINDA primitives using the And (A)

operator

Primitive | Code

in results := in ( A (ts1, ts2 {, ... , ts, }) , template)

inp results := inp ( A (ts1, ts2 {, ... , ts, }) , template)
rd results := rd ( A (ts1, tsa {, ... , tsp }) , template)

rdp results := rdp (A (ts1, ts2 {, ... , tsp }) , template)
out out (A (ts1, ts2 {, ... , tsn }), tuple)

eval eval (A (ts1, ts2 {, ... , tsn }), tuple)

collect | list := collect ( A (tSa1, tSq2 {, - stSan }) » A (tSp1, tsp2 {; ..

, tSpn }) , template)

copy list :== copy ( A (tSa1, tSa2 {, - ;tSan }) 5, A (tSp1, tsp2 {, ...

, tspn }) , template)

Figure 4.1 contains three tuple spaces to assist with the following examples. When in
( A (ts1, tsa), [ String , “female” ] ) is executed it will remove and return two pairs: ( [
“sue” , “female” | , ts1) and ([“ammie”,“female”] , ts2). When inp ( A ( ts1, ts2) , [ “tom”
, “male” ] ) is executed, it will return one pair: ( [“tom”,“male”] , ts1). When rd ( A ( ts1,
tss) , [ “larry” , “male” ]), it will simultaneously get a copy of ( [“larry”,“male”] , ts2) and
block in ts; for a matching tuple. When rdp ( A ( ts1, tsa), [ “joe” , “male” ] ) is executed

it will immediately return (will not block) an empty list because a tuple containing [ “joe”

, “male” ]| does not exist in tuple-spaces ts; and tss. When copy ( A ( tsy, tsa), tss3, [
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?Name , “male” ] ) is executed, it will copy a total of four (two from each tuple-spaces ts;
and tsy) tuples into tuple-space ts3. When the primitive returns to the calling process, a
list of length two of countPair: 2, ts; , 2, ts3. Tuple-Space ts3 consists of these tuples.

The collect behaves similarly but moves the matching tuples.

Figure 4.1 Three simple tuple spaces used in illustrating the and operator
ts ts2

["sue","female’]
["tom","male"]
["henry","male"]

["arry","male"]
["henry","male"]
["ammie","femal€"]

["tom","male"]
["henry","male"]
["henry","male"]
["larry","male"]

tS3

4.2.1 Semantics Description of the And Operator

Blocking for the in and rd primitives occurs for two reasons. The first happens because of
the blocking nature of these primitives in a LINDA model. The second, deals with the new
semantics in LOGOP LINDA. The result of a template matching a tuple in a tuple space
can either be a 1 or a 0. The value of 1 represents that a tuple exists and can be sent back
to the calling process; the value of 0 represents no tuple existing and thus the primitive
blocks. These primitives will only unblock if all individually listed tuple spaces return a
value of 1; otherwise, if a single tuple space returns 0, the whole primitive is still blocking.

Consider the following scenario:
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results := in ( A (tsq, tsq, ts3) , template)

Internal to the LOGOP LINDA kernel, the primitive would unblock if and only if after all

tuple spaces return a 1 value shown below:
results := in (1 A 1 A 1, template)

and would remain blocked if any of the tuple spaces (ts;- ts3) did not have a tuple matching
template. Below illustrates tso not having a tuple matching template. This explanation

is the same for the rd primitive.
results := in (1 A0 A 1, template)

Property 4.2.1 (in/rd primitive internal blocking/unblocking in the LOoGOP LINDA ker-
nel) Let S be a set of tuple spaces tsy, tsa, ... , ts, that need to be checked using either
the in or rd primitive. Then V ts;, where i = 1..n, a value of 1 must be returned for each

tuple space before the primitive’s result can be returned to the calling process.

Because of the And operator and the nonblocking characteristic of the inp and rdp
primitives, each tuple space listed will be checked only one time in parallel. The possibility
of these tuple spaces being checked more than once will be discussed in Section 4.3.2. Once
all tuple spaces are checked, the primitive returns to the calling program. The length of
the list returned to the calling process depends on the number of tuples retrieved. If no
tuple space contained a tuple matching the template, then the list will be of length 0. If,
on the other hand, all tuple spaces contained a matching tuple, then the list would be of
length n where n is the number of tuple spaces.

One important concept about each of the getter primitives is as soon as a tuple matching
a template is found in ts;, that tuple is locked by the primitive for the calling client process.
For example, consider process A executing in ( ts; and tss, template). If a tuple is only
found in ¢sq, then this primitive should mark that tuple a being locked by process A. This
ensures if process B executes in ( ts;, template), B will block if no other tuple exists in
ts; (other than the one locked by process A). How a tuple is “locked” depends on the

implementation of this model.
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This also describes an important concept in the LOGOP LINDA: deadlock. Consider

processes A and B and both are executing the following primitive
in (A (ts1, ts2) , template)

where template is the same for both processes. Consider now that in tuple-spaces ts; and
tsy there is only one tuple that matches template. If processes A and B issue the above
command and A checks ts; while process B checks tss, both tuples will be “locked”. Since
this is an And operator, each process must also check the other tuple space: process A
checks ts2 and process B checks ts;. At this point, a deadlock will occur for both process
A and B because there will not be any tuple that matches the template in the most recently
checked tuple spaces. Deadlock is an important issue and will be discussed in Chapter 5.

The out and eval semantics are very similar to the getter primitives: all tuple spaces
are accessed. The obvious difference with these primitives is the tuple spaces receive the
tuple specified in the respected primitive. In addition, recall in section 3.1.1 the argument
of evaluating each f; function listed in the serial eval primitive calls. This will be shown in
chapter 5, but speculating on efficiency, since multiple tuple spaces can be specified in one
eval primitive call, all f; functions should be evaluated only once, no matter how many
tuple spaces are listed.

The bulk primitives copy and collect have improved semantics. Similar to the getter
and setter primitives, all involved tuple spaces are accessed with a single primitive call.
The semantics enables a single source tuple space to be broadcasted to n destination tuple
spaces. Likewise, n source tuple spaces can be sent to a single destination tuple space
and similarly, the semantics allows n source tuple spaces to be sent to m destination tuple
spaces with one primitive call. Furthermore, a requirement of sending the tuples matching
a template at time t from n source tuple spaces to n destination tuple spaces is now
achievable with this semantics where as in YORK LINDA II it was not. Recall the code
in Program 3.1. It can now be written as shown in Program 4.1. Recall the requirements
about Program 3.1: at time t each source tuple space needs to copy their own tuples

matching template to the destination tuple spaces.
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Program 4.1 YORK LINDA II copy primitive

(1) countPair = collect( and (tsl, ts2, ts3, ts4, tsb),
and (tsl, ts2, ts3, ts4, tsb),
template );

4.3 0Or Logical Operator

This section discusses the semantics of the Or operator. To assist the explanation, code
in Table 4.2 is provided. The in and rd primitives return a list of pairs. The minimum
number of pairs returned using the or operator is one and the maximum is based on the
number of listed tuple spaces. Since the inp and rdp primitives do not block, the minimum
number of pairs returned is zero and the maximum is the number of listed tuple spaces.
The out and eval primitives nondeterministically chooses between one and n tuple spaces
from the list and places in each chosen tuple space the tuple. The collect primitive
nondeterministically chooses between one and n source tuple spaces and moves the tuples
matching template into between one and n nondeterministically chosen destination tuple
spaces. The copy primitive works similarly to the collect except it copies the matching

tuples. Both of these primitives returns a list of countPair.
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Table 4.2 Code to aid in the semantics for the LOoGOP LINDA primitives using the Or (V)

operator

Primitive | Code

in results = in ( V (¢s1, tsa {, ... , ts, }) , template)

inp results = inp ( V (ts1, ts2 {, ... , tsn }) , template)

rd results = rd (V (¢s1, tsa {, ... , tsn }) , template)

rdp results = rdp (V (ts1, ts2 {, ... , tsp }) , template)

out out (V (ts1, ts2 {, ... , tsn }), tuple)

eval eval (V (ts1, ts2 {, ... , tsn }), tuple)

collect | countPairs = collect ( V (tSa1;, tSa2 {, - tSan })
V (tsp1, tsp2 {, ... , tSen }) , template)

copy countPairs = copy ( V (tSa1, tSa2 {, --- stSan }) , V (tsp1, tse2 {,
e, tSpn }) , template)

4.3.1 Semantics Description of the Or Operator

The LoGOP LINDA kernel determines how and when the in and rd primitives unblock can

be viewed as a series of 1s and 0s. The in and rd primitives will remain blocked until at

least one of the tuple spaces listed return a 1 value stating it found a tuple which matched

the template. The Or operator has a distinct characteristic from the And operator: It will

not block and wait for all tuple spaces to return a value of 1. Hence, given the following

in primitive below

results = in ( V (¢s1, tss, ts3) , template)

will unblock if, and only if, one or more tuple spaces returns a one (1). Below illustrates

that ts; and tsy; have a tuple that matches template and thus will return them and which

tuple spaces they came from.

results = in (1V 1V 0, template)
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The Or operator has different semantics than the And operator using non-blocking
primitive inp. Because it does not block, a tuple that matches the given template does
not need to exist in any tuple space in order for the primitive to return to the calling process.
Hence the following statement shows no matching tuples and will return immediately to

the calling client process with a list containing no entries.
results = inp (0 V 0 V 0, template)

The above examples and the discussion using the in and inp primitives can be interchanged
with rd and rdp primitives, respectively.

The out and eval semantics for Or operator imply the LINDA kernel can nondeter-
ministically choose the destination tuple spaces. This type of nondeterminism of choosing
tuple spaces can possibly increase efficiency during runtime and will be discussed shortly.

If a client process is blocked on two tuple-spaces ts; and tso using the Or operator and
another process inserts simultaneously a tuple into both ts; and ts, that would unblock

the client process, the client process should receive both of the tuples.

4.3.2 Location-aware

The semantics for the Or operator leads itself toward a very interesting coordination pat-
tern: choosing which tuple spaces out of the original given list can be deferred to the
LocOp LINDA kernel. Using such a deferral, the kernel could choose which tuple spaces
based on physical locality of the tuple spaces. This could increase performance of the
primitive by only (or by first) accessing tuple spaces that are close to the client process
executing the primitive. It is very difficult to define “closer” with respect to tuple spaces
and a client process. Tuple Spaces that are close could be on the same subnet as the
client process; or tuple spaces on a different subnet that is in different room. Close could
be defined as high bandwidth between the client process and where the tuple spaces are
physically located. From the point of view of a client process, this type of closeness could
mean that the same set or subset of tuple spaces are being considered for every execution
of a primitive. Thus for the getter primitives, if these tuple spaces do not contain a tuple

matching the template, the whole list of tuple spaces (contained in the primitive) would
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then be checked. Again the concept of location-aware could make the model more efficient
with respect to speed.

Furthermore, if the client process is on a mobile device, what tuple spaces are closer
at time, might not be closer at time,. For example, consider a global positioning system
(GPS) broadcasting signals out to tuple spaces at time,. As the device moves, it may take
longer to broadcast to the original tuple spaces because a new set of tuple spaces maybe
closer to the mobile device. This is an important concept: because the device is mobile, it
is not bias towards always choosing a particular set of tuple spaces.

In the case that a client process is not mobile and executing a getter primitive, if the
bias tuple spaces do not contain a matching tuple, then the whole list of tuple spaces,

including the closer tuple spaces, should be checked.

4.4 Not Logical Operator

This section covers the Not operator for the LOGOP LINDA primitives listed in Tables 4.1
and 4.2. Table 4.3 shows the code of the And and Not operators.

The semantics of the Not operator is to determine which tuple spaces are to be accessed
during the execution of a primitive. For example, consider process A obtaining over the
time of execution (via the getter primitives or the tsc() primitive) the following tuple

spaces:

{ uts, ts1, tsa, tss, tsa4 }
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Table 4.3 Code to aid in the semantics for the LoGOP LINDA primitives using And and

Not operators

Primitive | Code

in results := in ( A (not (ts1, { tsa, ... ,tsn } ), template) )
inp results := inp ( A (not (ts1, {ts2, ... ,ts, } ), template) )
rd results := rd ( A (not (¢s1, {ts2, ... ,tsp } ), template))
rdp results := rdp ( A (not (ts1, {ts2, ... ,ts, } ), template) )
out out ( A (not (ts1, {ts2, ... ,tsn })) , tuple)

eval eval ( A (not (ts1, {ts2, ... ,tsn }) ), [tuple ])

collect | countPairs:= collect ( A (not (¢sa1, {tSa2, -- stSan })) , A (not(tsp1,

{tsp2, .- ,tSpn }),template))

copy countPairs := copy ( A (not (tss1, {tSa2, - stSan })), A (0Ot (tsp1,

{tss2, ... ,tsen })) , template)

Thus, the set difference of ts1, tss from the well known tuple spaces would be uts, ts3, ts4.
Snyder and Menezes note that this set difference is also considered the complement of the
list of tuple spaces [SM02]. Once the set difference is applied, which operator, And or Or,
should be used? Table 4.3 illustrates the And operator; however, the Or operator can be
easily substituted. Combining these logical operator semantics, consider process A having

well known tuple spaces:
{ uts, ts1, tsa, tss, ts4 }
Now process A issues the following in primitive to the LINDA kernel:
results := in ( A ( not (uts , tsy) ) , template)

After applying the set difference semantics, the LINDA kernel would process the in state-

ment as:

results := in ( A (tsa, tss, ts4) , template)
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Note the resulting statement executes exactly the same as the And’s semantics.
There are a couple points of interest that are associated with the not operator. The
first is a side effect to the Not operator. If process A only knows one tuple space, uts, then

after applying the set difference algorithm to
results = in ( A ( not (uts) ), template)

the result will be an empty set of tuple spaces. At the model level, two actions can
occur when the blocking getter primitives are executed. The first action is they block
indefinitely. While this is an undesirable action, it is a valid semantics. Furthermore, a
deadlock detection algorithm, covered in Chapter 7, could alleviate blocking indefinitely.
A second action would be for the blocking primitives to just return an empty list. As for
the nonblocking primitives, this issue is irrelevant because they would return an empty list
as a result. For the setter primitives, the tuple would be inserted into no tuple space. At
the implementation, the LINDA kernel should throw an error/exception back to the client
process stating there are no tuple spaces listed in the primitive. The second point is after
the set difference is applied, there may be only one tuple space used in the primitive. For

example, if the well known tuple spaces are uts, ts1, and tsy and the following executes
results := in ( A ( not (uts, ts1) ) , template)

LocOP LINDA will issue the in primitive with tuple-space tsy using the original LINDA

semantics and ignore the And operator because there is no second tuple space.

4.5 Model Comparisons

This section covers an in depth comparison to all the models previously discussed in Chap-
ter 2. It will illustrate the semantics differences of these models against the semantics of

LocOpP LINDA and speculate on some possible improvement of efficiency at runtime.

4.5.1 LogOp Linda and Linda Comparison

LocOP LINDA has several advantages over the original LINDA model. One advantage is

its ability to access multiple tuple spaces using one primitive call. This type of access, one
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primitive call and many tuple spaces, adheres to a new concept of parallel primitives. Recall
that the semantics of LINDA state when accessing n tuple spaces using the getter/setter
primitives n primitive calls are made. The semantics of LOGOP LINDA are quite different:
One primitive call can be made instead of consecutive primitive calls. This type of semantics
could lead to a more efficient implementation because only one primitive call is made to
access several tuple spaces. However, this efficiency concept is difficult to show at the
model level but is shown at the implementation level described in the next chapter. Since

only one primitive is used, the time it takes to retrieve n tuples from n tuple spaces is
max(time; , times , .... , time, )

where each time; represents the time taken to retrieve a tuple from tuple-space ts;. Sim-
ilarly, the time it takes to send (using either an out or an eval? primitive) a tuple to n
tuple spaces is the time it takes to execute only one out or one eval primitive. Contrast

this efficiency with the original LINDA, as stated earlier,
Yo time;

These parallel primitives could lead to better efficiency and scalability which are illustrated

in Properties 4.5.1 and 4.5.2.

Property 4.5.1 (Parallel access for LOGOP LINDA getter primitives.) Given a single
template that matches a tuple from n tuple spaces, the time it takes will be max(time; ,
timesy , .... , time, ) where each time; represents the time it takes to retrieve a tuple from

tuple-space ts;.

Property 4.5.2 (Number of parallel primitive calls with respect to tuple spaces.) Let S
be a set of tuple spaces tsy, tsa, ... , ts,. Then ¥V ts;, where i = 1..n, 3 only a single

getter/setter primitive is being executed using a logical operators.

