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Abstract 

 
Comparing the Effect of Smoothing and N-gram Order : Finding the Best Way to Combine 

the Smoothing and Order of N-gram 

By 

Wenyang Zhang 

Thesis Adviser: Kepuska, Veton , Ph. D. 

    The SRILM is a toolkit for building and applying statistical language models 
(LMs), designed and developed primarily for use in speech recognition, statistical 
tagging and segmentation, and machine translation. It has been under development 
in the SRI Speech Technology and Research Laboratory since 1995. The toolkit has 
also greatly benefited from its use and enhancements during the Johns Hopkins 
University/CLSP summer workshops in 1995, 1996, 1997, and 2002. In this thesis, 
the effect of smoothing and order of N-gram for language model we build by srilm 
toolkit is studied.  

         My primary method is to use comparison. Firstly, training corpus and testing 
corpus in website is downloaded. This should be checked in all of the document. 
Then, I use command window and training corpus to train a language model in 
different smoothing and order of n-gram and test another one we downloaded in 
website. Finally, I will get the perplexities which can weigh the language model. I 
will also list every perplexity and compare them in different smoothing and order 
of n-gram to see which language model we built has minimal perplexity. Then, we 
will knwhich language model we built is the best one.  

        Also, I will do it again by another two different corpora, one for training, 
another for testing, to see the effect of different corpus for language model. If the 
two group perplexity is the same, it means the different corpus do not affect 
perplexity. Otherwise, the result is opposite. 
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        In conclusion, my measure above all is to calculate perplexity of each 
language model in different smoothing and order of n-gram and compare every 
perplexity to find the best way to match the smoothing and order of n-gram for the 
language model. At the same time, we will know the effect of different corpus for 
the language model with same smoothing and order of n-gram.  
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Chapter 1 
 

 
                                   Introduction 
 
 
         Language model is a mathematical model which describes natural language’s 
internal law. In theory, building a language model is to conclude, find and gain 
natural language statistics and structural internal law. In practice, language model is 
widely to be used in speech recognition, handwriting-recognition system, machine 
translation and natural language managing area.  
         Language model can be divided into two types: knowledge-based language 
model and statistical language model. The current mature one is the statistical 
language model.  
         This thesis is mainly about the effect of smoothing and order of ngram for the 
language model. The Srilm is a building and using statistical language modeling 
toolkit. It can realize a series of training, predicting, and calculating operation. In 
the establishment model based on the language of the word, the word frequency 
estimation model accuracy depends on the corpus. When the corpus size is limited, 
we need to use some smoothing algorithm. For example, Linear Interpolation, 
Absolute-Discount, Good-Turing, Witten-Bell, which will be defined in next 
chapter, to solve the data sparse problem. Taking advantage of srilm, we can 
conveniently create and test the language model based on a variety of n-gram.  
         This thesis mainly studies the perplexity in different n-gram which is from 
1-gram to 7-grams. We also study the perplexity in different smoothing algorithms 
which include simple n-gram, linear interpolation, good-turing, witten-bell and so 
on.  
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1.1 Statistical Language Modeling 
 

 

         The goal of Statistical Language Modeling is to build a statistical language 
model that can estimate the distribution of natural language as accurate as possible. 
A statistical language model (SLM) is a probability distribution P(s) over strings S 
that attempts to reflect how frequently a string S occurs as a sentence. 

         By expressing various language phenomena in terms of simple parameters in 
a statistical model, SLMs provide an easy way to deal with complex natural 
language in a computer. 

         The original (and still most important) application of SLMs is speech 
recognition, but SLMs also play a vital role in various other natural language 
applications as diverse as machine translation, part-of-speech tagging, intelligent 
input method and Text To Speech system. 

          N-gram model is the most widely used SLM today. 

          Without loss of generality we can express the probability of a string s: p(s) as 

p(s) = p(w1)p(w2|w1)p(w3|w1w2)...p(wl|w1...wl-1) = p(wi|w1...wi-1)) 

           In bigram models, we make the approximation that the probability of a word 
only depends on the identity of the immediately preceding word, hence we can 
approximate p(s) as: 

p(s) = p(wi|wi-1) 

           The parameters in a traditional N-gram model can be estimated with 
(Maximum Likelihood Estimation) MLE technique: 

)(
),()|(

1

1
1

−

−
− =

i

ii
ii wC

wwCwwp
 

             p-probability, c-time of occurrences, w-word, i-the order of 
word              

             N-gram models	
  have received intensive research since its invention, several 
enhanced N-gram models have been proposed. Here are some typical extensions to 
traditional N-gram model:   
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• Class-based N-gram model 

      In order to cope with the data sparseness problem, the class-based N-gram 
model was proposed. Instead of dealing with separated words, class-based 
N-gram estimates parameters for word classes. By clustering words into 
classes, a class-based N-gram model can reduce the model size significantly 
with the cost of slightly higher perplexity. 

• Sequence N-gram model 

Sequence N-gram is an attempt to extend N-gram models with variable 
length sequences. A sequence can be a sequence of words, word class, 
part-of-speech or whatever a sequence of something that the modeler 
believes bearing important grammar information. 
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1.2  Perplexity 
 
 
      The perplexity (sometimes called PP for short) of a language model on a 
test set is a function of the probability that the language model assigns to that test 
set. For a test set W = w1w2 . . .wN, the perplexity is the probability of the test set, 
normalized by the number of words: 

( ) ( )

( )
N

N

NN

wwwP

wwwPWPP

…

…

21

1

21

1
=

= −

 
        We can use the chain rule to expand the probability of W: 

( )
( )

N

N

i ii wwwwP
WPP ∏

= −

=
1 121|

1
…  

         For bigram language model the perplexity of W is computed as: 

( )
( )

N

N

i ii wwP
WPP ∏

= −

=
1 1|

1

 
       Minimizing perplexity is equivalent to maximizing the test set probability 
according to the language model. 
         Perplexity can also be interpreted as the weighted average branching factor of 
a language. The branching factor of a language is the number of possible next 
words that can follow any word.  
 
