
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

3-2015

Comparing the Effect of Smoothing and N-gram Order : Finding Comparing the Effect of Smoothing and N-gram Order : Finding

the Best Way to Combine the Smoothing and Order of N-gram the Best Way to Combine the Smoothing and Order of N-gram

Wenyang Zhang

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=repository.fit.edu%2Fetd%2F702&utm_medium=PDF&utm_campaign=PDFCoverPages

Comparing the Effect of Smoothing and N-gram Order :
Finding the Best Way to Combine the Smoothing and Order

of N-gram

by

Wenyang Zhang

A thesis submitted to the College of Engineering at

Florida Institute of Technology

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Computer Engineering

Melbourne, Florida

March, 2015

We the undersigned committee
hereby approve the attached thesis

 Comparing the Effect of Smoothing and Order of N-gram for Language Model :
Find the Best Way to Combine the Smoothing and Order of N-gram

by

Wenyang Zhang

__________________ __________________

Kepuska, Veton, Ph.D Samuel Kozaitis, Ph.D

Associate Professor Professor and Head

Electrical and Computer Electrical and Computer

Engineering Department Engineering Department

Thesis Advisor

_________________ _________________

Otero, Carlos, Ph.D Ribeiro, Eraldo, Ph.D

Associate Professor Associate Professor

Electrical and Computer Computer Sciences

Engineering Department Department

iii

	
 	
 	

Abstract

Comparing the Effect of Smoothing and N-gram Order : Finding the Best Way to Combine

the Smoothing and Order of N-gram

By

Wenyang Zhang

Thesis Adviser: Kepuska, Veton , Ph. D.

 The SRILM is a toolkit for building and applying statistical language models
(LMs), designed and developed primarily for use in speech recognition, statistical
tagging and segmentation, and machine translation. It has been under development
in the SRI Speech Technology and Research Laboratory since 1995. The toolkit has
also greatly benefited from its use and enhancements during the Johns Hopkins
University/CLSP summer workshops in 1995, 1996, 1997, and 2002. In this thesis,
the effect of smoothing and order of N-gram for language model we build by srilm
toolkit is studied.

 My primary method is to use comparison. Firstly, training corpus and testing
corpus in website is downloaded. This should be checked in all of the document.
Then, I use command window and training corpus to train a language model in
different smoothing and order of n-gram and test another one we downloaded in
website. Finally, I will get the perplexities which can weigh the language model. I
will also list every perplexity and compare them in different smoothing and order
of n-gram to see which language model we built has minimal perplexity. Then, we
will knwhich language model we built is the best one.

 Also, I will do it again by another two different corpora, one for training,
another for testing, to see the effect of different corpus for language model. If the
two group perplexity is the same, it means the different corpus do not affect
perplexity. Otherwise, the result is opposite.

iv

	
 	
 	

 In conclusion, my measure above all is to calculate perplexity of each
language model in different smoothing and order of n-gram and compare every
perplexity to find the best way to match the smoothing and order of n-gram for the
language model. At the same time, we will know the effect of different corpus for
the language model with same smoothing and order of n-gram.

v

	
 	
 	

Table of Contents

Table	
 of	
 Contents	
 ..	
 v	

List	
 of	
 Figures	
 ..	
 vi	

List	
 of	
 Tables	
 ...	
 vii	

Acknowledgement	
 ...	
 viii	

Chapter	
 1	
 Introduction	
 ..	
 1	

	
 	
 	
 	
 	
 1.1	
 Statistical	
 Language	
 Modeling	
 ..	
 2	

1.2	
 Perplexity	
 ...	
 4	
 	
 	

Chapter	
 2	
 Background	
 ...	
 5	

	
 	
 	
 	
 	
 2.1	
 N-­‐grams	
 ...	
 	
 	
 5	

2.2	
 N-­‐GRAMS	
 Application	
 Areas	
 ..	
 6	

	
 	
 	
 	
 	
 2.3	
 Word	
 Counting	
 &	
 Corpora	
 ..	
 7	

2.4	
 Simple	
 N-­‐gram	
 ...	
 7	

	
 	
 	
 	
 	
 2.5	
 Maximum	
 Likelihood	
 Estimation	
 –	
 Parameter	
 Estimation	
 ..	
 9	

2.6	
 Training	
 and	
 Test	
 Sets	
 ...	
 11	

	
 	
 	
 	
 	
 2.7	
 Smoothing	
 of	
 N-­‐gram	
 Model	
 ...	
 12	

Chapter	
 3	
 Methods	
 ..	
 26	

3.1	
 Method1	
 ..	
 	
 26	

3.2	
 Method2	
 ..	
 	
 29	

3.3Method3	
 ...	
 	
 31	

Chapter	
 4	
 Conclusion	
 ...	
 33	

References	
 ..	
 34	

vi

	
 	
 	

List of Figures

Figure	
 1	
 —	
 Comparing	
 N-­‐gram	
 Order	
 and	
 Smoothing.	
 ..	
 24	

Figure	
 2	
 —	
 Comparing	
 N-­‐gram	
 Order	
 and	
 Smoothing	
 ...	
 31	

Figure	
 3	
 —	
 Comparing	
 N-­‐gram	
 Order.	
 ...	
 32	

	

	

	

	

	

	

	

	

	

	

	

	

vii

	
 	
 	

List of Tables

Table	
 1	
 —	
 N-­‐gram	
 Perplexity	
 ...	
 4	

Table	
 2—Bigram	
 counts	
 for	
 8	
 of	
 the	
 words	
 (out	
 of	
 V=1446)	
 in	
 Berkeley	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Restaurant	
 Project	
 corpus	
 of	
 9332	
 sentences.	
 ...	
 10	

Table	
 3	
 —	
 Unigram	
 Counts	
 ...	
 10	

Table	
 4	
 —	
 Bigram	
 Probabilities	
 After	
 Normalization	
 ...	
 11	

Table	
 5	
 —	
 Berkeley	
 Restaurant	
 Project	
 Smoothed	
 Bigram	
 Counts	
 (V=1446)	
 .	
 14	

Table	
 6	
 —	
 Probability	
 ...	
 18	

Table	
 7	
 —	
 Simple	
 Example	
 ...	
 19	

Table	
 8	
 —	
 Perplexity	
 Chart	
 1	
 ...	
 27	

Table	
 9	
 —	
 Perplexity	
 Chart	
 2	
 ...	
 29	

Table	
 10	
 —	
 Perplexity	
 Chart	
 3	
 ..	
 	
 	
 32	

	
 	

	

	

	

	

	

	

	

	

	

	

	

viii

	
 	

Acknowledgments

	
 	
 	
 	
 	
 	
 	
 	
 I	
 would	
 like	
 to	
 thank	
 everybody	
 who	
 helped	
 me	
 to	
 prepare	
 this	
 thesis.	

