
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

12-2020

Development of a Deformation-Based Structural Health System Development of a Deformation-Based Structural Health System

with Contactless Sensors and Machine Learning for Health with Contactless Sensors and Machine Learning for Health

Characterization and Failure Prediction Characterization and Failure Prediction

Juan Camilo Avendano Arbelaez

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Systems Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/309?utm_source=repository.fit.edu%2Fetd%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages

Development of a Deformation-Based Structural Health System with Contactless Sensors
and Machine Learning for Health Characterization and Failure Prediction

by

Juan Camilo Avendano Arbelaez

A dissertation submitted to the College of Engineering and Science of
Florida Institute of Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy
 in

Systems Engineering

Melbourne, Florida
December, 2020

We the undersigned committee hereby approve the attached dissertation,
“Development of a Deformation-Based Structural Health System with Contactless Sensors

and Machine Learning for Health Characterization and Failure Prediction”
by

Juan Camilo Avendano Arbelaez

Luis Daniel Otero, Ph.D.
Associate Professor
Computer Engineering and Sciences
Major Advisor

Ersoy Subasi, Ph.D.
Assistant Professor
Computer Engineering and Sciences
Committee Member

Aldo Fabregas Ariza, Ph.D.
Assistant Professor
Computer Engineering and Sciences
Committee Member

Munevver Mine Subasi, Ph.D.
Associate Professor
Mathematical Sciences
Committee Member

Philip Bernhard, Ph.D.
Associate Professor and Department Head
Computer Engineering and Sciences

iii

Abstract

Title: Development of a Deformation-Based Structural Health System with Contactless

Sensors and Machine Learning for Health Characterization and Failure Prediction

Author: Juan Camilo Avendano Arbelaez

Advisor: Luis Daniel Otero, Ph.D.

This dissertation presents the design and development of a structural health monitoring

(SHM) system specifically tailored for transportation infrastructure components, such as

bridges. The proposed system collects data by using contactless sensors and performs

health characterization and failure prediction. It is capable of simulating multiple load

conditions on structures, identifying possible failure points, and detecting and predicting

failure scenarios. Both hardware and software implementations of a model of a bridge were

performed as a pilot project in order to validate the proposed system. Computer simulation

in ANSYS and the application of gradient boosting neural networks were performed to

produce a comparative and predictive analysis of the behavior of transportation

infrastructures, which can be used to understand the health of the structure and make

informed decisions.

iv

Table of Contents

Abstract .. iii

List of Figures .. viii

List of Tables ... x

Acknowledgements... xi

Dedication .. xii

Chapter 1 Introduction ... 1

Problem Statement .. 1

Motivation ... 1

Research Objectives .. 4

Chapter 2 Literature Review .. 7

Structural Health Monitoring (SHM) .. 7

Optimal Placement of Sensors (OPS) ... 8

Sensor Technologies ... 9

Sensor Placement .. 10

Machine Learning Algorithms .. 15

Chapter 3 Systems Engineering Framework ... 20

Overview ... 20

v

Rationale .. 21

Systems Engineering Framework .. 21

Systems Engineering Model .. 24

Analysis of Requirements ... 26

Stakeholder Analysis ... 27

SWOT Analysis ... 27

Risk Analysis ... 29

Product Size Risks ... 30

Business Impact Risks ... 31

Customer-Related Risks .. 32

Technological Risks .. 32

Decision Analysis .. 36

Chapter 4 Concept of Operations .. 39

Solution Approach ... 41

Proposed Solution ... 42

Chapter 5 Case Study ... 45

Case Study Introduction .. 45

Development of a 3D Computer Model and Finite Element ... 46

Load Simulation and Library Generation .. 47

vi

Smoothing in 2D ... 49

Smoothing in 3D ... 51

Optimization of Sensor Locations ... 52

Process Data for Sensor Placement ... 55

Data Collection and Preprocessing .. 56

Defining Failure Modes... 57

Sensor Placement Algorithm ... 58

Application of Statistical Models and Machine Learning Techniques 72

Linear Models ... 72

K-Nearest Neighbors (KNN) Models .. 72

Sequential Neural Network ... 73

Extreme Gradient Boosting Neural Network .. 73

Chapter 8 Results and Conclusions ... 84

References ... 87

Appendix ... 101

Preprocessing Data .. 101

Smoothing in 2D ... 102

Smoothing in 3D ... 106

Converting Datasets .. 111

vii

Exploratory Data Analysis .. 111

Load Data .. 112

Creating Image Data for Each Class ... 116

Plot Graphs of the Classes ... 118

Training ... 119

viii

List of Figures

Figure 1 Systems Engineering Framework .. 23

Figure 2 Systems Engineering V-Model ... 25

Figure 3 Systems Engineering Functions .. 26

Figure 4 SWOT Analysis of Computer Vision .. 38

Figure 5 SWOT Analysis of Optitrak .. 38

Figure 6 Solution Approach ... 42

Figure 7 Mesh of the Bridge .. 46

Figure 8 Sample Case for Loading Fatigue ... 48

Figure 9 Node Mesh .. 49

Figure 10 Smoothing in 2D ... 50

Figure 11 Smoothing in 3D ... 51

Figure 12 Safety Factor vs. Node .. 53

Figure 13 Deformation vs. Node ... 54

Figure 14 Experimental Setup ... 56

Figure 15 Sensor Location Algorithm ... 59

Figure 16 Wiring Diagram for Contact Sensor Nodes .. 64

Figure 17 Unloaded Bridge Model .. 65

Figure 18 Strain Gauges vs. Computer Model (Simplified) .. 65

Figure 19 Sample Failure Scenario .. 66

Figure 20 Linear Models ... 72

Figure 21 KNN Models ... 73

ix

Figure 22 Medium Gradient Boosting Architecture [68] .. 75

Figure 23 Variation of Average Deformation Over 100 Locations 78

Figure 24 Ranking the Average Deformation Per Set ... 78

Figure 25 Scatter Plots of Deformation Across Sensors for Five Random Sets 79

Figure 26 Multi-Modal Distribution Pattern of Data Sets ... 80

Figure 27 Normal Distribution .. 81

x

List of Tables

Table 1: Summary of Machine Learning-Based SHM .. 12

Table 2: SWOT Analysis ... 21

Table 3: Risk Assessment .. 25

Table 4: The Top Five Entries of the Data Frame ... 64

xi

Acknowledgements

I would like to thank:

My advisor, Dr. Luis Daniel Otero, for his help, guidance, and support during the research

work presented here. Without him, it would have been impossible to complete this project.

He has given me invaluable guidance throughout my research and academic career.

My committee – Dr. Munevver Subasi, Dr. Ersoy Subasi and Dr. Aldo Fabregas Ariza - for

their invaluable advice.

My friends - Manuel Jaramillo, Deep Patel, Darshan Yadav, David Beavers, and Matias

Fernandez - whose help was instrumental to this work.

A special thanks to Ms. Daphne Otarola for her support and motivation throughout this

process.

Moreover, I must thank my family, specifically my parents, Luis J. Avendano and Silvia

Arbelaez, my brother, Jose N. Avendano, and my uncles, grandparents, and cousins, for

encouraging me to continue moving forward. Without their support and sacrifices, this

research work would have not have been possible. I am lucky to have the support of many

people in numerous ways.

xii

Dedication

To my family,

Because all of our achievements are fruits of our collective effort.

1

Chapter 1 Introduction
Problem Statement

Several regions across the United States have expressed concerns over the alarming status

and failure rate of key transportation infrastructure components such as large bridges [1],

[2], [3]. Studies of similar structures show that health information and failure prediction of

bridges rank as one of the top priorities of the United States [4], [5]. Given the vast amount

of small to medium-sized structures currently in place in the national transportation system,

it is essential to expand the state-of-the-art technology in this field by developing cost-

effective structural health monitoring (SHM) methods that allow for the continuation of

service during the study.

Motivation

Addressing the aforementioned requirements, funded research projects were initiated with

the objectives of implementing dynamic SHM programs, predicting the actual behavior of

bridge structures and designing a long-term instrumentation plan [6]. As monitoring the

performance of structures plays a crucial role in identifying the risk of their failure, the

development of innovative SHM systems has become an emerging field of research [7].

With technological advancements, studies in the inspection and calculation of structural

health data via different types of sensor systems have evolved significantly in the past few

years [8]. On the one hand, fiber optics sensors are common and practical, as they are

highly reliable and can be embedded in large concrete structures during the construction

phase [9]. On the other hand, the deployment and the high cost of sensor arrays could be

2

(or have been) significant obstacles. Due to the complexities in deployment, the use of

fiber optical systems in small-to-medium-size structures, such as small bridges and traffic

signal mast arms (TSMA), is not a cost-effective solution. Fiber optical systems are cost-

effective when used in large complex structures, however, because the expected lifespans

of these structures are longer [10]. Yet, wide-scale adoption of fiber optic deployment on

large bridges seems unfeasible. Installation would cause large-scale traffic interruptions

while the fiber is embedded in the deck and while structural modifications are made

through drilling, cutting surface patches, wiring, and so forth.

Other types of sensors such as extensometers, vibration detection devices, and strain

gauges are also plagued by cumbersome deployment and installation procedures. An

investigation of influential parameters (amplitude, spectral content of the dynamic

displacements, location and orientation of sensors, fusing inputs, noise effects, rolling-

shutter effects, etc.) that are required to be considered in the selection of sensors for

structural dynamic applications is presented in [11]. This focuses on inexpensive digital

cameras with depth-sensing capabilities which were proven suitable for measurement of a

3D dynamic displacement-field. A completely contactless SHM system framework, which

was developed by using regular cameras and computer vision techniques for detecting

displacements and vibrations of structures, is presented in [12]. A review of studies in the

field concludes that vision-based systems outperform traditional displacement sensors in

terms of instrumentation cost, installation efforts, and measurement capacity [13].

Therefore, a non-contact sensor system that uses infrared wavelengths was used in this

research.

3

Recent advancements in computational power have allowed for the inclusion of new

techniques for SHM. The adaptation of predictive algorithms facilitates the collected data’s

extrapolation to identify possible structural failures. The use of machine learning

technology within the realm of artificial intelligence has spawned the development of

neural network (NN) architectures for predicting structural failure modes. Modeling of

structures using artificial NNs for damage detection is presented in the literature [14].

A NN is an artificial intelligence system designed to recreate a biological model of nervous

systems [15]. The advantage of NNs over the other algorithms is their ability to learn from

the embedded data. During the NN’s training process, it finds special parameters hidden

from human perception [16]. As a result of the training, the network can improve its

performance over time according to certain rules. When comparing the NN approach with

statistical methods, some differences can be identified. Although statistical techniques,

such as regression analysis, learning algorithms and so forth are widely used in SHM, they

consume more time and effort and are probabilistic in nature [14]. The use of unverified

technologies causes errors in monitoring and increases the risk of emergencies whose

consequences can lead to human casualties. Moreover, accidents and disasters bring not

only severe moral and social shocks, but also financial losses due to the inoperability of the

object and the need for restoration. Due to these reasons, NNs become an indispensable

tool for SHM. It is a compelling modeling method that allows reproduction of extremely

complex dependencies, particularly ones that are non-linear. Hence, several machine-

learning mechanisms, such as gradient boosting, were tested for suitability for this

4

research, and gradient boosting was employed in order to identify and predict structural

health.

Research Objectives

The objectives of this research were based on current needs and the problem statement.

The problem statement can be summarized as follows: to find an effective, non-invasive,

and low-cost solution for structural health analysis and the prognosis of transportation

structures, such as bridges.

After analyzing and identifying the literature related to the subject of advanced SHM, it

was clear that elements of this system can be used for processes such as tracking a failure

point within a structure, and understanding and comparing the reaction to expected loads in

relationship with experimental and simulated loads. Furthermore, there is a need for a

system that facilitates characterization of structural health, as well as predicts its future

state(s). As per the research outcomes published thus far, most of the sensor arrays demand

special installation requirements, including embedded fabrics and other contact points.

They are hard to implement in larger structures or geographically challenging points (for

example, tall water bridges) and require added expenses for such installations.

The primary focus of this work is to develop an effective structural health prediction

system that utilizes advanced artificial intelligence technologies and cost-effective sensors.

The main research objectives are listed as follows:

5

1. Identify necessary sensor data and sensor equipment to understand the structural health

and behavior of structures.

2. Identify an effective placement of sensors or sensor nodes.

3. Develop a structural modeling framework to simulate multiple structural loads.

4. Analyze multi-sensor data and incorporate it into a reliable prognosis system.

The system characteristics are determined by identifying the most critical elements in

material failure of the infrastructure of interest, as well as the available sensor technology.

The proposed system operates by using remote sensing technology for the monitoring of

the structure and the measurement of deformation at multiple points. The system suggests

incorporating a mathematical programming model for optimal sensor placement, a

modeling framework for SHM to create training datasets, and a library of known behavior

patterns. The primary model can generate a library of failure and non-failure training data

at an infinite number of loading conditions by using the available structural model.

The training data generated for this research study is based on currently known loading

factors for civil engineering infrastructures, such as bridges. Once the loading conditions

are identified and characterized, they are fed into the computer model to generate a data set

of expected stress and strain in the structure. From the computer model, the ideal values for

the deformation of the structure under these loading conditions can be obtained. Moreover,

any point in which the material passes its elastic deformation or any material failure can be

identified.

6

The generated library is used to develop the machine learning algorithm, so that it can

detect necessary correlations of input data with known loading conditions and failure

modes. Additionally, it will extrapolate input data to match and identify the possible

relationship to failure scenarios. The neural network will use any input data outside the

original training library as training points, improving accuracy and predictive capacity over

time based on the number of cases introduced to the network.

The result is a computational framework for the study of failure modes in bridge structures,

which includes the optimal placement of a surface mounted sensor array. Furthermore, a

comparable data cloud of sensor readings will be developed for each of the most frequently

reoccurring failure modes. It will facilitate expanding the research to deploy a prototype

sensor array and compare live data to the simulated point cloud for each failure mode. This

comparison will provide an indication of possible failure modes and the expected life of

the structure.

7

 Chapter 2 Literature Review
Structural Health Monitoring (SHM)

As per the literature, there are numerous definitions for SHM. According to [17], SHM

refers to a monitoring system that can acquire and process data to evaluate structural health

for damage detection and prognostics. The integration of automated health assessment

analytics distinguishes SHM systems from traditional monitoring systems. The first crucial

stage of an SHM system is data acquisition or data generation, as this step determines the

success of subsequent steps. Article [18] discusses various methods of SHM data gathering

and their importance. Usually, the structure’s response data is obtained through

experimental measurements using sensors like linear variable displacement transducer

(LVDT), accelerometers, and many more. Data acquisition typically happens on lab-scale

substitutes due to practical constraints. However, data can also be generated

computationally via numerical methods, such as the finite element (FE) method. Moreover,

with the help of an accurate FE model, a database can be simulated for an arbitrary number

of load cases, damage types, and uncertainties at minimum effort [18]. In the technique

presented in [19], experimental measurements of the actual structure modify the physical

parameters of an FE numerical model. This type of optimal FE model developed on the

actual structures can also be used to simulate damage status. Similarly, in article [20], the

FE model was updated with data collected from the sensors fitted to the vertical truss

bridge. Wavelet-based damage detection criterion is also used to assess the impact of a

vessel on bridges. Furthermore, by using an FE model, a large amount of labeled data,

which are influential but not possible to simulate in real conditions, can be simulated for

8

machine learning-based SHM. In this research work, a 3D computer model is developed

using CAD software, considering the composition of materials and their mechanical

characteristics. Research is further extended to create an FE analysis mesh. A library of

training data is generated by performing simulations for different loading conditions using

the FE model.

