
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

12-2022

Modeling, Verification, and Simulation of a UAV Swarm Modeling, Verification, and Simulation of a UAV Swarm

Consensus Protocol Consensus Protocol

Rohit Martin Menghani

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=repository.fit.edu%2Fetd%2F744&utm_medium=PDF&utm_campaign=PDFCoverPages

Modeling, Verification, and Simulation of a UAV Swarm Consensus Protocol

by

Rohit Martin Menghani

Bachelor of Sience
Aerospace Engineering

Florida Institute of Technology
2020

A thesis
submitted to the College of Engineering and Science

at Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Engineering

Melbourne, Florida
December, 2022

© Copyright 2022 Rohit Martin Menghani

All Rights Reserved

The author grants permission to make single copies.

We the undersigned committee
hereby approve the attached thesis

Modeling, Verification, and Simulation of a UAV Swarm Consensus Protocol by

Rohit Martin Menghani

Siddhartha Bhattacharyya, Ph.D.
Associate Professor
Computer Engineering and Sciences
Committee Chair

Juan C. Avendano, Ph.D.
Graduate Faculty
Computer Engineering and Sciences
Outside Committee Member

Brian Lail, Ph.D.
Professor
Computer Engineering and Sciences
Committee Member

Philip J. Bernhard, Ph.D.
Associate Professor and Department Head
Computer Engineering and Sciences

Abstract

Title:

Modeling, Verification, and Simulation of a UAV Swarm Consensus Protocol

Author:

Rohit Martin Menghani

Major Advisor:

Siddhartha Bhattacharyya, Ph.D.

Unmanned Aerial Vehicles (UAVs), particularly electrically powered multi-rotors, are

becoming increasingly popular in the entertainment, transportation, logistics, and mili-

tary sectors. One of the main drawbacks presented by these vehicles at the time of writ-

ing is the limited range achieved as a consequence of the limits of battery technology.

One common method used to overcome such limitations, is the use of multiple vehicles

in cooperation to achieve a certain goal. This application of UAVs is called swarming,

where multiple agents can coordinate their actions to fly in a certain formation, to

access a certain challenging area, or to fly further. As with any multi-component sys-

tem, the complexity of swarms equates to multiple points of failure. The risk posed by

any uncertainties presented in the highly complex real time mechanics of coordinated

flight are unacceptable in safety critical industries. The consequences of critical failures

could be significant loss of life, property damage, or environmental harm. Assuring the

correct behaviour of UAV swarms is a primordial challenge to be addressed for the

iii

technology to expand its use cases. One of the most robust techniques to verify the

correctness of systems is model checking, which allows to verify the behaviour of a

system through the systematic inspection of all possible states. The system is verified

based on a high-level model representation which allows for the abstraction of imple-

mentation details. This approach to software development is not commonly used due

to the time and resources investment it requires. The work presented here proposes

a framework to model, verify, and provide evidence of correctness for a distributed

system of agents with a common objective. Specifically, the framework demonstrates a

partially automated process to take a system modeled in the UPPAAL model checker

and implement it in the Robot Operating System (ROS) environment. The target

system is a swarm of UAVs that travel to a specified goal location while implementing

a leader-follower hierarchical structure through a consensus protocol. This document

provides an algorithmic representation for the mapping of UPPAAL structures to ROS

constructs. The work concludes with the simulation of the ROS implementation of the

UAV mission in the Gazebo 3-D robotics simulator.

iv

Table of Contents

Abstract . iii

List of Figures . viii

List of Tables . xi

Acknowledgments . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Statement . 6

1.3 UPPAAL and ROS . 7

2 Related Works . 9

3 Research Methodology . 25

3.1 Problem Statement Elaboration . 25

3.2 Framework . 26

3.3 Formal Model . 27

3.4 Assumptions . 30

3.5 Translation . 31

4 Technical Specifications . 32

v

4.1 Matlab Drone Dynamics . 32

4.1.1 Inputs and Outputs . 33

4.1.2 Matlab Script Modifications . 36

4.2 UPPAAL Description . 37

4.3 UPPAAL Global Declarations . 39

4.4 UPPAAL Template Descriptions . 41

4.5 Election Protocol . 45

4.6 Properties Verified . 49

5 ROS Implementation . 54

5.1 ROS Concepts . 54

5.2 Automated Translation . 56

5.3 Manual Translation . 59

6 Validation . 63

6.1 Simulation Setup . 63

6.2 UPPAAL Symbolic Simulator . 66

6.3 Simulation Test Cases . 67

7 Conclusion and Future Work . 78

7.1 Conclusion . 78

7.2 Limitations . 80

7.3 Future Work . 82

References . 83

A Drone Dynamics Matlab Script . 89

B Uppaal Drone Swarm System XML . 111

vi

C ROS Base Classes . 142

D ROS Node Control Files . 163

vii

List of Figures

1.1 IoT Interaction Patterns [9] . 2

1.2 Amazon’s Latest Drone Design MK27-2 [38] 3

1.3 Drone Swarm Example [46] . 3

1.4 Model Checking Flow Chart . 6

2.1 System Design Flow [26] . 10

2.2 Code Generator Overview [26] . 11

2.3 Publisher-Subscriber System Timed Automata Model [14] 12

2.4 UPPAAL Implementation of Publisher-Subscriber Timed Automata [14] 13

2.5 Drone Template [34] . 15

2.6 Global Variable Translation [34] . 16

2.7 Server Template Translation into C++ Class [34] 18

2.8 Swarm UPPAAL Model [30] . 19

2.9 Swarm Probabilistic State Machine [22] 22

2.10 LandShark Robot Control System Architecture [28] 23

2.11 Code Generation Process and Tools [28] 24

3.1 Framework Diagram . 27

3.2 Initial Mission Scenario . 28

3.3 Drone Trajectory . 30

4.1 Sample Drone Trajectory Optimizing Time [16] 34

viii

4.2 Script Added to Matlab Code-base . 36

4.3 Time of flight for different trajectories 36

4.4 UPPAAL Project Structure . 37

4.5 Edge Annotations . 38

4.6 UPPAAL Drone Template . 41

4.7 UPPAAL MissionControl Template . 43

4.8 UPPAAL System Declarations . 45

4.9 Member Election Function . 46

4.10 Member Election Results Processing 47

4.11 Checking for Consensus . 47

4.12 Leader Election Function . 48

4.13 Leader Election Results Processing . 49

4.14 UPPAAL Satisfied Properties . 50

5.1 ROS Communication Architecture [25] 56

5.2 Automatically Generated ROS Parameter Server YAML File [33] . . . 58

5.3 Base Class Voting Function Example 59

6.1 ArduPilot SITL Architecture [3] . 64

6.2 SITL Simulation Setup [45] . 65

6.3 UPPAAL Symbolic Simulator Snapshot 66

6.4 UPPAAL Global Parameters . 68

6.5 ROS Parameter List . 68

6.6 Drone 0 and Drone 2 Initially In Swarm State 69

6.7 Drone 3 Initially In Swarm State . 70

6.8 ROS Drones In Swarm . 70

6.9 First Leader Election Votes . 71

ix

6.10 Drone 0 Elected Leader . 71

6.11 Drone 0 Leader in ROS . 72

6.12 Drone 7 Elected As New Member . 72

6.13 Drone 0 Idle State . 73

6.14 Drone 7 Elected Leader . 74

6.15 Drone 7 Leader State . 74

6.16 Drones at Position 60 in x . 75

6.17 Drone 7 Dropped from Swarm and Drone 1 Joins 75

6.18 Drone1 Becomes Leader . 76

6.19 Drone 3 Arrives at Goal First . 76

6.20 ROS Drones at Goal . 77

6.21 Mission Accomplished . 77

x

List of Tables

4.1 Verification Time Metrics . 53

5.1 UPPAAL to ROS High-Level Mapping 59

5.2 UPPAAL to ROS Low-Level Mapping 60

xi

Acknowledgements

Firstly, I would like to thank the people who gave me every opportunity I ever had, my

parents Rakesh Menghani and Jasmine Menghani. I want to thank my sister Natasha

Menghani for being a role model and the reason why I was brave enough to leave home.

Thank you Martina Farachio for keeping me sane throughout my stress-filled years at

college and your unconditional love.

Thank you Deep Patel for opening doors for me every time I needed help, and for

treating me like family alongside Aashna Patel. Thank you Dr. Nicolas Jaramillo and

Darshan Yadav for teaching me how to be a decent GSA, and for being like two elder

brothers. Thank you Dr. Juan Avendano and the CAMID team for supporting me in

my last semester and being ever so patient as I wrapped up my work. Thank you Dr.

Siddhartha Bhattacharyya for your guidance on this work and your amazing courses.

Thank you Mamoon Syed for the endless knowledge.

Gracias a ”Terminemos la ... Tesis” por las noches de trabajo y risas sin las cuales

no estaria escribiendo esto en este momento. Gracias a mi familia de LASA por las

interminables anecdotas. Gracias a toda mi gente de Argentina que nunca dejo de

hacerme el aguante.

Thank you Florida Institute of Technology for five unforgettable years.

xii

Chapter 1

Introduction

1.1 Motivation

Intelligent systems have become embedded in our daily lives to the extent that the

average person uses them unknowingly. This is particularly enhanced by the popularity

of IoT (Internet of Things) devices, which increasingly use machine intelligence to give

systems autonomy [9]. The interactions involving IoT devices between the social,

cyber, and physical world can be seen on Figure 1.1. The work herein is focused on

autonomous aerial vehicles and the cooperation amongst themselves to achieve target

system behaviours. Such systems are relevant to the Urban Air Mobility (UAM) and

AAS (Advanced Aerial Systems) fields which encompass novel air transportation and

delivery systems. In fact, it is estimated that the United States UAM market will reach

$18.8 billion by 2035 due to the revenue these new systems will produce [31].

Some of the biggest names developing UAV delivery technologies are Amazon, UPS,

and Wing. The three of them have already gained approval from the Federal Aviation

Administration (FAA) to operate drone delivery fleets[32]. These companies are focus-

ing on the delivery of lightweight packages that are close to their final destination. An

1

Figure 1.1: IoT Interaction Patterns [9]

example of an Amazon delivery drone is shown in Figure 1.2. The main limitation for

such delivery operations is drone battery duration, which is shortened by carrying a

payload. The same problem affects larger Electric Vertical Takeoff and Landing (eV-

TOL) transportation systems currently being developed by large firms like Embraer,

Uber, and Joby [5].

One of the technologies developed to overcome the limitation presented by singu-

lar electric aerial vehicles is aerial swarms. These consist of multiple aerial vehicles

cooperating in a manner that helps them achieve tasks that would be challenging for

singular agents. UAV swarms constitute distributed systems in which vehicles gather

information about the environment and communicates with other vehicles to coordi-

nate actions that achieve a certain goal [2]. Figure 1.3 shows a drone swarm flying in a

rectangular formation. In swarms where aircraft are organized in a leader-follower con-

figuration, distributed consensus is one of the core principles. This concept is typically

2

Figure 1.2: Amazon’s Latest Drone Design MK27-2 [38]

used to establish the agreement between a leader and its followers about new vehicles

joining the established swarm or group. The agreement protocol can be described by

a plethora of popular distributed consensus algorithms.

Figure 1.3: Drone Swarm Example [46]

When dealing with complex systems such as swarms, one of the biggest challenges

3

is to ensure correct behaviour of each of the agents in the network. To achieve this, a

relatively rigorous method that includes the theories from the field of formal methods

have gained popularity one such method is model checking. It is a formal verification

technique that allows for the behavioral properties of a system to be verified based on

a model through the systematic inspection of all possible states [6]. The process flow

chart for model checking is shown in Figure 1.4. The process of creating a model of a

system is abstracted from the actual details of the implementation, which means that

a higher-level representation is developed. The benefit of this is that one can rapidly

(relative to implementing the whole system) model and check the system before getting

entangled in the implementation phase. This is an advantage in itself because bugs

and faulty requirements can be found early in the design phase cutting development

costs significantly.

The benefits of developing a software system by including formal approaches is

highlighted by the findings published by the Standish Group in their CHAOS reports.

On their latest report, published in 2020, they found that 65% of IT projects are not

successful in terms of budget and timeline. Particularly, they estimate that more than

half of the projects evaluated end up costing 189% of their original budget proposals,

almost double [12]. The prime reason for this is the introduction and fixing of errors

at different stages of the software development cycle. To put this into perspective,

according to the Consortium for Information & Software Quality, the cost of finding

and fixing software bugs in the US was around 600 billion dollars in the year 2020 [24].

Another problem related to the increased cost of software development is error injec-

tion. Most errors in software systems are introduced in the early phases of development,

where addressing them is the least costly. However, even though less abundant, error

injection in later development stages is just as common. The issue is that fixing errors

introduced in the testing or release phases can be hundreds of times more expensive

4

[18]. Thus, introducing formal approaches in the early stages of software projects can

help economically address the great amount of errors injected and also avoid future

errors.

The advantages of using formal methods are perfectly suited to address the chal-

lenges of vehicle certification in safety critical industries like the UAM industry. Safety

critical industries are ones where failure in systems could result in death, injury, prop-

erty damage, or environmental harm [37]. What is more, UAM missions like air taxis

will involve aircraft that combine a range of new technologies. For instance, UAM

eVTOL aircraft will likely feature complex Distributed Electric Propulsion (DEP) sys-

tems and intelligence-based autonomous flight control systems [20]. This means that

the traditional aircraft certification process mandated by the FAA is not applicable.

Hence, the incorporation of formal methods to verify and assure aircraft system be-

haviour will become pivotal in the certification processes. What is more, since the

companies designing and developing eVTOL aircraft for UAM applications are the

same ones that will be providing services, it is in their best interest to prove the safety

of their product. It would be fatal for the industry to have any safety incidents dur-

ing its inception phase because it would negatively impact the public’s willingness to

try their new technology. A number of research efforts have been conducted to apply

formal methods to UAM components such as autonomous Air Taxi vehicles [13], flight

scheduling [44], and high density trajectory planning [42].

The only drawback associated with formal verification is that it adds an extra layer

to the development process that might increase the time of production. Although the

extra time invested in verification might pay off when debugging and testing times

are cut back, there is no framework that allows for a seamless transition from model

checking to implementation. To this extent, the goal of the work presented hereby is to

showcase a partially automated framework to write implementation code for a swarm

5

Figure 1.4: Model Checking Flow Chart

based on a verified model. In particular, this work presents an algorithmic mapping

of an implementation in the Robot Operating System (ROS) based on an UPPAAL

model. The target system that will be used as case study for the framework is the

consensus protocol used by a UAV swarm that achieves a leader-follower configuration

where new agents join the network.

1.2 Problem Statement

As introduced in the previous section, the main swarm behaviour explored in this work

is the distributed consensus scenario. The application of this concept used as basis

for modeling and simulation is the agreement between leader and follower aircraft in

a swarm taking part of wild fire fighting mission. The swarm engages in two voting

scenarios: one for electing new swarm members and one for electing a swarm leader.

There are two types of criteria used as basis for an agent joining a drone network:

physical parameters and logical parameters. The physical parameters used for a UAV

to join the swarm are:

• Within a 10 meter radius

• More than 50 units of battery

6

• More battery capacity than drone in the swarm that has the same capability

• Fastest drone to arrive at swarm location

On the other hand, the logical conditions considered as swarm joining parameters

are the capabilities that each drone have to contribute to the swarm. For example, if

the mission goal is to put out a small wild fire, the mission will require a drone with the

capability to drop water or fire retardant on the flames. To this extent, five different

drone capabilities are defined: surveillance, communications, medical supplies, water

dispensing, and chemical dispensing.

The flight scenarios addressed in this work will be gradually increasing in complex-

ity. For example, the first scenarios will only involve three agents where there is a leader

and a loyal wing-man connection pre-established. The third agent will then request to

join the network and a decision will be made based on the consensus algorithm. More

advanced scenarios would involve two different groups of agents where the leaders of

each group would have to agree to merge and hand off the leadership. Such problem

scenarios are relevant to real world situations where not only the physical interactions

between agents need to be considered but also the logical interactions (e.g. capabilities,

resources, etc).

1.3 UPPAAL and ROS

As defined on the UPPAAL software website, ”UPPAAL is an integrated tool en-

vironment for modeling, validation and verification of real-time systems modeled as

networks of timed automata, extended with data types” [21]. These networks of timed

automata, which represent system behaviors, are described using the UPPAAL de-

scription language. The validation of the created models is achieved with the simulator

tool, which enables examination of possible dynamic executions of a system. Finally,

7

verification is attained through the model checker’s exhaustive examination of the dy-

namic behaviour of the system. This last feature allows for checking of invariant and

reachability properties by state space exploration. The use of this software is suitable

for systems that can be represented as non-deterministic processes with finite control

structure and real-valued clocks, communicating through channels or shared variables

[21]. UPPAAL is developed by a partnership between the Department of Information

technology at Uppsala University, Sweden and the Department of Computer Science

at Aalborg University in Denmark.

ROS is an open source software framework for programming robots [19]. It provides

a hardware abstraction layer that developers can use to build robotics applications and

software tools to visualize robot data [23]. The foundation of the ROS framework is

a message passing (synchronous or asynchronous) middleware where processes com-

municate and exchange data amongst themselves. In addition to this, ROS software

is arranged in packages, enabling modularity and re-usability as different robots can

access the same packages for capabilities [19]. Some of the quoted advantages for using

ROS are its collaborative development community, variety of programming language

support (C++, Python, etc), third-party library integration (e.g Open-CV), simulator

integration (e.g. Gazebo), code testing framework rostest, scalability, and customiz-

ability.

Combining these two frameworks into a single process for robotics system develop-

ment would provide significant benefits in terms of assurance, cost, and time. This is

exactly the goal of this work, showcasing a framework for creating low level implemen-

tation code for a ROS system based on a verified UPPAAL formal model.

8

Chapter 2

Related Works

There are many research efforts that produced works related to the goal of this study.

Particularly, [26] proposes an automatic code synthesis method that can generate C++

code for ROS, based on a verified formal model of a robot system. The researchers first

modeled the behavior of the robot system as timed automata. Then the relevant prop-

erties, and the functional and architecture requirements were manually translated into

temporal logic formulas in the UPPAAL query language. The model was then verified

to assure correctness. Finally, the code generator developed by the team automatically

synthesized the model into executable C++ code for ROS.

The generated code abides by the ROS instructions scheduling mechanism involv-

ing node communication rules, function prototype design, and driver interface config-

uration. The code generator is based on a Java parser which achieves the low level

abstraction from model to code by using the DOM4j library. This is an open source

library used to parse XML files. The input for the parser is the model XML file which

can be exported from UPPAAL. The parser creates static and dynamic look up tables

that contain information on the model states and transitions. Another essential com-

ponent of the synthesizer is the Controller, which implements high-level abstraction of

9

Figure 2.1: System Design Flow [26]

the model. Particularly, it creates an abstract specification of the branch and transition

logic of the model. Lastly, the Storer outputs the C++ files containing the generated

code. The results of the automatic code synthesizer were tested using a robotic arm

with seven degrees of freedom simulated in the Gazebo physics simulator.

The main difference between [26] and this work is that they considered a single

robot as their use case. The work presented here involves multiple agents that are

10

part of a network. What is more, the proposed system involves modeling a consensus

algorithm for leader election which adds to the overall complexity.

Figure 2.2: Code Generator Overview [26]

Another paper that addresses the ROS implementation of verified UPPAAL models

is [14]. In this work, the authors first implement the target ROS system and then

verify it using the UPPAAL model checker. The research group proposes an approach

to model and verify the code used by the Kobuki robot in ROS. The focus of their work

is the communication between nodes, which means low level parameters, such as queue

sizes and timeouts, are taken into consideration. Their goal is to identify problematic

configuration parameters used in the Kobuki source code.

The authors describe the process of verifying ROS applications using a simple ex-

ample consisting of publisher-subscriber interactions. The first step they took was to

extract key parameters from the target ROS application source code. Specifically, the

11

authors consider nodes, topics, and messages where key parameters are identified as

publishing rates, spin rates, channel message transmission times, and callback process-

ing times. For a better understanding of these concepts please refer to section 5.1. The

extraction of these key parameters is not automated which represents a major gap in

their work as compared to the work proposed in this Thesis.

The next step outlined in [14] is to model the ROS application as timed automata

using the key parameters extracted in the previous step. The model of the simple

publisher-subscriber system is shown in Figure 2.3.

Figure 2.3: Publisher-Subscriber System Timed Automata Model [14]

Finally, based on the formal models, the researchers implemented the simple exam-

ple of a publisher-subscriber system in UPPAAL. The properties verified in the model

checker were mainly checking for queue overflow. The parameters that were varied for

12

the checking process were queue sizes and time constraints. The UPPAAL templates

corresponding to the network of timed automata shown in Figure 2.3, are shown in

Figure 2.4.

Figure 2.4: UPPAAL Implementation of Publisher-Subscriber Timed Automata [14]

The authors go on to repeat the process explained above using the Kobuki source

code as a complex case study. There are various differences between [14] and this

work. Firstly, the approach by Halder et al. is in the reverse order of the one proposed

13

here. The goal of this work is to be able to first model a system in UPPAAL and

then translate it into ROS. The benefits of undertaking such a development order

are explained in section 1.1. What is more, the framework developed in this work

targets automatizing the translation from the formal UPPAAL model to the ROS

implementation. Another major difference between these works is that [14] focuses on

low level communication aspects of the systems modeled, while this work focuses on

higher level robot interactions. In fact, the system proposed in this work consists of a

multi agent network in contrast to the single robot case study evaluated by Halder et

al.

The research effort described in [34] is also strongly intertwined with the goals of

this work. The authors aimed to develop a framework to translate high level abstracted

UPPAAL models into the ROS environment. Much like this Thesis, the authors of the

paper ”seek to accelerate development cycle in transitioning from formally verified

systems to simulation” [34]. More pertinently, the scenario used for development is

a distributed drone network representing a typically Urban Air Mobility situation.

The paper referenced discusses the modeling of the distributed protocol from a formal

approach. The modeled distributed consensus protocol involves drones coordinating

to agree on which agent will satisfy a certain request established by a server. The

leader election is based on the shortest distance from each agent to the location to be

serviced.

