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Abstract

Title:

A Spatiotemporal Bayesian Model for Population Analysis

Author:

Mohamed Jaber

Major Advisor:

Nezamoddin Nezamoddini-Kachouie, Ph.D.

Spatiotemporal population analysis based on incomplete, redundant, and unidentified ob-

servations is critically important, yet it is a very challenging problem. Different approaches

have been proposed and several methods have been implemented to address this problem.

Capture-recapture methods have been widely used and have become the standard sampling

and analytical framework for ecological statistics with applications to population analysis.

Despite the fact that capture-recapture methods have been commonly used, these methods

do not consider the spatial structure of the population. Moreover, conventional capture-

recapture methods do not use any explicit spatial information with regard to the spatial

nature of the sampling and spatial distribution of individual encounters. Recently a spa-

tial capture-recapture method has been introduced by Royle and Chandler to link observed

encounter histories of individuals to spatial population ecology and study the population

using new technologies such as remote cameras and acoustic sampling. The first objective

of this study was investigating feral hog population in the Kennedy Space Center (KSC)

which is part of Merritt Island National Wildlife Refuge in Titusville, about 60 miles east of
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city of Orlando in Brevard and Volusia Counties in Florida. Due to the size of KSC and the

limited resources, two study sites within KSC were chosen for investigation, monitoring,

and data collection. These sites were: 1. Happy Creek (HC); and 2. Tel-4. We estimated

the hog population using the spatial capture model introduced by Royle and Chandler. The

estimated hog population for HC was between 55 and 108 hogs. The estimated hog pop-

ulation for Tel-4 was between 61 and 114 hogs. To estimate the hog population in KSC,

we combined the results obtained from two study sites within KSC. We calculated and as-

signed specific weights to the estimated hog populations in HC and Tel-4 based on their

percentage areas in comparison with the entire area of KSC. As a result, the calculated

weights were 0.73 and 0.27 for HC and Tel-4 respectively. The estimated hog population

N using the proposed weighted averaging was between 3, 058 to 5, 862 hogs. Although the

spatial capture method is promising, the estimated population size is not robust and suffers

from spatial complexity. Therefore, the second objective of this research was to perform a

comprehensive study of the parameters of the spatial capture model and their impacts on

the estimated population size. The third goal was focused on identification of parameters

with significant impact on the estimated population size and to develop informative priors

for the identified parameters. The fourth objective was to improve the spatial capture model

by integrating camera spatial locations and regularizing spatiotemporal parameters for the

estimation of the population size.
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Chapter 1

Introduction

Population analysis based on spatial sampling is an emerging field of research due to its

broad range of applications. Some important applications are to preserve the population

of endangered species and control the population of invasive species which are not native

to the host ecosystem. The first step to control the population is estimating the population

size. Several methods have been developed to estimate the abundance of animals [1–3].

A popular approach to estimate the abundance of animals is by counting the individuals

or their signs. In this way, the estimated number of individuals per unit of the area can

be obtained. This estimate is proportionate to the whole population and can be used to

estimate the population size using the population area.

Capture-recapture methods have been widely used and have become the standard sam-

pling and analytical framework for ecological statistics with applications to population

analysis. In this framework, a series of samples are taken from the animal population

under study. The first time that an animal is captured, it is tagged and released. The second

sample will likely contain some tagged animals and some without a tag. All animals in the

second sample are recorded and released after tagging those without a tag. At the end of

survey, each animal has a unique capture history. For instance, a history of five samples

”10010” for a specific animal means that it has been caught in the first and fourth sam-
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pling occasions. The intuition behind the capture-mark-recapture technique is that if we

mark a significant number of individuals in a population and release them, the fraction that

we recapture in the second sample can be used to extrapolate the size of the entire popu-

lation. Three pieces of information are needed to estimate the population size using this

approach. The number of individuals that are marked in the first sampling occasion M , the

number of individuals that were caught in the second sampling occasion, and the number

of individuals that were captured in the first sample and recaptured in the second sample

R [3].

These methods depend on physical capture of individuals. It means, we need to capture

the individuals physically to collect the encounter history. Nowadays, due to the techno-

logical advances, the ability to obtain the encounter history data has improved. Some new

capture methods do not require physical capture and handling of animals. The encounter

history can be collected using detection devices such as camera traps, acoustic recordings,

and DNA samples.

Cameras are usually placed near the animal trails or food sources. After animals are

photographed, they must be identified either manually or by machine learning methods.

Other problems with camera trappings are capturing multiple camera encounters of the

same animal in a short time period. Unidentifiable camera encounters can occur especially

at night.

Despite the fact that capture-recapture methods have been commonly used, these meth-

ods do not consider the spatial structure of the population in the sampling and analysis.

Moreover, conventional capture-recapture methods do not use any explicit spatial informa-

tion with regard to the spatial nature of the sampling and spatial distribution of individual

encounters. Recently a spatial capture-recapture method has been introduced by Royle and

Chandler [4] to link observed encounter histories of individuals to spatial population ecol-

ogy and study the population using new technologies such as remote cameras and acoustic

sampling. While this method is promising, the estimated population size is not robust and
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suffers from spatial complexity problems. An open ended problem is to address the short-

comings of this method and make the model robust with regard to spatial sampling and

spatiotemporal population analysis. Therefore, the first objective of this research is to per-

form a comprehensive study of the model parameters and their impacts on the estimated

population size. The second goal will then focus on identification of parameters with sig-

nificant impact on the estimated population size and to develop informative priors for the

identified parameters. The third objective is to introduce a hybrid spatiotemporal capture-

recapture/capture-removal method and enhance the estimation of the population size by

incorporating the collected data using capture-removal method.

1.1 A Review of Hog Population

Invasive species are defined as any kind of living organism (animals, plants, bacteria, in-

sects, fish, fungus, or even an organism’s seeds or eggs) that are not indigenous or native

to an ecosystem [5]. These species usually cause massive harm to wildlife in many ways

when introduced to a new area [6]. Moreover, invasive species are rapidly growing, spread-

ing aggressively with potential, adapting, they conquer. As a result, they can compete with

native wildlife for resources and disrupting the entire ecosystem [7]. Invasive species jeop-

ardize local economies, threatening human health, infrastructure, and devastating entire

ecosystems. For these reasons, they cost the global economy over a trillion dollars each

year [8], and almost $120 billion in US [9].

The spread of invasive species into new habitats is associated with human activity, often

unintentionally. However, some invasive species are introduced intentionally to their new

environment as a form of pest control. For example, cane toads were brought to Australia in

the early 20th century to control destructive beetles in Queensland’s sugarcane crops [10].

Moreover, invasive species can be introduced as a food source or even as home decoration

[8, 11]. Invasive species may also escape to the wild accidentally through natural factors
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such as a storm, climate shift, or human intervention [12].

1.2 Feral Hogs (Sus scrofa) Population

The species of interest here in this work is Sus scrofa which includes wild boars, feral,

and domesticated hogs. The differences between wild boars and hogs is that wild boars

do not have any domesticated ancestry, while feral hogs are descendants of domesticated

hogs that now live outside of captivity and have become undomesticated. Domestic pigs

generally have thinner and bristlier coats than wild boars. Wild boars have noticeable hair

running along their backs (especially bristles), and have longer tails, legs, snouts, and larger

heads. After only a few generations of domestic pigs being in the wild (hybrids hogs),

distinguishing physical characteristics of domestic and wild ones is very difficult [13, 14].

The average lifespan of feral hogs is about four to six years. However, they may live up to

eight years [13].

Feral hogs exhibit sexual dimorphism, with the male hogs being about (5−10)% larger

and about (25−30)% heavier than females. Male hogs can weigh as much as 250 lbs, while

female hogs may weigh up to 180 lbs. Their social structure is female-dominated. Adult

males tend to live in seclusion, but may form small groups as developing adults. Feral hogs

will reproduce (1 − 2) times per year depending on their habitat [15]. However, the time

between litters is not consistent, as behavioral, biological, and environmental factors have

a substantial influence [16].

Hogs are omnivores, but mostly consume plant matter [17]. They tend to eat energy-rich

plant food including acorns, pine seeds, cereal grains, and other crops. There are seasonal,

interannual, and regional differences in their diets. Sus scrofa are opportunistic omnivores

whose diet is largely determined by the relative availability of different food types during

the season, year, or region [18, 19].

Wild boars can be found in a wide variety of habitats across the world. Generally,
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they prefer tropical climates but can survive elsewhere. Hogs prefer to stay in the shade

with dense vegetation during the day [20]. Their priorities for habitat are food availability,

shelter, and hunter presence. The types of habitats preferred by hogs include palm-oak-wax

myrtle, citrus groves, grass swales, and grass ponds [21, 22]. We study the population of

feral hogs in Kennedy Space Center refuge [23] which is part of Merritt Island Wildlife

Refuge. Feral hogs in Merritt Island Wildlife Refuge tend to eat plant matter with high

carbohydrate content rather than high protein or high lipids [24]. Feral hogs in Merritt

Island Wildlife Refuge prefer shaded habitats during warmer months.

1.2.1 History of Feral Hogs in the US

Wild pigs were first brought to the United States in the 1500s as a source of food by Span-

ish Explorer, Hernando De Soto [25]. He brought the first ”thirteen sows” to Tampa Bay,

Florida, in 1539. In three years’ time, the population of pigs had grown to 700 – a very

conservative estimate. This estimate excludes pigs that are eaten by his troops, given to or

stolen by Indians and those that escaped and became wild-living pigs. Due to the ability of

hogs to occupy a relatively wide range of habitats, pigs spread rapidly through the south-

eastern United States establishing the first feral hog population in North America [12, 26].

In the early 1900s, Eurasian or Russian wild boars were introduced to the United States

in a game preserve in Hooper Bald, Graham County, North Carolina. The third type of

hogs was introduced interbreeding occurred between those two types of feral hogs . From

the 1950s on, wild pig populations started on a strong growth curve that has never stopped.

These feral hogs have found in 47 states with established populations in at least 38 states.

In Florida early 1981, feral hogs were reported in 66 of 67 counties, and eight years

later reported the occurrence of pigs in every county in Florida [27].

Hogs were introduced into Merritt Island in the 16th century during Spanish control of

Florida. When NASA bought Merritt Island in the early 1960s, the farmers who had owned

the land were ordered to remove all hogs from the propriety. However, not all hogs were
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Figure 1.1: Feral Swine Populations 1982 by County

captured; thus implies that the feral hogs that inhabit Merritt Island originated from these

hogs [28].

The feral hogs are an invasive species, as Sus scrofa are not indigenous to North Amer-

ica. Hogs originate from across Europe and Asia. The hogs brought to Florida were thought

to be initially captured in Asia, and then brought to the Caribbean. From there, the hogs

were brought to Florida in multiple landings. In 2013, the United States is home to an esti-

mated 6.3 million feral hogs (Sus scrofa) about two-third of them range in the southeastern

United States (Florida and Texas) [29, 30].

Comparing Figures 1.1 and 1.2, shows the magnitude of the alarming increase in the

size of the hogs population in the United States of America [31].
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Figure 1.2: Feral Swine Populations 2019 by County

1.2.2 Food Habits of Feral Hogs

The damage feral hogs cause is wide-ranging and far-reaching. With populations expanding

everywhere in the United States, this invasive animal negatively impacts everything from

cultivation and the environment to human health and public safety.

Feral hogs can destroy ecosystems by over-foraging, rooting the ground until it becomes

destabilized, and eliminating native species through consumption. As well as with their

feeding, rooting, trampling, and wallowing behaviors. Alongside that, feral hogs cause

massive damage to agriculture, consuming crops and causing property damage. Specif-

ically, feral hogs have caused at least $2.5 million in damage to agriculture and infras-

tructure. The federal government spends about $30.5 million annually to counteract these

damages made by hogs (U.S. Department of Agriculture).