First,	
 I	
 would	
 like	
 to	
 thank	
 my	
 research	
 advisor	
 Veton	
 Kepuska.	
 He	
 provided	

me	
 a	
 great	
 environment	
 in	
 which	
 research	
 was	
 a	
 fun	
 activity	
 for	
 me.	
 He	

encouraged	
 me	
 to	
 tackle	
 challenging	
 problems	
 and	
 put	
 endless	
 efforts	
 in	

teaching.	
 Without	
 his	
 guidance	
 and	
 company.	
 I	
 would	
 not	
 finish	
 my	
 thesis.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 I	
 would	
 also	
 like	
 to	
 thank	
 Andreas	
 Stolcke	
 and	
 Nickolay	
 V.	
 Shmyrev	
 in	

providing	
 me	
 with	
 the	
 training	
 and	
 testing	
 corpus.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 Lastly,	
 I	
 thank	
 my	
 parents	
 Junhong	
 Zhang	
 and	
 Lingchang	
 Zhang	
 for	
 their	

boundless	
 support	
 in	
 my	
 life.	

	

１

	

Chapter 1

 Introduction

 Language model is a mathematical model which describes natural language’s
internal law. In theory, building a language model is to conclude, find and gain
natural language statistics and structural internal law. In practice, language model is
widely to be used in speech recognition, handwriting-recognition system, machine
translation and natural language managing area.
 Language model can be divided into two types: knowledge-based language
model and statistical language model. The current mature one is the statistical
language model.
 This thesis is mainly about the effect of smoothing and order of ngram for the
language model. The Srilm is a building and using statistical language modeling
toolkit. It can realize a series of training, predicting, and calculating operation. In
the establishment model based on the language of the word, the word frequency
estimation model accuracy depends on the corpus. When the corpus size is limited,
we need to use some smoothing algorithm. For example, Linear Interpolation,
Absolute-Discount, Good-Turing, Witten-Bell, which will be defined in next
chapter, to solve the data sparse problem. Taking advantage of srilm, we can
conveniently create and test the language model based on a variety of n-gram.
 This thesis mainly studies the perplexity in different n-gram which is from
1-gram to 7-grams. We also study the perplexity in different smoothing algorithms
which include simple n-gram, linear interpolation, good-turing, witten-bell and so
on.

２

	

1.1 Statistical Language Modeling

 The goal of Statistical Language Modeling is to build a statistical language
model that can estimate the distribution of natural language as accurate as possible.
A statistical language model (SLM) is a probability distribution P(s) over strings S
that attempts to reflect how frequently a string S occurs as a sentence.

 By expressing various language phenomena in terms of simple parameters in
a statistical model, SLMs provide an easy way to deal with complex natural
language in a computer.

 The original (and still most important) application of SLMs is speech
recognition, but SLMs also play a vital role in various other natural language
applications as diverse as machine translation, part-of-speech tagging, intelligent
input method and Text To Speech system.

 N-gram model is the most widely used SLM today.

 Without loss of generality we can express the probability of a string s: p(s) as

p(s) = p(w1)p(w2|w1)p(w3|w1w2)...p(wl|w1...wl-1) = p(wi|w1...wi-1))

 In bigram models, we make the approximation that the probability of a word
only depends on the identity of the immediately preceding word, hence we can
approximate p(s) as:

p(s) = p(wi|wi-1)

 The parameters in a traditional N-gram model can be estimated with
(Maximum Likelihood Estimation) MLE technique:

)(
),()|(

1

1
1

−

−
− =

i

ii
ii wC

wwCwwp

 p-probability, c-time of occurrences, w-word, i-the order of
word

 N-gram models	
 have received intensive research since its invention, several
enhanced N-gram models have been proposed. Here are some typical extensions to
traditional N-gram model:

３

	

• Class-based N-gram model

 In order to cope with the data sparseness problem, the class-based N-gram
model was proposed. Instead of dealing with separated words, class-based
N-gram estimates parameters for word classes. By clustering words into
classes, a class-based N-gram model can reduce the model size significantly
with the cost of slightly higher perplexity.

• Sequence N-gram model

Sequence N-gram is an attempt to extend N-gram models with variable
length sequences. A sequence can be a sequence of words, word class,
part-of-speech or whatever a sequence of something that the modeler
believes bearing important grammar information.

４

	

1.2 Perplexity

 The perplexity (sometimes called PP for short) of a language model on a
test set is a function of the probability that the language model assigns to that test
set. For a test set W = w1w2 . . .wN, the perplexity is the probability of the test set,
normalized by the number of words:

() ()

()
N

N

NN

wwwP

wwwPWPP

…

…

21

1

21

1
=

= −

 We can use the chain rule to expand the probability of W:

()
()

N

N

i ii wwwwP
WPP ∏

= −

=
1 121|

1
…

 For bigram language model the perplexity of W is computed as:

()
()

N

N

i ii wwP
WPP ∏

= −

=
1 1|

1

 Minimizing perplexity is equivalent to maximizing the test set probability
according to the language model.
 Perplexity can also be interpreted as the weighted average branching factor of
a language. The branching factor of a language is the number of possible next
words that can follow any word.

Example of Perplexity Use：
 Perplexity is used in following example to compare three N-gram models.

Table 1- Ngram Perplexity
N-gram order Unigram Bigram Trigram

Perplexity 962 170 109

 Unigram, Bigram, and Trigram grammars are trained on 38 million words
(including start-of-sentence tokens) using WSJ corpora with 19,979 word
vocabulary.
 The perplexity is related inversely to the likelihood of the test sequence
according to the model.

５

	

Chapter 2

Background

 2.1 N-grams

 In the fields of computational linguistics and probability, an n-gram is a
contiguous sequence of n items from a given sequence of text or speech. The items
can be phonemes, syllables, letters, words or base pairs according to the application.
The n-grams typically are collected from a text or speech corpus.

 An n-gram of size 1 is referred to as a "unigram"; size 2 is a "bigram" (or, less
commonly, a "digram"); size 3 is a "trigram". Larger sizes are sometimes referred
to by the value of n, e.g., "four-gram", "five-gram", and so on.

	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 n-­‐gram	
 is	
 related	
 to	
 problem	
 of	
 word	
 prediction.	
 For	
 example:	
 very	

likely	
 words:	
 “call”,	
 “international	
 call”,	
 or	
 “phone	
 call”,	
 and	
 NOT	
 “the”.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 idea	
 of	
 word	
 prediction	
 is	
 formalized	
 with	
 probabilistic	
 models	
 called	

N-­‐grams.	
 N-­‐gram	
 predict	
 the	
 next	
 word	
 from	
 previous	
 N-­‐1	
 words.	
 Statistical	

models	
 of	
 word	
 sequence	
 are	
 also	
 called	
 language	
 models	
 or	
 LMs.	
 Computing	

probability	
 of	
 the	
 next	
 word	
 will	
 turn	
 out	
 to	
 be	
 closely	
 related	
 to	
 computing	

the	
 probability	
 of	
 a	
 sequence	
 of	
 words.	
 Estimators	
 like	
 the	
 N-­‐gram	
 that	
 assign	

a	
 conditional	
 probability	
 to	
 possible	
 next	
 words	
 can	
 be	
 used	
 to	
 assign	
 a	
 joint	

probability	
 to	
 an	
 entire	
 sentence.	
 N-­‐grams	
 models	
 are	
 one	
 of	
 the	
 most	

important	
 tools	
 in	
 speech	
 and	
 language	
 processing.	
 N-­‐gram	
 are	
 essential	
 in	

any	
 tasks	
 in	
 which	
 the	
 words	
 must	
 be	
 identified	
 from	
 ambiguous	
 and	
 noisy	

inputs.	
 	