The UPPAAL model created by the research group consists of four templates: Sen-

sor input, Drone, Server, and Input. The Input template randomly generates requests

to be serviced by drones and synchronizes with the Server template to pass on the re-

quest. The Server template is used by each drone to authenticate the service request,

and also triggers the consensus mechanism for drones to decide who is to serve the

request. The Drone template models the distributed behavior of the drone network.

14

Firstly, it conducts initial drone checks to determine if they are ready for the mission.

This is when the Sensor Input template comes into play. Then the Drone template

also models the calculation of the shortest distance to the service request and finally

determines which drone is closest based on consensus. The Drone template can be seen

in Figure 4.6 below.

Figure 2.5: Drone Template [34]

Although the research effort concluded on a manual translation from UPPAAL

to ROS, the paper thoroughly describes the translation process. The authors first

address the translation of global variables used in UPPAAL to ROS. They identified

the ROS counterpart to be the parameter server, which stores all the shared variables.

The implementation for the translation of global variables involved storing these in a

YAML file which was loaded at runtime through path specification in ROSlaunch file.

This allows any node within ROS to have access to the global shared variables. Figure

2.6 shows the global variables in UPPAAL (top) and their translation as declared in

the YAML file (bottom).

Next, the research work addresses the translation of UPPAAL templates (transition

systems) and local declarations. Their approach involved creating two distinct C++

files, one for the local declarations and one for the logic represented by the transitions

between nodes. The translation of the UPPAAL local declarations was achieved by

15

Figure 2.6: Global Variable Translation [34]

creating classes with public and private variables or functions. The mapping in this

case was straight forward given that the UPPAAL local declarations are formatted

in C. According to the authors, the only challenge with this part was choosing the

appropriate data structures to go with each C declaration. For example, they chose to

represent arrays from the UPPAAL declarations as C++ vectors. If any of the classes

representing local template declarations needed the ability to read or write to global

variables in the parameter server, they were assigned a private ROS Node Handle. An

16

example translated class for the Server template can be seen in Figure 2.7.

As the paper explains, the only data type from the UPPAAL declarations that

does not directly map to a C data type are is channels. The research team successfully

modelled UPPAAL synchronization channels in ROS by declaring a global integer

which would only have values 0 or 1. The corresponding ROS nodes which need to

listen to this ”channel” achieve it using the ”while(ros::ok())” loop. Executions are

triggered when the integer value is set to 1. States in the timed automata model were

represented using Boolean variables.

The complimentary file representing each UPPAAL template was used to instantiate

the template classes, and also represent the logic defined in the transition diagrams.The

guard conditions represented on the edges of the timed automata network were repre-

sented using if-else-if conditional statements. When these statements involved global

parameters, the authors utilized the node handler methods inherent to ROS, set and

get. These files were executed in ROS by spawning them as ROS nodes defined in

the launch file. The mapping was taken directly from the System Declarations in the

UPPAAL model.

The research team concludes by identifying key limitations in their approach to the

problem. The main one is that the translation task is not automated which can result

in slow and tedious development. The main goal of this Thesis is to improve on these

aspects and achieve a automatic verified framework to go from a verified UPPAAL

model to an implemented ROS simulation. Another key limitation identified by the

research group is that the correctness of the translation from UPPAAL to ROS was

not verified.

Another work related to this Thesis is “On the robustness of consensus-based be-

haviors for robot swarms” by Majda Moussa and Giovanni Beltrame [30]. The work

presented focuses on using statistical model checking to model and assess the robust-

17

Figure 2.7: Server Template Translation into C++ Class [34]

ness of consensus based behavior from a communication standpoint. The approach

was validated using two swarm scenarios: leader election and allocation of tasks. The

authors argue that very few works use formal methods for evaluation of robustness of

robotic swarms as critical systems. They claim to bridge the gap by providing method-

ology for the formal modeling of algorithms which implement consensus. The focus of

the work is on robustness which is defined as the degree to which the system keeps

its tasks in the presence of partial failure or other abnormal conditions (bugs, crash,

18

network issues). A novel formal model of generic consensus system, called Virtual

Stigmergy (VS), is built to ensure its robustness to packet drop probability and robot

failure probability.

The first (simpler) scenario evaluated is that robots must agree on the highest

value of a given parameter (electing leader). Then, the complex scenario is based on

partitioning of a set of tasks based on a bidding approach. The main assumption behind

this work is that robots failing is equivalent to robots going out of communication

range. Under this assumption, the abstraction level allows the authors to ignore the

exact position of robots for modeling purposes. The research group’s approach is

using the UPPAAL statistical model checking tool (SMC UPPAAL) and modeling

systems as a network of priced timed automata PTA. These are automata extended

with clocks, clock rates, probabilistic delays, and weights. Where Clocks measure the

delay between different actions in the model, evolve synchronously and continuously,

while Clock Rates quantify the clock evolution in the different states of the model.

Figure 2.8: Swarm UPPAAL Model [30]

The authors of the paper used two strategies to model consensus problems. The

19

first strategy was to model an individual agent template where a swarm of n robots

is represented by a network of n identical PTA. This first modeling strategy provided

insight of agent interaction using broadcasting channels but resulted to be less scalable

because of state space explosion. The second strategy was a Swarm based model

where a single template represents the swarm network as one automaton. Although

this model resulted to be less expressive it reflected better scalability because there

was no state space explosion. Both models were validated successfully using the leader

election scenario where conflicts in consensus did not arise. Their UPPAAL model

representing a Swarm in a single template is shown in Figure 2.8.

The main difference between [30] and this Thesis is that the authors of the paper

summarized above relied on Statistical Model Checking as means of probabilistic veri-

fication. What is more, their simulations were implemented in the Buzz programming

language and using the ARGos physics simulator. It is also important to note that

their implementation of the verified model was done manually and not through an

automated process.

Another paper surveyed for this project was “Analyzing robot swarm behavior via

probabilistic model checking” by Savas Konur, Clare Dixon, and Michael Fisher [22].

This research paper explores the field of probabilistic model checking by an examination

of state based control algorithms in of foraging robots. The authors target existing

robot swarm algorithms for foraging robots, describe the control algorithm within each

robot as a probabilistic model, and then automatically analyze all possible runs through

a system of multiple robots using the PRISM model checker. While individual robot

properties could have been verified, the focus was placed on the overall swarm behavior.

According to the authors, the major contribution was to explore formal verification of

probabilistic and population based models of swarm behavior via model checking.

Since robot control algorithms usually require not only the formalization of temporal

20

behavior (standard model checking), but also uncertain behaviors, the research group

used the probabilistic model checker Prism. This model checker supports probabilistic

queries as well as quantitative structures defining costs and rewards.

The researchers took two approaches to modeling the system: Microscopic and

Macroscopic [22]. In the Microscopic or agent based model, each robot was modeled

in detail and the Swarm model was constructed from the product of all the individual

robot models. On the other hand, the Macroscopic or population based model, ab-

stracts away from details of individual robot behaviors and models the population as

whole.

Specifically, the Microscopic approach consists of instantiating the transition sys-

tem for each robot in the swarm, and taking the product of all these to provide overall

swarm behavior. Global variables are used to calculate the number of robots at each

state at any time. Although this is a good approach to observe behavior of single

agents, it proved to be inefficient because the product of the state space quickly caused

state explosion. What is more, as the researchers concluded, verification of proper-

ties became even more computationally intensive, and memory requirements rapidly

became unsatisfiable.

On the other hand, the Macroscopic approach consisted of implementing the count-

ing abstraction approach. This is also called population model and it is particularly

useful if there are many identical independent processes. It allowed the group to ab-

stract away from low level probabilistic details and just consider global population

behavior. Since each robot considered was identical, the system was modeled by one

state machine. A counter was added to each of the states to record how many robots

were actually in that state at any given moment.

Another useful concept introduced in this paper was swarm energy. The team

quantified energy or battery consumption of each robot for each time step. The paper

21

also explored collision avoidance by having additional states associated with each of

the agent states. The transition diagram for their system can be seen in Figure 2.9.

Figure 2.9: Swarm Probabilistic State Machine [22]

The most obvious difference between the paper introduced above and this Thesis

is that the research team in [22] did not use the UPPAAL model checker but rather

used Prism. This goes hand in hand with their use of probabilistic model checking

for verification of their system. What is more, unlike the goal of this work, they did

not implement the verified swarm model in a physics simulator but instead relied on

statistical simulation.

The last paper reviewed as background research for this Thesis is ”Verified ROS-

Based Deployment of Platform-Independent Control Systems” [28]. The authors of the

paper focus on low level robotic system performance verification. They attempted to

verify that internal system command messages (control code) in a robot are correctly

delivered to the corresponding sensors or actuators in the robot. In order to verify that

the system behaves as expected they created a tool to automatically create ”glue code”

22

(wrappers for platform-independent component implementation) from the architectural

model of the target system. This architectural model is specified using a domain-

specific language called ROS node model, which specifies the ROS nodes and topics

that make up the robotic system.

As a case study, the paper outlines the use of ROS where they prove that the code

generated by their ROS-Gen tool correctly connects the system controller functions

to sensors and actuators. Their code generator is implemented using the Coq formal

proof management system, the CompCert compiler verifier, and the Verified Software

Toolchain (VST) tools. The robotic system used as a case study in this work is a cruise

control system for the LandShark robot. The control system achitecture for this robot

can be seen in Figure 2.10.

Figure 2.10: LandShark Robot Control System Architecture [28]

The outline of the code generation process is seen on Figure 2.11. The process

begins with the modeling of the ROS system definition using the ROSLab modeling

23

tool. This tool lets users represent a target system architecture using block diagrams,

which can then be exported as a ROS node model as introduced above. The model

is then used as an input to the tool created by the research group, ROSGen, which

produces an abstract syntax tree for Clight (subset of C) by instantiating a Clight

AST template. Their tool also generates a VST specification that describes the Data

Delivery Correctness (DDC) properties. Finally, the C code that rus on the LandShark

robot is created by the CompCert compiler.

Figure 2.11: Code Generation Process and Tools [28]

One of the most important DDC properties of the generated code verified by the

outlined approach is that the message going from sensors to the control functions are

correctly delivered, and that the output of the control system functions are correctly

delivered to the actuators.

The paper summarized above is differs from the goals of this Thesis because they

focus on lower lever verification of internal communication parameters. Their approach

does not include the use of the UPPAAL model checker, and it does not involve the

direct translation of a verified model to ROS. However, it does involve some automation

in going from a diagram of a system to implementable C code.

24

Chapter 3

Research Methodology

The following Sections provide a summary of the framework implemented in this work

to model, verify, and simulate a swarm of UAVs. The formal model is also briefly

explained alongside the assumptions considered in the modeling process.

3.1 Problem Statement Elaboration

The framework introduced in this work facilitates the path that developers take when

going from a formal model to a low-level implementation. The practice of modelling

and verifying software systems prior to implementation has been proved to be signif-

icantly beneficial in cost and error reduction, as introduced in Chapter 1. However,

the process is rarely used by development groups because time is typically scarce. Al-

though the benefits of modeling and verifying a software system usually justify the

time investment, it is rarely seen in today’s technology scene. The work that follows

shows a direct mapping algorithm to implement a system modeled in UPPAAL, in a

ROS environment. The use of this method aims to reduce the burden and technical

challenges faced by developers when considering formal verification prior to low level

25

implementation of robotic systems.

3.2 Framework

As introduced in previous chapters, there are two principal tools or environments that

will be used in this work: UPPAAL and ROS. Concise definitions of these two software

environments are provided in section 1.3. The goal is to combine them into a single

process where a verified UPPAAL model can be fluently implemented in ROS based on

a direct mapping. The representation of the drones’ flight dynamics was achieved using

an open source Matlab code base developed by a research team from the Brigham Young

University. The authors published their work in the paper ”UAV Path-Planningusing

Bezier Curves and a Receding Horizon Approach” [16]. The output of the Matlab

script was used as an input global variable in the UPPAAL model. The purpose of

including the drone flight dynamics as calculated from the Matlab script is to make up

for the abstractions necessary for the formal model.

The UAV swarm model with its logical and physical interactions was developed

in UPPAAL. The system represents the behaviour of each drone as well as the com-

manding role of a Mission Controller. The tool was also used to elaborate and verify

properties that prove the correctness of the system. The model was developed us-

ing UPPAAL 4.1.24 on a Windows machine. As introduced earlier, the translation

of the formal model to ROS was partially automated using an open source GitHub

project named uppaal2ros [33]. The manual part of the translation, which encom-

passes the ROS nodes, targeted the representation of the timed automata logic with

easily traceable states. In order to visualize the ROS implementation, the system was

simulated using Ardupilot and Gazebo. The simulation environment was set up in an

Ubuntu 20.04 virtual machine with 12GB RAM, 6 processors, and 256 MB VRAM. It

26

Figure 3.1: Framework Diagram

was hosted in a Windows 10 system with 16 GB RAM, and Intel i7-3770 processor,

and a GTX 1060TI dedicated graphics unit with 6GB VRAM. The entire framwork is

summarized by the diagram shown in Figure 3.1.

3.3 Formal Model

In addition to the requirements outlined in section 1.2, there are numerous assumptions

and system design decisions that impacted the modelling of the system. As introduced

earlier, the scenario explored in this work is one where a swarm of drones is tasked

with extinguishing a wildfire. The location of the wildfire, represented as a red star on

27

Figure 3.2, is referred to as the ”goal location” and it is arbitrarily chosen before the

mission starts. The mission described here also involves a Ground Station entity which

is mainly tasked with communication. The drones that initially partake in the mission

are located near the Ground Station which means they are in the Ground Station

Range and they are aware of the goal location for the mission. As it was explained in

Section 1.2, these drones must posses the capabilities that are required for the mission

as dictated by the Ground Station. Some of the drone agents that will be considered

for the mission are initially located further away from the Ground Station and closer

to the fire location. These last group of drones which standby along the path of the

swarm, are not initially part of the mission but rather join the mission later if they

meet the requirements. In other words, the only drones that can initially join the

mission are the ones in range of the Ground Station.

Figure 3.2: Initial Mission Scenario

28

As depicted in Figure 3.2, not only the Ground Station has a defined communication

envelop but so does the leader drone once the mission is at at advanced state. This

range means that only drones within the range of the leader can join the swarm or

have the goal location relayed to them.

The mission begins with all drones idling on the ground. Three drones, located near

the ground station, are initialized to be part of the swarm. Once the group is formed,

the consensus algorithm gets triggered to elect a leader agent. The elected leader

must have the capability of communication, which is crucial to be able to relay critical

mission information once the swarm moves out of Ground Station Range. Any agents

that join the swarm later in the mission must not only match the capabilities initially

stated, but also have better battery status than the drone with the same capability

that is currently part of the swarm. All drones that join the swarm anywhere along

the path are also elected through a consensus voting system and the drone that had

the same capability gets dropped from the swarm and returns to the idle state.

The movement of the swarm is led by the leader agent. The drone voted as a leader

is always the one that moves first, then triggering the movement of the rest of the

swarm. What is more, the drones move in a rectangular fashion, first aligning with

the target location on one axis and then starting to move in the remaining direction.

The trajectory style is repersented in Figure 3.3. After every movement cycle, the

surroundings are checked for agents that could join the mission. The election processes

involve each drone casting a vote and then comparing all the votes for consensus to

elect a new member or new leader.

29

Figure 3.3: Drone Trajectory

3.4 Assumptions

There are a number of assumptions regarding the system model that need to be ex-

plained before going into specifics. The total number of drones available in the mission

is eight, and only three of these are actively flying as part of the swarm at any point

during the mission. With respect to drone dynamics, their movement is defined in

two dimensions. Their position is defined by a set of x and y coordinates, while it is

assumed that they are flying at a certain height above the ground. This is also true for

the location of the fire to be extinguished by the swarm. The location of the ground

station is abstracted and assumed to be the same as one of the initial swarm members.

The end of the mission, and therefore the end of system execution, is given by the

swarm arriving at the fire location. Another assumption regarding the mission is that

there is only one drone of each required capability participating in the swarm at any

given time.

30

3.5 Translation

The translation of the UPPAAL swarm model to ROS is partially automated by using

the code generated from the work published in [34] and available in [33]. As explained

in Chapter 2, the code generator takes an UPPAAL XML file an input and outputs

automatically generated ROS compatible files in C++. Specifically, the cited work

generates a YAML file with all the UPPAAL global declarations, a ROS launch file

instantiating all the nodes corresponding to the UPPAAL system, and a base class that

contains all the local declarations for each template. The translation achieved by the

authors included a manual process for representing the timed automata logic in ROS.

The limitation in their work is that the states in the timed automata are not easily

mapped in ROS. Moreover, the implementation does not take full advantage of ROS

topics and the publisher subscriber architecture to represent UPPAAL synchronization

channels.

The work herein uses the automatically generated files mentioned above, while

extending the representation of the TA logic in ROS by addressing the outlined lim-

itations. The translation in this work maps states in UPPAAL by using a switch

statement and cases. The manual part of the ROS implementation also introduces the

use of publishers and subscribers by representing UPPAAL synchronization channels

as topics. The ROS implementation of the swarm model developed in this work is

explained in detail in Chapter 5.

31

Chapter 4

Technical Specifications

The following sections present the technical details of each of the system components

introduced in Chapter 3. The Matlab script used as an input to the UPPAAL model

to represent the autonomous agent’s flight dynamics is explained line by line alongside

the modifications introduced as part of this work in Sections 4.1 to 4.1.2. The basic

elements and structures of the UPPAAL modeling tool are also introduced to facili-

tate the understanding of the formal model. The global variables, templates (timed

automatons), properties verified and underlying code for the consensus protocol are all

explained in detail in Sections 4.2 to 4.6.

4.1 Matlab Drone Dynamics

As introduced in [3], the individual drone flight dynamics were calculated in Matlab

using an existing project developed by Ingersoll et al. The code developed in [16] is

capable of calculating 2D UAV flight trajectories around static or dynamic obstacles of

different sizes. Simply stated, the program outputs an optimized trajectory for a drone

to travel from an initial location to a final location while avoiding obstacles randomly

32

located in the path. This program fits the scenario represented in this work because

individual drone agents might encounter obstacles such as trees when trying to get

from point A to point B in a wildfire mission. The Matlab code was implemented

by adding a script that automates the variation of input parameters and records the

desired output for a given trajectory.

4.1.1 Inputs and Outputs

There are two types of output for the Matlab script, one of them is a visual represen-

tation of the trajectory the drone traces, and the other one is the numerical result for

time of flight, energy consumed, and distance travelled. The figure representing the

trajectory of the drone from a starting point to a desired target location also shows the

locations of the randomly sized and randomly placed obstacles that the drone avoids.

What is more, the path traced is color coded to represent the speed of the drone at

each point in the path. The nature of the path that the drone takes is determined by

the objective function chosen by the user. This is one of the most important input

parameters for the script, which decides if the distance traveled, the energy spent, or

the time of flight should be optimized. A sample drone trajectory as described above

can be seen in Figure 4.1. The reason why most of the trajectory is colored in yellow

(which corresponds to the maximum speed of the vehicle) is that the algorithm is set

to optimize time. As such, the drone flies as fast as possible wherever possible. It can

be seen that in one of the turns around an obstacle, the velocity is decreased and the

path is colored green.

The input parameters for the Matlab script are seen in Appendix A. The global

variables used in the code are defined in lines 20 to 45. Lines 47 to 66 contain the

variables for setting the algorithm options. For example, line 50 is used to define if

the trajectory optimization should employ a genetic or evolutionary type of algorithm.

33

Figure 4.1: Sample Drone Trajectory Optimizing Time [16]

Line 52 lets the user include dynamic (moving) obstacles in the drone path scenario.

In this application of the scripts both of these variables were set to 0, which means

these features were not used. The most important set of parameters in these lines of

codes are the configuration of the objective function in lines 60 and 61. If the variable

optimize energy use on line 60 is set to 1, then the trajectory is optimized for the

lowest energy use possible. Instead, if the variable optimize time on line 61 is set to

1, then the trajectory is optimized to give the fastest travel time. Finally, if both of

these variables are left to be 0, then the distance traveled by the drone is minimized.

Lines 66 to 102 on Appendix A contain settings for the output plot showing the

optimized trajectory. The visualized colors, line width, thickness, and some physical

parameters like UAV limit of sight can be modified.

Further along the code, between lines 115 and 185, a number of physical drone

parameters are defined. For example, line 119 defines the weight of the UAV and

line 121 defines the Oswald aerodynamic efficiency factor. Line 160 sets the vehicle’s

34

turn radius, while lines 163 and 164 set the UAV’s maximum and minimum speeds,

respectively. Line 174 establishes the wingspan of the vehicle modeled in the script.

The drone’s starting position for the trajectory is set in line 181 of the Matlab script.

The final position that the drone must get to for the trajectory to be complete would

be declared on line 182. However, in the implementation used for this work, this line

was commented out. The reason for this is that the script is run on a loop iterating

over increasing final positions. This allows us to retrieve the time the drone takes to

travel to several different locations. On line 184, the script defines the radius of the

landing zone, which must be less than or equal to 15.

Lines 187 to 205 of the Matlab script shown on Appendix A define the charac-

teristics for the static obstacles that are spawned in the field. On line 199, one of

the modifications made for the purposes of this study is that the number of obstacles

spawned on each run of the script is proportional to the magnitude of the drone’s tar-

get location. This is to represent the situation where the further a drone travels in a

fire rescue mission, the more obstacles it might encounter in its path. Line 200 of the

script randomly selects coordinates for the static obstacles in the trajectory. Another

modification was added here to correlate the obstacle locations to the set final desti-

nation. This was done to be able to spawn obstacles all along the path of the drone

while the target destination increases in magnitude. Another randomized quantity is

programmed on line 204, which represents the size of the obstacles spawned. This

allows to have different sizes of obstacles about the trajectory.

The trajectory calculation algorithms are implemented between lines 236 and 445.

The final output plot for the trajectories calculated are introduced on line 446. Finally,

the comparison between the trajectories optimized for time, distance, and energy is

output through line 499 which calls another script called compare of. The time for the

trajectories is retrieved from this script and saved for use in UPPAAL.

