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Abstract 
 

Title: Development of a Deformation-Based Structural Health System with Contactless 

Sensors and Machine Learning for Health Characterization and Failure Prediction 

Author: Juan Camilo Avendano Arbelaez 

Advisor: Luis Daniel Otero, Ph.D. 

This dissertation presents the design and development of a structural health monitoring 

(SHM) system specifically tailored for transportation infrastructure components, such as 

bridges. The proposed system collects data by using contactless sensors and performs 

health characterization and failure prediction. It is capable of simulating multiple load 

conditions on structures, identifying possible failure points, and detecting and predicting 

failure scenarios. Both hardware and software implementations of a model of a bridge were 

performed as a pilot project in order to validate the proposed system. Computer simulation 

in ANSYS and the application of gradient boosting neural networks were performed to 

produce a comparative and predictive analysis of the behavior of transportation 

infrastructures, which can be used to understand the health of the structure and make 

informed decisions. 
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Chapter 1 Introduction   
Problem Statement 

Several regions across the United States have expressed concerns over the alarming status 

and failure rate of key transportation infrastructure components such as large bridges [1], 

[2], [3]. Studies of similar structures show that health information and failure prediction of 

bridges rank as one of the top priorities of the United States [4], [5]. Given the vast amount 

of small to medium-sized structures currently in place in the national transportation system, 

it is essential to expand the state-of-the-art technology in this field by developing cost-

effective structural health monitoring (SHM) methods that allow for the continuation of 

service during the study.  

Motivation 

Addressing the aforementioned requirements, funded research projects were initiated with 

the objectives of implementing dynamic SHM programs, predicting the actual behavior of 

bridge structures and designing a long-term instrumentation plan [6]. As monitoring the 

performance of structures plays a crucial role in identifying the risk of their failure, the 

development of innovative SHM systems has become an emerging field of research [7]. 

With technological advancements, studies in the inspection and calculation of structural 

health data via different types of sensor systems have evolved significantly in the past few 

years [8]. On the one hand, fiber optics sensors are common and practical, as they are 

highly reliable and can be embedded in large concrete structures during the construction 

phase [9]. On the other hand, the deployment and the high cost of sensor arrays could be 
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(or have been) significant obstacles. Due to the complexities in deployment, the use of 

fiber optical systems in small-to-medium-size structures, such as small bridges and traffic 

signal mast arms (TSMA), is not a cost-effective solution. Fiber optical systems are cost-

effective when used in large complex structures, however, because the expected lifespans 

of these structures are longer [10]. Yet, wide-scale adoption of fiber optic deployment on 

large bridges seems unfeasible. Installation would cause large-scale traffic interruptions 

while the fiber is embedded in the deck and while structural modifications are made 

through drilling, cutting surface patches, wiring, and so forth.  

Other types of sensors such as extensometers, vibration detection devices, and strain 

gauges are also plagued by cumbersome deployment and installation procedures. An 

investigation of influential parameters (amplitude, spectral content of the dynamic 

displacements, location and orientation of sensors, fusing inputs, noise effects, rolling-

shutter effects, etc.) that are required to be considered in the selection of sensors for 

structural dynamic applications is presented in [11]. This focuses on inexpensive digital 

cameras with depth-sensing capabilities which were proven suitable for measurement of a 

3D dynamic displacement-field. A completely contactless SHM system framework, which 

was developed by using regular cameras and computer vision techniques for detecting 

displacements and vibrations of structures, is presented in [12]. A review of studies in the 

field concludes that vision-based systems outperform traditional displacement sensors in 

terms of instrumentation cost, installation efforts, and measurement capacity [13]. 

Therefore, a non-contact sensor system that uses infrared wavelengths was used in this 

research.  
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Recent advancements in computational power have allowed for the inclusion of new 

techniques for SHM. The adaptation of predictive algorithms facilitates the collected data’s 

extrapolation to identify possible structural failures. The use of machine learning 

technology within the realm of artificial intelligence has spawned the development of 

neural network (NN) architectures for predicting structural failure modes. Modeling of 

structures using artificial NNs for damage detection is presented in the literature [14].  

A NN is an artificial intelligence system designed to recreate a biological model of nervous 

systems [15]. The advantage of NNs over the other algorithms is their ability to learn from 

the embedded data. During the NN’s training process, it finds special parameters hidden 

from human perception [16]. As a result of the training, the network can improve its 

performance over time according to certain rules. When comparing the NN approach with 

statistical methods, some differences can be identified. Although statistical techniques, 

such as regression analysis, learning algorithms and so forth are widely used in SHM, they 

consume more time and effort and are probabilistic in nature [14]. The use of unverified 

technologies causes errors in monitoring and increases the risk of emergencies whose 

consequences can lead to human casualties. Moreover, accidents and disasters bring not 

only severe moral and social shocks, but also financial losses due to the inoperability of the 

object and the need for restoration. Due to these reasons, NNs become an indispensable 

tool for SHM. It is a compelling modeling method that allows reproduction of extremely 

complex dependencies, particularly ones that are non-linear. Hence, several machine-

learning mechanisms, such as gradient boosting, were tested for suitability for this 
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research, and gradient boosting was employed in order to identify and predict structural 

health.  

Research Objectives 

The objectives of this research were based on current needs and the problem statement. 

The problem statement can be summarized as follows: to find an effective, non-invasive, 

and low-cost solution for structural health analysis and the prognosis of transportation 

structures, such as bridges.  

After analyzing and identifying the literature related to the subject of advanced SHM, it 

was clear that elements of this system can be used for processes such as tracking a failure 

point within a structure, and understanding and comparing the reaction to expected loads in 

relationship with experimental and simulated loads. Furthermore, there is a need for a 

system that facilitates characterization of structural health, as well as predicts its future 

state(s). As per the research outcomes published thus far, most of the sensor arrays demand 

special installation requirements, including embedded fabrics and other contact points. 

They are hard to implement in larger structures or geographically challenging points (for 

example, tall water bridges) and require added expenses for such installations.  

The primary focus of this work is to develop an effective structural health prediction 

system that utilizes advanced artificial intelligence technologies and cost-effective sensors. 

The main research objectives are listed as follows: 
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1. Identify necessary sensor data and sensor equipment to understand the structural health 

and behavior of structures. 

2. Identify an effective placement of sensors or sensor nodes. 

3. Develop a structural modeling framework to simulate multiple structural loads. 

4. Analyze multi-sensor data and incorporate it into a reliable prognosis system. 

The system characteristics are determined by identifying the most critical elements in 

material failure of the infrastructure of interest, as well as the available sensor technology. 

The proposed system operates by using remote sensing technology for the monitoring of 

the structure and the measurement of deformation at multiple points. The system suggests 

incorporating a mathematical programming model for optimal sensor placement, a 

modeling framework for SHM to create training datasets, and a library of known behavior 

patterns. The primary model can generate a library of failure and non-failure training data 

at an infinite number of loading conditions by using the available structural model. 

The training data generated for this research study is based on currently known loading 

factors for civil engineering infrastructures, such as bridges. Once the loading conditions 

are identified and characterized, they are fed into the computer model to generate a data set 

of expected stress and strain in the structure. From the computer model, the ideal values for 

the deformation of the structure under these loading conditions can be obtained. Moreover, 

any point in which the material passes its elastic deformation or any material failure can be 

identified.  
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The generated library is used to develop the machine learning algorithm, so that it can 

detect necessary correlations of input data with known loading conditions and failure 

modes. Additionally, it will extrapolate input data to match and identify the possible 

relationship to failure scenarios. The neural network will use any input data outside the 

original training library as training points, improving accuracy and predictive capacity over 

time based on the number of cases introduced to the network.  

The result is a computational framework for the study of failure modes in bridge structures, 

which includes the optimal placement of a surface mounted sensor array. Furthermore, a 

comparable data cloud of sensor readings will be developed for each of the most frequently 

reoccurring failure modes. It will facilitate expanding the research to deploy a prototype 

sensor array and compare live data to the simulated point cloud for each failure mode. This 

comparison will provide an indication of possible failure modes and the expected life of 

the structure. 
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 Chapter 2 Literature Review 
Structural Health Monitoring (SHM) 

As per the literature, there are numerous definitions for SHM. According to [17], SHM 

refers to a monitoring system that can acquire and process data to evaluate structural health 

for damage detection and prognostics. The integration of automated health assessment 

analytics distinguishes SHM systems from traditional monitoring systems. The first crucial 

stage of an SHM system is data acquisition or data generation, as this step determines the 

success of subsequent steps. Article [18] discusses various methods of SHM data gathering 

and their importance. Usually, the structure’s response data is obtained through 

experimental measurements using sensors like linear variable displacement transducer 

(LVDT), accelerometers, and many more. Data acquisition typically happens on lab-scale 

substitutes due to practical constraints. However, data can also be generated 

computationally via numerical methods, such as the finite element (FE) method. Moreover, 

with the help of an accurate FE model, a database can be simulated for an arbitrary number 

of load cases, damage types, and uncertainties at minimum effort [18]. In the technique 

presented in [19], experimental measurements of the actual structure modify the physical 

parameters of an FE numerical model. This type of optimal FE model developed on the 

actual structures can also be used to simulate damage status. Similarly, in article [20], the 

FE model was updated with data collected from the sensors fitted to the vertical truss 

bridge. Wavelet-based damage detection criterion is also used to assess the impact of a 

vessel on bridges. Furthermore, by using an FE model, a large amount of labeled data, 

which are influential but not possible to simulate in real conditions, can be simulated for 
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machine learning-based SHM. In this research work, a 3D computer model is developed 

using CAD software, considering the composition of materials and their mechanical 

characteristics. Research is further extended to create an FE analysis mesh. A library of 

training data is generated by performing simulations for different loading conditions using 

the FE model. 

Optimal Placement of Sensors (OPS) 

Sensor array is a fundamental part of the SHM system, as it acquires real data from 

structures. The quality of data directly depends on the optimal placement of sensors (OPS). 

The two main requirements of OPS are to minimize the number of sensors and to 

maximize the accuracy of the data. Therefore, choosing the right strategy of OPS is critical 

to any SHM system. The review article [21] discusses current work in the field of OPS for 

monitoring schemes based on vibration, strain, and elastic wave. It also highlights different 

optimization algorithms with their respective benefits and limitations. Since physical 

testing of various sensor deployment schemes is not feasible, a suitable approach is to use a 

computational model of structures to determine the optimal sensor configuration. Article 

[22] provides a comprehensive review of computational methodologies for OPS in SHM 

and summarizes various algorithms with an emphasis towards evolutionary algorithms and 

its variants. Additionally, it discusses evaluation criteria and the appropriateness of 

computational methods for specific SHM applications. In [23], sensor placement is 

completed by using a hybrid optimization algorithm based on FE grids and sensor 

distribution index. This approach provides reasonable FE grids for optimal placement of 

sensors that overcome redundancy of information. Article [24] proposes genetic algorithms 
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for optimal sensor placement and considers a redundancy elimination FE model designed 

based on a sub-clustering strategy. 

Sensor Technologies 

In the last two decades, there has been a rapid development in sensing technologies. As 

such, the use of machine vision-based technology in the field of SHM has increased. A 

comprehensive review of the vision-based methods and applications in SHM is presented 

in [25]. The review article concludes that machine vision-based technology is widely used 

to measure 2D and 3D structural displacement, strain, and other additional parameters. 

Moreover, it can be used to conduct structural parameter identification and damage 

analysis. Hence, vision-based methods integrated with other sensing techniques have the 

potential to provide more valuable information of SHM systems. The efficiency of 

integrated infrared imaging in detecting damage to bridges is summarized in [12]. The 

article explains the computer vision-based techniques focusing on contactless vibration 

monitoring and load quantization. The vision-based SHM system proposed in [26] uses a 

camera as the sensing element to extract displacement and strain data of structures. 

Furthermore, a comprehensive analysis of the lab structural test has shown a good 

agreement between camera-based structural responses and the damage detection recorded 

by conventional contact sensors. Structures like highway bridges are validated with this 

approach. In this research, small infrared cameras integrated with surface markers are used 

to track displacements and remotely record bridge deformations.  
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Sensor Placement  

SHM techniques are more widely used due to the lower deployment cost. Moreover, 

Optimization of Sensor Placement or OSP is the best choice to reduce the cost of an SHM 

system without compromising the quality of the monitoring approach. This article is aimed 

towards researchers working on OSP as well as practicing engineers in the field of SHM 

[21]. It covers three techniques that are most commonly used and accepted in the SHM 

community: vibration-based monitoring, strain monitoring, and elastic wave-based 

monitoring. Keeping in mind the structural and execution demands, the multi-objective 

optimization or the problem definition is also discussed. Different optimization algorithms 

have been implemented in this study. Furthermore, researchers have highlighted various 

pitfalls and their appropriate countermeasures to overcome the shortcomings of SHM. 

In this research, the global multi-objective optimization of sensor locations for structural 

health monitoring systems is studied [27]. Using the Finite Element Method (FEM), a 

laminated composite plate is demonstrated and placed into the modal analysis. To search 

for the optimal locations of sensors, multi-objective genetic algorithms (GAs) are adopted. 