Optimal Placement of Sensors (OPS)

Sensor array is a fundamental part of the SHM system, as it acquires real data from

structures. The quality of data directly depends on the optimal placement of sensors (OPS).

The two main requirements of OPS are to minimize the number of sensors and to

maximize the accuracy of the data. Therefore, choosing the right strategy of OPS is critical

to any SHM system. The review article [21] discusses current work in the field of OPS for

monitoring schemes based on vibration, strain, and elastic wave. It also highlights different

optimization algorithms with their respective benefits and limitations. Since physical

testing of various sensor deployment schemes is not feasible, a suitable approach is to use a

computational model of structures to determine the optimal sensor configuration. Article

[22] provides a comprehensive review of computational methodologies for OPS in SHM

and summarizes various algorithms with an emphasis towards evolutionary algorithms and

its variants. Additionally, it discusses evaluation criteria and the appropriateness of

computational methods for specific SHM applications. In [23], sensor placement is

completed by using a hybrid optimization algorithm based on FE grids and sensor

distribution index. This approach provides reasonable FE grids for optimal placement of

sensors that overcome redundancy of information. Article [24] proposes genetic algorithms

9

for optimal sensor placement and considers a redundancy elimination FE model designed

based on a sub-clustering strategy.

Sensor Technologies

In the last two decades, there has been a rapid development in sensing technologies. As

such, the use of machine vision-based technology in the field of SHM has increased. A

comprehensive review of the vision-based methods and applications in SHM is presented

in [25]. The review article concludes that machine vision-based technology is widely used

to measure 2D and 3D structural displacement, strain, and other additional parameters.

Moreover, it can be used to conduct structural parameter identification and damage

analysis. Hence, vision-based methods integrated with other sensing techniques have the

potential to provide more valuable information of SHM systems. The efficiency of

integrated infrared imaging in detecting damage to bridges is summarized in [12]. The

article explains the computer vision-based techniques focusing on contactless vibration

monitoring and load quantization. The vision-based SHM system proposed in [26] uses a

camera as the sensing element to extract displacement and strain data of structures.

Furthermore, a comprehensive analysis of the lab structural test has shown a good

agreement between camera-based structural responses and the damage detection recorded

by conventional contact sensors. Structures like highway bridges are validated with this

approach. In this research, small infrared cameras integrated with surface markers are used

to track displacements and remotely record bridge deformations.

10

Sensor Placement

SHM techniques are more widely used due to the lower deployment cost. Moreover,

Optimization of Sensor Placement or OSP is the best choice to reduce the cost of an SHM

system without compromising the quality of the monitoring approach. This article is aimed

towards researchers working on OSP as well as practicing engineers in the field of SHM

[21]. It covers three techniques that are most commonly used and accepted in the SHM

community: vibration-based monitoring, strain monitoring, and elastic wave-based

monitoring. Keeping in mind the structural and execution demands, the multi-objective

optimization or the problem definition is also discussed. Different optimization algorithms

have been implemented in this study. Furthermore, researchers have highlighted various

pitfalls and their appropriate countermeasures to overcome the shortcomings of SHM.

In this research, the global multi-objective optimization of sensor locations for structural

health monitoring systems is studied [27]. Using the Finite Element Method (FEM), a

laminated composite plate is demonstrated and placed into the modal analysis. To search

for the optimal locations of sensors, multi-objective genetic algorithms (GAs) are adopted.

In structural dynamics, numerical issues rising in the selection of the optimal sensor

formation are discussed. Using the composed information by Fisher Information Matrix

(FIM) and mode shape interpolation, a method of multi-objective sensor locations

optimization is presented in this research.

The main contribution of this research is to tackle the OSP problem by establishing a new

performance metric that is rooted in Bayes’ risk formulation. To maximize the likelihood

11

of detection, or reduce the false alarm rate with minimal overall cost, this performance

metric is specially designed for and directly addressed to the SHM objective. Thus, this

technique can be considered a useful tool for designing SHM sensor arrays. It is focused on

active sensing and producing an appropriate statistical model of the wave propagation and

feature extraction process using guided ultrasonic waves.

Research in [29] discusses monitoring a self-governing system in which a Wireless Sensor

Network (WSN) is used. Through the placement of a set of backup sensors, the WSN

objectives attain a fault tolerance that results in accuracy in its measurements. This

research follows a distributed method in which the nodes are grouped into clusters. The

separate point, remote point, and critical middle point are determined from each cluster

where the backup sensors are located. The energy is consumed, and the lifetime of the

sensor nodes is greater than before through the fault tolerance mechanism. The validation

demonstrates the benefits of using the fault tolerance mechanism.

For optimal sensor placement and damage identification, this article proposes an efficient

methodology in laminated composite structures [30]. To develop a reduced-order model

for Optimal Sensor Placement (OSP), this method first applied a model reduction technique

that is iterated in the improved reduced system (IIRS) method. By formulating and

resolving an optimization problem for finding the best sensor locations, the OSP strategy

uses the Java algorithm. In order to identify and measure any stiffness reduction induced by

the damage, this approach uses the measured partial modal data from optimized sensor

locations. For this implementation, specifically where the damage number of elements and

the modal flexibility transformation are taken as the constant design variables and the

12

objective function, the damage identification problem is expressed as an optimization

problem. To solve the optimization problem for determining the definite damage locations

and levels, the Jaya algorithm is implemented again. To prove the feasibility and efficiency

of the proposed method, numerical simulations of a three cross-ply (0°/90°/0°) beam and a

four-layer (0°/90°/90°/0°) laminated composite plate are carried out.

Research in [31] an overview of current, state-of-the-art technologies in Sensor Placement

Optimization for SHM problems. There is a great deal of progress in some important areas,

including in methods that stimulate robustness and in modeling ambiguity when dealing

with sensor placement optimizations, beginning with effects within measured data and

failures within the sensor network. The central focus of this study is to highlight emerging

trends particular to SHM system development.

This study focuses on the construction of precise strain maps for large-scale structural

components and the development of optimal sensor placement within a hybrid dense

sensor network [32]. In large-scale structures, understanding precise strain-maps is

imperative for better strain-based fault analysis and diagnosis health management. To

reduce type I and II errors, and an adaptive mutation-based genetic algorithm, this study

creates a unique and precise objective function. The objective function authorizes sensor

placement and is based on the linear combination method while increasing information

entropy. By applying a genetic algorithm that influences the concept that not all potential

sensor locations hold the same level of information, OSP is achieved. The experimental

analysis demonstrates the ability of the learning gene pool to efficiently and frequently

discover a Pareto-optimal solution quicker than its non-adaptive gene pool equivalent.

13

This research presents the advancement of SHM technology that has been implemented in

long-span bridges [33]. The techniques of modal identification, signal processing, and

damage identification, including data analysis and condition assessment, were reviewed.

To advance the understanding of the utilization and examination of an SHM system for

long-span arch bridges, an SHM system of a long-span arch bridge (the Jiubao Bridge in

China) was thoroughly integrated. Additionally, potential future trends and challenges of

this system were outlined.

In a structural health monitoring system, data is obtained from sensors for a reliability

evaluation of the structure, and a false alarm will often be generated if a faulty sensor is

present [34]. In this study, in order to identify a sensor fault, a technique based on the

generalized possibility ratio and correlation coefficient is presented. By applying a

minimum mean-squares-error algorithm under the operational condition, and through an

evaluation of each sensor in the sensor network, the acceleration response of a bridge is

assumed to be Gaussian distributed. Between the estimation and measured data, the

classification features five common sensor fault types which are considered, with two

correlation coefficients calculated. To categorize the type of sensor fault, a disturbed binary

tree method is implemented. Numerical and experimental analysis show that the proposed

technique is robust in the detection and classification of sensor faults.

In this research, the design of an experimental system with a reduced number of sensors for

the structural health monitoring of the historical bridge of Posadas (Córdoba, Spain),

designed by the eminent engineer Eduardo Torroja in 1957, is presented [35]. It is

necessary to rely on a sufficiently precise numerical model, as most OSP techniques are

14

model-based. With a large number of accelerometers, a wide vibration-based functioning

modal investigation is conducted. Using a genetic optimization algorithm, a three-

dimensional FEM of Torroja’s bridge is restructured based on the experimentally identified

dynamic properties. To design an experimental setup with a limited number of sensors, the

OSP approach is applied for long-term observing commitments. The experimental

validation proves that some sensors are used to precisely measure the main resonant

occurrences and mode shapes.

Another interesting case is the presentation of a unique approach for piezoelectric (PZT)

wafer-network placement that was implemented using a genetic algorithm (GA) [36].

While using the smallest possible number of sensors, the proposed objective function

maximizes the exposure of the observed area presented by a set of control points.

Simulation results are presented for three cases, a square panel with geometrical

discontinuity, a T-shaped panel, and a cargo door of an Airbus A330-200 airplane. The

difference between the primary and the improved experimental results indicates a major

improvement in the coverage level. Using ultrasonic excitations at different frequencies,

experimental verification was performed on the square panel and a part of the cargo door.

Artificial costs were identified and then restricted with an error rate of not more than 4% of

the highest distance in the geometry.

This research discusses the inclusive analysis of computational methodologies for OSP in

SHM [37]. By using evaluation criteria for sensor configurations, the problem formulation

of OSP is presented. Evolutionary algorithms and their improved variants are discussed in

detail for the existing optimization approaches for sensor placement. For sensor

15

configuration determination, this research highlights the most commonly applied criteria

and optimization approaches.

This research presents an approach to the optimal placement optimization of sensors’

locations for SHM [38]. The finite element method (FEM) was the key component in the

structuring of the system. To find the best sensor distribution and to cover a precise

number of low-frequency modes, genetic algorithms (GAs) are then implemented. The

performance of sensor delivery methods is examined by numerical results.

A huge amount of raw data and processed data are some of the concerns in SHM. A

powerful data management tool, which obtains, sorts, stores, shares, and recalls data, as

well as delivers a digital environment, is Building Information Modelling (BIM) [39]. The

primary purpose of this study is to use BIM to observe the data of monitoring systems,

especially the SHM system. To validate the probability of generating and visualizing

information about the sensors installed in the structure for SHM, a four-story office

building is displayed in Revit architecture. To manage the sensor data in real time and to

ensure the sensor’s information is up-to-date, the BIM model is made dynamic by

connecting appropriate external resources associated with the sensors.

Machine Learning Algorithms

In recent years, significant developments in the field of machine learning and artificial

intelligence have made machine learning-based SHM an extensive research topic. A

comprehensive review of machine learning algorithms applied in civil SHM is presented in

[40]. This discusses the efficacy of deploying machine learning algorithms in SHM. In

16

[41], operational modal analysis is integrated with artificial neural networks (ANN) to

detect damages in structures. Using natural frequencies and mode shapes of structures, a

simple numerical model database is built with varying stiffness. The ANN with 1,400

neurons and one hidden layer is fed with the inputs of model properties and the outputs of

stiffness reductions. The neural network model detects the damage of the structure in terms

of damage locations and levels. This monitoring strategy is successful in detecting single

column damages to a building without any errors.

Machine learning algorithms are generally classified as either supervised or unsupervised

learning. In [42], a comparison is made among three supervised machine learning

algorithms: namely, k-nearest neighbor (KNN), support vector machine (SVM), and

random forest classifier (RFC), in order to predict the structural damage to concrete

structures. Algorithms were tested on publicly-available test results with varying stiffness

and mass conditions. Results show that RFC outperforms the other two machine learning

techniques. Multivariate data-driven and machine learning approaches were used for the

detection and classification of damages [43]. The reduced dimension data processed using

Principal Component Analysis (PCA) and other pre-processing techniques was used to

train the networks: namely, Subspace KNN, Bagged Trees, Weighted KNN, Fine KNN,

Coarse KNN, Subspace Discriminant, and Boosted Trees. The first four methods exhibit

better accuracy compared to other methods. In [44], a machine learning approach was

applied to noisy data from low-cost accelerometer sensors to identify the status of

structures. Convolutional neural networks (CNN) outperformed SVM and KNN, even with

noisy data used as inputs. A detailed review of machine learning algorithms in bridge

17

health monitoring is presented in [45]. Addtionally, the article presents the advantages,

weaknesses, and applications of different algorithms when applied to bridge health

monitoring. In [22], auto-detect anomaly in SHM incorporating computer vision and

machine learning methods are employed. Deep neural network (DNN) machine learning is

used for training and auto-detecting anomalies in the image vectors obtained from time

series acceleration data of an actual long-span bridge in China. A DNN-based bridge health

monitor is proposed in [46]. The mid-span temperature and stress of the bridge were used

as input parameters to train the network. In [47], a novel method is proposed to predict

dynamically reconstructed responses using DNN. The dense network is trained on

available acceleration responses from Guangzhou New Television Tower in China, and the

reconstructed data performed well, both in time and frequency domains. Drawbacks related

to feature extraction, a reduction in the number of parameters, and gradient and noise

immunity can be overcome using dense neural networks.

Since 2014, ensemble machine learning-based SHM has gained momentum. An ensemble

machine learning-based SHM is presented in [48] to classify the failure mode and load-

bearing capacity of reinforced concrete. Boosting algorithms are employed for both

classification and regression. Furthermore, boosting algorithms have shown better

performance than single learning algorithms. The ensemble learning approach has been

employed for crack detection using deep convolutional networks as well [49]. The data set

consists of images of the bridge towers and anchor chambers of a suspension bridge. In

[50], a gradient boosting-based machine learning algorithm is considered to predict the

damage of reinforced concrete panels under impact bearing. The model is tested on the

18

impact bearing reinforced concrete panels by using experimental data. A reasonable

accuracy level of around 75% is achieved, promising a new and effective approach that can

be applied to other complex structures as well. A summary of the discussed machine

learning-based SHM is given in Table 1.

19

Table 1 Summary of Machine Learning-Based SHM

References Machine Learning Technique Structure Input Outcome

Smarsly et al., 2016 KNN, SVM, RFC Publicly available test
results

Stiffness and mass
conditions

RFC gave better prediction

Vitola et al, 2016 KNN variants, Aluminum plates in
different actuator

phases

Signals captured using
piezoelectric sensors

Damage detection and
classification Subspace discriminant,

bagged trees
Ibrahim et al., 2019 KNN, SVM, and CNN Multi-floor buildings Accelerometer traces CNN gave better results

Bao et al., 2019 DNN Actual long bridge Acceleration data Auto-detect structural
anomalies

Chen et al., 2019 DNN Bridge Stress and temperature Bridge health diagnosis
Feng et al., 2020 Ensemble learning (boosting

algorithm: gradient and
adaboost)

Reinforced concrete Geometric dimensions,
material properties

Failure mode classification
and load bearing capacity

prediction
Kailkhura et al.,

2020
Ensemble learning using

DCNN
Bridges Images of bridges Crack detection

Thai et al., 2019 Gradient boosting Reinforced concrete
panels

Boundary conditions
and others

Failure modes

20

Chapter 3 Systems Engineering Framework
Overview

The formulation phase for any project is updated as required throughout the project’s life

cycle. This chapter provides the specifics of the technical effort. It describes the technical

processes used, the application of processes by using appropriate activities, the

organization of the project to accomplish the activities, the information flow within the

system, the decision-making structure, and the resources required for the accomplishment

of activities. Critical events drive activities during any phase of a life cycle (including

operations) and are the basis for the integration of the processes. This chapter presents the

communication bridge between the project management team and the engineering

discipline teams. It also facilitates effective communication within the discipline teams.