35

4.1.2 Matlab Script Modifications

The script included in this section was added to expand the existing Matlab code base

developed by Ingersoll et al. The purpose of the file added is to automate the running

of the script so that on each run the trajectory’s final position is incremented. The

script is shown on Figure 4.2 below.

Figure 4.2: Script Added to Matlab Code-base

Simultaneously, the script saves the time of flight for each trajectory in an array.

The data in this array is printed in a statement, as seen on Figure 4.3, that can be

copied and pasted into the UPPAAL model before running it.

Figure 4.3: Time of flight for different trajectories

36

4.2 UPPAAL Description

As introduced in Section 1.3, UPPAAL is a tool used to model real-time systems as

networks of timed automata extended with data types, with the possibility of then

validating and verifying the system behaviour. The tool is used in this work because it

is appropriate for systems that can be represented as a collection of non-deterministic

processes with finite control structure communicating through channels or shared vari-

ables [21]. The version of UPPAAL used in this work was 4.1.24. This section aims to

provide basic background knowledge to understand UPPAAL models.

Figure 4.4 shows the file structure for UPPAAL projects. They are composed of

Global Declarations, one or more Templates, and System Declarations. Each Template

is made up of two parts: a timed automaton and local declarations. The timed au-

tomaton is represented as a graph with a set of states and transitions, while the local

declarations are essentially a file with variable and function definitions. System Dec-

larations can be thought of as another file in the working tree where the composition

of the system is defined. This involves instantiating each of the Templates developed,

allowing to pass any required arguments, as well as defining which objects will compose

the entire system. An example of System Declarations is explained in Section 4.4.

Figure 4.4: UPPAAL Project Structure

Global declarations, as the name suggests, are globally accessible by all templates

in a system. These can read and write global variables at any stage of execution. On

the other hand, local declarations are tied to individual templates. The functions and

37

Figure 4.5: Edge Annotations

variables defined within are only accessible by the template they are attached to. In

this work, all variables are defined as global in the global declarations section while all

functions are defined in each template’s local declarations. Finally, variables passed as

parameters to the templates in the system declarations can be used within templates

as well.

Timed automatons are represented as a graph composed of states and edges. States

are seen as blue circles with red font labeling. Initial states can be identified by states

with two concentric circles. Edges or transitions are shown as arrows going from state

to state or looping back to the same state. The logic of the transitions taken through

the graph lies on the edges themselves which, as shown on Figure 4.5, can be populated

38

with Selections, Guards, Synchronisation, and Updates.

According to the UPPAAL Language Reference guide, selections non-deterministically

bind a given identifier to a value in a given range [21]. Guards are conditions that enable

transitions from one state to another if an only if they evaluate to true. Synchroni-

sation channels are the mechanism through which processes synchronize. Practically

these are used to trigger actions or transitions in another template or process. If the

synchronization variable is accompanied by an exclamation sign then it sends a signal

to all edges labeled with the same variable but accompanied with a question mark.

Finally, updates are a consequence of taking the transition where the expression in

them gets evaluated. The system developed in this thesis does not include the use of

Select edge annotations.

Another of the main features included in the UPPAAL tool is the Verifier interface.

It is used to check properties of a system that can be related to safety, liveness, reach-

ability, deadlock, etc. The method is uses to verify if a certain property is satisfied or

not, is state-space exploration. The Verifier is ideal for specifying, verifying, and docu-

menting system requirements for traceability purposes. UPPAAL uses the requirement

specification language to allow the user to input properties. This is further explained

in Section 4.6.

4.3 UPPAAL Global Declarations

Global variable definitions are extensively used in this work to represent different drone

qualities and states. The workings of the system developed are based on accessing and

modifying different global arrays through functions that define the swarm behaviour.

Lines 4 to 123 of the XML file presented in Appendix B show all the global variables

defined as part of the system. These are explained below.

39

The comm reach variable on line 8 represents the communication range of the

drones. Only drones within this range from the swarm leader can join the swarm.

The time to swarm array is created based on the output of the Matlab script de-

scribed in the sections above. The values represent the time for a drone to join the

swarm based on how far it is from the leader. The distance is represented by the array

indices where the first element represents a distance of 1 meter, and the last element

represents a distance of 10 meters (the maximum communication range). Lines 16 and

19 respectively represent the variables that hold the total number of drones and the

number of drones needed for the missions. Line 22 is a variable that keeps track of the

swarm leader’s position. The goal integer variable on line 28 defines the end location

for the swarm to achieve its mission. It would represent the location of the fire in the

fire rescue mission scenario.

Line 41 defines the drone status array which reflects the status of each drone (ac-

cording to the array index) at all times during the mission. The status of a drone can

be -1, 0, or 1 which corresponds to in swarm, not in swarm, and leader respectively.

In a similar fashion, the arrays defined on lines 44, 54, 55, and 67 represent drone

parameters like battery level, location, and capabilities.

The arrays and variables defined on lines 48, 81, 84, 87, 89, 92, and 95 are all

relevant to the consensus protocols for new member and leader elections. For example,

the drone candidates array represents the drones that meet the requirements to join

the mission in lieu of other drones that are currently flying. The arrays named votes

and member votes represent the votes cast by flying drones to elect new members and

leaders.

40

4.4 UPPAAL Template Descriptions

Figures 4.6 and 4.7 show the UPPAAL templates representing the swarm system de-

veloped for this work. The system XML file exported from UPPAAL is provided in

Appendix B. The system is defined as outlined in Figure 4.8, which shows that there

are 8 Drone template instances and a single MissionControl template instantiation.

The Drone template shown in Figure 4.6 is instantiated 8 times which means that

the system is composed of 8 drones each of which can be at any of the states seen on

the template at any time. The timed automaton’s initial location is identified by the

double lines around the state ”Idle”. At this state, the drone in question is on the

ground and does not participate in the mission. As described in Section 3.4, only three

drones fly as part of the swarm at a time which means that most of the drones will

remain at the ”Idle” state for the larger part of system execution.

Figure 4.6: UPPAAL Drone Template

As seen on Figure 4.6, only those drones that are part of the swarm move from the

Idle state to the InSwarm state. This check is represented by the guard condition on

the corresponding edge, which calls the function in swarm seen on lines 138 to 140 of

41

the XML file presented in Appendix B. The function takes a drone id as input and

returns its status as described by the global array drone status.

Once the three drones that partake in the mission area at the InSwarm state, there

are two election processes triggered. One of the elections pertains to choosing a leader

for the swarm while the other one checks if there are drones in range that would be

a better fit for the mission. These two election processes are represented by the two

edges that loop back to the InSwarm state. The functions that trigger the elections

are vote and vote member, both of which can bee seen on Figure 4.6. As explained in

Chapter 3, three drones are initialized as being part of the swarm, which means that in

the first iteration of the execution there is no member election held. The two election

protocols are further detailed in Section 4.5 below.

After the two elections are conducted, the mission will proceed with two drones in

the ”in swarm” status and one drone in the ”leader” status. The drone elected as leader

will take the transition from the state InSwarm to the state Leader. The function that

enables the transition of the leader drone to the Leader state are is leader, which is

seen on lines 133 to 135 of the XML file included in Appendix B. Next, the leader

drone goes through the move loop which involves the transition to the WaitingSwarm

state and back to the InSwarm state. Similarly, the drones in the swarm that are not

leaders go through the smaller move loop which involves the UpdatingLocation state

and back to the InSwarm state. The move loop transitions are only taken by drones if

the swarm has not arrived at the goal location which is verified through the function

swarm reached goal defined on lines 157 to 168 of the UPPAAL XML file. All drones

move by calling the move function which is defined in lines 211 to 226 of the XML

file. At this point the process starts again where an election for new members and an

election for leader is held, and then the drones move once more. Whenever a drone is

dropped from the swarm during the mission, it takes the transition from InSwarm to

42

the Idle state. Finally, when any drone reaches the mission goal location, it takes the

transition from InSwarm or Leader states to the Idle state.

Figure 4.7: UPPAAL MissionControl Template

The second UPPAAL template created as part of the Swarm system is the Mission-

Control template shown in Figure 4.7. This timed automata represents a controller

entity that manages missions states and triggers drone actions. The template execution

begins at the start state labeled Start and shown with the two concentric circles. The

first transition is not guarded by any conditions but it does update the goal location

variable. The purpose of this is to represent the mission control entity relaying the

information for the drones to learn where the fire is located. The next state for the

controller is CheckMembers, where the controller checks if there are any members near

the swarm that are potential candidates to join the mission. The transition triggers the

function possible member, defined on lines 495 to 506 of Appendix B, which populates

the global array drone candidates as explained in Section 4.3.

At the ElectMembers state the template takes a self loop to trigger the member

election process in the swarm. This is achieved through the synchronization chan-

nel named member election!. The next edge towards the UpdateMembers state calls

the function elect members, seen on lines 542 to 570 of Appendix B. This function

determines the outcome of the member election by replacing an existing drone with

the newly voted member. The next transition simply synchronizes with the Drone

43

template to update the status of the drones that were added and removed from the

swarm.

In the same manner as in the ElectMember sate, once the mission is at the Leader-

Election state the self loop commands the drones to elect a leader for the swarm. After

voting, if the vote counter variable equals the required number of votes (equal to the

number of drones currently participating in the mission), the next transition is taken.

At the same time, the elect leader function declared on lines 521 to 529 of the UP-

PAAL XML file processes the election results. This means that at the MissionStarted

state the swarm is composed by a leader drone and two loyal wing-man drones. At

this stage there are two possible transitions, one looping back to the CheckMembers

sate, and another one leading to the MissionAccomplished state. The former is taken if

the drones move closer to the goal and send a signal over the synchronization channel

location updated. On the other hand, if the function swarm reached goal introduced

earlier returns true, the mission is completed and the controller proceeds to the Mis-

sionAccomplished state. This transition also sends a synchronization signal over the

mission end channel for the drones to shut down and return to the Idle state.

Figure 4.8 shows the UPPAAL system declarations which define how the templates

introduced above are instantiated. The code snippet shows 8 instantiations of the

Drone template and 1 instantiation of the Mission Control template. The parameters

passed to the Drone template are the drone id, its capability, and its battery status.

These are used in the Drone template as part of guard conditions, and as inputs to

functions. The last line in the declarations defines the system as being composed of

each of the 8 drones and the mission control entity.

44

Figure 4.8: UPPAAL System Declarations

4.5 Election Protocol

Section 4.4 explains the two different election instances that get triggered repeatedly

during the execution of the swarm mission. The first one is the member election process,

which is responsible for choosing drones that are more suitable for the mission than

the ones currently involved. The second election process is the leader election which

concludes with the election of a single leader out of the drones flying the mission. The

remaining of this section shows and explains the functions used in both the Drone and

MissionControl templates to represent the election protocols.

The first step before the system elects new swarm members is checking for new drone

candidates. This is achieved through the function possible member() defined in lines

495 to 506 of Appendix B, which is called over the edge leading to the ElectMembers

state as shown in Figure 4.7. The function includes drones in the candidate list if

they are not part of the swarm, have more than 50 units of battery, are within reach

of the swarm, and their capability is needed for the mission. After the function is

45

executed, the drone candidates array has a 1 in the elements representing drones that

are candidates to join the swarm.

Figure 4.9 shows the function that the drones call to cast their vote for new mem-

bers. The routine finds the drone from the candidates list that would take the least

time to arrive at the swarm location according to the flight dynamics defined in Section

4.1.2. Furthermore, if that drone also has better battery status that the drone with

the same capability currently in the swarm, then the vote is established.

Figure 4.9: Member Election Function

Once all drones submit their votes for new members, the elect members function is

called by the MissionControl template on the transition towards the UpdateMembers

state. This function processes the election results by calling the function voting results,

shown in Figure 4.11, which makes sure all drones agree on the new members. If

the function that processes the votes returns false, which means that consensus was

achieved, then the new drone is assigned to the swarm and the replaced drone is

dropped.

46

Figure 4.10: Member Election Results Processing

Figure 4.11: Checking for Consensus

Analogous to the method for electing new swarm members, the drones in the swarm

elect a leader using three functions. When the drones are in the InSwarm state and

47

the MissionControl entity is in the LeaderElection state, the controller synchronises

with the drone through the election channel. This triggers the drones to take the edge

that has the function vote, which is shown below in Figure 4.12. The function allows

drones that are in the swarm to vote for any one drone that is also in the swarm and

has communication capabilities. This is because, as defined in Chapter 3, the leader

drone must have communication capabilities.

Figure 4.12: Leader Election Function

Once all the drones in the swarm vote for a leader and the MissionControl pro-

cess takes the transition towards the MissionStarted state, the function elect leader is

called. This function, shown in Figure 4.13, checks if all the votes match by calling

the voting results function explained above. If the function returns false, meaning that

consensus was achieved, the leader drone is assigned a status of 1 in the drone status

global array.

48

Figure 4.13: Leader Election Results Processing

4.6 Properties Verified

One of the most powerful features within the UPPAAL model checker is the Verifier.

This is the interface where queries or properties about a system’s behaviour can be

defined and checked exhaustively. In the case that a property is not satisfied, the tool

is capable of returning a Trace that shows the system’s execution path as a counter

example. If the property being verified is satisfied the interface shows a green circle as

seen in Figure 4.14, otherwise the circle turns up red. The tool also outputs the time

and memory used by the computer to achieve the verification of each property.

The symbolic queries used in the UPPAAL Verifier are based on the requirement

specification language. The four main symbols that are used in specifying properties

are: ”E” which means exists a path, ”A” which means for all paths, ”[]” which

represents all states in a path, and ”<>” which represents some state in a path. The

semantics of this language are summarized in the following temporal properties which

49

Figure 4.14: UPPAAL Satisfied Properties

assume that p and q are state properties related to the project’s Templates containing

timed automatons.

Possibly: The expression E<>p represents that it is possible to reach a state in

which p is satisfied. This means that p is true in at least one reachable state.

Invariantly: The expression A[] p represents that p holds invariantly, it is true in

all reachable states.

Inevitably or Eventually: The expression A<>p represents that p will inevitably

become true in some state of all paths. The system will eventually reach a state in

which p is true.

Potentially Always: The expression E[] p represents that there is a path in

50

which p holds in all states.

The last construct in the UPPAAL requirement specification language is the symbol

”–>” which represents the condition ”leads to”. The statement p –>q means that if p

becomes true, then q will inevitably become true. It is equivalent to the expression A

[] (p imply A <>q).

The properties represented above as p and q can contain logical expressions using

any of the global variables defined in the system, any particular state, or the deadlock

condition. States are expressed in the form P.L where P is a process (instance of

a template) and L is a state in the template’s automaton graph. Furthermore, the

property can be defined as deadlock, which would evaluate to true if and only if there

is a state where there are no action successors.

The properties verified for the swarm system modeled in UPPAAL are shown below

and can also be found in lines 688 to 721 of Appendix B.

1. A[](vote counter == Needed || vote counter == 0)

2. A[] deadlock imply (MissionC.MissionAccomplished)

3. A[] ((drone status[0] + drone status[1] + drone status[2] + drone status[3] +

drone status[4] + drone status[5] + drone status[6] + drone status[7]) <= 0)

4. A[] ((abs(drone status[0]) + abs(drone status[1]) + abs(drone status[2]) +

abs(drone status[3]) + abs(drone status[4]) + abs(drone status[5]) +

abs(drone status[6]) + abs(drone status[7])) == Needed)

5. A[] forall : (i : int[0, 7])(drone status[i] == 1 imply drone capability[i] == 1)

6. A <> drone status[0] == 0 imply Drone0.Idle

7. A[] forall (i : int[0, 7])(drone status[i] == −1 || drone status[i] ==

1) imply drone battery[i] >= 49

51

Property 1. above verifies that the variable that keeps track of the swarm votes,

vote counter, is always equal to 0 or the quantity Needed, which represents the number

of drones flying in the swarm. The symbols signify that the property holds invariantly

in all reachable states.

Property 2. assures that whenever the system is in a state of deadlock, the mission

has been accomplished by the drones. This must be true invariantly in all reachable

states.

Property 3. corroborates that invariantly, in all reachable states, there is no more

than one swarm leader. The logic in the property is derived from the mechanism used

to identify the status of the drones. As explained in Section 4.3, the leader is assigned

a value of 1 in the drone status global array, while other flying drones get a value of

-1. Considering that the current mission is setup to have 3 drones flying at any time,

the total of the sum of the elements of the array must always be less than or equal to

0.

Property 4. proves that invariantly, in all reachable states, the number of drones

participating in the mission is equal to the value of the variable Needed, which repre-

sents the drones needed to carry out the mission. The logic is related to the explanation

provided above, where the sum of the absolute value of each drone’s status must be

equal to the value of Needed.

Property 5. verifies the correctness of the mechanism used in the election for a

leader. The query represents that invariantly in all reachable states, whenever a drone

is the leader and therefore has a status of 1, then its capability must be equal to 1

which represents communication. This requirement is laid out in Section 3.

Property 6. assures that whenever a drone is dropped from the swarm and its status

returns to 0 in the global array drone status, then is must eventually return to the Idle

state in the automaton graph. This must hold true in some state of all the paths.

52

Property Verification(s) Kernel(s) Elapsed(s)

Property 1 0 0 0.009
Property 2 0.016 0.015 0.025
Property 3 0 0 0.012
Property 4 0.016 0 0.006
Property 5 0 0 0.007

Property 6 0 0 0.002

Property 7 0.015 0 0.013

Table 4.1: Verification Time Metrics

Property 7. is also intended to verify the correctness of the consensus based election

mechanisms developed in this work. The statement represents that invariantly, for all

reachable states, if a drone is in the swarm either as a leader or as a wing-man, then

its battery status must always be larger than or equal to 49.

The Verifier interface includes a Status box, seen on Figure 4.14, which outputs

the status of the verification process for each query. This includes the processor time

usage which is divided into time used for verification, time used by the kernel, and

the elapsed time used [39]. Table 4.1 shows the time metrics for each of the queries

explained above.

The most computationally intensive verification was observed for property 2 which

took 0.016 seconds of verification time, 0.015 seconds of kernel time usage, and 0.025

seconds of elapsed time. The least demanding property was property 6 which only took

0.002 seconds of elapsed time.

53

Chapter 5

ROS Implementation

The details of the ROS implementation developed as part of the framework to port

the verified UPPAAL swarm model are explained in the following Sections. The main

ROS concepts used in the implementation are explained for the reader. Furthermore,

the ROS mapping of the UPPAAL structures are presented in tabular and algorithmic

formats.

5.1 ROS Concepts

The ROS platform has become the standard choice when developing robotic systems.

In 2019 alone it was downloaded more than 264 million times, attesting to its popu-

larity and practicality [4]. Currently, the ecosystem is only supported for Unix-based

platforms which is why a Virtual Machine running Ubuntu was used in this work. The

ROS distribution used was Noetic. ROS can be described as a robot middleware–layer

of software that provides services and capabilities not offered by the OS–typically used

as an open source framework to develop robot software [11]. The runtime architecture

is a peer-to-peer network of processes that are coupled using the ROS communication

54

infrastructure [10]. The two inter-process communication methods employed in this

work are the asynchronous data streaming over topics, and the data storage provided

by the Parameter Server. Furthermore, the language used for development is C++

which is enables by using the roscpp client library.

The broadest organizational unit in ROS software systems are Packages. They

include ROS Nodes, libraries, datasets, configuration files, and other system related

materials [11]. The purpose of packages is to provide useful functionality that can be

released and easily reused by other developers. Virtually, a Package is a directory that

has a package.xml file in it alongside other sub directories containing software.

The ROS Parameter Server is shared, multi-variable dictionary that allows data to

be stored in a central location. It is often used by nodes to store system parameters at

runtime, while still providing read and write access. The server is not intended to be

used for high performance execution, which is why it is typically used to store static

data [11]. In this work, the Parameter Server is represented by a YAML file.

ROS Nodes compose the robot control systems, they are the processes that per-

form computations or tasks. They communicate with each other through Topics or

Services where ROS Messages are relayed. The swarm model introduced in this work

is composed of multiple identical nodes representing each of the drones, and a node

that represents the Mission Controller.

ROS Topics are communication structures where messages are published so they

are available to other nodes based on subscriptions. Each topic represents a differ-

ent type of data, which means that they can have multiple publisher and subscriber

Nodes concurrently. The Nodes interacting with topics are not aware of the origin or

destination of the data, which means that the process is anonymous.

Messages are the data structures that get published onto ROS Topics. The system

developed herein only employs the standard primitive types–integers, float, bool, etc–

55

while custom defined structures are also acceptable.

Lastly, the ROS Master Node is a special Node that allows Nodes to find each other,

exchange messages, and invoke services. It provides naming and registration services

for regular nodes, and enables publishers and subscribers to recognize topics.

The interactions and architecture of the ROS concepts introduced above are repre-

sented visually in Figure 5.1.

Figure 5.1: ROS Communication Architecture [25]

5.2 Automated Translation

As briefly mentioned in Chapter 3, the ROS implementation of the UPPAAL swarm

model was partially automated using the work presented in [34]. The research team

published a GitHub open-source project [33] where some of the ROS files needed for

56

implementation are automatically generated based on an UPPAAL system XML file.

The details of the automatic generation process are explained in Chapter 2.

The proposed framework uses the automatically generated parameter server YAML

file and the ROS base classes to build a directly mapped ROS system.

Figure 5.2 shows the generated YAML file which can be directly mapped to the

UPPAAL Global Declarations described in Section 4.3. As introduced earlier, the

UPPAAL swarm model relies heavily on the use of global variables and arrays. This

is typically true for any system developed using the UPPAAL model checker. This

represents a challenge when porting the system to ROS because the parameter server

is not intended to be used for variables that change often. It is merely intended for static

variables that define configurations of the system. Nevertheless, the implementation

introduced here makes use of the parameter server as it is used in UPPAAL. Therefore,

the variables shown in Figure 5.2 are loaded into the ROS nodes initially but they keep

changing as the drones execute the mission.