In structural dynamics, numerical issues rising in the selection of the optimal sensor 

formation are discussed. Using the composed information by Fisher Information Matrix 

(FIM) and mode shape interpolation, a method of multi-objective sensor locations 

optimization is presented in this research. 

The main contribution of this research is to tackle the OSP problem by establishing a new 

performance metric that is rooted in Bayes’ risk formulation. To maximize the likelihood 
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of detection, or reduce the false alarm rate with minimal overall cost, this performance 

metric is specially designed for and directly addressed to the SHM objective. Thus, this 

technique can be considered a useful tool for designing SHM sensor arrays. It is focused on 

active sensing and producing an appropriate statistical model of the wave propagation and 

feature extraction process using guided ultrasonic waves. 

Research in [29] discusses monitoring a self-governing system in which a Wireless Sensor 

Network (WSN) is used. Through the placement of a set of backup sensors, the WSN 

objectives attain a fault tolerance that results in accuracy in its measurements. This 

research follows a distributed method in which the nodes are grouped into clusters. The 

separate point, remote point, and critical middle point are determined from each cluster 

where the backup sensors are located. The energy is consumed, and the lifetime of the 

sensor nodes is greater than before through the fault tolerance mechanism. The validation 

demonstrates the benefits of using the fault tolerance mechanism. 

For optimal sensor placement and damage identification, this article proposes an efficient 

methodology in laminated composite structures [30]. To develop a reduced-order model 

for Optimal Sensor Placement (OSP), this method first applied a model reduction technique 

that is iterated in the improved reduced system (IIRS) method. By formulating and 

resolving an optimization problem for finding the best sensor locations, the OSP strategy 

uses the Java algorithm. In order to identify and measure any stiffness reduction induced by 

the damage, this approach uses the measured partial modal data from optimized sensor 

locations. For this implementation, specifically where the damage number of elements and 

the modal flexibility transformation are taken as the constant design variables and the 
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objective function, the damage identification problem is expressed as an optimization 

problem. To solve the optimization problem for determining the definite damage locations 

and levels, the Jaya algorithm is implemented again. To prove the feasibility and efficiency 

of the proposed method, numerical simulations of a three cross-ply (0°/90°/0°) beam and a 

four-layer (0°/90°/90°/0°) laminated composite plate are carried out. 

Research in [31]  an overview of current, state-of-the-art technologies in Sensor Placement 

Optimization for SHM problems. There is a great deal of progress in some important areas, 

including in methods that stimulate robustness and in modeling ambiguity when dealing 

with sensor placement optimizations, beginning with effects within measured data and 

failures within the sensor network. The central focus of this study is to highlight emerging 

trends particular to SHM system development. 

This study focuses on the construction of precise strain maps for large-scale structural 

components and the development of optimal sensor placement within a hybrid dense 

sensor network [32]. In large-scale structures, understanding precise strain-maps is 

imperative for better strain-based fault analysis and diagnosis health management. To 

reduce type I and II errors, and an adaptive mutation-based genetic algorithm, this study 

creates a unique and precise objective function. The objective function authorizes sensor 

placement and is based on the linear combination method while increasing information 

entropy. By applying a genetic algorithm that influences the concept that not all potential 

sensor locations hold the same level of information, OSP is achieved. The experimental 

analysis demonstrates the ability of the learning gene pool to efficiently and frequently 

discover a Pareto-optimal solution quicker than its non-adaptive gene pool equivalent. 
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This research presents the advancement of SHM technology that has been implemented in 

long-span bridges [33]. The techniques of modal identification, signal processing, and 

damage identification, including data analysis and condition assessment, were reviewed. 

To advance the understanding of the utilization and examination of an SHM system for 

long-span arch bridges, an SHM system of a long-span arch bridge (the Jiubao Bridge in 

China) was thoroughly integrated. Additionally, potential future trends and challenges of 

this system were outlined. 

In a structural health monitoring system, data is obtained from sensors for a reliability 

evaluation of the structure, and a false alarm will often be generated if a faulty sensor is 

present [34]. In this study, in order to identify a sensor fault, a technique based on the 

generalized possibility ratio and correlation coefficient is presented. By applying a 

minimum mean-squares-error algorithm under the operational condition, and through an 

evaluation of each sensor in the sensor network, the acceleration response of a bridge is 

assumed to be Gaussian distributed. Between the estimation and measured data, the 

classification features five common sensor fault types which are considered, with two 

correlation coefficients calculated. To categorize the type of sensor fault, a disturbed binary 

tree method is implemented. Numerical and experimental analysis show that the proposed 

technique is robust in the detection and classification of sensor faults. 

In this research, the design of an experimental system with a reduced number of sensors for 

the structural health monitoring of the historical bridge of Posadas (Córdoba, Spain), 

designed by the eminent engineer Eduardo Torroja in 1957, is presented [35]. It is 

necessary to rely on a sufficiently precise numerical model, as most OSP techniques are 
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model-based. With a large number of accelerometers, a wide vibration-based functioning 

modal investigation is conducted. Using a genetic optimization algorithm, a three-

dimensional FEM of Torroja’s bridge is restructured based on the experimentally identified 

dynamic properties. To design an experimental setup with a limited number of sensors, the 

OSP approach is applied for long-term observing commitments. The experimental 

validation proves that some sensors are used to precisely measure the main resonant 

occurrences and mode shapes. 

Another interesting case is the presentation of a unique approach for piezoelectric (PZT) 

wafer-network placement that was implemented using a genetic algorithm (GA) [36]. 

While using the smallest possible number of sensors, the proposed objective function 

maximizes the exposure of the observed area presented by a set of control points. 

Simulation results are presented for three cases, a square panel with geometrical 

discontinuity, a T-shaped panel, and a cargo door of an Airbus A330-200 airplane. The 

difference between the primary and the improved experimental results indicates a major 

improvement in the coverage level. Using ultrasonic excitations at different frequencies, 

experimental verification was performed on the square panel and a part of the cargo door. 

Artificial costs were identified and then restricted with an error rate of not more than 4% of 

the highest distance in the geometry. 

This research discusses the inclusive analysis of computational methodologies for OSP in 

SHM [37]. By using evaluation criteria for sensor configurations, the problem formulation 

of OSP is presented. Evolutionary algorithms and their improved variants are discussed in 

detail for the existing optimization approaches for sensor placement. For sensor 
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configuration determination, this research highlights the most commonly applied criteria 

and optimization approaches. 

This research presents an approach to the optimal placement optimization of sensors’ 

locations for SHM [38]. The finite element method (FEM) was the key component in the 

structuring of the system. To find the best sensor distribution and to cover a precise 

number of low-frequency modes, genetic algorithms (GAs) are then implemented. The 

performance of sensor delivery methods is examined by numerical results. 

A huge amount of raw data and processed data are some of the concerns in SHM. A 

powerful data management tool, which obtains, sorts, stores, shares, and recalls data, as 

well as delivers a digital environment, is Building Information Modelling (BIM) [39]. The 

primary purpose of this study is to use BIM to observe the data of monitoring systems, 

especially the SHM system. To validate the probability of generating and visualizing 

information about the sensors installed in the structure for SHM, a four-story office 

building is displayed in Revit architecture. To manage the sensor data in real time and to 

ensure the sensor’s information is up-to-date, the BIM model is made dynamic by 

connecting appropriate external resources associated with the sensors. 

Machine Learning Algorithms 

In recent years, significant developments in the field of machine learning and artificial 

intelligence have made machine learning-based SHM an extensive research topic. A 

comprehensive review of machine learning algorithms applied in civil SHM is presented in 

[40]. This discusses the efficacy of deploying machine learning algorithms in SHM. In 
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[41], operational modal analysis is integrated with artificial neural networks (ANN) to 

detect damages in structures. Using natural frequencies and mode shapes of structures, a 

simple numerical model database is built with varying stiffness. The ANN with 1,400 

neurons and one hidden layer is fed with the inputs of model properties and the outputs of 

stiffness reductions. The neural network model detects the damage of the structure in terms 

of damage locations and levels. This monitoring strategy is successful in detecting single 

column damages to a building without any errors.  

Machine learning algorithms are generally classified as either supervised or unsupervised 

learning. In [42], a comparison is made among three supervised machine learning 

algorithms: namely, k-nearest neighbor (KNN), support vector machine (SVM), and 

random forest classifier (RFC), in order to predict the structural damage to concrete 

structures. Algorithms were tested on publicly-available test results with varying stiffness 

and mass conditions. Results show that RFC outperforms the other two machine learning 

techniques. Multivariate data-driven and machine learning approaches were used for the 

detection and classification of damages [43]. The reduced dimension data processed using 

Principal Component Analysis (PCA) and other pre-processing techniques was used to 

train the networks: namely, Subspace KNN, Bagged Trees, Weighted KNN, Fine KNN, 

Coarse KNN, Subspace Discriminant, and Boosted Trees. The first four methods exhibit 

better accuracy compared to other methods. In [44], a machine learning approach was 

applied to noisy data from low-cost accelerometer sensors to identify the status of 

structures. Convolutional neural networks (CNN) outperformed SVM and KNN, even with 

noisy data used as inputs. A detailed review of machine learning algorithms in bridge 
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health monitoring is presented in [45]. Addtionally, the article presents the advantages, 

weaknesses, and applications of different algorithms when applied to bridge health 

monitoring. In [22], auto-detect anomaly in SHM incorporating computer vision and 

machine learning methods are employed. Deep neural network (DNN) machine learning is 

used for training and auto-detecting anomalies in the image vectors obtained from time 

series acceleration data of an actual long-span bridge in China. A DNN-based bridge health 

monitor is proposed in [46]. The mid-span temperature and stress of the bridge were used 

as input parameters to train the network. In [47], a novel method is proposed to predict 

dynamically reconstructed responses using DNN. The dense network is trained on 

available acceleration responses from Guangzhou New Television Tower in China, and the 

reconstructed data performed well, both in time and frequency domains. Drawbacks related 

to feature extraction, a reduction in the number of parameters, and gradient and noise 

immunity can be overcome using dense neural networks. 

Since 2014, ensemble machine learning-based SHM has gained momentum. An ensemble 

machine learning-based SHM is presented in [48] to classify the failure mode and load-

bearing capacity of reinforced concrete. Boosting algorithms are employed for both 

classification and regression. Furthermore, boosting algorithms have shown better 

performance than single learning algorithms. The ensemble learning approach has been 

employed for crack detection using deep convolutional networks as well [49]. The data set 

consists of images of the bridge towers and anchor chambers of a suspension bridge. In 

[50], a gradient boosting-based machine learning algorithm is considered to predict the 

damage of reinforced concrete panels under impact bearing. The model is tested on the 
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impact bearing reinforced concrete panels by using experimental data. A reasonable 

accuracy level of around 75% is achieved, promising a new and effective approach that can 

be applied to other complex structures as well. A summary of the discussed machine 

learning-based SHM is given in Table 1.  
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Table 1 Summary of Machine Learning-Based SHM 

References Machine Learning Technique Structure Input Outcome 

Smarsly et al., 2016 KNN, SVM, RFC Publicly available test 
results 

Stiffness and mass 
conditions 

RFC gave better prediction 

Vitola et al, 2016 KNN variants, Aluminum plates in 
different actuator 

phases 

Signals captured using 
piezoelectric sensors 

Damage detection and 
classification Subspace discriminant, 

bagged trees 
Ibrahim et al., 2019 KNN, SVM, and CNN Multi-floor buildings Accelerometer traces CNN gave better results 

Bao et al., 2019 DNN Actual long bridge Acceleration data Auto-detect structural 
anomalies 

Chen et al., 2019 DNN Bridge Stress and temperature Bridge health diagnosis 
Feng et al., 2020 Ensemble learning (boosting 

algorithm: gradient and 
adaboost) 

Reinforced concrete Geometric dimensions, 
material properties 

Failure mode classification 
and load bearing capacity 

prediction 
Kailkhura et al., 

2020 
Ensemble learning using 

DCNN 
Bridges Images of bridges Crack detection 

Thai et al., 2019 Gradient boosting Reinforced concrete 
panels 

Boundary conditions 
and others 

Failure modes 
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Chapter 3 Systems Engineering Framework 
Overview 

The formulation phase for any project is updated as required throughout the project’s life 

cycle. This chapter provides the specifics of the technical effort. It describes the technical 

processes used, the application of processes by using appropriate activities, the 

organization of the project to accomplish the activities, the information flow within the 

system, the decision-making structure, and the resources required for the accomplishment 

of activities. Critical events drive activities during any phase of a life cycle (including 

operations) and are the basis for the integration of the processes. This chapter presents the 

communication bridge between the project management team and the engineering 

discipline teams. It also facilitates effective communication within the discipline teams. 

Furthermore, this document provides a framework to realize the appropriate work products 

that meet the entry and exit criteria of the applicable project life-cycle phases to provide 

necessary information to management in order to assess technical progress.  

