
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

5-2020

Model Optimization For Edge Devices Model Optimization For Edge Devices

Adolf Anthony D’costa

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Computer Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=repository.fit.edu%2Fetd%2F776&utm_medium=PDF&utm_campaign=PDFCoverPages

Model Optimization For Edge Devices

by
Adolf Anthony D’costa

Bachelor of Engineering
Electronics And Telecommunication Engineering

Mumbai University
2014

A thesis
submitted to the College of Engineering and Science at

Florida Institute of Technology
in partial fulfillment of the requirements

for the degree of

Master of Science
in

Computer Engineering

Melbourne, Florida
May, 2020

We, the undersigned committee, hereby approve the attached thesis.

Model Optimization For Edge Devices

by
Adolf Anthony D’costa

Carlos Otero, Ph.D.
Major Advisor
Associate Professor, Computer Engineering

Veton Kepuska, Ph.D.
Committee Member
Associate Professor, Electrical and Computer Engineering

William Allen, Ph.D.
Outside Committee Member
Associate Professor, Computer and Science

Philip Bernhard, Ph.D.
Department Head
Associate Professor, Computer Engineering and Sciences

Abstract

Title:

Model Optimization For Edge Devices

Author:

Adolf Anthony D’costa

Thesis Advisor:

Carlos E. Otero, Ph.D.

Edge devices are undergoing groundbreaking computing transformation, which lets

us tap into artificial intelligence, quantum computing, 5th generation network capa-

bility, fog networking, and computing complex algorithms. Edge systems have sub-

stantial advantages over the conventional system in terms of scalability, optimized

resources, reliability, and security. The proliferation of such resource-constrained

devices in recent years has resulted in the generation of a large quantity of data;

these data-producing devices are attractive targets for applications of machine

learning. Machine learning models, especially deep learning neural networks, pro-

duced models that have high accuracy and prediction capability, but it comes at

the cost of computation power and memory consumption. There is a large scope

iii

to optimize machine learning models over certain criteria such as size, efficiency,

latency, and accuracy. Optimization of machine learning models and running them

over a constrained environment will help revolutionize edge devices and help develop

exceptional results in real-time.

iv

Table of Contents

List of Figures viii

List of Tables xi

Acknowledgements xii

1 Introduction 1

2 Literature Review 4

2.1 Traditional Machine Learning . 5

2.2 Speech Recognition . 5

2.3 Converging Speech Recognition And Machine Learning 6

2.4 Sound Classification using Machine Learning on Edge Device 7

2.5 Optimizing Machine Learning Model For Edge Devices 9

2.5.1 Architecture Redesign . 10

v

2.5.2 Pruning . 10

2.5.3 Quantization Awareness Training 11

2.5.4 Quantization . 13

3 Proposed Approach 15

4 Implementation 19

4.1 Conventional Edge Devices . 19

4.1.1 Microprocessor . 20

4.1.2 Microcontroller . 20

4.2 Hardware Selection . 22

4.3 Pre-requisites . 23

4.4 Segregating and Data Collection 26

4.5 Signal processing parameters . 27

4.6 Pre-processing . 27

4.7 Data Organization and Conversion from 1D to 2D 34

4.8 Model . 37

4.9 Quantization Aware Training . 41

4.10 Magnitude Based Weight Pruning 43

vi

4.11 Quantization . 46

4.12 Conversion to C array . 47

5 Results 48

5.1 Logging Data . 48

5.2 Parameters and Duration for Testing 49

5.3 Output . 50

5.4 Confusion Matrix . 52

5.4.1 Results in Confusion Matrix 53

5.5 Plots Weights and Biases . 55

5.5.1 GPU Usage . 55

5.5.2 Epochs . 56

5.5.3 Loss, Accuracy and Learning Rate 57

5.5.4 Model Comparison . 59

6 Conclusion 61

6.0.1 Future Work . 61

Bibliography 62

vii

List of Figures

2.1 Edge Eco-System [11] . 5

2.2 Casper system architecture [44] 7

2.3 Fire Module [28] . 10

2.4 Pruning [43] . 11

2.5 Quantization Aware Training [16] 12

2.6 Quantization AlexNet [41] . 13

3.1 Flow Chart For Proposed Approach 16

3.2 Typical Machine Learning System For Audio Signals 17

4.1 Casper system architecture [44] 19

4.2 Basic Microprocessor Architecture [5] 20

4.3 Basic Microcontroller Architecture [5] 22

4.4 Anaconda . 23

viii

4.5 Raw Wave Form ESC-50 Knocking (1-81001-A-30.wav) [39] 29

4.6 Standard Scoring Normalization 30

4.7 Processed Data 1st Window . 31

4.8 Processed Data 2nd Window . 32

4.9 Processed Data 3rd Window With Padding 33

4.10 Converting 1D Array to 2D [21] 35

4.11 Model Flowchart [28] . 39

4.12 System Generated Model Architecture [28] 40

4.13 Quantization using TensorFlow lite Operation [7] 41

4.14 Quantization Aware Training [41] 42

4.15 Quantization Aware Training Weight Adjustments [41] 43

4.16 Pruning Technique [26] . 43

4.17 Pruning Model Architecture . 45

4.18 Quantization AlexNet [41] . 46

5.1 ShrinkLog Text File . 51

5.2 Original Model Accuracy . 52

5.3 TensorFlow Lite Model Accuracy 52

5.4 Confusion Matrix Example Keyboard Typing 54

ix

5.5 GPU Usage . 55

5.6 Epochs . 56

5.7 Validation Accuracy . 57

5.8 Validation Loss . 58

5.9 Learning Rate . 59

5.10 Model Comparison . 60

x

List of Tables

2.1 Microcontroller Compatible With Machine Learning 9

4.1 List of Software . 24

4.2 List of Dependent Python Packages 25

4.3 List of Sounds . 26

5.1 Confusion Matrix Calculation Table 54

xi

Acknowledgements

I wish to express my deepest gratitude to my advisor and mentor Dr. Carlos E.

Otero; he has been an inspiration to me. His wisdom, expertise, and support were

a gift to me for the past two years.

I am deeply grateful to my parents Anthony Dcosta and Rayna Dcosta, along with

my relatives for the motivation, encouragement, and support they have given me

through this journey.