The second set of files used in the ROS representation of the UAV swarm are the

generated base classes which correspond to each of the UPPAAL templates’ local dec-

larations. These files contain all the local functions used by each template’s timed

automaton graph in state transitions. For example, Figure 5.3 shows the translation

of the vote function defined in lines 230 to 242 of the UPPAAL XML file in Appendix

B. We can see that the automated translation leverages the use of the ROS func-

tions getParam and setParam to update global variable values. The first file is the

Drone base class.cpp and the second file is the MissionControl base class.cpp, each of

which correspond to the UPPAAL templates Drone and MissionControl. These files

are included in Appendix C.

A summary of the translation process, including both the automated and manually

elaborated parts, is shown in Table 5.1.

57

Figure 5.2: Automatically Generated ROS Parameter Server YAML File [33]

58

Figure 5.3: Base Class Voting Function Example

UPPAAL ROS

Global Declarations ROS Parameter Server (YAML)
Local Declarations ROS Base Classes
Timed Automaton ROS Nodes

Synchronization Channels ROS Topics
System Declaration ROS Launch File

Table 5.1: UPPAAL to ROS High-Level Mapping

5.3 Manual Translation

The representation of the logic in the UPPAAL timed automatons was translated to

the ROS system manually. The files created as a result correspond to each of the

ROS nodes instantiated as part of the system. These files, which can be considered

the ones that directly show the behaviour of the drones and mission controller, are

Drone.cpp and MissionControl.cpp. The low-level mapping of UPPAAL elements to

ROS is summarized in Table 5.2.

59

UPPAAL ROS

TA States Switch Cases
Channels! Publishers
Channels? Subscribers

Global Variables ROS Parameters
Guard Conditions If Conditions

Updates Function Calls/Set Parameters

Table 5.2: UPPAAL to ROS Low-Level Mapping

The most straight forward mapping between the two environments was to imple-

ment a switch statement where each of the automaton’s states is a case. Inside each

case, several nested if statements were introduced to represent the logic and actions in

the transitions of the TA. Specifically, the hierarchy of the nested if statements reflects

the order in which conditions are checked when a transition is taken in UPPAAL.

Transitions are first enabled by guard conditions followed by a synchronization

commands, as defined in Chapter 4. This means that, in ROS, the outer if statement

is conditioned by the same condition as the guard which is often a certain value for a

global parameter. Within that if statement, the program checks for synchronization. If

the UPPAAL edge contains a synchronization channel with a question mark, then it was

represented as a subscriber. On the other hand, if the edge contains a synchronization

channel with an exclamation mark, then it was programmed as a publisher. The topic

that these interact with simply carries an integer message with a 1. Consequently,

when the edge that sends the synchronization signal is taken, a 1 is published to the

topic where the subscriber node will read it and trigger an action.

In order for processes to wait for synchronization, two different while loops were

introduced. At the subscribing end, the program waits to receive the message from

the publisher. This is achieved by reading a variable off the callback function. On the

publishing end, the program waits for the subscriber to subscribe to the topic. This

60

was achieved by creating the subscriber within the first if block and shutting it down

at the end of it.

Finally, if both the guard and synchronization are met, the functions called in

the template’s edges as updates are invoked using the base classes introduced above.

The files representing the ROS nodes are Drone.cpp and MissionControl.cpp which are

presented in Appendix D. The logic followed to map the timed automaton states and

transitions to the C++ file representing ROS Nodes is specified in Algorithm 1.

61

1: Global V ars← {var1, var2, . . . , vari, . . . , varm}
where m = number of global variables in TA

2: Chan← {chan1, chan2, . . . , chann}
where n = number of synchronization channels in TA

3: for all i ∈ {1, . . . ,m} do
4: PSi ← vari;
5: end for
6: for all i ∈ {1, . . . , n} do
7: PubSubi ← chani;
8: end for
9: PS ← {P1, P2, . . . , Pm}
10: PubSub← {P/S1, P/S2, . . . , P/Sn}
11: for all j ∈ {1, . . . , p} do
12: Nj ← TAj ;

where p is the number of templates in TA
13: L← {loc1, loc2, loc3, . . . , locq}
14: for all k ∈ {1, . . . , q} do
15: STATESk ← lock

where STATE are Enum
16: end for
17: condj ← Gj ;
18: while(ros::ok())
19: switch (STATE)
20: for all STATES do
21: case STATE
22: Edge → {if {condj} then
23:24: PubSubj → publish()/callback()
25: A→ update{varj}
26: end if}
27: end
28: end for
29: end for

Algorithm 1: Generate ROS = (N,PS, PubSub) from TA =
(L, l0, V ars,G,Chan,A,Edge)

62

Chapter 6

Validation

The behaviour achieved through the framework to port the UPPAAL system to ROS

is validated by means of 3D simulation. The following Sections explain the expected

behaviour based on the UPPAAL system, the simulation environment setup, and the

results obtained in Gazebo using the ROS implementation.

6.1 Simulation Setup

The simulation environment used to validate the behaviour of the swarm based on the

ROS implementation comprises three interfaced components: ROS, Ardupilot, and

Gazebo.

Ardupilot is an open-source unmanned vehicle software suite or autopilot that

supports UAVs amongst a range of other systems [7]. The ArduPilot firmware works

on a variety of hardware units and can be coupled with ground control software to

add functionalities like real-time communication with operators [3]. The software can

be paired with multiple peripheral devices like sensors, companion computers, and

communication systems.

63

Gazebo is an open-source 3D robotics simulator which integrates real-world physics

through various physics engines to provide high fidelity simulations. Much like ROS

and ArduPilot it is composed of a collection of software libraries that simplify the

development process. The advantage of using Gazebo is that it offers integration with

a plethora of sensors and robotics hardware [29].

Software-in-the-loop (SITL or SIL) is a technique to test and validate software that

is intended to run on hardware, by creating a virtualized setup and simulating its

behaviour. Such simulations are a great way to find software faults without the need

to purchase any hardware and worry about physical damage [40]. It is commonly used

to simulate software for navigational purposes running on different types of vehicles

like cars or UAVs. One of the biggest advantages of using ROS, ArduPilot, and Gazebo

is that they congruently support SITL simulation.

Figure 6.1: ArduPilot SITL Architecture [3]

64

The ArduPilot project offers a build of its autopilot that gives a native executable

SITL simulator. This allows the Copter, Plane, and Rover versions of their vehicle code

to be run without any hardware other than a PC. When running a SITL simulation,

sensor data is received from a model of the vehicle in a flight simulator, and the

autopilot treats it as data coming from a real world vehicle. In this work, the simulator

integrated to the SITL simulation is Gazebo. Figure 6.1 shows the interfaces between

the autopilot stack (ArduPilot), the vehicle physics simulator (FlightGear or Gazebo),

and the ground control station applications (MAVProxy). Although the specific names

of the components do not match the ones used in this research effort, it can be seen

that an arrangement of UDP and TCP ports are used to establish communication links.

Furthermore, this figure does not show the integration of the ROS component.

The diagram in Figure 6.2 shows how the SITL Ardupilot architecture fits in with

the ROS middleware through the use of MAVROS. This is a ROS package that en-

ables MAVLink extendable communication between computers running ROS for any

MAVLink enabled autopilot, ground station, or peripheral [1].

Figure 6.2: SITL Simulation Setup [45]

The Gazebo simulator interfaces with the ArduPilot SITL instance through the

ArduPilot-Gazebo Plugin shown in Figure 6.2. Simultaneously, the interface between

Gazebo and ROS is faiclitated by the gazebo ros package. The setup introduced above

is thoroughly explained in a series of tutorial videos on the YouTube channel ”Intelli-

65

gent Quads” under the playlist named ”Drone Software Development Tutorials” [35].

Furthermore, their work is available on GitHub which has two ROS packages under the

repositories ”iq gnc” and ”iq sim” [36]. Both of these resources were used extensively

in this work to achieve the simulation setup described.

6.2 UPPAAL Symbolic Simulator

The behaviour of the UAV swarm model is best appreciated through the UPPAAL

Symbolic Simulator interface. It is a validation tool enabling the examination of the

possible dynamic executions of the system developed. It also helps the developer

visualize symbolic traces generated by the Verifier introduced in Section 4.6. This

means that if a property specified in the Verifier interface is not satisfied, the counter

example trace provided by UPPAAL will be visualized in the Simulator. The developer

is able to see exactly which path of execution lead to the unsatisfactory state.

Figure 6.3: UPPAAL Symbolic Simulator Snapshot

Figure 6.3 shows a snapshot of the UPPAAL Symbolic Simulator interface which

66

is made out of four panels. The leftmost one is the Simulation Control panel where

the state or transition desired can be selected and the current trace is displayed. The

second panel is Variables Panel where the value of each variable at the selected state

or transition is displayed. The top right panel is the Processes window where each

instantiated template and its current state is shown. The current control point of each

automaton is highlighted in red, as well as the currently enabled transition. Finally,

the lower right panel is the Message Sequence Chart where the the current state of

each process and the communication between them are shown.

6.3 Simulation Test Cases

The purpose of simulating the UAV swarm system using ROS and Gazebo is to validate

the implementation process explained in Chapter 5. The goal of the simulation is to

observe the same behaviour reflected by the UPPAAL model. The best way to observe

the behaviour of the verified formal model is through the UPPAAL symbolic simula-

tor introduced in Section 6.3. The expected behaviour is described in the following

paragraphs.

Initially, the UPPAAL model is loaded with the Global Declarations as shown in

Figure 6.4. The first validation task is checking if these are correctly loaded and

accessible by the simulated drones in the ROS Parameter Server.

Based on the explanation provided in Chapter 5, the Global Declarations were

mapped to the ROS Parameter Server. The variables in the server can be listed by

using the command ”rosparam list” while the system is running. The output is shown

in Figure 6.5.

Regarding the drones, the first scenario to validate is the initial swarm members.

Figures 6.6 and 6.7 reflect that the two drones that get initially assigned to the swarm

67

Figure 6.4: UPPAAL Global Parameters

Figure 6.5: ROS Parameter List

are drones number 0, 2, and 3. This is also reflected in the ROS environment where

drones 0, 2, and 3 takeoff because they are in the switch case for the InSwarm state.

The simulation is shown in Figure 6.8.

68

Figure 6.6: Drone 0 and Drone 2 Initially In Swarm State

Since the members are already assigned from the start of the mission, the member

election process is not shown. The second step is the leader election process. Figure

6.9 shows that the first leader elected is drone number 0. This can be seen in the array

votes where elements 0, 2, and 3 are 0 and also in the check votes array where all the

69

Figure 6.7: Drone 3 Initially In Swarm State

Figure 6.8: ROS Drones In Swarm

members of the swarm agree to drone 0 being the leader.

Figure 6.10 shows that drone 0 is the one that moves to the Leader state. It can

also be seen that the transition to move is enabled, showing that the leader always

70

Figure 6.9: First Leader Election Votes

moves first. Similarly, the behaviour is observed in the Gazebo simulation as depicted

in Figure 6.11.

Figure 6.10: Drone 0 Elected Leader

The drones then keep on moving in a loop until one of the conditions that requires

a new drone in the mission is met. Figure 6.12 shows that the battery level of drone 0

falls below 50. This means that it needs to be replaced with a new member that is close

by, has the same capability, and has more battery. These conditions are met by drone 7

which gets elected as the new member as dictated by the consensus process. The array

check member votes shows that all drones vote for 7. Furthermore, the drone status

71

Figure 6.11: Drone 0 Leader in ROS

array shows that element 0 is set to 0 and element 7 is set to -1. This means that drone

0 returns to the Idle state while drone 7 is now in the swarm. Figure 6.13 shows that

the timed automaton for drone 0 returns to the Idle state as expected.

Figure 6.12: Drone 7 Elected As New Member

72

Figure 6.13: Drone 0 Idle State

Following the member election, the swarm elects a leader. In this case, the newly

added member, drone 7, gets elected as leader. Figure 6.14 shows that the global arrays

are updated to reflect the results of the election. The status of drone 7 is updated to

1. Figure 6.15 shows that drone 7 proceeds to the Leader state.

Then, the drones keep moving through the timed automata loops. Figure 6.16

shows that after several iterations, the leader drone which is still drone 7, line up with

the target on the x axis.

Drone 7 below 50 batter gets dropped, drone 1 becomes member Eventually, drone

7 runs low on battery and its level goes below 50. As such, it gets dropped from the

swarm and drone 1 joins instead, after being elected as new member. Figure 6.17 shows

the drone status array where element 7 is set to 0 again and element 1 is set to -1.

At the next step of system execution, drone 1 is elected leader. This is seen on

Figure 6.18 which shows the state of each process in parallel.

73

Figure 6.14: Drone 7 Elected Leader

Figure 6.15: Drone 7 Leader State

74

Figure 6.16: Drones at Position 60 in x

Figure 6.17: Drone 7 Dropped from Swarm and Drone 1 Joins

The drones then continue the mission in the same configuration until they arrive to

the goal location. Figure 6.19 shows that drone 3 is the first one to arrive to the end

location. Notably, this is not the leader drone. This situation arises because the last

drone to join the swarm, which became leader, joined from a position behind the rest.

Finally, Drone 3 waits for the other two drones to arrive at the goal location which

culminates the mission. The simulation outcome is shown in Figure 6.20. The same

75

Figure 6.18: Drone1 Becomes Leader

Figure 6.19: Drone 3 Arrives at Goal First

scenario for UPPAAL is shown in Figure 6.21 which reflects the the state of the mission

controller is MissionAccomplished. At the same time, all drones transition to the Idle

state.

76

Figure 6.20: ROS Drones at Goal

Figure 6.21: Mission Accomplished

77

Chapter 7

Conclusion and Future Work

The following sections summarize the outcomes of the presented work addressing the

limitations and improvements possible for future work.

7.1 Conclusion

In conclusion, the work presented in this thesis showcases a framework to guide the

implementation of a verified UPPAAL model in ROS. The framework would be appli-

cable to systems that represent robotics applications where each UPPAAL template

represents the behaviour of a certain robot or controller.

Chapter 1 provided background information regarding UAV swarms and their po-

tential applications. It also outlined the motivation behind conducting model checking

prior to implementation and its importance in the certification of upcoming industries

like UAM. The Chapter ends with a brief statement of the problem at hand and the

main software suites used in this work.

Chapter 2 represents the background research conducted to make this work possible.

It includes other research efforts where models were transitioned to implementation

78

through various techniques. Particularly, the work presented in [34] was used as a

starting point and the software developed was implemented to automatically translate

part of the UPPAAL model to ROS.

Chapter 3 gives a high level overview of the research methodology employed to

achieve the desired framework. The problem statement is elaborated to include the

case study or target model which is the UAV swarm. The assumptions used in modeling

the UPPAAL system are also provided. The chapter culminates with a summary of

the translation process and its main components.

Chapter 4 provides the technical details relevant to the framework. Firstly, the Mat-

Lab script used to address the abstraction of the drone flight dynamics is explained with

its incorporation to the UPPAAL model. The basic UPPAAL concepts needed to un-

derstand the Swarm model are presented before addressing each template’s behaviour

specifically. The most important functions that describe the consensus mechanisms of

the swarm model are explained in detail. The chapter ends with an explanation of the

system verification process achieved using the Verifier interface in UPPAAL. The prop-

erties that prove the correctness of the system are explained to show the robustness of

the model.

Chapter 5 shifts focus to the ROS end of the framework. It introduces the ba-

sic concepts and structures of ROS which are needed to understand the subsequent

implementation. Next, the sections explain the automated translation process with ex-

amples from the generated ROS Parameter Server and a function from the Base Class.

The high level mapping of the UPPAAL constructs to ROS entities is summarized

in tabular format. The chapter is closed with the most substantial contributions in

this work which is the mapping of the timed automaton logic to ROS node files. The

translation is represented in tabular and algorithmic formats which will be useful for

the automation of the process in the future.

79

Chapter 6 covers the validation of the UPPAAL model and its translation to ROS by

observing their behaviour in simulation. The UPPAAL system is first simulated within

the tool’s symbolic simulator which shows system states step by step. On the other

hand, the ROS implementation outlined earlier is tested in the Gazebo 3D simulator

which uses a virtualized flight computer provided by the Ardupilot software.

Overall, the framework presented is useful to programmers who intend to design

and implement robotics software. The mapping and algorithm provided to port an

UPPAAL model to ROS reduces the burden of implementing a verified system. This

could encourage developers to invest the time in modeling and verifying a system

before the implementation phase. The benefits would include a reduction in error

injection during early design phases, the assurance of correct system behaviour, and

a reduction in time spent fixing bugs in the implementation phase. Considering the

software engineering approach and software development life cycle, the use of modeling

to design systems also increases its interpretability. This can be crucial in early stages of

development where the development group can discuss design decisions with customers

or business teams. It is simpler to explain software design through the graphical

representation in model checking than lines of textual code.

7.2 Limitations

The main limitation of the framework presented through this work is the manual

processes that tie it together. For example, the array retrieved from the Matlab script

representing drone dynamics is manually introduced to the UPPAAL model as a global

variable before system execution. Another limitation is that ROS provides a variety

of parameters regarding vehicle dynamics and states in real time. These would be

more suitable to make decisions during system execution over parameters calculated

80

in external software. This means that a higher level of abstraction in the modeling

process was possible. Instead of populating global arrays with data in the modeling

phase, a simple flag variable could be used to trigger actions in ROS. The flag name

could be designed to match the name of the ROS topic or parameter that describes the

data needed for comparisons or thresholds. This would also make it easier to automate

the manual part of the translation.

Limitations specific to the model developed for this work involve the path that the

drones take to reach the goal location. As described in the main body of the text, the

drones move in rectangular fashion aligning with the target on one axis first and then

approaching it. This does not represent the fastest route, which would be the more

logical one in a situation like a wildfire mission. The reason behind this choice is that

the UPPAAL simulator interface does not support arrays of type double or float.

Regarding the simulation environment the main limitation was the use of a Virtual

Machine. The simulation involved running Ardupilot, ROS, and Gazebo simultane-

ously. The computational burden was heightened by the fact that the swarm involved

8 drones. All of these processes running at a time caused the Real Time Factor of the

simulation to be negatively impacted.

Finally, one of the limitations of the mapping of UPPAAL constructs in ROS is the

heavy dependence on the ROS Parameter Server. The UPPAAL system relies on using

global variables to represent data for each drone while each process has access to read

and write. The most direct representation of these mechanics in ROS is the Parameter

Server. However, it is not designed for high-performance and its recommended use

includes static variables that represent system configurations.

81

7.3 Future Work

One of the improvements left for future efforts is improving the ROS simulation in

Gazebo to make the system more efficient. There is room for improvement in process

synchronization which could result in faster transitions and mission completion. The

main plan for future work involves fully generalizing and automating the framework

presented. The automatic translation from UPPAAL to ROS could be expanded to

include the logic in the timed automatons. Accomplishing such a feat would mean

that most robotic systems modeled in UPPAAL could be automatically implemented

in ROS for SITL testing and simulation. This would represent significant cuts in time

of development for robotics applications. Furthermore, it would help in the process

of applying the developed software to real world hardware because of the hardware

virtualization aspect of SITL testing.

82

Bibliography

[1] Ros with mavros installation guide. PX4 User Guide, Jul 2022.

[2] Jaleel H. Abdelkader M., Güler S. and Shamma J. Aerial swarms: Recent applica-

tions and challenges. Current Robotics Report, (2):309 – 320, 2021.

[3] ArduPilot. Ardupilot. ArduPilot.org, Nov 2022.

[4] Matt Asay. Building the future of robots development with ros 2. Amazon Web

Services, Nov 2020.

[5] Justin Bachman. Embraer’s air mobility unit agrees to $2.4 billion spac deal.

Bloomberg, 2021.

[6] Christel Baier and Joost-Pieter Katoen. Principles of model checking. [electronic

resource]. MIT Press, 2008.

[7] S. Baldi, D. Sun, X. Xia, G. Zhou, and D. Liu. Ardupilot-based adaptive au-

topilot: Architecture and software-in-the-loop experiments. IEEE Transactions on

Aerospace and Electronic Systems, Aerospace and Electronic Systems, IEEE Trans-

actions on, IEEE Trans. Aerosp. Electron. Syst, 58(5):4473 – 4485, 2022.

[8] BBC. Nhs trials using drones to deliver chemotherapy drugs. BBC News, July

2022.

83

[9] Simone Cirani, Marco Picone, Gianluigi Ferrari, and Luca Veltri. Internet of things

: architectures, protocols and standards. [electronic resource. Wiley, 2019.

[10] Amanda Dattalo. Ros introduction. ros.org, Aug 2018.

[11] Saeid Dehnavi, Ali Sedaghatbaf, Bahare Salmani, Marjan Sirjani, Mehdi Kargahi,

and Ehsan Khamespanah. Rerebeca : A new framework to design verified ros-based

robotic programs. 08 2019.

[12] The Standish Group. Chaos 2020: Beyond infinity, 2020.

[13] Anubhav Gupta, Siddhartha Bhattacharyya, and S. Vadivel. Can model checking

assure, distributed autonomous systems agree? an urban air mobility case study.

International Journal of Advanced Computer Science and Applications, 11, 01 2020.

[14] R. Halder, J. Proenca, N. Macedo, and A. Santos. Formal verification of ros-based

robotic applications using timed-automata. 2017 IEEE/ACM 5th International

FME Workshop on Formal Methods in Software Engineering (FormaliSE), Formal

Methods in Software Engineering (FormaliSE), 2017 IEEE/ACM 5th International

FME Workshop on, FORMALISE, pages 44 – 50, 2017.

[15] David Hambling. What are drone swarms and why does every military suddenly

want one? Forbes, 2021.

[16] B. Ingersoll, K. Ingersoll, P. Defranco, and A. Ning. Uav path-planning using

bézier curves and a receding horizon approach. In AIAA Modeling and Simulation

Technologies Conference, 2016, number AIAA Modeling and Simulation Technolo-

gies Conference, page 14p., Department of Mechanical Engineering, Brigham Young

University, 2016.

84

[17] Bryce Ingersoll. uav-path-optimization. https://github.com/byuflowlab/

uav-path-optimization, January 2016.

[18] Capers Jones. Applied software measurement : global analysis of productivity and

quality. McGraw-Hill’s AccessEngineering. McGraw-Hill, 2008.

[19] Lentin Joseph. ROS Robotics Projects. Packt Publishing, 2017.

[20] Cedric Justin, Alexia Payan, Simon Briceno, and Dimitri Mavris. Operational

and economic feasibility of electric thin haul transportation. 06 2017.