4.5.2 LogOp Linda and Bonita Comparison

BoNITA achieves efficiency through semantics defining asynchronous primitives. What

BoNITA does not offer with its efficiency is the ability to access multiple tuple spaces in

2This time does not include the time it takes to process fi(x1) ... fn(Tn)-
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parallel using a single primitive call. Consider the following LOGOP LINDA in primitive:
pairs = in (A (¢s1,ts2,t83,t54), template)

Although the LocOP LINDA in primitive is not asynchronous, there is still only one
primitive call being executed. Consider now BONITA’s dispatch primitive and its attempt

to retrieve four tuples from four tuple spaces:

Program 4.2 BONITA’s dispatch and obtain primitives

(1) idl := dispatch( tsl , template , destructive)
(2) 1id2 := dispatch( ts2 , template , destructive)
(3) 1id3 := dispatch( ts3 , template , destructive)
(4) 1id4 := dispatch( ts4 , template , destructive)

(56) tuplel := obtain(idl)
(6) tuple2 := obtain(id2)
(7) tuple3 := obtain(id3)
(8) tuple4 := obtain(id4)

The asynchronous feature of BONITA makes the model powerful. However, it still has to
make eight primitive calls to retrieve four tuples matching the template. LOGOP LINDA’s
parallel primitive feature stated in Properties 4.5.1 and 4.5.2 could be combined with
BonrTA’s asynchronous primitives using logical operators to create an even more efficient

and expressive coordination model. Chapter 7 expands on this concept.

4.5.3 LogOp Linda and Scopes Comparison

SCOPES has limitations with expressiveness if n copies of a tuple need to be placed in
SCOPE S, then n serial calls need to occur. Contrasting this with Property 4.5.2, LocOp
LINDA is feasibly capable of this by combining the same tuple space n times using the And
operator. The execution below illustrates a tuple being sent to tuple-space ts; in parallel

using the And operator to allow n copies of tuple to exist in ¢s;.
out ( A (ts1, ts1, ..., ts1), tuple)

Furthermore, in SCOPES, there is a containment relationship: A single SCOPE can

encompass one or more SCOPES (sets). In addition, each set of an existing SCOPE can itself
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be a SCOPE to other sets. Hence, a single SCOPE could consist of n-levels of descendants.
Consider Figure 4.2 as an illustration: SCOPE [a,b,c] consists of sets [a], [b] and [c] while
SCOPE [b,c] consists of the same sets [b] and [c]. This containment is based on the arrows’
directions. If process A inserts a tuple into SCOPE [a,b,c], then the tuple can be retrieved
by process B: assuming B has a handle to SCOPE [b,c] and uses a template that matches.
This concept is exactly how SCOPES operate: a strength of the semantics itself. However,
consider now how process B actually retrieves the SCOPE [b,c]. If process A puts that
Scopkes’ handle into the Universal Tuple Space and process B retrieves that SCOPE, how
does process B know exactly what sets are involved with this particular SCOPE. Another
question is, should process B have the capability (via a new primitive) to know what sets

are contained inside this SCOPE? Consider the code in Programs 4.3 and 4.4

Program 4.3 Process A code

(1)  aScope = NewScope();

(2)  bScope = NewScope();
(3)  cScope = NewScope();
(4)

(B)  abcScope = aScope U bScope U cScope;
(6) bcScope = bScope U cScope;

("

(8) out( uts , [ bcScope ] );

(9)  out(abcScope , [‘‘dog’’] );

Program 4.4 Process B code

(1) theScope = in( uts , [ScopeFormall] ).getScope();
(2) values = in (theScope , [StringFormal] );

(3) value = values.getValue();

(4) scope = values.getScope();

LocOP LINDA does not (nor can it) hide the intended tuple spaces. Hence, when several
tuple spaces are considered with the setter primitives using the And operator, it is known
where the tuple will reside. When several tuple spaces are considered with the setter
primitives using the Or operator, there is no ability of another process retrieving that tuple

from a different tuple space not listed in the original primitive call. Hence, the following
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out(V (ts1, tsa, tss, tsy) , tuple)

states that any one tuple space or a combination of the listed tuple spaces will contain
tuple. In LocOP LINDA, another tuple space, for example ts5, could not contain the

tuple that is placed in any of the tuple spaces listed above.

Figure 4.2 SCOPE [a,b,c] sharing the same sets as SCOPE [b,c]

[a,b,c] [b,c]

[a] [b] [c]

As stated by Merrick and Wood, SCOPES requires an extra data structure to be main-
tained on the server side in LINDA. Based on the number of SCOPES in a system, this
required data structure could be expensive to maintain all the SCOPES and their refer-
ences. This could get expensive if no garbage collection is implemented [Men98].

LocOpP LINDA does not require an extra data structure to be maintained across several
primitive calls during the execution of a process. During the execution lifetime of the
LocOpP LINDA kernel the logical combination of tuple spaces solely exists during execution
of that single primitive call, thus tuple spaces remain physically disjoint in the kernel.
Further explanation of the implementation of LOGOP LINDA for this thesis will be discussed

in Chapter 5.

4.6 Coordination Patterns

There are several major contributions LOGOP LINDA makes to Coordination. This section
describes some coordination patterns that achieve better expressiveness with less primitive

calls in LogcOP LINDA that are not achievable in other LINDA models.
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4.6.1 1-Producer, n-Consumer Architecture

The classic example of distributed systems is the producer/consumer architecture which
LINDA can obviously express through serial access of the tuple spaces. However, as noted
previously in Chapter 3, the number of primitive calls it takes for the producer to send is
proportional to the number of tuple spaces accessed. The code is depicted in Figure 4.3.
In another scenario, even if there is only one tuple space receiving the producer’s tuple, it
would still need to be sent the same number of times as there are consumers. Figure 4.4
illustrates this. Contrast this type of expressiveness with LOGOP LINDA’s. LOGOP LINDA

only needs one primitive call in both scenarios and is illustrated in the following two calls:
out ( A (ts_1,ts.2,ts.3, ... , ts_n), new Tuple(item))
out ( A (ts_1,ts_1,ts_1, ... , ts_1), new Tuple(item))

The above code is scalable because no matter how many tuple spaces are going to receive
the same tuple, it only takes one primitive call. This is an especially important concept:
whether the same destination tuple spaces or different tuple spaces, there is only one
primitive execution.

A consumer can take advantage of LOGOP LINDA’s getter primitives by retrieving sev-
eral tuples from several tuple spaces (different or the same tuple spaces) with one primitive
call using the same template. This type of expressiveness is similar to the producer’s out
or eval primitive discussed above. Using the code from Table 4.1, the following illustrates
a consumer retrieving three tuples from three different tuple spaces and also from three of
the same tuple space.

Additionally, accessing all tuple spaces at once ensures that blocking on a single tuple
space does not occur and hinder other tuple spaces listed in the same primitive from locking

a matching tuple.
results := in (A (¢s1,ts2,t83), template)

results := in (A (¢s1,ts1,ts1), template)
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Figure 4.3 The producer executes n out primitive calls to n different tuple spaces

item := computelt();

out(ts1, newTuple(item))

out(tsa, newTuple(item))
(

out(tss, newTuple(item))

out(ts,, newTuple(item))

Figure 4.4 The producer executes n out primitive calls to the same tuple space

item := computelt();

out(ts1, newTuple(item));

out(ts1, newTuple(item));
( ;

out(ts1, newTuple(item))

out(tsy, newTuple(item)); // the nth call.

4.6.2 Master/Worker Architecture

The previous section covered the 1-Producer/n-Consumer problem in order to highlight
LocOpP LINDA’s expressiveness, scalability and efficiency using the out primitive. This sec-
tion examines LOGOP LINDA’s in primitive call using the Or operator in a master/worker
architecture.

Consider a network of equally powerful computer systems dedicated to solving many
N-Queens problems simultaneously. The N-Queens problem is stated as follows: On an
8x8 chess board, place 8 queens on the board in such a way that neither queen can attack
another queen. As N increases, the computation time exponentially increases. Each system
in the network has its own tuple space, and each system is required to solve an N-Queen
problem. In this example, there consists 100 systems which known as the worker systems.

The network consists of 100 worker computers required to solve 100 N-Queen problems.
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Another computer, the master system, distributes each N-Queen task to each tuple space.
The pseudo code for this master system to insert these 100 tuples into 100 tuple spaces is
shown in Figure 4.5. Note that, since there are 100 different tuples, the code uses the LINDA
out primitive. In addition, the chessboard sizes will range from 15 to 30 queens®. Each
worker’s code is listed in Figure 4.6 which retrieves the tuple from its known tuple-space

ts;, computes the solution, and sends the result back to their known tuple-space ts;.

Figure 4.5 Master’s LoGOP LINDA pseudo code to produce 100 tuples into 100 tuple

spaces
results := in(A(uts, uts, ... ,uts),?TupleSpace)//uts is repeated 100 times.
1:=0

while (¢ < 100) do
n := random Number Between (15, 30)
out(ts.i, [n, chessboard))
t:=14+1

end

Figure 4.6 Each worker’s LINDA code to compute it’s own N-Queens problem

result := in(ts; , [?Integer , 7ChessBoard))

startTime := getTime()

chessBoardSolution := computeSolution(result.getN() , result.getChessBoard())
stopTime := getTime()

out(ts; , [(stopTime — startTime) , result.getN() , chessBoardSolution])

Because the number of queens range from 15 to 30, these solutions will vary in the
time it takes to solve. However, one of the requirements of the architecture is to print the
resulting computation times as they become available. In other words, as a worker finishes

the solution and puts the solution into its tuple space, the master system must be ready to

3The values of 15 and 30 could have been any other range of values.
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retrieve the resulting tuple from the tuple space as quickly as possible and print the result
to the user.

The requirement of the architecture to print the result as it is available requires the
master process to poll in the LINDA model and do a blocking-poll in the LoGOP LINDA
model. A blocking-poll is different from doing an actual poll. In an actual poll, if the
information is not available, the primitive returns immediately with nothing and continu-
ously does this. In a blocking-poll, if the information is not there the process blocks. As
information is obtained, the process unblocks and it is returned to the calling process. The
calling process then reissues the primitive call again. To solve this architectural problem,
LocOpP LINDA will use its in primitive and the Or operator. Recall the semantics of Lo-
GOP LINDA’s primitives using the Or operator, the in primitive will block until at least
one tuple matches a template. It will be shown below how more efficient LOoGOP LINDA
is compared with LINDA.

Figure 4.7 illustrates the polling (via the inp primitive) that LINDA must do in order
to meet the requirements as described above. The process iterates in two loops. The
outer while loop will continue to execute as long as max never decreases down to zero
(0). The inner loop goes from 1 to max where max is initialized at 100 (the number of
worker processes). Inside the for loop is the inp primitive. This will not block if a tuple
does not match the template [?Time, ?count, ?ChessBoardSolution] in the tuple space
array[i].getTS(). If there is a valid resultTuple, then that time is printed and that tuple
space does not need to be checked again. After each for loop, the array entries marked
as done are removed and max is decremented by the amount of tuples found. Thus, each
complete iteration of the for loop has a chance to reduce the value of max. However, if no
tuples are found, the for loop continuously polls each tuple space in the array. This is the
inefficiency of this primitive in LINDA and in the worst case continuous execution of the
for loop occurs until all tuples are found. It is continuous because the inp does not block.
Thus, the number of inp calls is the amount that can be done in the time it takes for all
worker processes to be completed.

The code in Figure 4.8 illustrates how LoGOP LINDA would implement the architectural

requirements. Recall the semantics of LOGOP LINDA’s in primitive using the Or operator.
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Figure 4.7 LINDA code to solve the N-Queens problem

array = getAllTupleSpaces()
mazx = 100
tmpMax := mazx
while (maz !=0) do
for ¢ := 1 to max step 1 do
resultTuple := inp(array.ts_i, [?Time, Tcount, ?ChessBoardSolution])
if (resultTuple! = null) then
print((Time)resultTuple.get(0))
arrayli].markedAsDone()
tmpMazx = tmpMazx — 1
fi
od
array = removeMarkedAsDone(array)
mazx = tmpMazx
end

The while loop continues until there are no more tuple spaces to be checked. This occurs
when all worker processes have solved their N-Queens problem and have each put the
resulting tuple into their tuple space (illustrated in Figure 4.8). Each execution of the
LocOP LINDA’s in primitive has a chance to return between 1 and N tuples where N is
the number of tuple spaces being checked in parallel. The worst case is that a 100 calls are
made using the blocking in primitive. This only happens if two or more workers do not
finish at the same time. The requirement above is that the information needs to be polled.
As shown in Figure 4.8, the LOGOP LINDA primitive combined with the Or operator is
far more efficient than LINDA’s inp. LINDA’s worst case is far less efficient than LocOp
LINDA’s worst case. In addition, the decrease of the number of in primitive calls in LocOP
LINDA implementation is strictly due to the fact LoGOP LINDA can check multiple tuple
spaces in parallel using logical operators.

As stated in [MWOO], if a tuple matches a template in a SCOPE, then that tuple and
SCOPE are returned. Hence, the minimum and maximum number of inp primitive calls
using SCOPES is 100. Figure 4.9 illustrates the SCOPES code. Although this is efficient,
LocOpr LINDA could possibly do it with less calls because the in primitive can return more

than one tuple at a time.
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Figure 4.8 LocOP LINDA code to retrieve the N-Queens solution

set := getOrListO fTupleSpaces()/ [returns V (tsi,ts2, ... ,tS100)
while (set.length = 0) do
results := in(set, [?Time, ?count, ?Chess BoardSolution))
for i := 1 to results.length step 1 do
print((Time)results.getTuple(i).get(0))
set.remove(results.getTupleSpace(i))
od

end

Figure 4.9 SCOPES code
allScopes := getAllScopes() [ [returns(scope; @ scopes @ ... @® scopeino)
while (count! = 100) do
result := in(allScopes, [?Time, ?count, ?ChessBoardSolution])
print((Time)result.getTuple().get(0))
count := count — 1

end

4.7 LogOp Linda Summary

Tables 4.4 and 4.5 summarizes the semantics of LOGOP LINDA’s primitives discussed in
this chapter. As stated earlier, for the Or operator, if a location-aware concept is used,

tuple spaces may be checked more than once.
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Table 4.4 Semantics for LoGOP LINDA primitives using the And (A) operator

Primitive

Semantics Overview

in

Removes a tuple from each of the tuple spaces ts; ... ts, that
associately matches template. It returns the list of matching
tuples and tuple spaces to the calling process. This primitive will
not return until one tuple has been removed from each tuple space
listed. The length of the list is n, where n is the number of tuple
spaces.

inp

Removal characteristic is the same as LoGOP LINDA in. Recall
this is a non-blocking primitive and only checks each tuple space
(ts1... ts,) one time and then returns to the calling process. The
length of the list is between 0 and n, where n is the number of
tuple spaces listed.

rd

Returns to the calling process a copy of a tuple that associately
matches template from each of the tuple spaces ts; ... ts,. This
primitive will not return until one tuple has been copied from
each tuple space listed. The length of the list is n, where n is the
number of tuple spaces.

rdp

Removal characteristic is the same as LOoGOP LINDA rd. Recall
this is a non-blocking primitive and only checks each tuple space
(ts1... tsp) one time and then returns to the calling process. The
length of the list is between 0 and n, where n is the number of
tuple spaces listed.

out

Places tuple into each of the tuple spaces ts; ... tsy.

eval

Evaluates all functions fi(z1) to fm(z,) once. Each of the func-
tions’ return value is an actual in the newly created tuple that is
inserted into the tuple-space ts1... tsy,.

collect

Removes the tuples matching template in all the source tuple
spaces (tSq1, t842, --- , tSan) and inserts them into the destination
tuple spaces (tsp1, tsp2, --- ,tSpn). Returns a list of countPairs
with each entry stating the source tuple space and the number of
tuples removed.

copy

Copies the tuples matching template in all the source tuple spaces
(tsa1, tSa2, .- » tSqn) and inserts them into the destination tuple
spaces (tsp1, tSp2, --- ,tSpn). Returns a list of countPairs with each
entry stating the source tuple space and the number of tuples
copied.
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Table 4.5 Semantics for LocOP LINDA primitives using the Or (V) operator

Primitive

Semantics Overview

in

Checks and tries to remove a tuple from each of the tuple spaces
tsy ... ts, that associately matches template. It returns the list
of matching tuples and tuple spaces to the calling process. This
primitive will not return until at least one tuple has been removed
by any tuple space listed. If at a given time, (n - x) tuples match

the template, then a list of length (n - x) is returned.

inp

Removal characteristic is the same as LOGOP LINDA in.

rd

Checks and tries to return a copy of a tuple from each of the tuple
spaces ts; ... ts, that associately matches template. It returns
the list of matching tuples and tuple spaces to the calling process.
This primitive will not return until at least one tuple has been

copied from any tuple space listed.

rdp

Removal characteristic is the same as LOGOP LINDA rd.

out

Nondeterministically chooses one or more tuple spaces from the

given list and places tuple into them.

eval

Evaluates all functions fi(z1) to f,(z,) once. Each of the func-
tions return value is an entity in the newly created tuple to be in-
serted into one or more nondeterministically chosen tuple-spaces

t81... t8p.

collect

Nondeterministically chooses one or more tuple spaces from the
source and destination lists and remowves the tuples matching
template in the chosen source tuple spaces and inserts them into

the chosen destination tuple spaces.

copy

Nondeterministically chooses one or more tuple spaces from
the source and destination lists and copies the tuples matching
template in the chosen source tuple spaces and inserts them into

the chosen destination tuple spaces.