Finally, I would like to thank my colleague David Elliott for spending time with me to

resolve issues related to QAT, data handling, and also engaged me with innovative

ideas. I would like to appreciate the help from Nikita John and Tapas Joshi, they

have helped me correct my thesis document, by providing valuable feedback, also

like to thank Ravi Pandhi and Rosalin Dash for their support.

xii

Chapter 1

Introduction

With the introduction of "Edge Devices," which can be traced back to the 1990s,

the number of devices has been exponentially increasing. There are approximately

20.4 billion edge devices today [3]. These devices are embedded system which has

a variety of sensors connected to them depending upon the application they were

designed. Edge devices are small, power-efficient, and application-oriented, which

generates a large amount of data. These massive amounts of data are currently

transmitted over to data centers for processing, as these embedded systems have a

constraint on processing, power, and storage. This leads to other challenges; it isn’t

cost-effective to bring the data to the cloud for real-time inference. Network latency

is present in bringing the data from edge devices to data centers for processing,

which affects the amount of time required to provide a result from the time the

data was generated, which could be crucial in specific applications. Sending data

from the edge to the cloud raises a scalability problem as the number of connected

devices on the network increases. There is a substantial potential of a security

breach to occur when data is transmitted over the internet; this could be critical if

the data is classified information.

1

Machine learning is a method that lets a computer learn explicitly without program-

ming. One of the most significant advantages of machine learning is its capacity

to improvise over time. Machine learning can efficiently process intricate patterns

and also identify minute changes. Once a machine learning model is trained over

a wide array of data, and it has archived an excellent accuracy, it can be used to

review, classify, and process significant volumes of data. No human intervention is

required. It can handle multi-dimensional and multi-variety of data, which broadens

its scope of application. Classification, Clustering, Natural Language Processing,

and Forecasting are some of the models that are compatible with machine learning.

Machine learning is resource hungry; it needs a massive amount of computational

resources to function. Engineers generate a highly efficient, accurate, and effective

model by using a large amount of data, large computation power like Graphic Pro-

cessor Unit (GPU) or Tensor Processing Unit (TPU), and large high-speed memory

Solid State Drive (SSD).

We proposed an approach to optimize a machine learning model in an efficient

manner to harness limited computational resources from the edge devices. Machine

learning is effective in handling advance, complex, and dynamic processes. The aim

is to optimize the model so that it can run under-restricted computational resources

efficiently and effectively; this will revolutionize edge computing. The ultimate

objective is to develop a model over machine learning that is extremely small in

size and yet has high accuracy in prediction, which will intern decentralize data

processing. Electronics are undergoing constant evolution, peripherals and sensors

are getting smaller; a large array of a variety of sensors are now being incorporated

into embedded systems. This data can be processed and evaluated in real-time

using the ability of machine learning.

2

Chapter 2 contains the literature review of all the work done in the past on edge

devices, speech processing, and machine learning optimization. Chapter 3 includes

details of a proposed approach to implement the system. Chapter 4 comprises of

implementation and details about how the system was built. Chapter 5 contains

details of the results achieved by implementing the system. Chapter 6 will conclude

the thesis and talk about future scope and improvements.

3

Chapter 2

Literature Review

Edge devices have gone from being a theoretical concept to a key component. Edge

devices are now growing exponentially, expecting a staggering growth from 15 billion

today to 150 billion by 2025, [17]. Edge devices that have internet connectivity are

IoT devices. By the year 2025 IDC (International Data Corporation), is expecting

approximately 75.44 billion IoT devices [15], which will generate 79.4 zettabytes of

data [18].This thesis aims at processing and computing data at the edge. Figure

2.1 shows an ecosystem for Edge devices.

4

Figure 2.1: Edge Eco-System [11]

2.1 Traditional Machine Learning

Machine learning was termed by Arthur Samuel in the year 1959 [42]. In conjunc-

tion, Tom M Mitchelle defined it as "A computer program is said to learn from

experience E with respect to some class of tasks T and performance measure P

if its performance at tasks in T, as measured by P, improves with experience E."

[35]. In the year 1963, Donald Michie uses reinforcement learning to create the

first applicative algorithm of machine learning, which can play tic-tac-toe [19].

2.2 Speech Recognition

In conjunction with Machine learning, there is intensive research and efforts put

into the development of speech recognition. "Audrey" was the first documented

5

speech recognizer; it was invented in 1952 by Davis, Biddulph, and Balashek at Bell

Laboratories. The system was analog and could only detect digits, which ran on a

huge relay rack [12]. Increase in the insistence in the field of speech recognition, lead

to several innovations. "Dragon Dictate" world’s first speech recognition software

was developed in 1990 for consumers; software wasn’t efficient enough as the user

had to pause between each word [34].

2.3 Converging Speech Recognition And Machine

Learning

Apple introduced "Casper" to its benefit during the era of innovation in speech

recognition. It was the first continuous speech recognition software that could

detect approximately 20,000 words. It was also the first voice recognizer that used

a decision tree to predict a continuous speech and perform synthesis [44]. The

architecture of Casper is shown in Figure 2.2. It was running on a Macintosh

machine which had ample computing power; it was equipped with 68030 processor

clocked at 25MHz, 4MB of RAM and 80MB of hard disk capacity [33].

6

Figure 2.2: Casper system architecture [44]

2.4 Sound Classification using Machine Learning on

Edge Device

Google introduced a breakthrough in machine learning when it introduced Tensor-

Flow Lite in November 2017 [24]. It was a lightweight artificial intelligence (AI)

solution for edge devices.The (.tflite) file is a flat-buffer generated from Keras

model; its smaller in size and has quick initialization. It incurred cross-platform

ability, where it could run on a wide range of hardware and software. It’s optimized

for edge devices and also supported hardware acceleration.

Related research was performed at the Florida Institute of Technology by a team

lead by David Elliott under Dr.Carlos Otero, and Dr.Anthony Smith, where they

introduced astounding techniques in Environmental sound classification (ESC) fo-

7

cused on office sound classification. This research provided spectacular results with

an accuracy of 96.4% and a size of 20.6MB. This system was designed and im-

plemented on a mobile device [21]. The objective of this thesis is to take things

one step further and implement environmental sound classification on microcon-

trollers. A microcontroller has more stringent computational resources compared

to microprocessors.