Studies indicate that feral hogs can carry a large number of parasites and pathogens
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(at least 30 diseases, and approximately 40 types of parasites) that can affect people, pets,

livestock, and wildlife by transmitting disease. However, diseases caused by feral hogs

do not pose a major threat to humans. These diseases can be a concern for cattle. The

transmission occurs through direct contact with feral hogs that use the same pastures or

feedlots with cattle. Brucellosis (Brucella species bacteria) is just one example of these

diseases. Some diseases such as tuberculosis that may be exposed from indirect contact

with feral hogs if they can access feed and water sources utilized by cattle. Besides, some

of these diseases can be transmitted with direct or indirect contact with feral hogs such as

Leptospirosis.

Feral hogs were chosen as the study species because of the damage they cause to

Kennedy Space Center. They cause a lot of rooting and wallowing damage alongside roads

and native plant destruction. However, one of the major issues with feral hogs at Kennedy

Space Center is the car accidents they cause. Hogs can cause serious damage in car ac-

cidents to the driver and the car. There was over $26, 000 in-car damage that was caused

by accidents with hogs from 2011 to 2012. There is at least 1 confirmed fatal accident on

Kennedy Space Center that was caused by a hog.

1.3 Study Area

This study was conducted in the Titusville, Florida to investigate feral hog population in

the Kennedy Space Center (KSC).

Data was collected in two study sites shown in Figure 1.3. This investigation took place

within the boundaries of the Kennedy Space Center along with the east-central coast of

Florida [32], specifically on the Merritt Island National Wildlife Refuge (MINWR), about

60 miles east of the city of Orlando in Brevard and Volusia Counties. Because of the

limited number of cameras, two sites, Happy Creek and Tel-4 in KSC were selected for

study. The Happy Creek study site is a scrub landscape centrally located within KSC. It is
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Figure 1.3: Kennedy Space Center (KSC), and the two main study sites at Happy Creek
(Red) and Tel-4 (Blue)

a 536-ha study site dominated by well-drained soils and scrub oaks. Unlike the Tel-4 study

site, Happy Creek has very little pine overstory, and forests occur in the form of hardwood

hammocks on mesic sites. Swale marshes at Happy Creek also are interspersed but are

deeper and larger than the marshes found at Tel-4.

The Tel-4 study site is 14 km south of Happy Creek [33]. It is a 295-ha located near

the southern boundary of KSC [32]. Mesic shrubs dominate Poorly-drained upland sites

(e.g., Lyonia spp., Serenoa repens, llex sp.), while scrub oaks (Quercus spp.) dominated on

well-drained upland sites.

Merritt Island National Wildlife is in a humid subtropical zone with short, mild winters

and hot, humid summers. The average range (1985 - 2015) of winter temperature (in Jan-

uary) is 50 F at dawn and 71 during the afternoon. However, in the summer (in August), the

average temperature from 71 to 90. Besides, the averages (May to October) 49 inches of

rain a year. The mean dawn relative humidity (RH) is between 88 and 95 percent through-
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Camera	Placement

Figure 1.4: Camera Placement in Happy Creek, KSC, Florida

Camera	Placement

Figure 1.5: Camera Placement in Tel-4, KSC, Florida
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out the year, while readings in the mid-afternoon are between 55 and 67 percent [34].
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Chapter 2

An Overview of Bayesian Statistics and

Markov Chain Monte Carlo

There are two different approaches for statistical data analysis: the classical or Frequentist

approach and the Bayesian approach [35]. In the Frequentist approach, it is assumed that

for a given population, the probability distribution f(X, θ) is applicable for an unknown

parameter or parameter set θ. The aim is to estimate the parameter using a point estimator

or find a confidence interval for the unknown parameter. Also, a specific hypothesis about

this parameter can be tested using a random sample from the population [36].

In many cases, extra information about the parameter θ is available either from previous

studies or from researcher prior experience. Using this information can help to estimate the

unknown parameter. This approach is called Bayesian approach introduced by Thomas

Bayes (1701 - 1761) [37]. The fundamental difference from the classical approach is that

the parameter θ might take different values, then it will be a random variable instead of

fixed value [38]. As a result, θ has a probability distribution π0 (θ). This distribution is

before the data is observed and is called a prior distribution of the parameter θ. However,

the distribution for θ after the data count is called posterior distribution π (θ | X) and it can
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be written as:

π (θ | X) =
π0 (θ) f (X | θ)

f (X)
(2.1)

where f(X) is prior predictive distribution [39] that is a normalizing function to guaran-

tee that the posterior distribution is a valid probability distribution. If θ is a continuous

value: f (X) =
∫
π0 (θ) f (X | θ) dθ). Exceptionally, θ can be discrete. In such cases,

the integral will be replaced by sum. Note that this constant f (X) does not depend on θ

and then does not provide any additional information about the posterior distribution. As a

result, this value is not necessary to be calculated to evaluate the properties of the posterior

distribution. Thus, we can rewrite 2.1 as:

π (θ | X) ∝ π0 (θ) f (X | θ) (2.2)

where π (θ | X) provides information from the data. If this function is considered as a

function of θ, it can be rewritten as L (θ;X) where L (θ;X) ∝ π (θ | X). It is called the

likelihood function and thus;

π (θ | X) ∝ π0 (θ)L (θ;X) (2.3)

In Bayesian statistics, the goal is to find the posterior distribution by combining the infor-

mation from the data and the prior distribution [40].

As we mentioned earlier, the unknown parameter θ is assumed to be a constant value in

Frequentist framework. Thus, we can get the point estimate for true parameter θ and use this

statistic to calculate the confidence interval to express the uncertainty around the estimated

value. On the other hand, Bayesian inference is based on the posterior distribution of θ.

We can use mean or median of the posterior distribution, which provides a measure of

the center of the posterior distribution. This point estimate will be used for constructing

a confidence interval or a credible interval (in Bayesian framework) [39] of the posterior
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distribution.

The main difference between Bayesian credible interval and the Frequentist confidence

interval is that in Frequentist, the parameter is fixed (but unknown) and the lower bound

and upper bounds of the confidence interval are random variables. In contrast, Bayesian

credible interval treats the estimated parameter as a random variable while the information

from the prior distribution is used to quantify our belief about this value. As a result, the

bounds of the interval are treated as fixed values. Thus, we can say
∫ b
a
π (θ | X) = 1 − α

which means the true parameter is in the interval (a, b) with probability 1 − α. Finally,

the most common method for obtaining a credible interval is the highest posterior density

(HPD) interval. There are other methods such as the equal-tail interval.

2.1 Bayesian Statistics: Advantages and Disadvantages

We should point out that, Bayesian and Frequentist statistics have some similarities, and

each of them has some advantages and risks. By increasing the sample size, the results

obtained by Bayesian and Frequentist inferences get closer, which means the posterior

mean and the MLE are approximately equal [39]. Thus, the question is which method is

preferred based on the information that we have. However, there are some advantages in

using Bayesian statistics over Frequentist statistics. First, it is easy to interpret. For ex-

ample, we can say the probability that the true parameter θ falls in credible interval [a, b]

is 95%, which is not the case in classical Frequentist approach. Second, in Frequentist

statistics, when new observations become available, we have to recalculate all statistics

again to get the new estimate for the parameter of interest. In contrast, the outcome of

Bayesian inference is the posterior distribution and can be used as prior distribution when

new samples become available [41]. Third, Bayesian statistics offers a direct method to

estimate any function of parameters. Forth, it obeys the likelihood principle, which is not

the case in classical statistics. In Bayesian, if two experiments have the same likelihood,
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then all inferences around θ must be the same. Since all information about the parameter

in the data is already included in the likelihood function. Another important advantage of

Bayesian statistics is that, if we have a vector of parameters Θ = (θ1, θ2, · · · , θp), pos-

terior distribution of any parameter or any subgroup of parameters can be obtained using

marginalization, that is, the posterior distribution of a nuisance parameter of interest can

be obtained by π (θ1 | X) =
∫
π (Θ | X) dθ2, . . . , dθp. If marginalization is not possible,

Markov chain Monte Carlo (MCMC) algorithm and empirical Bayes technique can be used

to estimate the posterior distribution of nuisance parameter. Finally, there are some risks

that may cause misleading results or may increase the computational costs. Since there is

no guaranteed way to choose the prior distribution, Bayesian inference requires a way to

integrate our beliefs into prior distribution. As a result, we can say that choosing the prior

distribution is an essential task in the Bayesian approach. It can be a primary advantage or

a major disadvantage over classical frequentis statistics.

2.2 Prior Distribution

It is imperative to have a way of making statistical inference to reflect beliefs (or prior

information). Bayes theorem, allows updating our beliefs based on new information, which

means our belief can be changed based on new observations. This is the core idea of a prior

distribution, the information about a parameter before we observe any evidence. It will

allow us to change our belief using Bayesian statistics. Mathematically, we take prior belief

and update it using the observations to obtain the posterior distribution of the parameter.

The question now is: how can we choose the prior distribution?

The choice of the prior distribution is considered the heart of the Bayesian inference. It

is not an easy task to choose the correct prior to obtain a reasonable estimate of the param-

eter. Also, different priors may produce different posteriors. A conjugate prior is often a

relevant choice. The prior distribution of parameter θ is conjugate prior for the likelihood
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Table 2.1: The Probability Distributions Associated with its Conjugate Priors

The Distribution of X The Parameter The Conjugate Prior Distribution
Binomial
Poisson
Exponential
Normal
Normal

Prob. of success
Mean
The inverse of mean
Mean (known variance)
Variance (known mean)

Beta
Gamma
Gamma
Normal
Inverse Gamma

function if the prior and posterior distributions belong to the same family. Conjugate prior

can be formed by removing the factors that do not depend on the parameter θ in likelihood

function and replace the expressions which depend on data with parameters. The sample

size must be also replaced. In this way, we will find a kernel for the conjugate prior. A

normalizing constant is required to obtain a valid prior distribution. For example, for a

Poisson distribution, the likelihood function is:

L(X; θ) =
n∏
i=1

θxe−θ

x!
∝ θ

∑
i xie−nθ (2.4)

By replacing
∑

i xi which depends on data and the sample size n with parameters λ1 and

λ2 respectively, we obtain the conjugate prior;

π(θ) ∝ θλ1e−λ2θ (2.5)

which is proportional to Gamma distribution with parameters λ1 + 1 and λ2. As a result,

we can say that the conjugate prior of Poisson distribution is Gamma distribution.

If we choose prior distribution as a conjugate to likelihood, the posterior will have the

same form as the prior distribution. The main advantage of using the conjugate prior is its

low computational cost. However, choosing a conjugate prior requires that the parameter of

interest follows the selected distribution. Otherwise, it may produce a misleading posterior

distribution. In other words, if we do not have enough information about the parameter

of interest, we should choose a prior distribution that minimally depends on the posterior
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distribution. That is, the inference is not affected by the prior information and is mainly

influenced by the observed data. This kind of prior distribution is called objective or non-

informative prior. The prior π0(θ) is called a non-informative prior if it has a minimal

impact on the posterior distribution of θ. Uniform distribution is a typical non-informative

prior introduced by Laplace [42]. Notice that, if the parameter range is: [−∞,∞], the

prior is called improper prior. A non-informative prior is said to be improper if its integral

(
∫
π0(θ)dθ) is not equal to one and in turn it is not a valid (proposer) distribution. Hence,

rather we can use the Jeffreys prior:

π0(θ) ∝
√
|I(θ)| (2.6)

where I(θ) is the Fisher information for θ.

