
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

12-2020

Efficient Edge Analytics: Addressing Cyber-Physical MASINT with Efficient Edge Analytics: Addressing Cyber-Physical MASINT with

Machine Learning on Audio at the Edge Machine Learning on Audio at the Edge

David Elliott

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=repository.fit.edu%2Fetd%2F733&utm_medium=PDF&utm_campaign=PDFCoverPages

Efficient Edge Analytics: Addressing Cyber-Physical MASINT with Machine Learning

on Audio at the Edge

by

David Elliott

Master of Science in Computer Engineering
Computer Engineering and Science

Florida Institute of Technology
2018

A dissertation
submitted to the College of Engineering and Sciences at

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in

Computer Engineering

Melbourne, Florida
December, 2020

© Copyright 2020 David Elliott

All Rights Reserved

The author grants permission to make single copies.

We the undersigned committee
hereby approve the attached dissertation

Efficient Edge Analytics: Addressing Cyber-Physical MASINT with Machine Learning
on Audio at the Edge by David Elliott

Carlos E. Otero, Ph.D.
Associate Professor
Computer Engineering and Sciences
Committee Chair

Munevver M. Subasi, Ph.D.
Associate Professor
Mathematical Sciences
Outside Committee Member

Josko Zec, Ph.D.
Associate Professor
Computer Engineering and Sciences
Committee Member

Samuel P. Kozaitis, Ph.D.
Professor
Computer Engineering and Sciences
Committee Member

Philip Bernhard, Ph.D.
Associate Professor and Department Head
Computer Engineering and Sciences

ABSTRACT

Title:

Efficient Edge Analytics: Addressing Cyber-Physical MASINT with Machine Learning

on Audio at the Edge

Author: David Elliott

Major Advisor: Carlos E. Otero, Ph.D.

With the growth of the Internet of Things and the rise of Big Data, data processing

and machine learning applications are being moved to cheap and low size, weight, and

power (SWaP) devices at the edge, often in the form of mobile phones, embedded

systems, or microcontrollers. The field of Cyber-Physical Measurements and Signature

Intelligence (MASINT) makes use of these devices to analyze and exploit data in ways

not otherwise possible, which results in increased data quality, increased security, and

decreased bandwidth. However, methods to train and deploy models at the edge are

limited, and models with sufficient accuracy are often too large for the edge device.

Therefore, there is a clear need for techniques to create efficient AI/ML at the edge.

This work presents training techniques for audio models in the field of environmental

sound classification at the edge. Specifically, we design and train CNNs, first, to clas-

sify office sounds in audio clips. Then, we design and train Transformers to classify

office sounds in audio clips. Results show that a BERT-based Transformer, trained

on Mel spectrograms, can outperform a CNN using 99.85% fewer parameters. Our

final model outperforms the state-of-the-art MFCC-based CNN on the office sounds

dataset, using just over 6,000 parameters – small enough to run on a microcontroller.

iii

Table of Contents

Abstract iii

List of Figures vii

Acknowledgments ix

1 CNNs for Environmental Sound Classification at the Edge 1

1.1 Abstract . 1

1.2 Introduction . 2

1.3 Data . 6

1.3.1 Data Collection . 6

1.3.2 Data Processing . 8

1.4 Model . 9

1.4.1 Feature Extraction . 10

1.4.2 Model Architectures . 11

1.4.2.1 Amplitude Model 11

1.4.2.2 MFCC Model . 12

1.4.2.3 Ensemble Model . 13

1.4.3 On-Device Event Detection 14

iv

1.4.4 Evaluation . 15

1.5 Conclusion . 17

2 Tiny Transformers for Environmental Sound Classification at the Edge 19

2.1 Abstract . 19

2.2 Introduction . 20

2.3 Related Work . 25

2.4 Models . 26

2.5 Approach . 30

2.5.1 Data . 30

2.5.2 Feature Extraction . 31

2.5.2.1 Amplitude Reshaping 31

2.5.2.2 Curve Tokenization 32

2.5.2.3 VQ-VAE . 33

2.5.2.4 MFCC . 33

2.5.2.5 MFCC, GFCC, CQT, and Chromagram 34

2.5.2.6 Mel spectrogram . 34

2.5.3 Augmentations . 35

2.5.4 Model Conversion . 37

2.6 Experiments . 38

2.6.1 Experiments on ESC-50 . 40

2.6.1.1 Amplitude Reshaping 40

2.6.1.2 VQ-VAE . 41

2.6.1.3 MFCC, GFCC, CQT, and Chromagram 42

2.6.1.4 Mel Spectrogram and Hyperparameter Search 43

2.6.1.5 Curve Tokenization 44

v

2.6.2 Experiments on Office Sounds 45

2.6.3 Inference at the Edge . 47

2.7 Conclusion and Future Work . 48

References 53

vi

List of Figures

1.1 A single audio file is divided into overlapping segments of one second

windows. The final segment is padded with zeros, as needed. Each

segment is placed in the dataset with the same label as the file from

which it was taken. 9

1.2 Confusion matrices for our models. Evaluation took place using unop-

timized TFLite models, against our test set of segmented audio clips.

The classes are abbreviated as follows: KT is keyboard typing, CO is

coughing, SN is snap, KJ is keys jangling, KN is knock, and LA is laugh. 14

2.1 We take six unique approaches to training a transformer on ESC. From

left to right: raw amplitude reshaping, curve tokenization, MFCC fea-

ture extraction, multi-feature extraction, VQ-VAE tokenization, and

Mel spectrograms. 24

2.2 The architecture on which our smallest Transformer model is based.

Visualization based on the diagram by Vaswani et al. [1]. 27

vii

2.3 Validation accuracy on AlBERT, trained using a Mel spectrogram with

varying parameters, aggregated over a total of 159 runs. The figures

show results as the following parameters are varied: (a) augmentations,

(b) number of samples viewed by the model at once, (c) number of

Mel bands in the Mel spectrogram, (d) number of hidden layers in the

model, or the depth of the model, (e) number of attention heads, and

(f) the hop length when calculating the Mel spectrogram. 37

viii

Acknowledgements

This work was supported by the Air Force Research Lab (AFRL). I would like to thank

the staff at the AFRL for their support.

I am thankful to my colleagues, Steven Wyatt and Evan Martino, for their incredi-

ble support over the course of my research. I could not have done it without you both,

and, even if I could have, it wouldn’t have been nearly as fun.

I would like to thank my advisor, Dr. Carlos Otero. Never have I met someone

who so genuinely and selflessly cares about their students. He was always available,

always encouraging, and always pushing me to do my best. The six years we’ve been

together have been life-changing, and I will always be grateful for his impact in my life.

Finally, I’d like to thank my family, my friends, and my girlfriend, for believing in

me at all times.

ix

Chapter 1

CNNs for Environmental Sound

Classification at the Edge

1.1 Abstract

Recent advances in embedded system technology have created opportunities for allevi-

ating or eliminating common Big Data problems, by providing the resources necessary

to perform AI/ML algorithms on-board edge devices. This has led to the emergence of

a sub-discipline of Measurements and Signal Intelligence (MASINT) known as Cyber-

Physical MASINT, wherein analysts can receive and exploit data directly from cyber-

physical devices, and execute algorithms on-board, without the need to transfer to

cloud servers. This type of edge analytics can decrease latency, improve security, de-

crease the amount of data transferred out of the device, and increase the quality of the

data being transferred. With this motivation, we approach the task of environmental

sound classification, a task which has seen a substantial amount of research in recent

years, but which has had very limited implementation at the edge. In this work, we

1

design and deploy an application on a mobile device to perform event detection and

sound classification using a novel ensemble of deep neural networks optimized for a

mobile environment, capable of classifying six common office sounds with high accu-

racy and low latency. We provide an accuracy and performance analysis at varying

levels of optimization.

1.2 Introduction

A major obstacle in edge analytics stems from the resource-constrained nature of em-

bedded devices. These devices are traditionally limited in memory and computing

power, which pose a problem for performing inference on trained models [2]. Trivial

issues that pose no problem on personal or cloud computing platforms, e.g., floating-

point data types needed to represent network weights, pose significant problems in

embedded devices, given their limited memory. These problems are exacerbated by the

complex and fast-changing landscape for AI/ML and signal processing, in which new

statistical and mathematical algorithms, prediction techniques, and modeling methods,

as well as multidisciplinary approaches to data collection and analysis all need to be

supported on heterogeneous edge devices with different architectures, sensor payloads,

operating systems, and build systems [3]. For these reasons, there is a clear need for

research and development to create a framework and tools to support efficient devel-

opment and rapid deployment of edge analytics applications that leverage on-board

sensors and provide actionable intelligence to support mission needs.

There are a wide variety of tasks in edge analytics applications [4]. In this paper,

we focus specifically on the application of Environmental Sound Classification (ESC) to

recognizing office sounds, which falls under a type of proactive edge analytics known as

2

“stream IoT analytics,” with no real-time requirements [4]. Office sounds, in particular,

were chosen due to the ease of data collection and the availability of real-world sounds

for rapid system tests.

ESC at the edge is in the domain of Cyber-Physical MASINT, which involves the

phenomena transmitted through cyber-physical devices and their interconnected data

networks [5]. By leveraging the on-board microphone, we locally monitor and clas-

sify events in a raw audio stream, which were previously unexploited. We use event

detection and feature extraction algorithms before inputting the selected data to an

optimized model for inference. Although not explored in detail here, this work may be

used in a similar way to [6], where physical interactions are inferred through effects on

a digital system. Extraction of information in this way, using the induced effect of the

physical world through the cyber-domain, is known as cyber physical sensing [6].

Typically, data will be retrieved from sensors, the data will be sent over the network

to a server, and the server will run a machine learning model to perform a prediction

based on the data [4]. Feature extraction usually takes place on the server as well.

Recent advances in mobile device computational capabilities, however, mean that more

computation can be performed at the edge. This has the effect of reducing the amount

of data that must be communicated over the network, improving the scalability of large

IoT systems. This also has important implications in secure environments, in which

data captured at the edge may be too sensitive to transfer for analysis. A thorough

analysis of deep learning capabilities on more than 200 Android devices and chipsets

was performed by Ignatov et al. [7], where it was found that most computer vision

tasks can be performed on a mobile device, albeit with latency, memory, and power

considerations. Some tasks were met with difficulty, especially those using larger models

like Inception-V3 [8], so careful design choices must still be made to ensure successful

3

deployment to mobile. We note that additional considerations must be taken into

account when deploying to embedded devices and generic microcontrollers, which are

often far more resource-constrained than mobile phones [9, 10]. The machine learning

models in this work are not optimized for extremely low-power embedded devices.

The work by Ignatov et al. also brings to light a technology known as TensorFlow

Lite1, which was introduced in 2017 by Google to address some of the difficulties with

performing machine learning on embedded devices. TensorFlow Lite allows the user

to optimize models based on the characteristics of the deployment environment. For

large models, it is possible to reduce the size through quantization, which converts

weights from floating-points to 8-bit integers, at the cost of a reduction in accuracy.

It is possible to minimize this reduction with quantization-aware training.

In this work, we design a machine learning ensemble made of two separate models,

and we build upon the progress made in previous efforts. Many ESC works focus

on finding the optimal features to extract from an audio signal, in order to obtain

the best classification accuracy. Mitrovic et al. [11] organized the types of feature

extraction into six broad categories: temporal domain, frequency domain, cepstral

domain, modulation frequency domain, phase space, and eigen domain. Features that

have been used to date include Mel Frequency Cepstral Coefficients (MFCCs) [12], log

Mel-spectrogram [13], pitch, energy, zero-crossing rate, and mean-crossing rate [14].

Tak et al. [15] achieved state of the art accuracy with phase encoded filterbank energies.