Microcontrollers are low energy consumption devices; they are small in size so that

it can be embedded easily in any environment, at the cost of small memory, reduced

processing power, and low storage capacity. Selecting the right microcontroller had

to be done wisely to optimize machine learning. Machine learning isn’t supported in

all microcontrollers; here is a list of devices in Table 2.1, shortlisted, as TensorFlow

lite is currently supported on ARM Cortex M processor family only.

8

Table 2.1: Microcontroller Compatible With Machine Learning

Name Processor Clock Speed Memory Ram Cost $

Arduino Nano 33 BLE Sense
32-bit ARM R©

CortexTM-M4
64MHz 1MB 256KB 33.40

SparkFun Edge - Apollo3 Blue
32-bit ARM R©

CortexTM-M4F
96MHz 1 MB 384Kb 14.95

ESP-EYE Tensilica LX6 160MHz 4MB 8MB 25.01

STM32F746 DiscoveryKit Arm R© Cortex R©-M7 32KHz 1MB 340KB 55.13

Adafruit EdgeBadge ATSAMD51 120MHz 512KB 192KB 35.95

Adafruit - Bluefruit Cortex M4 processor 64 MHz 2MB 256KB 24.95

2.5 Optimizing Machine Learning Model For Edge

Devices

Optimization is a key constituent when executing an intensive process like machine

learning on a device that has stringent computational resources. "Cyber-Physical

Analytics: Environmental Sound Classification at the Edge"[21] is one of the es-

sential papers to build this research on. The researchers of this paper successfully

implemented sound classification on an android mobile device.

ESC-50 is an ideal data set used by the team to implement sound classification.

Amplitude feature extraction was a technique proposed by the researchers of "En-

vironmental Sound Classification at edge" [21]. It comprised of using Standard

scoring normalization on each window of the data set; it helps in reducing latency

in classification as there is little computational power needed in feature extraction.

9

2.5.1 Architecture Redesign

In 2017 authors of SqueezeNet designed a model architecture that was as accurate

as Alex-Net but had 50X fewer parameters. A couple of ingenious strategies were

used in designing the architecture of the Machine learning model [28].

Figure 2.3: Fire Module [28]

The fire module is shown in Figure 2.3; it consists of a series of squeezes and

expands. This technique helps to reduce the size of the model considerably, but it

was designed for images. It will need alteration implemented to function effectively

on sound signals [28].

2.5.2 Pruning

Magnitude based weight-pruning is a method in reducing the size of the model by

five times. It uses a principle of eliminating unnecessary values in weighted tensor

10

[4]. Neural network parameters are set to zero in order to trim the low weight

values from between the layers of the neural network [45]. Pruning benefits the use

of computational resources optimally by removing unnecessary computation that

contains zero value [4] [27]. Visualization of pruning in layers of a neural network

is shown in Figure 2.4. This technique perhaps can trim down the model size.

Figure 2.4: Pruning [43]

2.5.3 Quantization Awareness Training

A process of approximation of model parameters, to reduce the loss of accuracy

during the quantization of the model. In Figure 2.5, A is the activation, and B is

Bias. After the model is trained with quantization nodes, it is used to quantize the

model to the desired precision (Eg. Float16, Int8, etc.) Quantization brings many

11

advantages, including reduced power, low latency, and reduced model size, which

are incredibly useful for inferencing in edge devices [29].

Figure 2.5: Quantization Aware Training [16]

As the Figure 2.5 illustrates there are fake nodes added to each layer, to visualize

the result of quantizing through forward and backward passes and to learn ranges

for each layer separately during the training cycle [14], bi-directional propagation’s

computes gradient error, which helps

As the Figure 2.5 illustrates, there are fake nodes added to each layer, to visualize

the result of quantizing through forward and backward passes and to learn ranges for

each layer separately during the training cycle [14]. Both forward and backward pass

simulate activation and quantization of weights. Parameters are updated at high

12

precision during a backward pass, which ensures significant precision adjustments

to parameters [24]. Maximum and minimum values are determined during training.

This allows the model that is trained with quantization in a loop to be converted

to a fixed point inference model. It also eliminates the requirement of calibration.

2.5.4 Quantization

Quantization is the process of representing a large set of values into a relatively

small set of symbols or integers [13]. Quantization plays a key factor in model

optimization. With a paradigm shift of Machine Learning and AI from a cloud-

based system that has beefy computing power to an edge-based Machine learning

and AI system, quantization has gained lots of contextual value. Tensorflow Lite

converts the entire model into a flat buffer [21]. A computer uses a 32-bit floating-

point to represent a real number for most applications; the innovational concept

of quantization is to convert these 32-bit floating-point values to 8-bit integers,

with a slight reduction of accuracy. This gives a distinctive result in model size of

approximately 4X times compression [41] [29].

Figure 2.6: Quantization AlexNet [41]

13

Figure2.6 is an example of AlexNet, with the original histogram on the left. Quan-

tization discretizes to record important values while round-off the rest. Models are

trained using very tiny gradient updates, for which we do need high precision [41].

Quantization can be one of the techniques that can be used for model optimization

for edge devices.

14

Chapter 3

Proposed Approach

Analysis needs an adequate amount of computational power, with technology ad-

vancing at a rapid pace, electronic devices are getting smarter, smaller, and faster.

We propose to design a system where Machine learning can harness the power from

edge devices efficiently and effectively. Complex computation can be performed at

the edge with minimal resources. This has given rise to a new era called "Edge

Based ML" [31].

Figure 3.1 is a proposed flow chart for designing a system that generates optimized

models for edge devices. This flow chart focuses on developing a system that

generates an optimized model to interpret sound or speech signals over the edge

with minimal utilization of computational resources.

15

Figure 3.1: Flow Chart For Proposed Approach
16

Reliable and quality data plays a crucial roll in advance data learning technology;

attention to data collection, labeling, and preparation before analysis is critical [25].

ESC-50 (Environmental Sound Classification) [39] and DCASE 2018 [22] consists

of audio recordings; these recordings mark a benchmark and are ideal data set for

machine learning; they comprise of (.wav), which are lossless and accurate [9].