６

	

2.2 N-grams Application Areas

 An n-gram model is a type of probabilistic language model for predicting the
next item in such a sequence in the form of a (n-1)–order Markov model. N-gram
models are now widely used in probability, communication theory, computational
linguistics (for instance, statistical natural language processing), computational
biology (for instance, biological sequence analysis), and data compression. The two
core advantages of n-gram models (and algorithms that use them) are relative
simplicity and the ability to scale up – by simply increasing n a model can be used
to store more context with a well-understood space–time tradeoff, enabling small
experiments to scale up very efficiently.
 Firstly, n-gram can be used in Statistical Machine Translation. Statistical
Machine Translation (SMT) is a machine translation paradigm where translations
are generated on the basis of statistical models whose parameters are derived from
the analysis of bilingual text corpora. The statistical approach contrasts with the
rule-based approaches to machine translation as well as with example-based
machine translation.
 Secondly, n-gram can be used in Augmentative Communication.
Augmentative Communication is helping people who are unable to use speech or
sign language to communicate (e.g., Steven Hawking). Using simple body
movements to select words from a menu that are spoken by the system.

Thirdly, word prediction can be used to suggest likely words for the menu.

 Other areas:
• Part of-speech tagging
• Natural Language Generation
• Word Similarity
• Authorship identification
• Sentiment Extraction
• Predictive Text Input (Cell phones)

７

	

2.3 Word Counting & Corpora

 The word count is the number of words in a document or passage of text.
Word counting may be needed when a text is required to stay within certain
numbers
9 KB (1,027 words).
 Counting things in natural language is based on a corpus (plural corpora) – an
on-line collection of text or speech. Popular corpora “Brown” and “Switchboard”.
Brown corpus is a 1 million word collection of samples from 500 written texts from
different genres (newspaper, novels, non-fiction, academic, etc.) assembled at
Brown University 1963-1964. Switchboard Corpus – collection of 2430 telephone
conversations averaging 6 minutes each – total of 240 hours of speech with about 3
million words. An example sentence from Brown corpus: He stepped out into the
hall, was delighted to encounter a water brother.

2.4 Simple N-gram

 Our goal is to compute the probability of a word w given some history h:
P(w|h)
 Example:
 h = “its water is so transparent that”
 w =“the”
 P(the | its water is so transparent that)
 How can we compute this probability?
 One way is to estimate it from relative frequency counts. From a very large
corpus count number of times we see “its water is so transparent that” and count
the number of times. This is followed by “the”: Out of the times we saw the history
h, how many times was it followed by the word w:

() ()
()that ttransparen sois wateritsC

the that ttransparen sois wateritsCthat ttransparen sois wateritstheP =|

 Joint Probabilities is probability of an entire sequence of words like “its
water is so transparent”：
 Out of all possible sequences of 5 words, how many of them are “its water is

８

	

so transparent”. You must count of all occurrences of “its water is so transparent”
and divide by the sum of counts of all possible 5 word sequences. It seems a lot of
work for a simple computation of estimates.
 Hence, we must figure out more clever ways of estimating the probability of
a word w given some history h, or an entire word sequence W. If a sequence of N

words:
n

n worwww 1 21 ,,, …
Chain rule of Probability:

() () () () ()

()∏
=

−

−

=

=
n

k

k
k

n
nn

XXP

XXPXXPXXPXPXXP

1

1

12
31211

1

11

|

|||,, ……

Applying the chain rule to words we get:

() () () () ()

()∏
=

−

−

=

=
n

k

k
k

n
n

n

wwP

wwPwwPwwPwPwP

1

1

12
31211

1

11

|

||| …

The chain rule provides the link between computing the joint probability of a
sequence and computing the conditional probability of a word given previous
words.
 However, we still do not know any way of computing the exact probability

of a word given a long sequence of preceding words: ()11|
−n

n wwP .
 Idea of the N-gram model is to approximate the history by just the last few
words instead of computing the probability of a word given its entire history.
 The bigram model approximates the probability of a word given all the previous

words ()11|
−n

n wwP by the conditional probability of the

preceding ()1| −nn wwP word.
Example: Instead of computing the probability:

()thatttransparensoiswateritsthep |
It is approximated with the probability:

()thattheP |
The following approximation is used when the bi-gram probability is applied:

() ()11
1 || −
− ≈ nn
n

n wwPwwP
The assumption that the conditional probability of the word depends only on the
previous word is called a Markov assumption. Markov models are the class of
probabilistic models that assume that we can predict the probability of some future
unit without looking too far into the past.
Tri-gram: looks two words into the past. N-gram: looks N-1 words into the past.

９

	

General equation for N-gram approximation to the conditional probability of the
next word in a sequence is:

() ()1
1

1
1 || −

+−
− ≈ n

Nnn
n

n wwPwwP
The simplest and most intuitive way to estimate probabilities is the method called
Maximum Likelihood Estimation or MLE for short.

2.5 Maximum Likelihood Estimation – Parameter
Estimation

 Mini-corpus containing three sentences marked with beginning sentence
marker <s> and ending sentence marker </s>:
<s> I am Sam </s>
<s> Sam I am</s>
<s> I do not like green eggs and ham</s>
Some of the bi-gram calculations from this corpus:
P(I|<s>) = 2/3 = 0.66
P(Sam|<s>) = 1/3=0.33
P(am|I) = 2/3 = 0.66
P(Sam|am) = ½=0.5
P(</s>|Sam) = 1/3 = 0.33
P(</s>|am) = 1/3=0.33
P(do|I) = 1/3 = 0.33
In general case, MLE is calculated for N-gram model using the following:

P wn |wn−N+1
n−1() =

C wn−N+1
n−1 wn()

C wn−N+1
n−1()

=
C wn−N+1...wn−2wn−1wn()
C wn−N+1...wn−2wn−1()

１０

	

 Table 2- Bigram counts for 8 of the words (out of V=1446) in Berkeley
 Restaurant Project corpus of 9332 sentences

 i want to eat chinese food lunch spend

i 5 827 0 9 0 0 0 2

want 2 0 628 1 6 6 5 1

to 2 0 4 686 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

 Table 3-Unigram Counts
i want to eat Chinese food lunch spend

2533 927 214 746 158 1098 341 278

１１

	