Furthermore, this document provides a framework to realize the appropriate work products

that meet the entry and exit criteria of the applicable project life-cycle phases to provide

necessary information to management in order to assess technical progress.

As this chapter showcases the results of studies performed on a smaller scale, it reflects the

effectiveness of the design proposals. This chapter shall also highlight the required budget,

effectiveness, and schedule. The presented information is useful to project stakeholders,

such as project developers, researchers, department, faculty, and the university. The

primary audience is the university’s project-funding facility, which assists the researchers

in implementing useful findings in real-world applications.

21

Rationale

The problem background that is being solved by the research is identifying the design and

materials suitable to make an infrastructure design that would result in the least amount of

failures. A study identifying the requirements of a specific structural design suitable for

certain conditions was missing previously and is therefore being addressed in this research.

Results can be foreseen digitally by incorporating engineering and machine learning

simulations, and their success score can be pre-calculated. Questions posed by previous

studies remain relevant and need to be addressed by engineers, which is what this research

aims to accomplish. This experimental research presents computer software and simulation

based on machine learning prediction models with a high accuracy rate of 76%. Machine

learning has enabled the prediction of high performing materials and infrastructural

designs.

Systems Engineering Framework

Systems engineering ensures significant development and delivery of capabilities by using

a set of integrated, disciplined, and consistent analytic and technical management processes

throughout the infrastructure lifecycle. While systems engineering touches many of the

other processes across the development lifecycle, this research dwells on the application of

agile principles that allow for creativity. The twenty-first century provides an exciting

opportunity for systems engineering. Indeed, increasing technological complexity results in

new challenges in architecture, networks, hardware and software engineering, and human

systems integration. This research study on SHM of civil infrastructures, such as bridges,

deals with technological complexity by leveraging the sensors and techniques (drones and

22

cameras) emerging from the Internet of Things (IoT) revolution that continually

incorporates new technology. Adapting these new technologies to artificial intelligence or

machine learning algorithms for data analysis reveals insights into the health of civil

structures that were much more difficult to ascertain earlier, even with significant

investment and long downtime of infrastructure.

The ISO/IEC/IEEE 15288-2015 systems engineering processes were refined to reflect agile

principles at the agile Working Group held during the International Conference on Systems

Engineering (INCOSE). In an agile environment, systems engineering requires tailored

methods and processes to deliver incremental capabilities. Therefore, it demands a

disciplined approach for coordinating parallel requirements, elaboration and prioritization

of technical developments, operations, and sustainment activities. Systems engineers play

an essential role in operational, technical, and programmatic integration, as expressed in

the core agile software development tenet of active collaboration among developers, users,

and other stakeholders. Program leaders must encourage systems engineers to engage with

developers, testers, users, and other stakeholders in their disciplined engineering processes.

Agile development requires proactive collaboration among enterprise architectures,

platform architectures, and related development efforts, where each stakeholder group

shares concerns and opportunities regarding the successful release and system delivery.

23

This will enable smaller yet faster capability deliveries to consistently track the accurate

SHM of civil structures.

In the left-hand side of Figure 1, traditional systems engineering practices are consolidated

and combined into an incremental model. This approach provides more timely data on the

structural health of bridges and other civil structures that might otherwise deteriorate

unknowingly, potentially resulting in catastrophic failure.

The danger and inconvenience caused to the public due to the closure of bridges are

averted using agile techniques. The principle is very similar to the combination of

development and operational (DevOps) software development models that can be

developed and released, providing quicker access to users. In the case of agile systems

Figure 1 Systems Engineering Framework

24

engineering, knowledge of the SHM of civil structures and the detection of potential

problems are delivered using predictive maintenance analysis. The lifespan of the civil

structure increases and the usability of the structure benefits the public. Engineers should

conduct continuous interdisciplinary systems engineering reviews to find the right balance

between structure and flexibility in order to deliver usable capability aligned with the needs

of users. These changes to the systems engineering model, from traditional to agile, lead to

the systems engineering V-model that can be tailored to the needs of the developer in

scheduling the SHM activities.

Systems Engineering Model

The best-suited systems engineering model is the V-model that considers the procedures in

a step-by-step manner, mitigating the chances of errors in each step, and subsequently

ensuring stepwise success (Figure 2). The V-model guides the chaptering and realization of

the proposed project. Through it, the following objectives are intended to be achieved:

 Minimization of project risks.

 Improvement and guarantee of quality.

 Reduction of total cost over the entire project and system life cycle.

 Improvement of communication between stakeholders.

25

The final system operates by using remote sensing technology to identify the measurement

of deformation at multiple points. The system includes:

 An algorithm for optimal sensor placement.

 A modeling framework for SHM, used to create the training datasets.

 A library of known structural behaviors from the available structural model.

 A machine learning algorithm to predict and correlate data sets to the known failure

modes.

A good visible representation of these processes is shown in a closed feedback loop that

ensures any change made to these technical processes is reflected throughout the entire

design of a civil structure (Figure 3). In this representation, the technical process is made

compact and reduced into five essential functions.

Figure 2 Systems Engineering V-Model

26

Analysis of Requirements

The requirements to run this project successfully relied mainly on the application and

accuracy of a machine learning algorithm. The main advantage of using a machine learning

algorithm is that it is self-correcting. Thus, a massive computational power is required for

its operation. A better computational power enables better results [14]. This will ensure the

correct prediction of failures in materials and designs, thereby resulting in higher rates of

accident prevention [51] .

Requirements are listed as follows.

 Computational power

 Powerful workstations

Figure 3 Systems Engineering Functions

27

 Data sets (testing, modeling, and actual data)

 Materials suitable to test small-scale bridges/infrastructure

Stakeholder Analysis

It is essential to perform a stakeholder analysis for conducting the proposed research study

and implementation in order to highlight the benefits each stakeholder receives. Every

stakeholder invests time, energy, and overall interest to obtain the best results through a

successful design and analysis. Moreover, stakeholders have a certain degree of power over

the processes. This presents a unique power-interest grid for every stakeholder [8].

Additionally, stakeholders often have to communicate in order to drive the project forward.

In this research project, the academic stakeholders are researchers and the academic

organization, while the practical stakeholders are engineering firms, investors, and supply

chain managers of the construction materials.

SWOT Analysis

SWOT analysis is a critical analysis to be performed on projects related to machine

learning models. It is a good practice to highlight the strengths, weaknesses, opportunities,

and threats faced by the proposed project [9]. The SWOT analysis of this research project

is presented in Table 2.

28

Table 2: SWOT Analysis

Strengths Weaknesses

Ability of machine learning computations to

self-correct their results.

Effectiveness of the end product.

Save on material costs by using simulation

and computation.

Minimal manual work.

Dependency on high computational power.

Dependency on accurate data sets to make

effective models.

Testing overheads.

An on-site AI practitioner is required for effective

monitoring.

Opportunities Threats

The idea can easily be expanded to suit other

industries, such as textile manufacturing.

Scalability is easy.

Novel idea will attract sponsors.

No added complexity.

Accuracy decreases with multiple iterations.

The application of the same advanced algorithms.

by competitors, should it get late to implement.

29

Risk Analysis

It is essential to conduct risk analysis when funding or capital costs are involved in order to

mitigate risks by correctly analyzing them beforehand [52]. A significant risk is the

ineffectiveness of end products, resulting in the wastage of materials. This can be

subsumed into more commonly identified forms of risk found in all machine learning

projects, namely, unexpected behavior and unintended consequences. The use of unverified

technologies, errors in monitoring, and other similar factors increase the risk of

emergencies, the consequences of which can lead to human casualties. Moreover, accidents

and disasters cause not only severe moral and social shocks, but also financial losses that

occur due to the inoperability of the object. For this reason, NN can become an

indispensable tool for SHM. It is a compelling modeling method that allows the

reproduction of too complex dependencies, particularly the ones that are non-linear. At the

same time, neural networks learn from examples; thus, they can be a good choice.

Nevertheless, they cannot completely replace existing methods or the work of the

specialists, only complement them.

Research also addresses the development of various sensors and prediction systems that

facilitate focusing on the resources in high-risk areas of failure as well as the structures

most prone to immediate failures according to various reports from American Society of

Civil Engineers. Current studies regarding the inspection and calculation of structural

health data via sensors have focused almost exclusively on the application of fiber optic

sensor systems [6]. Fiber optic sensors are highly reliable and embedded into large

concrete structures during the construction phase [7]. Some of their identified risks are

30

given in Table 3. To determine the potential risks, SHM will be evaluated using the

checklists found in [53]. These checklists help to identify potential risks in a generic sense.

The project will then be analyzed to determine any project-specific risks.

Product Size Risks

 Estimated size in lines of code (LOC): Structural health system (SHS) will have a

code with about 10,000 lines.

 Degree of confidence in the estimated size: The confidence in the estimated size is

very high.

 Deviation from the average of previous products as a percentage: A deviation of

20% from the average is allowed.

 Multiple users: The number of users will be relatively low. There will be one user

per instance of running the software, as the software was not planned for multiple

users.

 Number of projected changes to the requirements: Three possible projected

changes to the requirements were estimated. The changes will occur when the

requirements identified in the initial stage are not required at implementation. It

may happen when the customers’ requirements are verified by interacting with

them.

 Amount of software reusage: Reusing is very important to get the project started.

The CAD methodology is fairly straightforward to reuse. Previous programs used

to code with CAD will be reviewed, and relevant codes will be extracted.

31

Business Impact Risks

 Effect on company revenue: None. SHS will be distributed as a highly cost-

effective software. It will be a hot-selling software that will save massive costs in

the construction and maintenance of bridges. As it will be developed by using

some pre-existing and open source tools, no business risks are involved.

 Visibility of product to senior management: To achieve this, plots of safety factor

vs. node, and deformation vs. node, are generated separately. They represent the

complete output of the model under a specified loading condition (e.g., scenario

P12500 represents a load of 2,500 lbs. in the predetermined position 1).

 Reasonableness of delivery by deadline: Fairly reasonable. The project deadline

was established before the project was begun. The initial chaptering for SHS was

executed with the deadline in mind. The scope of the project was limited to keep

the project “doable” within the allowed period.

 Number of other systems/products that the proposed product must be interoperable

with:

 CAD Engine, which is included with Python.

 Machine Learning algorithm.

 Sensor.

 Amount and quality of documentation that must be produced and delivered to the

customer: The customer will be supplied with a complete online FAQ and help

tool as well as a user manual for SHS. The customer will have access to all of the

development documents for SHS, as the customer will also grade the project.

 Governmental constraints in the construction of the product: No relevant

constraints are known.

 Costs associated with late delivery: Late delivery will prevent the customer from

issuing a letter of acceptance for the product, which will result in an incomplete

grade.

32

Customer-Related Risks

 Have you worked with the customer in the past? No.

 Does the customer have a solid idea of what is required? Yes, the customer has

access to both the system requirement specifications and the software requirement

specifications for the SHM project.

 Is the customer willing to establish rapid communication links with the developer?

Yes, the customer can access all project developers through e-mail and in-person.

 Is the customer willing to participate in reviews? Unknown. While the customer

will likely participate if asked, no inquiry has been made at this time.

 Is the customer willing to let your people do their job? Yes. As the SHM project is

a senior design project, the customer is available if needed but does not interfere

with development operations.

Technological Risks

 Is the technology to be built new to your organization? SHS is a software tool to be

used in SHM. Development team members are familiar with its development, as

well as the necessary dataset implementation.

 Do the customer’s requirements demand the creation of new algorithms or input or

output technology? No. SHS will be implemented using existing algorithms. Input

and output will be handled traditionally.

 Do requirements demand the use of new analysis, design, or testing methods? No.

The development team will implement existing analysis, design, and testing

methods for this project.

 Do requirements demand the use of unconventional software development

methods? No. SHS uses Python code in header files which is conventional. It is

also integrated with CAD, which is conventional as well.

 Is the customer uncertain that the functionality required is “doable”? No. The

customer has full confidence in the project described in the system specification

document and the software specification document.

33

Table 3: Risk Assessment

Risks Category Probability Impact

Computer Crash TI 70% 1

Late Delivery BU 30% 1

Lack of Development Experience TI 5% 2

Lack of Available Dataset TI 40% 2

Poor Quality Documentation BU 35% 2

Deviation from Software Engineering

 Standards

PI 10% 3

Poor Comments in Code TI 20% 4

Equipment Failure TI 70% 1

Technology Not Meeting Expectations TE 25% 1

End Users Resisting System BU 20% 1

Changes in Requirements PS 20% 2

Less Reuse than Expected PS 60% 3

Impact Values:

1 – Catastrophic

2 – Critical

3 – Marginal

4 – Negligible

34

In most civil infrastructure contracts, many of the systems engineering processes are

executed by the contractor(s). As these processes overlap with the responsibilities of the

government in some cases, it is essential to understand whether these activities are

accomplished effectively. The systems engineering technical processes that need to be

monitored include the following:

Design definition: The overall system design will and should evolve. All stakeholders must

be involved in design decisions.

System Analysis: This is an ongoing process to ensure that incremental development of the

solution remains stable, coherent, and aligned with the needs of all stakeholders.

Verification and Validation: The release process must continuously verify the built works

(verification) and meet the needs (validation), which will satisfy the users.

Transition: This refers to moving incremental solutions into operations, which must be

accomplished with care to avoid update fatigue on the users’ side while allowing the

solution to evolve.

Operation: In an agile environment, development continues while initial releases are being

used in actual operations. It is essential to monitor and measure the performance of the

delivered increments and to have a mechanism in place to respond to “real user” feedback.

35

Maintenance: Fielded systems may break. Maintenance activities should be fed into the

product backlog and prioritized accordingly. Subsequent releases are technical upgrades to

the existing system and should be managed through users’ maintenance processes, too.

Disposal: As a new functionality is added to a fielded and incrementally developed system,

legacy systems may eventually need to be removed from service. Sometimes, early

functionality of the new system may need to be removed when replaced by an improved

functionality or when they are no longer needed.

Quality Assurance: Going beyond tests, maintaining acceptable software engineering

practices are essential to preserve the portability of codes and allow future unanticipated

changes to the fielded system.

36

Decision Analysis

The five technologies mentioned below have been reviewed.

1. Passive Electromagnetic RFID Sensors for crack detection [48] [47].

2. Computer Vision: Kinematic SAMI, a new real-time multi-sensor data assimilation

strategy that uses high-speed and high-resolution cameras [46].

3. Liquid Level Sensing Systems (LLSS) as an add-on to the bridge structure to

measure deflection and deformation [49].

4. Ultrasonic Sound Wave Technology [50].

5. Infrared Thermography, UAV Photogrammetry, and GPR [54] [55].

Decision analysis for agile occurs at critical points in development, specifically when

issues arise. The development team must make decisions about development steps and

perform designs based on a clear understanding of risks and options. This can be

challenging, since an optimum design and implementation solution are typically unknown.

Additionally, in many cases, the risks and options are unknowable due to the inherent

complexity at the outset of a program. When this is the case, the team should resist the urge

to over-engineer or design an optimal solution in advance. Instead, the team should

proceed based on an agreed-upon preferred direction and then assess progress and course-

correcting based on an analysis of specific experiences. Typical agile decisions center on

adjusting the grouping of user stories, determining which sprints are released to users,

resizing and splitting the design, implementing separate stories, and assessing the impact of

removing requirements from the backlog.

37

In this research, SWOT analysis was used due to its simplicity and straightforward path

towards make a decision. It is also well-suited to the agile methodology which is employed

in this study. Hence, five potential contactless sensor-based methods were studied:

• Passive RFID sensors have the drawback of signal interference due to surrounding

obstructions. The transmitting power of the RFID sensor is severely limited due to

no battery being mounted on the sensor.