Example of Perplexity Use： 
          Perplexity is used in following example to compare three N-gram models. 
 

Table 1- Ngram Perplexity 
N-gram order Unigram Bigram Trigram 

Perplexity 962 170 109 

 
          Unigram, Bigram, and Trigram grammars are trained on 38 million words 
(including start-of-sentence tokens) using WSJ corpora with 19,979 word 
vocabulary. 
          The perplexity is related inversely to the likelihood of the test sequence 
according to the model. 
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Chapter 2 
 
 

Background 
 
 

                                   2.1 N-grams 
 
 

         In the fields of computational linguistics and probability, an n-gram is a 
contiguous sequence of n items from a given sequence of text or speech. The items 
can be phonemes, syllables, letters, words or base pairs according to the application. 
The n-grams typically are collected from a text or speech corpus. 

         An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less 
commonly, a "digram"); size 3 is a "trigram". Larger sizes are sometimes referred 
to by the value of n, e.g., "four-gram", "five-gram", and so on. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  The	
  n-­‐gram	
   is	
  related	
   to	
  problem	
  of	
  word	
  prediction.	
  For	
  example:	
  very	
  
likely	
  words:	
  “call”,	
  “international	
  call”,	
  or	
  “phone	
  call”,	
  and	
  NOT	
  “the”.	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  The	
  idea	
  of	
  word	
  prediction	
  is	
  formalized	
  with	
  probabilistic	
  models	
  called	
  
N-­‐grams.	
  N-­‐gram	
  predict	
   the	
  next	
  word	
   from	
  previous	
  N-­‐1	
  words.	
   Statistical	
  
models	
  of	
  word	
  sequence	
  are	
  also	
  called	
  language	
  models	
  or	
  LMs.	
  Computing	
  
probability	
  of	
   the	
  next	
  word	
  will	
   turn	
  out	
   to	
  be	
  closely	
  related	
   to	
  computing	
  
the	
  probability	
  of	
  a	
  sequence	
  of	
  words.	
  Estimators	
  like	
  the	
  N-­‐gram	
  that	
  assign	
  
a	
  conditional	
  probability	
  to	
  possible	
  next	
  words	
  can	
  be	
  used	
  to	
  assign	
  a	
   joint	
  
probability	
   to	
   an	
   entire	
   sentence.	
   N-­‐grams	
   models	
   are	
   one	
   of	
   the	
   most	
  
important	
   tools	
   in	
   speech	
   and	
   language	
   processing.	
   N-­‐gram	
   are	
   essential	
   in	
  
any	
   tasks	
   in	
  which	
   the	
  words	
  must	
   be	
   identified	
   from	
   ambiguous	
   and	
   noisy	
  
inputs.	
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2.2 N-grams Application Areas 
 
          An n-gram model is a type of probabilistic language model for predicting the 
next item in such a sequence in the form of a (n-1)–order Markov model. N-gram 
models are now widely used in probability, communication theory, computational 
linguistics (for instance, statistical natural language processing), computational 
biology (for instance, biological sequence analysis), and data compression. The two 
core advantages of n-gram models (and algorithms that use them) are relative 
simplicity and the ability to scale up – by simply increasing n a model can be used 
to store more context with a well-understood space–time tradeoff, enabling small 
experiments to scale up very efficiently. 
        Firstly, n-gram can be used in Statistical Machine Translation. Statistical 
Machine Translation (SMT) is a machine translation paradigm where translations 
are generated on the basis of statistical models whose parameters are derived from 
the analysis of bilingual text corpora. The statistical approach contrasts with the 
rule-based approaches to machine translation as well as with example-based 
machine translation. 
          Secondly, n-gram can be used in Augmentative Communication. 
Augmentative Communication is helping people who are unable to use speech or 
sign language to communicate (e.g., Steven Hawking). Using simple body 
movements to select words from a menu that are spoken by the system. 

Thirdly, word prediction can be used to suggest likely words for the menu. 
 

       Other areas: 
• Part of-speech tagging 
• Natural Language Generation 
• Word Similarity 
• Authorship identification 
• Sentiment Extraction 
• Predictive Text Input (Cell phones) 
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2.3 Word Counting & Corpora 

 
         The word count is the number of words in a document or passage of text. 
Word counting may be needed when a text is required to stay within certain 
numbers 
9 KB (1,027 words). 
     Counting things in natural language is based on a corpus (plural corpora) – an 
on-line collection of text or speech. Popular corpora “Brown” and “Switchboard”. 
Brown corpus is a 1 million word collection of samples from 500 written texts from 
different genres (newspaper, novels, non-fiction, academic, etc.) assembled at 
Brown University 1963-1964. Switchboard Corpus – collection of 2430 telephone 
conversations averaging 6 minutes each – total of 240 hours of speech with about 3 
million words. An example sentence from Brown corpus: He stepped out into the 
hall, was delighted to encounter a water brother. 

     
 

2.4 Simple N-gram 
 
          Our goal is to compute the probability of a word w given some history h: 
P(w|h) 
          Example: 
          h = “its water is so transparent that”  
          w =“the” 
          P(the | its water is so transparent that) 
          How can we compute this probability? 
          One way is to estimate it from relative frequency counts. From a very large 
corpus count number of times we see “its water is so transparent that” and count 
the number of times. This is followed by “the”: Out of the times we saw the history 
h, how many times was it followed by the word w: 

( ) ( )
( )that ttransparen  sois  wateritsC

the that ttransparen  sois  wateritsCthat ttransparen  sois  wateritstheP =|
 

 
        Joint Probabilities is probability of an entire sequence of words like “its 
water is so transparent”： 
          Out of all possible sequences of 5 words, how many of them are “its water is 
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so transparent”. You must count of all occurrences of “its water is so transparent” 
and divide by the sum of counts of all possible 5 word sequences. It seems a lot of 
work for a simple computation of estimates. 
           Hence, we must figure out more clever ways of estimating the probability of 
a word w given some history h, or an entire word sequence W. If a sequence of N 

words: 
n

n worwww 1 21  ,,, …  
Chain rule of Probability: 