Agrawal et al. [16] determined that Teager Energy Operator-based Gammatone features

outperform Mel filterbank energies. To combat noisy signals, Mogi and Kasai [17]

proposed the use of Independent Component Analysis and Matching Pursuit, a method

1https://www.tensorflow.org/lite

4

https://www.tensorflow.org/lite

to extract features in the time domain, rather than the frequency domain. With

reference to [17], we note the assumption in our work that noise in an office environment

will be minimal. A survey was performed in 2014 by Chachada and Kuo [18] that

enumerated the features used in literature, with comparisons between each, but no

more recent survey has been found.

In constrast to improving the features, other works focus on better machine learning

architectures to improve classification accuracy. Zhang et al. [19] obtain state of the art

accuracy by using both a temporal and channel attention mechanism over CNN feature

maps, fusing the two results by averaging their probabilities. Although we do not use

this architecture, this is similar to our approach, in which we ensemble the outputs of

two models, using an additional classifier instead of simple averaging. In [20], Zhang et

al. use a dilated CNN and LeakyReLU activation functions to outperform comparable

CNN-based architectures on the ESC task. A CNN-based classifier with parallel con-

volutional layers of different sizes is used by Chong et al. [21], along with multi-level

feature aggregation, to obtain state-of-the-art results on ESC-10 [22], ESC-50 [22],

and UrbanSound8k [23]. However, none of these works have focused on building a

model for deployment onto a mobile device. To account for the limitations of a mobile

device, we chose modest architectures with simple features that still had comparable

accuracy to the state-of-the-art, described in more detail in Section 1.4. Implementing

more advanced feature extraction, and training with additional architectures is a task

for future work.

5

1.3 Data

Finding datasets for office-sound-specific ESC was a challenging task. Few ESC

datasets exist, and those that do exist are tuned toward specific types of problems,

such as DCASE’s noisy labels or rare events datasets [24]. The popular ESC-50 dataset

contains an excellent sampling of sounds from different classes, but suffers from a lim-

ited amount of data, at only 40 clips per class [22]. Since our goal was to create a

machine learning system that behaves well in the real world, under a variety of circum-

stances and using the microphone on a mobile phone, we found it necessary to use

as much data as possible. As a result, we chose to combine the datasets we found,

and to collect our own data as necessary. We selected six office sound classes that we

determined to occur often in an office environment:

• Snap

• Knock

• Laugh

• Cough

• Keys Jangling

• Keyboard Typing

1.3.1 Data Collection

Our dataset is composed of data from two open datasets, supplemented with data we

collected ourselves. We used the data from DCASE 2018, Task 2 [25], which is based

on the FreeSound dataset [26]. The FreeSound dataset is a large, open audio dataset,

6

with crowd-sourced annotations. The dataset was collected automatically based on

tags and categories from the FreeSound website2, and therefore does not have very

high accuracy. The accuracy for each class was generally 60-80% for our classes, with

our dataset of office sounds being a subset of the DCASE dataset. This resulted in

our office sound classification task being considered a “weak classification task,” as

discussed in literature [27]. The ESC-50 dataset [22] also had data that fit into our

office sound categories, so that was included as well. Although a substantial amount

of data is available from only those two datasets, we found that, based on initial tests,

additional data was required.

We supplemented these weakly-labeled datasets with manually collected data of our

own, which were targeted at those aspects of the classes which were poorly represented

or missing altogether. This kind of data supplementing emphasizes the overall senti-

ment of modern-day machine learning: a machine learning model is only as good as its

data. Sources for online collection included YouTube 3 and SoundBible 4. For some

classes, it was possible to use a script to automate the search and download of desired

clips. Manual editing of the sound files were needed for clips that were excessively long

or had a large number of alternate sounds present. Table 1.2 shows the statistics for

our dataset, where the total time for all 1608 audio clips is 2.8 hours. Most of the

data came from DCASE (68.8%), though that data size was increased roughly 1.5x by

adding ESC-50 and our manual collection.

2https://freesound.org/

3https://www.youtube.com/

4http://soundbible.com/

7

https://freesound.org/
https://www.youtube.com/
http://soundbible.com/

Table 1.1: The number of audio clips contributed by each dataset.

DCASE ESC-50 Collected Combined

Knock 279 40 88 407
Laugh 290 40 68 398
Keyboard Typing 119 40 43 202
Cough 243 40 3 286
Keys Jangling 99 40 7 146
Snap 77 40 52 169
Total 1107 240 261 1608

1.3.2 Data Processing

Processing training data in such a way that it can be effectively used by the training

algorithm is important in any machine learning system. There are often many choices

that must be made during this step that result in time and accuracy trade-offs later

on. All audio files are sampled at 44100 Hz, in mono.

The first trade-off we must consider is the size of a window for the classification

model to view. Modern neural networks are capable of processing a variable-length

audio file [27], but with the limitation that the audio file cannot exceed a certain

length, or else run out of memory. Since we do not want to limit the recording length

on the mobile device, we chose to extract fixed-length windows from the audio files on

which we train. The method for extracting these windows can be seen in Figure 1.1,

using a sound clip of a cough as an example. A window size of one second and a hop

length of 0.5 seconds was chosen, resulting in overlapping windows. The last window

was padded with zeros to meet the required window size. Once the windows had been

obtained, each window was added to the dataset with the label of the audio file from

which it came.

The result of performing window extraction in this manner was that the network

8

Figure 1.1: A single audio file is divided into overlapping segments of one second
windows. The final segment is padded with zeros, as needed. Each segment is placed
in the dataset with the same label as the file from which it was taken.

was able to have a sufficiently large view of a sound when learning to classify it.

Very few sounds had lengths greater than one second, and, for those that do, they

generally could be understood and identified within the first second. We also observed

an improvement in classification accuracy when increasing the window size from small

values (20 - 200 ms) to larger values (0.8 - 1.0 s), and a slight improvement when

increasing it from 0.8 to 1.0 seconds.

1.4 Model

Feature extraction plays a large part in a machine learning model’s ability to learn. If

features are too nondescript, the machine learning model may not reach the sufficient

level of abstraction to learn high-level of features for classification. An example of this

is training a text classification algorithm on characters in a document. The algorithm

9

must first gain an understanding of words before being able to classify on words. To

train on words themselves often results in the model achieving a better understanding

of the task in a shorter period of time, with less data. However, a trade-off occurs

here, in that by using words instead of characters, the algorithm misses out on the

ability to generalize to words that it has not seen. This is a difficulty that requires

careful handling in natural language processing tasks even today [28].

A similar challenge faces us with audio classification. We approach the problem by

using both kinds of feature extraction: nondescript, “raw” data, as well as processed,

more abstract data. The forms that these features come in is amplitudes, the raw data,

and Mel-Frequency Cepstral Coefficients (MFCCs), the more abstract data.

1.4.1 Feature Extraction

For amplitude feature extraction, the only processing that is performed is standard

scoring normalization on each window in the dataset. This ensures that the mobile

device is able to perform classification without much delay due to feature extraction.

For MFCC feature extraction, each one-second window passes through the following

steps, using librosa’s MFCC library [29]:

1. The signal is normalized by standard scoring normalization.

2. The Mel spectrogram is computed on the audio signal.

3. The spectrogram is converted from power to dB units.

4. The discrete cosine transform (DCT-II) of the spectrogram is taken.

5. A number, N, of values are taken from the resulting spectrum. These are the

MFCCs of the signal.

10

In our MFCC processing, we used a sampling rate of 44100 Hz, 128 MFCCs, a FFT

window length of 1024, a hop length of 512, and 128 Mel bands. Note that this same

feature extraction occurs on the embedded device as well after deployment.

1.4.2 Model Architectures

We created three separate networks: one designed for learning from raw amplitudes,

one designed for learning from MFCCs, and an ensemble of both. The amplitude and

MFCC models are based heavily on architectures found in [30] and [27], respectively.

We used Keras [31] in order to create and train our models.

1.4.2.1 Amplitude Model

The architecture for our amplitude model is a deep neural network made up of 11

convolutional layers. There are several important considerations in training a model

based on amplitude alone. First, given a one-second signal sampled at 44100 Hz, the

network will have 44100 features. In order to gain any useful understanding of a sound,

it must be able to sufficiently generalize in order to perform the rather large conversion

between amplitude data and sound classes. These considerations imply a deep network.

The layers we use are described in the following:

• Layer 1 is a 1D convolutional layer with input shape (44100, 1), 64 filters, window

size of 80, stride length of 4, and padding. It is followed by batch normalization,

ReLU activation, and a 1D max pooling layer with pool size of 4.

• Layers 2-3 are 1D convolutional layers with 64 filters, window size of 3, stride

length of 1, and padding. They are each followed by batch normalization and

ReLU activation. Layer 5 ends with max pooling, with pool size of 4.

11

• Layers 4-5 have the same structure as layers 2-5, but with 128 filters.

• Layers 6-8 have the same structure as layers 6-9, but with 256 filters.

• Layers 9-10 have the same structure as layers 10-13, but with 512 filters, and no

max pooling.

• Layer 11 performs global average pooling.

• A final softmax layer converts the features from layer 18 to classifications.

This model has a total of 1.79 million parameters. In training the model, we

trained on the common office sounds task with 6 classes. We used an Adam optimizer,

categorical cross-entropy loss, and reduced the learning rate by half when the validation

accuracy plateaued for 10 epochs, reducing to a minimum of 0.0001. We trained for

200 epochs with batch size 128, saving the model with the highest validation accuracy

as we went. This is the same network known as M11 in [30], chosen for the high

accuracy it provides in relation to its size; larger networks, such as M18 and M34-res,

provide only a slight increase in accuracy.

1.4.2.2 MFCC Model

The architecture used in training a model based on MFCCs is described in the following:

• Layer 1 is a 2D convolutional layer with 16 filters, and input shape (128, 87, 1).

128 is the number of MFCCs, and 87 is the result of ⌈r ∗ lhop⌉, where r is 44100

Hz, and lhop is the hop length used in MFCC extraction. This layer has a window

size of 3, ReLU activation, and padding. It is followed by batch normalization.

• Layer 2 is the same as layer 1, but is additionally followed by max pooling with

pool size of 2 and stride length of 2.

12

• Layers 3-4 are the same as layers 1-2, but with 32 filters.

• Layers 5-6 are the same as layers 3-4, but with 64 filters.

• Layers 7-8 are the same as layers 5-6, but with 128 filters.

• Layers 9-10 are the same as layers 7-8, but with 256 filters, and a stride length

of 1 during max pooling.

• Layer 11 is the same as layer 9, but with 512 filters. There is no second con-

volutional layer before the max pooling. Max pooling occurs immediately after

layer 11, with pool size 2 and stride length of 2.

• Layer 12 is the same as layer 11, but with 1024 filters.

• Layer 13 is a 2D convolutional layer with the number of filters given by the classi-

fication task, a window size of 1, and sigmoid activation. This is functionally the

same as a softmax layer, in that it converts the previous features into predictions.

• Layer 14 is a global average pooling layer.

This model has a total of 4.47 million parameters. Training hyperparemeters are

the same as in amplitude training.

1.4.2.3 Ensemble Model

An ensemble model was trained on the outputs of the amplitude model and the MFCC

model. The model was made up of three dense layers of 50 neurons with dropout of

0.2 and ReLU activation, followed by a single dense layer with softmax activation.