As this chapter showcases the results of studies performed on a smaller scale, it reflects the 

effectiveness of the design proposals. This chapter shall also highlight the required budget, 

effectiveness, and schedule. The presented information is useful to project stakeholders, 

such as project developers, researchers, department, faculty, and the university. The 

primary audience is the university’s project-funding facility, which assists the researchers 

in implementing useful findings in real-world applications.  
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Rationale  

The problem background that is being solved by the research is identifying the design and 

materials suitable to make an infrastructure design that would result in the least amount of 

failures. A study identifying the requirements of a specific structural design suitable for 

certain conditions was missing previously and is therefore being addressed in this research. 

Results can be foreseen digitally by incorporating engineering and machine learning 

simulations, and their success score can be pre-calculated. Questions posed by previous 

studies remain relevant and need to be addressed by engineers, which is what this research 

aims to accomplish. This experimental research presents computer software and simulation 

based on machine learning prediction models with a high accuracy rate of 76%. Machine 

learning has enabled the prediction of high performing materials and infrastructural 

designs.  

Systems Engineering Framework 

Systems engineering ensures significant development and delivery of capabilities by using 

a set of integrated, disciplined, and consistent analytic and technical management processes 

throughout the infrastructure lifecycle. While systems engineering touches many of the 

other processes across the development lifecycle, this research dwells on the application of 

agile principles that allow for creativity. The twenty-first century provides an exciting 

opportunity for systems engineering. Indeed, increasing technological complexity results in 

new challenges in architecture, networks, hardware and software engineering, and human 

systems integration. This research study on SHM of civil infrastructures, such as bridges, 

deals with technological complexity by leveraging the sensors and techniques (drones and 
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cameras) emerging from the Internet of Things (IoT) revolution that continually 

incorporates new technology. Adapting these new technologies to artificial intelligence or 

machine learning algorithms for data analysis reveals insights into the health of civil 

structures that were much more difficult to ascertain earlier, even with significant 

investment and long downtime of infrastructure. 

The ISO/IEC/IEEE 15288-2015 systems engineering processes were refined to reflect agile 

principles at the agile Working Group held during the International Conference on Systems 

Engineering (INCOSE). In an agile environment, systems engineering requires tailored 

methods and processes to deliver incremental capabilities. Therefore, it demands a 

disciplined approach for coordinating parallel requirements, elaboration and prioritization 

of technical developments, operations, and sustainment activities. Systems engineers play 

an essential role in operational, technical, and programmatic integration, as expressed in 

the core agile software development tenet of active collaboration among developers, users, 

and other stakeholders. Program leaders must encourage systems engineers to engage with 

developers, testers, users, and other stakeholders in their disciplined engineering processes. 

Agile development requires proactive collaboration among enterprise architectures, 

platform architectures, and related development efforts, where each stakeholder group 

shares concerns and opportunities regarding the successful release and system delivery. 



 
 

23 
 

This will enable smaller yet faster capability deliveries to consistently track the accurate 

SHM of civil structures. 

 

In the left-hand side of Figure 1, traditional systems engineering practices are consolidated 

and combined into an incremental model. This approach provides more timely data on the 

structural health of bridges and other civil structures that might otherwise deteriorate 

unknowingly, potentially resulting in catastrophic failure.  

The danger and inconvenience caused to the public due to the closure of bridges are 

averted using agile techniques. The principle is very similar to the combination of 

development and operational (DevOps) software development models that can be 

developed and released, providing quicker access to users. In the case of agile systems 

Figure 1 Systems Engineering Framework 
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engineering, knowledge of the SHM of civil structures and the detection of potential 

problems are delivered using predictive maintenance analysis. The lifespan of the civil 

structure increases and the usability of the structure benefits the public. Engineers should 

conduct continuous interdisciplinary systems engineering reviews to find the right balance 

between structure and flexibility in order to deliver usable capability aligned with the needs 

of users. These changes to the systems engineering model, from traditional to agile, lead to 

the systems engineering V-model that can be tailored to the needs of the developer in 

scheduling the SHM activities.  

Systems Engineering Model 

The best-suited systems engineering model is the V-model that considers the procedures in 

a step-by-step manner, mitigating the chances of errors in each step, and subsequently 

ensuring stepwise success (Figure 2). The V-model guides the chaptering and realization of 

the proposed project. Through it, the following objectives are intended to be achieved: 

 Minimization of project risks. 

 Improvement and guarantee of quality. 

 Reduction of total cost over the entire project and system life cycle. 

 Improvement of communication between stakeholders.  
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The final system operates by using remote sensing technology to identify the measurement 

of deformation at multiple points. The system includes: 

 

 An algorithm for optimal sensor placement. 

 A modeling framework for SHM, used to create the training datasets. 

 A library of known structural behaviors from the available structural model. 

 A machine learning algorithm to predict and correlate data sets to the known failure 

modes. 

A good visible representation of these processes is shown in a closed feedback loop that 

ensures any change made to these technical processes is reflected throughout the entire 

design of a civil structure (Figure 3). In this representation, the technical process is made 

compact and reduced into five essential functions. 

Figure 2 Systems Engineering V-Model 
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Analysis of Requirements 

The requirements to run this project successfully relied mainly on the application and 

accuracy of a machine learning algorithm. The main advantage of using a machine learning 

algorithm is that it is self-correcting. Thus, a massive computational power is required for 

its operation. A better computational power enables better results [14]. This will ensure the 

correct prediction of failures in materials and designs, thereby resulting in higher rates of 

accident prevention [51] . 

Requirements are listed as follows. 

 Computational power 

 Powerful workstations 

Figure 3 Systems Engineering Functions 
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 Data sets (testing, modeling, and actual data) 

 Materials suitable to test small-scale bridges/infrastructure 

 

Stakeholder Analysis 

It is essential to perform a stakeholder analysis for conducting the proposed research study 

and implementation in order to highlight the benefits each stakeholder receives. Every 

stakeholder invests time, energy, and overall interest to obtain the best results through a 

successful design and analysis. Moreover, stakeholders have a certain degree of power over 

the processes. This presents a unique power-interest grid for every stakeholder [8]. 

Additionally, stakeholders often have to communicate in order to drive the project forward. 

In this research project, the academic stakeholders are researchers and the academic 

organization, while the practical stakeholders are engineering firms, investors, and supply 

chain managers of the construction materials.  

SWOT Analysis 

SWOT analysis is a critical analysis to be performed on projects related to machine 

learning models. It is a good practice to highlight the strengths, weaknesses, opportunities, 

and threats faced by the proposed project [9]. The SWOT analysis of this research project 

is presented in Table 2. 
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Table 2: SWOT Analysis 

Strengths Weaknesses 

Ability of machine learning computations to 

self-correct their results. 

Effectiveness of the end product. 

Save on material costs  by using simulation 

and computation. 

Minimal manual work. 

Dependency on high computational power. 

Dependency on accurate data sets to make 

effective models.  

Testing overheads. 

An on-site AI practitioner is required for effective 

monitoring.  

Opportunities Threats 

The idea can easily be expanded to suit other 

industries, such as textile manufacturing. 

Scalability is easy. 

Novel idea will attract sponsors.  

No added complexity. 

 

Accuracy decreases with multiple iterations. 

The application of the same advanced algorithms. 

by competitors, should it get late to implement.  
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Risk Analysis 

It is essential to conduct risk analysis when funding or capital costs are involved in order to 

mitigate risks by correctly analyzing them beforehand [52]. A significant risk is the 

ineffectiveness of end products, resulting in the wastage of materials. This can be 

subsumed into more commonly identified forms of risk found in all machine learning 

projects, namely, unexpected behavior and unintended consequences. The use of unverified 

technologies, errors in monitoring, and other similar factors increase the risk of 

emergencies, the consequences of which can lead to human casualties. Moreover, accidents 

and disasters cause not only severe moral and social shocks, but also financial losses that 

occur due to the inoperability of the object. For this reason, NN can become an 

indispensable tool for SHM. It is a compelling modeling method that allows the 

reproduction of too complex dependencies, particularly the ones that are non-linear. At the 

same time, neural networks learn from examples; thus, they can be a good choice. 

Nevertheless, they cannot completely replace existing methods or the work of the 

specialists, only complement them. 

Research also addresses the development of various sensors and prediction systems that 

facilitate focusing on the resources in high-risk areas of failure as well as the structures 

most prone to immediate failures according to various reports from American Society of 

Civil Engineers. Current studies regarding the inspection and calculation of structural 

health data via sensors have focused almost exclusively on the application of fiber optic 

sensor systems [6]. Fiber optic sensors are highly reliable and embedded into large 

concrete structures during the construction phase [7]. Some of their identified risks are 
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given in Table 3. To determine the potential risks, SHM will be evaluated using the 

checklists found in [53]. These checklists help to identify potential risks in a generic sense. 

The project will then be analyzed to determine any project-specific risks. 

Product Size Risks 

 Estimated size in lines of code (LOC): Structural health system (SHS) will have a 

code with about 10,000 lines. 

 Degree of confidence in the estimated size: The confidence in the estimated size is 

very high. 

 Deviation from the average of previous products as a percentage: A deviation of 

20% from the average is allowed. 

 Multiple users: The number of users will be relatively low. There will be one user 

per instance of running the software, as the software was not planned for multiple 

users. 

 Number of projected changes to the requirements: Three possible projected 

changes to the requirements were estimated. The changes will occur when the 

requirements identified in the initial stage are not required at implementation. It 

may happen when the customers’ requirements are verified by interacting with 

them. 

 Amount of software reusage: Reusing is very important to get the project started. 

The CAD methodology is fairly straightforward to reuse. Previous programs used 

to code with CAD will be reviewed, and relevant codes will be extracted. 
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Business Impact Risks 

 Effect on company revenue: None. SHS will be distributed as a highly cost-

effective software. It will be a hot-selling software that will save massive costs in 

the construction and maintenance of bridges. As it will be developed by using 

some pre-existing and open source tools, no business risks are involved.  

 Visibility of product to senior management: To achieve this, plots of safety factor 

vs. node, and deformation vs. node, are generated separately. They represent the 

complete output of the model under a specified loading condition (e.g., scenario 

P12500 represents a load of 2,500 lbs. in the predetermined position 1).  

 Reasonableness of delivery by deadline: Fairly reasonable. The project deadline 

was established before the project was begun. The initial chaptering for SHS was 

executed with the deadline in mind. The scope of the project was limited to keep 

the project “doable” within the allowed period. 

 Number of other systems/products that the proposed product must be interoperable 

with: 

 CAD Engine, which is included with Python. 

 Machine Learning algorithm.  

 Sensor. 

 Amount and quality of documentation that must be produced and delivered to the 

customer: The customer will be supplied with a complete online FAQ and help 

tool as well as a user manual for SHS. The customer will have access to all of the 

development documents for SHS, as the customer will also grade the project. 

 Governmental constraints in the construction of the product: No relevant 

constraints are known. 

 Costs associated with late delivery: Late delivery will prevent the customer from 

issuing a letter of acceptance for the product, which will result in an incomplete 

grade. 
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Customer-Related Risks 

 Have you worked with the customer in the past? No. 

 Does the customer have a solid idea of what is required? Yes, the customer has 

access to both the system requirement specifications and the software requirement 

specifications for the SHM project. 

 Is the customer willing to establish rapid communication links with the developer? 

Yes, the customer can access all project developers through e-mail and in-person. 

 Is the customer willing to participate in reviews? Unknown. While the customer 

will likely participate if asked, no inquiry has been made at this time. 

 Is the customer willing to let your people do their job? Yes. As the SHM project is 

a senior design project, the customer is available if needed but does not interfere 

with development operations. 

Technological Risks 

 Is the technology to be built new to your organization? SHS is a software tool to be 

used in SHM. Development team members are familiar with its development, as 

well as the necessary dataset implementation. 

 Do the customer’s requirements demand the creation of new algorithms or input or 

output technology? No. SHS will be implemented using existing algorithms. Input 

and output will be handled traditionally. 

 Do requirements demand the use of new analysis, design, or testing methods? No. 

The development team will implement existing analysis, design, and testing 

methods for this project. 

 Do requirements demand the use of unconventional software development 

methods? No. SHS uses Python code in header files which is conventional. It is 

also integrated with CAD, which is conventional as well. 

 Is the customer uncertain that the functionality required is “doable”? No. The 

customer has full confidence in the project described in the system specification 

document and the software specification document. 
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Table 3: Risk Assessment  

Risks Category Probability Impact 

Computer Crash TI 70% 1 

Late Delivery BU 30% 1 

Lack of Development Experience TI 5% 2 

Lack of Available Dataset TI 40% 2 

Poor Quality Documentation BU 35% 2 

Deviation from Software Engineering 

     Standards 

PI 10% 3 

Poor Comments in Code TI 20% 4 

Equipment Failure TI 70% 1 

Technology Not Meeting Expectations TE 25% 1 

End Users Resisting System BU 20% 1 

Changes in Requirements PS 20% 2 

Less Reuse than Expected PS 60% 3 

 

Impact Values: 

1 –  Catastrophic 

2 –  Critical 

3 –  Marginal 

4 –  Negligible 
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In most civil infrastructure contracts, many of the systems engineering processes are 

executed by the contractor(s). As these processes overlap with the responsibilities of the 

government in some cases, it is essential to understand whether these activities are 

accomplished effectively. The systems engineering technical processes that need to be 

monitored include the following: 

Design definition: The overall system design will and should evolve. All stakeholders must 

be involved in design decisions. 