• The LLSS structure requires a costly development phase. It is subject to damages

due to weather conditions, such as wind, and various abnormal loading conditions.

• The Ultrasound technology was sensitive to both environmental conditions and its

proximity to the bridge.

• Computer vision and infrared methods were both drone-mounted camera options

that could be operated remotely from a safe distance with visible evidence being

revealed in real time and at scale (Figure 4 and Figure 5).

38

Figure 4 SWOT Analysis of Computer Vision

Figure 5 SWOT Analysis of Optitrak

Cost-effective
 Non-invasive

Requires extensive 3D
modeling
SHM key features
determination for
monitoring

Data collection
hampered by
environmental issues
Availability of
original design
parameters

Very adaptable to a large
number of bridge
structures

S

W

O

T

S T R E N G T H

W E A K N E S S

T H R E A T

O P P O R T U N I T Y

Cost effective
Non-invasive
Better vision

SHM key features
determination for monitoring
Requires multiple camera
angles to validate data
Define camera angles

Availability of
original design
parameters
Pilot skill

Very adaptable to a large
number of bridge
structures

S

W
O

T

S T R E N G T H

W E A K N E S S

T H R E A T

O P P O R T U N I T Y

39

Chapter 4 Concept of Operations

As per the literature, use of non-contact camera sensors in SHM has added advantages

compared to traditional contact sensors. However, the majority of previous work focuses

on the optimal placement of contact sensors for SHM. To fill this gap, the present work

proposes a novel filtering algorithm for optimal placement of contactless sensors based on

strain, deformation, node location, and the safety factor. Furthermore, it is evident from the

above-discussed literature that machine learning-based SHM is preferable to other SHM

systems. Moreover, past works have shown excellent results with gradient tree-based

machine learning algorithms for structural monitoring of reinforced concrete panels. With

an extensive literature survey, it was found that further adaptation of NN is required in

order to increase accuracy. It is clear from the existing literature that there is a need for

further study of the application of NN and prediction ability when training is based on

computer-simulated data. This becomes extremely valuable when live data acquisition is

feasible and/or destructive tests are not possible. There is a gap in the literature concerning

experiments that measure prediction capability of artificially trained NN on real-life

structural behavior. Additionally, the use of gradient boosting algorithms for structural

monitoring shows great promise but lacks sufficient attention. Consequently, in this article,

a gradient boosting neural network is considered as a suitable machine-learning algorithm

for bridge monitoring and damage prediction. The proposed SHM system integrates the

filtering algorithm for active failure detection, simulated training data, and known failure

cases with the gradient boosting machine learning model for bridges, then conducts trained

with simulated data and validates using input from a physical model.

40

The following failure modes have been identified from previous research or through

extrapolation of material properties under expected lifetime loads. The proposed research

methodology includes identification of suitable techniques to record structural health and

structural behavior data, development of a structural modeling framework to simulate

multiple structural loads and failure modes, and analysis of sensor data into a reliable

prognosis system.

• Loading Fatigue [41], [47], [48], [15].

• Vibration Fatigue [41], [47], [48] [15].

• Mechanical Overload [46], [47].

• Creep (Moaveni et al., 2013), [46].

• Thermal Shock [41].

• Corrosion [41], [47].

41

Solution Approach

The solution approach, including a specification of techniques used, is described as

follows (Figure 6). Firstly, the structure is scanned, and a 3D CAD based model is created

(1), which is then continued to an FE analysis model. An analytical approach is followed to

simulate loading conditions (2) and a library of training data is generated (3). The data set

is later fed to a machine learning algorithm (4) that has two more types of data as inputs:

other known failure cases (5) and data generated by the sensor array (6) of the real-life

model. The NN algorithm then develops a correlation between the different datasets. It

determines the percentage of correlation between the sensor input and the known scenarios

(training or surveyed) and produces a prediction based on this correlation (7). The detailed

procedure followed for a test case is explained in the applied methodology section.

42

Figure 6 Solution Approach

Proposed Solution

Currently available SHM systems for transportation infrastructure involve cumbersome

installations that require structural modifications and cause traffic interruptions. Moreover,

the cost of sensors for each structure is relatively high. Consequently, the deployment of

43

SHM systems is complicated. Understanding and predicting structural health and failure

modes are difficult without collecting and analyzing real-time data from the structures. To

address this problem, a novel system was designed and tested. The proposed system can be

subdivided into the following steps:

Identification and Characterization of the Structure: This is accomplished by 3D

scanning of the structure. The structure is then modeled with the help of a computer-aided

modeling (CAD) software. These steps also include the collection of data regarding the

composition of materials and their mechanical characteristics.

Computational Analysis: This stage involves computer modeling of the specific structure.

A computer model is designed, and FE analysis mesh is prepared to simulate the behavior

of the structure under different loads and triggered failures.

Load Simulation and Library Generation: This step involves the creation of a library of

known failure cases for the structure. Using FE analysis, various loading scenarios are

simulated and the results of each are recorded in a library of expected/known structural

behaviors.

Sensor Placement: Based on the library of known behaviors and failure modes, a filtering

algorithm identifies the structural points with the highest probability of deflection. The

algorithm then filters those that are most likely to serve as identifiers of failure scenarios

(i.e. points that saw high deflection with high correlation to failure). This yields a list of

“high interest” points that will dictate the position of the sensor markers.

44

Data Collection: Infrared sensors are deployed due to their availability and their ability to

be used in a wide range of light conditions. These sensors are collect data on an active

structure. The sensor system consists of small infrared-enabled cameras which can track

the position of the markers to submillimeter accuracy in conjunction with surface markers

placed in “high interest” points. This facilitates the recording of bridge deformation

(marker displacement) from a safe distance.

Data Comparison and Prediction: Using a NN, sensor readings are compared in order to

know or predict failure scenarios. This step takes advantage of several elements of machine

learning algorithms:

 The possibility of using a combination of predicted (calculated) and real data sets for

training enables early predictions and increased accuracy as the number of training sets

grows.

 The possibility of using simulated failure data sets as part of the training library

reduces the need for destructive testing in large structures.

 The ability to interpolate and extrapolate data enables data-based comparisons and

predictions, even with a limited number of points.

45

Chapter 5 Case Study
Case Study Introduction

To test and validate the proposed solution approach, a pilot project was conducted on a

model of a steel bridge that resembled a large truss structured bridge in shape and behavior.

The model bridge was subjected to all the steps mentioned in the solution approach,

including the verifications and validation procedures (such as simulated loading and strain

gauges installation for data validation). This specific pilot project yielded promising

results, and the system did identify a possible correlation between simulated loading and

future failure modes of the structure. Several experiments were conducted in a controlled

environment to collect data and validate system inputs.

Considering the large number of truss bridges across the United States [54], a simplified,

scaled-down version of a bridge structure was selected for the pilot project. This reduced

size allows for a controlled environment suitable for data-collection by using permanently

mounted infrared sensors. This arrangement reduces errors due to inaccurate sensor

placements or movements. Moreover, the bridge is made of a relatively uniform material,

so that intrinsic material properties could be simulated accurately, in this case, steel. The

proposed procedure was applied on the model bridge, as explained in the next section.

46

Development of a 3D Computer Model and Finite Element

The computer model of the bridge was designed with the exact specifications of the model

via 3D scans of its geometry. Furthermore, simulations of necessary fasteners and welding

joints, as well as material properties, were carefully incorporated. A mesh suitable for the

geometry of the object was developed in an ANSYS simulation environment (Figure 7).

Figure 7 Mesh of the Bridge

The training data set was generated for this pilot project based on the known loading

factors for civil engineering infrastructures [55]. Loading conditions were identified and

characterized based on the literature review [10], [56], [57]. These conditions were fed into

the computer model to generate a data set of expected stresses and strains in the structure

of the model.

47

Load Simulation and Library Generation

By using the computer model, simulations were completed for the deformation of the

structure under loading conditions. At any point in which the material passes its elastic

deformation region, a material failure can be identified [58]. A gradient boosting neural

network used the generated library to detect necessary correlations of input data with

known loading conditions and failure modes. Extrapolated input data was also used to

match and identify possible relationships to failure scenarios. The machine learning

algorithm used all these input data for training in order to enhance accuracy and predictive

capacity. The developed model takes into account the material deformation and localized

strain as well as the limits of the selected material. Collected data can be subdivided into

categories: node (location within the model’s coordinate system), material deformation

(obtained by the OptiTrack sensors or calculated from strain sensors), and strain (inversely

collected by strain sensors or derived from the deformation) [10]. All three types of data

were used to train the machine learning algorithm.

In this research, a computational model was developed that can recreate point

measurements of essential indicators during different load cases and failure scenarios. The

model was adjusted by changing the load and environmental conditions to simulate,

trigger, and collect data on the failure modes of loading fatigue, mechanical overload, and

creep. A sample case of loading fatigue is shown in Figure 8.

48

Figure 8 Sample Case for Loading Fatigue

The data for each failure scenario was collected in terms of strain, deformation, and node

location. An example of node meshing is shown in Figure 9. The system has over one

million nodes or mesh elements; these nodes were considered for the filtering algorithm

that determines the best available sensor positions.

49

Figure 9 Node Mesh

Smoothing in 2D

Safety Factor vs. Node and Deformation vs. Node were plotted separately (See Figure 10).

Both a low pass filter and a moving average filter with sampling were tried. Due to a

Gibbs-like phenomenon that occurred with the low pass filter (extrema pushed out of

place), the moving average filter with sampling was selected as the most appropriate

technique. Hence, data was averaged over every 5,000 nodes, and these averages were

plotted to get smoothed curves. The number 5,000 was derived by testing various window

sizes and counting the number of resulting extrema. Accordingly, a window size that made

the smoothed curve look reasonably noiseless and provided on the order of 100 extrema

was selected.

50

Figure 10 Smoothing in 2D

51

Smoothing in 3D

Safety factor was plotted on the z-axis and deformation was plotted on the x-axis in two

different 3D plots. The corresponding minima and maxima are highlighted (Figure 11).

The 3D smoothing is relatively complicated. The smoothed curve is built from B-spline

basis functions; in theory, it incorporates the effects of both safety factor and deformation

simultaneously while smoothing. However, it did not yield significantly different results.

As 3D proved to be a less interpretable method that did not yield better results, 2D

methodology was used in this research.

The data points that are more susceptible to failure were identified. Assuming that material

characteristics are uniform, then calculations are performed to determine the points at which

the factor of safety indicates a deformation change beyond the expected level for safety

infrastructure operation [7]. The algorithm yields the primary location of interest in the

model by the node number, deformation, stress, strain, and, ultimately, the safety factor.

Figure 11 Smoothing in 3D

52

The data list contains the inflection points of the simulated structural failure that enable the

identification of the position of an optimized sensor array. Based on the number of

available sensors, this list is then truncated at an arbitrary number for comparison. In this

pilot project, the list of extrema readings was truncated at 100 in order to encompass the

most critical and extreme conditions during the load test. These node locations served as

the location of the initial set of sensor nodes in both the training data and the experimental

setup.

The second array of influential data points is a subset of the original model, with a

maximum number of 100 data points reflecting the behavior of 100 coordinates in the

structure (simulating these points in terms of the mechanical parameters). It is worth

mentioning that the sensor placement algorithm can be modified to accommodate as many

sensor arrays as necessary for the desired accuracy.

Optimization of Sensor Locations

In this phase, a safety factor vs. node plot (Figure 12) and a deformation vs. node plot

(Figure 13) were generated separately. They represent the complete output of the model

under a specified loading condition (e.g., Figure 13 represents a load of 2,500 lbs. in the

predetermined position 1). This data set was then used for sampling after filtering by

applying a moving average filter. Hence, data over every 5,000 nodes were averaged and

then plotted to obtain smoothed curves. The number 5,000 was selected by testing various

window sizes and counting the number of extrema. This process resulted in the

identification of a window size that made a smoothed curve look reasonably noiseless and

53

gave extrema in the order of 100. It falls within the current channel availability of the

selected sensors.

Once the data points that were more indicative of deformation were identified, it was

assumed that the material characteristics were uniform. Then, calculations were performed

to determine the points at which the factor of safety indicated a deformation change beyond

the expected level for safety infrastructure operation. The algorithm yielded the primary

location of interest in the model by the node number, deformation, stress, strain, and,

ultimately, the safety factor.

 Figure 12 Safety Factor vs. Node

54

Figure 13 shows that the deformation plot corresponds to the relative maxima for the

deformation in 2D. It outperforms a 3D plot in terms of clarity and readability. The

smoothed curve was built from B-spline basis functions, and extrema were identified.

The data list contains the inflection points of the simulated structural failure that enable the

identification of the position of an optimized sensor array. Based on the number of

available sensors, the list was then reduced for comparison. In this pilot project, the list of

extrema readings was limited to 100, as it encompasses the most critical and extreme

Figure 13 Deformation vs. Node

55

conditions during the load test. These node locations were considered in the initial set of

sensor nodes in both training and the experimental setup.

The second array of influential data points is a subset of the original model, with a

maximum number of 100 data points reflecting the behavior of 100 coordinates in the

structure (by simulating these points in terms of the mechanical parameters). It is worth

mentioning that the sensor placement algorithm can be modified to accommodate as many

sensor arrays as necessary for the desired accuracy.

Process Data for Sensor Placement

Each failure mode yielded a data array containing location value and deformation at the

location, creating a library of failure modes and essential mechanical readings. Each array

was then processed as a multidimensional matrix. These matrix values correspond to the

coordinates and material of a node. Strain was calculated by using the material’s internal

properties to determine the material deformation in the elastic and plastic regions and any

material failure. This matrix was exported and processed by a filtering algorithm to reduce

noise, decimate data to avoid duplicated data at nearby locations, and then to find the local

extrema.

The model returned a list of local maxima and minima based on the preselected

parameters. A threshold for material deformation was added, and only the lowest (minima)

points were selected based on a predetermined limit of material safety factor.

56

Data Collection and Preprocessing

Development of an accurate and versatile computer model with a robust library of failures

and loading scenarios is helpful in structural health analysis. However, an experimental

setup is required to test and corroborate these results. The implementation of a contactless

sensor array can reduce the cost and complexities [59]. The next step was to develop an

experimental setup to test the predictive and interpolating capabilities of the machine

learning algorithm, as well as the accuracy of the contactless sensor setup in determining

the material deformation.

A model of the bridge was placed in an optical track sensor-enabled test room (Figure 14).

A set of data markers and strain gauges were attached at the previously identified most

critical locations (100), while six strain gauge nodes were installed for systems validation.

Figure 14 Experimental Setup

The contactless OptiTrack system facilitates the sensor locations within the three-

dimensional bridge model to be marked and tracked. Furthermore, it enables collection of

real-life deformation data with sub-millimeter accuracy. After the experimental set-up was

prepared, a set of experimental data was collected. They were used in gradient boosting

57

neural network to determine the predictive capability. Several mathematical models of the

known structures were used for validation of the model, and they demonstrated a trend

towards identification of future failure scenarios based on initial data.

The system’s data was fed as input data of gradient boosting neural network [14], enabling

an interpolation of bridge conditions based on sensor inputs and a correlation with known

failure or non-failure cases. The machine learning system was successful in calculating a

percentage of correlation to specific sets of known failures. If the input data is identified

with a significant correlation with an established failure set, then the known failure

location is marked as a point of interest, and the correlation percentage is determined as a

predictive indicator of failure.

Defining Failure Modes

Each failure mode yields a data array that contains location value and parameter value

(e.g., deformation per location), creating a library of ranges that include each failure mode

and essential mechanical readings of each parameter. Each array is then processed as a

multidimensional matrix. These matrix values correspond to the coordinates and materials

of a node calculated for that location. The strain is calculated and compared with the

material’s internal properties to determine the material deformation in the elastic and

plastic regions, as well as any material failure [43].