[21] Professor Paul Pettersson Kim G. Larsen and Professor Wang Yi. UPPAAL in-

troduction. https://uppaal.org/. Accessed: 2022-04-02.

[22] Savas Konur, Clare Dixon, and Michael Fisher. Analysing robot swarm behaviour

via probabilistic model checking. Robotics and Autonomous Systems, 60(2):199–

213, 2012.

[23] Daniil Kozlov. Comparison of reinforcement learning algorithms for motion control

of an autonomous robot in gazebo simulator. 2021 International Conference on

Information Technology and Nanotechnology (ITNT), Information Technology and

Nanotechnology (ITNT), 2021 International Conference on, pages 1 – 5, 2021.

[24] Herb Krasner. The cost of poor software quality in the us: A 2020 report. 2021.

[25] Matheus Ladeira, Yassine Ouhammou, and Emmanuel Grolleau. Robmex: Ros-

based modelling framework for end-users and experts. Journal of Systems Archi-

tecture, 117, 2021.

85

https://github.com/byuflowlab/uav-path-optimization
https://github.com/byuflowlab/uav-path-optimization
https://uppaal.org/

[26] Xinxin Li, Rui Wang, Yu Jiang, Yong Guan, Xiaojuan Li, and Xiaoyu Song.

Formal modeling and automatic code synthesis for robot system. 2017 22nd In-

ternational Conference on Engineering of Complex Computer Systems (ICECCS),

Engineering of Complex Computer Systems (ICECCS), 2017 22nd International

Conference on, pages 146 – 149, 2017.

[27] S. Liu and J. Gaudiot. Rise of the autonomous machines. Computer, 55(1):64 –

73, 2022.

[28] Wenrui Meng, Junkil Park, Oleg Sokolsky, Stephanie Weirich, and Insup Lee.

Verified ROS-Based Deployment of Platform-Independent Control Systems., vol-

ume 9058 of Lecture Notes in Computer Science. 9058. Springer International

Publishing, 2015.

[29] Sangwoo Moon, John J. Bird, Steve Borenstein, and Eric W. Frew. A gazebo/ros-

based communication-realistic simulator for networked suas. In 2020 International

Conference on Unmanned Aircraft Systems (ICUAS), pages 1819–1827, 2020.

[30] Majda Moussa and Giovanni Beltrame. On the robustness of consensus-based

behaviors for robot swarms. Swarm Intelligence, 14(3):205 – 231, 2020.

[31] Globe Newswire. United States Urban Air Mobility (UAM) Market Report 2021:

Market is Estimated to Reach $18.81 Billion in 2035, at a CAGR of 23.12% during

2023-2035. Accessed: 2022-02-07.

[32] Annie Palmer. Amazon wins faa approval for prime air drone delivery fleet. CNBC,

2020.

[33] Adithya T. Praveen. uppaal2ros. https://github.com/adithya-tp/

uppaal2ros, January 2021.

86

https://github.com/adithya-tp/uppaal2ros
https://github.com/adithya-tp/uppaal2ros

[34] Adithya T. Praveen, Anubhav Gupta, Siddhartha Bhattacharyya, and Raja

Muthalagu. Assuring behavior of multi-robot autonomous systems with transla-

tion from formal verification to ros simulation. IEEE Systems Journal, pages 1–9,

2022.

[35] Umer Salman. Drone software development tutorials. https://www.youtube.

com/playlist?list=PLy9nLDKxDN683GqAiJ4IVLquYBod_2oA6.

[36] Umer Salman. Intelligent-Quads. https://github.com/Intelligent-Quads,

2019.

[37] Fiona Saunders, Andrew Gale, and Andrew Sherry. Understanding project uncer-

tainty in safety-critical industries. 04 2013.

[38] Amazon Staff. Amazon prime air prepares for drone deliveries. US About Amazon,

June 2022.

[39] Sidra Sultana and Fahim Arif. From verification to implementation: Uppaal to

c++. 2016.

[40] Mohamed Fasil Syed Ahamed, Girma Tewolde, and Jaerock Kwon. Software-in-

the-loop modeling and simulation framework for autonomous vehicles. 2018 IEEE

International Conference on Electro/Information Technology (EIT), Electro/Infor-

mation Technology (EIT), 2018 IEEE International Conference on, pages 0305 –

0310, 2018.

[41] S. Tangirala, R. Kumar, S. Bhattacharyya, M. O’Connor, and L.E. Holloway.

Hybrid-model based hierarchical mission control architecture for autonomous un-

derwater vehicles. Proceedings of the 2005, American Control Conference, 2005.,

American Control Conference, 2005. Proceedings of the 2005, American Control

Conference, page 668, 2005.

87

https://www.youtube.com/playlist?list=PLy9nLDKxDN683GqAiJ4IVLquYBod_2oA6
https://www.youtube.com/playlist?list=PLy9nLDKxDN683GqAiJ4IVLquYBod_2oA6
https://github.com/Intelligent-Quads

[42] Abenezer G. Taye, Josh Bertram, Chuchu Fan, and Peng Wei. Reachability based

Online Safety Verification for High-Density Urban Air Mobility Trajectory Plan-

ning.

[43] Reno University of Nevada. What are intelligent systems?

https://www.unr.edu/cse/undergraduates/prospective-students/

what-are-intelligent-systems. Accessed: 2022-02-07.

[44] Qinshuang Wei, Gustav Nilsson, and Samuel Coogan. Safety verification for urban

air mobility scheduling. IFAC-PapersOnLine, 55(13):306–311, 2022. 9th IFAC

Conference on Networked Systems NECSYS 2022.

[45] Hwee Yan. ardupilot-gazebo-ros-guide. https://github.com/yanhwee/

ardupilot-gazebo-ros-guide, March 2020.

[46] Xin Zhou, Xiangyong Wen, Zhepei Wang, Yuman Gao, Haojia Li, Qianhao Wang,

Tiankai Yang, Haojian Lu, Yanjun Cao, Chao Xu, and Fei Gao. Swarm of micro

flying robots in the wild. Science Robotics, 7(66), 2022.

88

https://www.unr.edu/cse/undergraduates/prospective-students/what-are-intelligent-systems
https://www.unr.edu/cse/undergraduates/prospective-students/what-are-intelligent-systems
https://github.com/yanhwee/ardupilot-gazebo-ros-guide
https://github.com/yanhwee/ardupilot-gazebo-ros-guide

Appendix A

Drone Dynamics Matlab Script

The main script of the Matlab program developed by Ingersoll et al. and published in

[16] is included below.

1 % −−−−−−− Main F i l e −−−−−− %

2 % Author : Bryce I n g e r s o l l

3 % I n s t i t u t i o n : Brigham Young Univers i ty , FLOW Lab

4 % Last Revised : 7/6/16

5 % −−−−−−−−−−−−−−−−−−−−−−−− %

6

7 %c l e a r ; c l c ; c l o s e a l l ;

8

9 %Add paths

10 addpath (genpath (’ .\ Objec t ive Funct ions \ ’)) ;

11 addpath (genpath (’ .\ Const ra in t s \ ’)) ;

12 addpath (genpath (’ .\ ColorPath\ ’)) ;

13 addpath (genpath (’ .\Compare\ ’)) ;

89

14 addpath (genpath (’ .\OptimalPathGuesses\ ’)) ;

15 addpath (genpath (’ .\ CalculateEnergyUse\ ’)) ;

16

17 %p r o f i l i n g t o o l s

18 %p r o f i l e on

19

20 %−−−−−−−g l oba l va r i ab l e s−−−−−−−−−−%

21 g l oba l x f ; %f i n a l p o s i t i o n

22 g l oba l x0 ; %cur rent s t a r t i n g pointPath bez

23 g l oba l step max ; %max step d i s t anc e

24 g l oba l step min ; %minimum step d i s t anc e

25 g l oba l t ; %paramete r i za t i on va r i a b l e

26 g l oba l n obs ; %number o f ob s t a c l e s

27 g l oba l obs ; %po s i t i o n s o f o b s t a c l e s

28 g l oba l obs rad ; %rad iu s o f o b s t a c l e s

29 g l oba l tu rn r ; %minimum turn rad iu s

30 g l oba l Pmid ; %needed to match d e r i v a t i v e s

31 g l oba l num path ; %number o f segments opt imized

32 g l oba l x new ;

33 g l oba l Dynamic Obstacles ;

34 g l oba l x next ; %used in mu l t i s t a r t func t i on

35 g l oba l uav ws ; %UAV wing span

36 g l oba l s t a r t ;

37 g l oba l i n i t i a l ; % to c a l c u l a t e d l min

38 i n i t i a l = 1 ;

39 g l oba l u a v f i n i t e s i z e ;

90

40 g l oba l rho f W span eo ;

41 g l oba l summer c c o o l c copper c pa ru l a c w in t e r c b lue r ed

blue magenta red gre en purp l e b lu e g ray r ed

s h o r t e n e d v i r i d i s c s h o r t e n ed i n f e r n o c ;

42 g l oba l sho r t ened pa ru l a c ;

43 g l oba l ob j grad cons grad ag acg ;

44 g l oba l max speed min speed D eta opt ;

45 g l oba l l l l a s t ;

46

47 %−−−−−−−−−−−−Algorithm Options−−−−−−−−−−−−%

48

49 % use g ene t i c a lgor i thm

50 use ga = 0 ;

51

52 Dynamic Obstacles = 0 ;

53

54 num path = 3 ; %Receding Horizon Approach (any

number r e a l l y , but 3 i s standard)

55 ms i = 3 ; %number o f gue s s e s f o r mult i s t a r t

(up to 8 f o r now , up to 3 f o r smart)

56 u a v f i n i t e s i z e = 1 ; %input whether want to inc lude UAV

s i z e

57 c h e c k v i a b i l i t y = 1 ; %Exit s i f unable to f i nd v i ab l e

path

58

59 %Object ive Function

91

60 opt im i z e ene rgy us e = 0 ; %changes which ob j e c t i v e func t i on

i s used

61 opt imize t ime = 1 ; %i f both are zero , then path l ength i s

opt imized

62

63 max func eva l s = 10000 ;

64 max iter = 50000 ;

65

66 % Plot Options

67 t o t l = 1 ; %turn o f f t i c k l a b e l s

68 square axes = 1 ; %Square Axes

69 radar = 0 ; %Plot s UAV’ s l im i t o f s i g h t

70 show sp = 0 ; %Plot s P1 o f Bez i e r curve

71

72 Show Steps = 0 ; %Needs to be turned on when

Dynamic Obstacles i s turned on

73 l i n ew id th = 4 ; %Line width o f t r ave r s ed path segment

74 t raver sedwidth = 2 ;

75 dashedwidth = 2 ;

76

77 fwidth = 2 ; %width o f UAV path in F ina lP lo t .m

78 show end = 0 ; %f o r c a l c f i g

79 compare num path = 0 ;

80 save path = 0 ; %save path data to use in compare

81 sds = 0 ; %Allows a c l o s e r view o f dynamic

ob s t a c l e avoidance

92

82 cx = 50 ;

83

84 %p lo t c o l o r opt ions

85 sp e ed co l o r = 1 ; %use i f you want c o l o r to r ep r e s en t

speed

86 d sp e ed co l o r = 0 ; %use i f you want c o l o r to be

d i s c r e t i z e d over path l ength

87 cb = 1 ; %co l o r b r i gh tne s s

88

89 summer c = 0 ; % http ://www. mathworks . com/help /

matlab/ r e f / colormap . html#buq1hym

90 c o o l c = 0 ;

91 copper c = 0 ;

92 pa ru l a c = 0 ;

93 w in t e r c = 0 ;

94 b lue r ed = 0 ;

95 blue magenta red = 0 ;

96 g r een purp l e = 0 ;

97 b lu e g ray r ed = 0 ;

98 sho r t ened pa ru l a c = 1 ;

99 s h o r t e n e d v i r i d i s c = 0 ;

100 sho r t e n ed i n f e r n o c = 0 ;

101 c o l o r b a r = 1 ;

102 %−−%

103

93

104 c r e a t e v i d e o = 1 ; %saves the s o l u t i o n s o f the

mu l t i s t a r t approach at each i t e r a t i o n

105

106 % Gradient Ca l cu l a t i on Options

107 ob j grad = 1 ; %i f t h i s i s 1 and below l i n e i s 0 ,

complex step method w i l l be used to c a l c u l a t e g r ad i en t s

108 an a l y t i c g r a d i e n t s = 1 ;

109 ag = ana l y t i c g r a d i e n t s ;

110

111 cons grad = 1 ; %i f t h i s i s 1 and below l i n e i s 0 ,

complex step method w i l l be used to c a l c u l a t e g r ad i en t s

112 a n a l y t i c c o n s t r a i n t g r a d i e n t s = 1 ;

113 acg = an a l y t i c c o n s t r a i n t g r a d i e n t s ;

114

115 %−−−−−−−−−−−−−−−−plane geometry/ in fo−−−−−−−−−−−−−−−−%

116 %UAV parameter va lue s

117 rho = 1 . 2 2 5 ; %a i r dens i ty

118 f = . 2 ; %equ iva l en t p a r a s i t e area

119 W = 10 ; %weight o f a i r c r a f t

120 span = . 2 0 ; %span

121 eo = 0 . 9 ; %Oswald ’ s e f f i c i e n c y f a c t o r

122

123 i f op t im i z e ene rgy us e == 1

124 %Defined in paper (2nd column , page 2)

125 A = rho∗ f /(2∗W) ;

126 B = 2∗W/(rho∗ spanˆ2∗ pi ∗ eo) ;

94

127

128 %f i nd minimum d l , and minimum e f f i c i e n c y

129 i f i n i t i a l == 1

130 V pos s ib l e = 0 .1 : 0 .01 : 25 ;

131 !

132 f o r i = 1 : l ength (V pos s ib l e)

133

134 D L = A∗V pos s ib l e (i) ˆ2 + B/V pos s ib l e (i) ˆ2 ; % we

want to maximize l d , or minimize d l

135

136 e ta pos = c a l c e f f (V pos s ib l e (i)) ;

137

138 %ca l c u l a t e D L/ eta

139 D eta (i) = D L/ eta pos ;

140 end

141

142 %f i nd optimal D eta

143 D eta opt = min (D eta) ;

144

145 end

146 end

147 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %

148

149 l = 0 ;

150

151 %paramete r i za t i on vec to r t

95

152 g l oba l d e l t a t ;

153 t = l i n s p a c e (0 , 1 , 11) ;

154 d e l t a t = t (2) − t (1) ;

155

156

157 %f o r p lo t both func t i on

158 %g l oba l Path bez ;

159

160 tu rn r = 5 ; %turn radius , m

161

162 %maximum/ s t a l l speed , m/ s

163 max speed = 15 . 0 ;

164 min speed = 10 . 0 ;

165

166 l l l a s t = (min speed) /(l ength (t)) ;

167

168 %t r a n s a l t e UAV in format ion to f i t with a lgor i thm

169 step max = max speed ; %/2 ;

170 step min = min speed ; %/2 ;

171

172 %Wing span o f UAV

173 i f u a v f i n i t e s i z e == 1

174 uav ws = 1 . 0 ; %UAV wing span

175 e l s e

176 uav ws = 0 . 0 0 1 ;

177 end

96

178

179 %s t a r t i n g / ending po s i t i o n o f plane

180 x sp = [0 , 0] ;

181 x0 = x sp ;

182 %xf = [4 5 , 4 5] ;

183 Bez po int s = [] ;

184 l r = 8 ; %land ing zone rad iu s ; should be =< 15

185 %−−%

186

187 %−−−−−−−s t a t i c ob s t a c l e in format ion−−−−−−−−−%

188 %rng (3) ; %50/4/3

189 %rng (4) ; %49/4/3

190 %rng (59) ; %54/4/3 − use f o r sds , ms i = 3 , 34/4/3

191 %rng (60) ; %50/4/3

192 %rng (13) ; %40/4/3

193 %rng (15) ; %40/4/3

194 %rng (20) ; %40/4/3

195 %rng (8) ;

196 rng (8) ;

197

198 %n obs = 5 ; %number o f s t a t i c ob s t a c l e s

199 n obs = xf (1) /10 ; %number o f s t a t i c ob s t a c l e s

200 obs = rand (n obs , 2) ∗ xf (1) +5; %ob s t a c l e l o c a t i o n s

201

202

203 rng (5) ; %f o r p a r t i a l l y random obs t a c l e s i z e

97

204 obs rad = (15−uav ws) + rand (n obs , 1) ∗3 ; %ob s t a c l e rad iu s

205 %−−−%

206

207 % ca l c u l a t e dens i ty

208 obs den s i t y = ca l c ob s den (n obs , obs , obs rad , uav ws) ;

209

210 %−−−−−−dynamic ob s t a c l e in format ion−−−−−−−−−%

211 i f Dynamic Obstacles == 1

212

213 g l oba l n obsd obs d sp obs d v obs d s obs d cp ;

214

215 %choose 1−4 f o r ca s e s (s ee func t i on f o r d e s c r i p t i o n)

216 [n obsd , obs d sp , obs d s , obs d v] = dyn case (5) ;

217

218 obs d s = obs d s−ones (n obsd , 1) ∗uav ws ; %s i z e o f

ob s ta c l e s , a l s o used (5)

219 obs d cp = obs d sp ; %cur rent p o s i t i o n o f ob s t a c l e s

220 ob s d cp h i s t (1 , : , 1) = obs d sp (1 , :) ;

221 end

222 %−−−%

223

224 % f o r make video

225 i f c r e a t e v i d e o == 1

226

227 s o l u t i on1 = [] ;

228 s o l u t i on2 = [] ;

98

229 s o l u t i on3 = [] ;

230 s o l u t i on4 = [] ;

231 s o l u t i on5 = [] ;

232

233 end

234

235

236 %−−−−−−−−−−−−−−−−− opt imize r −−−−−−−−−− fmincon

−−−−−−−−−−−−−−−−−−−−−−−%

237 %unused par t s in fmincon

238 A = [] ;

239 b = [] ;

240 Aeq = [] ;

241 beq = [] ;

242 %lb = −10∗ones (2∗num path , 2) ;

243 %ub = 110∗ ones (2∗num path , 2) ;

244 lb = [] ;

245 ub = [] ;

246

247 %Pmed i n i t i a l i z a t i o n , used to match up d e r i v a t i v e s between

paths

248 Pmid = [−min speed/2,−min speed / 2] ;

249 %Pmid = [−3 ,−3];

250

251 Path bez = [] ;

252

99

253 pa th s t a r t = [] ;

254

255 %i n i t i a l guess (es)

256 s t a r t = 0 ;

257

258 x i = mu l t i s t a r t (ms i) ;

259

260 %s t a r t

261 s t a r t = 1 ;

262

263 %x new i s not c l o s e to f i n a l p o s i t i o n

264 x new = ze ro s (2∗num path , 2) ;

265 x next = x new ;

266

267 % note : each i t e r a t i o n o f whi l e loop r ep r e s en t s some time step

, in which

268 % UAV t r a v e l s on path and dynamic ob s t a c l e s move

269

270 %fmincon opt ions

271 i f ob j grad == 1 && cons grad == 1

272 opt ions = opt imopt ions (’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

MaxFunEvals ’ , max func evals , ’ MaxIter ’ , max iter , . . .

273 ’GradObj ’ , ’ on ’ , ’GradCon ’ , ’ on ’ , ’ Der ivat iveCheck ’ , ’ o f f ’)

;

274 e l s e i f ob j g rad == 0 && cons grad == 1

100

275 opt ions = opt imopt ions (’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

MaxFunEvals ’ , max func evals , ’ MaxIter ’ , max iter , . . .

276 ’GradObj ’ , ’ o f f ’ , ’GradCon ’ , ’ on ’ , ’ Der ivat iveCheck ’ , ’ o f f ’

) ;

277 e l s e i f ob j g rad == 1 && cons grad == 0

278 opt ions = opt imopt ions (’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

MaxFunEvals ’ , max func evals , ’ MaxIter ’ , max iter , . . .

279 ’GradObj ’ , ’ on ’ , ’GradCon ’ , ’ o f f ’ , ’ Der ivat iveCheck ’ , ’ o f f ’

) ;

280 e l s e

281 opt ions = opt imopt ions (’ fmincon ’ , ’ Algorithm ’ , ’ sqp ’ , ’

MaxFunEvals ’ , max func evals , ’ MaxIter ’ , max iter , . . .