( ) ( ) ( ) ( ) ( )

( )∏
=

−

−

=

=
n

k

k
k

n
nn

XXP

XXPXXPXXPXPXXP

1

1

12
31211

1

11

|

|||,, ……

 
Applying the chain rule to words we get: 

( ) ( ) ( ) ( ) ( )

( )∏
=

−

−

=

=
n

k

k
k

n
n

n

wwP

wwPwwPwwPwPwP

1

1

12
31211

1

11

|

||| …

 
The chain rule provides the link between computing the joint probability of a 
sequence and computing the conditional probability of a word given previous 
words. 
            However, we still do not know any way of computing the exact probability 

of a word given a long sequence of preceding words:  ( )11|
−n

n wwP . 
          Idea of the N-gram model is to approximate the history by just the last few 
words instead of computing the probability of a word given its entire history. 
 The bigram model approximates the probability of a word given all the previous 

words ( )11|
−n

n wwP by the conditional probability of the 

preceding ( )1| −nn wwP word. 
Example: Instead of computing the probability: 

( )thatttransparensoiswateritsthep |  
It is approximated with the probability: 

( )thattheP |  
The following approximation is used when the bi-gram probability is applied: 

( ) ( )11
1 || −
− ≈ nn
n

n wwPwwP  
The assumption that the conditional probability of the word depends only on the 
previous word is called a Markov assumption. Markov models are the class of 
probabilistic models that assume that we can predict the probability of some future 
unit without looking too far into the past. 
Tri-gram: looks two words into the past. N-gram: looks N-1 words into the past. 
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General equation for N-gram approximation to the conditional probability of the 
next word in a sequence is:  

( ) ( )1
1

1
1 || −

+−
− ≈ n

Nnn
n

n wwPwwP  
The simplest and most intuitive way to estimate probabilities is the method called 
Maximum Likelihood Estimation or MLE for short.  

 
 

2.5 Maximum Likelihood Estimation – Parameter 
Estimation 

 
          Mini-corpus containing three sentences marked with beginning sentence 
marker <s> and ending sentence marker </s>: 
<s> I am Sam </s> 
<s> Sam I am</s> 
<s> I do not like green eggs and ham</s> 
Some of the bi-gram calculations from this corpus: 
P(I|<s>) = 2/3 = 0.66 
P(Sam|<s>) = 1/3=0.33 
P(am|I) = 2/3 = 0.66  
P(Sam|am) = ½=0.5 
P(</s>|Sam) = 1/3 = 0.33   
P(</s>|am) = 1/3=0.33 
P(do|I) = 1/3 = 0.33  
In general case, MLE is calculated for N-gram model using the following: 

P wn |wn−N+1
n−1( ) =

C wn−N+1
n−1 wn( )

C wn−N+1
n−1( )

=
C wn−N+1...wn−2wn−1wn( )
C wn−N+1...wn−2wn−1( )  
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             Table 2- Bigram counts for 8 of the words (out of V=1446) in Berkeley 
             Restaurant Project corpus of 9332 sentences 

 i want to eat chinese food lunch spend 

i 5 827 0 9 0 0 0 2 

want 2 0 628 1 6 6 5 1 

to 2 0 4 686 2 0 6 211 

eat 0 0 2 0 16 2 42 0 

chinese 1 0 0 0 0 82 1 0 

food 15 0 15 0 1 4 0 0 

lunch 2 0 0 0 0 1 0 0 

spend 1 0 1 0 0 0 0 0 

 
 

         Table 3-Unigram Counts 
i want to eat Chinese food lunch spend 

2533 927 214 746 158 1098 341 278 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



１１ 

	
  

 
Table 4 - Bigram Probabilities After Normalization 

 i want to eat Chinese food lunch spend 

i 0.002 0.33 0 0.003
6 

0 0 0 0.00079 

want 0.002
2 

0 0.66 0.001
1 

0.0065 0.006
5 

0.005
4 

0.0011 

to 0.000
83 

0 0.0017 0.28 0.00083 0 0.002
5 

0.087 

eat 0 0 0.0027 0 0.021 0.002
7 

0.056 0 

Chin
ese 

0.006
3 

0 0 0 0 0.52 0.006
3 

0 

food 0.014 0 0.014 0 0.00092 0.003
7 

0 0 

lunc
h 

0.005
9 

0 0 0 0 0.002
9 

0 0 

spen
d 

0.003
6 

0 0.0036 0 0 0 0 0 

 
        Clearly now we can compute probability of sentence like: 
        “I want English food”, or “I want Chinese food” by multiplying appropriate 
bigram probabilities together as follows: 
        P(<s> i want english food </s>)  =  
                 P(i|<s>)      (0.25) 
      P(want|i)                (0.33) 
      P(english|want)     (0.0011) 
                P(food|english)     (0.5) 
                P(</s>|food)     (0.68) 
    = 0.25 x 0.33 x 0.0011 x 0.5 x 0.68 = 0.000031 
        Although we will generally show bigram models in this chapter , note that 
when there is sufficient training data we are more likely to use trigram models, 
which condition on the previous two words rather than the previous word. 
        To compute trigram probabilities at the very beginning of sentence, we can 
use two pseudo-words for the first trigram (i.e., P(I|<s><s>). 
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2.6 Training and Test Sets 
 
        N-gram models are obtained from a corpus that is trained on. Those models 
are used on some new data in some task (e.g. speech recognition). New data or 
tasks will not be exactly the same as data that was used for training. Formally, data 
that is used to build the N-gram (or any model) are called Training Set or Training 
Corpus. Data that are used to test the models comprise Test Set or Test Corpus. 
           Training-and-testing paradigm can also be used to evaluate different N-gram 
architectures: Comparing N-grams of different order N, or Using the different 
smoothing algorithms (to be introduced later) 
           Train various models using training corpus. Evaluate each model on the test 
corpus. 
           How do we measure the performance of each model on the test corpus? The 
answer is Perplexity. Computing probability of each sentence in the test set: the 
model that assigns a higher probability to the test set (hence more accurately 
predicts the test set) is assumed to be a better model. 
 For training we need as much data as possible. However, for testing we need 
sufficient data in order for the resulting measurements to be statistically significant. 
In practice often the data is often divided into 80% training 10% development and 
10% evaluation. 
 N-gram modeling, like many statistical models, is very dependent on the training 
corpus. 
 Often the model encodes very specific facts about a given training corpus. 
 N-grams do a much better and better job of modeling the training corpus as we 
increase the value of N. This is another aspect of model being tuned to specifically 
to training data at the expense of generality.  
 