This matrix is then exported and processed by a filtering algorithm that reduces noise,

decimates the data to avoid duplicated data at nearby locations, and then finds the local

58

extrema points. The model returns a list of local maxima and minima based on the

preselected parameters. A threshold for material deformation is added, and only the lowest

(minima) points are selected based on a predetermined material safety factor limit. For this

research study, any material deformation passed a safety factor of 1 is considered a failure.

Sensor Placement Algorithm

The algorithm aims to collect data from sensors placed at pre-defined positions on the

bridges, and failure scenarios are recorded in terms of strain, deformation, and node

location. Bridge intrinsic material properties are also considered to determine deformation.

The flowchart of the model is presented in figure 15. Every failure mode generates a data

array that has the coordinates’ value and deformation at the specific points as well as a

library of failure modes. This data array is then processed as a multidimensional matrix.

The strain is calculated by determining the material’s intrinsic properties, as strain is the

most important variable, directly affecting the condition of monitoring. Here, our filtering

algorithm is in use. It reduces the outliers, removes duplicate data present in the nearby

locations, and finds the local extrema in the processed data from sensors.

Considering the pre-selected parameters, the algorithm returns a list of local minima and

maxima. The material deformation threshold was already selected based on the material

safety factor, so it is added in the model and the lowest minima points are selected. Any

deformation in the material higher than the safety factor 1 is considered as a failure in the

bridge structure. The ultimate goal of the algorithm is to generate the main points of

interest in the model by considering the node number, deformation, stress, strain, and, in

the end, the safety factor.

59

Figure 15 Sensor Location Algorithm

A moving average filter was applied to the data set after filtering and is then used for

sampling. The algorithm plotted smoothed curves by averaging 5,000 nodes. This number

was tested over different window sizes and by counting the number of extrema. As such,

60

this became our default window size and produced noiseless, smoothed curves and gave

out 100 extrema points.

The inflection points of the simulated structural failure were present in the sensor data

array list that identifies the optimized sensor array. During the load test extrema, readings

were confined to 100, encompassing the most critical and extreme conditions.

In a 3D model of our approach, the x-axis, y-axis, and z-axis represent node number, safety

factor, and deformation, respectively. Firstly, we set all labels for different axis and then

found the maxima and minima for deformation and safety factor values. We then plotted

the values to visualize the results and saved it in a separate file. Also, we saved the maxima

and minima points in an Excel file. Then, we repeated the above process after changing the

axis; for instance, deformation values became the y-axis and safety factor values became

the z-axis in order to obtain information about failure points in 3D. The smoothed curves

were generated from the B-spline basis function, and extrema were identified.

Step 1: Initializing the pre-requisite libraries.

Step 2: Input file containing the data values.

Step 3: Read values and store in data frames.

Step 4: Apply moving average filtering.

Step 5: If window size = 5,000 and extrema points =100. If Yes, go to step 6; if

else, return to step 4.

61

Step 6: Plot raw and smooth values in 2D.

Step 7: Find local maxima and minima of smooth values.

Step 8: Plot local maxima and minima.

Step 9: Save plots.

Step 10: Save maxima and minima data values.

The whole output of the model is represented under the specific loading conditions. Firstly,

safety factor vs. node graphs are generated in (Figure 2). Experiments applied on different

positions and different weights and their graphs were recorded as well. An initial weight of

2,500 lbs. on position 1 was considered, then the experiment increased the weight

incrementally, to 5,000, 7,000, and 10,000 lbs. Graphs were generated, and maxima and

minima were determined. Testing was also completed on the same weight, but in different

positions, such as 2, 3, and 4. This figure represents a load of 5,000 lbs. in the

predetermined position. 4.’x’ represent maxima and ‘o’ represent minima in the data chart.

By using a moving average filter, the data set was then sampled after filtering. The data set

was averaged over every 5,000 nodes to plot the smoothed curves. This number was

selected over different window sizes , producing the correct number of extrema and

noiseless smoothed curves.

The value of extrema for this algorithm and window size was selected as 100. Similarly,

deformation vs. node graphs are presented in Figure 3. The graphs represent the raw data,

smooth data, and extremas and minimas in the smoothed data. As the node numbers

62

increased, the graphs became consistent and uniform. They show the uniform behavior of

our algorithm: that after finding enough values by selecting window size 5,000 and

extrema points 100, the algorithm identifies the deformation.

To optimize the precise location of the sensors, graphs were generated. Experimental

results validated that the average filtering algorithm gives the desired result and is helpful

in determining sensor placement in bridges to find the breakage points.

To get a higher level of accuracy, one can increase the sensor arrays, but this can increase

the deployment cost. The plots generated are in 2D, but they surpass 3D plots in terms of

clarity and readability.

63

Chapter 6
Validation of Model and Verification

Another experiment was conducted to validate the computer model, and data was collected

by using the OptiTrack sensors. A custom set of wireless sensor nodes containing strain

gauge sensors was created by adapting a wireless microcontroller to a modified load cell

amplifier and attaching it to a set of strain gauges on pre-identified locations within the

experimental setup of the structure. By measuring strain at six positions, and by using

known loading conditions of 50 kgs, the validity of the computer model and the accuracy

of the material deflection detected by the OptiTrack system were determined. Additionally,

this data set was used for a cooperative analysis between the data collection of non-contact

sensors (OptiTrack system). Figure 15 shows a wiring diagram of the developed sensor

circuit. These sensors were placed at six locations.

The sensor data at the first 100 critical points was generated and collected for 1,200

different loading conditions, ranging from wind loading to static loading to seismic

simulations [13]. The data obtained from the computer model was used to create a training

library for the initialization of the machine-learning algorithm. The algorithm was used for

extrapolation and prediction of structural failure in case of unknown initial and/or loading

conditions. Furthermore, the training library served as a reference point for known

structural behaviors and failure locations. 1,200 numbers of loading scenarios were

generated, each representing a different load and position. Loading scenarios were

categorized based on the load position and magnitude (e.g., scenario P12500 represents a

64

load of 2,500 lbs. in the predetermined position 1). Figure 16 represents the outcome of a

sample scenario P12500; the colors of each mesh element provide a visual guide indicating

deformation from the original state.

Figure 16 Wiring Diagram for Contact Sensor Nodes

65

Figure 17 Unloaded Bridge Model

Figure 17 shows the progression of the loading magnitude in order to illustrate the effects

of deformation in the structure. When the total strain of mesh elements surpasses the elastic

region (or close to the material plastic deformation region), it is marked as a failure point

and indicated by a red arrow. This serves as an indicator of structural malfunctions (Figure

18).

Figure 18 Strain Gauges vs. Computer Model (Simplified)

66

Figure 19 Sample Failure Scenario

67

Chapter 7 Application of Neural Network Algorithms

In the field of transportation infrastructure, bridges are considered highly important

structures. Although the construction of bridges is the costliest among engineering projects

related to transportation infrastructure, bridges must be designed in accordance with

relevant standard safety measures. However, bridges deteriorate due to aging, mainly in

association with the ever-increasing traffic loads [60]. The American Association of State

Highway and Transportation Officials (AASHTO) published guidelines for non-destructive

evaluation methods, diagnostic load testing, and proof load testing in 2003 [61]. Regardless

of testing procedure, the primary objective of any load test is to assess the load capacity

more accurately. Due to the drawbacks of simplified analyses based on conservative

assumptions, new technologies are being applied in testing and evaluations.

The Diagnostic Load Test, one of the major types of tests used for bridge health

monitoring, is performed at controlled load situations and integrates sensors for

measurement of response performance [61]. This test focuses on measuring structural

deformations for a set of applied load conditions without testing the load capacity directly.

The aim of the test is to develop a relationship between the real behavior of the bridge and

analytical calculation. It can be used either as an acceptance test of bridge structures or as a

tool for assessment of the load carrying capacity of existing bridges [62].

Conducting load tests [63] on different types of bridges, such as concrete bridges [64],

reinforced-concrete arch bridges [63], steel bridges [64], masonry arch bridges [65], and

stone arch bridges [66], have been documented in the literature. In this research, a model of

68

a steel bridge was constructed in order to perform experiments. Sensors embedded to the

bridge, as well as contactless sensors, have been used in research studies related to bridge

health monitoring ([8]), [9]), [12]). A contactless OptiTrack system has been used in this

experiment for collection of deformation data with sub-millimeter accuracy at the sensor

locations. Application of numerous statistical models and machine learning algorithms,

including Extreme Gradient Boosting [67], Decision Trees [68], Random Forests [68], and

Naive-Bayes for health monitoring of bridge structures, was evident. In order to identify

the probability of the deformations, fifteen types of statistical models were created in this

research. Coding was conducted in the Python programming language, and the analysis

was performed in a Google Collaboratory Notebook. The model development and training

were completed using Pycaret, which is a Python-based framework that provides a variety

of machine learning tools.

In this research, load-testing experiments were conducted on a model of a bridge (Figure

14). Sensors were positioned on thousands of locations across the model in order to

collect deformation data under different loading conditions. Then, the 100 most critical

points required to be monitored closely were identified. In this setup, sixteen experiments

were conducted, and each experiment was repeated twelve times. As an example, in the

first experiment, the bridge was loaded with 2,500 lbs. at position 1, and the deformations

were recorded by using 100 sensors. This was then repeated eleven more times. Then, the

load was changed to 5,000 lbs., and the process was repeated. Likewise, the experiment

was conducted for 04 numbers of load values (2,500 lbs., 5,000 lbs., 7,000 lbs., and 10,000

lbs.). After that, the same process was repeated at three more locations. As a result, 19,200

69

entries were collected (4 load values x 4 loading positions x 12 times x 100 sensor

locations).

The requirement of this experiment was to train a neural network, so that when the bridge

was loaded with an unknown weight at an unknown position, the neural network could give

the probability of the bridge deformation similar to a known case scenario. Therefore,

preparation of collected data for modeling played a vital role.

The labels of the collected data set were numbered from 0 to 15, having sixteen unique labels

for the data set collected by conducting sixteen experiments (P15000, P17000, P110000,

P22500, P25000, P27000, P210000, P32500, P35000, P37000, P310000, P42500, P45000,

P47000, P410000). The notation of the experiment represents the corresponding locations

and loads used. For example, the number P47000 relates to the experiment with a load of

7,000 lbs. at position 4.

The decision tree was built to predict the probability of a given feature vector

൛𝑥
௧, 𝑥

௧ൟ of the given set of labels. The decision tree, which is a non-

parametric model, was built to predict the failure of the structure. The algorithm optimizes

itself approximately compared to an optimal solution in a parametric model (Logistic

Regression), as given in equation 1. The decision tree function 𝑓 ோாா is defined as

𝑓 ோாா ൌ Prሺ𝑦 ൌ 𝑙𝑎𝑏𝑒𝑙 | 𝑥ሻ (1)

where Pr is the probability.

The optimization criterion is the log-likelihood interpreted in equation 2.

70

ଵ

ே
∑ ሾ𝑦
ே
ୀଵ ln 𝑓 ோாா ሺ𝑥ሻ ሺ1 െ 𝑦ሻln ሺ1 െ 𝑓 ோாாሺ𝑥ሻሻሿ (2)

The data set with 𝑁 number of items, which is used to train the neural network, can be

represented as

 ሼ ሺ𝑥 ,𝑦ሻ ሽୀଵ
ே (3)

where each element 𝑥 of 𝑁 is called a feature vector, and each element 𝑦 of 𝑁 is called a

label.

A combination (𝑗,𝑡) is found, where 𝑗 is an input feature and 𝑡 is a threshold. It selects a

feature 𝑗 and splits the feature into positive and negative sets of examples at threshold 𝑡. The

combination (𝑗, 𝑡) that maximizes the entropy 𝐻 of a split is chosen by applying

𝐻ሺ𝒮ି,𝒮ାሻ ൌௗ |𝒮ష|

|𝒮|
𝐻ሺ𝒮ିሻ

|𝒮శ|

|𝒮|
𝐻ሺ𝒮ାሻ (4)

This experiment is considered to be a supervised learning problem in the field of machine

learning. Supervised learning techniques are algorithms that learn from both an input (known

as a feature vector) and an output (known as a label). Their objective is to classify a given

input into a set of predetermined classes, with the ultimate objective of finding a model that

best describes the relationship between the input and the output. This is considered a

classification problem in machine learning, as the desired output is a discrete categorical

variable instead of a continuous numeric variable, in which the problem would be considered

as a regression problem.

71

In this research, fifteen types of statistical models and machine learning techniques –

namely, Cat Boost Classifier, Decision Tree, Extra Trees, K neighbours, Logistic

Regression, Ridge Classifier, Linear Discriminant Analysis, Linear Kernel, Naive-Bayes

and Quadratic Discriminant Analysis, and five tree-based models – were applied. The tree-

based models were Random Forest Classifier, Adaboost, LightGB, Gradient Boosting, and

XtremeGB. They handle outliers and features with difference scales particularly well.

Extreme Gradient Boosting was the most accurate model for this experiment as per the

performance analysis.

72

Application of Statistical Models and Machine Learning

Techniques

Linear Models

Linear models perform well when the problem statement has a relatively linear relationship

with the target variable. The Sigmoid function is used to convert predictions into a

probability output for classification. It is computationally efficient and highly interpretable

and understandable. Two linear models – namely, Logistic Regression and Ridge Classifier

(see figure 20) – were applied in this research.

Figure 20 Linear Models

K-Nearest Neighbors (KNN) Models

The KNN model is a non-parametric model (see figure 21) meaning it does not assume a

form for the input data compared to models like Logistic Regression. It is, however, a ‘lazy

73

learner’, which means it does not learn from the training data used for classification. A

KNN Classifier was also applied in this research .

Figure 21 KNN Models

Sequential Neural Network

The training data (augmented images) need to better capture the similarity of each class in

a meaningful way. The method used in this exercise is too simplistic and not reliable; the

best error rate achieved was 54%, which is very high. Therefore, Sequential Neural

Network is not suitable to solve the problem, but it did lay the basis for a possible solution.

Extreme Gradient Boosting Neural Network

An Extreme Gradient Boosting Neural Network model was selected due to its high

accuracy score. The model was then developed to correlate new experimental data to

computer model simulations of known failure scenarios. The Extreme Gradient Boosting

74

model has been developed based on the Decision Tree algorithm. A decision tree is an

acyclic graph that can be used to make decisions. In each branching node of the graph, a

specific feature j of the feature vector is examined. If the value of the feature is below a

specific threshold, then the left branch is followed; otherwise, the right branch is followed.

As the leaf node is reached, the decision is made about the class to which the example

belongs [69].

In the Extreme Gradient Boosting model, the sequentially connected ‘learners’ are

Decision Trees. Each tree attempts to minimize the error of the previous tree by optimizing

on the residuals:

ሾ𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ൌ 𝑦ௗ௧ௗ െ 𝑦௧௨ሿ (5)

Every time a new tree is added, it fits on a modified version of the initial dataset. These

attributes make boosting a highly efficient and accurate model. This process is depicted in

Figure 22. The pseudo code of the model pipeline was developed to split the data set into

training and testing sets, where 70% of the data was used as the training set, while the

remaining 30% was used as the test set. The training set iterate through combinations of a

column 𝑗 and a threshold 𝑡 that maximizes entropy. The training data were divided into two

sets: one set with input values of the column 𝑗 that is above the threshold 𝑡, and the other

set below it. The process was repeated until any of the conditions given in the criteria were

satisfied, and the test set was evaluated.