282 ’GradObj ’ , ’ o f f ’ , ’GradCon ’ , ’ o f f ’) ;

283 end

284

285 t i c % begin opt imiza t i on time

286

287 whi l e (((x next (2∗num path , 1)−xf (1)) ˆ2 + (x next (2∗num path

, 2)−xf (2)) ˆ2) ˆ0 .5 > l r)

288

289 %record number o f paths

290 l = l + 1 ;

291

292

293 f o r i = 1 : ms i %mu l t i s t a r t approach to f i nd best

s o l u t i o n

101

294

295 %choose ob j e c t i v e func t i on

296 i f op t im i z e ene rgy us e == 1

297

298 i f use ga == 1

299 e r r o r (’Not ready yet f o r ga ’) ;

300 e l s e

301 [x new (: , : , i) , ˜ , e (i , l)] = fmincon (@opt e , x i

(: , : , i) , A, b , Aeq , beq , lb , ub , @cons ,

opt ions) ;

302 end

303

304 e l s e i f opt imize t ime == 1

305

306 i f use ga == 1

307 e r r o r (’Not ready yet f o r ga ’) ;

308 e l s e

309 [x new (: , : , i) , ˜ , e (i , l)] = fmincon (@opt t , x i

(: , : , i) , A, b , Aeq , beq , lb , ub , @cons ,

opt ions) ;

310 end

311

312 e l s e

313

314 i f use ga == 1

315 e r r o r (’Not ready yet f o r ga ’) ;

102

316 e l s e

317 [x new (: , : , i) , ˜ , e (i , l)] = fmincon (@opt d , x i

(: , : , i) , A, b , Aeq , beq , lb , ub , @cons ,

opt ions) ;

318 end

319

320 end

321

322 % %check curvature

323 % c = check curvature new (i) ;

324 %

325 % %i f c on s t r a i n t s are v i o l a t ed , make

i n f e a s i b l e

326 % i f any (c > 0)

327 % e (i , l) = −2;

328 % end

329 end

330

331 f o r i = 1 : ms i %c a l c u l a t e how good s o l u t i o n s are

332

333 % For make video

334 i f c r e a t e v i d e o == 1

335

336 i f i == 1

337 s o l u t i on1 = [s o l u t i on1 ; x new (: , : , i)] ;

338 e l s e i f i == 2

103

339 s o l u t i on2 = [s o l u t i on2 ; x new (: , : , i)] ;

340 e l s e i f i == 3

341 s o l u t i on3 = [s o l u t i on3 ; x new (: , : , i)] ;

342 e l s e i f i == 4

343 s o l u t i on4 = [s o l u t i on4 ; x new (: , : , i)] ;

344 e l s e i f i == 5

345 s o l u t i on5 = [s o l u t i on5 ; x new (: , : , i)] ;

346 end

347 end

348

349 i f op t im i z e ene rgy us e == 1

350 d check (i) = opt e (x new (: , : , i)) ;

351

352 e l s e i f opt imize t ime == 1

353 d check (i) = opt t (x new (: , : , i)) ;

354

355 e l s e

356 d check (i) = opt d (x new (: , : , i)) ;

357

358 end

359

360 %’ remove ’ s o l u t i o n s that converged to an i n f e a s i b l e

po int

361

362 i f e (i , l) == −2

363

104

364 d check (i) = d check (i) ∗10 ;

365

366 end

367

368

369 end

370

371 %Check f o r v i ab l e paths

372 check = (e == −2) ;

373 i f a l l (check (: , l)) == 1 && ch e c k v i a b i l i t y == 1

374 %e r r o r (’ Unable to f i nd v i ab l e path . ’) ;

375 end

376

377 f o r i = 1 : ms i %choose best so lu t i on , use f o r next part

378

379 i f d check (i) == min(d check)

380

381 x next = x new (: , : , i) ;

382

383 end

384 end

385

386 %

387 i n i t i a l = 0 ;

388

389 % makes the path o f the UAV fo r t h i s s e c t i o n

105

390 f o r i = 1 : l ength (t)

391

392 path part (i , :) = (1− t (i)) ˆ2∗x0 (1 , :) + 2∗(1− t (i)) ∗ t (i) ∗

x next (1 , :)+t (i) ˆ2∗ x next (2 , :) ;

393

394 % i f i > 1

395 % norm(path part (i , :)−path part (i −1 , :))

396 % end

397

398 end

399

400 %make the planned path o f the UAV

401 i f num path > 1

402 f o r j = 1 : (num path−1)

403 f o r i = 1 : l ength (t)

404 path planned (i +(j −1)∗ l ength (t) , :) = (1− t (i))

ˆ2∗ x next (2∗ j , :) + 2∗(1− t (i)) ∗ t (i) ∗ x next

(2∗ j +1 , :)+t (i) ˆ2∗ x next (2∗ j +2 , :) ;

405 end

406 end

407 end

408

409 i f Show Steps == 1

410

411 p l o t i n t s t e p s (l , square axes , c o l o r ba r , t o t l , x sp ,

cx , speed co l o r , path part , path planned , Path bez ,

106

d speed co l o r , cb . . .

412 , l inewidth , traversedwidth , dashedwidth , radar ,

show sp , show end , sds , l r) ;

413 end

414

415 %

−−%

416

417 %record where s t a r t o f each path i s

418 pa th s t a r t = [pa th s t a r t ; path part (1 , :)] ;

419

420 %cont inues the path which w i l l be p l o t t ed

421 Path bez = [Path bez ; path part] ;

422

423 l l l a s t = norm(Path bez (l ength (Path bez) , :)−Path bez (

l ength (Path bez) −1 ,:)) ;

424

425 %se t new s t a r t i n g po int

426 x0 = x next (2 , :) ;

427

428 %se t Pmid

429 Pmid = x next (1 , :) ;

430

431 %choose new guess f o r next i t e r a t i o n

432 x i = mu l t i s t a r t (ms i) ;

107

433

434 %pr in t cur rent l o c a t i o n

435 x next (2 , :)

436

437 Bez po int s = [Bez po int s ; x next (1 : 2 , :)] ;

438

439 end %whi le

440

441 toc % end opt imiza t i on time

442

443 Bez po int s = [Bez po int s ; x next (3 : num path ∗ 2 , :)] ;

444

445 % Fina l Plot

446 F ina lP lo t (path s ta r t , Path bez , l , square axes , t o t l ,

c o l o r ba r , s p e ed co l o r . . .

447 , d e l t a t , d speed co l o r , cb , cx , l r , x sp , fwidth) ;

448

449 %compare paths c r ea ted us ing var i ous number o f look ahead

paths

450 i f compare num path == 1

451

452 i f num path == 1

453 save (’ .\Compare\path 1 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

454 save (’ .\Compare\ s t a r t 1 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

455 e l s e i f num path == 2

456 save (’ .\Compare\path 2 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

108

457 save (’ .\Compare\ s t a r t 2 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

458 e l s e i f num path == 3

459 save (’ .\Compare\path 3 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

460 save (’ .\Compare\ s t a r t 3 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

461 e l s e i f num path == 4

462 save (’ .\Compare\path 4 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

463 save (’ .\Compare\ s t a r t 4 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

464 e l s e i f num path == 5

465 save (’ .\Compare\path 5 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

466 save (’ .\Compare\ s t a r t 5 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

467 e l s e i f num path == 6

468 save (’ .\Compare\path 6 . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

469 save (’ .\Compare\ s t a r t 6 . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

470 end

471

472 end

473

474 %add planned path

475 Path bez = [Path bez ; path planned (2 : l ength (path planned) , :)] ;

476

477 %save path i n f o to use in ’ compare f i l e ’

478 i f save path == 1

479

480 i f op t im i z e ene rgy us e == 1

481

482 save (’ .\Compare\path e . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

109

483 save (’ .\Compare\ s t a r t e . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

484

485 e l s e i f opt imize t ime == 1

486

487 save (’ .\Compare\path t . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

488 save (’ .\Compare\ s t a r t t . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

489

490 e l s e

491 save (’ .\Compare\path d . txt ’ , ’ Path bez ’ , ’−a s c i i ’) ;

492 save (’ .\Compare\ s t a r t d . txt ’ , ’ p a th s t a r t ’ , ’−a s c i i ’) ;

493

494 end

495 end

496

497

498 %output o f compare (d i s tance , time , energy)

499 [td , tt , t e] = compare of (Path bez , Bez points ,

opt imize energy use , opt imize t ime) ;

500

501 %p r o f i l i n g t o o l s

502 %p r o f i l i n g i n f o = p r o f i l e (’ in fo ’) ;

503

504 %toc % end opt imiza t i on and p l o t t i n g time

110

Appendix B

Uppaal Drone Swarm System XML

The XML file representing the Uppaal system developed for this work is included below.

1 <?xml version=”1.0” encoding=”utf−8”?>

2 <!DOCTYPE nta PUBLIC ’−//Uppaal Team//DTD Flat System 1.1//EN’ ’http://

www.it.uu.se/research/group/darts/uppaal/flat−1 2.dtd’>

3 <nta>

4 <declaration> // Place global declarations here.

5 // Assume the communication reach is 10: the maximum

6 // reach of control tower and reach of leader drone

7

8 const int comm reach = 10;

9

10 int time to swarm[comm reach] = {10, 21, 29, 38, 47, 57, 66, 76, 85, 95};

11

12 int min time = 0;

13

111

14 // Total # of drones

15

16 const int N = 8;

17

18 // Drones in mission

19 const int Needed = 3;

20

21 //leader position, Initial leader is the tower

22 int leader position[2] = {0,0};

23

24 // define global goal

25 int goal location[2];

26

27 // fire location / swarm goal

28 int goal[2] = {60,60};

29

30 // variable that maps to function swarm reached goal

31 bool reached goal = 0;

32

33 // Mission update control

34 bool updating mission = 1;

35

36 //Each drone ID is represented by the array index.

37 // drone characterization: 0 = not in swarm/network, −1 = loyal wingman, 1 =

leader // consider template for each

112

38 // this should allow for easy verification −−> not more than one leader, at

least one leader, etc

39 // also useful to determine availability check, if it is already in swarm it cannot

join, if it is not a loyal wingman it cant be elected leader, etc

40 // initialization leader? any loyal wingman? or none.

41 int drone status[N] = {−1,0,−1,−1,0,0,0,0};

42

43 // List of drone batteries − currently 3 switches in leader

44 int drone battery[N] = {55, 100, 175, 190, 185, 180, 180, 100};

45

46 // List of drone candidates for swarm

47 // if 1, then that drone number (index) is a candidate to join swarm

48 int drone candidates[N] = {0, 0, 0, 0, 0, 0, 0, 0};

49

50 // variable indicating if voting is in progress

51 bool voting in prog = 0;

52

53 // List of drone locations

54 int drone location x[N] = {10,60,14,10,15,10,20,20};

55 int drone location y[N] = {12,20,10,17,10,20,10,10};

56

57 // TODO: Potentially put drone data into structs

58

59 // variable to identify capabilities of each drone

60 // use case: wild land firefighting / communication towers burned down

61 // 0 = surveillance / good camera

113

62 // 1 = communications / long range external entity

63 // 2 = medical supply payload

64 // 3 = water dispenser

65 // 4 = chemical dispenser / fire retardant

66 // store the required drone capabilities in array

67 int drone capability[N] = {1,1,3,2,2,3,5,1};

68

69 // capabilties needed for this mission

70 int mission capabilities[Needed] = {1,2,3};

71

72

73

74 // Consensus

75

76 // drones populate this array with their vote for leader

77 // the number represents the drone if for whom each one votes

78 // if all elements match, then we have consensus

79

80 // initialization of votes for each drone

81 int votes[N] = {100,100,100,100,100,100,100,100};

82

83 // votes for members

84 int member votes[N] = {0, 0, 0, 0, 0, 0, 0, 0};

85

86 // counts how many votes have already been casted during election process

87 int vote counter = 0;

114

88

89 int candidate counter = 0;

90

91 // stores the votes by the active swarm members

92 int check votes[Needed];

93

94 // stores the votes by the active swarm members

95 int check member votes[Needed];

96

97

98 // voter id

99 int id voter;

100

101 //the time it would take for a drone to reach swarm

102 int drone time[N];

103 int dist = 0;

104

105 //election synchronization variable

106 broadcast chan election;

107

108 // member electrion synch

109 broadcast chan member election;

110

111 // Synchronisation event when the drone starts

112 broadcast chan update status;

113

115

114 // Synchronization event for mission end / mission accomplished

115 broadcast chan mission end;

116

117 // Synchronization events for movement

118 broadcast chan update location;

119 broadcast chan location updated;

120

121

122

123 </declaration>

124 <template>

125 <name>Drone</name>

126 <parameter>int id, int &cap, int &battery</parameter>

127 <declaration>

128 // location coordinates

129 int x;

130 int y;

131

132 // function that checks if a given drone is leader

133 bool is leader(int id){

134 return drone status[id] == 1;

135 }

136

137 // Check if drone is in swarm

138 bool in swarm(int id){

139 return drone status[id] != 0;

116

140 }

141

142

143 // Find the current drone in the swarm with capability return its id

144 int find drone in swarm(int capability){

145 for (id : int[0,N−1])

146 {

147 if(drone status[id] != 0 && drone capability[id] == capability)

{

148 return id;

149 }

150 }

151 return −1;

152 }

153

154

155 // Leader only stops issuing move commands if everybody reached location.

156 // Mission is only complete when swarm reached goal

157 bool swarm reached goal(){

158 bool reached = true;

159 for (id : int[0,N−1])

160 {

161 if(in swarm(id))

162 {

163 reached = reached && drone location x[id] ==

goal location[0] && drone location y[id] ==

117

goal location[1];

164 }

165 }

166

167 return reached;

168 }

169

170

171 // updates the variable that holds a copy of the position of the leader drone

172 void update leader position(int id){

173 leader position[0] = drone location x[id];

174 leader position[1] = drone location y[id];

175 }

176

177 // checks if a given drone has reached the goal location

178 bool reached goal(int id){

179 return drone location x[id] == goal location[0] && drone location y[id]

== goal location[1];

180 }

181

182 // linear distance() function returns the calculated linear distance i.e the linear

distance of the drone from the requesting node

183

184 int linear distance(int goal[2], int a, int b) {

185 int x coord = goal[0];

186 int y coord = goal[1];

118

187

188 int xsquare = (x coord−a)∗(x coord−a);

189 int ysquare = (y coord−b)∗(y coord−b);

190 int sum1 = xsquare + ysquare;

191 sum1 = fint(sqrt(sum1));

192 return sum1; // fint fucntion converts boolean or floating point value to

integer

193 }

194

195

196 void calculate drone times(int cap){

197 for (i : int[0,N−1])

198 {

199 if(drone candidates[i] == 1 && drone capability[i] == cap)

200 {

201 dist = linear distance(leader position, drone location x[i],

drone location y[i]);

202 if(dist > 0 && dist < 9){

203 drone time[i] = time to swarm[dist−1];

204 }

205 }

206 }

207 }

208

209

210 // Move closer to the goal, if haven’t reached it yet

119

211 void move(int id){

212 if (drone location x[id] != goal location[0]){

213 drone location x[id] = drone location x[id] + 1;

214 drone battery[id] −= 1;

215 }

216 else {

217 if (drone location y[id] != goal location[1])

218 drone location y[id] = drone location y[id] + 1;

219 drone battery[id] −= 1;

220 }

221

222 if(is leader(id)) update leader position(id);

223

224 x = drone location x[id];

225 y = drone location y[id];

226 }

227

228

229

230 // function for drone to cast vote for leader election

231 void vote(int id){

232

233 for (i : int[0,N−1])

234 {

235 if(drone status[i] == −1 && drone capability[i] == 1)

236 {

120

237 votes[id]=i;

238 }

239

240 }

241 vote counter++;

242 }

243

244 int find min(int arr[N], int capability){

245

246 int min = 100;

247

248 for(i:int[0,N−1])

249 {

250 if(drone capability[i] == capability && drone candidates[i] == 1)

251 {

252 if(arr[i] != 0 && arr[i]<min)

253 {

254 min = arr[i];

255 }

256 }

257 }

258 return min;

259 }

260

261

262 // function for drone to cast vote on member election

121

263 void vote member(int id){

264

265

266 for (i : int[0,N−1])

267 {

268 if(drone candidates[i] == 1)

269 {

270 int current drone = find drone in swarm(drone capability[i]);//problem is:

taking min time from different capability

271 calculate drone times(drone capability[i]);

272 min time = find min(drone time, drone capability[current drone]);

273 if(drone time[i] == min time)

274 {

275 if((drone battery[current drone]<50) && drone battery[i]

> drone battery[current drone])

276 {

277 //vote for drone to be part of the swarm

278 member votes[id] = i;

279 }

280 }

281 }

282 }

283 }

284

285

286 </declaration>

122

287 <location id=”id0” x=”−136” y=”195”>

288 <name x=”−127” y=”170”>Idle</name>

289 </location>

290 <location id=”id1” x=”272” y=”195”>

291 <name x=”289” y=”204”>InSwarm</name>

292 </location>

293 <location id=”id2” x=”272” y=”42”>

294 <name x=”221” y=”8”>Leader</name>

295 </location>

296 <location id=”id3” x=”654” y=”−34”>

297 <name x=”612” y=”−68”>WaitingSwarm</name>

298 </location>

299 <location id=”id4” x=”629” y=”195”>

300 <name x=”595” y=”161”>UpdatingLocation</name>

301 </location>

302 <init ref=”id0”/>

303 <transition>

304 <source ref=”id1”/>

305 <target ref=”id1”/>

306 <label kind=”guard” x=”102” y=”246”>in swarm(id)</label>

307 <label kind=”synchronisation” x=”85” y=”263”>member election?</label>

308 <label kind=”assignment” x=”51” y=”280”>vote member(id), vote counter

++</label>

309 <nail x=”178” y=”255”/>

310 <nail x=”229” y=”280”/>

311 </transition>

123

312 <transition>

313 <source ref=”id2”/>

314 <target ref=”id1”/>

315 <label kind=”guard” x=”314” y=”76”>is leader(id) == false</label>

316 <nail x=”331” y=”127”/>

317 </transition>

318 <transition>

319 <source ref=”id1”/>

320 <target ref=”id4”/>

321 <label kind=”guard” x=”323” y=”153”>reached goal(id) == false &&

amp; in swarm(id)</label>

322 <label kind=”synchronisation” x=”366” y=”170”>update location?</label>

323 <label kind=”assignment” x=”383” y=”195”>move(id)</label>

324 <nail x=”341” y=”195”/>

325 </transition>

326 <transition>

327 <source ref=”id1”/>

328 <target ref=”id1”/>

329 <label kind=”guard” x=”102” y=”144”>in swarm(id)</label>

330 <label kind=”synchronisation” x=”178” y=”119”>election?</label>

331 <label kind=”assignment” x=”195” y=”136”>vote(id)</label>

332 <nail x=”161” y=”136”/>

333 <nail x=”255” y=”136”/>

334 </transition>

335 <transition>

336 <source ref=”id1”/>

124

337 <target ref=”id2”/>

338 <label kind=”guard” x=”25” y=”68”>is leader(id)&&vote counter

==Needed

339 &&updating mission==true</label>

340 <label kind=”assignment” x=”93” y=”51”>update leader position(id)</label

>

341 <nail x=”272” y=”153”/>

342 <nail x=”272” y=”127”/>

343 </transition>

344 <transition>

345 <source ref=”id2”/>

346 <target ref=”id0”/>

347 <label kind=”synchronisation” x=”0” y=”17”>mission end?</label>

348 <nail x=”0” y=”42”/>

349 <nail x=”−136” y=”42”/>

350 <nail x=”−136” y=”161”/>

351 </transition>

352 <transition>

353 <source ref=”id1”/>

354 <target ref=”id0”/>

355 <label kind=”synchronisation” x=”34” y=”204”>mission end?</label>

356 <nail x=”161” y=”229”/>

357 <nail x=”161” y=”229”/>

358 <nail x=”−17” y=”229”/>

359 </transition>

360 <transition>

125

361 <source ref=”id3”/>

362 <target ref=”id1”/>

363 <label kind=”synchronisation” x=”663” y=”93”>location updated!</label>

364 <label kind=”assignment” x=”663” y=”76”>vote counter = 0</label>

365 <nail x=”654” y=”340”/>

366 <nail x=”314” y=”340”/>

367 </transition>

368 <transition>

369 <source ref=”id1”/>

370 <target ref=”id0”/>

371 <label kind=”guard” x=”8” y=”331”>in swarm(id) == false</label>

372 <label kind=”synchronisation” x=”25” y=”306”>update status?</label>

373 <nail x=”272” y=”331”/>

374 <nail x=”−136” y=”331”/>

375 </transition>

376 <transition>

377 <source ref=”id4”/>

378 <target ref=”id1”/>

379 <label kind=”synchronisation” x=”399” y=”246”>location updated?</label>

380 <nail x=”629” y=”272”/>

381 <nail x=”322” y=”272”/>

382 </transition>

383 <transition>

384 <source ref=”id2”/>

385 <target ref=”id3”/>

126

386 <label kind=”guard” x=”306” y=”−93”>swarm reached goal() == false &

amp;& is leader(id)

387 && updating mission == true</label>

388 <label kind=”synchronisation” x=”382” y=”−59”>update location!</label>

389 <label kind=”assignment” x=”416” y=”−34”>move(id)</label>

390 <nail x=”271” y=”−34”/>

391 <nail x=”517” y=”−34”/>

392 </transition>

393 <transition>

394 <source ref=”id0”/>

395 <target ref=”id1”/>

396 <label kind=”guard” x=”−42” y=”153”>in swarm(id)</label>

397 <label kind=”synchronisation” x=”−51” y=”170”>update status?</label>

398 </transition>

399 </template>

400 <template>

401 <name>MissionControl</name>

402 <declaration>

403 // function to reset array

404 void reset arrays(){

405

406 for(i:int[0,N−1])

407 {

408 drone candidates[i] = 0;

409 drone time[i] = 0;

410 }

127

411 }

412

413

414 // check if leader position is the same as fire/target position

415 bool check leader pos(){

416 if(leader position[0] == goal[0] && leader position[1] == goal[1])

417 return true;

418 else

419 return false;

420 }

421

422 // Check if drone is in swarm

423 bool in swarm(int id){

424 return drone status[id] != 0;

425 }

426

427 // Find the current drone in the swarm with capability return its id

428 int find drone in swarm(int capability){

429 for (id : int[0,N−1])

430 {

431 if(drone status[id] != 0 && drone capability[id] == capability)

{

432 return id;

433 }

434 }

435 return −1;

128

436 }

437

438 // Leader only stops issuing move commands if everybody reached location.