Chapter 5

Implementation

This chapter describes the implementation of LOGOP LINDA. Java [GJSB00] was chosen
as the language of implementation due to its write once, run every where and thus could
execute in a heterogeneous environment without requiring recompiling.

The implementation is written as a proof of concept to verify the theory of using logical
operators as a more expressive, scalable and efficient LINDA model. The system does not
support fault tolerance [Som92] or anomalies in the network or on hardware that execute
either the client processes or the LOGOP LINDA kernel processes. Furthermore, LoGcOP
LINDA does not support memory exhaustion in the hardware system; thus, it does not
migrate parts of tuple spaces from one hardware system to another and does not store
tuples out onto the hard drive when virtual memory is low in the virtual machine.

In order to do test comparisons between a LINDA model and the LOGOP LINDA model,
both models had to be implemented. The implementation of both will be discussed below.
Unless stated otherwise, the explanation of implementation will represent both models;
however, there are some differences with respect to how each model’s primitives are pro-

cessed through the system.

61
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5.1 LogOp Linda Architecture

The LocOP LINDA kernel is composed of two systems: a client system and a server sys-
tem. Sockets are used for the inter-process communication between each server and their
clients. LoGOP LINDA’s layer hierarchy of subsystems is illustrated in Figure 5.1. The
horizontal lines represent the current subsystem’s interaction to the next subsystem that
is either above or below. The subsystems implemented for LOGOP LINDA are the client
processes, LINDA API, LocOP LINDA API, Server LoGOP LiNDA API, TupleSpaceDe-

composer, LINDA Threads, LocOP LINDA Threads, TupleSpaceManager, TupleManager.

Figure 5.1 LoGOP LINDA subsystem hierarchy

Tuple Manager
Tuple Space Manager
Linda LogOp Linda
Threads Threads
Client Process Tuple Space Decompose
LogOpLindaServer Server LogOp Linda API
Javal/O Javal/O
Operating System Operating System
Network T Network
Client System Server System

5.1.1 Client System Architecture

The client system provides developers with an API that supports the primitives described
in Chapter 4 with the exception of collect and copy: For these a design is covered in
Section 5.4. The API also provides exception handling for the side effect using the Not
operator as covered in Chapter 4. Hidden from the developer is the API needed for socket
communication between the client process and the LOGOP LINDA kernel. If a client process
is started on a server system (one executing a LoGOP LINDA kernel), it will connect to

that server; otherwise, a server is randomly chosen from a properties file.
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5.1.2 Server System Architecture

The server system contains inter-process communication between the client processes and
the LOoGOP LINDA servers. Several LOGOP LINDA servers can participate at once; likewise,
several client processes can be connected to these servers. The socket connection between a
server and a client process is synchronous while the connection between each of the LocOP
LINDA servers is asynchronous. In order for the LOGOP LINDA kernel to operate correctly,
all hardware systems must have already started their LOGOP LINDA server. Servers know
of other servers because all participating servers are listed in the property file. Any server
that suffers an anomaly may cause the other servers involved in the LOGOP LINDA kernel
to fail.

Each LocOP LINDA server involved has one socket connecting to all the other LocOp
LINDA servers. This socket allows for reading and writing information between the servers
and thus each server has 2(n-1) (n is the number of participating servers) threads for each
socket connection to other servers: a thread for reading from the socket and a thread for
writing to the socket. The advantage of having 2(n-1) threads approach for server inter-
process communication is each thread has a single responsibility: reading from or writing
to another server. The disadvantage of this approach is if there are many servers involved
in the LOoGOP LINDA system, then having a single thread for each server’s read/write
sockets may exhaust the LOoGOP LINDA kernel. A solution (not implemented) to this issue
of several LOGOP LINDA kernels is to use a thread pool. A thread pool is a finite number
of threads allocated to a particular LOoGOP LINDA kernel. Thus no matter how many
LocOp LiINDA kernels are connected together, in order to write to a socket, a information
is queued and the next available thread would write the data to the socket. Each of the
LocOpP LINDA setter and getter primitives use their own thread to process tuples and
tuple spaces. The use of separate threads allows each primitive to execute in parallel on a
multiple processor machine.

For example, consider a scenario where there are three servers: A, B and C. Assume
server C contains tsy, ts2, ts3 and ts4. A client process D connects to server A and another
client process E connects to server B. At the same time, client process D executes a LocOP

LINDA in primitive accessing both ts; and tss; likewise, client process E executes a LocOP



CHAPTER 5. IMPLEMENTATION 64

LINDA rd primitive accessing tss and tsy. If server C has a read (and write) thread for
each server connection, then these two primitives can access the respected tuple spaces in

parallel; as they should, since all primitives and tuple spaces are disjoint.

5.1.3 Architecture Summary

Figure 5.2 is a pictorial representation of the client and server system architecture. It is
a generic view consisting of client; and client; 1 processes connecting to LOGOP LINDA’s
server, where there are n servers involved in the system. Each inter-process communication

is represented as a pipe and the threads involved are represented as squiggly lines.

Figure 5.2 Detailed LocGOP LINDA architecture

read /\/\/ > @|:4 server,
) write \/\/ > 1
(:Ilerlti
VAV read
write read \/\/\/ >
t):@ A% Inp wie AAPS @I:dj server,

Rdp

Eval read \/\/\/ >
write N\ \/ > serven, 1

LogOplIn
LogOplnp
LogOpRd
L ogOpRdp
L ogOpOut
LogOpEval

5

o]
=

D@ AN s
NN\ \write

clientj+1

by w

5.2 Design

The design of the client and server systems uses object oriented methodologies (encapsula-
tion, inheritance, and polymorphism), design patterns [GHJV94], and a properties file for
configuration is used. The methodologies will be covered throughout this chapter and the

design patterns that are used follows:

Singleton: Insures that only one instance of a class is created at run-time and there is

global access to it.
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Chain of Responsibility: Decouple the sender of a request from its receiver. This allows
more than one object to handle the request and leads to a more flexible and reusable
implementation. Additionally it promotes better concurrency. This is also known as

a delegation.

Command: Encapsulates a request as an object.

A properties file called LogOp.properties is used for configuring the participating servers,
the port, and the server that contains the Universal Tuple Space. The Universal Tuple
Space server must be one of the participating servers. Appendix I contains an example of
the properties file.

The design is decomposed into two categories: the client and server. The client design
consists of the code for the communication infrastructure to the server and the developer’s
API. The server design consists of APIs that communicate with the client’s communication
infrastructure, APIs that communicate between LOGOP LINDA servers, and general classes
that implement tuple and tuple space concepts and LOGOP LINDA primitives.

The communication infrastructure for client and server processes is implemented using
Java sockets. Java sockets contain an input stream and an output stream. These streams
are wrapped inside a BufferedInputStream and BufferedOutputStream, respectively, for
efficiency. Java objects are passed between the client process and the server process and
thus the buffered streams are wrapped inside an ObjectInputStream and an ObjectOut-
putStream, respectively. The code for this is listed in Appendix H.

5.2.1 Client Design

Recalling Figure 5.1, a developer has access to the LogOP LINDA API and LiNDA API
subsystems. This subsystem contains several classes and interfaces. Discussed below are
LogOpLindaServer, LogOpLinda, Linda, TupleSpace, Tuple, Tuples, Template, ActiveTu-
ple and LogOp classes and interfaces.

Java does not support variable length parameters method signatures. As such many
constructors take only up to a finite number of parameters (most of the time 8). However,

where applicable in the discussion below, a public method called add() allows the developer
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append the 9th, 10th, etc. objects to the instance of that class.

LogOpLindaServer Class

LogOpLindaServer is the only class used by the client process to connect with a LocOP
LINDA server. It is a singleton object that has a public connectLogOpLinda class method.
The return object for the connectLogOpLinda method is of type LogOpLindaServer. This
class implements both Linda and LogOpLinda interfaces. These interfaces also extends
an interface that contains methods to retrieve the tuple-space Universal Tuple Space and
to create new tuple spaces. Program 5.1 illustrates actual Java source used to connect
to the LOGOP LINDA server, to retrieve the Universal Tuple Space object (from a local
private data member in the LogOpLindaServer object), and to create a new tuple-space
object assigned to variable tsl. All tuple spaces that a client process creates using a
createTupleSpace method implemented in the LogOpLindaServer resides on the server the
client process is connected to. Appendix A contains documentation for these methods and

interfaces described.

Program 5.1 Connection, Universal Tuple Space, and new tuple space from LogOpServer

class
(1) LogOpLindaServer server = LogOpLindaServer.connectLogOpLinda();

(2) TupleSpace uts = server.getUTS();

(3) TupleSpace tsl = server.createTupleSpace();

Note that most of the LoGOP LINDA primitives in Appendix A have as their first parameter
a TupleSpaces object. The TupleSpaces object has two constructors: public TupleSpaces(
AndLogicalOperator ) and public TupleSpaces( OrLogicalOperator ). These two construc-
tors take an object that contains a list of tuple spaces. The logical operator used by this
list of tuple spaces is represented by the class itself: either AndLogicalOperator or Or-
LogicalOperator. There is no constructor in the TupleSpaces class for NotLogicalOperator
because an extra parameter specifying either And or Or operator would have been needed.
Support for the Not operator is done through the LogOp class discussed next. For conve-

nience, a helper class called LogOp consist of class methods for And, Or and Not operators.
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These methods are called and, or, andSetDiff, and orSetDiff which are all overloaded each
taking upto eight tuple spaces and each return a TupleSpaces object. LogOp’s class method
signatures are listed in Appendix B. An example of these classes is in use on lines 5-8 in
Figure 5.2: A client process is sending an Integer object to tuple-spaces tsl, ts2, ts3 using

the LogOp.and convenience method.

Tuple Class

In Figure 5.2, lines 5-7, a Tuple object is created and consists of an Integer object. Tuple
objects are used to insert information into a particular tuple space or tuple spaces. The
Tuple constructor is overloaded taking upto eight Java Objects. A convenience method
called add() allows for more than eight objects in a tuple. When retrieving a Tuple from
a getter primitive call, convenience methods exist to get the actual values of the Tuple
object. The get(int) method is used to retrieve the i** parameter of the Tuple object.
Another convenience method in the Tuple object is getTS() which returns a TupleSpace
object where the tuple came from. The Tuple class is listed in Appendix D. Lines 12-13
in Figure 5.2 illustrate the get(int) method of the Tuple class.

Template Class

The Template class is used as the second parameter of all the getter primitive methods.
This class extends the Tuple class thus inheriting all public and protected data members and
methods. One public method in the Template class called addFormal(Object, IS-FORMAL)
is used to add formal objects to a template instance. The IS FORMAL argument is used
to distinguish between “java.lang.String” being a Formal and “java.lang.String” being an
Actual. The code in Figure 5.2 on lines 9-10 illustrates usage of the Template class. The
constructors of the Template class assume the value of each parameter is IS FORMAL.
The Template class is listed in Appendix E. In order for formal field; in the template
to match the actual of field;, the formal must consist of the package name and the class

name.
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Tuples Class

The Tuples class is a containment class consisting of lists of Tuple objects. The convenience
methods are getTuple(int) and getTS(int), which based on the length of the list of Tuple
objects, retrieve the i*"* Tuple or TupleSpace object, respectively. The Tuples class is listed
in Appendix F and an example of its usage is in Figure 5.2 on lines 10-14. A Tuples object
is returned from all LOGOP LINDA getter methods. Developers would not be creating

instances of this class.

ActiveTuple Class

When a developer calls an eval method, the second parameter is an ActiveTuple object.
The ActiveTuple has five constructors which take from one up to five ActiveObject objects.
A convenience method called add( ActiveObject ) is implemented if there are more than
five ActiveObject objects. An ActiveObject is an interface that a developer implements
on a class if the class is to be evaluated for use in an eval primitive. The ActiveObject
interface has one method called eval() that returns an Object. Figure 5.3 is an example
of the eval primitive using the ActiveTuple and ActiveObject classes. In this example
there are two classes the developer writes, FutureDate and PastDate (Figures 5.4 and 5.5,
respectively), that must implement the ActiveObject interface. When each eval method
is complete, their return object creates the single Tuple object that will be inserted into
the three tuple-spaces tsl, ts2 and ts3. The first parameter of this Tuple object is the
result of the FutureDate class’s return object; likewise, the second parameter of this Tuple
object is the result of the PastDate class’s return object. For clarification, the duration of
each evaluated ActiveObject object does not determine the field order in the newly created
Tuple object. The order of the fields in the new Tuple object are determined where each

ActiveObject is added when the ActiveTuple object is created.

5.2.2 Server Design

When a client process executes a primitive, a Command object is sent over to the LocOP

LINDA server where the client process is connected. A Command object consist of the
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LocOP LINDA primitive, logical operator to be used, a list of tuple spaces, and either a
Template or Tuple object. On the server process, a ReadThread object is waiting on the
socket to receive a Command object coming from a client process. Once a Command is

received off a socket, it is delegated to an object called TupleSpaceDecomposer.

Program 5.2 LoGOP LINDA out primitive using classes: LogOp, LogOpLindaServer,

TupleSpace, Template, Tuples and Tuple

(1) LogOpLindaServer server = LogOpLindaServer.connectLogOpLinda();

(2) TupleSpace tsl = server.createTupleSpace();
(3) TupleSpace ts2 = server.createTupleSpace();
(4) TupleSpace ts3 = server.createTupleSpace();

(56) Integer anlnteger = new Integer(1);
(6) Tuple tuple = new Tuple(anInteger);
(7)  System.out.println((Integer)tuple.get(0));

(8) server.out( LogOp.and ( tsl , ts2 , ts3 ) , tuple );

(9) Template template = new Template(‘‘java.lang.String’’,
’?java.lang.String’’);
(10) Tuples tuples = server.in( LogOp.and ( tsl , ts2 ) ,
template) ;

(11) for( int index = 0; index < tuples.getCount(); index++ ) {
(12) tuple = tuples.getTuple(index);
(13) print (tuple.getTS() ,
(String)tuple.get(0) ,
(String)tuple.get (1) );
14 3
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Program 5.3 LOoGOP LINDA eval primitive

(1)
(2)
(3
(4)

(8)
(6)

(7

LogOpLinda server = LogOpLindaServer.connectLogOpLinda() ;

TupleSpace tsl = server.createTupleSpace();
TupleSpace ts2 = server.createTupleSpace();
TupleSpace ts3 = server.createTupleSpace() ;

ActiveObject estStockPrices = new FutureDate(‘‘10 days’’);
ActiveObject pastStockPrices = new PastDate(‘‘100 days’’);

server.eval( LogOp.and ( tsl , ts2 , ts3 ) ,
new ActiveTuple( estStockPrices ,
pastStockPrices ) );

Program 5.4 ActiveTuple example #1

€N
(2)
(3)
(4)

(8)
()
(7n
(8

(9

(10)
(11)
(12)
(13)

public class FutureDate
implements ActiveObject
{

private String timeStamp;

public FutureDate(String timeStamp)

{
this.timeStamp = timeStamp;
¥

public Object eval()
{
return calculateFutureStock(timeStamp) ;
}
}
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Program 5.5 ActiveTuple example #2

(1) public class PastDate

(2) implements ActiveObject
3 {
(©Y) private String timeStamp;

(5) public PastDate(String timeStamp)

(6) {

9] this.timeStamp = timeStamp;

(8) }

(9 public Object eval()

(100 {

11 return calculatePastStock(timeStamp);
12) %

(13) }

The TupleSpaceDecomposer class takes the Command (known as the “original Com-
mand”), and by the list of tuple spaces, decomposes this original Command object into
other Command objects. The new Command objects are created based on the physical
location of the LOGOP LINDA server that created the tuple space. For example, consider
a client process (connected to LOGOP LINDA server A) knows tuple-spaces tsi, tsa, tss,
tsq and tss. Consider that tuple-spaces ts1, tss, and ts5 were created on LOGOP LINDA
server B and tuple-spaces tss and ts4 were created on server C. The TupleSpaceDecomposer
would create two new Commands: one for the group of tuple spaces created on LocOP
LiNDA server B and another for the group of tuple spaces created on LOGOP LINDA server
C. These new Command objects consist of the same information as the original Command
object with the exception that they now consist of the grouped tuple spaces.

Once the TupleSpaceDecomposer determines the groups of new Commands, the original
Command is placed into a hash table. The key in the hash table for this Command object
is based on the IP address that the client process is executing on and the port number that
the client is attached to the LOGOP LINDA server. The groups of the new Commands are
then delegated to other LOGOP LINDA servers. This delegation is never any more than

one LOGOP LINDA server away from the current LOGOP LINDA server because of how the
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LocOpP LINDA servers are inter-connected via their socket communication.