 
 

2.7 Smoothing of N-gram Model 
 
             In statistics and image processing, to smooth a data set is to create an 
approximating function that attempts to capture important patterns in the data, 
while leaving out noise or other fine-scale structures/rapid phenomena. In 



１３ 

	
  

smoothing, the data points of a signal are modified so individual points 
(presumably because of noise) are reduced, and points that are lower than the 
adjacent points are increased leading to a smoother signal. Smoothing may be used 
in two important ways that can aid in data analysis (1) by being able to extract 
more information from the data as long as the assumption of smoothing is 
reasonable and (2) by being able to provide analyses that are both flexible and 
robust. Many different algorithms are used in smoothing. Data smoothing is 
typically done through the simplest of all density estimators, the histogram. 
There is a major problem with the maximum likelihood estimation process we have 
seen for training the parameters of an N-gram model. This is the problem of sparse 
data caused by the fact that our maximum likelihood estimate was based on a 
particular set of training data. For any N-gram that occurred a sufficient number of 
times, we might have a good estimate of its probability. But because any corpus is 
limited, some perfectly acceptable English word sequences are bound to be missing 
from it.  
 This missing data means that the N-gram matrix for any given training corpus is 
bound to have a very large number of cases of putative “zero probability N-grams” 
that should really have some non-zero probability.  
  Furthermore, the MLE method also produces poor estimates when the counts are 
non-zero but still small. We need a method which can help get better estimates for 
these zero or low frequency counts.  
Zero counts turn out to cause another huge problem.  
The perplexity metric defined above requires that we compute the probability of 
each test sentence. But if a test sentence has an N-gram that never appeared in the 
training set, the Maximum Likelihood estimate of the probability for this N-gram, 
and hence for the whole test sentence, will be zero!  
This means that in order to evaluate our language models, we need to modify the 
MLE method to assign some non-zero probability to any N-gram, even one that 
was never observed in training. 
The term smoothing is used for such modifications that address the poor estimates 
due to variability in small data sets. The name comes from the fact that (looking 
ahead a bit) we will be shaving a little bit of probability mass from the higher 
counts, and piling it instead on the zero counts, making the distribution a little less 
discontinuous. 
The original Berkeley Restaurant example introduced previously will be used to 
show how smoothing algorithms modify the bigram probabilities. 
One simple way to do smoothing is to take our matrix of bigram counts, before we 
normalize them into probabilities, and add one to all the counts. This algorithm is 
called Laplace smoothing, or Laplace’s Law.  
Laplace smoothing does not perform well enough to be used in modern N-gram 
models, but we begin with it because it introduces many of the concepts that we 
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will see in other smoothing algorithms, and also gives us a useful baseline. 
           Recall that the unsmoothed maximum likelihood estimate of the unigram 
probability of the word wi is its count ci normalized by the total number of word 

tokens N: 
( )

N
cwP i

i =  
Laplace smoothing adds one to each count. Considering that there are V words in 
the vocabulary, and each one got increased, we also need to adjust the denominator 
to take into account the extra V observations in order to have legitimate 
probabilities. 
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It is convenient to describe a smoothing algorithm as a corrective constant that 
affects the numerator by defining an adjusted count c* as follows: 
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A related way to view smoothing is as discounting (lowering) some non-zero 
counts in order to get the correct probability mass that will be assigned to the zero 
counts. 
             Thus instead of referring to the discounted counts c, we might describe a 
smoothing algorithm in terms of a relative discount dc, the ratio of the discounted 

counts to the original counts: c
cdc
*

=
 

 
  Table 5- Berkeley Restaurant Project Smoothed Bigram Counts (V=1446) 

 i want to eat chinese food lunch spend 

i 6 828 1 10 1 1 1 3 

want 3 1 629 2 7 7 6 2 

to 3 1 5 687 3 1 7 212 

eat 1 1 3 1 17 3 43 1 

chine
se 

2 1 1 1 1 83 2 1 

food 16 1 16 1 2 5 1 1 

lunch 3 1 1 1 1 2 1 1 
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spend 2 1 2 1 1 1 1 1 

 
            Recall normal bigram probabilites are computed by normalizing each raw 
of counts by the unigram count: 
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 For add-one smoothed bigram counts we need to augment the unigram count by 
the number of total types in the vocabulary V: 
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It is often convenient to reconstruct the count matrix so we can see how much a 
smoothing algorithm has changed the original counts.  
These adjusted counts can be computed by the equation presented below and the 
table in the next slide shows the reconstructed counts. 
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Note that add-one smoothing has made a very big change to the counts. C(want to) 
changed from 609 to 238! We can see this in probability space as well: P(to|want) 
decreases from .66 in the unsmoothed case to .26 in the smoothed case.  
            Looking at the discount d (the ratio between new and old counts) shows us 
how strikingly the counts for each prefix-word have been reduced; the discount for 
the bigram want to is .39, while the discount for Chinese food is .10, a factor of 10! 
The sharp change in counts and probabilities occurs because too much probability 
mass is moved to all the zeros.  

 
 
 

Good-Turing Estimation 
 

            Good–Turing frequency estimation was developed by Alan Turing and his 
assistant I. J. Good as part of their efforts at Bletchley Park to crack German 
ciphers for the Enigma machine during World War II. Turing at first modeled the 
frequencies as a multinomial distribution, but found it inaccurate. Good developed 
smoothing algorithms to improve the estimator's accuracy. 