439 // Mission is only complete when swarm reached goal

440 bool swarm reached goal(){

441 bool reached = true;

442 for (id : int[0,N−1])

443 {

444 if(in swarm(id))

445 {

446 reached = reached && drone location x[id] ==

goal location[0] && drone location y[id] ==

goal location[1];

447 }

448 }

449 return reached;

450 }

451

452 // linear distance() function returns the calculated linear distance i.e the linear

distance of the drone from the requesting node

453

454 int linear distance(int goal[2], int a, int b) {

455 int x coord = goal[0];

456 int y coord = goal[1];

457

458 int xsquare = (x coord−a)∗(x coord−a);

129

459 int ysquare = (y coord−b)∗(y coord−b);

460 int sum1 = xsquare + ysquare;

461 sum1 = fint(sqrt(sum1));

462 return sum1; // fint fucntion converts boolean or floating point value to

integer

463 }

464

465

466

467

468 // This assumes leader drone is located at the GS when mission first starts

469 bool within reach(int x, int y){

470 if(linear distance(leader position, x, y) <= comm reach)

471 {

472 return true;

473 }

474 else

475 {

476 return false;

477 }

478 }

479

480

481

482 // function that determines if the capability if needed for the mission

483 bool is capabilities needed(int capability)

130

484 {

485 for (i : int[0,2])

486 {

487 if(mission capabilities[i] == capability) return true;

488 }

489 return false;

490 }

491

492

493 // maybe add a counter here that goes through capabilities needed in this mission

and find possible members on each iteration of sim

494

495 int possible member(){

496

497 for (i : int[0,N−1])

498 {

499 if(drone status[i] == 0 && drone battery[i] > 49 &&

within reach(drone location x[i], drone location y[i]) &&

is capabilities needed(drone capability[i]))

500 {

501 drone candidates[i] = 1;

502 candidate counter++;

503 }

504 }

505 return candidate counter;

506 }

131

507

508 //checks the results of the votes for leader to see if concensus was achieved

509 bool voting results(int check votes[Needed]){

510

511 for (i : int[0,Needed−2])

512 {

513 if (check votes[i] != check votes[i + 1])

514 return true;

515 }

516 return false;

517 }

518

519

520 // based on the result of the election, this function assigns a leader drone

521 void elect leader(){

522

523 for (i : int[0,Needed−1])

524 {

525 int cap = mission capabilities[i];

526 id voter = find drone in swarm(cap);

527 check votes[i]=votes[id voter];

528

529 }

530

531 if(voting results(check votes)==false)

532 {

132

533 drone status[votes[id voter]] = 1;

534 }

535

536 voting in prog = false;

537 updating mission = true;

538

539 }

540

541 // based on the result of the election, this function assigns a member drone

542 void elect members(){

543

544 if(vote counter == Needed)

545 {

546 for (i : int[0,Needed−1])

547 {

548 int cap = mission capabilities[i];

549 id voter = find drone in swarm(cap);

550 check member votes[i] = member votes[id voter];

551 }

552

553 if(voting results(check member votes)==false)

554 {

555 //get id of drone already in swarm with same capability as candidate to

join (id)

556 int curr id = find drone in swarm(drone capability[member votes[

id voter]]);

133

557 drone status[curr id] = 0;

558 drone status[member votes[id voter]] = −1;

559

560 }

561

562 voting in prog = false;

563 }

564

565 updating mission = true;

566 candidate counter = 0;

567 vote counter = 0;

568 reset arrays();

569

570 }

571

572

573

574 </declaration>

575 <location id=”id5” x=”−272” y=”195”>

576 <name x=”−289” y=”161”>Start</name>

577 </location>

578 <location id=”id6” x=”136” y=”195”>

579 <name x=”93” y=”204”>ElectMembers</name>

580 </location>

581 <location id=”id7” x=”578” y=”195”>

582 <name x=”552” y=”161”>MissionStarted</name>

134

583 </location>

584 <location id=”id8” x=”−93” y=”195”>

585 <name x=”−144” y=”161”>CheckMembers</name>

586 </location>

587 <location id=”id9” x=”756” y=”195”>

588 <name x=”688” y=”161”>MissionAccomplished</name>

589 </location>

590 <location id=”id10” x=”365” y=”195”>

591 <name x=”323” y=”221”>LeaderElection</name>

592 </location>

593 <location id=”id11” x=”221” y=”195”>

594 <name x=”170” y=”221”>UpdateMembers</name>

595 </location>

596 <init ref=”id5”/>

597 <transition>

598 <source ref=”id11”/>

599 <target ref=”id10”/>

600 <label kind=”synchronisation” x=”246” y=”178”>update status!</label>

601 <label kind=”assignment” x=”229” y=”204”>updating mission = true</

label>

602 </transition>

603 <transition>

604 <source ref=”id6”/>

605 <target ref=”id6”/>

606 <label kind=”guard” x=”25” y=”85”>updating mission==true</label>

607 <label kind=”synchronisation” x=”43” y=”68”>member election!</label>

135

608 <label kind=”assignment” x=”26” y=”51”>updating mission=false</label>

609 <nail x=”94” y=”153”/>

610 <nail x=”51” y=”110”/>

611 <nail x=”102” y=”110”/>

612 <nail x=”161” y=”110”/>

613 </transition>

614 <transition>

615 <source ref=”id10”/>

616 <target ref=”id7”/>

617 <label kind=”guard” x=”391” y=”170”>vote counter == Needed</label>

618 <label kind=”synchronisation” x=”433” y=”212”>update status!</label>

619 <label kind=”assignment” x=”416” y=”195”>elect leader()</label>

620 </transition>

621 <transition>

622 <source ref=”id10”/>

623 <target ref=”id10”/>

624 <label kind=”guard” x=”246” y=”51”>vote counter == 0 &&

updating mission == true</label>

625 <label kind=”synchronisation” x=”348” y=”68”>election!</label>

626 <label kind=”assignment” x=”297” y=”93”>updating mission = false</label

>

627 <nail x=”281” y=”93”/>

628 <nail x=”408” y=”93”/>

629 <nail x=”467” y=”93”/>

630 </transition>

631 <transition>

136

632 <source ref=”id7”/>

633 <target ref=”id9”/>

634 <label kind=”guard” x=”594” y=”195”>swarm reached goal()</label>

635 <label kind=”synchronisation” x=”636” y=”212”>mission end!</label>

636 <label kind=”assignment” x=”603” y=”229”>updating mission = 0</label>

637 </transition>

638 <transition>

639 <source ref=”id8”/>

640 <target ref=”id6”/>

641 <label kind=”guard” x=”−59” y=”178”>updating mission == true</label>

642 <label kind=”synchronisation” x=”−25” y=”161”>update status!</label>

643 <label kind=”assignment” x=”−34” y=”195”>possible member()</label>

644 </transition>

645 <transition>

646 <source ref=”id5”/>

647 <target ref=”id8”/>

648 <label kind=”assignment” x=”−263” y=”212”>goal location[0] = goal[0],

649 goal location[1] = goal[1]</label>

650 </transition>

651 <transition>

652 <source ref=”id7”/>

653 <target ref=”id8”/>

654 <label kind=”synchronisation” x=”178” y=”271”>location updated?</label>

655 <label kind=”assignment” x=”68” y=”289”>updating mission = true,

vote counter=0, reset arrays()</label>

656 <nail x=”578” y=”263”/>

137

657 <nail x=”−93” y=”263”/>

658 </transition>

659 <transition>

660 <source ref=”id6”/>

661 <target ref=”id11”/>

662 <label kind=”guard” x=”161” y=”144”>updating mission == false</label>

663 <label kind=”assignment” x=”153” y=”161”>elect members()</label>

664 </transition>

665 </template>

666 <system>// System declarations

667

668 //drone instances

669 Drone0 = Drone(0, drone capability[0], drone battery[0]);

670 Drone1 = Drone(1, drone capability[1], drone battery[1]);

671 Drone2 = Drone(2, drone capability[2], drone battery[2]);

672 Drone3 = Drone(3, drone capability[3], drone battery[3]);

673 Drone4 = Drone(4, drone capability[4], drone battery[4]);

674 Drone5 = Drone(5, drone capability[5], drone battery[5]);

675 Drone6 = Drone(6, drone capability[6], drone battery[6]);

676 Drone7 = Drone(7, drone capability[7], drone battery[7]);

677

678 //mission instance

679 MissionC = MissionControl();

680

681 //system definition

138

682 system MissionC, Drone0, Drone1, Drone2, Drone3, Drone4, Drone5, Drone6, Drone7

;

683

684

685

686

687 </system>

688 <queries>

689 <query>

690 <formula>A[] (vote counter == Needed || vote counter == 0)</formula>

691 <comment>The number of votes is alwasy equal to 0 (if no votation occurs)

or 3 which is the needed votes (tere are always 3 drones in the swarm)</

comment>

692 </query>

693 <query>

694 <formula>A[] deadlock imply (MissionC.MissionAccomplished)</formula>

695 <comment>if a deadlock exists anywhere it means that mission was

accomplished</comment>

696 </query>

697 <query>

698 <formula>A[] ((drone status[0] + drone status[1]+ drone status[2]+

drone status[3]+ drone status[4]+ drone status[5]+ drone status[6]+

drone status[7]) <= 0)</formula>

699 <comment>This property checks that there is never more than one leader in

the swarm. Drone status is represented as −1 for in swarm, 0 for idle, and

1 for leader. Therefore, if the total

139

700 number of drones in the swarm at any point is 3, the sum of their status values must

be negative to respect the one leader policy.

701 </comment>

702 </query>

703 <query>

704 <formula>A[]((abs(drone status[0]) + abs(drone status[1])+ abs(drone status

[2])+ abs(drone status[3])+ abs(drone status[4])+ abs(drone status[5])+

abs(drone status[6])+ abs(drone status[7])) == Needed)</formula>

705 <comment>This property complements the property verified above.

Considering again that drone status −1 means in swarm, 0 means idle, and

1 means leader: the number of drones in the swarm

706 at any point of the missions is equal to the absolute value of the sum of their status

values. This property verifies that always globally there are 3 drones in the

swarm. </comment>

707 </query>

708 <query>

709 <formula>A[] forall(i:int[0,7])(drone status[i] == 1 imply drone capability[i]

== 1)</formula>

710 <comment>property that verifies if any drone is a leader then its capability is

communicator </comment>

711 </query>

712 <query>

713 <formula>A<> drone status[0] == 0 imply Drone0.Idle</formula>

714 <comment>This property verifies that if a drone is not part of the swarm

anymore then it always eventually goes to state Idle.</comment>

715 </query>

140

716 <query>

717 <formula>A[] forall(i:int[0,7])(drone status[i] == −1 || drone status[i] == 1)

imply drone battery[i] >= 49</formula>

718 <comment>This property verifies that drones in the swarm must have at least

49 battery to be part of the swarm. </comment>

719 </query>

720 </queries>

721 </nta>

CodeFiles/Swarm consensus final.xml

141

Appendix C

ROS Base Classes

1 #include <bits/stdc++.h>

2 #include <gnc functions.hpp>

3 using namespace std;

4

5 class Drone

6 {

7 private:

8 int x;

9 int y;

10 int i;

11 ros::NodeHandle nh;

12

13 public:

14

15 Drone(int i)

142

16 {

17 // added

18 this−>i = i;

19 }

20 bool is leader(int id)

21 {

22 vector<int> drone status;

23 nh.getParam(”/drone status”, drone status);

24 return (drone status[id] == 1);

25 }

26 bool in swarm(int id)

27 {

28 vector<int> drone status;

29 nh.getParam(”/drone status”, drone status);

30 return drone status[id] != 0;

31 }

32 int find drone in swarm(int capability)

33 {

34 vector<int> drone capability;

35 nh.getParam(”/drone capability”, drone capability);

36 int N;

37 nh.getParam(”/N”, N);

38 vector<int> drone status;

39 nh.getParam(”/drone status”, drone status);

40 for (int id = 0; id <= (N − 1); id++)

41 {

143

42 if ((drone status[id] != 0) && (drone capability[id] == capability))

43 {

44 return id;

45 }

46 }

47

48 return −1;

49 }

50 bool swarm reached goal()

51 {

52 vector<int> goal location;

53 nh.getParam(”/goal location”, goal location);

54 int N;

55 nh.getParam(”/N”, N);

56 vector<int> drone location y;

57 nh.getParam(”/drone location y”, drone location y);

58 vector<int> drone location x;

59 nh.getParam(”/drone location x”, drone location x);

60 bool reached = true;

61 for (int id = 0; id <= (N − 1); id++)

62 {

63 if (in swarm(id))

64 {

65 reached = (reached && (drone location x[id] == goal location[0])) && (

drone location y[id] == goal location[1]);

66 }

144

67 }

68

69 return reached;

70 }

71 void update leader position(int id)

72 {

73 vector<int> leader position;

74 nh.getParam(”/leader position”, leader position);

75 vector<int> drone location x;

76 nh.getParam(”/drone location x”, drone location x);

77 vector<int> drone location y;

78 nh.getParam(”/drone location y”, drone location y);

79 leader position[0] = drone location x[id];

80 leader position[1] = drone location y[id];

81 nh.setParam(”/leader position”, leader position);

82 }

83 bool reached goal(int id)

84 {

85 vector<int> goal location;

86 nh.getParam(”/goal location”, goal location);

87 vector<int> drone location x;

88 nh.getParam(”/drone location x”, drone location x);

89 vector<int> drone location y;

90 nh.getParam(”/drone location y”, drone location y);

91 return (drone location x[id] == goal location[0]) && (drone location y[id] ==

goal location[1]);

145

92 }

93 int linear distance(vector<int> goal, int a, int b)

94 {

95 //vector<int> goal;

96 //nh.getParam(”/goal”, goal);

97

98 int x coord = goal[0];

99 int y coord = goal[1];

100 int xsquare = (x coord − a) ∗ (x coord − a);

101 int ysquare = (y coord − b) ∗ (y coord − b);

102 int sum1 = xsquare + ysquare;

103 sum1 = int(sqrt(sum1));

104 return sum1;

105 }

106 void calculate drone times(int cap)

107 {

108 vector<int> drone capability;

109 nh.getParam(”/drone capability”, drone capability);

110 vector<int> drone time;

111 nh.getParam(”/drone time”, drone time);

112 int N;

113 nh.getParam(”/N”, N);

114 int dist;

115 nh.getParam(”/dist”, dist);

116 vector<int> leader position;

117 nh.getParam(”/leader position”, leader position);

146

118 vector<int> drone location y;

119 nh.getParam(”/drone location y”, drone location y);

120 vector<int> drone location x;

121 nh.getParam(”/drone location x”, drone location x);

122 vector<int> time to swarm;

123 nh.getParam(”/time to swarm”, time to swarm);

124 vector<int> drone candidates;

125 nh.getParam(”/drone candidates”, drone candidates);

126 for (int i = 0; i <= (N − 1); i++)

127 {

128 if ((drone candidates[i] == 1) && (drone capability[i] == cap))

129 {

130 dist = linear distance(leader position, drone location x[i], drone location y[

i]);

131 if ((dist > 0) && (dist < 9))

132 {

133 drone time[i] = time to swarm[dist − 1];

134 nh.setParam(”/drone time”, drone time);

135 }

136 }

137 }

138

139 }

140 void move(int id)

141 {

142 vector<int> goal location;

147

143 nh.getParam(”/goal location”, goal location);

144 vector<int> drone location y;

145 nh.getParam(”/drone location y”, drone location y);

146 vector<int> drone battery;

147 nh.getParam(”/drone battery”, drone battery);

148 vector<int> drone location x;

149 nh.getParam(”/drone location x”, drone location x);

150 if (drone location x[id] != goal location[0])

151 {

152 drone location x[id] = drone location x[id] + 1;

153 drone battery[id] −= 1;

154 nh.setParam(”/drone location x”, drone location x);

155 nh.setParam(”/drone battery”, drone battery);

156 }

157 else

158 {

159 if (drone location y[id] != goal location[1]){

160 drone location y[id] = drone location y[id] + 1;

161 drone battery[id] −= 1;

162 nh.setParam(”/drone location y”, drone location y);

163 nh.setParam(”/drone battery”, drone battery);

164 }

165 }

166 if (is leader(id))

167 update leader position(id);

168

148

169 x = drone location x[id];

170 y = drone location y[id];

171

172 }

173 void vote(int id)

174 {

175 vector<int> drone capability;

176 nh.getParam(”/drone capability”, drone capability);

177 int vote counter;

178 nh.getParam(”/vote counter”, vote counter);

179 int N;

180 nh.getParam(”/N”, N);

181 vector<int> votes;

182 nh.getParam(”/votes”, votes);

183 vector<int> drone status;

184 nh.getParam(”/drone status”, drone status);

185 for (int i = 0; i <= (N − 1); i++)

186 {

187 if ((drone status[i] == (−1)) && (drone capability[i] == 1))

188 {

189 votes[id] = i;

190 nh.setParam(”/votes”, votes);

191 }

192 }

193 vote counter++;

194 nh.setParam(”/vote counter”, vote counter);

149

195 }

196

197

198 int find min(vector<int> arr, int capability)

199 {

200 vector<int> drone capability;

201 nh.getParam(”/drone capability”, drone capability);

202 int N;

203 nh.getParam(”/N”, N);

204 vector<int> drone candidates;

205 nh.getParam(”/drone candidates”, drone candidates);

206 int min = 100;

207 for (int i = 0; i <= (N − 1); i++)

208 {

209 if ((drone capability[i] == capability) && (drone candidates[i] == 1))

210 {

211 if ((arr[i] != 0) && (arr[i] < min))

212 {

213 min = arr[i];

214 }

215 }

216 }

217

218 return min;

219 }

220 void vote member(int id)

150

221 {

222 vector<int> drone capability;

223 nh.getParam(”/drone capability”, drone capability);

224 int min time;

225 nh.getParam(”/min time”, min time);

226 int N;

227 nh.getParam(”/N”, N);

228 vector<int> drone time;

229 nh.getParam(”/drone time”, drone time);

230 vector<int> member votes;

231 nh.getParam(”/member votes”, member votes);

232 vector<int> drone battery;

233 nh.getParam(”/drone battery”, drone battery);

234 vector<int> drone candidates;

235 nh.getParam(”/drone candidates”, drone candidates);

236 for (int i = 0; i <= (N − 1); i++)

237 {

238 if (drone candidates[i] == 1)

239 {

240 int current drone = find drone in swarm(drone capability[i]);

241 calculate drone times(drone capability[i]);

242 min time = find min(drone time, drone capability[current drone]);

243 if (drone time[i] == min time)

244 {

245 if ((drone battery[current drone] < 50) && (drone battery[i] >

drone battery[current drone]))

151

246 {

247 member votes[id] = i;

248 nh.setParam(”/member votes”, member votes);

249 }

250 }

251 }

252 }

253

254 }

255 };

CodeFiles/Drone base class.cpp

1 #include <bits/stdc++.h>

2 #include <gnc functions.hpp>

3 using namespace std;

4

5 class MissionControl

6 {

7 private:

8

9 ros::NodeHandle nh;

10

11 public:

12 MissionControl()

13 {

14

152

15 }

16 void reset arrays()

17 {

18 vector<int> drone time;

19 nh.getParam(”/drone time”, drone time);

20 int N;

21 nh.getParam(”/N”, N);

22 vector<int> drone candidates;

23 nh.getParam(”/drone candidates”, drone candidates);

24 for (int i = 0; i <= (N − 1); i++)

25 {

26 drone candidates[i] = 0;

27 nh.setParam(”/drone candidates”, drone candidates);

28 drone time[i] = 0;

29 nh.setParam(”/drone time”, drone time);

30 }

31

32 }

33 bool check leader pos()

34 {

35 vector<int> leader position;

36 nh.getParam(”/leader position”, leader position);

37 vector<int> goal;

38 nh.getParam(”/goal”, goal);

39 if ((leader position[0] == goal[0]) && (leader position[1] == goal[1]))

40 return true;

153

41 else

42 return false;

43 }

44 bool in swarm(int id)

45 {

46 vector<int> drone status;

47 nh.getParam(”/drone status”, drone status);

48 return drone status[id] != 0;

49

50 }

51 int find drone in swarm(int capability)

52 {

53 vector<int> drone capability;

54 nh.getParam(”/drone capability”, drone capability);

55 int N;

56 nh.getParam(”/N”, N);

57 vector<int> drone status;

58 nh.getParam(”/drone status”, drone status);

59 for (int id = 0; id <= (N − 1); id++)

60 {

61 if ((drone status[id] != 0) && (drone capability[id] == capability))

62 {

63 return id;

64 }

65 }

66

154

67 return −1;

68 }

69 bool swarm reached goal()

70 {

71 vector<int> goal location;

72 nh.getParam(”/goal location”, goal location);

73 int N;

74 nh.getParam(”/N”, N);

75 vector<int> drone location y;

76 nh.getParam(”/drone location y”, drone location y);

77 vector<int> drone location x;

78 nh.getParam(”/drone location x”, drone location x);

79 bool reached = true;

80 for (int id = 0; id <= (N − 1); id++)

81 {

82 if (in swarm(id))

83 {

84 reached = (reached && (drone location x[id] == goal location[0])) && (

drone location y[id] == goal location[1]);

85 }

86 }

87

88 return reached;

89 }

90 int linear distance(vector<int> goal, int a, int b)

91 {

155

92 //vector<int> goal;

93 //nh.getParam(”/goal”, goal); does not like same name for argument and

variable

94 int x coord = goal[0];

95 int y coord = goal[1];

96 int xsquare = (x coord − a) ∗ (x coord − a);

97 int ysquare = (y coord − b) ∗ (y coord − b);

98 int sum1 = xsquare + ysquare;

99 sum1 = int(sqrt(sum1)); // casting to integer

100 return sum1;

101 }

102 bool within reach(int x,int y)

103 {

104 vector<int> leader position;

105 nh.getParam(”/leader position”, leader position);

106 int comm reach;

107 nh.getParam(”/comm reach”, comm reach);

108 if (linear distance(leader position, x, y) <= comm reach)

109 {

110 return true;

111 }

112 else

113 {

114 return false;

115 }

116 }

156

117 bool is capabilities needed(int capability)

118 {

119 vector<int> mission capabilities;

120 nh.getParam(”/mission capabilities”, mission capabilities);

121 for (int i = 0; i <= 2; i++)

122 {

123 if (mission capabilities[i] == capability)

124 return true;

125 }

126

127 return false;

128 }

129 int possible member()

130 {

131 vector<int> drone capability;

132 nh.getParam(”/drone capability”, drone capability);

133 int N;

134 nh.getParam(”/N”, N);

135 vector<int> drone status;

136 nh.getParam(”/drone status”, drone status);

137 vector<int> drone location y;

138 nh.getParam(”/drone location y”, drone location y);

139 vector<int> drone battery;

140 nh.getParam(”/drone battery”, drone battery);

141 vector<int> drone location x;

142 nh.getParam(”/drone location x”, drone location x);

157

143 int candidate counter;

144 nh.getParam(”/candidate counter”, candidate counter);

145 vector<int> drone candidates;

146 nh.getParam(”/drone candidates”, drone candidates);

147 for (int i = 0; i <= (N − 1); i++)

148 {

149 if ((((drone status[i] == 0) && (drone battery[i] > 49)) && within reach(

drone location x[i], drone location y[i])) && is capabilities needed(

drone capability[i]))

150 {

151 drone candidates[i] = 1; // these need to get set on the parameter server

152 candidate counter++;