System Analysis: This is an ongoing process to ensure that incremental development of the 

solution remains stable, coherent, and aligned with the needs of all stakeholders.  

Verification and Validation: The release process must continuously verify the built works 

(verification) and meet the needs (validation), which will satisfy the users. 

Transition: This refers to moving incremental solutions into operations, which must be 

accomplished with care to avoid update fatigue on the users’ side while allowing the 

solution to evolve. 

Operation: In an agile environment, development continues while initial releases are being 

used in actual operations. It is essential to monitor and measure the performance of the 

delivered increments and to have a mechanism in place to respond to “real user” feedback. 
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Maintenance: Fielded systems may break. Maintenance activities should be fed into the 

product backlog and prioritized accordingly. Subsequent releases are technical upgrades to 

the existing system and should be managed through users’ maintenance processes, too. 

Disposal: As a new functionality is added to a fielded and incrementally developed system, 

legacy systems may eventually need to be removed from service. Sometimes, early 

functionality of the new system may need to be removed when replaced by an improved 

functionality or when they are no longer needed. 

Quality Assurance: Going beyond tests, maintaining acceptable software engineering 

practices are essential to preserve the portability of codes and allow future unanticipated 

changes to the fielded system. 
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Decision Analysis 

The five technologies mentioned below have been reviewed. 

1. Passive Electromagnetic RFID Sensors for crack detection [48] [47]. 

2. Computer Vision: Kinematic SAMI, a new real-time multi-sensor data assimilation 

strategy that uses high-speed and high-resolution cameras [46].   

3. Liquid Level Sensing Systems (LLSS) as an add-on to the bridge structure to 

measure deflection and deformation [49]. 

4. Ultrasonic Sound Wave Technology [50]. 

5. Infrared Thermography, UAV Photogrammetry, and GPR [54] [55]. 

Decision analysis for agile occurs at critical points in development, specifically when 

issues arise. The development team must make decisions about development steps and 

perform designs based on a clear understanding of risks and options. This can be 

challenging, since an optimum design and implementation solution are typically unknown. 

Additionally, in many cases, the risks and options are unknowable due to the inherent 

complexity at the outset of a program. When this is the case, the team should resist the urge 

to over-engineer or design an optimal solution in advance. Instead, the team should 

proceed based on an agreed-upon preferred direction and then assess progress and course-

correcting based on an analysis of specific experiences. Typical agile decisions center on 

adjusting the grouping of user stories, determining which sprints are released to users, 

resizing and splitting the design, implementing separate stories, and assessing the impact of 

removing requirements from the backlog. 
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In this research, SWOT analysis was used due to its simplicity and straightforward path 

towards make a decision. It is also well-suited to the agile methodology which is employed 

in this study. Hence, five potential contactless sensor-based methods were studied: 

• Passive RFID sensors have the drawback of signal interference due to surrounding 

obstructions. The transmitting power of the RFID sensor is severely limited due to 

no battery being mounted on the sensor. 

• The LLSS structure requires a costly development phase. It is subject to damages 

due to weather conditions, such as wind, and various abnormal loading conditions. 

• The Ultrasound technology was sensitive to both environmental conditions and its 

proximity to the bridge. 

• Computer vision and infrared methods were both drone-mounted camera options 

that could be operated remotely from a safe distance with visible evidence being 

revealed in real time and at scale (Figure 4 and Figure 5). 
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Figure 4 SWOT Analysis of Computer Vision 

 

Figure 5 SWOT Analysis of Optitrak 
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Chapter 4 Concept of Operations  
 

As per the literature, use of non-contact camera sensors in SHM has added advantages 

compared to traditional contact sensors. However, the majority of previous work focuses 

on the optimal placement of contact sensors for SHM. To fill this gap, the present work 

proposes a novel filtering algorithm for optimal placement of contactless sensors based on 

strain, deformation, node location, and the safety factor. Furthermore, it is evident from the 

above-discussed literature that machine learning-based SHM is preferable to other SHM 

systems. Moreover, past works have shown excellent results with gradient tree-based 

machine learning algorithms for structural monitoring of reinforced concrete panels. With 

an extensive literature survey, it was found that further adaptation of NN is required in 

order to increase accuracy. It is clear from the existing literature that there is a need for 

further study of the application of NN and prediction ability when training is based on 

computer-simulated data. This becomes extremely valuable when live data acquisition is 

feasible and/or destructive tests are not possible. There is a gap in the literature concerning 

experiments that measure prediction capability of artificially trained NN on real-life 

structural behavior. Additionally, the use of gradient boosting algorithms for structural 

monitoring shows great promise but lacks sufficient attention. Consequently, in this article, 

a gradient boosting neural network is considered as a suitable machine-learning algorithm 

for bridge monitoring and damage prediction. The proposed SHM system integrates the 

filtering algorithm for active failure detection, simulated training data, and known failure 

cases with the gradient boosting machine learning model for bridges, then conducts trained 

with simulated data and validates using input from a physical model. 
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The following failure modes have been identified from previous research or through 

extrapolation of material properties under expected lifetime loads. The proposed research 

methodology includes identification of suitable techniques to record structural health and 

structural behavior data, development of a structural modeling framework to simulate 

multiple structural loads and failure modes, and analysis of sensor data into a reliable 

prognosis system.  

• Loading Fatigue [41], [47], [48], [15].  

• Vibration Fatigue [41], [47], [48] [15]. 

• Mechanical Overload [46], [47]. 

• Creep (Moaveni et al., 2013), [46].   

• Thermal Shock [41]. 

• Corrosion [41], [47]. 
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Solution Approach  

The solution approach, including a specification of  techniques used, is described as 

follows (Figure 6). Firstly, the structure is scanned, and a 3D CAD based model is created 

(1), which is then continued to an FE analysis model. An analytical approach is followed to 

simulate loading conditions (2) and a library of training data is generated (3). The data set 

is later fed to a machine learning algorithm (4) that has two more types of data as inputs: 

other known failure cases (5) and data generated by the sensor array (6) of the real-life 

model. The NN algorithm then develops a correlation between the different datasets. It 

determines the percentage of correlation between the sensor input and the known scenarios 

(training or surveyed) and produces a prediction based on this correlation (7). The detailed 

procedure followed for a test case is explained in the applied methodology section.  
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Figure 6 Solution Approach 

 

Proposed Solution 

Currently available SHM systems for transportation infrastructure involve cumbersome 

installations that require structural modifications and cause traffic interruptions. Moreover, 

the cost of sensors for each structure is relatively high. Consequently, the deployment of 
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SHM systems is complicated. Understanding and predicting structural health and failure 

modes are difficult without collecting and analyzing real-time data from the structures. To 

address this problem, a novel system was designed and tested. The proposed system can be 

subdivided into the following steps: 

Identification and Characterization of the Structure: This is accomplished by 3D 

scanning of the structure. The structure is then modeled with the help of a computer-aided 

modeling (CAD) software. These steps also include the collection of data regarding the 

composition of materials and their mechanical characteristics.  

Computational Analysis: This stage involves computer modeling of the specific structure. 

A computer model is designed, and FE analysis mesh is prepared to simulate the behavior 

of the structure under different loads and triggered failures.  

Load Simulation and Library Generation: This step involves the creation of a library of 

known failure cases for the structure. Using FE analysis, various loading scenarios are 

simulated and the results of each are recorded in a library of expected/known structural 

behaviors.  

Sensor Placement: Based on the library of known behaviors and failure modes, a filtering 

algorithm identifies the structural points with the highest probability of deflection. The 

algorithm then filters those that are most likely to serve as identifiers of failure scenarios 

(i.e. points that saw high deflection with high correlation to failure). This yields a list of 

“high interest” points that will dictate the position of the sensor markers. 
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Data Collection: Infrared sensors are deployed due to their availability and their ability to 

be used in a wide range of light conditions. These sensors are collect data on an active 

structure. The sensor system consists of small infrared-enabled cameras which can track 

the position of the markers to submillimeter accuracy in conjunction with surface markers 

placed in “high interest” points. This facilitates the recording of bridge deformation 

(marker displacement) from a safe distance.  

Data Comparison and Prediction: Using a NN, sensor readings are compared in order to 

know or predict failure scenarios. This step takes advantage of several elements of machine 

learning algorithms: 

 The possibility of using a combination of predicted (calculated) and real data sets for 

training enables early predictions and increased accuracy as the number of training sets 

grows.  

 The possibility of using simulated failure data sets as part of the training library 

reduces the need for destructive testing in large structures. 

 The ability to interpolate and extrapolate data enables data-based comparisons and 

predictions, even with a limited number of points.  
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Chapter 5 Case Study 
Case Study Introduction 

To test and validate the proposed solution approach, a pilot project was conducted on a 

model of a steel bridge that resembled a large truss structured bridge in shape and behavior. 

The model bridge was subjected to all the steps mentioned in the solution approach, 

including the verifications and validation procedures (such as simulated loading and strain 

gauges installation for data validation). This specific pilot project yielded promising 

results, and the system did identify a possible correlation between simulated loading and 

future failure modes of the structure. Several experiments were conducted in a controlled 

environment to collect data and validate system inputs.  

Considering the large number of truss bridges across the United States [54], a simplified, 

scaled-down version of a bridge structure was selected for the pilot project. This reduced 

size allows for a controlled environment suitable for data-collection by using permanently 

mounted infrared sensors. This arrangement reduces errors due to inaccurate sensor 

placements or movements. Moreover, the bridge is made of a relatively uniform material, 

so that intrinsic material properties could be simulated accurately, in this case, steel. The 

proposed procedure was applied on the model bridge, as explained in the next section. 
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Development of a 3D Computer Model and Finite Element  

The computer model of the bridge was designed with the exact specifications of the model 

via 3D scans of its geometry. Furthermore, simulations of necessary fasteners and welding 

joints, as well as material properties, were carefully incorporated. A mesh suitable for the 

geometry of the object was developed in an ANSYS simulation environment (Figure 7). 

 

Figure 7 Mesh of the Bridge 

 

The training data set was generated for this pilot project based on the known loading 

factors for civil engineering infrastructures [55]. Loading conditions were identified and 

characterized based on the literature review [10], [56], [57]. These conditions were fed into 

the computer model to generate a data set of expected stresses and strains in the structure 

of the model. 
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Load Simulation and Library Generation 

By using the computer model, simulations were completed for the deformation of the 

structure under loading conditions. At any point in which the material passes its elastic 

deformation region, a material failure can be identified [58]. A gradient boosting neural 

network used the generated library to detect necessary correlations of input data with 

known loading conditions and failure modes. Extrapolated input data was also used to 

match and identify possible relationships to failure scenarios. The machine learning 

algorithm used all these input data for training in order to enhance accuracy and predictive 

capacity. The developed model takes into account the material deformation and localized 

strain as well as the limits of the selected material. Collected data can be subdivided into 

categories: node (location within the model’s coordinate system), material deformation 

(obtained by the OptiTrack sensors or calculated from strain sensors), and strain (inversely 

collected by strain sensors or derived from the deformation) [10]. All three types of data 

were used to train the machine learning algorithm.  

In this research, a computational model was developed that can recreate point 

measurements of essential indicators during different load cases and failure scenarios. The 

model was adjusted by changing the load and environmental conditions to simulate, 

trigger, and collect data on the failure modes of loading fatigue, mechanical overload, and 

creep. A sample case of loading fatigue is shown in Figure 8. 
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Figure 8 Sample Case for Loading Fatigue 

 

The data for each failure scenario was collected in terms of strain, deformation, and node 

location. An example of node meshing is shown in Figure 9. The system has over one 

million nodes or mesh elements; these nodes were considered for the filtering algorithm 

that determines the best available sensor positions. 
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Figure 9 Node Mesh 

 

Smoothing in 2D 

Safety Factor vs. Node and Deformation vs. Node were plotted separately (See Figure 10). 

Both a low pass filter and a moving average filter with sampling were tried. Due to a 

Gibbs-like phenomenon that occurred with the low pass filter (extrema pushed out of 

place), the moving average filter with sampling was selected as the most appropriate 

technique. Hence, data was averaged over every 5,000 nodes, and these averages were 

plotted to get smoothed curves. The number 5,000 was derived by testing various window 

sizes and counting the number of resulting extrema. Accordingly, a window size that made 

the smoothed curve look reasonably noiseless and provided on the order of 100 extrema 

was selected. 
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Figure 10 Smoothing in 2D 
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Smoothing in 3D 

Safety factor was plotted on the z-axis and deformation was plotted on the x-axis in two 

different 3D plots. The corresponding minima and maxima are highlighted (Figure 11). 

The 3D smoothing is relatively complicated. The smoothed curve is built from B-spline 

basis functions; in theory, it incorporates the effects of both safety factor and deformation 

simultaneously while smoothing. However, it did not yield significantly different results. 

As 3D proved to be a less interpretable method that did not yield better results, 2D 

methodology was used in this research. 