Therefore, the algorithm was developed to stop at a leaf node if any of the below mentioned

criteria is met.

75

• All examples in the leaf node are classified correctly by the one-piece model.

• An attribute cannot be identified to split.

• Splitting reduces the entropy less than a specific value (the value is identified

experimentally).

• The tree reaches a maximum depth 𝑑 (the value is identified experimentally).

Figure 22 Medium Gradient Boosting Architecture [68]

The first phase in the machine learning pipeline is to process the data in a manner that can

be used for model testing. This primarily requires data cleaning, restructuring, feature

engineering, and imputation. As this data set was created in a controlled experimental set

up, there are no missing values. Furthermore, each class (or label) had an equal number of

entries. As a result, there were no imbalances, and each label was equally likely to occur

when training a model. Hence, the probability of any example belonging to a certain set

76

remained the same. For example, the probability at the data set P45000 can be mentioned

as:

𝑃𝑟ሺ𝑦 ൌ 𝑃45000ሻ ൌ 𝑃𝑟ሺ𝑦 ൌ 𝑃47000ሻ ൌ 𝑃𝑟ሺ𝑦 ൌ 𝑃410000ሻ (6)

If there were imbalances, they could cause issues when developing a machine learning

model as the model would be trained on data that only presented one label less than 100%

of the time. Classifying unseen data that does not belong to that specific class would be

difficult as a result.

The data was rearranged into a data frame that could be ingested by a machine learning

model, where the input and output variables could be identified in a single tabular format.

The top five entries of the data frame are shown in Table 4. The ‘location’ represents the

position of the sensor, and the ‘set’ represents the unique location and load applied at each

experiment. Each deformation entry has a specific sensor and a set to which it belongs.

Every set is present in a single table, which explains why there are multiple entries for a

single sensor location.

77

Table 4: The Top Five Entries of the Data Frame

Index location Data set deformation

0 1 P12500 0.000181

1 1 P12500 0.000189

2 1 P12500 0.000222

3 1 P12500 0.000223

4 1 P12500 0.000223

The average deformation over the 100 locations, when the experiment was repeated twelve

times, is illustrated in Figure 23. Each line represents a unique label that corresponds to a

load and a position. As four loads were applied at each of the four selected locations, the

graph consists of sixteen lines, in which the peaks are very visible. The resulting data sets

of the sixteen experiments were ranked based on the average deformation, as depicted in

Figure 24. For visualizing the deformation of five such random sets, a three-dimensional

plot is presented in Figure 25.

78

Figure 23 Variation of Average Deformation Over 100 Locations

Figure 24 Ranking the Average Deformation Per Set

79

Three data sets (P12500, P27000, P410000) were selected, including the lowest, middle,

and highest average deformation values, and the number of occurrences were plotted

against deformation. As illustrated in Figure 26, the distribution is clearly a multi-modal

pattern for each set.

Figure 25 Scatter Plots of Deformation Across Sensors for Five
Random Sets

80

A code snippet was developed to initialize the setup environment for the Pycaret

framework in order to facilitate quick and efficient pipeline creation for machine learning

models. The deformation was scaled, for many machine learning algorithms, such as

Logistic Regression, Support Vector Machines, K Nearest Neighbours, and Naïve Bayes,

assume that all features are centred around zero and have variances that are at the same

level of order. This is done using the z-score defined as:

z-score: ൌ ௫ି ఓ

ఙ
 (7)

Figure 26 Multi-Modal Distribution Pattern of Data Sets

81

Data was transformed to modify the shape of the data distribution to have a normal or an

approximately normal distribution in order to satisfy certain model assumptions of

normality, such as: Logistic Regression, Linear Discriminant Analysis, and Gaussian Naïve

Bayes.

This was done using the Box-Cox Transformation

𝑦ሺ𝜆ሻ ൌ ൝
௬ഊିଵ

ఒ
 , 𝜆 ് 0

logሺ𝑦ሻ , 𝑖𝑓 𝜆 ൌ 0
 (8)

where 𝜆 varies from -5 to 5, and all values are searched to find the optimal value that best

approximates a Normal Distribution. Figure 27 shows the distribution pattern of the data

set given in Figure 25 after performing the transformation.

Figure 27 Normal Distribution

Extreme Gradient Boosting is proposed as the best machine learning algorithm as it allows

for a stratified analysis of the prediction. Based on the predictions, the engineer can either

intuitively associate the input with a certain profile or he or she can create an entirely new

82

profile. In order to calculate and validate the Extreme Gradient Boosting approach, a

special library of known data and associated failures was created. In order to identify the

efficacy, a set of known loading sets was created in association with one failure set. For

example, if a given input deformation set belongs to P47000, 70% of the time we were able

to successfully identify that the majority of the set (50% or more) belonged to P47000.

When we averaged out five different known sets, we identified that the accuracy of the

network to correctly identify the majority of the set belonging is equal to 72%. The

appendix in this document includes samples of the testing data sets used for this accuracy

calculation.

The developed framework of a predictive SHM system that allows easy installation and

assessment of a large structure via non-contact sensors eliminates the need for permanent

or complex sensor installation. The system identifies essential critical elements in failure

and adjusts them according to the data source of a health status prediction. A mathematical

model was established and validated to collect data sets of structural deformation, and then

a library was yielded for modeled structure loading scenarios. The model generated over

1,200 load cases, replicating failure and non-failure conditions of the structure of interest

based on estimated or known loading cases of similar structures. Gradient boosting neural

network was identified as the most suitable machine-learning algorithm, and it was applied

in order to extrapolate and correlate data, giving an indication of possible structural

damage with an accuracy of 76%.

The proposed system could be used to estimate failure prediction of civil structures,

incorporating computer models to train the machine learning algorithm, and to assist in

83

predicting failure in structures that are large and complex, like real-world applications.

Additionally, a combination of computer model and machine learning allows prediction of

health in a system that has unknown initial conditions, allowing it to omit the loading and

fatigue history of bridges and use current deformation data to extrapolate possible failure

cases.

Accuracy of the systems may be improved with additional test scenarios, more complete

test cases (destructive testing), and with exposure to new loading scenarios. The creation of

a set of destructive structural examples to test the accuracy and validity of the prediction in

both failure and non-failure scenarios will also be helpful. Deployment of the proposed

system in a real small structure will provide a better understanding of how machine

learning algorithms are capable of incorporating new loading conditions as the system

records them.

84

Chapter 8 Results and Conclusions

This dissertation presents the framework of a predictive SHM system that allows an easy

installation and assessment of a large structure via non-contact sensors, avoiding the need

for installation of a sensor system. The system identifies essential critical elements in

failures and adjustments according to the source data for prediction of health status. A

mathematical model was established and validated by using collected data sets of structural

deformation data. Then, a library of comparative cases was yielded for modeled structure

loading scenarios. The model was generated by using over 1,200 load cases and replicating

failure and non-failure conditions of the structure based on both estimated or known

loading cases of similar structures. A suitable machine-learning algorithm was identified

and applied in order to extrapolate and correlate data, giving an indication of possible

structural damage with an accuracy of 76%. The proposed system could be used to

interpret and correlate data while gathering new information, so that it can provide

predictive information that includes possible failure modes and locations as well as a

percentage of relationships with the known failure cases.

The system facilitates estimating failure prediction of civil structures with the added ability

of using computer models to train the machine learning algorithm, and therefore aids in

predicting failure in structures that are too large and complex to have real life samples and

experiments. Moreover, a combination of computer model and machine learning enables

the prediction of health in a system that has an unknown initial condition. It allows the

omission of the loading and fatigue history of bridges and the use of current deformation

85

data to extrapolate possible failure cases. Finally, due to the nature of machine learning, the

system’s accuracy could be improved with additional test scenarios, more complete test

cases (destructive testing), and by exposure to new loading scenarios.

There are avenues for further development of the system that require a creation of a set of

destructive structural examples to test the accuracy and validity of the prediction in both

failure and non-failure scenarios. Furthermore, the deployment of the current system in a

smaller structure will provide a better understanding of how the machine learning

algorithm is capable of incorporating new loading conditions when the system records

them.

The developed models represent the framework for a predictive structural health system

that allows for easy installation and assessment of a large structure via non-contact sensors,

avoiding the need for installation. The system identifies essential critical elements in

failure and adjusts to incorporating this as the data source for a health status prediction. A

mathematical model was established and validated to collect data sets of structural

deformation data, yielding a library of comparative cases for modeled structures. The

model generated over 1,200 load cases, replicating failure and non-failure conditions for

the structure based on estimated or known loading cases for similar structures. Finally, the

recurrent neural network was able to interpret and correlate the data while learning new

information in order to provide predictive information that includes possible failure mode

and location as well as a percentage of relationships with known failure cases. System

development is still preliminary and will require the creation of a set of destructive

structural examples to test the accuracy and validity of the prediction in both failure and

86

non-failure scenarios. Additionally, the deployment of the current system in a full-size

smaller structure will provide a better understanding of how the machine learning

algorithm is capable of incorporating new loading conditions as the system records them.

87

References

[1] H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural

health monitoring of air platforms,” Sensors, vol. 11, no. 4. pp. 3687–3705,

Apr. 2011, doi: 10.3390/s110403687.

[2] J. M. Ko and Y. Q. Ni, “Technology developments in structural health

monitoring of large-scale bridges,” Eng. Struct., vol. 27, no. 12 SPEC. ISS.,

pp. 1715–1725, 2005, doi: 10.1016/j.engstruct.2005.02.021.

[3] H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural

health monitoring of air platforms,” Sensors, vol. 11, no. 4, pp. 3687–3705,

Apr. 2011, doi: 10.3390/s110403687.

[4] American Society of Civil Engineers, “Report card for America’s

infrastructure,” 2017.

[5] F. Moaveni, B., Hurlebaus, S. and Moon, “Special issue on real-world

applications of structural identification and health monitoring

methodologies,” J. Struct. Eng, no. 139(10), pp. 1637–1638, 2013.

[6] T. Adams, T., Mashayekhizadeh, M., Santini-Bell, E., Wosnik, M., Baldwin,

K. and Fu, “No TitlStructural Response Monitoring of a Vertical Lift Truss

Bridge,” Transp. Res. Board 96th Annu. Meet., vol. (No. 17-06, 2017.

88

[7] M. J. Rosales and R. Liyanapathirana, “Data driven innovations in structural

health monitoring,” in Journal of Physics: Conference Series, Jun. 2017, vol.

842, no. 1, doi: 10.1088/1742-6596/842/1/012012.

[8] J. M. López-Higuera, L. R. Cobo, A. Q. Incera, and A. Cobo, “Fiber optic

sensors in structural health monitoring,” J. Light. Technol., vol. 29, no. 4, pp.

587–608, 2011, doi: 10.1109/JLT.2011.2106479.

[9] D. H. Kim and M. Q. Feng, “Real-time structural health monitoring using a

novel fiber-optic accelerometer system,” IEEE Sens. J., vol. 7, no. 4, pp.

536–543, Apr. 2007, doi: 10.1109/JSEN.2007.891988.

[10] J. D. Doornink, B. M. Phares, T. J. Wipf, and D. L. Wood, “Damage

detection in bridges through fiber optic structural health monitoring,” in

Photonic Sensing Technologies, Oct. 2006, vol. 6371, p. 637102, doi:

10.1117/12.686011.

[11] M. Abdelbarr, Y. L. Chen, M. R. Jahanshahi, S. F. Masri, W. M. Shen, and

U. A. Qidwai, “3D dynamic displacement-field measurement for structural

health monitoring using inexpensive RGB-D based sensor,” Smart Mater.

Struct., vol. 26, no. 12, Nov. 2017, doi: 10.1088/1361-665X/aa9450.

89

[12] T. and C. Khuc, “Completely contactless structural health monitoring of

real‐life structures using cameras and computer vision,” Struct. Control

Heal. Monit., vol. 24, p. 1852, 2017.

[13] Y. Xu and J. M. W. Brownjohn, “Review of machine-vision based

methodologies for displacement measurement in civil structures,” J. Civ.

Struct. Heal. Monit., vol. 8, no. 1, pp. 91–110, Jan. 2018, doi:

10.1007/s13349-017-0261-4.

[14] F.-G. Yuan, S. A. Zargar, Q. Chen, and S. Wang, “Machine learning for

structural health monitoring: challenges and opportunities,” Apr. 2020, p. 2,

doi: 10.1117/12.2561610.

[15] El-Shahat, “Advanced Applications for Artificial Neural Networks.,”

IntechOpen, 2018.

[16] S. K. and D. I. O. Avci, O. Abdeljaber, “Structural Health Monitoring with

Self-Organizing Maps and Artificial Neural Networks,” Top. Modal Anal.

Test., pp. 237–246, 2020.

[17] J. P. Lynch, C. R. Farrar, and J. E. Michaels, “Structural health monitoring:

Technological advances to practical implementations,” Proc. IEEE, vol. 104,

no. 8, pp. 1508–1512, 2016, doi: 10.1109/JPROC.2016.2588818.

90

[18] P. Seventekidis, D. Giagopoulos, A. Arailopoulos, and O. Markogiannaki,

“Structural Health Monitoring using deep learning with optimal finite

element model generated data,” Mech. Syst. Signal Process., vol. 145, p.

106972, 2020, doi: 10.1016/j.ymssp.2020.106972.

[19] D. Giagopoulos, A. Arailopoulos, V. Dertimanis, C. Papadimitriou, E.

Chatzi, and K. Grompanopoulos, “Structural health monitoring and fatigue

damage estimation using vibration measurements and finite element model

updating,” Struct. Heal. Monit., vol. 18, no. 4, pp. 1189–1206, 2019, doi:

10.1177/1475921718790188.

[20] V. Shahsavari, M. Mashayekhi, M. Mehrkash, and E. Santini-Bell,

“Diagnostic testing of a vertical lift truss bridge for model verification and

decision-making support,” Front. Built Environ., vol. 5, no. July, pp. 1–19,

2019, doi: 10.3389/fbuil.2019.00092.

[21] and P. M. Ostachowicz, Wieslaw, Rohan Soman, “Optimization of sensor

placement for structural health monitoring: A review,” Struct. Heal. Monit.,

vol. 18, no. 3, pp. 963–988, 2019.

[22] Y. Bao, Z. Tang, H. Li, and Y. Zhang, “Computer vision and deep learning–

based data anomaly detection method for structural health monitoring,”

Struct. Heal. Monit., vol. 18, no. 2, pp. 401–421, 2019, doi:

91

10.1177/1475921718757405.

[23] C. Yang, “Sensor placement for structural health monitoring using hybrid

optimization algorithm based on sensor distribution index and FE grids.,”

Struct. Control Heal. Monit., vol. 25, no. 6, p. 2160, 2018.

[24] and X. G. Yang, Chen, Ke Liang, Xuepan Zhang, “Sensor placement

algorithm for structural health monitoring with redundancy elimination

model based on sub-clustering strategy,” Mech. Syst. Signal Process., vol.

124, pp. 369–387, 2019.

[25] X. W. Ye, C. Z. Dong, and T. Liu, “A Review of Machine Vision-Based

Structural Health Monitoring: Methodologies and Applications,” J. Sensors,

vol. 2016, 2016, doi: 10.1155/2016/7103039.

[26] P. Xiao, Z. Y. Wu, R. Christenson, and S. Lobo-Aguilar, “Development of

video analytics with template matching methods for using camera as sensor

and application to highway bridge structural health monitoring,” J. Civ.

Struct. Heal. Monit., vol. 10, no. 3, pp. 405–424, 2020, doi: 10.1007/s13349-

020-00392-6.