The system further categorizes these sounds appropriately by attaching labels to

them. Data processing develops raw data into a usable form. Machine learning

relies on extensive amounts of data. The data should be provided to the system in

the appropriate format to achieve adequate analysis. The four steps are shown in

Figure 3.2 generalized machine learning system for audio signals.

Figure 3.2: Typical Machine Learning System For Audio Signals

The categorized raw (.wav) files are fed into the system, as shown in Figure 3.2,

a system is initialized with data pre-processing. Noise cancellation and silence

removal are part of pre-processing the audio data, which isn’t required for our data

set because ESC-50 and DCASE 2018 was developed in a controlled environment

which eliminates any noise or silence.

We selected a 1 second window with a 0.5 second hop length, thus results in

overlapping windows. The last window is padded with zeros to meet the desired

size [21]. Feature extraction is invoked by using Standard scoring normalization on

each window in our system [21]. Due to this, lightweight system edge devices will

be able to perform classification seamlessly.

17

We proposed in enforcing Quantization awareness training as soon as the model

architecture is loaded. Quantization awareness training will help maintain accuracy

when the model is quantized. As the model is generated, it’s passed through a

pruning algorithm; this algorithm discards unwanted low or zero weight tensors;

there should be a reduction in size observed in the pruned model. Quantization is

implemented on the pruned model using TensorFlow-lite, which converts the model

to a flat buffer and also converts 32bit floating-point values to 8-bit integers. This

results in a tremendous reduction of size and generates a (.tflite) model that’s

lightweight and small, ideal for edge devices. This TensorFlow-lite model is al-

tered into a C-Array for microcontrollers as most of them run on C++ programing

language.

The database provides a couple of segregated testing data that the model hasn’t

witnessed; it is used by the system to evaluate the prediction accuracy for each

category of sound. This data helps to plot a confusion matrix that can be the

model’s assessment criteria.

18

Chapter 4

Implementation

4.1 Conventional Edge Devices

Edge devices are categorized into two major types Micro Controller (MCU), and

Micro Processor (MPU) based system. You can use either of the two as a tool at

the edge. We will discuss the in-sites of these tools in Sections 4.1.1 and 4.1.2.

Figure 4.1: Casper system architecture [44]

19

4.1.1 Microprocessor

A microprocessor is defined as an integrated circuit in a digital computer system

that performs the central processing function [38]. The first Microprocessor was

invented by Intel in the year 1971. It consisted of only 2300 transistors; it was a

4-bit processor that was a 16-pin package [2]. A microprocessor is one part of the

computer system; a microprocessor cannot function alone, it must be connected

to other units, generally on a shared or ’party line’ basis, so as to provide all the

functions of a complete computing system [20]. Microprocessor is connected RAM,

ROM and I/O interface unit using the address and data bus. Figure 4.2, shows the

basic block diagram of a microprocessor.

Figure 4.2: Basic Microprocessor Architecture [5]

4.1.2 Microcontroller

Microcontroller are really tiny yet really powerful; with the invention of microcon-

troller it innovated embedded systems. A microcontroller is a very large scale

integrated circuit (VLSI) that contains [40].

20

• Central Processing Unit (CPU)

• (ROM – Read Only Memory)

• (RAM – Random Access Memory)

• Timers and Counters

• I/O Ports (I/O – Input/Output)

• Serial Communication Interface

• Clock Circuit (Oscillator Circuit)

• Interrupt Mechanism

A microcontroller is also known as a single chip computer; it can operate stand-

alone unlike microprocessors. As microcontrollers got innovated, there were sev-

eral resources added to the single chip computer, it was introduced with Analog

to Digital converter (ADC), Digital to Analog converter (DAC), Serial Universal

Asynchronous Transmitter and Receiver, Comparators, Pulse Width Modulation

module, Master Synchronous Serial Port for SPI (Serial Peripheral Interface)/I2C

(Inter Integrated Circuit) communications, USB port, ethernet port, on-chip oscil-

lators, along with a host of other peripherals [30]. Figure 4.3 shows the basic block

diagram of a microcontroller.

21

Figure 4.3: Basic Microcontroller Architecture [5]

4.2 Hardware Selection

After carefully scrutinizing Sections, 4.1.1 and 4.1.2 observed that microcontroller

has the edge over microprocessor for edge devices.

• Cost Effective

• Small in size

• Low power consumption

• Reliable

22

4.3 Pre-requisites

There are a couple of hardware and software pre-requisites that are essential in

building a sound classification model for an edge device. Our development and

designing are implemented on Ubuntu 18.04.4 (Bionic Beaver); this platform is

chosen because of the flexibility the OS provides, along with being an open-source

system that made it an ideal operating system for development.

As python deals with lots of packages and dependencies, it was pragmatic to cre-

ate a virtual environment. A virtual environment is lightweight directories isolated

from the system directory and have their own Python binary [1]. Anaconda was

a quintessential match to develop the system; it’s an opensource application that

handles package dependency, and it’s armed with a bunch of opensource channels.

It handles the virtual environment smoothly and efficiently, as showing in Figure

4.4.

Figure 4.4: Anaconda

23

Table 4.1 provides a list of all necessary software for developing the model and

uploading it to Arduino Nano Ble 33 Sence.

Table 4.1: List of Software

Software Application

Pycharm/ Jupiter

Notebooks

Integrated Development Environment for

Python

Anaconda
Opensource software that handles virtual

environment and python packages.

Arduino IDE
IDE is a cross-platform and a link between

board and computer .

Python 3.6 Higher-level programming language.

Table 4.2 provides a list of all python packages along with their versions, necessary

to generate the model. Choosing the right package version is essential due to their

inter-dependency.

24

Table 4.2: List of Dependent Python Packages

Package Name Application Version

Tensorflow-gpu Opensource Machine Learning Framework 1.14.0

Cuda toolkit

Creates a developing environment to

Enforce Machine Learning on

High-Performance GPU.