            The discovery was recognized as significant when published by Good in 
1953, but the calculations were difficult so it was not used as widely as it might 
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have been. The method even gained some literary fame due to the Robert Harris 
novel Enigma. 

             In the 1990s, Geoffrey Sampson worked with William A. Gale of AT&T, 
to create and implement a simplified and easier-to-use variant of the Good–Turing 
method .        

             Good–Turing frequency estimation is a statistical technique for estimating 
the probability of encountering an object of a hitherto unseen species, given a set of 
past observations of objects from different species. (In drawing balls from an urn, 
the 'objects' would be balls and the 'species' would be the distinct colors of the balls 

(finite but unknown in number). After drawing redR  red balls, blackR  black 

balls and greenR  green balls, we would ask what is the probability of drawing a 
red ball, a black ball, a green ball or one of a previously unseen color.) 

           A number of much better algorithms have been developed that are only 
slightly more complex than add-one smoothing: Good-Turing.   

           The idea behind a number of those algorithms is to use the count of things 
you’ve seen once to help estimate the count of things you have never seen.  

           Good described the algorithm in 1953 in which he credits Turing for the 
original idea. 

          	
  The basic idea in this algorithm is to re-estimate the amount of probability 
mass to assign to N-grams with zero counts by looking at the number of N-grams 
that occurred only one time. A word or N-gram that occurs once is called a 
singleton. Good-Turing algorithm uses the frequency of singletons as a re-estimate 
of the frequency of zero-count bigrams.  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Algorithm	
  Definition:	
  

n Nc	
  –	
  the	
  number	
  of	
  N-­‐grams	
  that	
  occur	
  c	
  times:	
  frequency	
  of	
  frequency	
  c.	
  

n N0	
  –	
  the	
  number	
  of	
  bigrams	
  b	
  with	
  count	
  0.	
  

n N1	
  –	
  the	
  number	
  of	
  bigram	
  with	
  count	
  1	
  (singletons),	
  etc.	
  

n Each	
  Nc	
  is	
  a	
  bin	
  that	
  stores	
  the	
  number	
  of	
  different	
  N-­‐grams	
  that	
  occur	
  in	
  
the	
  training	
  set	
  with	
  frequency	
  c:	
  	
  	
  	
  	
  	
  

( )
∑

=

=
cxcountx

cN
:

1
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n The MLE count for Nc is c. The Good-Turing estimate replaces this with a 
smoothed count c*, as a function of Nc+1: 

 

( )
c

c

N
Ncc 11 +∗ +=

	
  

           The previous equation presented in previous slide can be used to replace the 
MLE counts for all the bins N1, N2, and so on. Instead of using this equation 
directly to re-estimate the smoothed count c* for N0, the following equation is used 

that defines probability 
∗
GTP  of the missing mass: 

( )
N
Ntraining in zerofrequency   withthingsPGT
1=∗

	
  

            N1 – is the count of items in bin 1 (that were seen once in training), and N is 
total number of items we have seen in training. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Example:	
  	
  

• A	
  lake	
  with	
  8	
  species	
  of	
  fish	
  (bass,	
  carp,	
  catfish,	
  eel,	
  perch,	
  salmon,	
  trout,	
  
whitefish)	
  

• When	
   fishing	
   we	
   have	
   caught	
   6	
   species	
   with	
   the	
   following	
   count:10	
  
carp	
  3	
  perch,	
  2	
  whitefish,	
  1	
  trout,	
  1	
  salmon,	
  and	
  1	
  eel	
  (no	
  catfish	
  and	
  no	
  
bass).	
  

• What	
  is	
  the	
  probability	
  that	
  the	
  next	
  fish	
  we	
  catch	
  will	
  be	
  a	
  new	
  species,	
  
i.e.,	
  one	
  that	
  had	
  a	
  zero	
  frequency	
  in	
  our	
  training	
  set	
  (catfish	
  or	
  bass)?	
  

   

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  The	
   MLE	
   count	
   c	
   of	
   unseen	
   species	
   (bass	
   or	
   catfish)	
   is	
   0.	
   From	
   the	
  
equation	
  in	
  the	
  previous	
  slide	
  the	
  probability	
  of	
  a	
  new	
  fish	
  being	
  one	
  of	
  these	
  
unseen	
  species	
  is	
  3/18,	
  since	
  N1	
  is	
  3	
  and	
  N	
  is	
  18:	
  

( )
18
31 ==∗

N
Ntraining in zerofrequency   withthingsPGT 	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Let's	
  now	
  estimate	
  the	
  probability	
  that	
  the	
  next	
  fish	
  will	
  be	
  another	
  trout?	
  
MLE	
  count	
  for	
  trout	
  is	
  1,	
  so	
  the	
  MLE	
  estimated	
  probability	
  is	
  1/18.	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  However,	
  the	
  Good-­‐Turing	
  estimate	
  must	
  be	
  lower,	
  since	
  we	
  took	
  3/18	
  of	
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our	
   probability	
   mass	
   to	
   use	
   on	
   unseen	
   events!	
   Must	
   discount	
   MLE	
  
probabilities	
  for	
  observed	
  counts	
  (perch,	
  whitefish,	
  trout,	
  salmon,	
  and	
  eel)	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  The	
   revised	
   count	
   c*	
   and	
   Good-­‐Turing	
   smoothed	
   probabilities	
  
∗
GTP 	
  for	
  

species	
  with	
   counts	
   0	
   (like	
   bass	
   or	
   catfish	
   in	
   previous	
   example)	
   or	
   counts	
   1	
  
(like	
  trout,	
  salmon,	
  or	
  eel)	
  are	
  as	
  follows:	
  

 
Table 6 - Probability 

	
   Unseen(bass	
  or	
  catfish)	
   trout	
  

c	
   0	
   1	
  

MLE	
  p	
  

	
   18
1
	
  

C*	
   	
   67.0
3
12)1()(

1

2* =×=×+=
N
Nctroutc

	
  

GT	
  
*
GTp 	
   17.0

18
3)( 1* ===

N
Nunseenp GT

	
   037.0
18
67.0)(

*
* ===

N
ctroutpGT

	
  

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Note	
  that	
  the	
  revised	
  count	
  c*	
  for	
  eel	
  as	
  well	
  is	
  discounted	
  from	
  c=1.0	
  to	
  

c*=0.67	
  in	
  order	
  to	
  account	
  for	
  some	
  probability	
  mass	
  for	
  unseen	
  species 	
  
(unseen)	
  =	
  3/18=0.17	
  for	
  catfish	
  and	
  bass.	
  