92

[27] G. F. Gomes, F. A. de Almeida, P. da Silva Lopes Alexandrino, S. S. da

Cunha, B. S. de Sousa, and A. C. Ancelotti, “A multiobjective sensor

placement optimization for SHM systems considering Fisher information

matrix and mode shape interpolation,” Eng. Comput., vol. 35, no. 2, pp. 519–

535, 2019, doi: 10.1007/s00366-018-0613-7.

[28] E. B. Flynn and M. D. Todd, “A Bayesian approach to optimal sensor

placement for structural health monitoring with application to active

sensing,” Mech. Syst. Signal Process., vol. 24, no. 4, pp. 891–903, 2010, doi:

10.1016/j.ymssp.2009.09.003.

[29] S. Surya and R. Ravi, “Deployment of Backup Sensors in Wireless Sensor

Networks for Structural Health Monitoring,” Proc. 2nd Int. Conf. Trends

Electron. Informatics, ICOEI 2018, no. Icoei, pp. 1526–1533, 2018, doi:

10.1109/ICOEI.2018.8553680.

[30] D. Dinh-Cong, H. Dang-Trung, and T. Nguyen-Thoi, “An efficient approach

for optimal sensor placement and damage identification in laminated

composite structures,” Adv. Eng. Softw., vol. 119, no. February, pp. 48–59,

2018, doi: 10.1016/j.advengsoft.2018.02.005.

93

[31] R. J. Barthorpe and K. Worden, “Emerging Trends in Optimal Structural

Health Monitoring System Design: From Sensor Placement to System

Evaluation,” J. Sens. Actuator Networks, vol. 9, no. 3, p. 31, 2020, doi:

10.3390/jsan9030031.

[32] A. Downey, C. Hu, and S. Laflamme, “Optimal sensor placement within a

hybrid dense sensor network using an adaptive genetic algorithm with

learning gene pool,” Struct. Heal. Monit., vol. 17, no. 3, pp. 450–460, 2018,

doi: 10.1177/1475921717702537.

[33] Z. Chen, X. Zhou, X. Wang, L. Dong, and Y. Qian, “Deployment of a smart

structural health monitoring system for long-span arch bridges: A review and

a case study,” Sensors (Switzerland), vol. 17, no. 9, 2017, doi:

10.3390/s17092151.

[34] L. Li, G. Liu, L. Zhang, and Q. Li, “Sensor fault detection with generalized

likelihood ratio and correlation coefficient for bridge SHM,” J. Sound Vib.,

vol. 442, pp. 445–458, 2019, doi: 10.1016/j.jsv.2018.10.062.

94

[35] P. Pachón, R. Castro, E. García-Macías, V. Compan, and E. Puertas, “E.

Torroja’s bridge: Tailored experimental setup for SHM of a historical bridge

with a reduced number of sensors,” Eng. Struct., vol. 162, no. January, pp.

11–21, 2018, doi: 10.1016/j.engstruct.2018.02.035.

[36] Z. Ismail, S. Mustapha, M. A. Fakih, and H. Tarhini, “Sensor placement

optimization on complex and large metallic and composite structures,”

Struct. Heal. Monit., vol. 19, no. 1, pp. 262–280, 2020, doi:

10.1177/1475921719841307.

[37] Y. Tan and L. Zhang, “Computational methodologies for optimal sensor

placement in structural health monitoring: A review,” Struct. Heal. Monit.,

vol. 19, no. 4, pp. 1287–1308, 2020, doi: 10.1177/1475921719877579.

[38] G. F. Gomes, S. S. da Cunha, P. da Silva Lopes Alexandrino, B. Silva de

Sousa, and A. C. Ancelotti, “Sensor placement optimization applied to

laminated composite plates under vibration,” Struct. Multidiscip. Optim.,

vol. 58, no. 5, pp. 2099–2118, 2018, doi: 10.1007/s00158-018-2024-1.

[39] M. Valinejadshoubi, A. Bagchi, and O. Moselhi, “Managing Structural

Health Monitoring Data Using Building Information Modelling,” pp. 22–24,

2016.

95

[40] M. Flah, I. Nunez, W. Ben Chaabene, and M. L. Nehdi, “Machine Learning

Algorithms in Civil Structural Health Monitoring: A Systematic Review,”

Arch. Comput. Methods Eng., no. 0123456789, 2020, doi: 10.1007/s11831-

020-09471-9.

[41] C. M. Chang, T. K. Lin, and C. W. Chang, “Applications of neural network

models for structural health monitoring based on derived modal properties,”

Meas. J. Int. Meas. Confed., vol. 129, no. March, pp. 457–470, 2018, doi:

10.1016/j.measurement.2018.07.051.

[42] and J. W. Smarsly, Kay, Kosmas Dragos, “Machine learning techniques for

structural health monitoring,” Eur. Work. Struct. Heal. Monit., no. EWSHM

2016), pp. 5–8, 2016.

[43] J. Vitola, D. Tibaduiza, M. Anaya, and F. Pozo, “Structural Damage

detection and classification based on Machine learning algorithms,” 8th Eur.

Work. Struct. Heal. Monit. EWSHM 2016, vol. 4, no. July, pp. 2853–2862,

2016.

[44] A. Ibrahim, A. Eltawil, Y. Na, and S. El-Tawil, “A Machine Learning

Approach for Structural Health Monitoring Using Noisy Data Sets,” IEEE

Trans. Autom. Sci. Eng., vol. 17, no. 2, pp. 900–908, 2020, doi:

10.1109/TASE.2019.2950958.

96

[45] J. Peng, S. Zhang, D. Peng, and K. Liang, “Application of machine learning

method in bridge health monitoring,” 2017 2nd Int. Conf. Reliab. Syst. Eng.

ICRSE 2017, no. Icrse, 2017, doi: 10.1109/ICRSE.2017.8030793.

[46] G. Chen, H. He, Y. Liu, M. Gao, J. Li, and H. Ren, “A Bridge Health

Diagnosis Approach Base on Deep Neural Networks,” Proc. - 2019 2nd Int.

Conf. Saf. Prod. Informatiz. IICSPI 2019, pp. 218–222, 2019, doi:

10.1109/IICSPI48186.2019.9095882.

[47] G. Fan, J. Li, and H. Hao, “Dynamic response reconstruction for structural

health monitoring using densely connected convolutional networks,” Struct.

Heal. Monit., 2020, doi: 10.1177/1475921720916881.

[48] D. C. Feng, Z. T. Liu, X. D. Wang, Z. M. Jiang, and S. X. Liang, “Failure

mode classification and bearing capacity prediction for reinforced concrete

columns based on ensemble machine learning algorithm,” Adv. Eng.

Informatics, vol. 45, no. February 2019, p. 101126, 2020, doi:

10.1016/j.aei.2020.101126.

[49] V. Kailkhura, S. Aravindh, S. S. Jha, and N. Jayanthi, “Ensemble learning-

based approach for crack detection using CNN,” no. Icoei, pp. 808–815,

2020, doi: 10.1109/icoei48184.2020.9143035.

97

[50] D. K. Thai, T. M. Tu, T. Q. Bui, and T. T. Bui, “Gradient tree boosting

machine learning on predicting the failure modes of the RC panels under

impact loads,” Eng. Comput., no. 0123456789, 2019, doi: 10.1007/s00366-

019-00842-w.

[51] H. Zargar, K. L. Ryan, and J. D. Marshall, “Feasibility study of a gap

damper to control seismic isolator displacements in extreme earthquakes,”

Struct. Control Heal. Monit., vol. 20, no. 8, pp. 1159–1175, Aug. 2013, doi:

10.1002/stc.1525.

[52] T. H. T. Chan et al., “Fiber Bragg grating sensors for structural health

monitoring of Tsing Ma bridge: Background and experimental observation,”

Eng. Struct., vol. 28, no. 5, pp. 648–659, Apr. 2006, doi:

10.1016/j.engstruct.2005.09.018.

[53] R. S. Pressman, Software Engineering: A Practitioner’s Approach. 1987.

[54] J. M. W. Brownjohn, “Structural health monitoring of civil infrastructure,”

Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., vol. 365, no. 1851, pp. 589–

622, Feb. 2007, doi: 10.1098/rsta.2006.1925.

98

[55] D. Zuo and C. W. Letchford, “Wind-induced vibration of a traffic-signal-

support structure with cantilevered tapered circular mast arm,” Eng. Struct.,

vol. 32, no. 10, pp. 3171–3179, Oct. 2010, doi:

10.1016/j.engstruct.2010.06.005.

[56] A. T. Papagiannakis and N. C. Jackson, “Traffic Data Collection

Requirements for Reliability in Pavement Design,” doi: 10.1061/ASCE0733-

947X2006132:3237.

[57] R. A. Cook, D. Bloomquist, D. S. Richard, and M. A. Kalajian, “DAMPING

OF CANTILEVERED TRAFFIC SIGNAL STRUCTURES.”

[58] K. Worden and G. Manson, “The application of machine learning to

structural health monitoring,” Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.,

vol. 365, no. 1851, pp. 515–537, Feb. 2007, doi: 10.1098/rsta.2006.1938.

[59] M. Petrovic et al., “Intensity Fiber-Optic Sensor for Structural Health

Monitoring Calibrated by Impact Tester,” IEEE Sens. J., vol. 16, no. 9, pp.

3047–3053, May 2016, doi: 10.1109/JSEN.2016.2524045.

[60] M. H. Faber, D. V. Val, and M. G. Stewart, “Proof load testing for bridge

assessment and upgrading,” Eng. Struct., vol. 22, no. 12, pp. 1677–1689,

2000, doi: 10.1016/S0141-0296(99)00111-X.

99

[61] B. Commander, “Evolution of bridge diagnostic load testing in the USA,”

Front. Built Environ., vol. 5, p. 57, 2019.

[62] J. R. Olaszek, P., Łagoda, M., & Casas, “Diagnostic load testing and

assessment of existing bridges: examples of application,” Struct. Infrastruct.

Eng., vol. 10, no. 6, pp. 834–842, 2014.

[63] M. D. Armendariz, R. R., & Bowman, “Improved load rating of an open-

spandrel reinforced-concrete arch bridge,” J. Perform. Constr. Facil., vol.

32, no. 4, 2018.

[64] S. Albraheemi, M. J. A., Davids, W. G., Schanck, A., & Tomlinson,

“Evaluation and rating of older non-composite steel girder bridges using

field live load testing and nonlinear finite element analysis,” Bridg. Struct.,

vol. 15, pp. 27–41, 2019.

[65] A. Ataei, S., Tajalli, M., & Miri, “Assessment of load carrying capacity and

fatigue life expectancy of a monumental masonry arch bridge by field load

testing: A case study of Veresk.,” Struct. Eng. Mech., vol. 59, no. 4, pp. 703–

718, 2016.

[66] B. Conde, B., Matos, J. C., Oliveira, D. V., & Riveiro, “Probabilistic-based

structural assessment of a historic stone arch bridge,” Struct. Infrastruct.

Eng., pp. 1–13, 2020.

100

[67] A. Burkov, The hundred-page machine learning book (Vol. 1). 2019.

[68] S. Yildirim, Random Forests vs Gradient Boosted Decision Trees. 2020.

[69] V. K. Vemuri, The Hundred-Page Machine Learning Book: 2020.

101

Appendix

Preprocessing Data

102

Smoothing in 2D

[2]: filename = 'P1_2500'

[3]: ## Read in deformation data from directory and store
into a dataframe called df

df = pd.read_csv(str(filename) + '_deformation.txt',

delimiter = '\t', names =␣

,→['node', 'deform'], header =
0).set_index('node')

[4]: ### Read in safety factor data from directory and store

into a dataframe called␣

,→sf

sf = pd.read_csv(str(filename) + '_safetyfactor.txt',
delimiter = '\t', names␣
,→=['node', 'safety'], header =
0).set_index('node')

103

SAFETY FACTOR
Plot original safety factor data (no smoothing)
ax[0,1].plot(sf) ax[0,1].set(xlabel = 'Node

Number', ylabel = 'Safety Factor', title = 'Raw␣
,→Data');

Plot smoothed deformation data using moving
averages ax[1,1].plot(sf_rolling.node,
sf_rolling.safety) ax[1,1].set(xlabel = 'Node

Number', ylabel = 'Safety Factor', title = 'Smooth␣
,→Data');

Find local maxima/minima in
safety factor data peaks_sf, _ =
find_peaks(sf_rolling.safety)
valleys_sf, _ =
find_peaks(sf_rolling.safety * -
1)

Plot local maxima/minima
in safety factor data ##
Maxima plotted with an "x",
minima with an "o"
ax[2,1].plot(sf_rolling.node[peaks_sf],
sf_rolling.safety[peaks_sf], "x")
ax[2,1].plot(sf_rolling.node[valleys_sf],
sf_rolling.safety[valleys_sf], "o")
ax[2,1].plot(sf_rolling.node, sf_rolling.safety)
ax[2,1].set(xlabel = 'Node Number', ylabel = 'Safety

Factor', title = 'Extrema␣ ,→in Smooth Data');

Save figure to file
fig.savefig('deliv/' + 'plots_2D/' + str(filename) +
'_2D.jpg')

104

finder['peaks_sf_ma'] =
list(zip(sf_rolling.node[peaks_sf], sf_rolling.
,→safety[peaks_sf])) finder['valleys_sf_ma'] =
list(zip(sf_rolling.node[valleys_sf], sf_rolling.
,→safety[valleys_sf]))

[8]: ### Output saved values (maxima and minima) to csv for
2d maxima/minima

Create output filename for maximum of deformations
in 2d
f= open('deliv/' + 'extrema_2D/' + str(filename) +
"_2D_deform_max.csv", 'w+')

Write to file
f.write("Node
Number\tDeformation
(m)\n") output =
finder['peaks_df_ma']
for i in
range(len(output)):

f.write(str(output[i][0]) + '\t' +
str(output[i][1]) + '\n')

Create output filename for minimum of deformations
in 2d
f= open('deliv/' + 'extrema_2D/' + str(filename) +
"_2D_deform_min.csv", 'w+')

Write to file
f.write("Node
Number\tDeformation

, →

, →

105

(m)\n") output =
finder['valleys_df_ma
'] for i in
range(len(output)):

f.write(str(output[i][0]) + '\t' +
str(output[i][1]) + '\n')

Create output filename for maximum of safety factor
in 2d
f= open('deliv/' + 'extrema_2D/' + str(filename) +
"_2D_safety_max.csv", 'w+')

Write to file
f.write("Node
Number\tSafety
Factor\n") output =
finder['peaks_sf_ma
'] for i in
range(len(output)):

f.write(str(output[i][0]) + '\t' +
str(output[i][1]) + '\n')

Create output filename for minimum of safety factor
in 2d
f = open('deliv/' + 'extrema_2D/' + str(filename) +
"_2D_safety_min.csv", 'w+')

Write to file
f.write("Node
Number\tSafety
Factor\n") output =
finder['valleys_sf_
ma'] for i in
range(len(output)):

f.write(str(output[i][0]) + '\t' +

str(output[i][1]) + '\n') f.close()

106

Smoothing in 3D

[9]: ## Firstly, with safety factor on the y-axis and
deformation on the z-axis.

cb = pd.merge(df, sf, left_index = True,
right_index = True) results =
splprep([cb.index, cb.safety, cb.deform], s
= 1000000000)

[10]: ## Create current
figure fig =
plt.figure(figsize=plt.f
igaspect(0.25)) ax =
fig.gca(projection='3d')
ax.plot(results[0][1][0], results[0][1][1],
results[0][1][2])

Set x (node number)
labels ax.set_xlabel('Node
Number', rotation = 150);
ax.set_xticks([0, 300000,
600000, 900000])
ax.set_xticklabels([0,
'3e5','6e5','9e5'])