10.1.243

Keras-GPU
High-Level Neural network API that runs on

TensorFlow.
2.0.8

librosa Library for Audio and Music Processing. 0.7.2

numpy Python array computing kit. 1.18.1

wandb
Command-line program and library for

Weights and Biases API interactions.
0.8.30

TensorFlow-

model-

optimization

A library in TensorFlow to perform

constrained optimization.
0.2.1

multiprocessing
Backport of the multiprocessing package to

Python.
default

matplotlib Plotting Package for Python. 3.1.3

scikit-learn
It features various classification, clustering,

and regression algorithm.
0.22.1

os Interfaces python with the operating system. default

seaborn Statistical visualization of the data. 0.10.0

tqdm Smart, progressive meter. 4.42.0

25

4.4 Segregating and Data Collection

Carefully selected and shortlisted ESC-50 Data (Environmental Sound Classifica-

tion), DCASE Data set, coupled with few lab collected data to generate a model

that can classify sound on edge devices. The table below shows the collection of

(.wav) files. The (.wav) file format was selected because it’s highly accurate and

lossless format of sound, as discussed in chapter 3.

Table 4.3: List of Sounds

Label DCASE ESC-50 Collected Combined

Knocking 270 40 88 407

Laughing 290 40 68 398

Typing 119 40 43 202

Coughing 243 40 3 286

Keys Jangling 99 40 7 146

Snap 77 40 52 169

Total 1107 240 261 1608

Data is a critical aspect of machine learning; it must be organized and sorted before

it is being processed. To handle this, we developed a code to organize data and

folders that will be used during execution. The code uses (OS) library; it helps

in interfacing python with the operating system. The system generates essential

directories for organizing data, logging, and output.

26

4.5 Signal processing parameters

• Sampling rate - The human audible sound range is from 20Hz to 20KHz with a

maximum intensity of 20dB. A microphone captures an audio signal, its analog

in nature. It can be represented in digital form by sampling the audio signal

and discretizing the signal in the time domain. It should meet the minimum

criteria, which are at least two samples per cycle, also defined as the Nyquist

rate [23]. The system is designed to dynamically accept the sampling rate

from the user to process the sound signal depending on its application.

• Audio length - Audio length is used to convert the raw audio signal to fixed

predefined length in milliseconds. Detailed processing of an audio signal is

explained in Section 4.6.

• Channel - It is a passage in which a sound signal is transported. For simplicity,

the system is designed to convert the raw signal to a single channel. A single

channel throws a monophonic output.

4.6 Pre-processing

The raw data directory contains the categorized (.wav) files stored in their appropri-

ate folders; each folder name corresponds to its label. As shown in the Section 4.3,

there are 1608 sound files stored in 6 categories. The "get label" function browses

through the raw file directory and retrieves the label names and label indices.

27

We enable multiprocessing to process the data as it saves time when executing a

complex mathematical calculation over a wide range of values. The system retrieves

all raw, categorized audio files, and loads them into an audio buffer using Librosa.

Librosa handles audio files seamlessly and efficiently, also helps integrates the audio

data into Python.

The raw wave file is plotted in Figure 4.5 is an example of a visual representation

of data; ESC-50 Knocking (1-81001-A-30.wav) was used. In order to comprehend

and visualize the pre-processing easily, we have sampled the data at 16000 and

intend to generate clusters of 3 seconds. The original file is 705bits and Sampled

at 44100 and is 5 seconds long as shown below

Note: that the parameters mentioned above were for explanatory and visualization

purposes only. The actual training was conducted with the following parameters.

Data were sampled at a rate of 30000 per second. The window size was 1second.

Window Hop was 0.5 seconds.

28

Figure 4.5: Raw Wave Form ESC-50 Knocking (1-81001-A-30.wav) [39]

The mean (µ) and standard deviation (σ) are computed for the given audio file.

Standard Scoring Normalization(Z-Score) is applied to the signal [32].

Z = (X − µ)/σ

X = Raw data

(µ) = Mean

(σ) = Standard Deviation

Figure 4.6 shows the visualization of the sample data once Standard Scoring Nor-

malization is applied to the raw wave file.

29

Figure 4.6: Standard Scoring Normalization

The window size and its hope length are critical in the generation of clusters. Most

neural networks accept variable length size of waveform, but this system is designed

to generate fixed-length clusters, and cluster length is equal to the window length.

Fixed length was chosen as that technique proves to be more reliable as stated in

the paper Environmental sound classification [21].

Window Hop = (0.5 x W indow length)

Therefore our example window size is 3 seconds, and the hop length is 1.5 seconds,

i.e., the window is slid to the right by 1.5 seconds. As sounds signals are continuous,

it is essential to capture the transition of sound in the time domain as each state

30

is dependent on the previous state, and the next state will depend on the current

one.

Figure 4.7 shows the first 3 second window captured after processing, from 0

seconds to 3 seconds. Figure 4.8 shows the second, 3 second window captured

after a hop of 1.5 seconds to the right, as mentioned in Formula above, this window

starts from 1.5 seconds to 4.5 seconds.

Figure 4.7: Processed Data 1st Window

31

Figure 4.8: Processed Data 2nd Window

After a hop of another 1.5 seconds, the third window will capture data from 3rd

second to 6th second. But the raw file contains data only until 5 seconds, as shown

in Figure 4.5. To keep the window size consistent, the system pads the data with

zeros for the final window until the desired window length is achieved, as shown

in Figure 4.9. Padding is done to get a uniform length on each window; it helps

to prevent losing data at the corners and also prevents from losing essential data

while downsizing in the neural network.

32

Figure 4.9: Processed Data 3rd Window With Padding

Window data is stored in the form of a numpy array. As there are several windows,

there are multiple numpy arrays created. Each numpy array is appended to the

previous one. This pre-processing is performed on the entire data set of a particular

label category. Eventually, the system generates a huge list of appended numpy

arrays which is stored in a file of (.npy) format.

33

4.7 Data Organization and Conversion from 1D to

2D

The program loads the processed data according to the labels from the (.npy) files

stored in the directory. The program uses a 90% Split Ratio where the entire

data set is segregated, 81% of the processed data is allocated to Training, 9% to

Validation, and 10% to Testing. Function "train test split" is used for allocating

and categorization of data. Split ratio value is a parameter taken from the user.

Note: After concatenating all (.npy) files, data shape generated after training with

actual parameters is (19400, 30000, 1). In which the data contains 19400 arrays

of sound, and each one has an audio length of 30000.