Since	
  we	
  know	
  that	
   there	
  are	
  2	
  unknown	
  species,	
   the	
  probability	
  of	
   the	
  next	
  

fish	
  being	
  specifically	
  a	
  catfish	
  is (catfish)	
  =	
  (1/2)x(3/18)	
  =	
  0.085	
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Table 7 - Simple Example 

c(MLE) Nc C*(GT) 

0 2 1.5 

1 3 1.3 

2 1 1 

3 1 ? 

4 0 ? 

5 0 ? 

6 0 ? 

7 0 ? 

8 0 ? 

9 0 ? 

10 1 ? 

 
           In practice, Add-one smoothing works horribly. Good-Turing smoothing 
works better than Add-one, but works still horribly. So Good-Turing is often not 
used by itself; it is used in combination with the backoff and interpotion 
algorithms. 
 

 
 
 

Interpolation 
 
  

 
   Discounting algorithms can help solve the problem of zero frequency N-grams. 

Additional knowledge that is not used: 
• If trying to compute P(wn|wn-1wn-2) but we have no examples of a 

particular trigram wn-2wn-1wn,  
• Estimate trigram probability based on the bigram probability P(wn|wn-1). 
• If there are no counts for computation of bigram probability P(wn|wn-1), 

use unigram probability P(wn). 
        There are two ways to rely on this N-gram “hiearchy”: Backoff and 
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Interpolation. 
        Backoff Relies solely on the trigram counts. When there is a zero count 
evidence of a trigram then the backoff  to lower N-gram.  
        To Interpolation, probability estimates are always mixed from all N-gram 
estimators: weighted interpolation of trigram, bigram and unigram counts. 
        Simple Interpolation – Linear Interpolation. 
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        Slightly more sophisticated version of linear interpolation with context 
dependent weights. 
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         Weights are set from held-out corpus. Held-out corpus is additional training 
corpus that is not used to set the N-gram counts but to set other parameters like in 
this case interpolation weights.  
 
 
 

 
Backoff 

 
 
         Interpolation is simple to understand and implement. There are better 
algorithms like backoff N-gram modeling. 
        Uses Good-Turing discounting based on Katz and also known as Katz 
backoff. 
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           Equation above describes a recursive procedure. Computation of P*, the 
normalizing factor a, and other details are discussed in next section. 

n β	
  – total amount of left-over probability mass function of the 
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(N-1)-gram context. 
      For a given (N-1) gram context, the total left-over probability mass 
can be computed by subtracting from 1 the total discounted probability mass 
for all N-grams starting with that context. 
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n This gives us the total probability mass that we are ready to 

distribute to all (N-1)-gram (e.g., bigrams if our original model was 
trigram) 

         Each individual (N-1)-gram (bigram) will only get a fraction of this mass, so 
we need to normalize b by the total probability of all the (N-1)-grams (bigrams) 
that begin some N-gram (trigram) that has zero count. The final equation for 
computing how much probability mass to distribute from an N-gram to an 
(N-1)-gram is represented by the function a: 
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           Note that a is a function of the preceding word string, that is, of  

1
1

−
+−

n
Nnw  ；

thus the amount by which we discount each trigram (d), and the mass that gets 
reassigned to lower order N-grams (a) are recomputed for every (N-1)-gram that 
occurs in any N-gram. 
           We only need to specify what to do when the counts of an (N-1)-gram 

context are 0, (i.e., when ( ) 01
1 =

−
+−

n
Nnwc ) and our definition is complete: 
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Advanced Smoothing Methods: Kneser-Ney 
Smoothing 

 
         Language models are an essential element of natural language processing, 
central to tasks ranging from spellchecking to machine translation. Given an 
arbitrary piece of text, a language model determines whether that text belongs to a 
given language. 
         We can give a concrete example with a probabilistic language model, a 
specific construction which uses probabilities to estimate how likely any given 
string belongs to a language. Consider a probabilistic English language model PE. 
We would expect the probability 

PE(I went to the store) 
          To be quite high, since we can confirm this is valid English. On the other 
hand, we expect the probabilities 

PE(store went to I the),PE(Ich habe eine Katz) 
           To be very low, since these fragments do not constitute proper English text. 
           I don’t aim to cover the entirety of language models at the moment — that 
would be an ambitious task for a single blog post. If you haven’t encountered 
language models or n-grams before, I recommend the following resources: 

• “Language model” on Wikipedia 
• Chapter 4 of Jurafsky and Martin’s Speech and Language Processing 
• Chapter 7 of Statistical Machine Translation (see summary slides online) 

I’d like to jump ahead to a trickier subject within language modeling known as 
Kneser-Ney smoothing. This smoothing method is most commonly applied in an 
interpolated form,1 and this is the form that I’ll present today. 
Kneser-Ney evolved from absolute-discounting interpolation, which makes use of 
both higher-order (i.e., higher-n) and lower-order language models, reallocating 
some probability mass from 4-grams or 3-grams to simpler unigram models. The 
formula for absolute-discounting smoothing as applied to a bigram language model 
is presented below: 