 

 

The data points that are more susceptible to failure were identified. Assuming that material 

characteristics are uniform, then calculations are performed to determine the points at which 

the factor of safety indicates a deformation change beyond the expected level for safety 

infrastructure operation [7]. The algorithm yields the primary location of interest in the 

model by the node number, deformation, stress, strain, and, ultimately, the safety factor.   

Figure 11 Smoothing in 3D 
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The data list contains the inflection points of the simulated structural failure that enable the 

identification of the position of an optimized sensor array. Based on the number of 

available sensors, this list is then truncated at an arbitrary number for comparison. In this 

pilot project, the list of extrema readings was truncated at 100 in order to encompass the 

most critical and extreme conditions during the load test. These node locations served as 

the location of the initial set of sensor nodes in both the training data and the experimental 

setup. 

The second array of influential data points is a subset of the original model, with a 

maximum number of 100 data points reflecting the behavior of 100 coordinates in the 

structure (simulating these points in terms of the mechanical parameters). It is worth 

mentioning that the sensor placement algorithm can be modified to accommodate as many 

sensor arrays as necessary for the desired accuracy. 

Optimization of Sensor Locations 

In this phase, a safety factor vs. node plot (Figure 12) and a deformation vs. node plot 

(Figure 13) were generated separately. They represent the complete output of the model 

under a specified loading condition (e.g., Figure 13 represents a load of 2,500 lbs. in the 

predetermined position 1). This data set was then used for sampling after filtering by 

applying a moving average filter. Hence, data over every 5,000 nodes were averaged and 

then plotted to obtain smoothed curves. The number 5,000 was selected by testing various 

window sizes and counting the number of extrema. This process resulted in the 

identification of a window size that made a smoothed curve look reasonably noiseless and 
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gave extrema in the order of 100. It falls within the current channel availability of the 

selected sensors. 

Once the data points that were more indicative of deformation were identified, it was 

assumed that the material characteristics were uniform. Then, calculations were performed 

to determine the points at which the factor of safety indicated a deformation change beyond 

the expected level for safety infrastructure operation. The algorithm yielded the primary 

location of interest in the model by the node number, deformation, stress, strain, and, 

ultimately, the safety factor.  

 

 

 

 

 

 

 

 

 Figure 12 Safety Factor vs. Node 
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Figure 13 shows that the deformation plot corresponds to the relative maxima for the 

deformation in 2D. It outperforms a 3D plot in terms of clarity and readability. The 

smoothed curve was built from B-spline basis functions, and extrema were identified. 

 

 

The data list contains the inflection points of the simulated structural failure that enable the 

identification of the position of an optimized sensor array. Based on the number of 

available sensors, the list was then reduced for comparison. In this pilot project, the list of 

extrema readings was limited to 100, as it encompasses the most critical and extreme 

Figure 13 Deformation vs. Node 
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conditions during the load test. These node locations were considered in the initial set of 

sensor nodes in both training and the experimental setup. 

The second array of influential data points is a subset of the original model, with a 

maximum number of 100 data points reflecting the behavior of 100 coordinates in the 

structure (by simulating these points in terms of the mechanical parameters). It is worth 

mentioning that the sensor placement algorithm can be modified to accommodate as many 

sensor arrays as necessary for the desired accuracy. 

Process Data for Sensor Placement 

Each failure mode yielded a data array containing location value and deformation at the 

location, creating a library of failure modes and essential mechanical readings. Each array 

was then processed as a multidimensional matrix. These matrix values correspond to the 

coordinates and material of a node. Strain was calculated by using the material’s internal 

properties to determine the material deformation in the elastic and plastic regions and any 

material failure. This matrix was exported and processed by a filtering algorithm to reduce 

noise, decimate data to avoid duplicated data at nearby locations, and then to find the local 

extrema.  

The model returned a list of local maxima and minima based on the preselected 

parameters. A threshold for material deformation was added, and only the lowest (minima) 

points were selected based on a predetermined limit of material safety factor.  
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Data Collection and Preprocessing 

Development of an accurate and versatile computer model with a robust library of failures 

and loading scenarios is helpful in structural health analysis. However, an experimental 

setup is required to test and corroborate these results. The implementation of a contactless 

sensor array can reduce the cost and complexities [59]. The next step was to develop an 

experimental setup to test the predictive and interpolating capabilities of the machine 

learning algorithm, as well as the accuracy of the contactless sensor setup in determining 

the material deformation.  

A model of the bridge was placed in an optical track sensor-enabled test room (Figure 14). 

A set of data markers and strain gauges were attached at the previously identified most 

critical locations (100), while six strain gauge nodes were installed for systems validation. 

 

Figure 14 Experimental Setup 

 

The contactless OptiTrack system facilitates the sensor locations within the three-

dimensional bridge model to be marked and tracked. Furthermore, it enables collection of 

real-life deformation data with sub-millimeter accuracy. After the experimental set-up was 

prepared, a set of experimental data was collected. They were used in gradient boosting 
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neural network to determine the predictive capability. Several mathematical models of the 

known structures were used for validation of the model, and they demonstrated a trend 

towards identification of future failure scenarios based on initial data.  

The system’s data was fed as input data of gradient boosting neural network [14], enabling 

an interpolation of bridge conditions based on sensor inputs and a correlation with known 

failure or non-failure cases. The machine learning system was successful in calculating a 

percentage of correlation to specific sets of known failures. If the input data is identified 

with a significant correlation with an established failure set, then the known failure 

location is marked as a point of interest, and the correlation percentage is determined as a 

predictive indicator of failure. 

 

Defining Failure Modes 

Each failure mode yields a data array that contains location value and parameter value 

(e.g., deformation per location), creating a library of ranges that include each failure mode 

and essential mechanical readings of each parameter. Each array is then processed as a 

multidimensional matrix. These matrix values correspond to the coordinates and materials 

of a node calculated for that location. The strain is calculated and compared with the 

material’s internal properties to determine the material deformation in the elastic and 

plastic regions, as well as any material failure [43]. 

This matrix is then exported and processed by a filtering algorithm that reduces noise, 

decimates the data to avoid duplicated data at nearby locations, and then finds the local 
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extrema points. The model returns a list of local maxima and minima based on the 

preselected parameters. A threshold for material deformation is added, and only the lowest 

(minima) points are selected based on a predetermined material safety factor limit. For this 

research study, any material deformation passed a safety factor of 1 is considered a failure.  

Sensor Placement Algorithm  

The algorithm aims to collect data from sensors placed at pre-defined positions on the 

bridges, and failure scenarios are recorded in terms of strain, deformation, and node 

location. Bridge intrinsic material properties are also considered to determine deformation. 

The flowchart of the model is presented in figure 15. Every failure mode generates a data 

array that has the coordinates’ value and deformation at the specific points as well as a 

library of failure modes. This data array is then processed as a multidimensional matrix. 

The strain is calculated by determining the material’s intrinsic properties, as strain is the 

most important variable, directly affecting the condition of monitoring. Here, our filtering 

algorithm is in use. It reduces the outliers, removes duplicate data present in the nearby 

locations, and finds the local extrema in the processed data from sensors.  

Considering the pre-selected parameters, the algorithm returns a list of local minima and 

maxima. The material deformation threshold was already selected based on the material 

safety factor, so it is added in the model and the lowest minima points are selected. Any 

deformation in the material higher than the safety factor 1 is considered as a failure in the 

bridge structure. The ultimate goal of the algorithm is to generate the main points of 

interest in the model by considering the node number, deformation, stress, strain, and, in 

the end, the safety factor. 
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Figure 15 Sensor Location Algorithm 

 

A moving average filter was applied to the data set after filtering and is then used for 

sampling. The algorithm plotted smoothed curves by averaging 5,000 nodes. This number 

was tested over different window sizes and by counting the number of extrema. As such, 
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this became our default window size and produced noiseless, smoothed curves and gave 

out 100 extrema points. 

The inflection points of the simulated structural failure were present in the sensor data 

array list that identifies the optimized sensor array. During the load test extrema, readings 

were confined to 100, encompassing the most critical and extreme conditions.  

In a 3D model of our approach, the x-axis, y-axis, and z-axis represent node number, safety 

factor, and deformation, respectively. Firstly, we set all labels for different axis and then 

found the maxima and minima for deformation and safety factor values. We then plotted 

the values to visualize the results and saved it in a separate file. Also, we saved the maxima 

and minima points in an Excel file. Then, we repeated the above process after changing the 

axis; for instance, deformation values became the y-axis and safety factor values became 

the z-axis in order to obtain information about failure points in 3D. The smoothed curves 

were generated from the B-spline basis function, and extrema were identified.  

Step 1: Initializing the pre-requisite libraries. 

Step 2: Input file containing the data values. 

Step 3: Read values and store in data frames. 

Step 4: Apply moving average filtering. 

Step 5: If window size = 5,000 and extrema points =100. If Yes, go to step 6; if 

else, return to step 4. 
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Step 6: Plot raw and smooth values in 2D. 

Step 7: Find local maxima and minima of smooth values. 

Step 8: Plot local maxima and minima. 

Step 9: Save plots. 

Step 10: Save maxima and minima data values. 

The whole output of the model is represented under the specific loading conditions. Firstly, 

safety factor vs. node graphs are generated in (Figure 2). Experiments applied on different 

positions and different weights and their graphs were recorded as well. An initial weight of 

2,500 lbs. on position 1 was considered, then the experiment increased the weight 

incrementally, to 5,000, 7,000, and 10,000 lbs. Graphs were generated, and maxima and 

minima were determined. Testing was also completed on the same weight, but in different 

positions, such as 2, 3, and 4. This figure represents a load of 5,000 lbs. in the 

predetermined position. 4.’x’ represent maxima and ‘o’ represent minima in the data chart. 

By using a moving average filter, the data set was then sampled after filtering. The data set 

was averaged over every 5,000 nodes to plot the smoothed curves. This number was 

selected over different window sizes , producing the correct number of extrema and 

noiseless smoothed curves. 

The value of extrema for this algorithm and window size was selected as 100. Similarly, 

deformation vs. node graphs are presented in Figure 3. The graphs represent the raw data, 

smooth data, and extremas and minimas in the smoothed data. As the node numbers 



 
 

62 
 

increased, the graphs became consistent and uniform. They show the uniform behavior of 

our algorithm: that after finding enough values by selecting window size 5,000 and 

extrema points 100, the algorithm identifies the deformation. 

To optimize the precise location of the sensors, graphs were generated. Experimental 

results validated that the average filtering algorithm gives the desired result and is helpful 

in determining sensor placement in bridges to find the breakage points.    

To get a higher level of accuracy, one can increase the sensor arrays, but this can increase 

the deployment cost. The plots generated are in 2D, but they surpass 3D plots in terms of 

clarity and readability. 
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Chapter 6 
Validation of Model and Verification 

 

Another experiment was conducted to validate the computer model, and data was collected 

by using the OptiTrack sensors. A custom set of wireless sensor nodes containing strain 

gauge sensors was created by adapting a wireless microcontroller to a modified load cell 

amplifier and attaching it to a set of strain gauges on pre-identified locations within the 

experimental setup of the structure. By measuring strain at six positions, and by using 

known loading conditions of 50 kgs, the validity of the computer model and the accuracy 

of the material deflection detected by the OptiTrack system were determined. Additionally, 

this data set was used for a cooperative analysis between the data collection of non-contact 

sensors (OptiTrack system). Figure 15 shows a wiring diagram of the developed sensor 

circuit. These sensors were placed at six locations. 

The sensor data at the first 100 critical points was generated and collected for 1,200 

different loading conditions, ranging from wind loading to static loading to seismic 

simulations [13]. The data obtained from the computer model was used to create a training 

library for the initialization of the machine-learning algorithm. The algorithm was used for 

extrapolation and prediction of structural failure in case of unknown initial and/or loading 

conditions. Furthermore, the training library served as a reference point for known 

structural behaviors and failure locations. 1,200 numbers of loading scenarios were 

generated, each representing a different load and position. Loading scenarios were 

categorized based on the load position and magnitude (e.g., scenario P12500 represents a 
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load of 2,500 lbs. in the predetermined position 1). Figure 16 represents the outcome of a 

sample scenario P12500; the colors of each mesh element provide a visual guide indicating 

deformation from the original state. 

 

Figure 16 Wiring Diagram for Contact Sensor Nodes 
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Figure 17 Unloaded Bridge Model 

 

Figure 17 shows the progression of the loading magnitude in order to illustrate the effects 

of deformation in the structure. When the total strain of mesh elements surpasses the elastic 

region (or close to the material plastic deformation region), it is marked as a failure point 

and indicated by a red arrow. This serves as an indicator of structural malfunctions (Figure 

18). 

 
Figure 18 Strain Gauges vs. Computer Model (Simplified) 
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Figure 19 Sample Failure Scenario 
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Chapter 7 Application of Neural Network Algorithms 

In the field of transportation infrastructure, bridges are considered highly important 

structures. Although the construction of bridges is the costliest among engineering projects 

related to transportation infrastructure, bridges must be designed in accordance with 

relevant standard safety measures. However, bridges deteriorate due to aging, mainly in 

association with the ever-increasing traffic loads [60]. The American Association of State 

Highway and Transportation Officials (AASHTO) published guidelines for non-destructive 

evaluation methods, diagnostic load testing, and proof load testing in 2003 [61]. Regardless 

of testing procedure, the primary objective of any load test is to assess the load capacity 

more accurately. Due to the drawbacks of simplified analyses based on conservative 

assumptions, new technologies are being applied in testing and evaluations.  