Table 4 - Bigram Probabilities After Normalization

 i want to eat Chinese food lunch spend

i 0.002 0.33 0 0.003
6

0 0 0 0.00079

want 0.002
2

0 0.66 0.001
1

0.0065 0.006
5

0.005
4

0.0011

to 0.000
83

0 0.0017 0.28 0.00083 0 0.002
5

0.087

eat 0 0 0.0027 0 0.021 0.002
7

0.056 0

Chin
ese

0.006
3

0 0 0 0 0.52 0.006
3

0

food 0.014 0 0.014 0 0.00092 0.003
7

0 0

lunc
h

0.005
9

0 0 0 0 0.002
9

0 0

spen
d

0.003
6

0 0.0036 0 0 0 0 0

 Clearly now we can compute probability of sentence like:
 “I want English food”, or “I want Chinese food” by multiplying appropriate
bigram probabilities together as follows:
 P(<s> i want english food </s>) =
 P(i|<s>) (0.25)
 P(want|i) (0.33)
 P(english|want) (0.0011)
 P(food|english) (0.5)
 P(</s>|food) (0.68)
 = 0.25 x 0.33 x 0.0011 x 0.5 x 0.68 = 0.000031
 Although we will generally show bigram models in this chapter , note that
when there is sufficient training data we are more likely to use trigram models,
which condition on the previous two words rather than the previous word.
 To compute trigram probabilities at the very beginning of sentence, we can
use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

１２

	

2.6 Training and Test Sets

 N-gram models are obtained from a corpus that is trained on. Those models
are used on some new data in some task (e.g. speech recognition). New data or
tasks will not be exactly the same as data that was used for training. Formally, data
that is used to build the N-gram (or any model) are called Training Set or Training
Corpus. Data that are used to test the models comprise Test Set or Test Corpus.
 Training-and-testing paradigm can also be used to evaluate different N-gram
architectures: Comparing N-grams of different order N, or Using the different
smoothing algorithms (to be introduced later)
 Train various models using training corpus. Evaluate each model on the test
corpus.
 How do we measure the performance of each model on the test corpus? The
answer is Perplexity. Computing probability of each sentence in the test set: the
model that assigns a higher probability to the test set (hence more accurately
predicts the test set) is assumed to be a better model.
 For training we need as much data as possible. However, for testing we need
sufficient data in order for the resulting measurements to be statistically significant.
In practice often the data is often divided into 80% training 10% development and
10% evaluation.
 N-gram modeling, like many statistical models, is very dependent on the training
corpus.
 Often the model encodes very specific facts about a given training corpus.
 N-grams do a much better and better job of modeling the training corpus as we
increase the value of N. This is another aspect of model being tuned to specifically
to training data at the expense of generality.

2.7 Smoothing of N-gram Model

 In statistics and image processing, to smooth a data set is to create an
approximating function that attempts to capture important patterns in the data,
while leaving out noise or other fine-scale structures/rapid phenomena. In

１３

	

smoothing, the data points of a signal are modified so individual points
(presumably because of noise) are reduced, and points that are lower than the
adjacent points are increased leading to a smoother signal. Smoothing may be used
in two important ways that can aid in data analysis (1) by being able to extract
more information from the data as long as the assumption of smoothing is
reasonable and (2) by being able to provide analyses that are both flexible and
robust. Many different algorithms are used in smoothing. Data smoothing is
typically done through the simplest of all density estimators, the histogram.
There is a major problem with the maximum likelihood estimation process we have
seen for training the parameters of an N-gram model. This is the problem of sparse
data caused by the fact that our maximum likelihood estimate was based on a
particular set of training data. For any N-gram that occurred a sufficient number of
times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it.
 This missing data means that the N-gram matrix for any given training corpus is
bound to have a very large number of cases of putative “zero probability N-grams”
that should really have some non-zero probability.
 Furthermore, the MLE method also produces poor estimates when the counts are
non-zero but still small. We need a method which can help get better estimates for
these zero or low frequency counts.
Zero counts turn out to cause another huge problem.
The perplexity metric defined above requires that we compute the probability of
each test sentence. But if a test sentence has an N-gram that never appeared in the
training set, the Maximum Likelihood estimate of the probability for this N-gram,
and hence for the whole test sentence, will be zero!
This means that in order to evaluate our language models, we need to modify the
MLE method to assign some non-zero probability to any N-gram, even one that
was never observed in training.
The term smoothing is used for such modifications that address the poor estimates
due to variability in small data sets. The name comes from the fact that (looking
ahead a bit) we will be shaving a little bit of probability mass from the higher
counts, and piling it instead on the zero counts, making the distribution a little less
discontinuous.
The original Berkeley Restaurant example introduced previously will be used to
show how smoothing algorithms modify the bigram probabilities.
One simple way to do smoothing is to take our matrix of bigram counts, before we
normalize them into probabilities, and add one to all the counts. This algorithm is
called Laplace smoothing, or Laplace’s Law.
Laplace smoothing does not perform well enough to be used in modern N-gram
models, but we begin with it because it introduces many of the concepts that we

１４

	

will see in other smoothing algorithms, and also gives us a useful baseline.
 Recall that the unsmoothed maximum likelihood estimate of the unigram
probability of the word wi is its count ci normalized by the total number of word

tokens N:
()

N
cwP i

i =
Laplace smoothing adds one to each count. Considering that there are V words in
the vocabulary, and each one got increased, we also need to adjust the denominator
to take into account the extra V observations in order to have legitimate
probabilities.

()
VN

cwP i
iLaplace +

+
=

1

It is convenient to describe a smoothing algorithm as a corrective constant that
affects the numerator by defining an adjusted count c* as follows:

()

VN
Ncc

N
c

NVN
Nc

N
N

VN
c

VN
cwP

ii

i
i

ii
iLaplace

+
+=

=⎟
⎠

⎞
⎜
⎝

⎛
+

+=
+

+
=

+

+
=

∗

∗

1

1111

A related way to view smoothing is as discounting (lowering) some non-zero
counts in order to get the correct probability mass that will be assigned to the zero
counts.
 Thus instead of referring to the discounted counts c, we might describe a
smoothing algorithm in terms of a relative discount dc, the ratio of the discounted

counts to the original counts: c
cdc
*

=

 Table 5- Berkeley Restaurant Project Smoothed Bigram Counts (V=1446)

 i want to eat chinese food lunch spend

i 6 828 1 10 1 1 1 3

want 3 1 629 2 7 7 6 2

to 3 1 5 687 3 1 7 212

eat 1 1 3 1 17 3 43 1

chine
se

2 1 1 1 1 83 2 1

food 16 1 16 1 2 5 1 1

lunch 3 1 1 1 1 2 1 1

１５

	

spend 2 1 2 1 1 1 1 1

 Recall normal bigram probabilites are computed by normalizing each raw
of counts by the unigram count:

() ()
()1

1
1|

−

−
− =

n

nn
nn wC

wwCwwP

 For add-one smoothed bigram counts we need to augment the unigram count by
the number of total types in the vocabulary V:

() ()
() VwC

wwCwwP
n

nn
nnLaplace +

+
=

−

−
−

1

1
1

* 1|

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts.
These adjusted counts can be computed by the equation presented below and the
table in the next slide shows the reconstructed counts.