An informative prior dominates the likelihood, and thus it has a noticeable impact on

the posterior distribution. Notice that, for a given sample size, the more informative the

prior, the more significant will be its influence on the posterior distribution. While for a

given prior distribution, the larger the sample size, the more significant will be the influ-

ence of likelihood on the posterior distribution. In practice, a precise estimate of posterior

distribution can be obtained using smaller sample sizes if we use more informative priors.

To achieve a similar precision using a weak or non-informative prior, a larger sample size

is required.

2.3 Markov Chain Monte Carlo (MCMC)

The concept of Monte Carlo was introduced by the Polish-American mathematician, Stanis-

law Ulam. Nowadays, Monte Carlo simulation is considered as one of the most potent

statistical tools in many fields of research in engineering and science. Monte Carlo refers

to the methods used to generate random numbers. In Monte Carlo method, we generate

sets of random numbers from different distributions. For example, we generate a random
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sample from a Normal distribution with mean µ and variance σ2, called proposal distribu-

tion. Proposal distribution will be used to accept/reject samples. Using the random samples

generated from the proposal distribution, we can estimate the distribution of θ.

2.3.1 Markov Chain

Markov chain is a stochastic process to generate a sequence of states such that a new state

is generated based on the previous state, and in turn it depends on the previous state in

the sequence. For instance, the value of θ in time t is drawn from a Normal proposal

distribution where the mean (center) of the Normal distribution is set to the value of θ in

time t− 1:

θ0 = 0.500, θt ∼ N(θt−1, σ)

θ1 ∼ N(0.500, σ), θ1 = 0.599

θ2 ∼ N(0.599, σ), θ2 = 0.579

θ3 ∼ N(0.579, σ), θ3 = 0.583

(2.7)

If we generate a large sample using MCMC, a trace plot of θ demonstrates a random walk.

Note that the resulting probability density function of θ does not resemble the proposal

distribution.

2.4 Metropolis-Hasting Algorithm

Metropolis-Hastings (M-H) algorithm was introduced by N. Metropolis, A. Rosenbluth,

M. Rosenbluth, A. Teller, and E. Teller (1953) and generalized by Hastings (1970). M-H

algorithm is used to decide which proposed values of θ must be accepted or rejected. It

begins by generating a sample from prior distribution of θ. The posterior probability of θ

will then be estimated using the previous value of θ. Notice that, the functional form of the

posterior distribution is not required, since the posterior distribution is the product of prior
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distribution and the likelihood function. Calculate the ratio of the posterior probability of

the candidate value of the parameter of interest θ to the posterior probability of the previous

value of θ:

r(θt, θt−1) =
posterior probability of θt

posterior probability of θt−1

=
prior(θt)

prior(θt−1)

Likelihood(θt)

Likelihood(θt−1)
(2.8)

If this ratio is greater than one, the new value of θ will be accepted. If the ratio is less than

one, it will be considered as acceptance probability, α, which is the probability of moving

from the current value θt−1 to the proposed value θt:

α(θt, θt−1) = min[r(θt, θt−1), 1] (2.9)

Next, draw a value u from a uniform distribution and compare it with α. If u > α, accept

the new value of θ, otherwise reject it and return to the previous step.
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Algorithm 1: Metropolis-Hastings algorithm
Initialize θ(0) ∼ q(θ)

for iteration t=1,2,...do

Propose: θcand ∼ q(θ(t)|θ(t−1))

Acceptance Probability:

α(θcand|θ(t−1)) = min{1, q(θ
(t−1)|θcand)π(θcand)

q(θcand|θt−1)π(θt−1)
}

u ∼ Uniform(u; 0, 1)

if u < α then

Accept the proposal: θt ← θcand

else

Reject the proposal: θt ← θt−1

end if

end for

2.5 Gibbs Sampler

Gibbs sampling is special case of Metropolis-Hastings where the proposed values will al-

ways be accepted since the acceptance probability is equal to one. Gibbs sampler repeatedly

samples from the posterior distribution of each variable given all other variables [43] using

MCMC. In this way, the Markov chain is constructed by sampling from the conditional

distribution for each parameter θi in turn, while treating all other parameters as observed.

One cycle of the Gibbs sampler is done when iterating over all parameters is completed.

For example, suppose that we have two variables [θ1, θ2], where sampling from the joint

density function P (θ1, θ2) is not possible, but rather sampling from the conditional distri-

butions P (θ1|θ2) and P (θ2|θ1) are fairly simple. To generate a sequence of random values,

(
θ
(0)
1 , θ

(0)
2

)
,
(
θ
(1)
1 , θ

(1)
2

)
,
(
θ
(2)
1 , θ

(2)
2

)
, ...,

(
θ
(M)
1 , θ

(M)
2

)
(2.10)
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we first set initial value θ(0)2 and then iteratively obtain the rest by generating values using

2.10:

θ
(j)
1 ∼ P

(
θ1|θ(j)2

)
θ
(j+1)
2 ∼ P

(
θ2|θ(j)1

) (2.11)

Algorithm 2: Gibbs Sampling Algorithm
Initialize θ(0) ∼ q(θ)

for iteration i=1, 2, ..., do

θ
(i)
1 ∼ P

(
θ1|θ(i−1)

2 , θ
(i−1)
3 , ..., θ

(i−1)
M

)
θ
(i)
2 ∼ P

(
θ2|θ(i)1 , θ

(i−1)
3 , ..., θ

(i−1)
M

)
.

.

.

θ
(i)
M ∼ P

(
θM |θ(i)1 , θ

(i)
2 , ..., θ

(i−1)
M−1

)
end for

2.6 MCMC Convergence Diagnostic

In Bayesian inference, the stationary state of the Markov chain is considered the posterior

distribution:

lim
n→∞

Xn = π(θ|X) (2.12)

Hence, we should make sure that Markov chain has converged to its stationary distribution.

This is essential due to the fact that the target distribution will not be well explained using

samples drawn from a Markov chain that has not converged to its stationary state. In a

similar way, we should check out the convergence of all parameters in the model to avoid

obtaining misleading results [44]. Although, it is difficult to prove the convergence, we can

check (while cannot prove) whether or not the chain has converged [45]. There are different
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diagnostic methods to check whether the chain has converged to its stationary distribution.

These methods are divided into two groups, pre-convergence, and post-convergence [46].

In this section, we will discuss these two approaches to check whether the MCMC

has converged to its stationary distribution, and whether we have obtained large enough

sample size from this distribution to accurately estimate the posterior distribution and/or

any quantity of interest such as mean and median of the posterior distribution.

2.6.1 History of Trace Plot

Trace plot is a visual analysis of the Markov chain. It is a useful tool in assessing conver-

gence and can be used to check MCMC sampler performance. Figure 2.1 displays typical

trace plots where the number of iterations of MCMC is on the x-axis and the parameter

value drawn at each iteration is on the y-axis. Generally, we plot a separate trace plot for

each parameter. The top row in Figure 2.1 displays a well mixed trace plot. A well mixed

chain indicates that the chain has converged. A well mixed chain looks like white noise.

Note that if we run more than one chain initialized by different initial conditions, then each

chain will be shown in a different color. If the Markov chain converges, different chains

demonstrate similar well mixed results.

The second row in Figure 2.1 shows a trace plot with a bad initial value. However, it

is transitioned to a well mixed chain after a few hundred iterations. The starting value can

be influential when we first start the chain. To avoid the substantial impact of the starting

value on the analysis, the starting part of chain so called Burn-in or warm-up period will be

discarded [47]. Often 10 to 20 percent of the samples (from the starting point) are discarded

as Burn-in samples. However, some researchers consider all samples as valid samples from

the posterior distribution and do not discard any sample. Some others discard up to 50

percent of samples if it allows a faster convergence. The third row in Figure 2.1 shows a

trace plot with high auto-correlation. We should point out that, in MCMC, if the proposed

sample which is drawn from the proposal distribution is rejected, xt+1 = xt. It means the
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Figure 2.1: Typical Trace Plots: Good Mixing (first row), Burn-In (second row), Thinning
(third row), Non-convergence (fourth row)

higher the rejection rate, the higher the auto-correlation of the chain. Thinning method is

a potential solution for a highly correlated chain and can improve statistical. Finally, the

fourth row in Figure 2.1 shows a trace plot with an obvious trend which is not converging.

This chain does not seem to converge to its stationary distribution. It can be due to either

an error in the MCMC algorithm or insufficient number of iteration [48]. As a result, we

cannot estimate a reliable posterior distribution of the parameter using this chain [49].

2.6.2 Auto-correlation Plot

Auto-correlation plot is a commonly used tool for checking randomness/independence of

the samples produced by the Markov chain. Auto-correlation plot can help to analyze

available information in the Markov chain, whether the chain is well mixed, and how in-
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dependent the samples are. In MCMC, by design, generated samples from one iteration to

the next will be somewhat correlated. In a well mixed chain, the correlation is small and

the auto-correlation should drop relatively quickly. Samples will be highly correlated if

the chain is not well mixed. If the correlation decays slowly, it means a large number of

iterations is required to reach the stationary distribution of the Markov chain. The auto-

correlation can take a value between -1 and +1, and quantifies the correlation between the

current value of the chain and its past values (lags). Lag k auto-correlation represents the

auto-correlation between the current sample and kth preceding sample.

2.6.3 Effective Sample Size

The effective sample size (ESS) is another way to study the convergence of the chain. The

effective sample size of a parameter is the estimated number of independent observations

our sample is equivalent to. In other words, how many independent samples are generated

from the stationary distribution. As we have mentioned, the samples generated by MCMC

are somewhat correlated. It means, less information is provided by highly correlated or

poor mixing chains. Using a thinning technique, ESS can get closer to the sample size n.

Small ESS indicates a poor estimate of the posterior distribution. ESS is computed by:

ESS =
n

1 + 2
∑∞

k=1 ρk
(2.13)

where n is the total sample size and ρk is the lag k auto-correlation of the parameter [50].

2.6.4 Gelman-Rubin Diagnostic

This test is one of the most popular tests for diagnosing whether the MCMC has converged

to the target distribution. In this test, we run multiple chains with different initial values [51]

to diagnose whether the chains have forgotten their initial values which would essentially

mean that they have converged to the same stationary distribution [52]. This diagnostic
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test compares the within chain variance to the between chain variance [53]. When between

chain variability is substantially lower than the within chain variability, it is a sign for

convergence to the stationary distribution. The PSRF (potential scale reduction factor)

computed by R̂ is close to 1 [5]:

R̂ =

√
n− 1

n
+
m+ 1

mn

B

W
(2.14)

wherem is the number of chains (generated with different starting values),B is the between-

chain variance in n iterations, and W is the within-chain variance [53]. This test assumes

that the marginal target distribution is normally distributed [54] and it might be helpful to

use an appropriate transformation of the parameter of interest such as log and logit. The

correction factor d
d−2

or d+3
d+1

must be used:

R̂c =
d+ 3

d+ 1
R̂ (2.15)

where d is the estimated degree of freedom (using method of moments) based on an ap-

proximation of the posterior distribution.

2.6.5 Heidelberg-Welch (H-W) Diagnostic

This is another tool to determine whether the MCMC chain has been running long enough

and it has converged to its stationary distribution. The convergence test is based on the

Cramer-von-Mises statistics to test the hypothesis whether or not the sampled value comes

from a stationary distribution. This diagnostic can be summarized as follows. Consider

the entire chain from time zero (iteration 1) to current time (current completed iteration).

If the test fails, discard the first 10% of the samples and check if the remaining 90% has

converged. If not, repeat the procedure with 20% and continue until it gets down to 50%

of the chain samples. If the second half of chain (last 50% samples) has not converged to

a stationary distribution, the entire test fails. However, when the chain passes the test, we

25



know how many iterations must be kept.