13

KT CO SN KJ KN LA
Predicted

KT

CO

SN

KJ

KN

LA

T
ru
e

419 4 0 0 2 2

1 279 2 0 3 7

0 2 90 0 5 0

0 2 1 218 2 1

2 14 0 0 290 3

0 6 1 1 8 575

Amplitude

KT CO SN KJ KN LA
Predicted

KT

CO

SN

KJ

KN

LA

T
ru
e

416 2 2 2 4 1

3 251 2 1 13 22

1 1 85 1 8 1

1 4 3 210 4 2

4 8 5 2 282 8

1 17 1 2 5 565

MFCC

KT CO SN KJ KN LA
Predicted

KT

CO

SN

KJ

KN

LA

T
ru
e

421 2 0 0 2 2

0 275 1 0 6 10

0 1 90 0 6 0

0 1 1 219 2 1

2 7 1 0 298 1

0 10 0 1 4 576

Ensemble

Figure 1.2: Confusion matrices for our models. Evaluation took place using unopti-
mized TFLite models, against our test set of segmented audio clips. The classes are
abbreviated as follows: KT is keyboard typing, CO is coughing, SN is snap, KJ is keys
jangling, KN is knock, and LA is laugh.

Table 1.2: Comparison of Optimized Models: Accuracy, Recall, Size, and Latency

Acc. Recall Size Lat.- S9 Lat.- S8

Amp. 96.4% 95.8% 21.6MB – –
Amp. Lite 96.4% 95.8% 7.1MB 49.6ms 70.0ms
Amp. Lite Q. 89.4% 83.1% 1.8MB 47.0ms 62.2ms
MFCC 93.2% 91.9% 53.8MB – –
MFCC Lite 93.2% 91.9% 17.9MB 57.4ms 77.6ms
MFCC Lite Q. 89.8% 88.5% 4.5MB 40.4ms 55.6ms
Ens. 96.9% 96.2% 25.1MB – –
Ens. Lite 96.9% 96.2% 25.0MB 113.0ms 148.4ms
Ens. Lite Q. 94.0% 91.2% 6.3MB 92.2ms 118.6ms

1.4.3 On-Device Event Detection

Our model requires one-second windows of audio in order to be able to predict a class.

The naive method to obtain these windows on the device is to extract them via a sliding

window approach, as discussed in Section 1.3.2. Doing so, however, would prevent the

user from being able to classify multiple sounds in a single recording. Therefore, we run

a detection algorithm on the device to find one-second windows on which to perform

classification. We do this by moving two fixed windows, a front and a back window,

14

across the recorded audio with a stride of 0.1 seconds, where the back window is 0.1

seconds and the front window is 0.05 seconds (similar to STA/LTA [32]). The front and

back windows are adjacent to each other and non-overlapping, with the front window

being farther ahead in time than the back window. For each window, the mean and

variance is calculated on the waveform it is viewing. These values are used in Equation

1.1 to find the Bhattacharyya distance [33], where p and q are the back and front

windows, respectively, the variance of a window is given by σ2, and the mean of a

window is given by µ.

D(p, q) =
1

4
ln

(
1

4

(
σ2
p

σ2
q

+
σ2
q

σ2
p

+ 2

))
+

1

4

(
(µp − µq)

2

σ2
p + σ2

q

)
(1.1)

When the Bhattacharyya distance is above a threshold of 0.4, an event is marked

as having taken place. We set a fixed event window with a length of one second to

begin one stride length prior to the leading edge of the front window, to ensure that

the beginning of the sound is not missed. This one-second event window is then passed

to the model for classification, and detection continues from the end of the previously

detected event. If an event is immediately detected again, a rule exists to prevent

events from overlapping.

1.4.4 Evaluation

We provide an evaluation of our model against our test set, using the unoptimized

TFLite models, as shown in Table ??. We used an 81-9-10 split between the training,

validation, and test data, respectively. The accuracy shown in Table ?? reflects model

accuracy on the segmented test data, rather than the file-level data, due to the fact

that recorded audio on the mobile device is only classified in one-second segments.

15

The latencies are measured on the Samsung Galaxy S9 and S8, using the Snapdragon

845 and 835 respectively. Memory consumption was found to be the same as the size

of the models.

We observe that the accuracy of the amplitude model exceeds that of the MFCC

model; this was unexpected, given the larger model size and superior features of the

MFCC model. The ensemble performs as expected, increasing the total accuracy of

the entire system, at the cost of increased model size and inference latency. That this

latency is could be further reduced by calculating inferences for the ensemble input

in parallel. The size of the model decreases substantially when converted to TFLite,

and no accuracy decrease was seen at all. When quantized, the size of each model

decreased by nearly a factor of four, owing to the change from 32-bit floating point

numbers to 8-bit unsigned integers, and the latency decreased by an average of 18%

across all models, with the greatest improvement in the MFCC model, of 30%, and the

least in the amplitude model, of 6%. Interestingly, the amplitude model’s accuracy and

recall decreased by a much wider margin than the MFCC model when quantized. We

expect that this is due to the fact that there are many more features in the amplitude

model (44100) that may suffer from the decreased precision, compared to the number

of features in the MFCC model (11136). The ensemble, however, even when quantized,

preserved a high level of accuracy. The confusion matrices of the TFLite models are

reported in Figure 1.2.

We also observe that the TFLite amplitude model was more accurate and had

lower latency than the quantized ensemble, while being only slightly larger and with a

slightly greater amount of energy consumption. For this reason, and due to its relative

simplicity, it may be preferred to run ESC using only the amplitude model, out of these

three. Though, given additional research into better features and models, and with the

16

use of quantization-aware training, this decision may easily be changed.

We note that these models have the potential for real-time operation. Given that

classification takes less than 200 ms in the worst case, a single classification can be

performed once per second without falling behind. Although a energy consumption

analysis was unable to be performed, running inference continuously for 24 hours would

result in the CPU being active for a total of 1 hour using the MFCC quantized model on

the S9, and 3.5 hours using the ensemble on the S8. This may cause the phone to run

out of power before the 24 hour period is over. We leave energy-specific performance

enhancements to future work.

1.5 Conclusion

Edge analytics has the capacity to fundamentally change the way we process data,

bringing with it a vast number of possible applications to improve user experiences,

ensure privacy, secure sensitive information, and broaden the capacity for an IoT system

to learn and make decisions. In this paper, we described the design of a system

to perform environmental sound classification of office sounds on a mobile device,

achieving high accuracy and low latency using a dataset of more than 1600 audio

clips. Our contributions include analysis of a novel ensemble of mobile-optimized

models based on amplitudes and MFCCs for the classification of office sounds, an

event detector for embedded use, and an analysis of the impact of TensorFlow Lite

optimizations on machine learning models of this kind.

Future work could include adding more feature extraction models to the ensemble

model input, retraining models locally on the mobile device as sensor data is consumed,

applying transfer learning to improve accuracy, universally converting between different

17

model architectures for ease of use, and real time classification.

18

Chapter 2

Tiny Transformers for Environmental

Sound Classification at the Edge

2.1 Abstract

With the growth of the Internet of Things and the rise of Big Data, data processing

and machine learning applications are being moved to cheap and low size, weight, and

power (SWaP) devices at the edge, often in the form of mobile phones, embedded

systems, or microcontrollers. The field of Cyber-Physical Measurements and Signature

Intelligence (MASINT) makes use of these devices to analyze and exploit data in ways

not otherwise possible, which results in increased data quality, increased security, and

decreased bandwidth. However, methods to train and deploy models at the edge are

limited, and models with sufficient accuracy are often too large for the edge device.

Therefore, there is a clear need for techniques to create efficient AI/ML at the edge.

This work presents training techniques for audio models in the field of environmental

sound classification at the edge. Specifically, we design and train Transformers to clas-

19

sify office sounds in audio clips. Results show that a BERT-based Transformer, trained

on Mel spectrograms, can outperform a CNN using 99.85% fewer parameters. To

achieve this result, we first tested several audio feature extraction techniques designed

for Transformers, using ESC-50 for evaluation, along with various augmentations. Our

final model outperforms the state-of-the-art MFCC-based CNN on the office sounds

dataset, using just over 6,000 parameters – small enough to run on a microcontroller.

2.2 Introduction

The field of environmental sound classification (ESC) has been actively researched

for many years, with applications in security, surveillance, manufacturing, AVs, and

more [34]. In modern days, ESC has important applications to autonomous vehicles

(AV), as they can be used to detect sirens, accidents, locations, in-cabin disturbances,

and much more. As vehicle-based computational power increases, and algorithms

improve, it becomes vital to explore a wide number of options to perform a given

machine learning task. For ESC, this means exploring transformers [1] as a possible

means to perform ESC at the edge.

Recent work in transformers has profoundly affected the field of natural language

processing (NLP), seeing models such as BERT [35], XLNet [36], T5 [37], GPT [28,

38, 39], and BigBird [40] – to name a few – iteratively setting new state-of-the-art

for a variety of difficult NLP tasks. In many cases, transformer accuracy exceeds the

performance of humans on the same tasks.

Even though most of the highly public work with transformers has been done in

NLP, a transformer, which fundamentally is simply a series of self-attention operations

stacked on top of one another [1], is a general architecture that can be applied to any

20

input. OpenAI, an AI research and development company focused on ensuring artificial

general intelligence benefits humanity 1, made this clear in several of their recent works.

In ImageGPT [41], Chen et al. showed how the GPT architecture, which is transformer-

based, can be trained in an autoregressive fashion on a wide variety of images, in order

to generate realistic image completions and samples. Notably, images were restricted

to 64x64 pixels, as a greater amount of pixels requires substantially more compute

than was feasible. In Jukebox [42], a transformer is used along with vector-quantized

variational autoencoders (VQ-VAEs) [43], in order to generate realistic audio. Also

notable is the fact that Dhariwal et al. trained the transformer on a highly compressed

representation of the audio waveform generated by VQ-VAEs, rather than the raw

waveform, and that the outputs from the transformer are not used directly, but are

passed through an upsampler first. Even so, the total cost of training the full Jukebox

system is in excess of 20,000 V100-days – an enormous cost [42]. More recently, in a

paper under review at ICLR 2021, it has been found that, given enough data (hundreds

of millions of examples), transformers can exceed even the best CNNs in accuracy [44].

We take this, in addition to the recent trend in larger datasets and more compute, to

mean that any work we perform here with small datasets and modest transformers can

easily be scaled up at a later date.

The field of audio speech recognition (ASR) has picked up transformers with vigor.

Indeed, it is understandable, as applying transformers is straightforward for many ap-

proaches to ASR. Often based on encoder-decoders [45], the most obvious use of a

transformer is in the decoder of an ASR system, which usually has text as input and

output, thus making the application of any state-of-the-art language models, such as

1https://openai.com/

21

https://openai.com/

BERT or its variants, available to it with little adaptation needed. Some work [46] has

also made use of a transformer in the encoder as well, thus making the ASR system

an end-to-end transformer model. Recent work has seen transformers improve the

state-of-the-art for ASR by reducing word error rate by 10% in clean speech, and 5%

in more challenging speech [47].

ESC, in some ways, is much simpler than ASR, as it is not concerned about both

text and audio, nor does it need to perform fine-grained classification of words or sounds

per variable segment of time. However, in other ways, there are more challenges with

ESC than ASR. The first major challenge that ESC presents is one of data availabil-

ity; there is very little data for ESC tasks available, and even the largest and most

accurate (DCASE23) is only tens of thousands of audio files [48]. In addition, there is

no agreed-upon standard for what sounds make up ESC. Different ESC datasets often

have overlap, and Google’s AudioSet [49] provides the largest set of audio labels to

date, but many of AudioSet’s labels have to do with music or speech, and are not nec-

essarily “environmental”. Additionally, ESC datasets are highly heterogeneous, having

an extremely broad range of sounds, varying in length, frequency, and intensity. This

can increase the difficulty that a machine learning model has in learning the sounds,

as they may vary widely from clip to clip.