 
           Here δ refers to a fixed discount value, and α is a normalizing constant. The 
details of this smoothing are covered in Chen and Goodman (1999). 
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           The essence of Kneser-Ney is in the clever observation that we can take 
advantage of this interpolation as a sort of backoff model. When the first term (in 
this case, the discounted relative bigram count) is near zero, the second term (the 
lower-order model) carries more weight. Inversely, when the higher-order model 
matches strongly, the second lower-order term has little weight. 
           The Kneser-Ney design retains the first term of absolute discounting 
interpolation, but rewrites the second term to take advantage of this relationship. 
Whereas absolute discounting interpolation in a bigram model would simply 
default to a unigram model in the second term, Kneser-Ney depends upon the idea 
of a continuation probability associated with each unigram. 
           This probability for a given token Wi is proportional to the number of 
bigrams which it completes:     

{ }0),(:)( 11 〉∝ −− iiiioncontinuati wwcwwP  
 This quantity is normalized by

 
dividing by the total number of bigram types (note 

that j 
is a free variable): 
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            The common example used to demonstrate the efficacy of Kneser-Ney is 
the phrase San Francisco. Suppose this phrase is abundant in a given training 
corpus. Then the unigram probability of Francisco will also be high. If we unwisely 
use something like absolute discounting interpolation in a context where our 
bigram model is weak, the unigram model portion may take over and lead to some 
strange results. 
Dan Jurafsky gives the following example context: 
I can’t see without my reading _____. 
           A fluent English speaker reading this sentence knows that the word glasses 
should fill in the blank. But since San Francisco is a common term, 
absolute-discounting interpolation might declare that Francisco is a better 

fit: )()( glassesPFranciscoP absabs >  
Kneser-Ney fixes this problem by asking a slightly harder question of our 

lower-order model. Whereas the unigram model simply provides how likely a word 
wi is to appear, Kneser-Ney’s second term determines how likely a word wi is to 
appear in an unfamiliar bigram context. 
Kneser-Ney in whole follows: 

 
         λ is a normalizing constant  
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             Note that the denominator of the first term can be simplified to a unigram 
count. Here is the final interpolated Kneser-Ney smoothed bigram model, in all its 
glory: 

 
           A brief introduction to the most commonly used modern N-gram smoothing 
is method, the Interpolated Kneser-Ney algorithm: 
An algorithm is based on absolute discounting method. 
           It is a more elaborate method of a computing revised count c* than the 
Good-Turing discount formula. Re-estimated counts c* for greater than 1 counts 
could be estimated pretty well by just subtracting 0.75 from the MLE count c. 
Absolute discounting method formalizes this intuition by subtracting a fixed 
(absolute) discount d from each count. 
The rational is that we have good estimates already for the high counts, and a small 
discount d won’t affect them much. 
           The affected are only the smaller counts for which we do not necessarily 
trust the estimate anyhow. 
In practice, distinct discount values D for the 0 and 1 counts are computed. 
Kneser-Ney discounting augments absolute discounting with a more sophisticated 
way to handle the backoff distribution. Consider the job of predicting the next word 
in the sentence, assuming we are backing off to a unigram model:  
I can’t see without my reading XXXXXX. The word “glasses” seem much more 
likely to follow than the word “Francisco”.But “Francisco” is in fact more 
common, and thus a unigram model will prefer it to “glasses”. 
Thus we would like to capture that although “Francisco” is frequent, it is only 
frequent after the word “San”. The word “glasses” has a much wider distribution. 
Thus the idea is instead of backing off to the unigram MLE count (the number of 
times the word w has been seen), we want to use a completely different backoff 
distribution! 
We want a heuristic that more accurately estimates the number of times we might 
expect to see word w in a new unseen context. 
The Kneser-Ney intuition is to base our estimate on the number of different 
contexts word w has appeared in. 
Words that have appeared in more contexts are more likely to appear in some new 
context as well. New backoff probability can be expressed as the “continuation 
probability” presented in following expression: 
 Continuation Probability: 
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 Kneser-Ney backoff is formalized as follows assuming proper coefficient a on the 
backoff to make everything sum to one: 
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Chapter 3 
 
 

                             Methods 
 
 

 3.1 Method 1 
 
 

         Here we describe  my method which includes the steps of the experiment, 
generating counting file from corpus, and calculating testing data perplexity.  
I downloaded the data in a website and used command window to generate the 
n-gram counting file. The sentence we used in command window is “ngram-count  
-text news-commentary-v6.en -order 1 -write-order news-commentary-v6.en.count”. 
And then I used the counting file to train language model. The sentence I used was 
“ngram-count -read news-commentary-v6.en.count -order 3 -lm 
news-commentary-v6.en.lm”. The last thing I did was used the language model we 
created above to calculate testing data perplexity. The sentence we used in 
cmd(command window) was “ngram  -ppl europarl-v6.en  -order 1  -lm 
news-commentary-v6.en.lm > news-commentary-v6.en.lm.ppl”.  
  My testing corpus was named the Raw momolingual language model training data. 
The website in which I downloaded it was 
https://code.google.com/p/1-billion-word-language-modeling-benchmark/. it 
contained 2.0154e+006 sentences, 4.93701e+007 words, and 1.24923e+006 OOVs, 
0 zeroprobs, logprob= -1.56782e+008, ppl=?, ppl=10^{-{logP(T)}/{Sen+Word}}. 
Sen and Word represent the quantity of sentences and words. 
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   Table 8 - Perplexity Chart 1 

Perp
lexit
y	
  

Order1	
   Order2	
   Order3	
   Order4	
   Order5	
   Order6	
   Order
7	
  

Sim
ple	
  

ngra
m	
  

1340.01	
   352.833	
   313.079	
   312.09
2	
  

312.837	
   313.025	
   313.0
77	
  

inter
pola
te	
  

1340.01	
   352.833	
   313.079	
  

	
  

312.09
2	
  

	
  

312.837	
  

	
  

313.025	
  

	
  

313.0
77	
  

Goo
d	
  
turi
ng	
  

disc
ount
ing	
  

1340.01	
  

	
  

352.833	
  

	
  

313.079	
  

	
  

312.09
2	
  

	
  

312.837	
  

	
  

313.025	
  

	
  

313.0
77	
  

Natu
ral	
  
disc
ount
ing+
inter
pola
te	
  

1340.01	
  

	
  