Figure 5.3 illustrates receiving a Command from a client process, decomposing it (step
#1), inserting it into the hash table (step #2), and delegating new Commands to other
LocOp LINDA servers (step #3). As in the previous example, this figure shows three
LocOp LiINDA servers A, B and C. The client process is attached to LoGOP LINDA server

A and is executing the in primitive
server.in( LogOp.and (ts1, tsa, ts3, tsa, ts5) , template);

When a new Command object consisting of a group of tuple spaces is on the LogOP
LINDA server where all the tuple spaces in the group are created, this group of tuple spaces
is then delegated to a thread that is responsible for a particular LOoGOP LINDA primitive.
If the group consists of one tuple space, then it is sent to a LINDA thread supporting that
particular primitive. Thus, if the original command is executing an in primitive, then
the group of tuple spaces is put into a particular list so the LogOpInThread thread could
process. Note the threads for each primitive are not continuously executing in a tight loop.

A thread will execute when a Command object is inserted into its list.

Figure 5.3 LoGOP LINDA server receiving a Command object and processing it
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The out and eval primitives (LogOpQutThread and LogOpEvalThread setter threads)

both insert tuples into tuple spaces. After this occurs, these setter threads notify the other
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getter threads (LogOpInThread, LogOpInp Thread, LogOpRdThread, LogOpRdp Thread, In-
Thread, Inp Thread, RdThread and Rdp Thread) that a tuple has been placed into some tuple
space. The terms “setter threads” and “getter threads” are known as “Primitive Threads”
and are illustrated in Figure 5.1 as Linda Threads and LoGOP LINDA Threads.

When a primitive thread accesses a tuple space to retrieve or insert a tuple, two classes
are involved: TupleSpaceManager and TupleManager. The TupleSpaceManager is a Sin-
gleton that manages what tuple spaces exist on this particular server. For efficient access,
the TupleSpaceManager inserts new tuple spaces into a hash table. The key used for each
tuple space is it’s hash code. Since tuple spaces contain tuples, the value entry of the hash
table is a TupleManager object.

The TupleManager is an object that manages Tuple objects. Inside the TupleManager
class, a hash table is used to hold Tuple objects. Associated with each Tuple object is its
template value. This template value is the key into the hash table. The value object of
this key is a LinkedList object consisting of Tuple objects. The TupleManager has three
public methods: addTuple( Tuple ), removeTuple( Template ) and readTuple( Template
). The addTuple() is called by the LogOpEvalThread, LogOpOutThread, EvalThread and
OutThread threads. The remove Tuple() is called by the LogOpInThread, LogOpInp Thread,
InThread and Inp Thread threads. Finally, the read Tuple() is called by the LogOpRdThread,
LogOpRdpThread, RdThread and Rdp Thread threads. Because multiple client processes can
be executing at once, the out and eval threads can both call the addTuple(); thus, this
method is a critical section and is synchronized. Furthermore, if the Tuple object is going
into a LinkedList object that exists, the LinkedList object is also synchronized because
any of the other primitive threads can be accessing that same LinkedList object. Neither
of the removeTuple() or readTuple() methods are synchronized because any number of
threads are allowed into those methods at the same time. However, those methods access
the LinkedList object based on the Template object passed into those methods. Hence
access to the LinkedList object associated with a Template key is synchronized because
only one thread can be accessing the LinkedList object. Synchronizing at this level allows
multiple threads to call the removeTuple() method and access different LinkedList objects.

Likewise, multiple threads can access the read Tuple() method but not the same LinkedList
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object. This type of design and implementation facilitates greater concurrency in the
LocOP LINDA system executing on a multi-processor LOGOP LINDA system. Figure 5.4

illustrates the in primitive executing in LOGOP LINDA server C.

Figure 5.4 LoGOP LINDA server removing a tuple
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For the blocking primitives, as each Tuple object is found in the TupleManager, it is
removed from (because of the in primitive) or copied (because of rd primitive) from the
TupleManager and inserted into the original Command object as a pair object on that
LocOp LiNDA server. Recall that a pair object consists of the Tuple object and the
TupleSpace object where the Tuple object is found. When all Tuple objects are found
on a particular LOGOP LINDA server, the original Command object is removed from the
hash table and is sent back to the original calling system (either the client process or the
LocOpP LiINDA server). If the original calling system is the the client process, the client
process retrieves a Tuples object (or Tuple object if it is a LINDA primitive). It is up to
the developer as what is to be done with the Tuples object. If the original calling system
is a LocgOP LINDA server, then that Command object is inserted back into the original
Command (the one from the client process). If all Tuple objects are found in the original
Command, then the original Command with a list of pair objects is sent back to the client
process. Figure 5.5 illustrates all Tuple objects being found on servers B and C sent back

to server A. Once server A retrieves all resulting Tuple objects, the Command returns to
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the calling client process.

The above works the same for the nonblocking primitives inp and rdp. However, if
there are no Tuple objects that match the Template object in all the specified tuple spaces,
then the Command object containing an empty list is returned to the calling client process.

In the case of blocking primitives, if a Tuple is not found, the Command is placed into
the back of its Thread’s list for future processing. Thus the blocking is not occurring on
the removeTuple() and read Tuple() methods in the TupleManager class.

One question arises. When a Command object is sent from one LOGOP LINDA server
back to the original LOGOP LINDA server, how does the original LOGOP LINDA server
know this is a “response” Command? It cannot be determined by the number of tuples
in the “response” Command object because no tuples may have been found (the client
process originally sent a nonblocking primitive). Associated with each Command object is
an identification number that is set back in the client process. When a Command object
enters into a LOGOP LINDA server, its Command identification number is checked in the
hash table on that LocOP LINDA server. If the Command identification exists, the LocOP

LINDA server knows this is a response from another LOoGOP LINDA server.

Figure 5.5 LocOP LINDA server returning Tuple objects back to the calling client process
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5.2.3 The And Operator

The And operator involves no processing on the client. The Command containing the
tuple spaces and the And operator are sent to the LOGOP LINDA server. Once received
on the server, the ReadThread sends it to the TupleSpaceDecomposer object. From there,

processing of this Command object follows what is described in Section 5.2.2.

5.2.4 The Or Operator

The Or operator is implemented using a location-aware algorithm. A property called
OrLocale in the properties file has a mask that determines which range of IP addresses
are more closer than other TP addresses. An example of this property’s value is 33.56.45.*
which means all IP addresses in the range of 33.56.45.0 to 33.56.45.255 are considered more
closer to an actual LoGOP LINDA server than other LOGOP LINDA servers. Since it is a
property, each LOGOP LINDA server can have different ranges than other LOGOP LINDA
servers in the LOGOP LINDA kernel. Recall associated with a tuple space is the IP address
where the tuple space is stored.

Consider that process A knows of tuple spaces ts; through ts4 and the closer tuple

spaces are tso and tsy and executes the following:
server.out(LogOp.or( ts1, ts2, ts3, ts4) , tuple);

When the LocOP LINDA kernel receives this primitive, it will determine, through the
location-aware algorithm, that the tuple is placed in tuple-spaces ts; and tsy. This is
how the other setter primitive, eval, works as well (after of course eval’s functions are
evaluated).

The getter primitives, blocking and nonblocking, are more involved and both imple-
mentations will be described later. The following in primitive will be used and following

the above description of which tuple spaces are closer
list = server.in(LogOp.or( ts1, tsa, ts3, ts4) , template);

In the LocOP LiNDA kernel (known as the “original server”), a list of closer tuple spaces

will be determined using the location-aware algorithm. This new list of tuple spaces (ts2
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and ts4) are then decomposed using the TupleSpaceDecomposer object and sent, via a
Command object(s) marked as “TRY_ONCE”, to their respected LOGOP LINDA servers.
Once on those servers, the respected tuple spaces are checked only once and if a tuple
matches the template, it is removed. The Command object is returned to the original
server. Once all of these “TRY_ONCE” Command objects are returned, it will be deter-
mined if the collection of them contain at least one tuple. If so, the original server returns
to the client process a list of pair objects containing tuples and tuple spaces where the
tuples were retrieved (as described earlier). In the event that no “TRY_ONCE” Command
consisted of a tuple, the original command consisting of the original list of tuple spaces
(ts1, tsa, tss, and ts4) are then decomposed and sent via a Command object(s) to their
respected LOGOP LINDA server. Once at their respected servers, the Command blocks
(if the in or rd primitive is used) waiting for a tuple that matches the template (for the
non-blocking primitives, the tuple spaces are checked once and returned to the original
server). Once a Command finds a tuple (termed the “initial tuple”), the Command object
returns to the original server. Once on the original server, the original server sends out
KillOff Command object(s) to all other LOGOP LINDA servers who received a Command
object based on this in primitive executing to tell those Commands to immediately ex-
ecute one more time and return to the original server (whether having a tuple or not).
The term immediately implies the LogOpInThread is started and the Command objects in
its list are executed. The only delay of this Command object not immediately executing
is if the LogOpInThread’s list contains several Command objects. A tuple that is found
and returned at this point is considered being inserted into its respected tuple space “at
the same time” as the “original tuple” was being retrieved. Once all of the Command
object(s) are returned to the original LoGOP LINDA server, the primitive returns a list
of pair objects to the client process. This waiting and executing the “KillOff” Command
allows one or more tuples to be returned to the client process.

The LocOp LINDA implementation is flexible enough to allow a developer to implement
a location-aware algorithm. In the properties file, a property called OrDeterminismClass
specifies a class in which the developer implements to determine the tuple spaces to be used.

The class specified must implement the OrDeterminism interface that has one method that
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gets passed the tuple spaces and the LOGOP LINDA primitive id that was executed. The
primitive identification values are listed in Appendix C. An example of a class that imple-
ments the OrDeterminism interface is shown in Appendix G. Once the tuple spaces are
determined by the developer’s algorithm, the resulting tuple spaces are sent as a Command
to the LoGOP LINDA server using the And operator. The Command follows the description
of Section 5.2.2.

The advantage of allowing the developer to implement their own location-aware algo-
rithm is for flexibility. Consider during a company’s work hours that all LocOP LINDA
primitives should be sent to a certain set of tuple spaces and that after work hours the
primitives should be sent to a different set of tuple spaces. The OrDeterminism interface
allows for the LOGOP LINDA primitive ID values to be passed to the compute method.
Hence, the time- and location-awareness, as just described, is also at the level of each
primitive. Another advantage, from a object oriented approach, is the logic of choosing

location is separated from the code of calling the LOGOP LINDA primitives.

5.2.5 The Not Operator

The Not operator is implemented using two class methods and two convenience class meth-
ods in the LogOp class. The class methods are andSetDiff() and orSetDiff() and both are
overloaded passing from one upto eight tuple spaces. If eight is not enough, two conve-
nience methods exist that pass an array of tuple spaces and are called createAndSetDiff(
TupleSpace [| ) and createOrSetDiff( TupleSpace [] ). The result of all the methods dis-
cussed return a TupleSpaces object containing the actual tuple spaces that will be sent
to the LogOP LINDA server. The class methods throw one exception called EmptySet-
TupleSpaceException which occurs if the resulting TupleSpaces object contains no Tu-
pleSpace objects; hence an empty list of tuple spaces. Figure 5.6 illustrates a process using

the andSetDiff() method.
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Program 5.6 LocOP LINDA andSetDiff() method

(1) LogOplLinda server = LogOpLindaServer.connectLogOpLinda();

(2) TupleSpace uts = server.getUTS();
(3) TupleSpace tsl
((TupleSpace) (server.in(uts,
new Template(‘‘logoplinda.TupleSpace’’)))).get(0);
(4) TupleSpace ts2 = server.createTupleSpace();
(56) TupleSpace ts3 =
((TupleSpace) (server.in(uts,
new Template(‘‘logoplinda.TupleSpace’’)))).get(0);
(6) TupleSpace ts4 = server.createTupleSpace();
(7) TupleSpace tsb = server.createTupleSpace();

(8) server.out( LogOp.andSetDiff ( tsl, ts3 ) , aTuple );
// the out actually goes to uts, ts2, ts4 and tsb
// assuming tsl and ts3 are not close.

5.2.6 Scopes Data Structure Comparison

Recall the necessary data structure required by the SCOPES implementation and that this
data structure is necessary between LINDA primitive calls from the same client process
due to the fact it contains the information that associates what SCOPES belong to what
ScoPES. There is no data structure kept between LOGOP LINDA primitive calls from
the same client process. There is, however, the Command object that is placed into a
hash table. When the Command is complete, though, and a result is being returned to
the client process, the Command object is removed from the hash table. Therefore, the
hash table’s contents are transient: As a primitive is executed, a value is inserted into the
hash table; likewise, the value gets removed when the primitive is done. In addition, no
set of tuple spaces remain logically combined when a LOGOP LINDA primitive is finished.
In conclusion, SCOPES does require a data structure to keep consistent what SCOPES are

combined where as LOGOP LINDA does not.
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5.3 Deadlock

In the LINDA model, consider what happens when all processes, in a closed system, are
accessing the same tuple space using a blocking primitive. Consider if all processes in
LINDA block for a tuple that does not exist in the tuple space, then deadlock occurs. Until
another process connects to the system and does an out of a tuple that matches a template
by a blocked process, the system will remain deadlock.

Similar deadlocks occur in LOGOP LINDA. Whether all client processes are accessing
several tuple spaces at once using a single blocking primitive, if there is no tuple that
matches the template, then the system will remain in a deadlock state.

To solve this problem, a deadlock detection can be implemented to monitor such situ-
ations. The implementation is beyond the scope of this thesis due to significant research

that must be done. See Chapter 7 for further information.

5.4 Collect and Copy Design

This section covers a design of the collect and copy primitives: The collect and copy are
not implemented. Recall the difference between these primitives is the copy primitive makes
copies of the matching tuples in the source tuple spaces whereas the collect primitive
physically removes the matching tuples. Other than this difference, the design for both
primitives is the same. Hence, the design will be with respect to both primitives and
termed “bulk primitive” is this discussion.

A Dbulk primitive can be executed with a list of tuple spaces and a logical operator. The
invocation of this primitive with a Not operator executes exactly as the implementation
discussion in Section 5.2.5. The Or operator, too, executes exactly as the implementation
is described in Section 5.2.4. Hence both of the operators are first resolved in the client
process. After this is done, the primitive along with the lists of source and destination
tuple spaces is sent over to the client process’s LOGOP LINDA server. Once the primitive is
received on the server, it is sent to the TupleSpaceDecomposer. Then, the groups of source
tuple spaces are created. From here, the bulk primitive design is different than the other

primitive implementations: the bulk primitives are executed in two phases. The first phase
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is copying or removing the tuples from all the source tuple spaces: a message from each
LocOpr LINDA server is sent back to the original LOGOP LINDA server when this is done.
Once all LocOP LINDA servers have sent this message, another message is sent back to
the participating servers to physically copy or move the tuples into the destination tuple
spaces. Once all tuple spaces have received the tuples, a message containing the source
tuple spaces and the number of tuples moved or copied is sent to the original LocOP
LinDA server. Once all LOGOP LINDA servers have done this, the bulk primitive returns
to the client process the list of source tuple spaces and the number of tuples that were
moved or copied.

It is important to note that retrieving the tuples from all the source tuple spaces must
occur in parallel. For example, the following expresses mowing two copies of the tuples

from ts; into tsa:
resultList = collect ( A (ts1, ts1) , tS2, template);

The resulting list returned to the client process should contain two entries with each entry
containing the tuple-space ts; reference. The number of tuples moved from ts; in each entry
should be the same value x, where x could be 0 based on no tuples matching template. It
is incorrect for entry #1 value of x to be five (five because there were five tuples matching
template) and for entry #2 the value of x being 0 because the first execution of collect

removed all the matching tuples.

5.5 Conclusion

Figure 5.6 illustrates how a setter command using the And operator flows through the
LocOpr LINDA kernel starting from a client process going to the LOGOP LINDA server.
The process box sends the tuple to the appropriate tuple spaces. Likewise, Figure 5.7
illustrates how a getter command using the And operator flows through the LocOP LINDA
kernel starting from a client process and going through the LOGOP LINDA server. Both
figures have a diamond with “Send to Remote System”. If the answer is yes, then the
group of tuple spaces that are decomposed are on a particular remote server. If no, then

the tuple spaces reside on this LoGOP LINDA server. The diamond question in Figure 5.7
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that asks “Seen Command Already” is used to determine if this Command just read from
the ReadThread is new or already seen before. If the answer is no, then this Command
is from the client process. If yes, then this is a Command coming from another LocOP
LINDA server and must proceed to put these results back into the original Command.
Figures 5.8, 5.9 and 5.10 illustrates the setter and getter primitives flowing through the
LocOpP LINDA kernel using the Or operator. The setter primitives in Figure 5.8 are simple
to illustrate: When the server receives a Command with the Or operator, it applies the
location-aware algorithm and then decomposes those location-aware tuple spaces to their
appropriate LOGOP LINDA server. The getter primitives, as described in Section 5.2.4, are

more involved and are illustrated in Figures 5.9 and 5.10.
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Figure 5.6 Setter command, using the And operator, flowing through the LocOP LINDA
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Figure 5.7 Getter command, using the And operator, flowing through the LocOP LINDA

kernel
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Figure 5.8 Setter command, using the Or operator, flowing through the LocOpP LINDA

kernel
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Figure 5.9 Getter command, using the Or operator, flowing through the LocOp LINDA
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Figure 5.10 Getter command, using the Or operator, flowing through the LocOP LINDA
kernel (continued)
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Chapter 6

Empirical Results

This chapter covers several empirical results based on the single implementation (described
in Chapter 5) of both LINDA and LocOP LINDA. All tests were conducted on Sun Ultra
5 UNIX machines running Solaris 8 containing a single CPU with 128 megs of RAM. An
additional Solaris 8 Unix box was used that contained four CPUs and 2 gigs of memory.
The Java version used is JRE 1.3. The tests were conducted to see how efficient LocOP
LinDpA and LINDA could access several tuple spaces.