Environmental sound classification has recently been performed mostly by convolu-

tional neural networks (CNNs) [20,50–55]. These networks vary somewhat in structure,

with some being fully convolutional and able to take varying-length input [27], others

making use of modified “attention” layers to boost performance [19], and others using

2http://dcase.community/

3https://www.kaggle.com/c/dcase2018-task1a-leaderboard

22

http://dcase.community/
https://www.kaggle.com/c/dcase2018-task1a-leaderboard

deep CNNs [54, 55]. Performance on ESC is typically measured using ESC-50 [22],

ESC-10 [22], Urban-8k [23], or DCASE 2016-2018 [56]. Top reported performance on

ESC-50, to the best of our knowledge, is 88.50%, by Sharma et al. [55], using a spatial

attention module and various augmentations. Human accuracy has been measured at

81.3% [22]. We use ESC-50 in this work to allow comparison of our different models

in the first stage of our research, in Section 2.6.1.

Unfortunately, state-of-the-art transformers are too large to run on edge devices,

such as mobile phones, as they often contain billions of parameters. The largest model

of GPT-3 [57] contains 175 billion parameters. When most mobile phones contain

several GBs of RAM, any model exceeding one billion parameters (which, when quan-

tized, is 1 billion bytes, or 1 GB) is likely to be inaccessible. When considering that

many microcontrollers have only kilobytes of SRAM, it becomes particularly obvious

that state-of-the-art transformers are not yet edge-ready. There are also latency and

power considerations, as the sheer number of computations by such large models pose

a limitation on how quickly a forward pass can be computed using the available pro-

cessors on the device, and may drain the device’s battery very quickly, or exceed power

requirements. There are methods to perform knowledge distillation on transformer

models, to produce models with slightly reduced accuracy, but substantially smaller in

size [58]. However, these methods require the existence of a pretrained model alongside

or from which they can learn [59], which does not exist in the field of ESC.

In this work, we attempt to tackle some of these problems. For simplicity, to lower

costs, and to improve the iteration time of our development process, we restrict our

models to a modest size for most of our analyses. This approach, though motivated

by limited resources, is supported by literature, as larger models can always be built

later, after promising avenues have been discovered [60].

23

M
FC

C

G
FC

C

C
Q

T

C
h

ro
m

agram

Concatenate

Reshape

VQ-VAE
Feature Vectors

Linear

M
FC

C

Mean

Cross-Entropy

Mel-SpectrogramRaw Audio

Transformer Transformer Transformer Transformer Transformer

Linear

Mean

Cross-Entropy

Linear

Mean

Cross-Entropy

Linear

Mean

Cross-Entropy

Curve Tokenized
Audio

Linear

Mean

Cross-Entropy

Transformer

Curve
Vocabulary

Posi�onal
Encoding Posi�onal

Encoding

EmbeddingEmbedding

Linear

Mean

Cross-Entropy

Figure 2.1: We take six unique approaches to training a transformer on ESC. From
left to right: raw amplitude reshaping, curve tokenization, MFCC feature extraction,
multi-feature extraction, VQ-VAE tokenization, and Mel spectrograms.

Our contributions in this work are as follows:

1. We provide a thorough evaluation of transformer performance on ESC-50 using

various audio feature extraction methods.

2. For the most promising feature extraction method, we perform a Bayesian search

through the hyperparameter space to find an optimal configuration.

3. Based on the optimal model discovered through the Bayesian search, we train

transformers on the Office Sounds dataset, and obtain a new single-model state

of the art. We also train a 6,000-parameter model that exceeds the accuracy of

a much larger MFCC-based CNN.

4. We test selected models’ performance on a mobile phone, and report results.

24

2.3 Related Work

There have been many attempts to classify environmental sounds accurately, At first

many of the attempts used a more algorithmic approach [61], focusing on hand-crafted

features and mechanisms to process sound and produce a classification. However,

CNNs, which had been shown to perform well on image recognition tasks, eventually

became the state of the art on ESC. The current reported state of the art on the ESC-

50 dataset is by Sharma et al. who used a deep CNN with multiple feature channels

(MFCC’s, GFCC’s, CQT’s and Chromagram) and data augmentations as the input to

their model [55]. They achieved a score of 97.52% on UrbanSound8K, 95.75% on

ESC-10, and 88.50% on ESC-50. (Note that the original publication of Sharma et al.’s

work included a bug in their code, which resulted in a much higher reported accuracy.

That has since been corrected, but has been cited incorrectly at least once [62].)

Additionally, a scoreboard has been kept in a GitHub repository 4, but appears to be

out of date.

Very little work has been performed with transformers on ESC tasks. Dhariwal et

al. [63] used transformers in an auto-regressive manner to generate music (including

voices) by training on raw audio. Miyazaki et al. [64] proposed using transformers for

sound event detection in a weakly-supervised setting. They found that this approach

outperformed the CNN baseline on the DCASE2019 Task4 dataset, but no direct

application of transformers to ESC has been found.

In audio, there has been a wide number of feature extraction methods used. Mitro-

vic et al. [11] organized the types of feature extraction into six broad categories: tempo-

4https://github.com/karolpiczak/ESC-50

25

https://github.com/karolpiczak/ESC-50

ral domain, frequency domain, cepstral domain, modulation frequency domain, phase

space, and eigen domain. Features that have been used to date include Mel Fre-

quency Cepstral Coefficients (MFCCs) [12], log Mel-spectrogram [13], pitch, energy,

zero-crossing rate, and mean-crossing rate [14]. Tak et al. [15] achieved state of the

art accuracy with phase encoded filterbank energies. Agrawal et al. [16] determined

that Teager Energy Operator-based Gammatone features outperform Mel filterbank

energies. To combat noisy signals, Mogi and Kasai [17] proposed the use of Indepen-

dent Component Analysis and Matching Pursuit, a method to extract features in the

time domain, rather than the frequency domain. With reference to [17], we note the

assumption in our work that noise in an office environment will be minimal. Sharma

et al. [55] obtain state of the art using MFCC, GFCC, CQT, and Chromagram fea-

tures. Jukebox [42] was trained to differentiate music and artist styles using features

extracted from three different VQ-VAEs, with varying vector lengths for each. A sur-

vey was performed in 2014 by Chachada and Kuo [18] that enumerated the features

used in literature, with comparisons between each, but no more recent survey has been

found. We choose some of the most successful of those feature extraction methods,

and attempt some new ones designed specifically for transformers.

2.4 Models

Transformers are neural networks based on the self-attention mechanism, which is an

operation on sequences, relating positions within the sequence in order to compute

its representation [1]. We emphasize that the attention mechanism operates on a list

of sequences, which means that the input to a transformer must be 2-dimensional

(excluding batches). In NLP, we want the transformer to operate on sequences of

26

Figure 2.2: The architecture on which our smallest Transformer model is based. Visu-
alization based on the diagram by Vaswani et al. [1].

words, characters, or something similar, which we refer to as “tokens”. Therefore, in

order to meet the 2-dimensional input requirements of the transformer, each token

must be converted to a sequence. This is traditionally done using an embedding layer,

which takes a token, represented by the integer value of the token’s position in a pre-

computed vocabulary, and looks up its corresponding vector representation in a matrix.

This embedding matrix is able to be learned. The embedding vector length is typically

referred to, in transformers, as the “hidden size”, or H. The number of tokens is

referred to by the length of the input L, also referred to as the sequence length. In

this way, H defines the number of dimensions that are used to represent tokens –

27

where more dimensions typically mean greater learning capacity – and L determines

the context length, or window size, of the input.

Audio is represented at an extremely fine-grained level of detail (many samples per

second), which poses challenges that NLP does not have to face. For example, the

common sampling rate of 44.1 kHz in a 5-second audio clip (the length of an audio clip

in ESC-50) results in 220,500 samples. Combine this with the limitations of modern-day

transformers, which, with some exceptions, are limited to roughly H < 2000 tokens,

depending on available hardware, and the task of analyzing audio data becomes quite

difficult. There is hope that this will change in the near future, with the creation of

linear-scaling models like BigBird [40] proven to have the same learning capacity as

BERT, and recent improvements in AI hardware by NVIDIA. But, for the sake of our

discussion and analysis, we will assume that we cannot use a transformer sequence

length of more than 2048.

This results in the maximum audio window that a transformer can view – in the

näıve case, where a single token is a single amplitude – to be 2048 samples, or 0.046

seconds (46 milliseconds). Since sounds in the ESC-50 dataset often last much longer

than 46 milliseconds, we must therefore abandon the näıve approach initially. The

thought exists that it is possible to downsample the audio to make the 2048 sequence

length be able to view a longer length of audio, but in practice this results in substantial

information loss below 16 kHz, and reduces model accuracy. We would like our work

to be constrained solely by hardware and algorithmic limitations, which have a strong

likelihood of improving in the near future, rather than constrained by the information

content in downsampled audio clips. Therefore, we assume a sampling rate above

the Nyquist rate of 40 kHz for human-detectable audio, and, specifically, use the

conventional value of 44.1 kHz in all of our analyses.

28

All models in this work are based on BERT [35] or AlBERT [65]. The Transformer

base structure, whether BERT or AlBERT, does not change in this work. The only

alteration performed is to remove positional encodings for some models, which is noted

in Figure 2.1 outside of the Transformer base. We note that our base structure in our

ESC-50 experiments does not make use of an embedding layer for input tokens, as is

customary in language models, and any tokenizations and embeddings that do occur

are explicitly called out in Figure 2.1.

We make a change to the transformer design in our second series of experiments

on the Office Sounds dataset (Figure 2.2), which allowed the size of the input to

be decoupled from the size of the model. In the six models shown in Figure 2.1,

the input must be either reshaped or the features must be extracted in the shape

required to create a transformer of the desired size. For example, using 128 Mel bands

when calculating MFCCs resulted in a transformer that had a maximum hidden size

of 128. We remove this dependency in our Office Sounds experiments by adding a

mapping layer, as shown in Figure 2.2. The mapping layer is simply a linear layer

that takes input of any size and maps it to the size of the transformer. It also provides

representational advantages, as this layer is able to be learned, similar to the embedding

layer in traditional transformers.

Additionally, in our ESC-50 experiments, we normalize all inputs to a number be-

tween 0 and 1 as a preprocessing step, where input is not tokenized. We remove

this normalization step in our Office Sounds experiments, in favor of a batch normal-

ization layer [66], which may also have provided representational advantages to the

Transformer by being learnable.

29

2.5 Approach

We divide our approach below into sections on data, feature extraction, data augmen-

tations, models, and model conversion. These methods work together to produce the

results in Section 2.6.

2.5.1 Data

We use three datasets in this work, AudioSet [49], ESC-50 [22], and the Office Sounds

dataset [67]. AudioSet is a large-scale weakly labeled dataset covering 527 different

sound types. The authors provide a balanced and unbalanced version of the dataset;

we use the balanced dataset, with some additional balancing that we perform ourselves.

Note that in order to train on the audio from this dataset, we had to download the

audio from the sources used to compile the balanced dataset. This was an error-

prone process, as not all sources from the original AudioSet are still available. More

details on the datasets are available in Table 2.1. ESC-50 is a strongly labeled dataset

containing 50 different sound types. Each sound category contains 40 sounds, making

it a balanced dataset. The Office Sounds dataset is both an unbalanced and weakly

labeled dataset, owing to its origins in DCASE, but nearly the same number of audio

files as ESC-50, with slightly longer total length, and only 6 labels.

All audio files are converted to wave files, if they are not already formatted as such.

We read from each file at a sampling rate of 44100 Hz, in mono.