While implementing Quantization aware training, explained in Section 4.9, we came

across several hurdles and learned that Quantization aware training could only be im-

plemented on 2-dimensional layers. Moreover, TensorFlow lite has a limited support

subset for microcontroller implementation [8], which only includes 2-dimensional

layers. Converting processed data from one dimension to two dimension was es-

sential.

34

Figure 4.10: Converting 1D Array to 2D [21]

Figure 4.10 describes the conversion from one dimension to two dimensions. The

processed data is extracted from the (.npy) file. Each row contains a unique sample

of a fixed length. Each sample is processed over a math square root operator,

where a one dimensional array is converted to a two dimensional array. In Figure

4.10, original data has a shape of (4,4,1) after it’s processed over a math square

root operator; its shape is (4,2,2,1). This data can be effectively fed into a two

dimensional neural network.

Note: Once the actual processed data of shape (19400, 30000, 1) is generated its

fed to a math square root operator, it performs square root operation on a fixed

audio length of 30000 samples per second for each array of sound and converts the

data to a 2-dimensional array. This generates data of shape (19400,173,173,1).

After passing this data to the split ratio function, which is tuned to a 90% split

ratio, the actual data is split as follows.

35

• Training Data Shape - (15714, 173, 173, 1)

• Validation Data Shape - (1746, 173, 173, 1)

• Testing Data shape - (1940, 173, 173, 1)

36

4.8 Model

With innovation in electronics, a fine mesh of computational node is placed over

the edge; this intern helps in reducing latency of processing data over the cloud;

edge devices have limited processing power and storage. There has always been

a trade-off between accuracy and model size. The system developed has a model

architecture that is similar to SqueezeNet architecture. With SqueezeNet they are

able to compress the model to 0.5Mb, which is impressive but isn’t enough for our

application; hence we had to refer to the design architecture and generate our own

model with reference to squeeze net.

The design is based on using fire modules, as shown in Figure 2.3. While designing

our model three strict guidelines were maintained in the design strategy

• Strategy 1 - Replace 3X3 filters with 1x1 - Choose 1x1 convolution filters over

3x3 because of 9X fewer parameters [28].

• Strategy 2 - Decrease the number of input channels to 3X3 filter - Design a

layer that holds few parameters. Fewer parameters lead to smaller model

size[28] .

Parameters = (Input Channels) x (Num F i lters) x (Size of F i lter)

• Strategy 3 - Down sample late in the network so that convolution layers have

large activation maps [28].

The fire module shown in Figure 2.3 comprises two segments, squeeze and expand.

The squeeze layer only includes S(1X1) filters [28]. The expand convolution layer

comprises of E(1X1) and E(3X3) convolution filters. The squeeze layer fulfills

37

the 1st strategy as it limits the number of input parameters. The expansion layer

consists of a few E(1X1), and E(3X3) filter; hence the total number of filters in

expansion module is E(1X1) + E(3X3); consequently the squeeze layer helps to

limit the channel input to the expand layer. This technique, in turn, fulfills strategy

two by reducing the total number of parameters. Max pooling is placed relatively

late in the architecture, which is the main factor for downsizing, and it satisfies

strategy three [28].

Figure 4.11 contains model architecture design based on squeeze net’s strategy

while designing this architecture; we excluded a few layers. Channels were changed

from “channels first ” to “channels last,” adjusting the model to implement the

arrangement.

38

Figure 4.11: Model Flowchart [28]

39

Figure 4.12: System Generated Model Architecture [28]

40

4.9 Quantization Aware Training

Quantization is a lossy process. “Quantization is the process of transforming an ML

model into an equivalent representation that uses parameters and computations at

a lower precision.[7]” Quantization is a lossy process because it moves from a higher

precision to a lower precision. Figure 4.13 shows the representation of floating-point

values is represented into a fixed int value range.

Figure 4.13: Quantization using TensorFlow lite Operation [7]

The fundamental precept of quantization aware training is to simulate a low-

precision inference-time computation in the forward pass. There are fake nodes

introduced; these nodes convert the floating-point numbers to low precision val-

ues and also reverses the process by converting the low precision numbers back to

floating-point values. It ensures that losses from quantization are introduced into

the computation that emulates low precision. Each floating-point value is mapped

to one low precision number in a tensor. This will help in reducing losses. In

Figure2.5 wt quant and act quant introduces quantization losses in the forward

pass inference [41]. This technique prevents loss of accuracy while quantizing the

model that’s explained in Section [41].

41

Figure 4.14: Quantization Aware Training [41]

Another important guideline that needs to be followed is Quantization aware training

can only be inferred on two dimensional Convolution networks; hence Section 4.7

shows the conversion of data from one dimension to two dimensions.

42

Figure 4.15: Quantization Aware Training Weight Adjustments [41]

4.10 Magnitude Based Weight Pruning

"Magnitude Based Weight Pruning means, eliminating unnecessary values in the

weight tensor [4].”

Figure 4.16: Pruning Technique [26]

43

Pruning reduces the model size up to five times. This process can aid in reducing

the size of the model with which is critical on memory constraint edge devices.

The saved model file is loaded, and the architecture is integrated with pruneable

hyper-parameters.

• Sparsity - Initial and Final Sparsity, we start at initial sparsity and gradually train

the model to reach final sparsity. Our system is set at an initial sparsity of

50% and a final sparsity of 80%. These inferences the amount of pruning

done.

• Frequency - Frequency is the rate of pruning. It is the time given for the model

to recover from the pruning. Our system is set to a frequency of 50.

• Begin step - Once the model acquires the desired accuracy, pruning begins.

Begin step is set to 0 so that we train for the desired number of pruning

epochs.

Figure 4.17 is the implementation of pruning on our model. It contains 359,014

prunable parameters out of the total 716,523 parameters .

44

Figure 4.17: Pruning Model Architecture

45

4.11 Quantization

“Quantization is a conversion technique that can reduce model size while also im-

proving CPU and hardware accelerator latency, with little degradation in model

accuracy” [6]. In Section 4.9, we performed Quantization aware training to reduce

the effect of quantization on the model accuracy. TensorFlow lite converts the

entire model into a flat buffer [21]. A computer uses a 32-bit floating-point to

represent a real number for most applications; the innovational concept of quan-

tization is to convert these 32-bit floating-point values to 8-bit integers, with a

slight reduction of accuracy. This gives a distinctive result in the model size of

approximately four times compression [24].