Several external factors can influence the execution time of these experiments. The
first is the Java Virtual Machine’s (JVM) garbage collection (GC). During a testing phase,
the point in time when and how long the GC would occur could influence the results of
these tests. Specific hardware machines containing 128 megs of RAM were used to hold
several tuple spaces. However, each tuple space contained only one tuple thus alleviating
extraneous and time consuming garbage collecting. Another factor deals with the Ob-
jectOutputStream class provided by Java [Mah01]. Each object in the JVM contains an
object identification (OID) number. As an object is written (serialized) to the output
stream, its OID number is stored. If the same object is written more than once, the ref-
erence OID is sent on the socket versus the whole object again. For Java, this saves the
time it takes for an object to be serialized. To turn off the feature of storing OIDs, a

reset() method provided by the ObjectOutputStream can be called after each object write

88
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is performed. To conserve memory during testing, a call to the reset() method every 5000
object writes flushes the OID table. This allows the tests to be executed without running
out of memory or an extensive amount of page swapping occurring on the UNIX boxes
having 128 megs of RAM. The final influence is other executing processes external to the
testing environment. For this, the tests were executed several times taking the average
time.

During these tests, between 2 and 8 UNIX boxes (servers B; through Bg in Figure 6.1)
with 128 megs of RAM were used as the LoGOP LINDA servers. Another server (A) is
involved, for all tests, that the client process connects to. Server A has 2 gigs of memory and
thus alleviated extensive garbage collection interruptions when retrieving several tuples.
The UNIX machines B; - Bg were located in the same lab while server A was in another
lab. This setup decreased the network latency between systems.

Figure 6.1 shows the architecture setup for these tests. Note that it has 8 LoGOP LINDA
servers B; - Bg connecting to one server A. The client process is connected to server A
and executes the rd primitive. The figure illustrates only one tuple space in each server By
- Bg, however these tests where executed using between 1 to 100 tuple spaces per server.
The lines with arrows leaving server A represents the LOGOP LINDA primitive executed
and the lines coming back from each B; server represents the results of those primitives.

The tests were done with a single tuple in each tuple space to compare scalability and
efficiency between LOGOP LINDA and LINDA. Thus no significant amount of time is spent
non-deterministically choosing a tuple. The tuple was inserted into each tuple space on
each LOoGOP LINDA servers (B; - Bg) by another client process whose duty was to create
the tuple spaces on that LOGOP LINDA server B; - Bsg, insert the single tuple and send
those tuple space handles to the Universal Tuple Space residing on LOGOP LINDA server
A. Afterwards the client process inserting the tuple exits.

Tests involved each LOGOP LINDA server B; - Bg containing between one tuple space
and 100 tuple spaces. If one tuple space exists on each of the 8 servers, this meant that the
client process executing LINDA’s rd primitive would have to make eight separate calls to
retrieve eight tuples. In contrast, LOGOP LINDA’s rd primitive would execute one call to

the server to retrieve all eight tuples at once. In terms of scalability, when there are fifteen
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tuple spaces on each server, the client process executing LOGOP LINDA’s rd primitive
would again make one primitive call to the LOGOP LINDA server; where as, the client
process executing LINDA’s rd primitive would execute 120 primitive calls to the LocOP
LiNDA server. The number of inter-process communication between servers is actually less

efficient in LINDA than in LocOP LINDA.

Figure 6.1 Testing environment

Client
Process
Server A
Server Bl Server B 8
S S 3
Server B 2 Server B 7
Server B ServerB g
Server B 2
Server B 5

>

For example, once the single LOGOP LINDA primitive call reaches server A, the Tu-
pleSpaceDecomposer groups the tuple spaces by IP address (where each tuple space actu-
ally resides). Once the grouping is done, then a single call for each group is sent to the
respected LOGOP LINDA server. This means, if there are four servers involved (Bi, Ba,
B; and By) and each server contains two hundred tuple spaces, then at most there will
be four individual calls: one to each server By, Bs, B3 and B4. This efficiency is based
on the implementation; however it is the semantics of LOoGOP LINDA that enables such an
implementation. Thus the total number of calls between a client process executing a getter
primitive and the five servers (A, B;, By, Bs and By) is: one from the client process to
server A (1), one to send each call server A makes to By, Bs, B3 and By (4), one for each
individual server By, By, B3z and By to reply back to server A (4), and one for the single

call back to the client process (1). The total number of interprocess calls made is ten to
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retrieve eight hundred tuples. Since LINDA, BONITA, and SCOPES only support a single
tuple space at a time, the total number of calls made is four times the number of tuples:
3200 calls. Figure 6.2 exemplifies this phenomenon. Shown in this figure on the left side
is LocOP LINDA making the ten calls and on the right side LINDA making a single call.
The numbers in parenthesis illustrates the count of tuple spaces that will be accessed with
each call (represented as arrows). Although the picture does not show a tuple space, it is
assumed that two hundred tuple spaces exist on each server By, Bs, B3 and Bs. LocgOp
LINDA is not a simple wrapper around LINDA primitives. Most importantly, it takes a
group of tuple spaces specified in a single primitive and sends that one primitive to the
server. The server decomposes and sends those new grouped tuple spaces to their respected
servers in parallel. This proof of scalability is important to the LOGOP LINDA theory and
actual implementation. As will be shown in the charts, LocGOP LINDA scales much better

and is more efficient than LINDA with greater number of tuple spaces.

Figure 6.2 A single primitive by both LoGOP LINDA and LINDA. The number in paren-

thesis represents the number of tuple spaces sent and the number of tuples received
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6.1 Test Suite A

This suite of tests focuses on the distributed implementation of LOGOP LINDA and as
described in Chapter 5 uses the implementation of both LINDA and LoGOP LINDA to

allow a fair comparison. The tests involve from two to eight servers containing a range
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of one to four hundred tuple spaces on a particular server. To avoid memory exhaustion,
a reset() method is called after every five thousand object writes. This section has three
charts summarizing the results. FEach chart consists of testing on two, four, and eight
servers. The x-axis represents the number of tuples retrieved per primitive call and thus
each numerical value along this axis represents the total number of tuples retrieved per
rd primitive execution. The y-axis represents the average time in milliseconds to retrieve
those tuples. For example, in Figure 6.3, the last x-axis value is 800 and thus executing
the LOGOP LINDA rd primitive retrieving 800 tuples distributed across two servers took
less than a half a second; likewise, the LINDA rd primitive took over two and half seconds.

In the first chart, since hardware resources are limited on the two servers (B; and Bs)
involved in Figure 6.3, a spike begins to occur on the last hash mark. Note that LocOp
LINDA’s average time in milliseconds is much less than LINDA’s as the number of tuple
spaces accessed per primitive increases. In fact, with the number of servers at four (Bj,
B,, B; and B4) and eight (B; - Bg) in Figures 6.4 and 6.5, respectively, LocOP LINDA
performance is more efficient compared to LINDA whose scalability is drastically getting
worst.

There is evidence of Java’s serialization at lesser number of tuple spaces that affects the
performance of the LOGOP LINDA’s primitives. Recall that LoGOP LINDA is sending out
several tuple spaces per primitive call. Apparently if the number of tuple spaces is small,
LINDA is efficient in retrieving tuples from the same number of tuple spaces in more calls
than it is for LOGOP LINDA primitives to retrieve the same number of tuples with less
calls. Contrary to this, LoGOP LINDA’s performance on a large number of tuple spaces
surpasses that of LINDA’s.

Further evidence of Java’s serialization side effecting results is when there is a total of
240 tuple spaces involved in the system. The single difference between all three figures is
the number of servers involved. This thesis does not investigate the serialization algorithm
that Java provides; however, there can be more tests executed. For this suite of tests
the reset() is called every five thousand object writes, further tests can illustrate that
continuous serialization does effect the execution. These test results are in Section 6.2

Appendix K contains tables of numbers representing these charts.
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Figure 6.3 Average time in milliseconds using two servers. Number of tuples retrieved
are across the x-axis (one tuple per tuple space). LOGOP LINDA and LINDA calling reset()

every 5000 object writes
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Figure 6.4 Average time in milliseconds using four servers. Number of tuples retrieved
are across the x-axis (one tuple per tuple space). LOGOP LINDA and LINDA calling reset()

every 5000 object writes
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Figure 6.5 Average time in milliseconds using eight servers. Number of tuples retrieved
are across the x-axis (one tuple per tuple space) LOGOP LINDA and LINDA calling reset()

every 5000 object writes
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6.2 Test Suite B

Due to serialization and non-serialization occurring in the JVM, this suite tests the same
scenarios from Section 6.1. However, the difference is after each Java object is written a
reset() method is called to clear out any stored object IDs.

For example, consider in Figure 6.6 when eight hundred tuple spaces are accessed. The
time taken to retrieve 800 tuples is only 563 milliseconds which is a little above the value
shown in Figure 6.3 for LoGOP LINDA.

Figures 6.6 through 6.8 also include the LINDA time values from Figures 6.3 through
6.5. Recall from Figures 6.6 through 6.8 that reset() was not called after each Java object
was written to the socket (a much quicker method). Note in these figures that LocOP
LiNDA is still more efficient than LINDA.

Appendix K contains tables of numbers representing these charts.



CHAPTER 6. EMPIRICAL RESULTS 96

Figure 6.6 LocOP LINDA time in milliseconds using two servers. Number of tuples
retrieved are across the x-axis (one tuple per tuple space). LoGOP LINDA calling reset()

and LINDA not calling reset()
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Figure 6.7 LocOP LINDA time in milliseconds using four servers. Number of tuples
retrieved are across the x-axis (one tuple per tuple space). LoGOP LINDA calling reset()

and LINDA not calling reset()
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Figure 6.8 LoGOP LINDA time in milliseconds using eight servers. Number of tuples
retrieved are across the x-axis (one tuple per tuple space). LoGOP LINDA calling reset()

and LINDA not calling reset()
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Chapter 7

Conclusion and Future

Research

7.1 Conclusion

This thesis is based on the semantics and efficiency of other coordination models. An
extension of these models creates a scalable, efficient and expressive model called LocOpP
LinDA. The ability to access several tuple spaces in parallel applies itself to several genres
of software development: to name a few, network monitoring and security. Several areas

of future research needs to still be done with LocOp LINDA and are touched upon below.

7.2 Future Research

LocOpr LINDA is a highly expressive, efficient and scalable model for the coordination of
distributed processes. This section discusses some future work for further enhancements

to LoGcOP LINDA’s semantics.

99
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7.2.1 Deadlock Implementation

As the problem was described in Sections 4.2.1 and 5.3 , deadlocking can occur in the
LocOpP LINDA model. This section addresses a possible solution for the implementation
described LoGOP LINDA in this thesis in Chapter 5. An additional Command object
(possibly called DeadlockCmd) needs to be implemented for determining any deadlocks.
A deadlock thread could be executed on each server monitoring the LOoGOP LINDA and
LinDA Command objects stored in the hash table depicted in step #2 of Figure 5.3.
Periodically, the state of each hash table on each server could be sent to a tuple space
(internally known as the deadlock tuple space), only known by the LOGOP LINDA kernel,
so analysis could be done to determine where a potential deadlock is occurring!. Once
a deadlock is found, a (new) RestartCmd command object could be sent to each of the
servers containing the original LOGOP LINDA Commands causing the deadlock to restart
themselves and allow only one of the LoGOP LINDA Commands to proceed and complete,
thus resulting in only one less LOGOP LINDA to be blocked. This scenario only describes
the case where two LOGOP LINDA Commands are deadlocked. This could be a solution
where n LOoGOP LiNDA Commands are deadlocked; however, only further research in the
deadlock detection/recovery could determine the best algorithmic solution.

Note that each LoGOP LINDA server delivering the state of its hash table would execute

the following out primitive:
out (deadlockTupleSpace, hashtableStateObject)

while the LocOP LINDA server that is going to process each of the hash table states would
be blocked using the in primitive (where n represents the number of LOGOP LINDA servers

read from the LogOp.properties file):

tuples = in ( LogOp.and (deadlockTupleSpace; , ... , deadlockTupleSpace,, ) ,
?hashtableStateObject );

In this description, note that the tuple-spaces

IThe algorithm for determining where a potential deadlock is occurring is beyond the scope of this
thesis.
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deadlockTupleSpace; , ... , deadlockTupleSpace,,

are the same tuple space because all LoGOP LINDA servers would send the hash table state

to the same tuple space.

7.2.2 Other Logical Operators

Other logical operators exist that were not researched are: X0R, XNOR, NOR, NAND. Consider
Figure 7.1 consisting of the above operators and the And operator using the in primitive.
Recall that the in primitive will only unblock using an And logical operator if all of the
listed tuple spaces contain a tuple matching the given template. Consider the following

primitives and the respected logical operator used
1. result = in ( xor ( tsy, ts3) , template)

2. result = in ( xnor ( ts1, ts2) , template)

3. result = in ( nor ( ts1, ts2) , template)

4. result = in ( nand ( ts1, ts2) , template)

and their respected truth tables shown in Figure 7.1. These truth tables illustrate when the
in would unblock and return to the client process. However, what tuples would be returned
when the primitive unblocks? Consider the truth table for the NOR in Figure 7.1. According
to the unblock column, the primitive would unblock only if none in row #1 (recall that a
zero in the ts; and tso states a matching tuple does not exist and that a one means that
a matching tuple exist) of the tuple-spaces ts; and ts; contained a matching tuple. This
might possibly imply that a tuple not matching the template would be removed from each
tuple space and returned to the client process.

Consider the truth table for the X0OR operator and that the primitive should unblock
only in rows #2 and #3. Does this mean for row #2 (and similarly row #3) that the tuple
that is matched in tuple-space ts; and a tuple that does not match a tuple in tuple-space
tsy should be removed? Another question is, what happens in tsy for row #3 if there

are only tuples that match the template? Furthermore, since the in primitive in LINDA
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only unblocks when a tuple matching the template exists: Does this contradict what the
in primitive would do in the case of XOR? What type of coordination patterns do these
types of logical operators allow? These questions and others for the other LOoGOP LINDA’s
primitives imply further research beyond the scope of this thesis should be done.

The NOR and NAND are indeed different than the LOGOP LINDA’s Not combined with
either Or, or And operator. In LOGOP LINDA, the semantics for the Not first apply a
set-difference algorithm and then either the And or Or operator is applied. The semantics

for the NOR and NAND the reverse as follows:

NOR: is an Or followed by a Not

NAND: is an And followed by a Not

and would require further research beyond the scope of this thesis to determine what type

of expressiveness and coordination patterns could be applied.
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Table 7.1 And, XOR, XNOR, NOR and NAND operators using an in primitive

And | ts1 | tso | unblock XOR | ts1 | tso | unblock
#1170 0 0 #1110 0 0
#2 1 0 1 0 #2 1 0 1 1
#3 | 1 0 0 #3 |1 0 1
#4 | 1 1 1 #4 | 1 1 0

XNOR | ts1 | tss | unblock NOR | ts1 | tss | unblock
#1 0 0 1 #1110 0 1
#2 0 1 0 #2 1 0 1 0
#3 1 0 0 #3 |1 0 0
#4 1 1 1 #4 | 1 1 0

NAND | tsy | tsy | unblock

#1 0 0 1

#2 0 1 1

#3 1 0 1

#4 1 1 0

7.2.3 Bonita Version of LogOp Linda

Currently, the LOGOP LINDA primitives are synchronous. Their setter methods are efficient

due to the ability of using logical operators to combine the necessary tuple spaces. BONITA’s

dispatch methods are efficient due to their asynchronous semantics. However, recalling

Properties 3.2.1 and 4.5.1, BONITA is still inefficient when dealing with multiple tuple

spaces with the same tuple or template. It could be proposed that by combining BONITA’s

asynchronous primitives with logical operators, the total time taken would be Ts¢qrtyp for

the setter primitives and for the getter primitives take Topeck + TBiock + TEztract and are

shown in Properties 7.2.1 and 7.2.2.



CHAPTER 7. CONCLUSION AND FUTURE RESEARCH 104

Property 7.2.1 (Combination of BONITA and LoGOP LINDA models setter primitives.)
Let S be a set of tuple spaces tsy, tsay, ... , ts,. Then V ts;, where i = 1..n, 3 a single

dispatch primitive call. Therefore, the time taken for n dispatch calls is ( Tstartvp ).