In the next step, we can move to the half-width test which calculates a 95% confidence

interval for the mean, using the remaining part that has passed the H-W test. To do this, the

marginal error which is the half of the confidence interval of the mean will be compared

with the estimated mean. The ratio of the marginal error of the mean and the estimated

mean is calculated. If this ratio is less than ϵ (by default ϵ = 0.1), the half-width test is

passed. Otherwise, the chain should be extended to estimate the mean within the desired

level of accuracy. It is recommended to increase the chain’s length by a factor of I > 1.5

to have a reasonably large proportion of new data.

2.6.6 Raftery Diagnostic

Running the MCMC chain for long enough is a crucial step to reach convergence as fast

as possible. Raftery diagnostic is a run length control diagnostic to find the approximate

number of iterations required to estimate a specific quantile Q within an accuracy of +/−

r with probability P . An estimate of the dependence factor I , which is a measure of

dependency of the samples in the chain, can be obtained by this test. The value of I should

be less than 5. Values of I larger than 5 indicate a strong auto-correlation, which could be

due to a poor choice of starting value or high posterior correlation of the MCMC algorithm.

One solution to reduce I is to run the chain longer to get more samples. To achieve a certain

level of accuracy, a specific percentage of samples (Burn-in samples) can be removed from

the beginning of the chain.
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Chapter 3

Spatial Models for Population

Estimation Using Physical Traps or

Camera Encounters

In this chapter three models for estimation of the population size are discussed. In short

term studies, it can be fairly assumed that the population of interest is a closed-population.

3.1 Capture Mark Recapture Model

In this model, probability of detection is assumed constant which implies that every indi-

vidual in the population has a constant and equal probability to be captured in each trapping

occasion. Similarly, capture and marking do not change the chance of an individual to be

captured in future occasions. Furthermore, the occasions do not have any impact on the

probability of capture. There are two unknown parameters in this model, the population

size N and the probability of detection. The probability of capturing an individual with
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specific capture history h is:

P [Xh] =
N !

[
∏

hXh!](N −M)!
.pn.(1− p)KN−n. (3.1)

where n. =
∑K

k=1 nk is the total number of captures in the experiment (during all occa-

sions), nk is the number of animals captured in the kth occasion, k = 1, 2, ..., K, M =∑K
k=1 uk is the number of distinct individuals captured during the experiment (K is fixed

for a given experiment), uk is the number of new (unmarked) animals captured in the kth

occasion, Xh is the number of animals with a specific capture history h. For example

Xh={10100} is the number of individuals captured on trapping occasions 1 and 3, and the set

of all possible capture histories is defined by {Xh}.

3.2 Data Augmentation Model

This model is an extension to the capture mark recapture model that was explained in

the previous section. However, in place of physical traps, individual animals are monitored

virtually using camera encounters. Moreover, animals that make camera encounters are not

marked. Similar to the previous model, assume a single closed population of N individuals

that has been monitored inK occasions. In turn, in contrast with the previous model, rather

than having a trap capture history, each individual in this model has a camera encounter

history as a sequence of 0’s and 1’s. For example y = (1, 0, 1, 0, 0), shows encounters for

an individual that is observed at the first and the third occasion in total of K = 5 occasions.

The encounter of individual i = 1, 2, ..., N in occasion k = 1, 2, ..., K is defined by yik.

It follows a Bernoulli distribution: yik ∼ Bernoulli(p), where p is probability of detection

(success). The probability of detection p is assumed to be constant for all individuals

i = 1, 2, ..., N , and in all occasions k = 1, 2, ..., K [55]. The unknown parameters are

population size N and the probability of detection p.

In this model, two camera encounter histories are constructed. The full capture history
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of all N animals is represented by an N ×K matrix including those individuals that were

not observed (zero capture history). Practically, because N is unknown, we cannot observe

the full capture history. Another matrix then is constructed to only represent the history

of observed individuals. This matrix has K columns (number of occasions) and R rows

(R ≤ N), one row for each observed distinct individual. Assuming yik ∼ Binomial(K, p),

i.e., yik’s are independent and identically distributed Bernoulli random variables:

yi =
K∑
k=1

yik

Since N is unknown, we are only able to construct the history of observed individuals.

Therefore, a technical challenge is that the dimension of observed history may change at

every iteration. To address this challenge, data augmentation can be effectively used by

adding an arbitrary number of zeros (NZ) L to the encounter data. In turn in place of

estimation of abundance N (using an abundance model), occupancy probability ψ (using

occupancy model) will be estimated [56]. In this model, the augmented history will be

represented by an M ×K matrix, where M is an integer number and M >> N . A small

M may introduce a condensed posterior distribution of N̂ and results in N̂ = M , while a

very large M , will drastically increase the computational cost. Now, each individual i in

the hypothetical population of size M = N + L, where L is the number of added zeros,

will be represented by a binary indicator w = (z1, z2, ..., zM). Each zi takes a value of 1

if the individual belongs to the actual population of size N (real individual), and takes 0

otherwise:

yi|zi =

⎧⎪⎪⎨⎪⎪⎩
1 ∼ Binomial(K, p)

0 ∼ δ (0)

where zi ∼ Bernoulli(ψ), and ψ ∼ Uniform(0, 1) is the occupancy probability, i.e., the

probability that an individual is an actual member of the true population of size N [57].

After estimating ψ using the occupancy model, the population size N will be estimated
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using:

E[N ] =M × ψ (3.2)

where E is the expected value.

3.3 Hierarchical Spatial Capture Recapture

The spatial capture model [4] is an extension of the simplified model discussed in the

previous section. All assumptions for the simplified model must be satisfied in this model.

However, the assumption that the individual in a population is uniquely identified is not

a requirement. In addition, this model allows for individuals to be captured at multiple

cameras.

In this model, the sample of individuals are associated with a location parameter, which

means each animal has a specific home range. The home range associated with each animal

is unknown. It means, the population size N is equal to the number of unknown activity

centers [58]. Camera encounters are considered as a virtual trap to detect individuals in the

study area. Using distance sampling, the distance between the trap location and center of

activity is calculated. It is assumed that an individual i has a fixed center of activity defined

with the coordinates si = (sx, sy) where i = 1, 2, ..., N , and N centers of activities are

randomly distributed over the area of study S. A bivariate uniform prior is used to model

unknown si:

si ∼ Uniform(S) (3.3)

There are J camera locations, each is defined by the coordinate xj, j = 1, 2, ..., J . Notice

that an individual can be detected at multiple cameras, and/or at multiple times by the same

camera during a sampling occasion. A Poisson distribution is used to model a camera

encounter history yijk for individual i, at camera j, in occasion k:

yijk ∼ Poisson(λij) (3.4)
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where λij is the encounter rate, i.e. the expected number of capture or detection of an

individual i at camera j, which is a function of the Euclidean distance between activity

center si and the camera location dij = ||si − xj||:

λij = λ0gij (3.5)

where λ0 is the baseline encounter rate and gij is a function of the distance which mono-

tonically decreases and is modeled using a half Gaussian function:

gij = exp
(
−d2ij/σ2

)
(3.6)

where σ is a scale parameter estimated from data. If an individual can be captured once

during a sampling occasion, the encounter history takes binary values, that is yijk takes a

value of 1 if the individual i is captured, or 0 otherwise. However, if an individual can

be captured more than once during a sampling occasion, yijk will be the number of times

that the individual i has been detected at camera j on occasion k. Therefore, a (J × K)

encounter history matrix is considered for each individual. Obviously, the capture histories

yijk cannot be directly observed for unmarked individuals. To estimate unknown population

size, Chandler and Royle (2013) have implemented a data augmentation method. The

number of camera encounters at camera j in occasion k is modeled by:

njk =
N∑
i=1

yijk (3.7)

The full conditional latent encounter data is defined by a multinomial distribution:

{y1jk, y2jk, ..., yNjk} ∼Multinomial(njk, {π1j, π2j, ....., πNj}) (3.8)

where πij = λij/
∑

i λij . The camera encounter counts are modeled using a Poisson distri-
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bution:

njk ∼ Poisson(Λj) (3.9)

where

Λj = λ0

N∑
i=1

gij (3.10)

The number of camera encounters at camera j can be obtained by:

nj. =
K∑
k=1

njk (3.11)

Because Λj and K are independent:

nj. ∼ Poisson(KΛj) (3.12)

In the data augmentation method by Royle, Dorazio and Link (2007), and Royle and Do-

razio (2007), they augmented the camera encounter histories with a set off all-zeros camera

encounter histories. In turn, a hypothetical population size of M individuals in the study

area is considered. Augmented parameter M is an integer number and is recommended to

be much greater than unknown N to avoid the truncation of the posterior distribution of N .

Notice that, a very large value of M will increase the computational time. They considered

uninformative prior distributions for the parameters. Prior distributions of λ0, σ, and ψ are

considered Uniform(0,1), where ψ is the probability that an individual in the occupancy

model of size M is a member of the original model of size N . A binomial prior distri-

bution, N ∼ Binomial(M,ψ) is assumed for N where ψ ∼ Uniform(0, 1). Assuming

a discrete uniform distribution for detection of individuals in the hypothetical population

of size M , M − n individuals are associated with all-zeros encounter histories. In turn

indicator variables z1, z2, ..., zM are introduced such that:
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zi =

⎧⎪⎪⎨⎪⎪⎩
1 if the individual i is a member of the population (i=1,2,...,N)

0 if the individual i is a fixed zero (i=N+1,...,M)

where zi ∼ Bernoulli(ψ), i = 1, 2, ...,M . Hence, the encounter data for each individ-

ual in the augmented population can be modeled by:

(yijk|zi = 1) ∼ Poisson(λijzi)

(yijk|zi = 0) ∼ I(yijk = 0)

(3.13)

and in turn, the population size can be obtained by N =
∑M

i=1 zi.

Assuming mutual independence of the prior distributions, the joint prior distribution is:

[ψ, λ0, σ] ∝ [ψ][λ0][σ] (3.14)

and in turn the joint posterior distribution of the parameters is:

[y, z, s, ψ, λ0, σ, |n,X] ∝

{
M∏
i=1

{
J∏
j=1

K∏
k=1

[njk|yijk][yijk|zi, si, σ, λ0]

}
[zi|ψ][si]

}
[ψ][λ0][σ]

Notice that the distribution of λ0 and σ are uninformative priors in the original model.

Chandler and Royle (2013) developed spatial Metropolis-within-Gibbs MCMC algorithms

for estimating the model parameters.
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Chapter 4

Proposed Regularized Integrated Spatial

Model

In this chapter we discuss our proposed model for population analysis. The estimated

posterior distribution by spatial capture model is sensitive to its parameters including prob-

ability of detection, added number of zeros by data augmentation, number of occasions,

and radius of home range. To investigate the sensitivity of the model to each parameter,

other parameters were considered to be fixed.

Several simulations were carried out in order to study the model sensitivity to different

parameters such as the camera encounter rate, radius of the home range, and home range

centers in estimation of the population size N .

4.1 Sensitivity of the Model to the Added Number of Ze-

ros in Data Augmentation

In this section, we use the simulation to demonstrate the sensitivity of the spatial model

to the data augmentation parameter L (added number of zeros). It will be followed by the
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study of sensitivity of the model to L using a real data set.

Data augmentation model is implemented to estimate unknown population size N ,

home range σ, λ0 and density (individual home range centers). In this way a large value

as an upper bound for population size M = N + L (total number of hypothetical individ-

uals) is selected. In this way, estimated N can assume values between zero and M . We

performed several simulations to test the sensitivity of the model to the selected value of

M for true value of N = 100.