The Diagnostic Load Test, one of the major types of tests used for bridge health 

monitoring, is performed at controlled load situations and integrates sensors for 

measurement of response performance [61]. This test focuses on measuring structural 

deformations for a set of applied load conditions without testing the load capacity directly. 

The aim of the test is to develop a relationship between the real behavior of the bridge and 

analytical calculation. It can be used either as an acceptance test of bridge structures or as a 

tool for assessment of the load carrying capacity of existing bridges [62].  

Conducting load tests [63] on different types of bridges, such as concrete bridges [64], 

reinforced-concrete arch bridges [63], steel bridges [64], masonry arch bridges [65], and 

stone arch bridges [66], have been documented in the literature. In this research, a model of 
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a steel bridge was constructed in order to perform experiments. Sensors embedded to the 

bridge, as well as contactless sensors, have been used in research studies related to bridge 

health monitoring ([8]), [9]), [12]). A contactless OptiTrack system has been used in this 

experiment for collection of deformation data with sub-millimeter accuracy at the sensor 

locations. Application of numerous statistical models and machine learning algorithms, 

including Extreme Gradient Boosting [67], Decision Trees [68], Random Forests [68], and 

Naive-Bayes for health monitoring of bridge structures, was evident. In order to identify 

the probability of the deformations, fifteen types of statistical models were created in this 

research. Coding was conducted in the Python programming language, and the analysis 

was performed in a Google Collaboratory Notebook. The model development and training 

were completed using Pycaret, which is a Python-based framework that provides a variety 

of machine learning tools.  

In this research, load-testing experiments were conducted on a model of a bridge (Figure 

14). Sensors were positioned on thousands of locations across the model in order to 

collect deformation data under different loading conditions. Then, the 100 most critical 

points required to be monitored closely were identified. In this setup, sixteen experiments 

were conducted, and each experiment was repeated twelve times. As an example, in the 

first experiment, the bridge was loaded with 2,500 lbs. at position 1, and the deformations 

were recorded by using 100 sensors. This was then repeated eleven more times. Then, the 

load was changed to 5,000 lbs., and the process was repeated. Likewise, the experiment 

was conducted for 04 numbers of load values (2,500 lbs., 5,000 lbs., 7,000 lbs., and 10,000 

lbs.). After that, the same process was repeated at three more locations. As a result, 19,200 
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entries were collected (4 load values x 4 loading positions x 12 times x 100 sensor 

locations).  

The requirement of this experiment was to train a neural network, so that when the bridge 

was loaded with an unknown weight at an unknown position, the neural network could give 

the probability of the bridge deformation similar to a known case scenario. Therefore, 

preparation of collected data for modeling played a vital role.  

The labels of the collected data set were numbered from 0 to 15, having sixteen unique labels 

for the data set collected by conducting sixteen experiments (P15000, P17000, P110000, 

P22500, P25000, P27000, P210000, P32500, P35000, P37000, P310000, P42500, P45000, 

P47000, P410000). The notation of the experiment represents the corresponding locations 

and loads used. For example, the number P47000 relates to the experiment with a load of 

7,000 lbs. at position 4.  

The decision tree was built to predict the probability of a given feature vector 

൛𝑥
௧, 𝑥

௧ൟ of the given set of labels. The decision tree, which  is a non-

parametric model, was built to predict the failure of the structure. The algorithm optimizes 

itself approximately compared to an optimal solution in a parametric model (Logistic 

Regression), as given in equation 1. The decision tree function 𝑓 ோாா is defined as  

𝑓 ோாா ൌ Prሺ𝑦 ൌ 𝑙𝑎𝑏𝑒𝑙 | 𝑥ሻ (1) 

where Pr is the probability.  

The optimization criterion is the log-likelihood interpreted in equation 2. 



 
 

70 
 

ଵ

ே
∑ ሾ𝑦
ே
ୀଵ ln 𝑓 ோாா ሺ𝑥ሻ  ሺ1 െ 𝑦ሻln ሺ1 െ 𝑓 ோாாሺ𝑥ሻሻሿ  (2) 

 

The data set with 𝑁 number of items, which is used to train the neural network, can be 

represented as 

 ሼ ሺ𝑥 ,𝑦ሻ ሽୀଵ
ே  (3) 

where each element 𝑥 of 𝑁 is called a feature vector, and each element 𝑦 of 𝑁 is called a 

label.  

A combination (𝑗,𝑡) is found, where 𝑗 is an input feature and 𝑡 is a threshold. It selects a 

feature 𝑗 and splits the feature into positive and negative sets of examples at threshold 𝑡. The 

combination (𝑗, 𝑡) that maximizes the entropy 𝐻 of a split is chosen by applying 

𝐻ሺ𝒮ି,𝒮ାሻ ൌௗ |𝒮ష|

|𝒮|
𝐻ሺ𝒮ିሻ 

|𝒮శ|

|𝒮|
𝐻ሺ𝒮ାሻ (4) 

This experiment is considered to be a supervised learning problem in the field of machine 

learning. Supervised learning techniques are algorithms that learn from both an input (known 

as a feature vector) and an output (known as a label). Their objective is to classify a given 

input into a set of predetermined classes, with the ultimate objective of finding a model that 

best describes the relationship between the input and the output. This is considered a 

classification problem in machine learning, as the desired output is a discrete categorical 

variable instead of a continuous numeric variable, in which the problem would be considered 

as a regression problem.  
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In this research, fifteen types of statistical models and machine learning techniques – 

namely, Cat Boost Classifier, Decision Tree, Extra Trees, K neighbours, Logistic 

Regression, Ridge Classifier, Linear Discriminant Analysis, Linear Kernel, Naive-Bayes 

and Quadratic Discriminant Analysis, and five tree-based models – were applied. The tree-

based models were Random Forest Classifier, Adaboost, LightGB, Gradient Boosting, and 

XtremeGB. They handle outliers and features with difference scales particularly well. 

Extreme Gradient Boosting was the most accurate model for this experiment as per the 

performance analysis.  

 

  



 
 

72 
 

Application of Statistical Models and Machine Learning 

Techniques 

Linear Models 

Linear models perform well when the problem statement has a relatively linear relationship 

with the target variable. The Sigmoid function is used to convert predictions into a 

probability output for classification. It is computationally efficient and highly interpretable 

and understandable. Two linear models – namely, Logistic Regression and Ridge Classifier 

(see figure 20) – were applied in this research. 

 

Figure 20 Linear Models 

 

K-Nearest Neighbors (KNN) Models  

The KNN model is a non-parametric model (see figure 21) meaning it does not assume a 

form for the input data compared to models like Logistic Regression. It is, however, a ‘lazy 
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learner’, which means it does not learn from the training data used for classification. A 

KNN Classifier was also applied in this research . 

 

Figure 21 KNN Models 

 

Sequential Neural Network 

The training data (augmented images) need to better capture the similarity of each class in 

a meaningful way. The method used in this exercise is too simplistic and not reliable; the 

best error rate achieved was 54%, which is very high. Therefore, Sequential Neural 

Network is not suitable to solve the problem, but it did lay the basis for a possible solution. 

Extreme Gradient Boosting Neural Network 

An Extreme Gradient Boosting Neural Network model was selected due to its high 

accuracy score. The model was then developed to correlate new experimental data to 

computer model simulations of known failure scenarios. The Extreme Gradient Boosting 
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model has been developed based on the Decision Tree algorithm. A decision tree is an 

acyclic graph that can be used to make decisions. In each branching node of the graph, a 

specific feature j of the feature vector is examined. If the value of the feature is below a 

specific threshold, then the left branch is followed; otherwise, the right branch is followed. 

As the leaf node is reached, the decision is made about the class to which the example 

belongs [69].  

In the Extreme Gradient Boosting model, the sequentially connected ‘learners’ are 

Decision Trees. Each tree attempts to minimize the error of the previous tree by optimizing 

on the residuals: 

ሾ𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 ൌ  𝑦ௗ௧ௗ െ 𝑦௧௨ሿ  (5) 

Every time a new tree is added, it fits on a modified version of the initial dataset. These 

attributes make boosting a highly efficient and accurate model. This process is depicted in 

Figure 22. The pseudo code of the model pipeline was developed to split the data set into 

training and testing sets, where 70% of the data was used as the training set, while the 

remaining 30% was used as the test set. The training set iterate through combinations of a 

column 𝑗 and a threshold 𝑡 that maximizes entropy. The training data were divided into two 

sets: one set with input values of the column 𝑗 that is above the threshold 𝑡, and the other 

set below it. The process was repeated until any of the conditions given in the criteria were 

satisfied, and the test set was evaluated.  

Therefore, the algorithm was developed to stop at a leaf node if any of the below mentioned 

criteria is met. 
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• All examples in the leaf node are classified correctly by the one-piece model. 

• An attribute cannot be identified to split. 

• Splitting reduces the entropy less than a specific value (the value is identified 

experimentally). 

• The tree reaches a maximum depth 𝑑 (the value is identified experimentally). 

 

Figure 22 Medium Gradient Boosting Architecture [68] 

 

The first phase in the machine learning pipeline is to process the data in a manner that can 

be used for model testing. This primarily requires data cleaning, restructuring, feature 

engineering, and imputation. As this data set was created in a controlled experimental set 

up, there are no missing values. Furthermore, each class (or label) had an equal number of 

entries. As a result, there were no imbalances, and each label was equally likely to occur 

when training a model. Hence, the probability of any example belonging to a certain set 
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remained the same. For example, the probability at the data set P45000 can be mentioned 

as: 

𝑃𝑟ሺ𝑦 ൌ 𝑃45000ሻ ൌ 𝑃𝑟ሺ𝑦 ൌ 𝑃47000ሻ ൌ 𝑃𝑟ሺ𝑦 ൌ 𝑃410000ሻ (6) 

If there were imbalances, they could cause issues when developing a machine learning 

model as the model would be trained on data that only presented one label less than 100% 

of the time. Classifying unseen data that does not belong to that specific class would be 

difficult as a result. 

The data was rearranged into a data frame that could be ingested by a machine learning 

model, where the input and output variables could be identified in a single tabular format. 

The top five entries of the data frame are shown in Table 4. The ‘location’ represents the 

position of the sensor, and the ‘set’ represents the unique location and load applied at each 

experiment. Each deformation entry has a specific sensor and a set to which it belongs. 

Every set is present in a single table, which explains why there are multiple entries for a 

single sensor location. 
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Table 4: The Top Five Entries of the Data Frame 

Index location Data set deformation 

0 1 P12500 0.000181 

1 1 P12500 0.000189 

2 1 P12500 0.000222 

3 1 P12500 0.000223 

4 1 P12500 0.000223 

 

The average deformation over the 100 locations, when the experiment was repeated twelve 

times, is illustrated in Figure 23. Each line represents a unique label that corresponds to a 

load and a position. As four loads were applied at each of the four selected locations, the 

graph consists of sixteen lines, in which the peaks are very visible. The resulting data sets 

of the sixteen experiments were ranked based on the average deformation, as depicted in 

Figure 24. For visualizing the deformation of five such random sets, a three-dimensional 

plot is presented in Figure 25. 
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Figure 23 Variation of Average Deformation Over 100 Locations 

Figure 24 Ranking the Average Deformation Per Set 
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Three data sets (P12500, P27000, P410000) were selected, including the lowest, middle, 

and highest average deformation values, and the number of occurrences were plotted 

against deformation. As illustrated in Figure 26, the distribution is clearly a multi-modal 

pattern for each set. 

 

 

 

 

Figure 25 Scatter Plots of Deformation Across Sensors for Five 
Random Sets 
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A code snippet was developed to initialize the setup environment for the Pycaret 

framework in order to facilitate quick and efficient pipeline creation for machine learning 

models. The deformation was scaled, for many machine learning algorithms, such as 

Logistic Regression, Support Vector Machines, K Nearest Neighbours, and Naïve Bayes, 

assume that all features are centred around zero and have variances that are at the same 

level of order. This is done using the z-score defined as: 

z-score: ൌ  ௫ି ఓ

ఙ
   (7) 

Figure 26 Multi-Modal Distribution Pattern of Data Sets 



 
 

81 
 

 

Data was transformed to modify the shape of the data distribution to have a normal or an 

approximately normal distribution in order to satisfy certain model assumptions of 

normality, such as: Logistic Regression, Linear Discriminant Analysis, and Gaussian Naïve 

Bayes.  

This was done using the Box-Cox Transformation 

𝑦ሺ𝜆ሻ ൌ ൝
௬ഊିଵ

ఒ
 ,   𝜆 ് 0

logሺ𝑦ሻ  , 𝑖𝑓 𝜆 ൌ 0 
  (8) 

where 𝜆 varies from -5 to 5, and all values are searched to find the optimal value that best 

approximates a Normal Distribution. Figure 27 shows the distribution pattern of the data 

set given in Figure 25 after performing the transformation. 