153 nh.setParam(”/drone candidates”, drone candidates);

154 nh.setParam(”/candidate counter”, candidate counter);

155 }

156 }

157

158 return candidate counter;

159 }

160 bool voting results(vector<int> check votes) // modified argument of function

161 {

162 int Needed;

163 nh.getParam(”/Needed”, Needed);

164 //vector<int> check votes;

165 //nh.getParam(”/check votes”, check votes);

166 for (int i = 0; i <= (Needed − 2); i++)

158

167 {

168 if (check votes[i] != check votes[i + 1])

169 return true;

170 }

171

172 return false;

173 }

174 void elect leader()

175 {

176 vector<int> votes;

177 nh.getParam(”/votes”, votes);

178 vector<int> drone status;

179 nh.getParam(”/drone status”, drone status);

180 int voting in prog;

181 nh.getParam(”/voting in prog”, voting in prog);

182 vector<int> mission capabilities;

183 nh.getParam(”/mission capabilities”, mission capabilities);

184 int Needed;

185 nh.getParam(”/Needed”, Needed);

186 int updating mission;

187 nh.getParam(”/updating mission”, updating mission);

188 vector<int> check votes;

189 nh.getParam(”/check votes”, check votes);

190 int id voter;

191 nh.getParam(”/id voter”, id voter);

192 for (int i = 0; i <= (Needed − 1); i++)

159

193 {

194 int cap = mission capabilities[i];

195 id voter = find drone in swarm(cap);

196 check votes[i] = votes[id voter];

197 nh.setParam(”/check votes”, check votes);

198 }

199

200 if (voting results(check votes) == false)

201 {

202 drone status[votes[id voter]] = 1;

203 nh.setParam(”/drone status”, drone status);

204 }

205 voting in prog = false;

206 nh.setParam(”/voting in prog”, voting in prog);

207 updating mission = true;

208 nh.setParam(”/updating mission”, updating mission);

209 }

210 void elect members()

211 {

212 int voting in prog;

213 nh.getParam(”/voting in prog”, voting in prog);

214 int Needed;

215 nh.getParam(”/Needed”, Needed);

216 int candidate counter;

217 nh.getParam(”/candidate counter”, candidate counter);

218 int id voter;

160

219 nh.getParam(”/id voter”, id voter);

220 vector<int> member votes;

221 nh.getParam(”/member votes”, member votes);

222 vector<int> drone status;

223 nh.getParam(”/drone status”, drone status);

224 int vote counter;

225 nh.getParam(”/vote counter”, vote counter);

226 vector<int> check member votes;

227 nh.getParam(”/check member votes”, check member votes);

228 vector<int> drone capability;

229 nh.getParam(”/drone capability”, drone capability);

230 vector<int> mission capabilities;

231 nh.getParam(”/mission capabilities”, mission capabilities);

232 int updating mission;

233 nh.getParam(”/updating mission”, updating mission);

234 if (vote counter == Needed)

235 {

236 for (int i = 0; i <= (Needed − 1); i++)

237 {

238 int cap = mission capabilities[i];

239 id voter = find drone in swarm(cap);

240 check member votes[i] = member votes[id voter];

241 nh.setParam(”/check member votes”, check member votes);

242 }

243

244 if (voting results(check member votes) == false)

161

245 {

246 int curr id = find drone in swarm(drone capability[member votes[id voter

]]);

247 drone status[curr id] = 0;

248 drone status[member votes[id voter]] = −1;

249 nh.setParam(”/drone status”, drone status);

250 }

251 voting in prog = false;

252 nh.setParam(”/voting in prog”, voting in prog);

253 }

254 updating mission = true;

255 nh.setParam(”/updating mission”, updating mission);

256 candidate counter = 0;

257 nh.setParam(”/candidate counter”, candidate counter);

258 vote counter = 0;

259 nh.setParam(”/vote counter”, vote counter);

260 reset arrays();

261 }

262 };

CodeFiles/MissionControl base class.cpp

162

Appendix D

ROS Node Control Files

1 #include ”base classes/Drone base class.cpp”

2 #include ”ros/ros.h”

3 #include <thread>

4 #include <chrono>

5 #include <std msgs/Int8.h>

6

7 using namespace std;

8

9 // locally global variables to use in callback functions

10 int update status var;

11 int member election var;

12 int leader election var;

13 int update location var;

14 int mission end var;

15

163

16 // same as mission control template

17 int location updated var;

18

19 void locationUpdatedCallback(std msgs::Int8 location updated){

20 location updated var = location updated.data;

21 }

22

23

24 void statusCallback(std msgs::Int8 update status){

25 update status var = update status.data;

26 }

27

28 void memberElectionCallback(std msgs::Int8 member election){

29 member election var = member election.data;

30 }

31

32 void leaderElectionCallback(std msgs::Int8 leader election){

33 leader election var = leader election.data;

34 }

35

36 void updateLocationCallback(std msgs::Int8 update location){

37 update location var = update location.data;

38 }

39

40 void missionEndCallback(std msgs::Int8 mission end){

41 mission end var = mission end.data;

164

42 }

43

44

45

46 int main(int argc, char∗∗ argv)

47 {

48

49

50 // parse the argument passed in launch file to represent current drone id

51 int id = atoi(argv[1]);

52

53 // private node handle

54 // initialize ROS

55 ros::init(argc, argv, ”drone node”);

56 ros::NodeHandle nh(”˜”);

57

58 // instantiate Drone class

59 Drone∗ ThisDrone = new Drone(id);

60

61

62

63 // This function takes our ros node handle as an input and initializes subcribers

64 // that will collect the necessary information from our autopilot.

65 // @returns n/a

66 init publisher subscriber(nh);

67

165

68 // wait for FCU connection

69 wait4connect();

70

71 // changing mode to GUIDED

72 set mode(”GUIDED”);

73

74 //create local reference frame

75 initialize local frame();

76

77 std::string ThisNamespace;

78 nh.getParam(”namespace”, ThisNamespace);

79 ROS INFO(”THIS NAMESPACE IS: %s”, ThisNamespace.c str());

80

81 // define subscribers

82 ros::Subscriber update status sub;

83 ros::Subscriber member election sub;

84 ros::Subscriber leader election sub;

85 ros::Subscriber update location sub;

86 ros::Subscriber location updated sub;

87 ros::Subscriber mission end sub;

88

89 //Publishers

90 ros::Publisher location updated pub = nh.advertise<std msgs::Int8>(”/

location updated”, 1, true); // checking without namespace and adding latch

91 ros::Publisher update location pub = nh.advertise<std msgs::Int8>(”/

update location”, 1, true);

166

92

93 // local global variable to get and set vote counter variable

94 int vote counter;

95

96 int Needed;

97

98 int updating mission;

99

100 //define standard sybc msg

101 std msgs::Int8 sync;

102 sync.data = 1;

103

104 // define TA states as enum

105 enum STATES

106 {

107 Idle, InSwarm, Leader, UpdatingLocation, WaitingSwarm

108

109 } STATE;

110

111 STATE = Idle;

112

113 // create a flag to know when the drones voted when InSwarm state

114 int flag = 0;

115

116 ROS INFO(”Drones going into while loop”);

117

167

118 ros::Rate rate(0.5);

119

120 while(ros::ok()){

121

122 ros::spinOnce();

123

124 switch(STATE){

125

126 case Idle:

127 {

128

129 // idle to in swarm

130 if(ThisDrone−>in swarm(id)){

131

132 update status sub = nh.subscribe(”/update status”, 1,

statusCallback);

133 while(update status var != 1){

134 ros::spinOnce();

135 }

136

137 if(update status var == 1){

138 ROS INFO(”Inside Idle state, Drones should takeoff”);

139 takeoff(10);

140 ROS INFO(”Waiting for drones to reach waypoint”);

141 STATE = InSwarm;

142 update status sub.shutdown();

168

143 update status var = 0;

144 }

145

146 }

147 rate.sleep();

148 break;

149 }

150

151 case InSwarm:

152 {

153 // member election logic

154 ROS INFO(”Drones InSwarm case”);

155 if(flag == 0 && ThisDrone−>in swarm(id)){

156

157 ROS INFO(”Drones in election loops”);

158 member election sub = nh.subscribe(”/member election”, 1,

memberElectionCallback);

159 while(member election var != 1){

160 break;

161 }

162 nh.getParam(”/vote counter”, vote counter);

163 if(member election var == 1 && vote counter < 3){ // vote

counter restriction added here

164 ThisDrone−>vote member(id);

165 vote counter += 1;

166 nh.setParam(”/vote counter”, vote counter);

169

167 nh.getParam(”/vote counter”, vote counter);

168 ROS INFO(”Drones voted for members: %d”, vote counter);

169 STATE = InSwarm;

170 member election sub.shutdown();

171 member election var = 0;

172 nh.getParam(”/vote counter”, vote counter);

173

174 }

175

176 while(vote counter != 0){

177 // wait till member election sets votes back to 0

178 nh.getParam(”/vote counter”, vote counter);

179 }

180

181 ROS INFO(”drones out of member election, moving to leader

election”);

182 nh.getParam(”/vote counter”, vote counter);

183 leader election sub = nh.subscribe(”/leader election”, 1,

leaderElectionCallback);

184 while(leader election var != 1){

185 break;

186 }

187 if(leader election var == 1 && vote counter < 3){

188 ThisDrone−>vote(id);

189 ros::Duration(3).sleep();

190 nh.getParam(”/vote counter”, vote counter);

170

191 ROS INFO(”Drones voted for leader: %d”, vote counter);

192 STATE = InSwarm;

193 leader election sub.shutdown();

194 leader election var = 0;

195 flag = 1;

196 break; // bc leader drone at this point needs to go to leader

state

197

198 }

199

200 }

201

202 // transition to leader

203 nh.getParam(”/vote counter”, vote counter);

204 nh.getParam(”/updating mission”, updating mission);

205 if(ThisDrone−>is leader(id) && vote counter == Needed &&

updating mission == 1){ //inSwarm to leader transition

206 ThisDrone−>update leader position(id);

207 STATE = Leader;

208 ROS INFO(”leader transitions”);

209 rate.sleep();

210 break;

211 }

212

213 //transition to updating location

214 if(flag == 1 && ThisDrone−>in swarm(id) == true && ThisDrone

171

−>reached goal(id) == false){

215

216 update location sub = nh.subscribe(”/update location”, 1,

updateLocationCallback);

217 while(update location var != 1){

218 ros::spinOnce();

219 }

220 if(update location var == 1){

221 ROS INFO(”Drone moves 1 unit”);

222 ThisDrone−>move(id);

223 vector<int> drone location x;

224 vector<int> drone location y;

225 nh.getParam(”/drone location x”, drone location x);

226 nh.getParam(”/drone location y”, drone location y);

227 set destination(drone location x[id], drone location y[id], 10,

10);

228 ROS INFO(”Waiting for drones to reach waypoint”);

229 STATE = UpdatingLocation;

230 update location sub.shutdown();

231 update location var = 0;

232 rate.sleep();

233 flag = 0;

234 break;

235 }

236 }

237

172

238 // InSwarm to Idle transition

239 if(ThisDrone−>in swarm(id) == false){

240 update status sub = nh.subscribe(”/update status”, 1,

statusCallback);

241 if(update status var == 1){

242 land();

243 STATE = Idle;

244 update status sub.shutdown();

245 update status var = 0;

246 rate.sleep();

247 break;

248 }

249

250 }

251

252 // Inswarm to idle transition

253 mission end sub = nh.subscribe(”/mission end”, 1,

missionEndCallback);

254 if(mission end var == 1){

255 land();

256 STATE = Idle;

257 mission end sub.shutdown();

258 mission end var = 0;

259 rate.sleep();

260 break;

261 }

173

262

263 ROS INFO(”breaking from inswarm case now”);

264 rate.sleep();

265 break;

266 }

267

268 case Leader:

269 {

270 // leader to in swarm state transition

271 if(ThisDrone−>is leader(id) == false){

272 STATE = InSwarm;

273 rate.sleep();

274 break;

275 }

276

277 // leader to idle transition

278 mission end sub = nh.subscribe(”/mission end”, 1,

missionEndCallback);

279 if(mission end var == 1){

280 land();

281 STATE = Idle;

282 mission end sub.shutdown();

283 rate.sleep();

284 break;

285 }

286

174

287 // leader to waitingswarm transition

288 nh.getParam(”/updating mission”, updating mission);

289 if(ThisDrone−>swarm reached goal() == false && ThisDrone−>

is leader(id) && updating mission == true){

290 while(update location pub.getNumSubscribers() < 2){

291 ROS INFO(”waiting for mission control update location sub

”);

292 }

293 update location pub.publish(sync);

294 ROS INFO(”Leader Drone Moves 1 unit”);

295 ThisDrone−>move(id);

296 vector<int> drone location x;

297 vector<int> drone location y;

298 nh.getParam(”/drone location x”, drone location x);

299 nh.getParam(”/drone location y”, drone location y);

300 set destination(drone location x[id], drone location y[id], 10, 10);

301 ROS INFO(”Waiting for drones to reach waypoint”);

302 STATE = WaitingSwarm;

303 rate.sleep();

304 break;

305 }

306 rate.sleep();

307 break;

308 }

309

310 case UpdatingLocation:

175

311 {

312 //updating location to in swarm transition

313 ROS INFO(”Drone updating location”);

314 location updated sub = nh.subscribe(”/location updated”, 1,

locationUpdatedCallback);

315 while(location updated var != 1){

316 ros::spinOnce();

317 }

318 if(location updated var == 1){

319 STATE = InSwarm;

320 location updated sub.shutdown();

321 rate.sleep();

322 break;

323 }

324 rate.sleep();

325 break;

326 }

327

328 case WaitingSwarm:

329 {

330

331 while(location updated pub.getNumSubscribers() < 2){

332 ROS INFO(”waiting for mission control location updated sub”);

333 }

334

335 location updated pub.publish(sync);

176

336 vote counter = 0;

337 nh.setParam(”/vote counter”, vote counter);

338 STATE = InSwarm;

339 // return flag to 0 for leader so it goes into election loop as well.

340 flag = 0;

341 rate.sleep();

342 break;

343 }

344 }

345

346 rate.sleep();

347 }

348 ROS INFO(”ROS IS NOT OKAY”);

349 }

CodeFiles/Drone.cpp

1 #include ”base classes/MissionControl base class.cpp”

2 #include ”ros/ros.h”

3 #include <thread>

4 #include <chrono>

5 #include <std msgs/Int8.h>

6

7 using namespace std;

8

9 int location updated var;

10

177

11 void locationUpdatedCallback(std msgs::Int8 location updated){

12 location updated var = location updated.data;

13 }

14

15 int main(int argc, char∗∗ argv)

16 {

17

18 // initialize ROS

19 ros::init(argc, argv, ”MissionControl node”);

20 // private node handle

21 ros::NodeHandle nh(”˜”);

22

23 init publisher subscriber(nh);

24

25

26 MissionControl∗ MissionController = new MissionControl();

27

28 std::string ThisNamespace;

29 nh.getParam(”namespace”, ThisNamespace);

30

31 // all publishers − each represents a channel in uppaal

32 ros::Publisher update status pub = nh.advertise<std msgs::Int8>((

ThisNamespace+”/update status”).c str(), 1, true);

33 ros::Publisher member election pub = nh.advertise<std msgs::Int8>((

ThisNamespace+”/member election”).c str(), 1, true);

34 ros::Publisher election pub = nh.advertise<std msgs::Int8>((ThisNamespace+”/

178

leader election”).c str(), 1, true);

35 ros::Publisher mission end pub = nh.advertise<std msgs::Int8>((ThisNamespace

+”/mission end”).c str(), 1, true);

36

37 //subscribers

38 ros::Subscriber location updated sub;

39

40 // define TA states as enum

41 enum STATES

42 {

43 Start, CheckMembers, ElectMembers, UpdateMembers, LeaderElection,

MissionStarted, MissionAccomplished

44 } STATE;

45

46 STATE = Start;

47

48 int updating mission;

49 int vote counter;

50 int Needed;

51 vector<int> goal;

52

53 //define standard msg

54 std msgs::Int8 sync;

55 sync.data = 1;

56

57

179

58 ros::Duration(10).sleep();

59

60 ROS INFO(”Mission Control going into while loop”);

61

62 ros::Rate rate(0.5);

63

64 while(ros::ok()){

65

66 ros::spinOnce();

67

68 switch(STATE){

69

70 case Start:

71 {

72 // start to check members transition

73 ROS INFO(”MissionControl in Start state”);

74 nh.getParam(”/goal”, goal);

75 nh.setParam(”/goal location”, goal);

76 STATE = CheckMembers;

77 rate.sleep();

78 break;

79 }

80

81 case CheckMembers:

82 {

83 // check members to elect members transition

180

84 ROS INFO(”Mission Control in Check Members state”);

85 nh.getParam(”/updating mission”, updating mission);

86 if(updating mission == 1){

87 update status pub.publish(sync); // update status can have 0

subs

88 MissionController−>possible member();

89 STATE = ElectMembers;

90 rate.sleep();

91 break;

92 }

93

94 break;

95 }

96

97 case ElectMembers:

98 {

99 // elect members self loop

100 nh.getParam(”/updating mission”, updating mission);

101 if(updating mission == 1){

102

103 while(member election pub.getNumSubscribers() < 3){

104 //waiting for sync

105 }

106 ROS INFO(”Setting updating mission false”);

107 nh.setParam(”/updating mission”, 0);

108 member election pub.publish(sync);

181

109 STATE = ElectMembers;

110 rate.sleep();

111 }

112

113 nh.getParam(”/vote counter”, vote counter);

114 ROS INFO(”Number of votes in parameter server: %d”,

vote counter);

115 while(vote counter < 3){

116 nh.getParam(”/vote counter”, vote counter);

117 }

118

119 // electmembers to update members transition

120 ROS INFO(”Mission Control in ElectMembers state”);

121 nh.getParam(”/updating mission”, updating mission);

122 if(updating mission == 0){

123 MissionController−>elect members();

124 nh.getParam(”/vote counter”, vote counter);

125 ROS INFO(”After MC member election, vote counter should be

0: %d”, vote counter);

126 STATE = UpdateMembers;

127 rate.sleep();

128 break;

129 }

130 rate.sleep();

131 break;

132 }

182

133

134 case UpdateMembers:

135 {

136 // updatemembers to leader election transition

137 ROS INFO(”MC in UpdateMembers, publishing update status. ”);

138 update status pub.publish(sync); //update status can have 0 subs

139 nh.setParam(”/updating mission”, 1);

140 STATE = LeaderElection;

141 rate.sleep();

142 break;

143 }

144

145 case LeaderElection:

146 {

147 // leader election self loop

148 nh.getParam(”/vote counter”, vote counter);

149 nh.getParam(”/updating mission”, updating mission);

150 if(vote counter == 0 && updating mission == 1){

151 while(election pub.getNumSubscribers() < 3){

152 ROS INFO(”waiting for election subs leader election state”);

153 }

154 election pub.publish(sync);

155 ROS INFO(”Mission Control Sending Leader Election sync”);

156 nh.setParam(”/updating mission”, 1);

157 rate.sleep();

158 }

183

159

160 nh.getParam(”/vote counter”, vote counter);

161 while(vote counter < 3){

162 // wait till votes are 3

163 nh.getParam(”/vote counter”, vote counter);

164 }

165

166 // leaderelection to missionstarted transition

167 nh.getParam(”/Needed”, Needed);

168 if(vote counter == Needed){

169 update status pub.publish(sync);

170 MissionController−>elect leader();

171 ROS INFO(”Mission Control Leader elected”);

172 STATE = MissionStarted;

173 rate.sleep();

174 break;

175 }

176 rate.sleep();

177 break;

178 }

179

180 case MissionStarted:

181 {

182 // missionstarted to missionaccomplished transition

183 ROS INFO(”MC in mission started state”);

184 nh.getParam(”/vote counter”, vote counter);

184

185 nh.getParam(”/updating mission”, updating mission);

186 if(MissionController−>swarm reached goal()){

187 while(mission end pub.getNumSubscribers() < 3){

188 ROS INFO(”waiting for mission end subs mission started

state”);

189 }

190

191 mission end pub.publish(sync);

192 nh.setParam(”/updating mission”, 0);

193 STATE = MissionAccomplished;

194 rate.sleep();

195 break;

196 }

197

198 // missionstarted to checkmembers transition

199 location updated sub = nh.subscribe(”/location updated”, 1,

locationUpdatedCallback);

200 while(location updated var != 1){

201 ros::spinOnce();

202 }

203 if(location updated var == 1){

204 nh.setParam(”/updating mission”, 1);

205 nh.setParam(”/vote counter”, 0);

206 MissionController−>reset arrays();

207 STATE = CheckMembers;

208 location updated sub.shutdown();

185

209 location updated var = 0;

210 rate.sleep();

211 break;

212 }

213 rate.sleep();

214 break;

215 }

216

217 case MissionAccomplished:

218

219 break;

220

221 }

222 rate.sleep();

223 }

224 ROS INFO(”ROS IS NOT OK”);

225 }

CodeFiles/MissionControl.cpp

186

	Modeling, Verification, and Simulation of a UAV Swarm Consensus Protocol
	Abstract
	List of Figures
	List of Tables
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 UPPAAL and ROS

	2 Related Works
	3 Research Methodology
	3.1 Problem Statement Elaboration
	3.2 Framework
	3.3 Formal Model
	3.4 Assumptions
	3.5 Translation

	4 Technical Specifications
	4.1 Matlab Drone Dynamics
	4.1.1 Inputs and Outputs
	4.1.2 Matlab Script Modifications

	4.2 UPPAAL Description
	4.3 UPPAAL Global Declarations
	4.4 UPPAAL Template Descriptions
	4.5 Election Protocol
	4.6 Properties Verified

	5 ROS Implementation
	5.1 ROS Concepts
	5.2 Automated Translation
	5.3 Manual Translation

	6 Validation
	6.1 Simulation Setup
	6.2 UPPAAL Symbolic Simulator
	6.3 Simulation Test Cases

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Work

	References
	A Drone Dynamics Matlab Script
	B Uppaal Drone Swarm System XML
	C ROS Base Classes
	D ROS Node Control Files