() ()[] ()
() VwC

wCwwCwwc
n

nnn
nn +

×+
=

−

−−
−

1

11
1

* 1

Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 609 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case.
 Looking at the discount d (the ratio between new and old counts) shows us
how strikingly the counts for each prefix-word have been reduced; the discount for
the bigram want to is .39, while the discount for Chinese food is .10, a factor of 10!
The sharp change in counts and probabilities occurs because too much probability
mass is moved to all the zeros.

Good-Turing Estimation

 Good–Turing frequency estimation was developed by Alan Turing and his
assistant I. J. Good as part of their efforts at Bletchley Park to crack German
ciphers for the Enigma machine during World War II. Turing at first modeled the
frequencies as a multinomial distribution, but found it inaccurate. Good developed
smoothing algorithms to improve the estimator's accuracy.

 The discovery was recognized as significant when published by Good in
1953, but the calculations were difficult so it was not used as widely as it might

１６

	

have been. The method even gained some literary fame due to the Robert Harris
novel Enigma.

 In the 1990s, Geoffrey Sampson worked with William A. Gale of AT&T,
to create and implement a simplified and easier-to-use variant of the Good–Turing
method .

 Good–Turing frequency estimation is a statistical technique for estimating
the probability of encountering an object of a hitherto unseen species, given a set of
past observations of objects from different species. (In drawing balls from an urn,
the 'objects' would be balls and the 'species' would be the distinct colors of the balls

(finite but unknown in number). After drawing redR red balls, blackR black

balls and greenR green balls, we would ask what is the probability of drawing a
red ball, a black ball, a green ball or one of a previously unseen color.)

 A number of much better algorithms have been developed that are only
slightly more complex than add-one smoothing: Good-Turing.

 The idea behind a number of those algorithms is to use the count of things
you’ve seen once to help estimate the count of things you have never seen.

 Good described the algorithm in 1953 in which he credits Turing for the
original idea.

 	
 The basic idea in this algorithm is to re-estimate the amount of probability
mass to assign to N-grams with zero counts by looking at the number of N-grams
that occurred only one time. A word or N-gram that occurs once is called a
singleton. Good-Turing algorithm uses the frequency of singletons as a re-estimate
of the frequency of zero-count bigrams.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Algorithm	
 Definition:	

n Nc	
 –	
 the	
 number	
 of	
 N-­‐grams	
 that	
 occur	
 c	
 times:	
 frequency	
 of	
 frequency	
 c.	

n N0	
 –	
 the	
 number	
 of	
 bigrams	
 b	
 with	
 count	
 0.	

n N1	
 –	
 the	
 number	
 of	
 bigram	
 with	
 count	
 1	
 (singletons),	
 etc.	

n Each	
 Nc	
 is	
 a	
 bin	
 that	
 stores	
 the	
 number	
 of	
 different	
 N-­‐grams	
 that	
 occur	
 in	

the	
 training	
 set	
 with	
 frequency	
 c:	
 	
 	
 	
 	
 	

()
∑

=

=
cxcountx

cN
:

1
	

１７

	

n The MLE count for Nc is c. The Good-Turing estimate replaces this with a
smoothed count c*, as a function of Nc+1:

()
c

c

N
Ncc 11 +∗ +=

	

 The previous equation presented in previous slide can be used to replace the
MLE counts for all the bins N1, N2, and so on. Instead of using this equation
directly to re-estimate the smoothed count c* for N0, the following equation is used

that defines probability
∗
GTP of the missing mass:

()
N
Ntraining in zerofrequency withthingsPGT
1=∗

	

 N1 – is the count of items in bin 1 (that were seen once in training), and N is
total number of items we have seen in training.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Example:	
 	

• A	
 lake	
 with	
 8	
 species	
 of	
 fish	
 (bass,	
 carp,	
 catfish,	
 eel,	
 perch,	
 salmon,	
 trout,	

whitefish)	

• When	
 fishing	
 we	
 have	
 caught	
 6	
 species	
 with	
 the	
 following	
 count:10	

carp	
 3	
 perch,	
 2	
 whitefish,	
 1	
 trout,	
 1	
 salmon,	
 and	
 1	
 eel	
 (no	
 catfish	
 and	
 no	

bass).	

• What	
 is	
 the	
 probability	
 that	
 the	
 next	
 fish	
 we	
 catch	
 will	
 be	
 a	
 new	
 species,	

i.e.,	
 one	
 that	
 had	
 a	
 zero	
 frequency	
 in	
 our	
 training	
 set	
 (catfish	
 or	
 bass)?	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 MLE	
 count	
 c	
 of	
 unseen	
 species	
 (bass	
 or	
 catfish)	
 is	
 0.	
 From	
 the	

equation	
 in	
 the	
 previous	
 slide	
 the	
 probability	
 of	
 a	
 new	
 fish	
 being	
 one	
 of	
 these	

unseen	
 species	
 is	
 3/18,	
 since	
 N1	
 is	
 3	
 and	
 N	
 is	
 18:	

()
18
31 ==∗

N
Ntraining in zerofrequency withthingsPGT 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Let's	
 now	
 estimate	
 the	
 probability	
 that	
 the	
 next	
 fish	
 will	
 be	
 another	
 trout?	

MLE	
 count	
 for	
 trout	
 is	
 1,	
 so	
 the	
 MLE	
 estimated	
 probability	
 is	
 1/18.	

	
 	
 	
 	
 	
 	
 	
 	
 	
 However,	
 the	
 Good-­‐Turing	
 estimate	
 must	
 be	
 lower,	
 since	
 we	
 took	
 3/18	
 of	

１８

	

our	
 probability	
 mass	
 to	
 use	
 on	
 unseen	
 events!	
 Must	
 discount	
 MLE	

probabilities	
 for	
 observed	
 counts	
 (perch,	
 whitefish,	
 trout,	
 salmon,	
 and	
 eel)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 The	
 revised	
 count	
 c*	
 and	
 Good-­‐Turing	
 smoothed	
 probabilities	

∗
GTP 	
 for	

species	
 with	
 counts	
 0	
 (like	
 bass	
 or	
 catfish	
 in	
 previous	
 example)	
 or	
 counts	
 1	

(like	
 trout,	
 salmon,	
 or	
 eel)	
 are	
 as	
 follows:	

Table 6 - Probability

	
 Unseen(bass	
 or	
 catfish)	
 trout	

c	
 0	
 1	

MLE	
 p	

	
 18
1
	

C*	
 	
 67.0
3
12)1()(

1

2* =×=×+=
N
Nctroutc

	

GT	

*
GTp 	
 17.0

18
3)(1* ===

N
Nunseenp GT

	
 037.0
18
67.0)(

*
* ===

N
ctroutpGT

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Note	
 that	
 the	
 revised	
 count	
 c*	
 for	
 eel	
 as	
 well	
 is	
 discounted	
 from	
 c=1.0	
 to	

c*=0.67	
 in	
 order	
 to	
 account	
 for	
 some	
 probability	
 mass	
 for	
 unseen	
 species 	

(unseen)	
 =	
 3/18=0.17	
 for	
 catfish	
 and	
 bass.	