376.867	
   315.429	
  

	
  

312.00
5	
  

	
  

312.339	
  

	
  

312.834	
  

	
  

313.0
06	
  

	
  

Witt
en-­‐B
ell	
  
disc
ount
ing+
inter
pola
te	
  

1364.44	
  

	
  

368.307	
  

	
  

311.097	
  

	
  

311.24
8	
  

	
  

312.321	
  

	
  

312.837	
  

	
  

313.0
04	
  

	
  

Mod
ified	
  
Knes

1343.05	
  

	
  

347.347	
   313.393	
   311.24
8	
  

312.247	
   312.814	
  

	
  

313.0
16	
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er-­‐N
ey	
  

disc
ount
ing+
inter
pola
te	
  

	
   	
  

Origi
nal	
  
Knes
er-­‐N
ey	
  
disc
ount
ing+
inter
pola
te	
  

1340.01	
  

	
  

349.052	
   316.915	
   313.48
3	
  

	
  

312.703	
  

	
  

312.858	
  

	
  

313.0
07	
  

 

  
Figure 1 - Comparing N-gram Order and Smoothing 
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3.2 Method 2 
 
 

   My testing corpus was named European Parliament Proceedings Parallel Corpus 
1996-2011. The website in which I downloaded it was 
http://www.statmt.org/europarl/. It contained 649697 sentences, 1.56859e+007 
words, and 2131 OOVs, 0 zeroprobs, logprob= -4.9319e+007, ppl=?, 
ppl=10^{-{logP(T)}/{Sen+Word}}. Sen and Word represent the quantity of 
sentences and words. 
 

 
 

Table 9 - Perplexity Chart 2 
Perpl
exity 

Order1 Order2 Order3 Order4 Order5 Order6 Order
7 

Simpl
e 
ngra
m 

1045.9
2 

 

96.424
2 

 

57.2009 

 

49.1651 

 

47.9456 

 

47.884
2 

 

47.99
93 

 

Interp
olate 
dicou
nting 

1045.9
2 

 

96.424
2 

 

57.2009 

 

49.1651 

 

47.9456 

 

47.884
2 

 

47.99
93 

 

Good
-turin
g 
disco
untin
g 

1045.9
2 

 

96.424
2 

 

57.2009 

 

49.1651 

 

47.9456 

 

47.884
2 

 

47.99
93 

 

Natur
al 
disco
untin

1045.9
2 

 

89.542
2 

 

56.771 

 

48.0942 

 

46.5125 

 

46.567
5 

 

46.93
16 
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g 

Witte
n-bell 

1047.7
1 

 

92.220
5 

 

56.4033 

 

47.3234 

 

45.9748 

 

46.297
9 

 

46.81
27 

 

Modi
fied 
knese
r-ney 

1046.2
1 

 

97.038
6 

 

57.159 

 

48.1449 

 

46.6114 

 

46.778
5 

 

47.20
74 

 

Origi
nal 
kners
er-ne
y  

1045.9
2 

 

94.873
5 

 

56.4876 

 

47.6903 

 

46.2829 

 

46.495
7 

 

46.95
73 

 

Knes
er-ne
y 

1045.9
2 

 

96.424
2 

 

57.2009 

 

49.1651 

 

47.9456 

 

47.884
2 

 

47.99
93 
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  Figure 2 - Comparing N-gram Order and Smoothing 
 
 
 

3.3 Method 3 
 
 

          I downloaded the corpus which name is Berkeley Restaurant Project. In 
Berkeley Restaurant Project file, every word in it is related to restaurant. It contains 
1446 OOVs, 7500 sentences, 1500 words. I used sentence “ngram -order N 
training.en.lm -vocab icslp94-berp.ps-2 -limit-vocab -renorm -write-lm 
icslp94-berp.ps-2.lm” in command window to generate the new language model 
file. Then I used the sentence “ngram -ppl testing.en -order N -lm 
icslp94-berp.ps-2.lm> icslp94-berp.ps-2.lm.ppl” in command window to generate 
perplexity file, and to compare the perplexity from 1-gram to 7-grams.  
            Testing corpus contains 649697 sentences, 1.56859e+007 words, and 
1.52601e+007 OOVs, 0 zeroprobs, logprob= -4.9319e+007, ppl=?, 
ppl=10^{-{logP(T)}/{Sen+Word}}. Sen and Word represent the quantity of 
sentences and words. 
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Table 10 - Perplexity Chart 3 

Order1	
   Order2	
   Order3	
   Order4	
   Order5	
   Order6	
   Order7	
  

53.593
6	
  

52.5935	
  

	
  

52.5939	
  

	
  

52.5939	
   52.5939	
  

	
  

52.5939	
  

	
  

52.5939	
  

	
  

	
  

	
  

	
  

	
  

	
  	
  	
  	
  	
  	
  	
   	
  

                                       Figure 3 – Comparing N-gram Order 
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Chapter 4 
 
 

Conclusion 
 
 

       From the result I got, I think in the first experiment, the best matching is 
witten-bell discounting and 3-gram in which the perplexity is 311.097. The second 
experiment best matching is witten-bell and 5-gram discounting in which the 
perplexity is 45.9748.  
          It means that the corpus size will effect the perplexity and the matching result. 
So different corpus will have different best matching between smoothing and order 
of n-gram. 
          In third experiment, I can conclude that we can build the language model by 
general corpus in specific domain. There is no need for us to find specific corpus. I 
can find some words and sentence in website that is related to some specific 
domain to generate new language model in some specific domain like Berkeley 
Restaurant Project that is about restaurant words.  
         From all 3 figures, I can prove that the higher order gram has better perplexity. 
Because the trigram mode has better perplexity than unigram mode. In specific 
domain, the perplexity is generally lower.  
          In the future, we can use the building language model technology to apply 
for some specific domain like law domain, management domain and so on to build 
the language model by general corpus instead of specific corpus.  Also, we can 
study more different corpus to find the best matching between smoothing and 
n-gram order to apply for different speech recognition applications. 
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