The results are summarized in Table 4.1. We can observe that the estimated N has

assumed a broad range of values between 63 and 164. The sensitivity of the model to the

added number of zerosL is more noticeable for low probability of detection. The sensitivity

decreases as we increase the probability of detection. The estimated N is fairly consistent

for probability of detection of 0.25 or higher. As it is depicted in Figure 4.1, regardless of

the number of added zeros L, a fair estimate of N is obtained for probability of detection

of 0.25 or higher. However, based on the estimated values of standard error and the length

of confidence interval in Table 4.1, to achieve an absolute estimation error of 10% or less,

the probability of detection should reach to 0.5 or better.

The convergence of posterior distributions of N and P are shown in Figure 4.2 for

P = 0.05 and Figure 4.3 for P = 0.05. We can clearly see in these density plots that

Markov chains for the probability of detection of 0.3 (and L = 100) converge to almost the

same posterior distribution. As it can be observed in Figure 4.3, all chains are well mixed

and the running mean for the first 1500 iterations are almost the same. Moreover, the auto-

correlation of the chains for P = 0.3 drops considerably faster than that of P = 0.05.
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Table 4.1: Estimated Mean of N for Different Number of Zeros L Added to the Model and
Probability of Detection P

P L N̂ SdN Median LBAdj UB d

0.05

100 63.117 23.836 60.803 15.444 110.790 95.346
200 92.557 46.258 84.495 0.041 185.073 185.032
300 118.736 70.290 103.380 0 259.316 281.160
500 158.755 106.403 131.850 0 372.135 425.546

0.10

100 87.561 20.936 87.455 45.690 129.433 83.743
200 114.996 41.742 109.135 31.513 198.480 166.967
300 127.075 55.131 116.400 16.814 237.337 220.523
500 163.893 84.067 143.835 0 332.027 336.269

0.15

100 96.244 19.387 95.480 57.470 135.018 77.548
200 113.999 34.327 107.975 45.344 182.653 137.309
300 128.747 44.564 120.235 39.619 217.875 178.255
500 124.806 49.577 112.955 25.653 223.960 198.307

0.20

100 102.536 18.035 101.115 66.466 138.606 72.140
200 112.681 27.015 107.935 58.651 166.711 108.060
300 116.144 31.775 109.760 52.594 179.694 127.100
500 116.129 32.978 109.225 50.173 182.086 131.913

0.25

100 103.320 15.866 101.765 71.589 135.052 63.463
200 110.304 20.596 106.990 69.112 151.497 82.385
300 107.958 20.690 104.440 66.577 149.339 82.762
500 105.027 19.699 101.745 65.629 144.425 78.796

0.30

100 104.417 13.511 102.810 77.395 131.440 54.045
200 104.887 14.861 102.745 75.166 134.609 59.442
300 106.259 15.258 104.060 75.743 136.774 61.031
500 104.208 14.765 102.020 74.678 133.738 59.061

0.35

100 103.611 11.107 102.180 81.397 125.824 44.427
200 102.305 11.132 100.870 80.041 124.569 44.528
300 105.014 11.624 103.510 81.766 128.262 46.496
500 102.525 10.918 101.090 80.690 124.361 43.671

0.40

100 103.678 8.853 102.595 85.972 121.384 35.411
200 101.986 8.678 101.005 84.631 119.342 34.712
300 102.677 8.713 101.635 85.252 120.103 34.851
500 103.194 8.787 102.170 85.619 120.768 35.149

0.45

100 101.257 6.517 100.540 88.223 114.291 26.067
200 101.053 6.741 100.320 87.571 114.536 26.965
300 101.617 6.788 100.840 88.042 115.192 27.151
500 101.955 6.891 101.180 88.172 115.737 27.564

0.50

100 100.616 5.247 100.020 90.121 111.110 20.988
200 101.476 5.334 100.855 90.807 112.144 21.336
300 102.179 5.586 101.560 91.007 113.351 22.344
500 102.098 5.439 101.570 91.221 112.976 21.755

0.75

100 99.980 1.426 99.727 97.128 102.831 5.703
200 99.868 1.412 99.640 97.021 102.631 5.610
300 100.144 1.396 99.920 97.353 102.936 5.584
500 100.173 1.459 99.880 97.248 103.093 5.846
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(f) P = 0.40
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(h) P = 0.75

Figure 4.1: Estimated Value of N for Different Values of Probability of Detection P and
Different Values of L (Number of Added Zeros). True N (black), Estimated N (blue), and
Upper and Lower Confidence Interval Limit (gray and orange respectively)
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Figure 4.2: Diagnostic Plots for N with P = 0.05 and L = 100. Density (top left),
Autocorrelation (top right), Ruining mean (middle right), and Trace (bottom)

Figure 4.3: Diagnostic Plots for N with P = 0.30 and L = 100. Density (top left),
Autocorrelation (top right), Ruining mean (middle right), and Trace (bottom)
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4.2 Sensitivity of the Model to the Probability of Detection

In this section, we study the sensitivity of the model to the probability of detection. To do

this, we sample unknown probability of detection using a non-informative prior distribution

and assume cameras are randomly located with regard to home range centers. In this way,

Pij can be set based on the distance of the camera location and the spatial location of

individual animal. Results in previous simulations show that with a large enough number

of zeros L added to the model, we can get a reasonable estimate for N . Again from the

simulation results in a Table 4.1 and Figure 4.4 we would like to study the variation of

estimated value of N with regard to different levels of probability of detection. As we can

see, the estimated value of N is improved as we increase the probability of detection.
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(c) L = 300
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(d) L = 400

Figure 4.4: Estimated Value of N for Different Values of Probability of Detection P and L. True N (black), Estimated N (blue), Upper
and Lower Confidence Interval Limit (gray and orange respectively)
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From diagnostic Figures 4.5, and 4.6, display that from the trace plots, we have perfect

mixing chains in the case of P = 0.30 and L = 100 comparing with worst-case scenario

P = 0.05 and L = 100. Also, the autocorrelation drops faster in the case of P = 0.30

and L = 100. Additionally, from the first 1500 iterations, we see that all three chains

convergence to the same mean in an early number of iteration. That means, the starting

values do not impact on the estimated mean. Overall, we can get convergence even with

low levels of probability of detection with large enough L add to the model.

From simulation results in Table 4.2 and Figure 4.7, shows that the estimated value of

the probability of detection associated with different L added to the model. We can observe

that the estimated value of the probability of detection is a great estimate regardless to the

L added to the model when the true value of P is quite large (bigger than 0.20). Overall,

the estimated value of the probability of detection has less sensitivity to the L added to the

model than estimated N . Still we can get a reasonable estimate of P even when the true

value of P as low as 0.05 with (100%) of L add to the model.

4.3 Sensitivity of the Model to the Number of Occasions

For all previous simulations, we conclude that we have to maintain a reasonable level of

probability of detection to have reliable estimate of the population size. The problem is

that the probability of detection itself is unknown, due to that we do not know how animals

occur in front of the camera trap and detect them. Also, it is not easy to estimate the

probability unless we can take many samples. Therefore, we will do one more simulation to

see the impact of the number of samples (occasions) on the population size and probability

of detection.

From simulation results in Table 4.3 and Figure 4.8, we observe that at a low number of

occasions K, the probability of detection has an impact on the mean of the estimated value

of the population size N . As we increase K, the estimated value N is not affected by the
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Figure 4.5: Diagnostics for Estimated P with P = 0.05 and L = 100. Density (top left),
Autocorrelation (top right), Ruining mean (middle right), and Trace (bottom)

Figure 4.6: Diagnostics for Estimated P with P = 0.30 and L = 100. Density (top left),
Autocorrelation (top right), Ruining mean (middle right), and Trace (bottom)
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Table 4.2: Estimated Mean of P for Different Values of L and for Different Levels of
Probability of Detection

P L P̂ sdP Median LBAdj UB d

0.05

100 0.105 0.054 0.092 0.000 0.214 0.217
200 0.088 0.054 0.074 0.000 0.196 0.216
300 0.074 0.053 0.059 0.000 0.179 0.211
500 0.070 0.052 0.056 0.000 0.173 0.206

0.10

100 0.128 0.042 0.121 0.045 0.212 0.167
200 0.109 0.046 0.101 0.018 0.201 0.182
300 0.113 0.049 0.105 0.015 0.212 0.197
500 0.098 0.046 0.089 0.005 0.191 0.186

0.15

100 0.169 0.043 0.164 0.083 0.255 0.172
200 0.156 0.048 0.151 0.060 0.251 0.191
300 0.144 0.047 0.139 0.050 0.238 0.189
500 0.154 0.050 0.149 0.054 0.254 0.201

0.20

100 0.211 0.044 0.207 0.123 0.300 0.177
200 0.198 0.048 0.195 0.103 0.293 0.190
300 0.192 0.048 0.190 0.096 0.289 0.193
500 0.198 0.049 0.196 0.101 0.296 0.195

0.25

100 0.253 0.045 0.251 0.163 0.343 0.180
200 0.243 0.046 0.241 0.151 0.336 0.185
300 0.250 0.047 0.248 0.156 0.344 0.189
500 0.251 0.048 0.250 0.156 0.346 0.190

0.30

100 0.299 0.044 0.297 0.210 0.388 0.178
200 0.296 0.045 0.295 0.205 0.387 0.182
300 0.295 0.045 0.294 0.204 0.385 0.181
500 0.297 0.046 0.296 0.205 0.388 0.183

0.35

100 0.345 0.043 0.345 0.258 0.432 0.174
200 0.349 0.044 0.348 0.261 0.437 0.175
300 0.342 0.044 0.342 0.255 0.430 0.175
500 0.351 0.044 0.351 0.263 0.439 0.175

0.40

100 0.393 0.042 0.393 0.310 0.476 0.167
200 0.396 0.042 0.396 0.312 0.480 0.168
300 0.398 0.042 0.398 0.314 0.481 0.167
500 0.395 0.042 0.394 0.311 0.478 0.167

0.45

100 0.454 0.040 0.455 0.375 0.533 0.158
200 0.449 0.040 0.449 0.368 0.529 0.160
300 0.447 0.040 0.447 0.367 0.527 0.160
500 0.444 0.040 0.445 0.364 0.525 0.160

0.50

100 0.502 0.038 0.502 0.426 0.577 0.151
200 0.501 0.038 0.501 0.425 0.577 0.152
300 0.489 0.038 0.490 0.413 0.566 0.153
500 0.496 0.038 0.496 0.420 0.571 0.152

0.75

100 0.748 0.027 0.749 0.694 0.802 0.108
200 0.750 0.027 0.751 0.696 0.804 0.107
300 0.752 0.027 0.753 0.698 0.806 0.107
500 0.744 0.027 0.745 0.690 0.799 0.109
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(f) P = 0.40
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(h) P = 0.75

Figure 4.7: Estimated Value of P for Different Values of Probability of Detection P and L.
True P (black), Estimated P (blue), Upper and Lower Confidence Interval Limit (gray and
orange respectively)
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Table 4.3: Estimated Mean of N for Different Number of Occasions and for Different
Levels of Probability of Detection

K P N̂ SdN Median LB UB d # of det

3

0.10 87.561 20.936 87.455 45.690 129.433 83.743 27.450
0.15 96.057 19.428 95.360 57.202 134.912 77.710 38.300
0.20 100.310 17.810 98.970 64.691 135.929 71.239 38.300
0.25 104.373 16.066 102.750 72.241 136.506 64.265 57.100

5

0.10 98.903 18.249 98.260 62.405 135.401 72.996 40.280
0.15 101.974 15.193 100.400 71.587 132.361 60.774 56.120
0.20 103.402 12.086 101.960 79.230 127.575 48.345 56.120
0.25 101.285 8.659 100.370 83.967 118.602 34.634 75.980