Since	
 we	
 know	
 that	
 there	
 are	
 2	
 unknown	
 species,	
 the	
 probability	
 of	
 the	
 next	

fish	
 being	
 specifically	
 a	
 catfish	
 is (catfish)	
 =	
 (1/2)x(3/18)	
 =	
 0.085	

	

１９

	

Table 7 - Simple Example

c(MLE) Nc C*(GT)

0 2 1.5

1 3 1.3

2 1 1

3 1 ?

4 0 ?

5 0 ?

6 0 ?

7 0 ?

8 0 ?

9 0 ?

10 1 ?

 In practice, Add-one smoothing works horribly. Good-Turing smoothing
works better than Add-one, but works still horribly. So Good-Turing is often not
used by itself; it is used in combination with the backoff and interpotion
algorithms.

Interpolation

 Discounting algorithms can help solve the problem of zero frequency N-grams.

Additional knowledge that is not used:
• If trying to compute P(wn|wn-1wn-2) but we have no examples of a

particular trigram wn-2wn-1wn,
• Estimate trigram probability based on the bigram probability P(wn|wn-1).
• If there are no counts for computation of bigram probability P(wn|wn-1),

use unigram probability P(wn).
 There are two ways to rely on this N-gram “hiearchy”: Backoff and

２０

	

Interpolation.
 Backoff Relies solely on the trigram counts. When there is a zero count
evidence of a trigram then the backoff to lower N-gram.
 To Interpolation, probability estimates are always mixed from all N-gram
estimators: weighted interpolation of trigram, bigram and unigram counts.
 Simple Interpolation – Linear Interpolation.

() ()
()
()

∑ =

+

+

=

−

−−−−

i
i

n

nn

nnnnnn

wP
wwP
wwwPwwwP

1

|
||ˆ

3

12

21121

λ

λ

λ

λ

 Slightly more sophisticated version of linear interpolation with context
dependent weights.

() () ()
() ()
() ()
()∑ =

+

+

=

−
−

−
−

−
−
−

−−
−
−−−

i

n
ni

n
n
n

nn
n
n

nnn
n
nnnn

w
wPw

wwPw
wwwPwwwwP

1

|

||ˆ

1
2

1
23

1
1
22

21
1
2121

λ

λ

λ

λ

 Weights are set from held-out corpus. Held-out corpus is additional training
corpus that is not used to set the N-gram counts but to set other parameters like in
this case interpolation weights.

Backoff

 Interpolation is simple to understand and implement. There are better
algorithms like backoff N-gram modeling.
 Uses Good-Turing discounting based on Katz and also known as Katz
backoff.

() () ()
() ()⎩

⎨
⎧ >

=
−

+−
−

+−

+−
−

+−−
+− otherwise|

0 if|
| 1

2
1

1

1
1

1
*

1
1 n

Nnnkatz
n
Nn

n
Nn

n
Nnnn

Nnnkatz wwPw
wCwwP

wwP
α

 Equation above describes a recursive procedure. Computation of P*, the
normalizing factor a, and other details are discussed in next section.

n β	
 – total amount of left-over probability mass function of the

２１

	

(N-1)-gram context.
 For a given (N-1) gram context, the total left-over probability mass
can be computed by subtracting from 1 the total discounted probability mass
for all N-grams starting with that context.

() ()

()
∑

>

−
+−

−
+−

−
+−

−=
0:

1
1

1
1

1
1

|*1
n
Nnn wcw

n
Nnn

n
Nn wwPwβ

n This gives us the total probability mass that we are ready to

distribute to all (N-1)-gram (e.g., bigrams if our original model was
trigram)

 Each individual (N-1)-gram (bigram) will only get a fraction of this mass, so
we need to normalize b by the total probability of all the (N-1)-grams (bigrams)
that begin some N-gram (trigram) that has zero count. The final equation for
computing how much probability mass to distribute from an N-gram to an
(N-1)-gram is represented by the function a:

() ()
()

()

()
()

()
()
∑

∑

∑

>

−
+−

>

−
+−

>

−
+−

−
+−−

+−

−
+−

−
+−

−
+−

−

−

=

=

0:

1
2

*
0:

1
1

*

0:

1
2

1
11

1

1
1

1
1

1
1

|1

|1

|

n
Nnn

n
Nnn

n
Nnn

wcw

n
Nnn

wcw

n
Nnn

wcw

n
Nnnkatz

n
Nnn

Nn

wwP

wwP

wwP
ww β

α

 Note that a is a function of the preceding word string, that is, of

1
1

−
+−

n
Nnw ；

thus the amount by which we discount each trigram (d), and the mass that gets
reassigned to lower order N-grams (a) are recomputed for every (N-1)-gram that
occurs in any N-gram.
 We only need to specify what to do when the counts of an (N-1)-gram

context are 0, (i.e., when () 01
1 =

−
+−

n
Nnwc) and our definition is complete:

() () ()
() ()
() () 0if1|

0if0|
0if||

1
1

1
1

1
1

1
1

*

1
1

1
2

1
1

==

==

==

−
+−

−
+−

−
+−

−
+−

−
+−

−
+−

−
+−

n
Nn

n
Nnn

n
Nn

n
Nnn

n
Nn

n
Nnnkatz

n
Nnnkatz

w cww
w cwwP
w cwwPwwP

β

２２

	

Advanced Smoothing Methods: Kneser-Ney
Smoothing

 Language models are an essential element of natural language processing,
central to tasks ranging from spellchecking to machine translation. Given an
arbitrary piece of text, a language model determines whether that text belongs to a
given language.
 We can give a concrete example with a probabilistic language model, a
specific construction which uses probabilities to estimate how likely any given
string belongs to a language. Consider a probabilistic English language model PE.
We would expect the probability

PE(I went to the store)
 To be quite high, since we can confirm this is valid English. On the other
hand, we expect the probabilities

PE(store went to I the),PE(Ich habe eine Katz)
 To be very low, since these fragments do not constitute proper English text.
 I don’t aim to cover the entirety of language models at the moment — that
would be an ambitious task for a single blog post. If you haven’t encountered
language models or n-grams before, I recommend the following resources:

• “Language model” on Wikipedia
• Chapter 4 of Jurafsky and Martin’s Speech and Language Processing
• Chapter 7 of Statistical Machine Translation (see summary slides online)

I’d like to jump ahead to a trickier subject within language modeling known as
Kneser-Ney smoothing. This smoothing method is most commonly applied in an
interpolated form,1 and this is the form that I’ll present today.
Kneser-Ney evolved from absolute-discounting interpolation, which makes use of
both higher-order (i.e., higher-n) and lower-order language models, reallocating
some probability mass from 4-grams or 3-grams to simpler unigram models. The
formula for absolute-discounting smoothing as applied to a bigram language model
is presented below:

 Here δ refers to a fixed discount value, and α is a normalizing constant. The
details of this smoothing are covered in Chen and Goodman (1999).