Table 2.1: Information on the datasets used for training.

of files # of hours # of audio types
AudioSet 37948 104.52 527
ESC-50 2000 2.78 50
Office Sounds 1608 2.80 6

30

2.5.2 Feature Extraction

Feature extraction is a critical part of any machine learning architecture, and especially

so for transformers. In fact, some of the critical work that went into making BERT

such a success was the use of word pieces, rather than words or characters [35]. In an

attempt to discover a feature extraction method that can be of similar use in audio, we

attempted several, some of which are well-known methods, others of which we have

adapted to our particular use case. The approaches can be seen in Figure 2.1.

2.5.2.1 Amplitude Reshaping

Motivated by works such as WaveNet [68], Jukebox [42] and, in general, the move

toward more “pure” data representations, we developed a method for the transformer

to work with raw amplitudes.

Using the notation in [69], we reshape audio in the following way, where X is a

sequence of amplitudes X = {x0, x1, ..., xn}, l is the sequence length, and d is the

hidden dimension:

X ∈ Rl∗d×1 →reshape X ∈ Rl×d (2.1)

In this way, the amount of audio that we are able to process is a combination of

the sequence length of the model, and the size of the hidden dimension. Under this

reshaping operation, with l = 512 and d = 512, we are able to process data up to

262, 144 samples, or nearly 6 seconds.

31

2.5.2.2 Curve Tokenization

Curve tokenization is an audio tokenization method that we propose, based on Word-

Piece tokenization [70] in NLP. The intuition behind this method is that, since audio

signals typically vary smoothly, there may exist a relatively small number of “curves”

that can describe short sequences of audio signals. These curves are commonly repre-

sented in audio signals by sequences of floating point numbers. In wave files, a single

audio amplitude can be one of 65,536 values, or 216, values; as such, our audio is, ef-

fectively, already quantized. We term the quantization level of the audio the resolution

R.

Although wave file audio is already quantized, it is advantageous to quantize it

further, as doing so reduces the maximum number of theoretical curves that can exist

within any given sequence of audio. As an example, an 8-token curve with R = 100

has a maximum number of theoretical curves of 1008. We performed quantizations at

varying levels and found that R = 40 produces signals that remain highly recognizable.

However, we chose R = 64 to ensure minimal information loss.

Once quantized, we processed all the audio in our dataset using a curve length of

L samples. We created a dictionary, the key of which was every unique curve sequence

that we encountered, and the value of which was the number of times that curve had

been seen. At L = 8, sliding the the L-length window across each audio signal with

a stride of 1, on ESC-50, this produced a dictionary of 3.87 ∗ 107 keys. We took the

top 50,000 sequences as our vocabulary, which covers 76.49% of the observed curves.

At inference time, we used a stride of L = 8, which resulted in a overall sequence

length decrease of L, also. We find that when curve-tokenizing our audio signals in

this way, 76.39% of the curves are found in the vocabulary, with the remaining 23.61%

represented by the equivalent of the <UNK> token in NLP.

32

We also created a relative vocabulary by shifting the quantized values, such that

the minimum value in any 8-token span was set to zero, and all the other values

maintained their relative position to the minimum, according to the Equation 2.2,

where X = {x0, x1, ..., xn} is a span of audio with individual quantized values xi.

X =
n∑

i=0

xi −min(X) (2.2)

Using the top 50,000 spans from the relative vocabulary, we find that the it covers

85.44% of the number of unique spans in the dataset. When using the relative vocab-

ulary to tokenize audio from the dataset, we find that an average 85.43% of the curves

in each audio clip are represented, with 14.57% represented by the <UNK> token.

2.5.2.3 VQ-VAE

This method was motivated by Jukebox [42], which made use of vector-quantized

variational autoencoders to produce compressed “codes” to represent audio. The VQ-

VAEs that we trained used the code that the authors provided, and details on the

specifics of training can be found in their paper. We used their default VQ-VAE

hyperparameters, which trained three VQ-VAEs, each with a codebook size of 2048,

a total model size of 1 billion parameters, and downsampling rates of 128, 32, and 8.

We trained the VQ-VAEs on AudioSet for 500,000 steps. In our experiments, we use

the VQ-VAE with a downsampling rate of 32x.

2.5.2.4 MFCC

Mel-frequency cepstral coefficients (MFCCs) have a long history of use in audio clas-

sification problems [18, 34, 55], and so we tested their usefulness with transformers, as

33

well. Unless otherwise mentioned, we used 128 mels, a hop length of 512, a window

length of 1024, and number of FFTs of 1024.

2.5.2.5 MFCC, GFCC, CQT, and Chromagram

Sharma et al. [55] reported a new state of the art on ESC-50, using four feature

channels at once. They made use of MFCCs, gammatone frequency cepstral coefficients

(GFCCs), a constant Q-transform (CQT), and a chromagram. Roughly speaking,

the usefulness of each feature can be broken down in the following way: MFCCs are

responsible for higher-frequency audio, such as speech or laughs; GFCCs are responsible

for lower-frequency audio, such as footsteps or drums; CQT is responsible for music;

and chromagrams are responsible for differentiating in difficult cases through the use

of pitch profiles. A more extended discussion of these features is available in Sharma

et al.’s work [55]. We made use of the same features with our transformer models,

using the same parameters for feature extraction as Sharma et al.. In order to facilitate

feeding the features into the transformer model, we concatenate the features, creating

a combined feature vector of 512, which became the size of the hidden dimension.

2.5.2.6 Mel spectrogram

Other works obtaining high accuracies on ESC-50, such as the work by Salamon and

Bello [51], and, more recently, Kumar et al.’s work with transfer learning and CNNs

[27], made use of Mel spectrograms. Therefore, we also chose to include the Mel

spectrogram as a feature extraction method.

Motivated by early attempts at downsampling the spectrogram, and seeing little to

no decrease in accuracy on ESC-50, we perform downsampling on the spectrogram in

order to reduce memory usage, which sped up experiments. The downsampling was

34

performed by taken every Nth column of the spectrogram matrix, where the column

was frequency data at a particular timestep. In our experiments with ESC-50, we used

N = 2 and N = 3. In our experiments with the Office Sounds dataset, we used

N = 1, or no downsampling. In experiment #9 on ESC-50 (Table 2.2), we used 128

Mel bands, 1048 FFTs, hop length of 512, and window length of 1024. In experiment

#10 on ESC-50, we used 256 Mel bands, 2048 FFTs, hop length of 512, and window

length of 1024.

2.5.3 Augmentations

Inspired by Sharma et al. [55], we performed a number of augmentations to the our

raw audio. We performed twelve different augmentations:

• Amplitude clipping: all samples are clipped at a random amplitude, determined

by a percentage range, from 0.75 to 1.0, based on the maximum value in the

audio.

• Volume amplification: all samples are multiplied by a random value, deter-

mined by a percentage range between 0.5 and 1.5.

• Echo: a random delay is selected between 2% and 40% of one second, and, for

each value in the audio, values from the delay value number samples prior to

it are added to it. E.g. at index 10,000 in an audio clip, with a random delay

number of samples of 4,410, the sample from index 5590 is added to the sample

at index 10,000.

• Lowpass filter: a fifth-order lowpass filter is passed over the audio, with a cutoff

determined by a random value between 0.05 and 0.20.

35

• Pitch: the pitch is shifted by a random value from 0 to 4, using a function

provided by librosa, librosa.effects.pitch shift.

• Partial erase: a random amount of audio, from 0 to 30%, is replaced with

Gaussian noise.

• Speed adjust: The speed of the audio is adjusted randomly between a value of

0.5 and 1.5, where greater than one is faster, and less than one is slower, using

a function provided by librosa, librosa.effects.time stretch.

• Noise: a random amount of Gaussian noise is added to every sample in the

audio.

• HPSS: harmonic percussive source separation is performed, with a random

choice between returning the harmonic part or the percussive part of the au-

dio.

• Bitwise downsample: audio is downsampled by multiplying each sample by

a resolution value R between 40 and 100, taking the floor of the value, and

then dividing by the resolution. This reduces every sample in the audio to be

represented by a maximum of R possible values.

• Sampling rate downsample: a value k is selected between 2 and 9, inclusive,

and for every audio sample xi, where i = 0, k, 2k, ..., the next k positions in

the audio are overwritten with xi. The number of samples in the audio stays

the same with this method, but the overall information content of the audio is

decreased. This method is similar to augmentations that downsample an image,

while keeping the size of the image the same.

36

(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Validation accuracy on AlBERT, trained using a Mel spectrogram with
varying parameters, aggregated over a total of 159 runs. The figures show results as
the following parameters are varied: (a) augmentations, (b) number of samples viewed
by the model at once, (c) number of Mel bands in the Mel spectrogram, (d) number of
hidden layers in the model, or the depth of the model, (e) number of attention heads,
and (f) the hop length when calculating the Mel spectrogram.

2.5.4 Model Conversion

To convert the model, we used PyTorch mobile and torchscript 5. We also quantized

the model using PyTorch’s dynamic quantization, which is a part of PyTorch Mobile.

5https://pytorch.org/mobile/home/

37

https://pytorch.org/mobile/home/

We did not perform static quantization due to complexity and time constraints.

We converted the model into Open Neural Network Exchange (ONNX) format 6, in

an attempt to convert to TensorFlow, then to TensorFlow Lite. However, we were un-

successful in this attempt, due to various limitations in the frameworks and conversion

process.

Similarly, we attempted to convert the model to a representation that is supported

on a Arduino Nano 33 BLE Sense. We attempted to convert the ONNX version of

our model to TensorFlow Lite, but encountered multiple issues, one related to missing

operators. We also attempted to convert it to deepC 7, but encountered similar issues,

including missing support for quantized PyTorch models. We also did not complete the

conversion to a microcontroller-supported representation due to complexity and time

constraints.

2.6 Experiments

We performed two sets of experiments, one on ESC-50 using the six feature extraction

methods described in Section 2.5.2, and a second on our Office Sounds dataset, using

the best model from the first set of experiments, with some adjustments.

We used HuggingFace’s Transformers library 8 for our transformer implementations.

Note that HuggingFace’s library assumes that a positional embedding is desirable, and

has no option to remove it. Therefore, we ran a modified version of their code for our

6https://onnx.ai/

7https://github.com/ai-techsystems/deepC

8https://github.com/huggingface/transformers

38

https://onnx.ai/
https://github.com/ai-techsystems/deepC
https://github.com/huggingface/transformers

experiments that did not return integer tokens during feature extraction, namely, raw

amplitudes, MFCCs, GFCCs, CQTs, Chromagrams, and Mel spectrograms. We did

use positional embeddings in our curve-tokenized and VQ-VAE experiments.

We used librosa v0.7.2 9 for Mel spectrogram, MFCC, CQT, and Chromagram

feature extraction, and spafe v0.1.2 10 for GFCC feature extraction. We also used

Python v3.7.7, PyTorch v1.6.0, and PyTorch Lightning v0.7.6 for machine learning.

To make our experiments more accessible, we designed our models to be able to run

on consumer hardware. We used two NVIDIA RTX 2080 Ti’s to train all of our models,

each with 11GB of RAM, with the exception of the VQ-VAE with a sequence length

of 2048, experiment #4, for which we used a NVIDIA Tesla V100 with 16GB of RAM.

We trained using a learning rate of 0.0001, a learning rate warmup of 10000 steps,

and the Adam optimizer. Our data pipeline is implemented such that, every epoch, a

random slice is taken from each audio file, optionally passed through augmentations,

and then passed to the model. This has the advantage of vastly simplifying the data

processing implementation, and increasing the number of ways in which a model can

view a particular sound (assuming that the number of samples viewed by the model

is less than the number of samples in the audio file). It does, however, have the

disadvantage of reading from every audio file an equal number of times, regardless of

the length of the audio. This was not a substantial issue for us, as AudioSet, ESC-50,

and Office Sounds all contain roughly the same length audio files within themselves.