10

0.10 102.521 12.239 101.120 78.043 126.998 48.955 65.100
0.15 99.711 6.770 99.020 86.171 113.251 27.080 79.460
0.20 99.748 4.266 99.310 91.217 108.279 17.062 79.460
0.25 99.779 2.802 99.435 94.174 105.383 11.209 93.740

15

0.10 100.763 7.213 100.085 86.337 115.190 28.853 78.690
0.15 100.843 3.748 100.420 93.347 108.339 14.992 91.500
0.20 99.963 2.074 99.740 95.816 104.110 8.294 91.500
0.25 100.490 1.271 100.200 97.948 103.032 5.084 99.000

20

0.10 100.432 4.572 99.990 91.288 109.576 18.288 87.710
0.15 100.238 2.206 99.970 95.826 104.650 8.824 95.520
0.20 99.931 1.124 99.760 97.682 102.180 4.497 95.520
0.25 100.026 0.559 99.714 98.909 101.143 2.234 99.714

25

0.10 99.595 3.179 99.200 93.237 105.954 12.717 91.280
0.15 99.942 1.404 99.680 97.134 102.749 5.615 98.140
0.20 99.975 0.637 99.590 98.702 101.249 2.547 99.520
0.25 99.983 0.286 99.900 99.411 100.555 1.144 99.900

probability of detection. For instance, the estimated value of N associated with K = 5 and

P = 0.10 is around 99 knowing that the true value is 100. As a result, we can conclude,

if the probability of detection is small or we do not have enough information about the

abundance of animals, increasing the number of occasions can lead to have a good estimate

of the population size.
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(d) P = 0.25

Figure 4.8: Estimated Value of N for Different Values of Probability of Detection P and Different Number of Occasions K. True N
(black), Estimated N (blue), Upper and Lower Confidence Interval Limit (gray and orange respectively)
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Simulation results in Table 4.4 and Figure 4.9 shows that the estimated value of the

probability of detection is less sensitive to the number of occasions where increasing the

number of occasions is not affecting the estimated value of the probability of detection.

Table 4.4: Estimated P for Different Number of Occasions and for Different Levels of
Probability of Defections

K P P̂ SdP Median LB UB d

3

0.10 0.128 0.042 0.121 0.045 0.212 0.167
0.15 0.168 0.043 0.163 0.082 0.254 0.172
0.20 0.208 0.044 0.204 0.119 0.296 0.177
0.25 0.250 0.045 0.248 0.161 0.339 0.178

5

0.10 0.108 0.026 0.105 0.056 0.160 0.103
0.15 0.158 0.029 0.156 0.101 0.215 0.114
0.20 0.202 0.028 0.201 0.146 0.259 0.113
0.25 0.251 0.030 0.250 0.191 0.311 0.120

10

0.10 0.101 0.015 0.100 0.071 0.131 0.060
0.15 0.150 0.015 0.150 0.120 0.181 0.062
0.20 0.201 0.015 0.201 0.171 0.231 0.061
0.25 0.251 0.019 0.251 0.214 0.289 0.075

15

0.10 0.099 0.010 0.099 0.079 0.119 0.040
0.15 0.149 0.010 0.149 0.129 0.169 0.040
0.20 0.202 0.011 0.202 0.180 0.224 0.044
0.25 0.247 0.010 0.247 0.227 0.267 0.040

20

0.10 0.101 0.010 0.101 0.081 0.121 0.040
0.15 0.151 0.009 0.151 0.133 0.169 0.037
0.20 0.201 0.009 0.201 0.183 0.219 0.036
0.25 0.254 0.010 0.254 0.234 0.274 0.040

25

0.10 0.101 0.010 0.101 0.081 0.121 0.040
0.15 0.150 0.007 0.150 0.135 0.165 0.030
0.20 0.201 0.010 0.201 0.181 0.221 0.040
0.25 0.249 0.010 0.249 0.229 0.269 0.040
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Figure 4.9: Estimated Value of P for Different Levels of Probability of Detection P and Different Number of Occasions K. True P
(black), Estimated P (blue), Upper and Lower Confidence Interval Limit (gray and orange respectively)
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4.4 Sensitivity of the Model to ψ

In this section, we study the sensitivity of the original spatial model to parameter ψ in

estimating the population size. Simulation experiments were designed in order to study the

impact of ψ on estimation of the population size.

First, we used an uninformative prior to sample the parameter ψ with no constraint, i.e.,

accepting all sampled values in the range of [0, 1]. Next, we performed a set of simulations

using different constraints for the sampled parameter ψ.

To obtain an accurate estimate of N , ψ must be equal to N
M

. However, in real applica-

tions, population size N is unknown and it is not practical to set ψ = N
M

. Rather ψ can

be estimated by ψ̂ = N̂
M

in each iteration of MCMC, where we assume that the parameter

ψ̂ has a beta distribution with parameters [1 +
∑
w] and [1 +M −

∑
w]. As it was dis-

cussed before, the value of M must be chosen to be an integer number much greater than

N (M >> N).

Table 4.5: Summary of the Estimated Mean of σ, λ0, ψ, and Population SizeN for Different
ranges of ψ and M ∈ {100, 200}

M ψ σ̂ λ̂0 ψ̂ N̂ ESSN ESSψ Lag10N Lag10ψ

100

0.00 1.00 0.437 0.589 0.313 30.887 1113.233 1297.546 0.668 0.625
0.00 0.50 0.451 0.606 0.274 27.107 1850.818 2180.853 0.482 0.412
0.10 0.40 0.465 0.585 0.253 25.255 2679.348 3232.658 0.403 0.324
0.05 0.35 0.479 0.584 0.231 23.326 2505.535 3144.948 0.395 0.309
0.10 0.35 0.471 0.589 0.237 23.862 2738.365 3681.929 0.352 0.26

200

0.00 1.00 0.416 0.596 0.199 39.231 250.556 263.285 0.909 0.894
0.00 0.50 0.443 0.579 0.158 30.979 1066.802 1140.428 0.674 0.623
0.10 0.40 0.415 0.579 0.174 33.433 2340.808 2727.217 0.496 0.431
0.05 0.35 0.443 0.579 0.153 29.922 2082.790 2203.174 0.547 0.486
0.10 0.35 0.411 0.592 0.173 33.34 3017.466 3701.673 0.446 0.375

Table 4.5 shows results from a single simulation repeated five times (choosing the same

random samples) and each time we set a constraint on the parameter ψ except the first

one with no constraint.The estimated values of σ, λ0, ψ, and N were calculated, and the

effective sample size (ESS) and lag10 for N and ψ. Comparing the estimated values of

the population size N before the constraint was set on the parameter ψ and after. In all
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cases, the estimated values of N are better with the constraints on ψ. Also, we notice that

as we decrease the range of the parameter ψ using N/M as a center of the interval, the

effective sample size will increase. However, we can not get this range extremely narrow

due to the simulation cost; the rejection rate will be high, and ψ’s true value is unknown.

Finally, since we do not know precisely how large the value of M in the real data, we will

stick with two constraints for the parameter ψ. From 0 to 0.5 and from 0.10 to 0.40 and

compare the results from 50 simulations where we can not generalize the results from just

a single simulation.

Table 4.6: Summary of 50 Runs of the Estimated Mean of σ, λ0, ψ, and Population size N
for Different ranges of ψ and M ∈ {100, 200}

M ψ σ̂ λ̂0 ψ̂ N̂ ESSN ESSψ Lag10N Lag10ψ

100
0.00 1.00 0.560 0.497 0.323 31.943 1674.270 1862.417 0.635 0.593
0.00 0.50 0.563 0.546 0.273 27.173 3661.706 4368.037 0.393 0.334
0.10 0.40 0.516 0.557 0.261 26.251 5986.954 7677.659 0.270 0.205

200
0.00 1.00 0.546 0.527 0.170 33.321 1490.301 1778.776 0.670 0.620
0.00 0.50 0.527 0.564 0.158 31.026 2647.456 3152.341 0.528 0.473
0.10 0.40 0.496 0.545 0.165 31.168 3879.974 4606.632 0.412 0.355

Table 4.6 shows the estimated values of σ, λ0, ψ with its ESS and Lag10 and N with

its ESS and Lag10. For M = 100, the estimated value of the population size N in the

case of no constraint on the parameter ψ is around 32, with ESS equal to 1862.4. After

the parameter ψ range is reduced to 0.00 to 0.50 and reject all samples with ψ > 0.50, the

estimated value of N is around 27 with 4368 ESS. Moreover, reducing ψ range from 0.10

to 0.40 will improve the estimated value to 26, and the ESS will be 7677.6.

Comparing Figures 4.10, 4.11, and 4.12, parameter sigma and λ0 are comparable, and in

all cases, we set that the densities of the parameter converged to the posterior distribution.

In the case with the constraint on parameter ψ, we have a better mixing of the chains,

making the estimated in is more accurate.

For M = 200, the average of the estimated population size N with no constraint on the

parameter ψ is around 33 with 1778.8 ESS. For other two constraints on the parameter ψ,

we notice that the estimated population size N in both cases is around 31. However, the
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ESS value is higher with the reduced range of ψ (0.10 to 0.40), for more details see tables.

In addition, comparing the results for M = 100 with M = 200, we can see that in the case

of M = 100 the ψ value from 0.10 to 0.40 has the highest ESS = 7677.6 and then it has

the best estimate of N (N̂ = 26). Notice that ESS = 7677 means the 90, 000 MCMC

sample (iterations) is equivalent to 7677 independent sample [where MCMC sample is

highly correlated]. Generally, in the cases that we get the values of ESS are very close, we

can use the constraint for ψ; 0 to 0.50.

If ψ is not regularized, estimated σ is between 0.3 and 2.03 with an average of 0.56. Af-

ter regularizing ψ by constraining its range to [0,0.50], the estimated value of σ is between

0.4 and 1.7. After regularizing ψ and constraining its range to [0.1,0.40], the estimated σ

is between 0.39 and 0.8 with an average of 0.52 that has the lowest absolute error. The

estimated λ0 for the aforementioned range of ψ are 0.497, 0.546, and 0.557, respectively.

The estimated population size ranges from 8 to 61 with an average of 32 for no restric-

tion on ψ, from 6 to 37 with an average of 27 for ψ belongs to [0,0.50], and from 16 to

37 with an average of 26 for for ψ belongs to [0.1,0.40]. We can see the estimated value

of the population size is more accurate, and the range of estimated values is narrower after

regularizing ψ (see Tables A.1 to A.3).