Set y (safety factor)
labels y_max =
np.max(results[0][1][1])
y_min =
np.min(results[0][1][1])
ax.set_ylabel('Safety
Factor', rotation = 100);
ax.set_yticks(np.linspace(
y_min, y_max, 4))
ax.yaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.1f'))

Set z (deformation)
labels z_max =

107

np.max(results[0][1][2
]) z_min =
np.min(results[0][1][2
])
ax.set_zticks(np.linsp
ace(z_min, z_max, 4))
ax.zaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.e'))

[11]: ### Save maximum and minimum values:
finder['peaks_sf_y'] =

list(zip(results[0][1][0][peaks_y],␣
,→results[0][1][1][peaks_y],

results[0][1][2][peaks_y])) finder['peaks_df_z'] =

list(zip(results[0][1][0][peaks_z],␣

,→results[0][1][1][peaks_z],

results[0][1][2][peaks_z])) finder['valleys_sf_y']

= list(zip(results[0][1][0][valleys_y],␣

,→results[0][1][1][valleys_y],

results[0][1][2][valleys_y]))

finder['valleys_df_z'] =

list(zip(results[0][1][0][valleys_z],␣

,→results[0][1][1][valleys_z],
results[0][1][2][valleys_z]))

[12]: ## Next, with deformation on the y-axis and safety
factor on the z-axis.

results = splprep([cb.index, cb.deform,
cb.safety], s = 1000000000)

[13]: ## Create current
figure fig =
plt.figure(figsize=plt.f
igaspect(0.25)) ax =
fig.gca(projection='3d')
ax.plot(results[0][1][0], results[0][1][1],
results[0][1][2])

108

Set x (node number)
labels ax.set_xlabel('Node
Number', rotation = 150);
ax.set_xticks([0, 300000,
600000, 900000])
ax.set_xticklabels([0,
'3e5','6e5','9e5'])

Set y (deformation)
labels y_max =
np.max(results[0][1][1])
y_min =
np.min(results[0][1][1])
ax.set_ylabel('Deformation
(m)', rotation = 100);
ax.set_yticks(np.linspace(y
_min, y_max, 4))
ax.yaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.e'))

Set z (safety factor) labels z_max =
np.max(results[0][1][2]) z_min =
np.min(results[0][1][2])
ax.set_zticks(np.linspace(z_min, z_max,
4))
ax.zaxis.set_major_formatter(mtick.Form
atStrFormatter('%.1f'))
ax.set_zlabel('Safety Factor');

Peaks of y (deformation) plotted in
orange peaks_y, _ =
find_peaks(results[0][1][1])
ax.plot(results[0][1][0][peaks_y],

results[0][1][1][peaks_y],␣
,→results[0][1][2][peaks_y], "x")

Peaks of z (safety factor) plotted
in green peaks_z, _ =
find_peaks(results[0][1][2])
ax.plot(results[0][1][0][peaks_z],

109

results[0][1][1][peaks_z],␣
,→results[0][1][2][peaks_z], "x")

Valleys of y (deformation) plotted in
red valleys_y, _ =
find_peaks(results[0][1][1] * -1)
ax.plot(results[0][1][0][valleys_y],

results[0][1][1][valleys_y],␣
,→results[0][1][2][valleys_y], "o")

Valleys of z (safety factor)
plotted in purple valleys_z, _ =
find_peaks(results[0][1][2] * -1)

[14]: ### Save maximum and minimum values:
finder['peaks_df_y'] =

list(zip(results[0][1][0][peaks_y],␣
,→results[0][1][1][peaks_y],

results[0][1][2][peaks_y])) finder['peaks_sf_z'] =

list(zip(results[0][1][0][peaks_z],␣

,→results[0][1][1][peaks_z],

results[0][1][2][peaks_z])) finder['valleys_df_y']

= list(zip(results[0][1][0][valleys_y],␣

,→results[0][1][1][valleys_y],

results[0][1][2][valleys_y]))

finder['valleys_sf_z'] =

list(zip(results[0][1][0][valleys_z],␣

,→results[0][1][1][valleys_z],
results[0][1][2][valleys_z]))

[15]: ### Output saved values (maxima and minima) to csv for
3d maxima/minima

110

Create output filename for maximum of
deformations in 3D (on y-axis) f = open('deliv/' +
'extrema_3D/' + str(filename) +

"_3D_deform_max_y.csv",␣ ,→'w+')

Write to file
f.write("Node
Number\tDeformation
(m)\n") output =
finder['peaks_df_y']
for i in
range(len(output)):

111

Converting Datasets

The code below reads the .txt files of the datasets from the ’data’ directory and saves

them as a csv file in the ’data-csv’ directory for future use.

Exploratory Data Analysis

Load Standard Libraries for Data Handling and Visualization

112

 Load Data

We will only consider deformation data, since this is a proof of concept kind of exercise.

If a solution is found, then the stress data can also be used in a similar fashion.

[7]: P1_2500_deformation = pd.read_csv('data-csv/P1_2500_deformation.csv')

P1_5000_deformation = pd.read_csv('data-csv/P1_5000_deformation.csv')

P1_7500_deformation = pd.read_csv('data-csv/P1_7500_deformation.csv')

P1_10000_deformation = pd.read_csv('data-
csv/P1_10000_deformation.csv')

P2_2500_deformation = pd.read_csv('data-csv/P2_2500_deformation.csv')

P2_5000_deformation = pd.read_csv('data-csv/P2_5000_deformation.csv')

P2_7500_deformation = pd.read_csv('data-csv/P2_7500_deformation.csv')

P2_10000_deformation = pd.read_csv('data-csv/P2_10000_deformation.csv')

P3_2500_deformation = pd.read_csv('data-csv/P3_2500_deformation.csv')

P3_5000_deformation = pd.read_csv('data-csv/P3_5000_deformation.csv')

P3_7500_deformation = pd.read_csv('data-csv/P3_7500_deformation.csv')

P3_10000_deformation = pd.read_csv('data-csv/P3_10000_deformation.csv')

P4_2500_deformation = pd.read_csv('data-csv/P4_2500_deformation.csv')
P4_5000_deformation = pd.read_csv('data-csv/P4_5000_deformation.csv')

113

P4_7500_deformation = pd.read_csv('data-csv/P4_7500_deformation.csv')

P4_10000_deformation = pd.read_csv('data-csv/P4_10000_deformation.csv')

Check one
P1_2500_deformation.head()

[7]: Node Number Total Deformation (m)

0 1 0.000181

1 2 0.000193

2 3 0.000182

3 4 0.000182

4 5 0.000183

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

114

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) 0

dtype: int64

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

115

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

Node Number 0

Total Deformation (m) dtype:

int64

0

The data does not contain any NaN or null values.

116

 Creating Image Data for Each Class

The following code will bin the “Node Number” into “Node Number Binned” column,

which will later be used to create graph images for each class.

[8]: binwidth = int(max(P1_2500_deformation["Node Number"]) -␣
,→min(P1_2500_deformation["Node Number"]))/7 bins

= range(int(min(P1_2500_deformation["Node

Number"])),␣

,→int(max(P1_2500_deformation["Node Number"])), int(binwidth))
group_names = ["1/6", "2/6", "3/6", "4/6", "5/6", "6/6",]

P1_2500_deformation["Node Number Binned"] =
pd.cut(P1_2500_deformation["Node␣
,→Number"], bins, labels=group_names)

P1_5000_deformation["Node Number Binned"] =
pd.cut(P1_5000_deformation["Node␣
,→Number"], bins, labels=group_names)

P1_7500_deformation["Node Number Binned"] =
pd.cut(P1_7500_deformation["Node␣
,→Number"], bins, labels=group_names)

P1_10000_deformation["Node Number Binned"] =
pd.cut(P1_10000_deformation["Node␣ ,→Number"], bins, labels=group_names)

P2_2500_deformation["Node Number Binned"] =
pd.cut(P2_2500_deformation["Node␣
,→Number"], bins, labels=group_names)

P2_5000_deformation["Node Number Binned"] =
pd.cut(P2_5000_deformation["Node␣
,→Number"], bins, labels=group_names)

117

P2_7500_deformation["Node Number Binned"] =
pd.cut(P2_7500_deformation["Node␣
,→Number"], bins, labels=group_names)

P2_10000_deformation["Node Number Binned"] =
pd.cut(P2_10000_deformation["Node␣ ,→Number"], bins, labels=group_names)

P3_2500_deformation["Node Number Binned"] =
pd.cut(P3_2500_deformation["Node␣
,→Number"], bins, labels=group_names)

P3_5000_deformation["Node Number Binned"] =
pd.cut(P3_5000_deformation["Node␣
,→Number"], bins, labels=group_names)

P3_7500_deformation["Node Number Binned"] =
pd.cut(P3_7500_deformation["Node␣
,→Number"], bins, labels=group_names)

P3_10000_deformation["Node Number Binned"] =
pd.cut(P3_10000_deformation["Node␣ ,→Number"], bins, labels=group_names)

P4_2500_deformation["Node Number Binned"] =
pd.cut(P4_2500_deformation["Node␣
,→Number"], bins, labels=group_names)

P4_5000_deformation["Node Number Binned"] =
pd.cut(P4_5000_deformation["Node␣
,→Number"], bins, labels=group_names)

P4_7500_deformation["Node Number Binned"] =
pd.cut(P4_7500_deformation["Node␣
,→Number"], bins, labels=group_names)

P4_10000_deformation["Node Number Binned"] =
pd.cut(P4_10000_deformation["Node␣ ,→Number"], bins, labels=group_names)

P1_2500_deformation.dropna(axis=0, inplace=True)
P1_5000_deformation.dropna(axis=0, inplace=True)
P1_7500_deformation.dropna(axis=0, inplace=True)
P1_10000_deformation.dropna(axis=0, inplace=True)

P2_2500_deformation.dropna(axis=0, inplace=True)

118

P2_5000_deformation.dropna(axis=0, inplace=True)
P2_7500_deformation.dropna(axis=0, inplace=True)
P2_10000_deformation.dropna(axis=0, inplace=True)

P3_2500_deformation.dropna(axis=0, inplace=True)
P3_5000_deformation.dropna(axis=0, inplace=True)
P3_7500_deformation.dropna(axis=0, inplace=True)
P3_10000_deformation.dropna(axis=0, inplace=True)

P4_2500_deformation.dropna(axis=0, inplace=True)
P4_5000_deformation.dropna(axis=0, inplace=True)
P4_7500_deformation.dropna(axis=0, inplace=True)
P4_10000_deformation.dropna(axis=0, inplace=True)

Plot Graphs of the Classes

[9]: # Save function is commented, as the code has already run and images created in␣
,→the director

Remove the tile tag when recreating images, and uncomment the savefig lines

ax1 = sns.relplot("Node Number Binned", "Total Deformation (m)",␣
,→data=P1_2500_deformation, kind='line') ax1.set(ylim=(0,

0.012), title="P1 2500 deformation") # ax1.savefig("class-
images/P1_2500_deformation.png") ax2 = sns.relplot("Node
Number Binned", "Total Deformation (m)",␣

,→data=P1_5000_deformation, kind='line') ax2.set(ylim=(0,
0.012), title="P1 5000 deformation") # ax2.savefig("class-
images/P1_5000_deformation.png") ax3 = sns.relplot("Node
Number Binned", "Total Deformation (m)",␣

,→data=P1_7500_deformation, kind='line') ax3.set(ylim=(0,
0.012), title="P1 7500 deformation") # ax3.savefig("class-
images/P1_7500_deformation.png") ax4 = sns.relplot("Node
Number Binned", "Total Deformation (m)",␣

,→data=P1_10000_deformation, kind='line')

ax4.set(ylim=(0, 0.012), title="P1 10000

119

deformation") # ax4.savefig("class-

images/P1_10000_deformation.png")

ax5 = sns.relplot("Node Number Binned", "Total Deformation (m)",␣
,→data=P2_2500_deformation, kind='line') ax5.set(ylim=(0,

0.012), title="P2 2500 deformation") # ax5.savefig("class-
images/P2_2500_deformation.png") ax6 = sns.relplot("Node
Number Binned", "Total Deformation (m)",␣

,→data=P2_5000_deformation, kind='line') ax6.set(ylim=(0,
0.012), title="P2 5000 deformation") # ax6.savefig("class-
images/P2_5000_deformation.png") ax7 = sns.relplot("Node
Number Binned", "Total Deformation (m)",␣

,→data=P2_7500_deformation, kind='line')

Training

Fastai library is used to train a neural network model using the augmented images created

from the “EDA and Data Preparation” notebook.

A DataBunch is created using the saved augmented images in the

‘augmented_images’ directory (in my case, Google Drive). The size of the image is

347px, while 20% of the images are used for validation.

[2]: data = ImageDataBunch.from_folder('/content/drive/My Drive/Upwork/Comparison
␣ ,→Neural Network/augmented_images', size=347, valid_pct=0.2).

,→normalize(imagenet_stats) data.show_batch(rows=3, figsize=(7,6))

120

Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to

/root/.cache/torch/checkpoints/resnet34-333f7ec4.pth

121

HBox(children=(FloatProgress(value=0.0, max=87306240.0), HTML(value='')))

[5]: Sequential(

(0): Sequential(

(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(2): ReLU(inplace=True)

(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1,

ceil_mode=False)

(4): Sequential(

(0): BasicBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

122

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(1): BasicBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(2): BasicBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

123

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1),

bias=False)

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(5): Sequential(

(0): BasicBlock(

(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

124

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(1): BasicBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

125

)

(2): BasicBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(3): BasicBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

126

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(6): Sequential(

(0): BasicBlock(

(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(downsample): Sequential(

127

(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(1): BasicBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(2): BasicBlock(

128

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(3): BasicBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

129

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(4): BasicBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(5): BasicBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

130

(relu): ReLU(inplace=True)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(7): Sequential(

(0): BasicBlock(

(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

131

(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)

(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

(1): BasicBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

(2): BasicBlock(

132

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu): ReLU(inplace=True)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1,

1), bias=False)

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

)

)

)

(1): Sequential(

(0): AdaptiveConcatPool2d(

(ap): AdaptiveAvgPool2d(output_size=1)

(mp): AdaptiveMaxPool2d(output_size=1)

)

(1): Flatten()

133

(2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(3): Dropout(p=0.25, inplace=False)

(4): Linear(in_features=1024, out_features=512, bias=True)

(5): ReLU(inplace=True)

(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(7): Dropout(p=0.5, inplace=False)

(8): Linear(in_features=512, out_features=16,

bias=True))

)

With the default layers and restnet 34, the error rate is very high. Let us unfreeze

and study the learning rate.

[7]: learn.unfreeze()

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

134

 0.1.1 Next, we use Restnet50 and a better learning rate to gain improved

accuracy.

[14]: data = ImageDataBunch.from_folder('/content/drive/My Drive/Upwork/Comparison
␣ ,→Neural Network/augmented_images', size=347, valid_pct=0.2).

,→normalize(imagenet_stats)

[15]: learn = cnn_learner(data, models.resnet50, metrics=error_rate)

135

Downloading: “https://download.pytorch.org/models/resnet50-19c8e357.pth” to

/root/.cache/torch/checkpoints/resnet50-19c8e357.pth

HBox(children=(FloatProgress(value=0.0, max=102502400.0), HTML(value='')))

LR Finder is complete, type {learner_name}.recorder.plot() to see the

	Development of a Deformation-Based Structural Health System with Contactless Sensors and Machine Learning for Health Characterization and Failure Prediction
	Microsoft Word - Dissertation-Avendano_v21