 

Figure 27 Normal Distribution 

Extreme Gradient Boosting is proposed as the best machine learning algorithm as it allows 

for a stratified analysis of the prediction. Based on the predictions, the engineer can either 

intuitively associate the input with a certain profile or he or she can create an entirely new 
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profile. In order to calculate and validate the Extreme Gradient Boosting approach, a 

special library of known data and associated failures was created.  In order to identify the 

efficacy, a set of known loading sets was created in association with one failure set. For 

example, if a given input deformation set belongs to P47000, 70% of the time we were able 

to successfully identify that the majority of the set (50% or more) belonged to P47000.  

When we averaged out five different known sets, we identified that the accuracy of the 

network to correctly identify the majority of the set belonging is equal to 72%. The 

appendix in this document includes samples of the testing data sets used for this accuracy 

calculation.  

The developed framework of a predictive SHM system that allows easy installation and 

assessment of a large structure via non-contact sensors eliminates the need for permanent 

or complex sensor installation. The system identifies essential critical elements in failure 

and adjusts them according to the data source of a health status prediction. A mathematical 

model was established and validated to collect data sets of structural deformation, and then 

a library was yielded for modeled structure loading scenarios. The model generated over 

1,200 load cases, replicating failure and non-failure conditions of the structure of interest 

based on estimated or known loading cases of similar structures. Gradient boosting neural 

network was identified as the most suitable machine-learning algorithm, and it was applied 

in order to extrapolate and correlate data, giving an indication of possible structural 

damage with an accuracy of 76%.  

The proposed system could be used to estimate failure prediction of civil structures, 

incorporating computer models to train the machine learning algorithm, and to assist in 
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predicting failure in structures that are large and complex, like real-world applications. 

Additionally, a combination of computer model and machine learning allows prediction of 

health in a system that has unknown initial conditions, allowing it to omit the loading and 

fatigue history of bridges and use current deformation data to extrapolate possible failure 

cases.  

Accuracy of the systems may be improved with additional test scenarios, more complete 

test cases (destructive testing), and with exposure to new loading scenarios. The creation of 

a set of destructive structural examples to test the accuracy and validity of the prediction in 

both failure and non-failure scenarios will also be helpful. Deployment of the proposed 

system in a real small structure will provide a better understanding of how machine 

learning algorithms are capable of incorporating new loading conditions as the system 

records them. 
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Chapter 8 Results and Conclusions 
 

This dissertation presents the framework of a predictive SHM system that allows an easy 

installation and assessment of a large structure via non-contact sensors, avoiding the need 

for installation of a sensor system. The system identifies essential critical elements in 

failures and adjustments according to the source data for prediction of health status. A 

mathematical model was established and validated by using collected data sets of structural 

deformation data. Then, a library of comparative cases was yielded for modeled structure 

loading scenarios. The model was generated by using over 1,200 load cases and replicating 

failure and non-failure conditions of the structure based on both estimated or known 

loading cases of similar structures. A suitable machine-learning algorithm was identified 

and applied in order to extrapolate and correlate data, giving an indication of possible 

structural damage with an accuracy of 76%. The proposed system could be used to 

interpret and correlate data while gathering new information, so that it can provide 

predictive information that includes possible failure modes and locations as well as a 

percentage of relationships with the known failure cases. 

The system facilitates estimating failure prediction of civil structures with the added ability 

of using computer models to train the machine learning algorithm, and therefore aids in 

predicting failure in structures that are too large and complex to have real life samples and 

experiments. Moreover, a combination of computer model and machine learning enables 

the prediction of health in a system that has an unknown initial condition. It allows the 

omission of the loading and fatigue history of bridges and the use of current deformation 
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data to extrapolate possible failure cases. Finally, due to the nature of machine learning, the 

system’s accuracy could be improved with additional test scenarios, more complete test 

cases (destructive testing), and by exposure to new loading scenarios.  

There are avenues for further development of the system that require a creation of a set of 

destructive structural examples to test the accuracy and validity of the prediction in both 

failure and non-failure scenarios. Furthermore, the deployment of the current system in a 

smaller structure will provide a better understanding of how the machine learning 

algorithm is capable of incorporating new loading conditions when the system records 

them.  

The developed models represent the framework for a predictive structural health system 

that allows for easy installation and assessment of a large structure via non-contact sensors, 

avoiding the need for installation. The system identifies essential critical elements in 

failure and adjusts to incorporating this as the data source for a health status prediction. A 

mathematical model was established and validated to collect data sets of structural 

deformation data, yielding a library of comparative cases for modeled structures. The 

model generated over 1,200 load cases, replicating failure and non-failure conditions for 

the structure based on estimated or known loading cases for similar structures. Finally, the 

recurrent neural network was able to interpret and correlate the data while learning new 

information in order to provide predictive information that includes possible failure mode 

and location as well as a percentage of relationships with known failure cases. System 

development is still preliminary and will require the creation of a set of destructive 

structural examples to test the accuracy and validity of the prediction in both failure and 
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non-failure scenarios. Additionally, the deployment of the current system in a full-size 

smaller structure will provide a better understanding of how the machine learning 

algorithm is capable of incorporating new loading conditions as the system records them.  
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Appendix 
 

Preprocessing Data 
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Smoothing in 2D 

 

[2]: filename = 'P1_2500' 

[3]: ## Read in deformation data from directory and store 
into a dataframe called df 

df = pd.read_csv(str(filename) + '_deformation.txt', 

delimiter = '\t', names =␣ 

,→['node', 'deform'], header = 
0).set_index('node') 

[4]: ### Read in safety factor data from directory and store 

into a dataframe called␣ 

,→sf 

sf = pd.read_csv(str(filename) + '_safetyfactor.txt', 
delimiter = '\t', names␣ 
,→=['node', 'safety'], header = 
0).set_index('node') 
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### SAFETY FACTOR 
## Plot original safety factor data (no smoothing) 
ax[0,1].plot(sf) ax[0,1].set(xlabel = 'Node 

Number', ylabel = 'Safety Factor', title = 'Raw␣ 
,→Data'); 

## Plot smoothed deformation data using moving 
averages ax[1,1].plot(sf_rolling.node, 
sf_rolling.safety) ax[1,1].set(xlabel = 'Node 

Number', ylabel = 'Safety Factor', title = 'Smooth␣ 
,→Data'); 

## Find local maxima/minima in 
safety factor data peaks_sf, _ = 
find_peaks(sf_rolling.safety) 
valleys_sf, _ = 
find_peaks(sf_rolling.safety * -
1) 

## Plot local maxima/minima 
in safety factor data ## 
Maxima plotted with an "x", 
minima with an "o" 
ax[2,1].plot(sf_rolling.node[peaks_sf], 
sf_rolling.safety[peaks_sf], "x") 
ax[2,1].plot(sf_rolling.node[valleys_sf], 
sf_rolling.safety[valleys_sf], "o") 
ax[2,1].plot(sf_rolling.node, sf_rolling.safety) 
ax[2,1].set(xlabel = 'Node Number', ylabel = 'Safety 

Factor', title = 'Extrema␣ ,→in Smooth Data'); 

## Save figure to file 
fig.savefig('deliv/' + 'plots_2D/' + str(filename) + 
'_2D.jpg') 
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finder['peaks_sf_ma'] = 
list(zip(sf_rolling.node[peaks_sf], sf_rolling. 
,→safety[peaks_sf])) finder['valleys_sf_ma'] = 
list(zip(sf_rolling.node[valleys_sf], sf_rolling. 
,→safety[valleys_sf])) 

[8]: ### Output saved values (maxima and minima) to csv for 
2d maxima/minima 

## Create output filename for maximum of deformations 
in 2d 
f= open('deliv/' + 'extrema_2D/' + str(filename) + 
"_2D_deform_max.csv", 'w+') 

## Write to file 
f.write("Node 
Number\tDeformation 
(m)\n") output = 
finder['peaks_df_ma'] 
for i in 
range(len(output)): 

f.write(str(output[i][0]) + '\t' + 
str(output[i][1]) + '\n') 

## Create output filename for minimum of deformations 
in 2d 
f= open('deliv/' + 'extrema_2D/' + str(filename) + 
"_2D_deform_min.csv", 'w+') 

## Write to file 
f.write("Node 
Number\tDeformation 

  
   

              
, →  

              
, →  
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(m)\n") output = 
finder['valleys_df_ma
'] for i in 
range(len(output)): 

f.write(str(output[i][0]) + '\t' + 
str(output[i][1]) + '\n') 

## Create output filename for maximum of safety factor 
in 2d 
f= open('deliv/' + 'extrema_2D/' + str(filename) + 
"_2D_safety_max.csv", 'w+') 

## Write to file 
f.write("Node 
Number\tSafety 
Factor\n") output = 
finder['peaks_sf_ma
'] for i in 
range(len(output)): 

f.write(str(output[i][0]) + '\t' + 
str(output[i][1]) + '\n') 

## Create output filename for minimum of safety factor 
in 2d 
f = open('deliv/' + 'extrema_2D/' + str(filename) + 
"_2D_safety_min.csv", 'w+') 

## Write to file 
f.write("Node 
Number\tSafety 
Factor\n") output = 
finder['valleys_sf_
ma'] for i in 
range(len(output)): 

f.write(str(output[i][0]) + '\t' + 

str(output[i][1]) + '\n') f.close() 
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Smoothing in 3D 

[9]: ## Firstly, with safety factor on the y-axis and 
deformation on the z-axis. 

cb = pd.merge(df, sf, left_index = True, 
right_index = True) results = 
splprep([cb.index, cb.safety, cb.deform], s 
= 1000000000) 

[10]: ## Create current 
figure fig = 
plt.figure(figsize=plt.f
igaspect(0.25)) ax = 
fig.gca(projection='3d') 
ax.plot(results[0][1][0], results[0][1][1], 
results[0][1][2]) 

## Set x (node number) 
labels ax.set_xlabel('Node 
Number', rotation = 150); 
ax.set_xticks([0, 300000, 
600000, 900000]) 
ax.set_xticklabels([0, 
'3e5','6e5','9e5']) 

## Set y (safety factor) 
labels y_max = 
np.max(results[0][1][1]) 
y_min = 
np.min(results[0][1][1]) 
ax.set_ylabel('Safety 
Factor', rotation = 100); 
ax.set_yticks(np.linspace(
y_min, y_max, 4)) 
ax.yaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.1f')) 

## Set z (deformation) 
labels z_max = 
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np.max(results[0][1][2
]) z_min = 
np.min(results[0][1][2
]) 
ax.set_zticks(np.linsp
ace(z_min, z_max, 4)) 
ax.zaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.e')) 
 

[11]: ### Save maximum and minimum values: 
finder['peaks_sf_y'] = 

list(zip(results[0][1][0][peaks_y],␣ 
,→results[0][1][1][peaks_y], 

results[0][1][2][peaks_y])) finder['peaks_df_z'] = 

list(zip(results[0][1][0][peaks_z],␣ 

,→results[0][1][1][peaks_z], 

results[0][1][2][peaks_z])) finder['valleys_sf_y'] 

= list(zip(results[0][1][0][valleys_y],␣ 

,→results[0][1][1][valleys_y], 

results[0][1][2][valleys_y])) 

finder['valleys_df_z'] = 

list(zip(results[0][1][0][valleys_z],␣ 

,→results[0][1][1][valleys_z], 
results[0][1][2][valleys_z])) 

[12]: ## Next, with deformation on the y-axis and safety 
factor on the z-axis. 

results = splprep([cb.index, cb.deform, 
cb.safety], s = 1000000000) 

[13]: ## Create current 
figure fig = 
plt.figure(figsize=plt.f
igaspect(0.25)) ax = 
fig.gca(projection='3d') 
ax.plot(results[0][1][0], results[0][1][1], 
results[0][1][2]) 
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## Set x (node number) 
labels ax.set_xlabel('Node 
Number', rotation = 150); 
ax.set_xticks([0, 300000, 
600000, 900000]) 
ax.set_xticklabels([0, 
'3e5','6e5','9e5']) 

## Set y (deformation) 
labels y_max = 
np.max(results[0][1][1]) 
y_min = 
np.min(results[0][1][1]) 
ax.set_ylabel('Deformation 
(m)', rotation = 100); 
ax.set_yticks(np.linspace(y
_min, y_max, 4)) 
ax.yaxis.set_major_formatter(mtick.FormatStrFormat
ter('%.e')) 

## Set z (safety factor) labels z_max = 
np.max(results[0][1][2]) z_min = 
np.min(results[0][1][2]) 
ax.set_zticks(np.linspace(z_min, z_max, 
4)) 
ax.zaxis.set_major_formatter(mtick.Form
atStrFormatter('%.1f')) 
ax.set_zlabel('Safety Factor'); 

## Peaks of y (deformation) plotted in 
orange peaks_y, _ = 
find_peaks(results[0][1][1]) 
ax.plot(results[0][1][0][peaks_y], 

results[0][1][1][peaks_y],␣ 
,→results[0][1][2][peaks_y], "x") 

## Peaks of z (safety factor) plotted 
in green peaks_z, _ = 
find_peaks(results[0][1][2]) 
ax.plot(results[0][1][0][peaks_z], 
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results[0][1][1][peaks_z],␣ 
,→results[0][1][2][peaks_z], "x") 

## Valleys of y (deformation) plotted in 
red valleys_y, _ = 
find_peaks(results[0][1][1] * -1) 
ax.plot(results[0][1][0][valleys_y], 

results[0][1][1][valleys_y],␣ 
,→results[0][1][2][valleys_y], "o") 

## Valleys of z (safety factor) 
plotted in purple valleys_z, _ = 
find_peaks(results[0][1][2] * -1) 

 

[14]: ### Save maximum and minimum values: 
finder['peaks_df_y'] = 

list(zip(results[0][1][0][peaks_y],␣ 
,→results[0][1][1][peaks_y], 

results[0][1][2][peaks_y])) finder['peaks_sf_z'] = 

list(zip(results[0][1][0][peaks_z],␣ 

,→results[0][1][1][peaks_z], 

results[0][1][2][peaks_z])) finder['valleys_df_y'] 

= list(zip(results[0][1][0][valleys_y],␣ 

,→results[0][1][1][valleys_y], 

results[0][1][2][valleys_y])) 

finder['valleys_sf_z'] = 

list(zip(results[0][1][0][valleys_z],␣ 

,→results[0][1][1][valleys_z], 
results[0][1][2][valleys_z])) 

[15]: ### Output saved values (maxima and minima) to csv for 
3d maxima/minima 



 
 

110 
 

## Create output filename for maximum of 
deformations in 3D (on y-axis) f = open('deliv/' + 
'extrema_3D/' + str(filename) + 

"_3D_deform_max_y.csv",␣ ,→'w+') 

## Write to file 
f.write("Node 
Number\tDeformation 
(m)\n") output = 
finder['peaks_df_y'] 
for i in 
range(len(output)): 
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Converting Datasets  

The code below reads the .txt files of the datasets from the ’data’ directory and saves 

them as a csv file in the ’data-csv’ directory for future use. 