9https://github.com/librosa/librosa

10https://github.com/SuperKogito/spafe

39

https://github.com/librosa/librosa
https://github.com/SuperKogito/spafe

2.6.1 Experiments on ESC-50

Table 2.2 describes the results of the trainings that we performed with each of our

model types, and we discuss the results below.

2.6.1.1 Amplitude Reshaping

Experiment #1 with amplitude reshaping tested how well a transformer could learn

to predict under a few unusual circumstances: (1) the inputs to the models are not

constant with respect to tokens, as is usually the case with learned embeddings, (2) the

model is not pretrained, and (3) the dataset is small. The performance of this model

was far below comparable CNNs, but better than expected, given that transformers

traditionally are pretrained with massive amounts of data, and are known to perform

poorly when trained on small datasets alone. We observed that the model began to

overfit around 60 epochs.

We also performed a supervised pretraining on reshaped raw amplitudes in exper-

iment #2. This pretraining comes in the form of training on audio from AudioSet,

described in Table 2.1, which has 527 labels. We trained on AudioSet for 75 epochs,

with augmentations, to a maximum top-1 validation accuracy of 6.36%, after which

it began to overfit. We then took that pretrained model, and finetuned it on ESC-50,

without freezing any layers, according to standard practice with transformers. It is no-

table that this pretraining increased accuracy by 3%, compared to the non-pretrained

model. When pretrained on a much larger dataset than AudioSet, it may be the case,

as in [44], that a model like this obtains far higher accuracy when finetuned.

40

2.6.1.2 VQ-VAE

We were surprised by the inneffectiveness of VQ-VAE codes in producing good classi-

fications. Judging by Jukebox [63], it seemed reasonable to believe that the VQ-VAE

would encode a substantial amount of knowledge in the codes, which, if they are

enough to produce a good reconstruction of the original audio, might also be enough

to produce a classification. We did not find this to be the case, however, as they vastly

underperformed compared to MFCCs, raw audio, and others. We can think of several

reasons for this: first, the lack of large-scale data reduces the maximum accuracy that

can be obtained from any input by a transformer, and this may be particularly true for

VQ-VAE codes, since it could have been compounded by the lack of data supplied to

both the VQ-VAE in learning codes through AudioSet, and the lack of data in learn-

ing classifications in ESC-50. Second, the heterogeneity of sounds in AudioSet may

have significantly limited the VQ-VAE’s ability to represent sounds in the codes. It

has previously been shown that VAEs in general do not perform well on heterogeneous

datasets [71]. As such, our VQ-VAE may not be able to perform as well on environment

sound tasks as it did on music tasks, given the large variety of sounds present in ESC

versus music.

Hypothesizing that the short sequence length of our first experiment (512) may

have resulted in the transformer not be able to have a sufficient view of the code to

perform a classification, we attempted a much longer sequence length, using a V100

GPU with 16GB of RAM. Even with a sequence length of 2048, which translates to

an effective number of samples of 65,536, or about 1.5 seconds, we did not observe a

substantial increase in accuracy, still falling far below other feature extraction methods.

As with the rest of the methods in this work, the first step to increasing accuracy

on ESC using VQ-VAE codes is to obtain more data. Training on a much larger corpus

41

of unlabeled audio is entirely possible in the first step to creating VQ-VAE codes, and

may improve the quality of the codes created. Additionally, using techniques such as

the ones presented by Nazabal et al. [71], to alter the VQ-VAE to enable to it better

handle heterogeneous data, may help as well. It may also be of value to perform a

pretraining step, either supervised or unsupervised, and finetune on more ESC data.

However, even with all such adjustments, it seems unlikely that VQ-VAE codes will

exceed MFCCs, Mel spectrograms or raw audio in predictive capability.

2.6.1.3 MFCC, GFCC, CQT, and Chromagram

In experiments #5 and #6, we observe that augmentations make a substantial (5.2%)

impact on accuracy. We also see that MFCC’s perform better, though only slightly so,

than raw amplitudes. These experiments were performed with 128 Mel bands, which

resulted in the hidden size H of the model to be 128 as well. These models began to

overfit around 50 epochs.

Experiments #7 and #8 showed that adding additional feature extraction methods

improved the accuracy of the model beyond only using MFCCs, especially in the non-

augmented case. However, when augmented, the model did not show any major

improvements, as had occurred with MFCCs. This is different than the results by

Sharma et al. [55], which had used augmentations to improve accuracy by more than

3%. However, we note that for our purposes – inferring at the edge – the cost of

computing features using all four extraction methods becomes prohibitive, and the

model would have been unlikely to be of use at the edge, even it it had obtained high

accuracy. We also found that extracting these features at training time resulted in

extremely slow training, which hindered additional experimentation with these features.

42

2.6.1.4 Mel Spectrogram and Hyperparameter Search

We trained using a Mel spectrogram in experiments #9 and #10, and obtained ac-

curacy that outperformed any other feature extraction methods. This is particularly

advantageous at the edge, since computing a Mel spectrogram is a reasonably inex-

pensive operation. Of note, as well, is the fact that this was obtained with a smaller

sequence length than experiments #7 and #8, due to the 3x downsampling that we

performed. We also used AlBERT, and a longer sequence length that other models,

which may have contributed to the improved performance. Judging by the performance

of BERT-based transformers trained on Office Sounds, however, it seems unlikely that

AlBERT would result in a significant performance improvement alone. The impact of

number of samples is discussed below.

Since this was our best-performing model, we performed a hyperparameter search

to determine the optimal parameters. All training was performed using AlBERT as the

base model, with a downsampling rate of 2x. We performed 159 training runs, which

are aggregated into the graphs in Figure 2.3.

Some clear improvements result by changing certain parameters. The most obvious

is the number of samples that are passed into the Mel spectrogram, which, as it

increases, also increases the maximum possible validation accuracy. We chose a peak

of 220,500 samples, or 5 seconds of audio, because files in ESC-50 audio have a

maximum length of 5 seconds. As can be seen, a model’s access to the full file’s worth

of data improves its ability to classify well.

Another clear result is the importance of using more than 80 Mel bands when

creating the Mel spectrogram. This result is particularly important, as many research

works make use of 80 Mels or less [13,14,46,64,72,73], which likely reduced accuracy

in those works.

43

2.6.1.5 Curve Tokenization

As a first attempt in literature at tokenizing audio based on curves, for the purpose

of training a transformer, we find that they provide very little predictive power. There

may be several reasons for this, the first of which is the small number of samples over

which the model can view a sound. Since every 8 samples is quantized and converted

into a token, using a sequence length of 512, the number of effective samples is 4096,

which is only 93 milliseconds of audio. This is likely a limiting factor on the predictive

ability of the model, and a model able to handle a much longer sequence length would

likely perform better. It is also likely that quantizing it reduced the information content

of the audio, and further reduced the predictive power.

In the case of absolute curves, we find that augmentations substantially reduce

accuracy. This is likely due to the fact that our vocabulary was created on ESC-

50 without augmentations, so the curves that appear with augmentations result in

many more <UNK> tokens. We see a slight increase in relative curve tokenization with

augmentations, but, given the incredibly low accuracy of the model, find it to be of

little interest.

Overall, we consider it unlikely that curve tokenization would ever beat out more

well-known feature extraction techniques. It removes too much information, such as

vital frequency and phase information, which other feature extraction methods allow

the transformer to make use of. Nonetheless, we consider it an interesting experiment

in possible tokenization techniques for transformers on audio.

44

2.6.2 Experiments on Office Sounds

After completing our experiments on ESC-50, we trained on the Office Sounds dataset

[67]. We used BERT-based models only, with an emphasis on model size, specifically on

reducing the model size while maintaining accuracy in order to perform more efficient

processing at the edge. We were particularly interested in models which were capable

of being run on microcontrollers; in our case, we chose a target model size of 256KB or

less – the available SRAM on the Arduino Nano 33 BLE Sense – which meant that the

model must be less than 250,000 parameters when quantized. There are, of course,

methods to run larger models with less SRAM, such as MCUNet [74], but we left such

optimizations to a future work, focusing on the generic case of running a transformer

on a microcontroller without any special optimizations.

We made several adjustments between our ESC-50 experiments and our Office

Sounds experiments, described in Section 2.4, which enabled us to experiment with

vastly different model sizes. We began by choosing a model with parameters similar

to our best-performing models from the hyperparameter search. We chose the model

seen in experiments #4 and #5 of Table 2.3, based on Mel spectrogram input with a

hop length of 512, window size of 1024, number of FFTs of 1024, and Mel bands of

128. It had 8 layers, and a hidden size H larger than we had been able to use in the

ESC-50 experiments, of 512, and 8 heads. We also removed downsampling, making

the sequence length much longer than before, but still able to fit within the constraints

of consumer-grade GPUs while maintaining a reasonable batch size. These models

obtained a maximum validation accuracy of 93.75%, with augmentations, and began

to overfit after 200-300 epochs.

In order to facilitate accurate comparisons to our previous work [67], we reimple-

mented and performed training on Office Sounds using MFCCs as input to a CNN,

45

shown in Table 2.4. Following that work, the CNN was an exact reimplementation

of Kumar et al.’s model in [27]. We trained the model, non-augmented, on ESC-50

to confirm accurate implementation, and obtained 81.25%, which is very close to the

pretrained model accuacy that Kumar et al. reported. We performed training of this

MFCC-based CNN against Office Sounds, using a random slice of the each audio file

in each epoch, and obtained a maximum of 92.97% accuracy, using augmentations on

2.5 seconds of audio. This corresponds to the results obtained in [67], even though

the training scheme is slightly different. The model contained 4.5 million parameters,

and nearly 500 million multiply-adds. The inference time of this model on a Samsung

Galaxy S9 was an average of 57 milliseconds [67], non-augmented and non-quantized,

using TensorFlow Lite, shown in Table 2.5. We note that augmentations had a small

positive effect on validation accuracy, and that increasing the visible audio window size

from 2.5 to 5 seconds had a slightly negative effect.

In comparing the Office Sounds transformers to the Office Sounds CNNs, we find

that the transformers outperform the CNN, while being much smaller. A model with

95.2% less parameters, transformer experiment #3, outperformed the CNN by more

than 2%. The smallest model that we trained on 5 seconds of audio, experiment #2,

99.85% smaller than the CNN, also outperformed the CNNs. This is unexpected, since

CNNs far outperformed transformers on the ESC-50 experiments. Our hypothesis is

that the increased number of example data for each class in Office Sounds (200 or

more per class, compared to 40 per class in ESC-50), assisted in preventing as rapid

overfitting as was observed in ESC-50. This can be tested by reducing the number of

samples in Office Sounds and running these experiments again; however, this is costly,

and so we leave this for a future work.

We also trained our smallest model on one second of data (experiment #1), and

46

found that it substantially reduced the accuracy of the model. Interestingly, for some

applications, it may be worthwhile to process only one second of audio with reduced

accuracy, as it reduces the cost of feature extraction and allows the model to be run

more frequently. Also, predictions over each second can be aggregated across a longer

time span via majority voting, or something similar, in order to potentially produce

more accurate predictions.

2.6.3 Inference at the Edge

Table 2.5 shows feature extraction and inference times on a Samsung Galaxy S9. This

model uses a transformer based on a Mel spectrogram, processing 5 seconds of audio

data and producing a classification using ESC-50 labels. We observe that, even on a

device more than two years old, inference is still fast enough to be performed many

times a second. We also find that quantization results in lowered latency (about

21% with dynamic quantization), which further increases the potential model size.

Static quantization is likely to reduce latency further, as dynamic quantization does

not quantize model activations.

We also observed a substantially decreased inference time from our smallest model,

as expected, inferring 93% faster than the 1-million parameter transformer. It was

surprising to find that the much larger CNN had faster inference times than the 1-million

parameter transformer, however, this may be due to optimizations in TensorFlow Lite

that are not present in PyTorch Mobile, or simply that CNN operations are optimized

further than transformer operations on edge devices.