２３

	

 The essence of Kneser-Ney is in the clever observation that we can take
advantage of this interpolation as a sort of backoff model. When the first term (in
this case, the discounted relative bigram count) is near zero, the second term (the
lower-order model) carries more weight. Inversely, when the higher-order model
matches strongly, the second lower-order term has little weight.
 The Kneser-Ney design retains the first term of absolute discounting
interpolation, but rewrites the second term to take advantage of this relationship.
Whereas absolute discounting interpolation in a bigram model would simply
default to a unigram model in the second term, Kneser-Ney depends upon the idea
of a continuation probability associated with each unigram.
 This probability for a given token Wi is proportional to the number of
bigrams which it completes:

{ }0),(:)(11 〉∝ −− iiiioncontinuati wwcwwP
 This quantity is normalized by

dividing by the total number of bigram types (note

that j
is a free variable):

{ }
{ }0),(:

0),(:
)(

11

11

>

>
=

−−

−−

jjj

iii
ioncontinuati wwcw

wwcw
wP

 The common example used to demonstrate the efficacy of Kneser-Ney is
the phrase San Francisco. Suppose this phrase is abundant in a given training
corpus. Then the unigram probability of Francisco will also be high. If we unwisely
use something like absolute discounting interpolation in a context where our
bigram model is weak, the unigram model portion may take over and lead to some
strange results.
Dan Jurafsky gives the following example context:
I can’t see without my reading _____.
 A fluent English speaker reading this sentence knows that the word glasses
should fill in the blank. But since San Francisco is a common term,
absolute-discounting interpolation might declare that Francisco is a better

fit:)()(glassesPFranciscoP absabs >
Kneser-Ney fixes this problem by asking a slightly harder question of our

lower-order model. Whereas the unigram model simply provides how likely a word
wi is to appear, Kneser-Ney’s second term determines how likely a word wi is to
appear in an unfamiliar bigram context.
Kneser-Ney in whole follows:

 λ is a normalizing constant

２４

	

 Note that the denominator of the first term can be simplified to a unigram
count. Here is the final interpolated Kneser-Ney smoothed bigram model, in all its
glory:

 A brief introduction to the most commonly used modern N-gram smoothing
is method, the Interpolated Kneser-Ney algorithm:
An algorithm is based on absolute discounting method.
 It is a more elaborate method of a computing revised count c* than the
Good-Turing discount formula. Re-estimated counts c* for greater than 1 counts
could be estimated pretty well by just subtracting 0.75 from the MLE count c.
Absolute discounting method formalizes this intuition by subtracting a fixed
(absolute) discount d from each count.
The rational is that we have good estimates already for the high counts, and a small
discount d won’t affect them much.
 The affected are only the smaller counts for which we do not necessarily
trust the estimate anyhow.
In practice, distinct discount values D for the 0 and 1 counts are computed.
Kneser-Ney discounting augments absolute discounting with a more sophisticated
way to handle the backoff distribution. Consider the job of predicting the next word
in the sentence, assuming we are backing off to a unigram model:
I can’t see without my reading XXXXXX. The word “glasses” seem much more
likely to follow than the word “Francisco”.But “Francisco” is in fact more
common, and thus a unigram model will prefer it to “glasses”.
Thus we would like to capture that although “Francisco” is frequent, it is only
frequent after the word “San”. The word “glasses” has a much wider distribution.
Thus the idea is instead of backing off to the unigram MLE count (the number of
times the word w has been seen), we want to use a completely different backoff
distribution!
We want a heuristic that more accurately estimates the number of times we might
expect to see word w in a new unseen context.
The Kneser-Ney intuition is to base our estimate on the number of different
contexts word w has appeared in.
Words that have appeared in more contexts are more likely to appear in some new
context as well. New backoff probability can be expressed as the “continuation
probability” presented in following expression:
 Continuation Probability:

２５

	

() (){ }
(){ }∑ >

>
=

−−

−−

iw
iii

iii
ioncontinuati wwcw

wwcw
wP

0:
0:

11

11

 Kneser-Ney backoff is formalized as follows assuming proper coefficient a on the
backoff to make everything sum to one:

{ }
{ }⎪

⎪

⎩

⎪
⎪

⎨

⎧

>

>

>
−

=

∑ −−

−−

−
−

−

−
otherwise

wwcw
wwcww

wwcif
wc

Dwwc

wwp

iw
iii

iii
i

ii
i

ii

iiKN

|0)(:|
|0)(:|)(

0)(,
)(
)(

)|(

11

11

1
1

1

1
α

２６

	

Chapter 3

 Methods

 3.1 Method 1

 Here we describe my method which includes the steps of the experiment,
generating counting file from corpus, and calculating testing data perplexity.
I downloaded the data in a website and used command window to generate the
n-gram counting file. The sentence we used in command window is “ngram-count
-text news-commentary-v6.en -order 1 -write-order news-commentary-v6.en.count”.
And then I used the counting file to train language model. The sentence I used was
“ngram-count -read news-commentary-v6.en.count -order 3 -lm
news-commentary-v6.en.lm”. The last thing I did was used the language model we
created above to calculate testing data perplexity. The sentence we used in
cmd(command window) was “ngram -ppl europarl-v6.en -order 1 -lm
news-commentary-v6.en.lm > news-commentary-v6.en.lm.ppl”.
 My testing corpus was named the Raw momolingual language model training data.
The website in which I downloaded it was
https://code.google.com/p/1-billion-word-language-modeling-benchmark/. it
contained 2.0154e+006 sentences, 4.93701e+007 words, and 1.24923e+006 OOVs,
0 zeroprobs, logprob= -1.56782e+008, ppl=?, ppl=10^{-{logP(T)}/{Sen+Word}}.
Sen and Word represent the quantity of sentences and words.