Figure 4.18: Quantization AlexNet [41]

Figure 2.6 is an example of AlexNet, with the original histogram on the left. Quan-

tization discretizes to record important values while round-off the rest. Models are

trained using very tiny gradient updates, for which we do need high precision [41].

Quantization distinctly reduces the size of models making it compatibly for edge

46

devices. It’s implemented by calling optimization and TensorFlow to TensorFlow

lite conversion functions that implement this algorithm.

4.12 Conversion to C array

Converting from TensorFlow lite to C-array is essential, and the final step because

micro-controllers can read the model file only in a C-array. Machine learning on

Microcontroller is the forefront of innovation; therefore TensorFlow lite for micro-

controllers has a limited subset of supported operations. The model architecture

was carefully scrutinized so that all operation implemented is supported on the mi-

crocontroller. In Linux xxd -i is used as it creates a hex dump of the given file and

converts the binary data in the file to ASCII value; the output is in C include file

style [8].

47

Chapter 5

Results

5.1 Logging Data

This work was to design a system that can generate compressed models that can

perform sound classification for edge devices. There is always a trade-off between

accuracy and model size. The goal of this project was to achieve a model small

enough for edge devices yet has decent accuracy. Edge devices have huge con-

straints on computational power; therefore, we only used Standard Scoring Nor-

malization, a non-vigorous pre-processing method. Logging file size and accuracy

was the most critical data required for this thesis; hence we wrote a code that does

it dynamically for us. In the directory model, the system generates a file Shrin-

kLog.txt. This file logs all the parameters and hyper-parameters fed by the user

along with a timestamp. It also logs the model accuracy along with the size. Figure

5.1 reviles the contents of the ShrinkLog.txt file.

For a graphical representation of various parameters of model training, Weights and

Biases drew our attention, it’s a pioneering webpage that can interact with your

48

system during training; by using wand python package. The below parameters were

logged by "Weights and Biases"[10].

• Accuracy

• Loss

• Epochs

• Learning Rate

• Validation Accuracy

• Validation Loss

• GPU Memory Usage

5.2 Parameters and Duration for Testing

We trained the model for 13hrs with the following parameters mentioned below, and

achieved great results. We also discovered that smaller window size also affects the

accuracy as some of the windows may only contain noise signals after preprocessing.

• SAMPLE RATE = 30000

• AUDIO LENGTH MS = 1.0 (1 Second)

• AUDIO LENGTH = (SAMPLE RATE x (AUDIO LENGTH MS))

• SQRT AUDIO LENGTH = (math.sqrt(AUDIO LENGTH))

• Channel = 1 (Mono)

49

• Epochs = 100

• Epochs prune = 25

• Batch size = 32

• Verbose = 1

• Number of classes = 6

5.3 Output

We achieved 84.79% accuracy with a model size of 361kB, small enough for most

microcontrollers. The original model for edge devices (microprocessors) developed

by authors of the paper Cyber-Physical Analytics [21], was impressive; they achieved

89% accuracy on a model size of 1.8Mb. The focus of this thesis was based on

reducing the model’s size by losing minimum accuracy.

We have achieved 80.37% reduction in size by losing only 4.21% on accuracy on

the same data set. Figure 5.1 shows the log generated after training.

50

Figure 5.1: ShrinkLog Text File

51

5.4 Confusion Matrix

Figure 5.2: Original Model Accuracy

Figure 5.3: TensorFlow Lite Model Accuracy

52

5.4.1 Results in Confusion Matrix

Confusion matrix can be used to calculate the performance of a machine learning

model [36].There are several parameters that are derived from a confusion matrix.

• Accuracy: Number of all correct predictions divided by the total number of the

data set [36].

Accuracy =
(TP + TN)

(TP + TN + FP + FN)

• Precision: Out of all the positive classes we have predicted correctly, how many

are actually positive [36].

P recision =
(TP)

(TP + FP)

• Recall: Out of all the positive classes, how much we predicted correctly [36].

Recal l =
(TP)

(TP + FN)

• Overall Accuracy: Complete model accuracy [36].

Overal l Accuracy =
(Correctly classi f ied V alues)

(Total number of values)
x 100

53

Figure 5.4 is an example of how True positive, True negative, False positive, and

False negative, is calculated for the example Keyboard Typing.

Figure 5.4: Confusion Matrix Example Keyboard Typing

Table 5.1 presents accuracy, precision, recall and F1 score for all labels. The overall

model accuracy was also calculated and we achieved 84.79% accuracy.

Table 5.1: Confusion Matrix Calculation Table

Label
Accuracy

in %
Precision Recall F1-Score

Knocking 94.48 0.86 0.78 0.82

Laughing 91.8 0.87 0.86 0.87

Typing 96.08 0.89 0.94 0.91

Coughing 91.34 0.70 0.74 0.72

Keys Jangling 97.27 0.89 0.87 0.88

Snap 98.56 0.88 0.82 0.85

Overall Model Accuracy = 84.79%

54

5.5 Plots Weights and Biases

5.5.1 GPU Usage

Figure5.5 shows that the GPU was processing and training the model for approx-

imately 13Hrs to generate the results. There is a spike at the 11th hour, where

the system transitioned from training to pruning. It was concluded that pruning

requires less computational resources compared to training a model.

Figure 5.5: GPU Usage

55

5.5.2 Epochs

Epochs termed as the number of passes through the entire data set. We trained

the model with a total of 125 Epochs, 100 for training, and 25 for pruning; it’s

represented in Figure5.6.

Figure 5.6: Epochs

56

5.5.3 Loss, Accuracy and Learning Rate

Figure 5.7 and Figure 5.8 represent validation accuracy and validation loss of the

model. We integrated training with learning rate and reduced the learning rate

gradually during the training period, its represented in the graph shown in Figure

5.9.