47

2.7 Conclusion and Future Work

Efficient edge processing is a challenging, but critical task which will become increas-

ingly important in the future. To aide in this task, we trained a 6,000-parameter

transformer on the Office Sounds dataset that outperforms a CNN more than 700x

larger than it. This enables accurate and efficient environmental sound classification of

office sounds on edge devices, even on inexpensive microcontrollers, resulting in infer-

ence times on a Samsung Galaxy S9 that are 88% faster than a CNN with comparable

accuracy. We find that models trained in traditional frameworks (like PyTorch) have

relatively little support for conversion to models that can be run at the edge (like on a

microcontroller), even with the development of ONNX.

Our ESC-50 transformer models did not outperform CNNs, as they did on Office

Sounds. Understanding this, and finding solutions to the problem of training trans-

formers on small audio datasets, is a crucial future work. Solutions may come through

large amounts of unsupervised pretraining, through an architectural change, or though

improved supervised ESC datasets. In any case, our work provides groundwork upon

which these questions can be answered.

The small size and efficiency of the transformer we trained raises questions about

the cost of retraining. It may be that, because there are so few operations (less than

6,000) required in a forward pass, that on-device retraining becomes possible, similar

to what is done on Coral Edge TPUs through the imprinting engine [75]. This would

have vast implications on the future of intelligent edge analytics, and even a variety of

user applications, and is deserving of future work.

The trend in machine learning and artificial intelligence, in general, is toward larger

models and more data. We consider this work to be evidence that accuracy does not

48

always require scale, and that this is true even for transformers.

49

T
ab

le
2.

2:
A

cc
ur

ac
y

on
O

ffi
ce

S
ou

nd
s

da
ta

se
t,

ru
nn

in
g

un
de

r
va

ri
ou

s
fe

at
ur

e
ex

tr
ac

ti
on

an
d

tr
ai

ni
ng

sc
he

m
es

.

#
In

pu
t

A
cc

ur
ac

y
S

am
pl

es
L

ay
er

s
H

ea
ds

S
eq

ue
nc

e
L

en
B

at
ch

A
ug

m
en

t
T

yp
e

1
A

m
pl

it
ud

e
re

sh
ap

in
g

48
.9

6
44

10
0

8
8

25
6

16
T

ru
e

B
E

R
T

2
A

m
pl

it
ud

e
re

sh
ap

in
g

(P
re

tr
ai

ne
d)

52
.0

8
44

10
0

16
16

25
6

16
T

ru
e

B
E

R
T

3
V

Q
-V

A
E

(3
2x

)
31
.7

7
16

38
4

8
8

51
2

32
F

al
se

B
E

R
T

4
V

Q
-V

A
E

(3
2x

)
34
.5

0
65

53
6

8
8

20
48

4
F

al
se

B
E

R
T

5
M

F
C

C
53
.1

3
44

10
0

8
8

17
3

32
F

al
se

B
E

R
T

6
M

F
C

C
58
.3

3
44

10
0

8
8

17
3

32
T

ru
e

B
E

R
T

7
M

F
C

C
,

G
F

C
C

,
C

Q
T

,
an

d
C

hr
om

ag
ra

m
59
.3

8
88

20
0

8
8

17
3

32
F

al
se

B
E

R
T

8
M

F
C

C
,

G
F

C
C

,
C

Q
T

,
an

d
C

hr
om

ag
ra

m
59
.9

0
88

20
0

8
8

17
3

32
T

ru
e

B
E

R
T

9
M

el
sp

ec
tr

og
ra

m
(D

ow
ns

am
pl

ed
3x

)
60
.4

5
22

05
00

8
8

14
3

64
F

al
se

A
lB

E
R

T
10

M
el

sp
ec

tr
og

ra
m

(O
pt

im
iz

ed
)

67
.7

1
22

05
00

16
16

21
5

16
T

ru
e

A
lB

E
R

T
11

C
ur

ve
T

ok
en

iz
at

io
n

(R
el

at
iv

e)
7.

81
40

96
8

8
51

2
16

F
al

se
B

E
R

T
12

C
ur

ve
T

ok
en

iz
at

io
n

(R
el

at
iv

e)
8.

85
40

96
8

8
51

2
16

T
ru

e
B

E
R

T
13

C
ur

ve
T

ok
en

iz
at

io
n

(A
bs

ol
ut

e)
19
.7

9
40

96
8

8
51

2
16

F
al

se
B

E
R

T
14

C
ur

ve
T

ok
en

iz
at

io
n

(A
bs

ol
ut

e)
13
.5

4
40

96
8

8
51

2
16

T
ru

e
B

E
R

T

50

T
ab

le
2.

3:
T

ra
ns

fo
rm

er
ac

cu
ra

cy
on

O
ffi

ce
S

ou
nd

s
da

ta
se

t
fo

r
va

ri
ou

s
m

o
de

ls
,

or
de

re
d

by
nu

m
b

er
of

pa
ra

m
at

er
s.

A
ll

m
o

de
ls

w
er

e
ba

se
d

on
B

E
R

T
,

an
d

ha
d

th
e

fe
ed

-f
or

w
ar

d
la

ye
r

si
ze

se
t

to
4H

.

#
In

pu
t

A
cc

ur
ac

y
P

ar
am

s
M

ul
ti

pl
y-

A
dd

s
S

am
pl

es
L

ay
er

s
H

id
de

n
H

ea
ds

S
eq

ue
nc

e
L

en
B

at
ch

A
ug

m
en

t

1
M

el
sp

ec
tr

og
ra

m
81
.4

8%
5,

95
4

5,
63

8
44

10
0

1
16

2
86

64
T

ru
e

2
M

el
sp

ec
tr

og
ra

m
93
.2

1%
6,

64
2

5,
98

2
22

05
00

1
16

2
43

0
64

T
ru

e
3

M
el

sp
ec

tr
og

ra
m

95
.3

1%
21

3,
85

8
21

0,
41

4
22

05
00

4
64

4
43

0
64

T
ru

e
4

M
el

sp
ec

tr
og

ra
m

93
.7

5%
25

,5
53

,7
62

25
,5

06
,7

34
22

05
00

8
51

2
8

43
0

16
T

ru
e

5
M

el
sp

ec
tr

og
ra

m
89
.3

8%
25

,5
53

,7
62

25
,5

06
,7

34
22

05
00

8
51

2
8

43
0

16
F

al
se

51

Table 2.4: CNN accuracy on Office Sounds dataset, ordered by accuracy.

Input Accuracy Params Multiply-Adds Samples Batch Augment

1 MFCC 92.97% 4,468,022 478,869,984 110250 64 True
2 MFCC 92.19% 4,468,022 478,869,984 110250 64 False
3 MFCC 91.41% 4,468,022 956,052,832 220500 16 False

Table 2.5: Inference times of selected models on an edge device. Models are run on
a Samsung Galaxy S9 using PyTorch Mobile, except for the first, which was run with
TensorFlow Lite. Results are averaged over 10 runs. Quantization is PyTorch dynamic
quantization.

Experiment Params Mult-Adds Latency (ms)

MFCC CNN from [67] 4,468,022 478,869,984 57
ESC-50 #10 958,146 948,888 111
ESC-50 #10, Quant. 958,146 948,888 88
Office Sounds, Trans. #2 6,642 5,982 7

52

References

[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998–6008, 2017.

[2] Nicholas D. Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Claudio

Forlivesi, and Fahim Kawsar. Squeezing Deep Learning into Mobile and Embedded

Devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[3] George Plastiras, Maria Terzi, Christos Kyrkou, and Theocharis Theocharidcs. Edge

intelligence: Challenges and opportunities of near-sensor machine learning applica-

tions. In 2018 IEEE 29th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), pages 1–7. IEEE, 2018.

[4] Shikhar Verma, Yuichi Kawamoto, Zubair Md Fadlullah, Hiroki Nishiyama, and

Nei Kato. A survey on network methodologies for real-time analytics of massive

iot data and open research issues. IEEE Communications Surveys & Tutorials,

19(3):1457–1477, 2017.

[5] Zachary K Pecenak, Jan Kleissl, and Eric Lam. Detection of a surface detonated

nuclear weapon using a photovoltaic rich distribution grid. In 2018 IEEE Power &

Energy Society General Meeting (PESGM), pages 1–5. IEEE, 2018.

53

[6] Yang Cai, Eric Lam, Todd Howlett, and Alan Cai. Spatiotemporal analysis of “jello

effect” in drone videos. In International Conference on Applied Human Factors and

Ergonomics, pages 197–207. Springer, 2019.

[7] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang, Max Wu, Tim Hartley,

and Luc Van Gool. Ai benchmark: Running deep neural networks on android

smartphones. In Proceedings of the European Conference on Computer Vision

(ECCV), pages 0–0, 2018.

[8] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 2818–

2826, 2016.

[9] Charles Leech, Yordan P Raykov, Emre Ozer, and Geoff V Merrett. Real-time room

occupancy estimation with bayesian machine learning using a single pir sensor and

microcontroller. In 2017 IEEE Sensors Applications Symposium (SAS), pages 1–6.

IEEE, 2017.

[10] Aly Metwaly, Jorge Peña Queralta, Victor Kathan Sarker, Tuan Nguyen Gia, Omar

Nasir, and Tomi Westerlund. Edge computing with embedded ai: Thermal image

analysis for occupancy estimation in intelligent buildings. INTelligent Embedded

Systems Architectures and Applications, INTESA@ ESWEEK, 2019.

[11] Dalibor Mitrović, Matthias Zeppelzauer, and Christian Breiteneder. Features for

content-based audio retrieval. In Advances in computers, volume 78, pages 71–150.

Elsevier, 2010.

[12] Venkatesh Boddapati, Andrej Petef, Jim Rasmusson, and Lars Lundberg. Classi-

fying environmental sounds using image recognition networks. Procedia Computer

54

Science, 112:2048–2056, 2017.

[13] Karol J. Piczak. Environmental sound classification with convolutional neural

networks. In 2015 IEEE 25th International Workshop on Machine Learning for

Signal Processing (MLSP), pages 1–6. ISSN: 2378-928X.

[14] Juncheng Li, Wei Dai, Florian Metze, Shuhui Qu, and Samarjit Das. A compar-

ison of Deep Learning methods for environmental sound detection. In 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 126–130, New Orleans, LA, March 2017. IEEE.

[15] Rishabh N. Tak, Dharmesh M. Agrawal, and Hemant A. Patil. Novel Phase

Encoded Mel Filterbank Energies for Environmental Sound Classification. In B. Uma

Shankar, Kuntal Ghosh, Deba Prasad Mandal, Shubhra Sankar Ray, David Zhang,

and Sankar K. Pal, editors, Pattern Recognition and Machine Intelligence, volume

10597, pages 317–325. Springer International Publishing, Cham, 2017.

[16] Dharmesh M. Agrawal, Hardik B. Sailor, Meet H. Soni, and Hemant A. Patil.

Novel TEO-based Gammatone features for environmental sound classification. In

2017 25th European Signal Processing Conference (EUSIPCO), pages 1809–1813,

Kos, Greece, August 2017. IEEE.

[17] Reona Mogi and Hiroyuki Kasai. Noise-Robust environmental sound classification

method based on combination of ICA and MP features. Artificial Intelligence

Research, 2(1):p107, November 2012.

[18] Sachin Chachada and C.-C. Jay Kuo. Environmental sound recognition: a survey.

APSIPA Transactions on Signal and Information Processing, 3:e14, 2014.

[19] Zhichao Zhang, Shugong Xu, Shunqing Zhang, Tianhao Qiao, and Shan Cao.