２７

	

 Table 8 - Perplexity Chart 1

Perp
lexit
y	

Order1	
 Order2	
 Order3	
 Order4	
 Order5	
 Order6	
 Order
7	

Sim
ple	

ngra
m	

1340.01	
 352.833	
 313.079	
 312.09
2	

312.837	
 313.025	
 313.0
77	

inter
pola
te	

1340.01	
 352.833	
 313.079	

	

312.09
2	

	

312.837	

	

313.025	

	

313.0
77	

Goo
d	

turi
ng	

disc
ount
ing	

1340.01	

	

352.833	

	

313.079	

	

312.09
2	

	

312.837	

	

313.025	

	

313.0
77	

Natu
ral	

disc
ount
ing+
inter
pola
te	

1340.01	

	

376.867	
 315.429	

	

312.00
5	

	

312.339	

	

312.834	

	

313.0
06	

	

Witt
en-­‐B
ell	

disc
ount
ing+
inter
pola
te	

1364.44	

	

368.307	

	

311.097	

	

311.24
8	

	

312.321	

	

312.837	

	

313.0
04	

	

Mod
ified	

Knes

1343.05	

	

347.347	
 313.393	
 311.24
8	

312.247	
 312.814	

	

313.0
16	

２８

	

er-­‐N
ey	

disc
ount
ing+
inter
pola
te	

	
 	

Origi
nal	

Knes
er-­‐N
ey	

disc
ount
ing+
inter
pola
te	

1340.01	

	

349.052	
 316.915	
 313.48
3	

	

312.703	

	

312.858	

	

313.0
07	

Figure 1 - Comparing N-gram Order and Smoothing

２９

	

3.2 Method 2

 My testing corpus was named European Parliament Proceedings Parallel Corpus
1996-2011. The website in which I downloaded it was
http://www.statmt.org/europarl/. It contained 649697 sentences, 1.56859e+007
words, and 2131 OOVs, 0 zeroprobs, logprob= -4.9319e+007, ppl=?,
ppl=10^{-{logP(T)}/{Sen+Word}}. Sen and Word represent the quantity of
sentences and words.

Table 9 - Perplexity Chart 2
Perpl
exity

Order1 Order2 Order3 Order4 Order5 Order6 Order
7

Simpl
e
ngra
m

1045.9
2

96.424
2

57.2009

49.1651

47.9456

47.884
2

47.99
93

Interp
olate
dicou
nting

1045.9
2

96.424
2

57.2009

49.1651

47.9456

47.884
2

47.99
93

Good
-turin
g
disco
untin
g

1045.9
2

96.424
2

57.2009

49.1651

47.9456

47.884
2

47.99
93

Natur
al
disco
untin

1045.9
2

89.542
2

56.771

48.0942

46.5125

46.567
5

46.93
16

３０

	

g

Witte
n-bell

1047.7
1

92.220
5

56.4033

47.3234

45.9748

46.297
9

46.81
27

Modi
fied
knese
r-ney

1046.2
1

97.038
6

57.159

48.1449

46.6114

46.778
5

47.20
74

Origi
nal
kners
er-ne
y

1045.9
2

94.873
5

56.4876

47.6903

46.2829

46.495
7

46.95
73

Knes
er-ne
y

1045.9
2

96.424
2

57.2009

49.1651

47.9456

47.884
2

47.99
93

３１

	

 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Figure 2 - Comparing N-gram Order and Smoothing

3.3 Method 3

 I downloaded the corpus which name is Berkeley Restaurant Project. In
Berkeley Restaurant Project file, every word in it is related to restaurant. It contains
1446 OOVs, 7500 sentences, 1500 words. I used sentence “ngram -order N
training.en.lm -vocab icslp94-berp.ps-2 -limit-vocab -renorm -write-lm
icslp94-berp.ps-2.lm” in command window to generate the new language model
file. Then I used the sentence “ngram -ppl testing.en -order N -lm
icslp94-berp.ps-2.lm> icslp94-berp.ps-2.lm.ppl” in command window to generate
perplexity file, and to compare the perplexity from 1-gram to 7-grams.
 Testing corpus contains 649697 sentences, 1.56859e+007 words, and
1.52601e+007 OOVs, 0 zeroprobs, logprob= -4.9319e+007, ppl=?,
ppl=10^{-{logP(T)}/{Sen+Word}}. Sen and Word represent the quantity of
sentences and words.

３２

	

Table 10 - Perplexity Chart 3

Order1	
 Order2	
 Order3	
 Order4	
 Order5	
 Order6	
 Order7	

53.593
6	

52.5935	

	

52.5939	

	

52.5939	
 52.5939	

	

52.5939	

	

52.5939	

	

	

	

	

	

	
 	
 	
 	
 	
 	
 	
 	

 Figure 3 – Comparing N-gram Order

３３

	

Chapter 4

Conclusion

 From the result I got, I think in the first experiment, the best matching is
witten-bell discounting and 3-gram in which the perplexity is 311.097. The second
experiment best matching is witten-bell and 5-gram discounting in which the
perplexity is 45.9748.
 It means that the corpus size will effect the perplexity and the matching result.
So different corpus will have different best matching between smoothing and order
of n-gram.
 In third experiment, I can conclude that we can build the language model by
general corpus in specific domain. There is no need for us to find specific corpus. I
can find some words and sentence in website that is related to some specific
domain to generate new language model in some specific domain like Berkeley
Restaurant Project that is about restaurant words.
 From all 3 figures, I can prove that the higher order gram has better perplexity.
Because the trigram mode has better perplexity than unigram mode. In specific
domain, the perplexity is generally lower.
 In the future, we can use the building language model technology to apply
for some specific domain like law domain, management domain and so on to build
the language model by general corpus instead of specific corpus. Also, we can
study more different corpus to find the best matching between smoothing and
n-gram order to apply for different speech recognition applications.

３４

	

References

Levin, B. and Rappaport Hovav, M. (2005). Argument Realization. Cambridge University
Press.

Li, X. and Roth, D. (2002). Learning question classifiers. In COLING-02, PP. 556-562.

Hobbs, J. R. (1979a). Metaphor, metaphor schemata, and selective inferencing. Tech. rep.
204, SRI.

Galley, M., Hopkins, M., Knight, K., and Marcu, D. (2004). What’s in a translation rule?.
In HLT-NAACL-04.

Edmunson, H. (1969). New methods in automatic extracting. Journal of the ACM, 16(2),
264-285

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. MIT Press.

Branco, A., McEnery, T., and Mitkov, R. (2002). Anaphora Processing. John Henjamins.

Balentine, B. and D. Morgan, How to build a Speech Recognition Application, 1999,
Enterprise Integration Group.

Galitz, W.O., User-Interface Screen Design, 1993, Wellesley, MA, Q. E. D. Information
Sciences Inc.

Furui, S., “Resent Advances in Speaker Recognition,” Pattern Recognition Letters, 1997,
18, pp. 859-872.

Galitz, W.O., Handbook of Screen Format Design, 1985, Wellesley, MA, Q.E.D.
Information Sciences Inc.

３５

	

Wood, L., User Interface Design: Bridging the Gap from User Requirements to Design,
1997, CRC Press.

Wixon, D. and J. Ramey, Field Methods Casebook for Software Design, 1996, New York,
John Wiley.

Weinschenk, S. and D. Barker, Designing Effective Speech Interfaces, 2000, New York,
John Wiley.

	Comparing the Effect of Smoothing and N-gram Order : Finding the Best Way to Combine the Smoothing and Order of N-gram
	/var/tmp/StampPDF/1XPl36bIPl/tmp.1675448987.pdf.xDQKE