 

 

Exploratory Data Analysis 

Load Standard Libraries for Data Handling and Visualization 
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  Load Data 

We will only consider deformation data, since this is a proof of concept kind of exercise. 

If a solution is found, then the stress data can also be used in a similar fashion. 

 

[7]: P1_2500_deformation = pd.read_csv('data-csv/P1_2500_deformation.csv') 

P1_5000_deformation = pd.read_csv('data-csv/P1_5000_deformation.csv') 

P1_7500_deformation = pd.read_csv('data-csv/P1_7500_deformation.csv') 

P1_10000_deformation = pd.read_csv('data-
csv/P1_10000_deformation.csv')
 
  

P2_2500_deformation = pd.read_csv('data-csv/P2_2500_deformation.csv') 

P2_5000_deformation = pd.read_csv('data-csv/P2_5000_deformation.csv') 

P2_7500_deformation = pd.read_csv('data-csv/P2_7500_deformation.csv') 

P2_10000_deformation = pd.read_csv('data-csv/P2_10000_deformation.csv') 

P3_2500_deformation = pd.read_csv('data-csv/P3_2500_deformation.csv') 

P3_5000_deformation = pd.read_csv('data-csv/P3_5000_deformation.csv') 

P3_7500_deformation = pd.read_csv('data-csv/P3_7500_deformation.csv') 

P3_10000_deformation = pd.read_csv('data-csv/P3_10000_deformation.csv') 

P4_2500_deformation = pd.read_csv('data-csv/P4_2500_deformation.csv') 
P4_5000_deformation = pd.read_csv('data-csv/P4_5000_deformation.csv') 
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P4_7500_deformation = pd.read_csv('data-csv/P4_7500_deformation.csv') 

P4_10000_deformation = pd.read_csv('data-csv/P4_10000_deformation.csv') 

# Check one 
P1_2500_deformation.head() 

[7]: Node Number Total Deformation (m) 

0 1 0.000181 

1 2 0.000193 

2 3 0.000182 

3 4 0.000182 

4 5 0.000183 

 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 
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Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) 0 

dtype: int64  

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 
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Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

Node Number 0 

Total Deformation (m) dtype: 

int64 

0 

The data does not contain any NaN or null values. 
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  Creating Image Data for Each Class 

 

The following code will bin the “Node Number” into “Node Number Binned” column, 

which will later be used to create graph images for each class. 

 

[8]: binwidth = int(max(P1_2500_deformation["Node Number"]) -␣ 
,→min(P1_2500_deformation["Node Number"]))/7 bins 

= range(int(min(P1_2500_deformation["Node 

Number"])),␣ 

,→int(max(P1_2500_deformation["Node Number"])), int(binwidth)) 
group_names = ["1/6", "2/6", "3/6", "4/6", "5/6", "6/6", ] 

P1_2500_deformation["Node Number Binned"] = 
pd.cut(P1_2500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P1_5000_deformation["Node Number Binned"] = 
pd.cut(P1_5000_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P1_7500_deformation["Node Number Binned"] = 
pd.cut(P1_7500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P1_10000_deformation["Node Number Binned"] = 
pd.cut(P1_10000_deformation["Node␣ ,→Number"], bins, labels=group_names) 

P2_2500_deformation["Node Number Binned"] = 
pd.cut(P2_2500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P2_5000_deformation["Node Number Binned"] = 
pd.cut(P2_5000_deformation["Node␣ 
,→Number"], bins, labels=group_names) 
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P2_7500_deformation["Node Number Binned"] = 
pd.cut(P2_7500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P2_10000_deformation["Node Number Binned"] = 
pd.cut(P2_10000_deformation["Node␣ ,→Number"], bins, labels=group_names) 

P3_2500_deformation["Node Number Binned"] = 
pd.cut(P3_2500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P3_5000_deformation["Node Number Binned"] = 
pd.cut(P3_5000_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P3_7500_deformation["Node Number Binned"] = 
pd.cut(P3_7500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P3_10000_deformation["Node Number Binned"] = 
pd.cut(P3_10000_deformation["Node␣ ,→Number"], bins, labels=group_names) 

P4_2500_deformation["Node Number Binned"] = 
pd.cut(P4_2500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P4_5000_deformation["Node Number Binned"] = 
pd.cut(P4_5000_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P4_7500_deformation["Node Number Binned"] = 
pd.cut(P4_7500_deformation["Node␣ 
,→Number"], bins, labels=group_names) 

P4_10000_deformation["Node Number Binned"] = 
pd.cut(P4_10000_deformation["Node␣ ,→Number"], bins, labels=group_names) 

P1_2500_deformation.dropna(axis=0, inplace=True) 
P1_5000_deformation.dropna(axis=0, inplace=True) 
P1_7500_deformation.dropna(axis=0, inplace=True) 
P1_10000_deformation.dropna(axis=0, inplace=True) 

P2_2500_deformation.dropna(axis=0, inplace=True) 
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P2_5000_deformation.dropna(axis=0, inplace=True) 
P2_7500_deformation.dropna(axis=0, inplace=True) 
P2_10000_deformation.dropna(axis=0, inplace=True) 

P3_2500_deformation.dropna(axis=0, inplace=True) 
P3_5000_deformation.dropna(axis=0, inplace=True) 
P3_7500_deformation.dropna(axis=0, inplace=True) 
P3_10000_deformation.dropna(axis=0, inplace=True) 

P4_2500_deformation.dropna(axis=0, inplace=True) 
P4_5000_deformation.dropna(axis=0, inplace=True) 
P4_7500_deformation.dropna(axis=0, inplace=True) 
P4_10000_deformation.dropna(axis=0, inplace=True) 

 

Plot Graphs of the Classes  

[9]: # Save function is commented, as the code has already run and images created in␣ 
,→the director 

# Remove the tile tag when recreating images, and uncomment the savefig lines 

ax1 = sns.relplot("Node Number Binned", "Total Deformation (m)",␣ 
,→data=P1_2500_deformation, kind='line') ax1.set(ylim=(0, 

0.012), title="P1 2500 deformation") # ax1.savefig("class-
images/P1_2500_deformation.png") ax2 = sns.relplot("Node 
Number Binned", "Total Deformation (m)",␣ 

,→data=P1_5000_deformation, kind='line') ax2.set(ylim=(0, 
0.012), title="P1 5000 deformation") # ax2.savefig("class-
images/P1_5000_deformation.png") ax3 = sns.relplot("Node 
Number Binned", "Total Deformation (m)",␣ 

,→data=P1_7500_deformation, kind='line') ax3.set(ylim=(0, 
0.012), title="P1 7500 deformation") # ax3.savefig("class-
images/P1_7500_deformation.png") ax4 = sns.relplot("Node 
Number Binned", "Total Deformation (m)",␣ 

,→data=P1_10000_deformation, kind='line') 

ax4.set(ylim=(0, 0.012), title="P1 10000 
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deformation") # ax4.savefig("class-

images/P1_10000_deformation.png") 

ax5 = sns.relplot("Node Number Binned", "Total Deformation (m)",␣ 
,→data=P2_2500_deformation, kind='line') ax5.set(ylim=(0, 

0.012), title="P2 2500 deformation") # ax5.savefig("class-
images/P2_2500_deformation.png") ax6 = sns.relplot("Node 
Number Binned", "Total Deformation (m)",␣ 

,→data=P2_5000_deformation, kind='line') ax6.set(ylim=(0, 
0.012), title="P2 5000 deformation") # ax6.savefig("class-
images/P2_5000_deformation.png") ax7 = sns.relplot("Node 
Number Binned", "Total Deformation (m)",␣ 

,→data=P2_7500_deformation, kind='line') 
 
 

Training 

Fastai library is used to train a neural network model using the augmented images created 

from the “EDA and Data Preparation” notebook. 

 

 

 

A DataBunch is created using the saved augmented images in the 

‘augmented_images’ directory (in my case, Google Drive). The size of the image is 

347px, while 20% of the images are used for validation. 

 

[2]: data = ImageDataBunch.from_folder('/content/drive/My Drive/Upwork/Comparison
␣ ,→Neural Network/augmented_images', size=347, valid_pct=0.2). 

,→normalize(imagenet_stats) data.show_batch(rows=3, figsize=(7,6)) 
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Downloading: "https://download.pytorch.org/models/resnet34-333f7ec4.pth" to 

/root/.cache/torch/checkpoints/resnet34-333f7ec4.pth 

  
     

       

  
       



 
 

121 
 

HBox(children=(FloatProgress(value=0.0, max=87306240.0), HTML(value=''))) 

 

 

[5]: Sequential( 

(0): Sequential( 

(0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) 

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(2): ReLU(inplace=True) 

(3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, 

ceil_mode=False) 

(4): Sequential( 

(0): BasicBlock( 

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 
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(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(1): BasicBlock( 

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(2): BasicBlock( 

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 
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(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), 

bias=False) 

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(5): Sequential( 

(0): BasicBlock( 

(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 



 
 

124 
 

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(downsample): Sequential( 

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False) 

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(1): BasicBlock( 

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 
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) 

(2): BasicBlock( 

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(3): BasicBlock( 

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 
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(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(6): Sequential( 

(0): BasicBlock( 

(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(downsample): Sequential( 
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(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False) 

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(1): BasicBlock( 

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(2): BasicBlock( 
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(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(3): BasicBlock( 

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 
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(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(4): BasicBlock( 

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(5): BasicBlock( 

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 
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(relu): ReLU(inplace=True) 

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(7): Sequential( 

(0): BasicBlock( 

(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 
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(downsample): Sequential( 

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False) 

(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

(1): BasicBlock( 

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

(2): BasicBlock( 
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(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(relu): ReLU(inplace=True) 

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 

1), bias=False) 

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

) 

) 

) 

(1): Sequential( 

(0): AdaptiveConcatPool2d( 

(ap): AdaptiveAvgPool2d(output_size=1) 

(mp): AdaptiveMaxPool2d(output_size=1) 

) 

(1): Flatten() 
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(2): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(3): Dropout(p=0.25, inplace=False) 

(4): Linear(in_features=1024, out_features=512, bias=True) 

(5): ReLU(inplace=True) 

(6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, 

track_running_stats=True) 

(7): Dropout(p=0.5, inplace=False) 

(8): Linear(in_features=512, out_features=16, 

bias=True) ) 

) 

 

With the default layers and restnet 34, the error rate is very high. Let us unfreeze 

and study the learning rate. 

[7]: learn.unfreeze() 

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph. 
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  0.1.1 Next, we use Restnet50 and a better learning rate to gain improved 

accuracy. 

[14]: data = ImageDataBunch.from_folder('/content/drive/My Drive/Upwork/Comparison
␣ ,→Neural Network/augmented_images', size=347, valid_pct=0.2). 

,→normalize(imagenet_stats) 

[15]: learn = cnn_learner(data, models.resnet50, metrics=error_rate) 
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Downloading: “https://download.pytorch.org/models/resnet50-19c8e357.pth” to 

/root/.cache/torch/checkpoints/resnet50-19c8e357.pth 

HBox(children=(FloatProgress(value=0.0, max=102502400.0), HTML(value=''))) 

 

LR Finder is complete, type {learner_name}.recorder.plot() to see the 
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