Learning Attentive Representations for Environmental Sound Classification. IEEE

55

Access, 7:130327–130339, 2019.

[20] Xiaohu Zhang, Yuexian Zou, and Wei Shi. Dilated convolution neural network

with LeakyReLU for environmental sound classification. In 2017 22nd International

Conference on Digital Signal Processing (DSP), pages 1–5. ISSN: 2165-3577.

[21] Dading Chong, Yuexian Zou, and Wenwu Wang. Multi-channel Convolutional

Neural Networks with Multi-level Feature Fusion for Environmental Sound Classi-

fication. In Ioannis Kompatsiaris, Benoit Huet, Vasileios Mezaris, Cathal Gurrin,

Wen-Huang Cheng, and Stefanos Vrochidis, editors, MultiMedia Modeling, volume

11296, pages 157–168. Springer International Publishing, Cham, 2019.

[22] Karol J Piczak. Esc: Dataset for environmental sound classification. In Proceed-

ings of the 23rd ACM international conference on Multimedia, pages 1015–1018.

ACM, 2015.

[23] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and tax-

onomy for urban sound research. In Proceedings of the 22nd ACM international

conference on Multimedia, pages 1041–1044. ACM, 2014.

[24] Annamaria Mesaros, Aleksandr Diment, Benjamin Elizalde, Toni Heittola, Em-

manuel Vincent, Bhiksha Raj, and Tuomas Virtanen. Sound event detection in the

dcase 2017 challenge. IEEE/ACM Transactions on Audio, Speech and Language

Processing (TASLP), 27(6):992–1006, 2019.

[25] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel PW Ellis, Xavier Fa-

vory, Jordi Pons, and Xavier Serra. General-purpose tagging of freesound au-

dio with audioset labels: Task description, dataset, and baseline. arXiv preprint

arXiv:1807.09902, 2018.

[26] Eduardo Fonseca, Jordi Pons Puig, Xavier Favory, Frederic Font Corbera, Dmitry

56

Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra.

Freesound datasets: a platform for the creation of open audio datasets. In Hu

X, Cunningham SJ, Turnbull D, Duan Z, editors. Proceedings of the 18th ISMIR

Conference; 2017 oct 23-27; Suzhou, China.[Canada]: International Society for

Music Information Retrieval; 2017. p. 486-93. International Society for Music In-

formation Retrieval (ISMIR), 2017.

[27] Anurag Kumar, Maksim Khadkevich, and Christian Fugen. Knowledge Transfer

from Weakly Labeled Audio Using Convolutional Neural Network for Sound Events

and Scenes. In 2018 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 326–330, Calgary, AB, April 2018. IEEE.

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever. Language models are unsupervised multitask learners. OpenAI Blog,

1(8):9, 2019.

[29] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric

Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python.

In Proceedings of the 14th python in science conference, volume 8, 2015.

[30] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convo-

lutional neural networks for raw waveforms. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 421–425. IEEE, 2017.

[31] François Chollet et al. Keras. https://keras.io, 2015.

[32] Amadej Trnkoczy. Topic understanding and parameter setting of sta/lta trigger

algorithm. New manual of seismological observatory practice, 2, 1999.

[33] Guy Barrett Coleman and Harry C Andrews. Image segmentation by clustering.

Proceedings of the IEEE, 67(5):773–785, 1979.

57

https://keras.io

[34] Michael Cowling and Renate Sitte. Comparison of techniques for environmental

sound recognition. Pattern recognition letters, 24(15):2895–2907, 2003.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[36] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov,

and Quoc V Le. Xlnet: Generalized autoregressive pretraining for language under-

standing. In Advances in neural information processing systems, pages 5753–5763,

2019.

[37] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of trans-

fer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683,

2019.

[38] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training, 2018.

[39] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. Language models are few-shot learners. arXiv preprint arXiv:2005.14165,

2020.

[40] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,

Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big

bird: Transformers for longer sequences. arXiv preprint arXiv:2007.14062, 2020.

[41] Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal,

David Luan, and Ilya Sutskever. Generative pretraining from pixels. In Proceedings

58

of the 37th International Conference on Machine Learning, 2020.

[42] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Rad-

ford, and Ilya Sutskever. Jukebox: A generative model for music. arXiv preprint

arXiv:2005.00341, 2020.

[43] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning.

In Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

[44] Anonymous. An image is worth 16x16 words: Transformers for image recognition

at scale. In Submitted to International Conference on Learning Representations,

2021. under review.

[45] Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues, Markus Müller, Sebastian

Stüker, and Alexander Waibel. Very deep self-attention networks for end-to-end

speech recognition.

[46] Ruixiong Zhang, Haiwei Wu, Wubo Li, Dongwei Jiang, Wei Zou, and Xiangang Li.

Transformer based unsupervised pre-training for acoustic representation learning.

arXiv:2007.14602 [cs, eess], July 2020. arXiv: 2007.14602.

[47] Yangyang Shi, Yongqiang Wang, Chunyang Wu, Christian Fuegen, Frank Zhang,

Duc Le, Ching-Feng Yeh, and Michael L. Seltzer. Weak-Attention Suppression For

Transformer Based Speech Recognition. arXiv:2005.09137 [cs, eess], May 2020.

arXiv: 2005.09137.

[48] Dan Stowell, Dimitrios Giannoulis, Emmanouil Benetos, Mathieu Lagrange, and

Mark D. Plumbley. DCASE 2016 Acoustic Scene Classification Using Convolutional

Neural Networks. IEEE Transactions on Multimedia, 17(10):1733–1746, October

2015.

59

[49] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,

R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and

human-labeled dataset for audio events. In 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 776–780. IEEE, 2017.

[50] Wei Dai, Chia Dai, Shuhui Qu, Juncheng Li, and Samarjit Das. Very deep convo-

lutional neural networks for raw waveforms. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 421–425. ISSN:

2379-190X.

[51] Justin Salamon and Juan Pablo Bello. Deep Convolutional Neural Networks and

Data Augmentation for Environmental Sound Classification. IEEE Signal Process-

ing Letters, 24(3):279–283, March 2017.

[52] Yuji Tokozume and Tatsuya Harada. Learning environmental sounds with end-

to-end convolutional neural network. In 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 2721–2725. ISSN: 2379-

190X.

[53] Sajjad Abdoli, Patrick Cardinal, and Alessandro Lameiras Koerich. End-to-end

environmental sound classification using a 1D convolutional neural network. Expert

Systems with Applications, 136:252–263, December 2019.

[54] Aditya Khamparia, Deepak Gupta, Nhu Gia Nguyen, Ashish Khanna, Babita

Pandey, and Prayag Tiwari. Sound classification using convolutional neural network

and tensor deep stacking network. 7:7717–7727. Conference Name: IEEE Access.

[55] Jivitesh Sharma, Ole-Christoffer Granmo, and Morten Goodwin. Environment

Sound Classification using Multiple Feature Channels and Attention based Deep

Convolutional Neural Network. arXiv:1908.11219 [cs, eess, stat], April 2020. arXiv:

60

1908.11219.

[56] D. Giannoulis, E. Benetos, D. Stowell, M. Rossignol, M. Lagrange, and M. D.

Plumbley. Detection and classification of acoustic scenes and events: An ieee aasp

challenge. In 2013 IEEE Workshop on Applications of Signal Processing to Audio

and Acoustics, pages 1–4, Oct 2013.

[57] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. Language Models are Few-Shot Learners. arXiv:2005.14165

[cs], May 2020. arXiv: 2005.14165.

[58] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT,

a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108

[cs], February 2020. arXiv: 1910.01108.

[59] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for

BERT model compression.

[60] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read

students learn better: On the importance of pre-training compact models. arXiv

preprint arXiv:1908.08962, 2019.

[61] Christophe Couvreur, Vincent Fontaine, Paul Gaunard, and Corine Ginette Mu-

bikangiey. Automatic classification of environmental noise events by hidden markov

models. page 20.

61

[62] Zohaib Mushtaq, Shun-Feng Su, and Quoc-Viet Tran. Spectral images based

environmental sound classification using cnn with meaningful data augmentation.

Applied Acoustics, 172:107581.

[63] Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,

and Ilya Sutskever. Jukebox: A generative model for music.

[64] Koichi Miyazaki, Tatsuya Komatsu, Tomoki Hayashi, Shinji Watanabe, Tomoki

Toda, and Kazuya Takeda. Weakly-supervised sound event detection with self-

attention. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 66–70. ISSN: 2379-190X.

[65] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. ALBERT: A Lite BERT for Self-supervised Learn-

ing of Language Representations. arXiv:1909.11942 [cs], February 2020. arXiv:

1909.11942.

[66] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,

2015.

[67] David Elliott, Evan Martino, Carlos E Otero, Anthony Smith, Adrian M Peter,

Benjamin Luchterhand, Eric Lam, and Steven Leung. Cyber-physical analytics:

Environmental sound classification at the edge. In 2020 IEEE 6th World Forum on

Internet of Things (WF-IoT), pages 1–6. IEEE, 2020.

[68] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:

A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[69] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stüker, and Alex

62

Waibel. Self-Attentional Acoustic Models. arXiv:1803.09519 [cs], June 2018. arXiv:

1803.09519.

[70] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human and

machine translation. arXiv preprint arXiv:1609.08144, 2016.

[71] Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Han-

dling incomplete heterogeneous data using vaes. Pattern Recognition, page 107501,

2020.

[72] Yilun Zhao, Xinda Wu, Yuqing Ye, Jia Guo, and Kejun Zhang. Musi-

coder: A universal music-acoustic encoder based on transformers. arXiv preprint

arXiv:2008.00781, 2020.

[73] Yang Jiao. Translate reverberated speech to anechoic ones: Speech dereverbera-

tion with bert. arXiv preprint arXiv:2007.08052, 2020.

[74] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han.

Mcunet: Tiny deep learning on iot devices. arXiv preprint arXiv:2007.10319, 2020.

[75] Retrain a classification model on-device with weight imprinting.

63

	Efficient Edge Analytics: Addressing Cyber-Physical MASINT with Machine Learning on Audio at the Edge
	Abstract
	List of Figures
	Acknowledgments
	1 CNNs for Environmental Sound Classification at the Edge
	1.1 Abstract
	1.2 Introduction
	1.3 Data
	1.3.1 Data Collection
	1.3.2 Data Processing

	1.4 Model
	1.4.1 Feature Extraction
	1.4.2 Model Architectures
	1.4.2.1 Amplitude Model
	1.4.2.2 MFCC Model
	1.4.2.3 Ensemble Model

	1.4.3 On-Device Event Detection
	1.4.4 Evaluation

	1.5 Conclusion

	2 Tiny Transformers for Environmental Sound Classification at the Edge
	2.1 Abstract
	2.2 Introduction
	2.3 Related Work
	2.4 Models
	2.5 Approach
	2.5.1 Data
	2.5.2 Feature Extraction
	2.5.2.1 Amplitude Reshaping
	2.5.2.2 Curve Tokenization
	2.5.2.3 VQ-VAE
	2.5.2.4 MFCC
	2.5.2.5 MFCC, GFCC, CQT, and Chromagram
	2.5.2.6 Mel spectrogram

	2.5.3 Augmentations
	2.5.4 Model Conversion

	2.6 Experiments
	2.6.1 Experiments on ESC-50
	2.6.1.1 Amplitude Reshaping
	2.6.1.2 VQ-VAE
	2.6.1.3 MFCC, GFCC, CQT, and Chromagram
	2.6.1.4 Mel Spectrogram and Hyperparameter Search
	2.6.1.5 Curve Tokenization

	2.6.2 Experiments on Office Sounds
	2.6.3 Inference at the Edge

	2.7 Conclusion and Future Work

	References