Moreover, for no restrictions on ψ, the standard error for the estimated population size

ranges from 5.8 to 24.7, with a 14.37 average. Additionally, the standard error is between

5.8 and 13, with an average of 8.56 for ψ ≤ 0.5. Furthermore, by reducing ψ constraint

from 0.10 to 0.40, the standard error ranges from 5 to 9 with an average of 6.8 (see Tables

4.7 to 4.9).
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Table 4.7: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with no Constraint on ψ and M = 100

Sim # Mean Median Mode sd
Credible interval (HDI)

LB UB
1 46.594 43 27.976 23.309 13 88
2 38.620 33 23.031 21.047 11 71
3 35.607 30 9.056 24.702 4 72
4 39.617 37 33.996 15.136 19 62
5 47.420 43 32.977 20.393 20 81
6 15.129 14 10.999 8.916 1 24
7 36.459 34 35.981 14.743 16 58
8 43.232 39 29.028 18.875 18 73
9 61.516 61 55.981 20.859 35 100

10 37.617 34 25.024 18.753 11 67
11 35.184 35 5.019 18.703 4 57
12 14.074 12 10.063 7.066 6 24
13 38.323 35 35.981 15.142 17 59
14 32.097 28 18.951 15.439 13 52
15 29.161 27 29.017 12.394 13 48
16 28.835 25 16.986 15.326 11 48
17 37.492 35 33.027 15.816 15 62
18 38.681 35 36.021 15.956 17 64
19 27.289 25 23.037 11.143 13 42
20 23.206 21 19.042 8.960 12 35
21 37.039 36 35.020 17.176 10 60
22 17.509 17 16.000 5.812 10 26
23 25.269 23 20.004 12.264 7 42
24 25.343 23 21.967 10.221 13 38
25 20.912 19 20.000 9.204 9 32
26 34.684 28 13.015 23.311 6 72
27 31.442 29 27.019 11.634 17 48
28 39.457 34 23.005 19.003 15 69
29 25.126 23 21.015 11.612 11 42
30 44.033 40 28.971 17.065 21 70
31 27.587 26 24.001 10.766 14 42
32 17.123 16 15.012 6.959 8 27
33 31.891 29 29.008 15.093 11 53
34 25.522 24 23.054 10.933 10 39
35 26.965 23 16.043 15.035 9 48
36 26.291 23 14.953 13.708 11 43
37 7.616 3 2.029 9.711 2 18
38 30.783 29 27.039 11.893 14 48
39 22.957 22 19.976 6.827 14 33
40 53.207 49 37.968 19.757 25 86
41 16.335 13 9.067 10.820 5 28
42 24.173 23 20.991 8.568 13 37
43 18.290 17 15.018 7.091 9 28
44 40.149 38 33.996 14.749 19 63
45 48.687 44 34.989 19.959 21 81
46 23.265 20 13.962 13.316 7 41
47 48.052 44 31.981 18.581 22 78
48 38.741 36 34.974 16.320 15 66
49 23.422 21 20.038 11.791 8 40
50 39.106 36 25.014 16.789 15 63

Mean 31.943 29.080 23.726 14.373 12.800 52.960
Min 7.616 3 2.029 5.812 1 18
Max 61.516 61 55.981 24.702 35 100
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Figure 4.10: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with no Constraint on ψ and M = 100
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Table 4.8: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with ψ ∈ [0, 0.50] and M = 100

Sim # Mean Median Mode sd
Credible interval (HDI)

LB UB
1 15.961 12 6.998 10.393 5 39
2 23.497 22 21.986 8.739 9 42
3 29.486 29 25.002 9.475 14 49
4 34.753 34 30.000 7.706 22 51
5 23.674 23 20.000 8.015 10 40
6 35.129 35 35.994 9.041 19 53
7 35.331 35 37.006 8.049 21 51
8 6.311 4 2.017 6.885 2 21
9 27.271 26 16.987 9.996 12 47

10 18.626 18 17.005 5.776 9 30
11 36.326 37 35.976 10.393 17 58
12 24.611 23 15.978 10.383 9 46
13 16.466 15 13.031 7.603 6 33
14 25.798 24 18.974 8.218 13 43
15 25.463 24 24.012 7.954 13 43
16 13.702 12 12.012 6.527 6 27
17 28.947 28 24.985 9.549 14 49
18 32.953 33 27.992 9.080 17 50
19 31.333 31 24.974 8.498 17 49
20 23.745 23 20.017 8.286 10 41
21 21.302 20 21.019 6.915 11 36
22 22.409 21 18.945 6.570 12 36
23 26.768 26 24.992 7.747 14 43
24 37.145 37 39.012 7.979 24 54
25 19.587 18 19.019 6.849 9 34
26 27.441 26 23.032 8.931 14 47
27 21.185 20 20.008 7.019 10 36
28 30.886 30 24.001 9.462 15 50
29 29.765 29 27.004 9.796 14 50
30 29.288 28 25.970 10.190 13 50
31 31.077 32 34.979 12.982 4 52
32 37.623 38 37.065 8.808 22 55
33 31.815 31 25.009 9.248 16 50
34 29.531 29 27.000 8.451 16 47
35 29.670 29 26.987 9.259 15 49
36 24.040 23 21.989 6.962 13 39
37 36.223 36 30.977 7.976 23 53
38 37.492 38 38.996 8.750 21 53
39 29.247 29 24.001 10.909 9 51
40 29.912 29 25.990 9.251 15 49
41 24.976 23 17.975 8.736 12 44
42 23.978 23 19.010 7.000 13 39
43 36.558 37 29.985 8.872 21 54
44 32.551 33 35.977 11.703 11 54
45 22.691 22 19.945 6.920 12 38
46 33.604 33 27.988 8.166 20 50
47 17.826 17 16.985 6.443 8 31
48 25.594 24 23.997 9.033 12 45
49 21.052 19 17.041 8.066 9 38
50 28.013 27 26.981 8.282 15 46

Mean 27.173 26.300 24.057 8.557 13.360 44.700
Min 6.311 4 2.017 5.776 2 21
Max 37.623 38 39.012 12.982 24 58
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Figure 4.11: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0, 0.50] and M = 100
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Table 4.9: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with ψ ∈ [0.10, 0.40] and M = 100

Sim # Mean Median Mode sd
Credible interval (HDI)

LB UB
1 29.159 29 25.974 6.129 19 42
2 24.919 24 20.994 7.921 12 41
3 23.655 23 24.001 6.364 13 36
4 26.832 26 23.020 6.139 17 40
5 27.923 28 24.997 7.189 15 41
6 19.963 19 19.988 6.253 10 33
7 29.888 30 32.003 6.218 19 42
8 26.117 25 22.997 6.785 15 40
9 21.702 20 20.992 8.176 9 38

10 34.317 35 34.997 6.468 22 47
11 25.729 25 20.966 8.166 12 41
12 31.279 31 32.998 7.173 18 45
13 27.167 27 27.031 6.842 15 40
14 23.889 23 21.992 8.986 10 42
15 22.732 22 21.017 6.376 12 35
16 32.604 33 33.006 6.415 21 45
17 23.994 23 19.013 7.103 13 39
18 26.383 26 22.017 8.399 12 42
19 27.906 28 21.991 7.035 16 42
20 18.636 18 15.990 6.042 10 32
21 32.836 33 34.010 6.491 21 46
22 22.798 22 21.991 8.295 10 39
23 36.800 37 37.012 5.579 26 47
24 16.097 15 16.022 5.186 8 26
25 27.947 28 29.030 7.540 15 43
26 26.937 27 22.984 6.391 16 40
27 26.021 26 30.005 8.024 12 40
28 28.736 29 26.991 7.382 16 44
29 34.275 35 34.014 6.545 22 47
30 27.847 28 23.971 6.539 17 41
31 21.297 20 20.005 6.999 10 35
32 24.071 24 20.998 6.867 13 39
33 26.627 26 21.993 7.589 14 42
34 28.644 28 23.983 6.748 17 42
35 22.743 22 22.000 6.414 12 35
36 30.205 30 31.026 7.378 17 44
37 34.228 35 33.970 6.582 22 47
38 27.206 27 24.014 7.076 15 41
39 17.133 16 16.013 4.918 10 28
40 29.206 29 31.001 7.501 16 44
41 22.291 21 19.019 6.736 11 35
42 34.094 34 36.035 6.639 22 47
43 25.009 24 23.004 6.191 15 38
44 31.366 31 32.006 6.439 20 44
45 26.443 26 24.000 6.836 14 39
46 21.593 21 18.012 6.843 11 36
47 28.088 28 22.995 7.208 16 43
48 18.725 18 17.028 6.017 10 32
49 18.541 17 17.014 6.827 9 34
50 19.956 19 16.013 5.942 11 33

Mean 26.251 25.820 24.643 6.838 14.760 39.880
Min 16.097 15 15.990 4.918 8 26
Max 36.800 37 37.012 8.986 26 47
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Figure 4.12: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0.10, 0.40] and M = 100
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For M = 200, the estimated value of σ and λ0 are comparable for all cases; 0.546,

0.527, and 0.496 for σ and 0.527, 0.564, and 0.545 for λ0). However, the range of the

estimated parameter is tighter as the range of ψ is reduced (see results in Tables A.4 to

A.6).

The estimated population size ranges from 6 to 107 with an average of 33 with no

constraint on ψ. By reducing the range of ψ to less than or equal to 0.50, the range of

estimated N is from 11 to 61 with an average of 31. For ψ between 0.10 and 0.40, the

estimated N ranges from 19 to 47 with an average of 31.

Comparing Figures 4.13, 4.14, and 4.15, in all cases, we observe that the densities of the

parameter converged to the posterior distribution. Moreover, with a constraint on parameter

ψ, we have a better mixing of the chains, making the estimated in is more accurate. The

histogram tail of the estimated N is shorter with the constraint 0.10 to 0.40.

Finally, the average standard error for the estimated population size N is 18.5, and it

ranges from 3 to 51.9 for no restrictions on ψ. Additionally, the standard error ranges from

3.9 to 24.4, with an average of 13 for ψ ≤ 0.5, and for ψ between 0.10 and 0.40, the

standard error ranges from 5.1 to 16.4 with an average of 10.6 as shown in Tables 4.10 to

4.12.
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Table 4.10: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with no Constraint on ψ and M = 200

Sim # Mean Median Mode sd
Credible interval (HDI)

LB UB
1 32.062 27 27.009 22.406 5 71
2 33.923 31 24.950 13.286 15 60
3 6.269 4 3.034 6.990 1 19
4 11.800 9 5.040 8.593 3 28
5 35.968 34 26.995 13.632 15 61
6 29.156 26 20.004 17.579 10 56
7 31.532 27 23.972 18.759 10 62
8 28.962 26 26.968 13.433 11 55
9 26.670 24 18.938 13.569 11 49

10 6.628 6 4.995 3.031 3 12
11 20.689 19 13.882 10.020 9 38
12 6.769 6 4.074 4.184 3 14
13 30.677 28 21.935 14.582 12 57
14 12.648 12 12.013 4.739 6 23
15 45.056 38 36.061 26.709 14 98
16 31.795 28 19.985 15.480 13 62
17 12.354 11 9.033 6.713 3 25
18 20.768 18 14.885 13.254 6 44
19 17.976 16 13.806 10.688 7 32
20 44.185 41 33.978 17.207 18 77
21 24.546 21 17.000 17.306 4 52
22 27.044 24 20.928 13.330 12 48
23 22.761 20 17.894 13.606 8 45
24 18.978 18 13.975 7.031 9 33
25 21.125 19 16.923 10.803 8 40
26 49.104 24 17.913 50.010 8 170
27 33.149 29 23.972 18.317 12 64
28 56.048 47 43.104 30.523 20 128
29 21.875 18 15.928 15.746 4 46
30 66.648 45 29.105 48.71 17 178
31 56.766 44 32.915 37.253 12 146
32 33.674 31 27.970 12.611 17 58
33 28.945 27 25.878 12.228 13 48
34 24.424 23 19.038 8.194 11 40
35 32.501 29 24.013 15.524 11 63
36 26.326 23 20.966 13.249 10 51
37 28.025 25 18.012 15.200 7 57
38 30.152 28 23.972 10.287 15 51
39 29.509 28 6.984 18.344 5 64
40 33.082 28 23.972 20.543 11 68
41 32.765 30 27.936 13.845 14 61
42 106.598 102 83.090 46.672 33 195
43 35.537 25 19.986 31.500 8 112
44 17.486 16 14.020 7.191 8 26
45 102.871 99 44.047 51.849 29 185
46 34.88 29 25.982 23.048 14 54
47 47.434 38 34.096 32.679 13 81
48 38.49 35 31.999 16.431 19 60
49 51.749 41 35.045 34.361 18 88
50 47.666 43 43.008 21.111 22 72