Property 7.2.2 (Combination of BONITA and LocOP LINDA models getter primitives.)
Let S be a set of tuple spaces tsy, tsa, ... , ts,. Then V ts;, where i = 1..n, 3 a single
dispatch primitive call. Therefore, the time taken for n dispatch calls is ( Toheer +

TBlock + TEztract )

7.2.4 LogOp Linda for Tuples and Templates

Currently, LoGOP LINDA uses logical operators to combine tuple spaces during primitive
calls. While it is efficient for inserting the same tuple into a set of tuple spaces, it is
inefficient when taking a set of tuples and using the out or eval primitive to insert into
a set of tuple spaces. This same argument of inefficiency can be stated when using a
getter primitive using a particular set of templates. How expressive would each extension
of LoGOP LINDA’s primitives be if logical operator were applied to tuples and templates?
Figures 7.1 and 7.2 outline the proposal of efficiency. The and operator used in Figures 7.1
and 7.2 could be exchanged for the Or operator. The Not operator inherently contributes

to the expressive power.
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Figure 7.1 LocOP LINDA efficiency

LocOpP LINDA on tuple spaces Expressiveness and
Efficiency for the
number of Primitive
calls
out ( A (ts1, .- , tsy) , tupley); n
out ( A (ts1, ... , tsy) , tuples);
out (A (ts1, ... , tsn) , tupley);
in ( A (ts1, ... , ts,) , template;); n
in (A (tsq, .- , tsp) , templates);
in (A (ts1, ... , tSp) , templatey,);
rd ( A (ts1, ... , tsn) , templatey); n
rd ( A (ts1, ... , tsn) , templates);
rd ( A (ts1, ... , ts,) , templatey,);

Figure 7.2 logical operators for tuples and templates

Logical operator on tuple spaces, tuples and templates || Expressiveness
and Efficiency
for the number

of Primitive

calls
out ( A (ts1..- tsn) , A (tupley, ... , tupley)); 1
in (A (ts1, ... , tSp) , A (templatey, ... , templatey,)); 1
rd ( A (ts1, ... , tsn) , A (templates, ... , templatey,)); 1

One concept with using the Not operator on a template is to choose a tuple from a
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tuple space that does not match the given template. For example, if the two templates
(template; and templates) are combined using the And and Not operators, the resulting
templates used could allow the LOGOP LINDA kernel to choose a tuple that does not
match template; and templates. Further research in this particular area needs to be done
to define the semantics of the and, or and not operators for tuples and templates.

In addition to the efficiency of the number of primitive calls, the Tuple Space De-
composer discussed in Section 5 would be more efficient. Currently in LoGOP LINDA, if
tuple;... tuple, are all sent to tuple-spaces ts;... ts,,, the set of those tuple spaces are
decomposed n times (based on n tuples). Again, if LoGOP LINDA could incorporate logical
operators for tuples and templates, the Tuple Space Decomposer would execute once and

achieve better parallelism.

7.2.5 LogOp Linda and Event-driven Models

Recall that models supporting Event Driven semantics are based on a notification occurring
when a tuple that matches a template is being inserted into a particular tuple space. Thus,
if events occur on several tuple spaces having the same event listener, it could be more
correct for a single event to be called back to the client process containing a list of tuples
and their tuple spaces. For example, registering an event for sy, ts and ts3 to occur could

be expressed using an And operator:
registerEvent( and (¢sy, tsa, ts3) , template)

Several different implementations of the semantics can be achieved using event driven
notification if LOGOP LINDA supported it. In the above statement, an event can be
generated back to the registering client process if all three tuple spaces already contain a
tuple matching a template. This event can continue to occur until all of the tuple spaces
do not contain the template.

Another implementation could be after the event is registered, a client process receives
an event notification when each tuple space receives a new tuple. Consider the following

using the Or operator:

registerEvent( or (tsy, ts2, ts3) , template)
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From a location-aware perspective, events can be fired based on tuple spaces closer to the
client process. For example, if ts; and ts3 are closer, then the event is only registered for
those two tuple spaces.

Once the semantics are defined for supporting an event driven capability in LocOP
LINDA, an advantage that may occur using logical operators is a single event notification
is generated for a group of tuples. Contrast this with the semantics of JavaSpaces and
TSpaces. Recall that their semantics only supported a client process receiving one tuple
and tuple space at a time. Thus, if two tuples trigger an event, two serial calls will be

made back to the calling client process.

7.2.6 The Or Operator and Nondeterminism

One question of concern is with the Or operator and nondeterminism: Does location aware-
ness break nondeterminism? Further research needs to be done. As a start, consider mobile
and stationary devices. If a device is not mobile, then the location-aware algorithm would
keep choosing the same tuple space(s) continuously. However if the device is mobile, then
this may improve performance. In other words, if it is designed to travel around and gather
information based on closer (for speed purposes) tuple spaces, then there is a chance that
at point B the device would access tuple-space b’ which is now closer, but at point A

tuple-space b’ is too far away to be accessed.

7.2.7 Logical Operator Evaluator

Currently simple logical expressions have been defined in LoGOP LINDA. Future research
needs to be investigated for more complex expressions that combine logical operators. For

example, given the following:
list = in (V ( A (ts1, ts2) , ts3) , template)

Obviously the above expresses “remove a tuple from both ¢ts; and tsy or remove a tuple
from ts3 that matches template” and return to the calling process. What tuple spaces
should be accessed with this expression? Recall that the in primitive blocks until all tuple

spaces contain a tuple matching template. Since the Or operator is used, a decision could be
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determining the “closer” (location-aware) tuple spaces. However if ts; is the only “close”
tuple space, why should LINDA choose the expression A ( ts, ts2) over the more simpler
ts3? Aside from location-awareness, should the choice be made based on which tuple spaces
physically have a tuple that matches template? If so, this implies that all LogOP LINDA
servers must continuously update all other LOGOP LINDA servers their contents. This
type of updating could be expensive to maintain. Or, if this updating is not done, then
the primitive would physically go to each of the specified tuple spaces a check for a tuple,
lock the tuple and return that the tuple space has a marked tuple. When all results come
back from checking the tuple spaces, there is still a decision that must be done in order to
choose which tuple spaces will remove the tuple. This implies another trip to each of the
tuple spaces to either remove the tuple or unlock the tuple if it is not to be removed.
Regarding LoGOP LINDA’s blocking primitives, creating complex expressions can lead
to the satisfiability problem. The satisfiability problem is concerned with determining
whether there is an assignment of truth values associated with an expression that makes the
expression true [Coo71]. Before determining if an expression is satisfiable, the expression
must be transformed to conjunctive normal form. An expression in conjunctive normal

form consists of the following format
ug AN us A ... Nug,

where each u; is a clause. A clause is a well-formed expression consisting of disjunctive
variables or the negation of variables. The term variables here represents the tuple spaces
in LocOP LINDA. The negation of variables for LocOP LINDA is simply applying a set
difference algorithm as previously discussed. The above LOGOP LINDA execution of the
in primitive can be viewed as a satisfiability problem. In essence, the following expression

must return true in order for the primitive to unblock
( ( t$1 N t82) \Y t83)

However this expression needs to be transformed into conjunctive normal form by dis-

tributing the V operator over A operator as follows:

( ts1 V t83) A ( tso V th)
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Now that the expression is in conjunctive normal form, it can be determined what com-
bination of tuple spaces makes it satisfiable or not. In order to determine this, the tuple
spaces must be placed into a truth table shown in Figure 7.2. From this table, the results
on rows #2 - #4 will unblock the primitive returning the list of tuple spaces and the tuples
to the calling process. Note though, the solution of satisfiability is based on checking the
results of each of the rows in both tables. In essence, the total number of rows checked
is 2™ where n is the number of tuple spaces involved. The complexity of this problem is
exponential implying that the satisfiability problem is in NP complete class of problems?.

Due to this complexity, evaluating complex expressions can be very expensive in time.

Table 7.2 Truth table for tuple-spaces tsi, tso and ts3

tsy | tss | (ts1 V ts3) tso | tsz | (tsa V ts3)
#1110 0 0 #1 | 0 0 0
#2010 | 1 1 #2100 | 1 1
#3011 0 1 #3111 | 0 1
#4101 | 1 1 #41 |1 1

2The proof of this is beyond the scope of this thesis but can be found in [Sud88].
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LogOpLindaServer class

public interface AbstractServer

{

/*%
* disconnect
*

*/

public void disconnect();

}// AbstractServer

public interface MTS
extends AbstractServer

{
/**
* createTupleSpace
%
* @param dbgName a value of type ’String’
* @return a value of type ’TupleSpace’
*/
public TupleSpace createTupleSpace(String dbgName) ;
/**
* getUTS
*
* @return a value of type ’TupleSpace’
*/
public TupleSpace getUTS();
}// MTS

public interface LogOpLinda
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extends MTS

{
/*%
* in
*
* @param tss a value of type ’TupleSpaces’
* Qparam template a value of type ’Template’
* Q@return a value of type ’Tuples’
*/

public Tuples in(TupleSpaces tss, Template template) ;

/*%
inp

@param template a value of type ’Template’

*
%
* Q@param tss a value of type ’TupleSpaces’
%
* Qreturn a value of type ’Tuples’

*/

public Tuples inp(TupleSpaces tss, Template template);
VAL

* rd

*

* @param tss a value of type ’TupleSpaces’

* Qparam template a value of type ’Template’

* Q@return a value of type ’Tuples’

*/

public Tuples rd(TupleSpaces tss, Template template);
/*%

* rdp

%

* @param tss a value of type ’TupleSpaces’

* Q@param template a value of type ’Template’

* Q@return a value of type ’Tuples’

*/

public Tuples rdp(TupleSpaces tss, Template template);
VAL

* out

* @param tss a value of type ’TupleSpaces’

* Q@param tuple a value of type ’Tuple’

*/

public void out(TupleSpaces tss, Tuple tuple);

/**
* eval
%
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* @param tss a value of type ’TupleSpaces’
* Q@param activeTuple a value of type ’ActiveTuple’
* Qexception InvalidReturnObjectForEvalException if an error occurs
*/
public void eval(TupleSpaces tss, ActiveTuple activeTuple)
throws InvalidReturnObjectForEvalException;

}// LogOpLinda

public interface Linda
extends MTS

{
VAL
* in
%
* Q@param ts a value of type ’TupleSpace’
* Q@param tuple a value of type ’Template’
* Q@return a value of type ’Tuple’
*/
public Tuple in(TupleSpace ts, Template tuple);
/*%
* inp
%
* Q@param ts a value of type ’TupleSpace’
* Q@param tuple a value of type ’Template’
* Q@return a value of type ’Tuple’
*/
public Tuple inp(TupleSpace ts, Template tuple);
/%%
* rd
%
* Q@param ts a value of type ’TupleSpace’
* Q@param tuple a value of type ’Template’
* Qreturn a value of type ’Tuple’
*/
public Tuple rd(TupleSpace ts, Template tuple);
/**
* rdp
%
* @param ts a value of type ’TupleSpace’
* Q@param tuple a value of type ’Template’
* Q@return a value of type ’Tuple’

*/
public Tuple rdp(TupleSpace ts, Template tuple);

/*%
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* out

*

* Q@param ts a value of type ’TupleSpace’

* Q@param tuple a value of type ’Tuple’

*/

public void out(TupleSpace ts, Tuple tuple);

/**

* eval

*

* @param ts a value of type ’TupleSpace’

* Q@param activeTuple a value of type ’ActiveTuple’
* Qexception InvalidReturnObjectForEvalException if an error occurs

*/
public void eval(TupleSpace ts, ActiveTuple activeTuple)
throws InvalidReturnObjectForEvalException;

}// Linda
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LogOp class

public class LogOp
{
/%%
* and
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
*/
public static TupleSpaces and(TupleSpace tsl, TupleSpace ts2)
{
return createAnd(tsl,ts2,null,null,null,null,null,null);
}

[ *x

* and

*

* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
*

Q@return a value of type ’TupleSpaces’
*/
public static TupleSpaces and(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3)
{
return createAnd(tsl,ts2,ts3,null,null,null,null,null);
}

VAL

* and

*

* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
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* Q@param ts3 a value of type ’TupleSpace’

* Qparam ts4 a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

*/

public static TupleSpaces and(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4)

{

return createAnd(tsl,ts2,ts3,ts4,null,null,null,null);
}
VAL
* and
*
* Qparam tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* Q@param ts4 a value of type ’TupleSpace’
* @param tsb5 a value of type ’TupleSpace’
* @return a value of type ’TupleSpaces’

*/

public static TupleSpaces and(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace ts5)

{

return createAnd(tsl,ts2,ts3,ts4,ts5,null,null,null);
}
/%%
* and
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb5 a value of type ’TupleSpace’
* @param ts6 a value of type ’TupleSpace’
* @return a value of type ’TupleSpaces’

*/
public static TupleSpaces and(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb, TupleSpace ts6)
{
return createAnd(tsl,ts2,ts3,ts4,ts5,ts6,null,null);
}

/**
* and
*

* @param tsl a value of type ’TupleSpace’



APPENDIX B. LOGOP CLASS

@param
@param
@param
@param
@param
@param

LK IR B B

*/

ts2
ts3
ts4
tsb
ts6
ts7

PP

a

value
value
value
value
value
value

Q@return a value of

of
of
of
of
of
of

type
type
type
type
type
type

’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’

type ’TupleSpaces’

public static TupleSpaces and(TupleSpace

{

return

}

/*%
and

@param
@param
@param
@param
@param
@param
@param
@param

¥R K K K K K K K ¥ ¥

*/

TupleSpace
TupleSpace
TupleSpace

tsi,
ts3,
tsbh,
ts7)

TupleSpace
TupleSpace
TupleSpace

createAnd (ts1,ts2,ts3,ts4,ts5,ts6,ts7,null);

tsl
ts2
ts3
ts4
tsb
ts6
ts7
ts8

PP

a

value
value
value
value
value
value
value
value

Qreturn a value of

of
of
of
of
of
of
of
of

type
type
type
type
type
type
type
type

’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’

type ’TupleSpaces’

public static TupleSpaces and(TupleSpace

{

TupleSpace
TupleSpace
TupleSpace

tsi,
ts3,
tsb,
ts7,

TupleSpace
TupleSpace
TupleSpace
TupleSpace

return createAnd(tsl,ts2,ts3,ts4,ts5,ts6,ts7,ts8);

}

/*%
or

L K B

*/

@param tsl a value of type ’TupleSpace’
@param ts2 a value of type ’TupleSpace’
Qreturn a value of type ’TupleSpaces’

ts2,
ts4,
ts6,

ts2,
ts4,
ts6,
ts8)

public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2)

{

return createOr(tsi,ts2,null,null,null,null,null,null);

}
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VAL

* or

*

* Q@param tsl a value of type ’TupleSpace’

* @param ts2 a value of type ’TupleSpace’

* @param ts3 a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

*/

public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3)

{

return createOr(tsl,ts2,ts3,null,null,null,null,null);
}
[ *x
* or
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’

*/
public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4)

{

return createOr(tsil,ts2,ts3,ts4,null,null,null,null);
}
/%%
* or
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb5 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’

*/
public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb)
{
return createOr(tsil,ts2,ts3,ts4,ts5,null,null,null);
}

/%%
* or
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@param
@param
@param
@param
@param
@param

¥ OK K K K F K ¥

*/

tsl
ts2
ts3
ts4d
tsb
ts6

(U R

a

value
value
value
value
value
value

Qreturn a value of

of
of
of
of
of
of

type
type
type
type
type
type

’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’

type ’TupleSpaces’
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public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2,

{

return

}

/*%
or

@param
@param
@param
@param
@param
@param
@param

LR I B B IR

*/

public static TupleSpaces or(TupleSpace
TupleSpace
TupleSpace
TupleSpace

{

return

}

/**
or

@param
@param
@param
@param
@param
@param
@param
@param

*OF K K K K K K K ¥ ¥

*
~

TupleSpace ts3, TupleSpace ts4,
TupleSpace ts5, TupleSpace ts6)

createOr (ts1,ts2,ts3,ts4,ts5,ts6,null,null);

tsl
ts2
ts3
ts4
tsb
ts6
ts7

O PP

a

value
value
value
value
value
value
value

Qreturn a value of

of
of
of
of
of
of
of

type
type
type
type
type
type
type

’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’

type ’TupleSpaces’

tsl, TupleSpace ts2,
ts3,
tsb,
ts7)

TupleSpace ts4,
TupleSpace ts6,

createOr (ts1,ts2,ts3,ts4,ts5,ts6,ts7,null);

tsl
ts2
ts3
ts4
tsb
ts6
ts7
ts8

PP

a

value
value
value
value
value
value
value
value

Qreturn a value of

of
of
of
of
of
of
of
of

type
type
type
type
type
type
type
type

’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’
’TupleSpace’

type ’TupleSpaces’
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public static TupleSpaces or(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace ts5, TupleSpace ts6,
TupleSpace ts7, TupleSpace ts8)

{

return createOr(tsl,ts2,ts3,ts4,ts5,ts6,ts7,ts8);

}

private static TupleSpaces createOr(TupleSpace tsl, TupleSpace

TupleSpace ts3, TupleSpace
TupleSpace tsb5, TupleSpace
TupleSpace ts7, TupleSpace

OrLogicalOperator logicalOperator = new OrLogicalOperator();

logicalOperator.add(tsl,ts2);

if(ts3
if (ts4

if (ts5 !