Figure 5.7: Validation Accuracy

57

Figure 5.8: Validation Loss

58

Figure 5.9: Learning Rate

5.5.4 Model Comparison

Figure 5.10 shows the comparison between the different models in terms of their

accuracy and size. The architecture we designed on the basis of SqueezeNet strat-

egy proved to be the most space-optimized model among the three. The accuracy

of M11 was better, but it was considerably larger.

59

Figure 5.10: Model Comparison

60

Chapter 6

Conclusion

In this thesis, we conducted a literature review that helped us study the insights

of machine learning and speech synthesis. We also gained knowledge about types

of hardware used on edge. Based on this finding, we proposed an approach to

combine office sound classification, which used machine learning with edge devices;

the idea was to incorporate a model small and light enough for microcontrollers at

the edge of the network. It would open a new paradigm and possibilities toward

edge computing. We achieved high accuracy for a tiny model size. We could now

process data in real-time over the edge, and eliminate any kind of cyber-attacks on

sensitive data.

6.0.1 Future Work

Dr. Andrew Ng says,” Artificial Intelligence is the new electricity.[37]” The next

leap is to generate models that can perform natural language processing over the

edge. We also can incorporate transfer learning to gain accuracy from a well-trained

model. We could tap into using reinforcement learning to make our models learn

from their mistakes to get better accuracy.

61

Bibliography

[1] 12. Virtual Environments and Packages - Python 3.8.2 documentation.

[2] 1971: Microprocessor integrates cpu function onto a single chip.

[3] Gartner 8.4 billion connected "things" will be in use in 2017, up 31 percent

from 2016, December.

[4] Magnitude-based weight pruning with keras.

[5] Microprocessor systems. http://www.key2study.com/microsys.htm.

[6] Post-training quantization : Tensorflow lite.

[7] Quantization aware training with tensorflow model optimization toolkit - per-

formance with accuracy.

[8] Tensorflow lite for microcontrollers. https://www.tensorflow.org/lite/

microcontrollers.

[9] Wave file format. https://web.archive.org/web/20080113195252.

[10] Weights biases. https://www.wandb.com/.

[11] What is edge computing? advantages of edge computing. https://

www.alibabacloud.com/knowledge/what-is-edge-computing, Septem-

ber 2012.

[12] Audrey: The first speech recognition system, Oct 2014.

62

[13] Quantization. https://en.wikipedia.org/wiki/Quantization, Mar

2020.

[14] Lusine Abrahamyan. Guide on quantizing and converting model to tensorflow

lite, Jan 2020.

[15] Tanweer Alam. A reliable communication framework and its use in internet of

things (iot). 3, 05 2018.

[16] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional computation,

2013.

[17] Marina Brady. OMF: Edge computing changes everything. https://

www.ibm.com/blogs/industries/rob-high-edge-computing/, December

2019.

[18] David Reinsel Carrie MacGillivray. Idc. June 2019. Available at https:

//www.idc.com/getdoc.jsp?containerId=prUS45213219.

[19] Oliver Child. Menace: the machine educable noughts and crosses engine, Oct

2016.

[20] J. C. Cluley. Interfacing to microprocessors. MacMillan Education, 1986.

[21] David Elliott, Evan Martino, Carlos E Otero, Anthony Smith, Adrian Peter,

Benjamin Luchterhand, Eric Lam, and Steven Leung. Cyber-physical analytics:

Environmental sound classification at the edge.

[22] Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier

Favory, Jordi Pons, and Xavier Serra. General-purpose tagging of freesound

audio with audioset labels: Task description, dataset, and baseline, 2018.

[23] Yves Geerts, Michiel Steyaert, and Willy Sansen. Design of Multi-Bit Delta-

Sigma A/D Converters. Springer US, 2003.

[24] GitHub. tensorflow. https://github.com/tensorflow/tensorflow/tree/

r1.13/tensorflow/contrib/quantize, Dec 2018.

63

[25] Guha and Ghosh. The impact of data quality in the machine learning era, Jun

2018.

[26] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights

and connections for efficient neural networks. CoRR, abs/1506.02626, 2015.

[27] Qiangui Huang, Kevin Zhou, Suya You, and Ulrich Neumann. Learning to

prune filters in convolutional neural networks, 2018.

[28] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf,

William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with

50x fewer parameters and <0.5mb model size, 2016.

[29] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,

Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and

training of neural networks for efficient integer-arithmetic-only inference, 2017.

[30] Aimee Kalnoskas, Henry.G, Gabriel Urach, and Gabriel Urach. A beginner’s

guide to microcontrollers.

[31] Fotis Konstantinidis and Fotis Konstantinidis. Why and how to run machine

learning algorithms on edge devices, Feb 2020.

[32] Erwin Kreyszig. Advanced engineering mathematics. Wiley, 2006.

[33] Kyle Media LLC. Macintosh IIci Specs.

[34] Mark A Mandel. A commercial large-vocabulary discrete speech recognition

system: Dragondictate. Language and speech, 35(1-2):237–246, 1992.

[35] Thomas M. Mitchell. Machine learning. McGraw-Hill, 1997.

[36] Sarang Narkhede. Understanding confusion matrix, Aug 2019.

[37] Andrew NG. Artificial intelligence: the new electricity.

[38] DikshaTewariCheck out this Author’s contributed articles. and DikshaTewari.

Introduction of microprocessor, Aug 2019.

64

[39] Karol J. Piczak. ESC: Dataset for Environmental Sound Classification. In

Proceedings of the 23rd Annual ACM Conference on Multimedia, pages 1015–

1018. ACM Press.

[40] Ravi. Basics of microcontrollers: History, structure, applications, Dec 2017.

[41] Manas Sahni. 8-bit quantization and tensorflow lite: Speeding up mobile

inference with low precision, Feb 2020.

[42] A. L. Samuel. Some studies in machine learning using the game of checkers.

IBM Journal of Research and Development, 3(3):210–229, July 1959.

[43] Ranjeet Singh. Pruning deep neural networks, Aug 2019.

[44] Robert Strong. Casper: A speech interface for the macintosh. In Third

European Conference on Speech Communication and Technology, 1993.

[45] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the

efficacy of pruning for model compression, 2017.

65

	Model Optimization For Edge Devices
	tmp.1675952085.pdf.917ds