if(ts6
if (ts7

if (ts8 !

null)
null)
null)
null)
null)
null)

logicalOperator.
logicalOperator.
logicalOperator.
logicalOperator.
logicalOperator.
logicalOperator.

add (ts3);
add (ts4) ;
add (ts5);
add (ts6) ;
add (ts7) ;
add (ts8);

return new TupleSpaces(logicalOperator);

private static TupleSpaces createAnd(TupleSpace tsl, TupleSpace

TupleSpace ts3, TupleSpace
TupleSpace ts5, TupleSpace
TupleSpace ts7, TupleSpace

AndLogicalOperator logicalOperator = new AndLogicalOperator()

logicalOperator.add(tsl,ts2);

if(ts3
if(ts4
if(tsb
if(ts6

null)
null)
null)
null)

logicalOperator.
logicalOperator.
logicalOperator.
logicalOperator.

add (ts3);
add (ts4);
add (ts5);
add (ts6) ;

ts2,
ts4,
ts6,
ts8)

ts2,
ts4,
ts6,
ts8)
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if(ts7 != null) logicalOperator.add(ts7);
if(ts8 != null) logicalOperator.add(ts8);

return new TupleSpaces(logicalOperator);

}

private static TupleSpace []setDifference(Vector tupleSpaceDomain,
TupleSpace []inTupleSpace)
{
TupleSpace [JoutTupleSpace=null;
Vector tmpOutTupleSpace = new Vector();

for(int index=0;index<tupleSpaceDomain.size();index++) {

TupleSpace tmp = (TupleSpace)tupleSpaceDomain.elementAt(index);

if(tmp != null) {

boolean found false;

int index2 = 0;

while((found == false) && (index2 < inTupleSpace.length)) {
found = (tmp.equals(inTupleSpace[index2]));

index2++;

}

if (found == false) {
tmpOutTupleSpace.add (tmp) ;
}
}
}

outTupleSpace = new TupleSpace[tmpOutTupleSpace.size()];
for(int index=0;index<tmpOutTupleSpace.size();index++) {

outTupleSpace [index] = (TupleSpace)tmpOutTupleSpace.elementAt (index);
}

return outTupleSpace;
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VAL
* andSetDiff
*
* Q@param tsl a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* Qexception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces andSetDiff (TupleSpace tsl)
throws EmptySetTupleSpaceException
{
return createAndSetDiff (tsl1,null,null,null,null,null,null,null);
}

/**%
andSetDiff

@param ts2 a value of type ’TupleSpace’
Q@return a value of type ’TupleSpaces’
Qexception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces andSetDiff(TupleSpace tsl, TupleSpace ts2)
throws EmptySetTupleSpaceException
{
return createAndSetDiff (tsl,ts2,null,null,null,null,null,null);
}

*
%
* @param tsl a value of type ’TupleSpace’
*
*
%

/%%
andSetDiff

*
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* Qexception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces andSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3)

throws EmptySetTupleSpaceException
{

return createAndSetDiff (tsl,ts2,ts3,null,null,null,null,null);
}

VAL
* andSetDiff
*

* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
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@param ts3 a value of type ’TupleSpace’

@param ts4 a value of type ’TupleSpace’

Q@return a value of type ’TupleSpaces’

Q@exception EmptySetTupleSpaceException if an error occurs

* ¥ ¥ K

*/
public static TupleSpaces andSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4)
throws EmptySetTupleSpaceException
{
return createAndSetDiff (tsl,ts2,ts3,ts4,null,null,null,null);
}

[ *x

* andSetDiff

*

* @param tsl a value of type ’TupleSpace’

* Q@param ts2 a value of type ’TupleSpace’

* @param ts3 a value of type ’TupleSpace’

* @param ts4 a value of type ’TupleSpace’

* @param tsb5 a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

* @exception EmptySetTupleSpaceException if an error occurs

*/
public static TupleSpaces andSetDiff (TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace ts5)
throws EmptySetTupleSpaceException
{
return createAndSetDiff (tsl,ts2,ts3,ts4,ts5,null,null,null);
}

/%%

* andSetDiff

*

* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb a value of type ’TupleSpace’
* Q@param ts6 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’

* Qexception EmptySetTupleSpaceException if an error occurs

*/
public static TupleSpaces andSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb5, TupleSpace ts6)
throws EmptySetTupleSpaceException
{
return createAndSetDiff (tsl,ts2,ts3,ts4,ts5,ts6,null,null);
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3

VAL

* andSetDiff

*

* @param tsl a value of type ’TupleSpace’
* Qparam ts2 a value of type ’TupleSpace’
* Q@param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* Q@param tsb5 a value of type ’TupleSpace’
* @param ts6 a value of type ’TupleSpace’
* @param ts7 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’

* @exception EmptySetTupleSpaceException if an error

*/

occurs

public static TupleSpaces andSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace ts5, TupleSpace ts6,

TupleSpace ts7)
throws EmptySetTupleSpaceException

occurs

{
return createAndSetDiff (tsl,ts2,ts3,ts4,ts5,ts6,ts7,null);
}
[ *x
* andSetDiff
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb a value of type ’TupleSpace’
* @param ts6 a value of type ’TupleSpace’
* @param ts7 a value of type ’TupleSpace’
* @param ts8 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* @exception EmptySetTupleSpaceException if an error

*/
public static TupleSpaces andSetDiff (TupleSpace tsi,
TupleSpace ts3,
TupleSpace ts5,
TupleSpace ts7,
throws EmptySetTupleSpaceException
{

TupleSpace
TupleSpace
TupleSpace
TupleSpace

return createAndSetDiff (tsl,ts2,ts3,ts4,ts5,ts6,ts7,ts8);

}

ts2,
ts4,
ts6,
ts8)

123



APPENDIX B. LOGOP CLASS

private static TupleSpaces createAndSetDiff (TupleSpace

throws EmptySetTupleSpaceException

TupleSpace []tupleSpaceArray

tupleSpaceArray [0]
tupleSpaceArray[1]
tupleSpaceArray[2]
tupleSpaceArray[3]
tupleSpaceArray [4]
tupleSpaceArray [5]
tupleSpaceArray[6]
tupleSpaceArray[7]

return createAndSetDiff (tupleSpaceArray);

VAL
createAndSetDiff

Q@return a value of type ’TupleSpaces’

%
*

* @param []JtupleSpaceArray a value of type ’TupleSpace’

%

* Q@exception EmptySetTupleSpaceException if an error occurs

*/

tsl;
ts2;
ts3;
ts4;
tsh;
ts6;
ts7;
ts8;

TupleSpace
TupleSpace
TupleSpace

new TupleSpace[8];

tsi,
ts3,
tsb,
ts7,

TupleSpace
TupleSpace
TupleSpace
TupleSpace

ts2,
ts4,
ts6,
ts8)

public static TupleSpaces createAndSetDiff(TupleSpace []tupleSpaceArray)

throws EmptySetTupleSpaceException

{

TupleSpace [JresultTupleSpaceArray =

setDifference (ServerAdapter.getInstance() .getTupleSpaceDomain(),

tupleSpacelrray) ;

AndLogicalOperator andLogicalOperator

new AndLogicalOperator();

for(int index=0;index<resultTupleSpaceArray.length;index++) {
andLogicalOperator.add(resultTupleSpaceArray[index]) ;

}

return new TupleSpaces(andLogicalOperator);

/**

* orSetDiff
*
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* Q@param tsl a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* Q@exception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces orSetDiff(TupleSpace tsi)
throws EmptySetTupleSpaceException
{
return createOrSetDiff(ts1,null,null,null,null,null,null,null);

}

[ **
orSetDiff

@param ts2 a value of type ’TupleSpace’
@return a value of type ’TupleSpaces’
Qexception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces orSetDiff(TupleSpace tsl, TupleSpace ts2)
throws EmptySetTupleSpaceException
{
return createOrSetDiff(tsl,ts2,null,null,null,null,null,null);
}

*
*
* Q@param tsl a value of type ’TupleSpace’
*
%
%

/**
orSetDiff

*
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* @exception EmptySetTupleSpaceException if an error occurs
*/
public static TupleSpaces orSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3)

throws EmptySetTupleSpaceException
{

return createOrSetDiff(tsl,ts2,ts3,null,null,null,null,null);
}

/%%

* orSetDiff

*

* @param tsl a value of type ’TupleSpace’

* @param ts2 a value of type ’TupleSpace’

* @param ts3 a value of type ’TupleSpace’

* @param ts4 a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

* @exception EmptySetTupleSpaceException if an error occurs
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*/
public static TupleSpaces orSetDiff (TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace tsé4)
throws EmptySetTupleSpaceException
{
return createOrSetDiff(tsl,ts2,ts3,ts4,null,null,null,null);

}

@param ts5 a value of type ’TupleSpace’
Qreturn a value of type ’TupleSpaces’
Qexception EmptySetTupleSpaceException if an error occurs

[ *x

* orSetDiff

*

* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
*

*

*

*/
public static TupleSpaces orSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb)
throws EmptySetTupleSpaceException

@param ts6 a value of type ’TupleSpace’
Q@return a value of type ’TupleSpaces’
Qexception EmptySetTupleSpaceException if an error occurs

{

return createOrSetDiff(tsl,ts2,ts3,ts4,ts5,null,null,null);
}
/%%
* orSetDiff
*
* @param tsl a value of type ’TupleSpace’
* @param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb5 a value of type ’TupleSpace’
%
*
*

*/
public static TupleSpaces orSetDiff (TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb, TupleSpace ts6)
throws EmptySetTupleSpaceException
{
return createQrSetDiff (tsl,ts2,ts3,ts4,ts5,ts6,null,null);
}

/%%
* orSetDiff
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*
* Q@param tsl a value of type ’TupleSpace’

* @param ts2 a value of type ’TupleSpace’

* @param ts3 a value of type ’TupleSpace’

* @param ts4 a value of type ’TupleSpace’

* @param tsb a value of type ’TupleSpace’

* @param ts6 a value of type ’TupleSpace’

* @param ts7 a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

* Qexception EmptySetTupleSpaceException if an error occurs

*/
public static TupleSpaces orSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb5, TupleSpace ts6,
TupleSpace ts7)
throws EmptySetTupleSpaceException

{
return createOrSetDiff (tsl,ts2,ts3,ts4,ts5,ts6,ts7,null);
}
/%%
* orSetDiff
*
* @param tsl a value of type ’TupleSpace’
* Q@param ts2 a value of type ’TupleSpace’
* @param ts3 a value of type ’TupleSpace’
* @param ts4 a value of type ’TupleSpace’
* @param tsb a value of type ’TupleSpace’
* @param ts6 a value of type ’TupleSpace’
* @param ts7 a value of type ’TupleSpace’
* @param ts8 a value of type ’TupleSpace’
* Q@return a value of type ’TupleSpaces’
* Q@exception EmptySetTupleSpaceException if an error occurs

*/
public static TupleSpaces orSetDiff(TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb5, TupleSpace ts6,
TupleSpace ts7, TupleSpace ts8)
throws EmptySetTupleSpaceException
{
return createOrSetDiff(tsl,ts2,ts3,ts4,ts5,ts6,ts7,ts8);
}

private static TupleSpaces createOrSetDiff (TupleSpace tsl, TupleSpace ts2,
TupleSpace ts3, TupleSpace ts4,
TupleSpace tsb, TupleSpace ts6,
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TupleSpace ts7, TupleSpace ts8)
throws EmptySetTupleSpaceException

TupleSpace [JtupleSpaceArray = new TupleSpacel[8];
tupleSpaceArray[0] = tsi;
tupleSpaceArray[1] = ts2;
tupleSpaceArray[2] = ts3;
tupleSpaceArray[3] = ts4;
tupleSpaceArray[4] = tsb5;
tupleSpaceArray[5] = ts6;
tupleSpaceArray[6] = ts7;
tupleSpaceArray[7] = ts8;

return createOrSetDiff (tupleSpaceArray) ;

}

VAL

* create(rSetDiff

%

* @param []JtupleSpaceArray a value of type ’TupleSpace’

* Q@return a value of type ’TupleSpaces’

* Qexception EmptySetTupleSpaceException if an error occurs

*/
public static TupleSpaces createOrSetDiff(TupleSpace [ltupleSpaceArray)
throws EmptySetTupleSpaceException
{
TupleSpace []lresultTupleSpaceArray =
setDifference(ServerAdapter.getInstance() .getTupleSpaceDomain(),
tupleSpacelrray) ;

OrLogicalOperator orLogicalOperator = new OrLogicalOperator();

for(int index=0;index<resultTupleSpaceArray.length;index++) {
orLogicalOperator.add(resultTupleSpaceArray[index]) ;

}

return new TupleSpaces(orLogicalOperator);

}// LogOp
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LogOp Linda Primitive IDs

public interface LogOpPrimitiveID

{
public static final int LOGOP_LINDA_OUT = 9;
public static final int LOGOP_LINDA_IN = 10;
public static final int LOGOP_LINDA_INP = 11;

public static final int LOGOP_LINDA_RD = 12;
public static final int LOGOP_LINDA_RDP 13;
public static final int LOGOP_LINDA_EVAL 14;

}// LogOpPrimitivelID
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Tuple class

public class Tuple
implements Serializable

{
public final static int IS_FORMAL = 2;
public final static int IS_OBJECT =1;
public final static int IS_PRIMITIVE = O;

private LinkedList items_;
private String hashKey_=null;
private int [JobjTypes_=null;
private TupleSpace ts_;

/*%
* Constructor
*

*/
public Tuple()
{
items_ = new LinkedList();

}

/%%
* Constructor
*
* @param ol a value of type ’Object’
*/
public Tuple(Object ol)
{
this(Q);
add(ol);
}
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VAL
* Constructor
*
* @param ol a value
* Q@param o2 a value
*/
public Tuple(Object
{

this();

add(ol);

add (02);
X

/**
Constructor

@param ol a value
Q@param o2 a value

* X K X *

@param o3 a value
*/

public Tuple(Object
{

this(Q);

add(ol) ;

add (02);

add (03) ;

/*%

Constructor
@param ol a value
Q@param o2 a value
@param o3 a value

@param o4

* K X X X *

a
a
a
a value
*/
public Tuple(Object
{

this();

add(ol);

add (02);

add(03);

add (o4) ;
}

[ **

* Constructor
%

of type ’Object’
of type ’Object’

ol, Object 02)

of type ’Object’
of type ’Object’
of type ’Object’

ol, Object o2, Object 03)

of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’

ol, Object 02, Object o3, Object

o4)
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* @param ol a value
* Q@param o2 a value
* @param o3 a value
* @param o4 a value
* Q@param o5 a value
*/
public Tuple(Object
Object

{

this();

add(ol);

add (02);

add(03);

add (o4) ;

add(o5) ;
}
VAL
* Constructor
%
* Q@param ol a value
* @param o2 a value
* @param o3 a value
* Q@param o4 a value
* Q@param o5 a value
* @param o6 a value
*/
public Tuple(Object

Object

{

this(Q);

add(ol) ;

add (02);

add(o3);

add (o4) ;

add (o5) ;

add (o6) ;
}
/*%
* Constructor
%
* @param ol a value
* Q@param o2 a value
* Q@param o3 a value
* @param o4 a value
* @param o5 a value
* Q@param o6 a value
* @param o7 a value

TUPLE CLASS

of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’

ol, Object 02, Object o3, Object o4,

o5)

of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’

ol, Object o2, Object o3, Object o4,

o5, Object 06)

of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
of type ’Object’
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*/

public Tuple(Object ol, Object o2, Object 03, Object o4,

{
this();
add (o1)
add (02)
add (o3)
add (o4)
add (o5)
add (o6)
add (o7)

[ **

@param
@param
@param
Q@param
@param
@param
@param
@param

* X K K K K K X X X

*/

3
)
3
)
)
3

ol
02
03
04
ob
o6
o7
o8

Constructor

PP

Object o5, Object 06, Object o7)

value
value
value
value
value
value
value
value

public Tuple(Object

{
this();
add (o1)
add (02)
add (o3)
add (o04)
add (05)
add (06)
add (o7)
add (08)

/**
add

* ¥ K K X ¥ ¥

)
3
3
)
3
)
3

)

Object

of
of
of
of
of
of
of
of

type
type
type
type
type
type
type
type

’Object’
’Object’
’Object’
’Object’
’Object’
’Object’
’Object’
’Object’

ol, Object 02, Object o3, Object o4,

ob,

Object 06, Object o7, Object

add the Object o to the linked list and remember
if it was an Object or a primitive.

@param o a value of type ’Object’
@param objType a value of type ’int’

08)
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*/
protected void add(Object o, int objType)
{
if(o != null) {
items_.add(o);
int size = ((objTypes_==null) 7 O : objTypes_.length);
int [JtmpArray = new int[size+1];
for(int index=0;index<size;index++) {
tmpArray[index] = objTypes_[index];
}
tmpArray[size] = objType;
objTypes_ = tmpArray;

public void add(Object object) { add(object,IS_OBJECT); }
public void add(int i) { add(new Integer(i),IS_PRIMITIVE); }
public void add(float f) { add(new Float(f),IS_PRIMITIVE); }
public void add(double d) { add(new Double(d),IS_PRIMITIVE); }

public void add(boolean b) { add(((b==true)
? Boolean.TRUE
: Boolean.FALSE),
IS_PRIMITIVE); }

public int size()
{
return items_.size();

}

public Object get(int index)

{
Object object = items_.get(index);
return object;

}

/%%
* getTS
*
* Q@return a value of type ’TupleSpace’
*/
public TupleSpace getTS()
{
return ts_;

}
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/%%
* setTS
*
* Q@param ts a value of type ’TupleSpace’
*/
public void setTS(TupleSpace ts)
{
ts_ = ts;

}

//public Integer getHashkey()
public String getHashkey()
{
if (hashKey_==null) {
generateHashkey () ;
}
return hashKey_;

}

/%%

* generateHashkey

*

* must be done on server side due to the sb.toString generating

* a unique hash code in this VM.
*
*/
private void generateHashkey()
{
if (hashKey_==null) {
StringBuffer sb = new StringBuffer();
ListIterator listIterator = items_.listIterator(0);
int index=0;
while(listIterator.hasNext()) {
if (objTypes_[index]==IS_FORMAL) {
sb.append (listIterator.next());
}
else {
sb.append (((Class) (1istIterator.next().getClass())) .getName());
}
index++;
}
hashKey_ = sb.toString();
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}

public String toString()

{
StringBuffer sb = new StringBuffer();
int max = items_.size();

for(int index=0;index<max;index++) {
Object item = items_.get(index);
if (index==0) {
sb.append(item.getClass() .getName()) .append(":")
.append (item.toString());
}
else {
sb.append (" ") .append(item.getClass().getName()).append(":")
.append (item.toString());
}
}
return sb.toString();

}

public Template toTemplate()

{
Template template = new Template();

int max = items_.size();
for(int index=0;index<max;index++) {
Object object = items_.get(index);
template.addFormal (object.getClass() .getName()) ;
}

return template;

}

}// Tuple
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Template class

public class Template
extends Tuple
{
public Template()
{
}

/%%
* Constructor
*
* @param sl a value of type ’String’
*/
public Template(String s1)
{
this(Q);
addFormal (s1);
}

/%%
* Constructor
*
* Q@param sl a value of type ’String’
* @param s2 a value of type ’String’
*/
public Template(String s1, String s2)
{

this();

addFormal (s1);

addFormal (s2);
}

/**
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Constructor

@param s1 a value of type ’String’
@param s2 a value of type ’String’
@param s3 a value of type ’String’

* K K K ¥

*/
public Template(String s1, String s2, String s3)
{

this();

addFormal (s1);

addFormal (s2);

addFormal (s3) ;

/**%
* Constructor

%
* @param sl a value of type ’String’
* @param s2 a value of type ’String’
* @param s3 a value of type ’String’
* @param s4 a value of type ’String’
*/
public Template(String s1, String s2, String s3, String s4)

this();

addFormal (s1);

addFormal (s2);

addFormal (s3);

addFormal (s4) ;
}
/%%
* Constructor
%
* @param sl a value of type ’String’
* @param s2 a value of type ’String’
* @param s3 a value of type ’String’
* Q@param s4 a value of type ’String’
* @param sb5 a value of type ’String’
*/
public Template(String s1, String s2, String s3, String s4,

String sb5)

{

this(Q;

addFormal (s1);

addFormal (s2);

addFormal (s3);

addFormal (s4) ;

addFormal (s5) ;
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}

/%%

* Constructor

@param
@param
@param
@param
@param

*OK K K K * ¥

*/

s2
s3
s4
sb
s6

@param si a

a
a
a
a
a

value
value
value
value
value
value

of
of
of
of
of
of

public Template(String
String

{

this();

addFormal (s1);
addFormal (s2);
addFormal (s3);
addFormal (s4) ;
addFormal (s5) ;
addFormal (s6) ;

/*%

@param
@param
@param
@param
@param
@param
@param

LR K I B 2 R R

*/

si
s2
s3
s4
sb
s6
s7

Constructor

a
a
a
a
a
a
a

value
value
value
value
value
value
value

of
of
of
of
of
of
of

public Template(String
String

{

this();

addFormal (s1);
addFormal (s2);
addFormal (s3) ;
addFormal (s4) ;
addFormal (s5) ;
addFormal (s6) ;
addFormal (s7);

type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’

sl, String s2, String s3, String s4,
sb, String s6)

type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’

sl, String s2, String s3, String s4,
sb, String s6, String s7)
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[ **

* Constructor

@param
@param
@param
@param
@param
@param
@param

L K IR K 2 K R R

*/

s2
s3
s4
sb
s6
s7
s8

Q@param sl a

a
a
a
a
a
a
a

value
value
value
value
value
value
value
value

of
of
of
of
of
of
of
of

public Template(String
String

{

this();

addFormal (s1);
addFormal (s2);
addFormal (s3);
addFormal (s4) ;
addFormal (s5) ;
addFormal (s6) ;
addFormal (s7) ;
addFormal (s8);

type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’
type ’String’

sl, String s2, String s3, String s4,
sb, String s6, String s7, String s8)

public void addFormal(String formal)

{

super.add (formal,Tuple.IS_FORMAL) ;

}

}// Template
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Tuples class

public class Tuples
implements Serializable

{
private final Pair dummyPair_ = new Pair(null,null);
private LinkedList pairs_;

private int tsIndex_;

public Tuples(int numberOfPairs)
{
pairs_ = new LinkedList();
for(int index=0;index<number0fPairs;index++) {
pairs_.add (dummyPair_);
}
tsIndex_ = 0;

/%%

* strip

*

* removes dummyPair object from pairs_.
%

*/

public void strip()

{

int max = getCount();

for(int index=max;index>0;index--) {
Pair pair = (Pair)pairs_.get(index-1);
if (pair == dummyPair_) {
pairs_.remove(index-1);
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max = getCount();

}

public void add(TupleSpace ts, Tuple tuple)
{
if((ts != null) && (tuple!=null)) {
Pair pair = new Pair(ts,tuple);
pairs_.set(tsIndex_,pair);

}
tsIndex_++;
}
public int getCount ()
{
return pairs_.size();
}

public boolean foundAllMatched()

{
boolean foundAllMatchedTuples = (tsIndex_==pairs_.size());
return foundAllMatchedTuples;

}

VAL
* getTupleSpace
*
* @param index a value of type ’int’
* @return a value of type ’TupleSpace’
*/
public TupleSpace getTupleSpace(int index)
{
return ((Pair)pairs_.get(index)) .getTupleSpace();
}

/*x
* getTuple
*
* @param index a value of type ’int’
* Q@return a value of type ’Tuple’
*/
public Tuple getTuple(int index)
{
return ((Pair)pairs_.get(index)) .getTuple();
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private class Pair

{

}
Y/

implements Serializable

private TupleSpace ts_;
private Tuple tuple_;

public Pair(TupleSpace ts, Tuple tuple)

{
ts_ = ts;

tuple_ = tuple;
}

private TupleSpace getTupleSpace()
{
return ts_;
}
private Tuple getTuple()
{
tuple_.setTS(ts_);
return tuple_;

}
public String toString()
{
return "ts_:’"+ts_+"’ tuple_: [@"+
((tuple_==null)?"null":
Integer.toHexString(tuple_.hashCode()))+"]
}

Tuples

B ) ||+tuple_+ll mn ;
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OrDeterminism Interface
Implementation

public interface OrDeterminism

{

//
// computes the resulting tuple spaces
// to be used for an Or operator.
//
public TupleSpace []compute(TupleSpace [Jtss,
int logOpPrimitiveID) ;

}// OrDeterminism

public class OrOperator
implements OrDeterminism
{
public OrOperator()
{
}

public TupleSpace [lcompute(TupleSpace []ltupleSpaceArray,
int logOpPrimitiveID)
{
TupleSpace [InewArray;

if (duringWorkHours()) {
switch(logOpPrimitiveID) {
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case
case
case
case
case
case

LogOpPrimitiveID.
LogOpPrimitivelID.
LogOpPrimitivelID.
LogOpPrimitivelID.
LogOpPrimitiveID.
LogOpPrimitivelID.

LOGOP_LINDA_OUT:
LOGOP_LINDA_IN:
LOGOP_LINDA_INP:
LOGOP_LINDA_RD:
LOGOP_LINDA_RDP:
LOGOP_LINDA_EVAL:

newArray = calculateNewTupleSpacesForWorkHours (workHourIPRanges,

break;

}
}
else {

tupleSpaceArray) ;

switch(logOpPrimitiveID) {

case
case
case
case
case
case

LogOpPrimitivelID.
.LOGOP_LINDA_IN:

LogOpPrimitiveID

LogOpPrimitiveID.
LogOpPrimitivelID.
LogOpPrimitivelID.
LogOpPrimitivelID.

LOGOP_LINDA_OUT:

LOGOP_LINDA_INP:
LOGOP_LINDA_RD:
LOGOP_LINDA_RDP:
LOGOP_LINDA_EVAL:

newArray = calculateNewTupleSpacesForNonWorkHours(nonWorkHourIPRanges,

break;

return newArray;

}

}// OrOperator

tupleSpacelArray) ;
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LogOpOutputStream and
LogOplInputStream classes

public class LogOpOutputStream
extends ObjectOutputStream
{
public LogOpOutputStream(QutputStream os)
throws IOException
{
super (new BufferedQutputStream(os));
super.flush();
}
}

public class LogOpInputStream
extends ObjectInputStream
{
public LogOpInputStream(InputStream is)
throws IOException
{
super (new BufferedInputStream(is));
}
}
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LogOp.properties

#

# the initial capacity of hash tables in the
# kernel.

#

initialCapacity=100001
defaultServerBroadCastPort=9000

utsHost=machineNameC

servers=machineNameA, machineNameB, machineNameC, machineNameD
ranges (23-50) are inclusive.
* implies (0-255, inclusive).

NOTE: range below does not include REMORA.

NOTE: THERE IS NO PARSE CHECKING. YOU PUT SOMETHING

H OH H H H H HE H H H R

OrLocale=22.50.74.130-140:22.50.74.150

OrDeterminismClass=test.0rOperator
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Test case: FDRd.java

public class FDRd
extends AllTests
{
// tscount: tuple space count
public FDRd(int tscount, String clientType)
{
TupleSpace [ltupleSpaceArray = new TupleSpace[tscount];

ServerAdapter server = ServerAdapter.connect();
TupleSpace uts = server.getUTS();

int doItIndex = 0;
if (clientType.equals("p")) {

//
// producer

//

for(int index=0;index<tscount;index++) {
tupleSpaceArray[index] =
server.createTupleSpace(getHostname () +"-"+index) ;
System.out.println("creating TupleSpace:’"+tupleSpaceArray[index]+"’");
}

AndLogicalOperator andLO = new AndLogicalOperator();
for(int index=0;index<tscount;index++) {

andL0.add (tupleSpaceArray[index]) ;
}

TupleSpaces tupleSpaces = new TupleSpaces(andL0) ;
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for(int index=0;index<tscount;index++) {
server.out (uts,new Tuple(tupleSpaceArray[index]));

}
int [JtupleCount = {1};
for(int index=0;index<tupleCount.length;index++) {

int MAX = tupleCount[index];
System.out.println("doing: "+MAX+":  "+new java.util.Date());
for(int outIndex=0;outIndex<MAX;outIndex++) {

Integer i = new Integer(outIndex);

server.out (tupleSpaces, new Tuple(i));

}
}

}
else {

//
// consumer
//
AndLogicalOperator andLO = new AndLogicalOperator();
for(int index=0;index<tscount;index++) {
andL0.add (uts) ;
}
TupleSpaces utss = new TupleSpaces(andL0);

Template tsTemplate = new Template("edu.fit.linda.client.TupleSpace");
Tuples tuples = server.in(utss,tsTemplate);

andL0 = new AndLogicalOperator();

for(int index=0;index<tuples.getCount();index++) {
TupleSpace ts = (TupleSpace)tuples.getTuple(index).get(0);
System.out.println("["+index+"]:got TS:’"+ts+"’");
//
// load up LINDA array
//
tupleSpaceArray[index] = ts;

//
// load up AndLogicalOperator.

//
andL0.add(ts) ;
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TupleSpaces tupleSpaces = new TupleSpaces(andL0) ;

int []sample =
{
10,
100,
250,
500,
750,
1000} ;
Template template = new Template("java.lang.Integer");

for (int countIndex=0;countIndex<5;countIndex++) {
System.out.println("countIndex=’"+countIndex+"’");
for(int sampleIndex=0;sampleIndex<sample.length;sampleIndex++) {
int MAX = sample[sampleIndex];

{

System.out.println("["+countIndex+"]:doing: "+MAX+": "+
new java.util.Date());

long startTime = System.currentTimeMillis();

for (int index=0;index<MAX;index++) {

tuples = server.rd(tupleSpaces,template);

}

long stopTime = System.currentTimeMillis();

System.out.println("LOGOP:DJKS: ["+doItIndex+"]--RD--[ "+
MAX+" ]: TOTAL_TIME: "+
(stopTime-startTime)+" (ms)");

System.out.println("["+countIndex+"] :doing: "+MAX+
":  "4new java.util.Date());

long startTime = System.currentTimeMillis();
for(int index=0;index < MAX; index++) {

for(int tsindex=0;tsindex<tscount;tsindex++) {

tuple = server.rd(tupleSpaceArray[tsindex],template);

}

}

long stopTime = System.currentTimeMillis();
System.out.println("LINDA:DJKS: ["+doItIndex+
"]--RD--[ "+MAX+" ]: TOTAL_TIME: "+
(stopTime-startTime)+" (ms)");
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System.out.println("");

}

server.disconnect();

alldone(false);
}

public static void main (String[] args)

{
new FDRd(new Integer (args[0]).intValue(), args[1l);
}

}// FDRd4



Appendix K

Total tuples retrieved

Figure K.1 Total number of tuples retrieve from LOGOP LINDA and LINDA between two
servers. LOGOP LINDA and LINDA calling reset() every 5000 object writes

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)

62640 8 4 19
125280 16 5 39
187920 24 101 58
250560 32 100 78
313200 40 100 98
375840 48 100 117
501120 64 100 155
626400 80 101 195
939600 120 111 291
1252800 160 112 407
1566000 200 120 516
1879200 240 50 714
3132000 400 152 1145
4698000 600 215 1936
6264000 800 471 2602
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Figure K.2 Total number of tuples retrieve from LOGOP LINDA and LINDA between four
servers. LOGOP LINDA and LINDA calling reset() every 5000 object writes

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)
62640 8 5 21
125280 16 6 40
187920 24 100 60
250560 32 100 79
313200 40 100 100
375840 48 100 120
501120 64 101 163
626400 80 102 198
939600 120 111 282
1252800 160 113 382
1566000 200 113 502
1879200 240 33 609
3132000 400 138 1010
4698000 600 160 1460
6264000 800 187 1983

Figure K.3 Total number of tuples retrieve from LoGOP LINDA and LINDA between eight
servers. LOGOP LINDA and LINDA calling reset() every 5000 object writes

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)
62640 8 8 33
125280 16 10 65
187920 24 169 96
250560 32 169 128
313200 40 101 96
501120 64 101 151
626400 80 101 192
939600 120 111 281
1252800 160 112 377
1566000 200 114 473
1879200 240 31 583
3132000 400 133 991
4698000 600 154 1481
6264000 800 176 1979
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Figure K.4 Total number of tuples retrieve from LOGOP LINDA and LINDA between two
servers. LOGOP LINDA calling reset() and LINDA not calling reset()

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)
62640 8 110 19
125280 16 25 39
187920 24 120 58
250560 32 120 78
313200 40 36 98
375840 48 132 117
501120 64 52 155
626400 80 223 195
939600 120 183 291
1252800 160 192 407
1566000 200 209 516
1879200 240 232 714
3132000 400 324 1145
4698000 600 395 1936
6264000 800 563 2602
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Figure K.5 Total number of tuples retrieve from LOGOP LINDA and LINDA between four
servers. LOGOP LINDA calling reset() and LINDA not calling reset()

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)
62640 8 111 21
125280 16 28 40
187920 24 121 60
250560 32 120 79
313200 40 38 100
375840 48 130 120
501120 64 79 163
626400 80 142 198
939600 120 165 282
1252800 160 182 382
1566000 200 180 502
1879200 240 221 609
3132000 400 303 1010
4698000 600 357 1460
6264000 800 455 1983

Figure K.6 Total number of tuples retrieve from LOGOP LINDA and LINDA between eight
servers. LOGOP LINDA calling reset() and LINDA not calling reset()

Total Number | Total Number of | LogOp Linda time | Linda time
of Tuples Tuple Spaces per Iteration per Iteration
(millisecond) (millisecond)
62640 8 114 33
125280 16 34 65
187920 24 120 96
250560 32 130 128
313200 40 41 96
501120 64 141 151
626400 80 149 192
939600 120 168 281
1252800 160 185 377
1566000 200 191 473
1879200 240 222 583
3132000 400 301 991
4698000 600 352 1481
6264000 800 505 1979
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