Mean 33.321 28.800 23.225 18.447 11.340 66.540
Min 6.269 4 3.034 3.031 1 12
Max 106.598 102 83.090 51.849 33 195
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Figure 4.13: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with no Constraint on ψ and M = 200
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Table 4.11: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with ψ ∈ [0, 0.50] and M = 200

Sim # Mean Median Mode SdN
Credible interval (HDI)

LB UB
1 43.012 36 29.051 22.796 13 91
2 23.433 22 20.965 8.634 10 41
3 22.297 21 16.006 8.236 10 38
4 33.096 30 29.025 15.802 10 68
5 36.655 33 33.033 16.016 12 70
6 49.402 49 46.956 23.764 9 94
7 16.325 15 14.043 8.477 4 33
8 21.625 21 16.997 7.138 10 35
9 19.885 18 20.010 8.052 8 36

10 31.491 29 29.014 13.542 13 61
11 45.702 43 42.999 15.407 21 80
12 43.621 41 41.989 15.083 21 77
13 41.679 38 26.983 18.740 14 83
14 25.083 23 20.022 9.341 11 43
15 28.388 26 24.008 10.483 13 50
16 35.338 34 31.006 10.346 19 56
17 18.235 17 19.000 5.459 10 29
18 23.003 22 20.046 9.187 6 40
19 28.767 27 27.029 10.598 13 49
20 48.774 45 30.017 20.503 19 94
21 41.805 39 39.984 15.353 18 76
22 26.085 24 20.981 10.424 12 47
23 47.601 44 41.039 22.343 11 95
24 15.414 12 12.989 11.843 3 37
25 35.971 33 34.963 15.877 12 70
26 37.320 35 33.036 13.117 17 64
27 18.529 17 14.999 8.062 8 35
28 11.234 9 4.993 6.856 3 25
29 15.867 12 9.036 13.358 2 43
30 30.112 28 26.994 10.979 15 52
31 32.660 27 19.048 20.130 8 79
32 30.691 28 27.966 11.335 15 55
33 36.815 34 32.043 14.265 16 68
34 16.915 16 15.994 5.528 8 28
35 40.058 35 24.929 18.792 14 82
36 27.430 26 24.068 8.286 15 44
37 36.404 34 35.996 14.970 13 67
38 26.706 25 19.960 8.865 13 45
39 31.562 30 28.987 11.024 14 53
40 21.900 19 16.025 10.801 7 41
41 32.010 29 32.025 15.732 5 64
42 16.359 14 12.017 7.842 6 31
43 20.778 20 20.984 6.031 11 33
44 41.873 37 30.058 24.402 5 90
45 11.678 11 10.038 3.924 6 20
46 19.856 17 17.016 9.701 8 40
47 55.258 53 44.038 23.504 17 99
48 60.856 59 49.033 19.839 29 99
49 35.424 33 30.038 13.965 14 64
50 40.311 37 38.042 15.722 17 74

Mean 31.026 28.540 26.110 13.009 11.760 57.760
Min 11.234 9 4.993 3.924 2 20
Max 60.856 59 49.033 24.402 29 99
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Figure 4.14: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0, 0.50] and M = 200
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Table 4.12: Summary of 50 Runs to Estimate Mean, Median, Mode, Standard Error, and
Credible Interval of Population size N with ψ ∈ [0.10, 0.40] and M = 200

Sim # Mean Median Mode sd
Credible interval (HDI)

LB UB
1 28.156 27 21.998 8.197 18 40
2 30.306 29 24.998 8.041 20 43
3 37.205 35 34.992 13.139 18 67
4 38.657 35 26.978 14.592 19 62
5 37.701 36 31.982 11.805 22 57
6 46.980 45 39.978 16.426 22 72
7 30.231 27 27.008 12.560 14 59
8 28.780 27 24.000 8.989 17 41
9 32.771 28 21.944 14.393 16 55

10 27.730 26 24.009 7.681 17 38
11 43.179 41 38.021 13.886 24 67
12 23.441 23 19.974 5.776 16 32
13 34.571 32 32.010 12.290 18 53
14 28.246 26 23.032 10.673 14 43
15 24.357 23 21.006 7.760 13 40
16 33.154 31 31.014 10.434 19 48
17 34.739 33 32.007 9.511 22 49
18 30.829 29 24.995 8.948 19 44
19 30.639 29 28.001 9.987 18 45
20 34.644 32 34.011 12.044 19 53
21 28.206 26 24.032 10.737 14 42
22 24.396 23 21.022 6.269 15 38
23 34.882 32 24.938 12.953 18 54
24 30.776 29 27.032 9.600 18 43
25 32.172 29 32.009 12.096 16 49
26 25.856 24 20.959 9.234 14 36
27 30.770 28 26.002 11.652 16 48
28 29.274 27 25.041 10.842 14 52
29 28.747 27 26.001 8.936 15 47
30 42.586 40 40.014 15.603 19 75
31 18.854 18 15.950 5.869 10 31
32 32.762 30 28.050 12.051 16 60
33 32.969 29 27.032 14.08 13 65
34 29.423 27 23.985 10.888 15 53
35 35.327 33 31.033 12.057 18 62
36 26.611 25 22.015 9.469 12 46
37 28.045 26 22.995 8.815 15 46
38 38.125 35 23.954 14.295 17 69
39 26.929 25 22.992 8.514 15 45
40 26.072 24 21.006 10.342 12 48
41 26.291 24 20.018 9.267 13 46
42 25.418 24 23.994 7.477 13 40
43 20.214 19 17.973 5.576 12 32
44 32.189 29 26.042 12.816 15 62
45 36.304 34 31.035 11.386 19 62
46 24.373 23 21.994 6.401 15 38
47 29.801 27 25.018 11.155 15 55
48 39.826 37 25.968 15.070 17 71
49 43.891 42 39.986 14.394 21 73
50 21.015 20 19.951 5.139 13 31

Mean 31.168 29.000 26.400 10.602 16.400 50.540
Min 18.854 18 15.950 5.139 10 31
Max 46.980 45 40.014 16.426 24 75
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Figure 4.15: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0.10, 0.40] and M = 200

In conclusion, by reducing the range of the parameter ψ, ESS increases, lag10 and

standard error decrease. As a result, we obtain a more accurate estimated N .
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4.5 Regularized Integrated Model using Spatial Camera

Coordinates and Informative Prior Distributions

This model is an extension of the spatial capture model [4]. Some assumptions of the

spatial model must also be satisfied in this model. However, there are some assumptions,

constraints, and prior distributions that are specifically considered in the proposed model.

Similar to the spatial model, the individuals in the population are not uniquely identified

the individuals might be captured at multiple cameras.

Each individual in the hypothetical population with size M will be assigned a spatial

location (x, y) based on the home range radius. It means M activity centers are considered

in the study area. Camera encounters provide the number of detected individuals, not nec-

essarily identified individuals. In contrast with the spatial model, we divide M individuals

to two groups: 1. Detected group of size n, total number of camera encounters; and 2.

Undetected group of size b =M − n. Assume each individual d from group 1 with a fixed

center of activity defined with the coordinate point sd = [sx, sy]d where d = 1, 2, ..., n, and

each individual i from group 2 with a fixed center of activity defined with the coordinate

point si = [sx, sy]i. We assume that each individual in detected group (size n) has a center

of activity randomly sampled from a Normal distribution:

sd ∼ Normal(µ = Cd = [Cx, Cy]d, σ) (4.1)

where [Cx, Cy]d is the spatial camera coordinates and σ is the home range radius. We also

assume that each individual in group 2 (size b) has a center of activity randomly sampled

from a uniform distribution:

si ∼ Uniform(S) (4.2)

where S is the two-dimensional study area, i.e., a Uniform prior is considered over both

dimensional. The J camera locations are defined by the coordinate Cj = [Cx, Cy]j, j =
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1, 2, ..., J . We assume ydjk as the unknown encounter at camera j on occasion k for indi-

vidual d in group 1 with a Poisson distribution:

ydjk ∼ Poisson(λdj) (4.3)

where λdj is the encounter rate, i.e. the expected number of camera encounters of individual

d at camera j and is defined by:

λdj = λ0gdj (4.4)

and λ0 is the baseline encounter rate, and gdj is a monotonically decreasing function of the

distance defined by a half Normal distribution:

gdj = exp
(
−D2

dj/σ
2
)

(4.5)

and Ddj is the Euclidean distance between activity center and the camera location:

Ddj = ||sd − Cj|| (4.6)

where σ is the scale parameter equal to the home range radius. Similarly, yijk as the un-

known encounter at camera j on occasion k for individual i in group 2 has a Poisson

distribution:

yijk ∼ Poisson(λij) (4.7)

where λij is the encounter rate, i.e. the expected number of camera encounters of individual

i at camera j and is defined by:

λij = λ0gij, (4.8)

and λ0 is the baseline encounter rate, and gij is a monotonically decreasing function of the
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distance defined by a half Normal distribution:

gij = exp
(
−D2

ij/σ
2
)
, (4.9)

and Dij is the Euclidean distance between activity center and the camera location:

Dij = ||si − xj|| (4.10)

where σ is the scale parameter equal to the home range radius. If an individual can be

detected at most once during a sampling occasion ydjk takes a binary value. It means, ydjk

takes a value of 1 if the individual d has made a camera encounter or 0 otherwise. If more

than one camera encounter per camera per occasion is possible, then ydjk is the number of

times that an individual d has been detected at camera j on occasion k and ydjk represents

the encounter or capture history. Therefore, we will have a (J × K) encounter history

matrix for each individual.

The camera encounter histories ydjk and yijk cannot be directly observed for unmarked

individuals. The number of camera encounters at camera j in occasion k, njk, can be

written as:

njk =
N∑
d=1

ydjk +
N∑
i=1

yijk (4.11)

and the number of camera encounters at camera j over all K occasion nj. can be written

as:

nj. =
K∑
k=1

njk (4.12)

The full conditional latent encounter has a multinomial distribution and using the data

augmentation we can write:

{y1jk, y2jk, ..., yNjk} ∼Multinomial(njk, {π1j, π2j, ....., πNj}) (4.13)

67



where πlj = λlj/
∑

l λlj , l ∈ {i, d}. The number of camera encounters at camera j in

occasion k, njk has a Poisson distribution:

njk ∼ Poisson(Λj) (4.14)

where

Λj = λ0

N∑
l=1

glj (4.15)

Because Λj is independent of k we can aggregate the camera counts:

nj. ∼ Poisson(KΛj) (4.16)

In contrast with the spatial model, in place of using improper uniform distribution for σ

and ψ, we define informative priors for them. Using the proposed regression model earlier

in this chapter for estimation of hog home range, we define prior distribution of σ by:

σ ∼ Normal(µ = σ̂reg, σh) (4.17)

where σ is the home range radius, σ̂reg is estimated home range radius using multiple

regression, and σh is standard error of estimated home range radius. Next, we define an

informative prior for ψ. We remind that, ψ is the probability that an individual in the

occupancy model of size M is a member of the original model of size N :

N ∼ Binomial(M,ψ) (4.18)

Therefore:

ψ =
E[N ]

M
(4.19)

whereE[N ] is expected value ofN . HoweverN is unknown and in turn we use its estimate:
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ψ̂ =
N̂

M
(4.20)

In turn, we use the estimate of ψ to define an informative distribution for ψ:

ψ ∼ Normal(µ = ψ̂, σψ) (4.21)

where σψ = n
M

, and n is the number of camera encounters. In the hypothetical population

of M individuals, b =M − n of them are associated with all-zeros encounter histories:

zi =

⎧⎪⎪⎨⎪⎪⎩
1 if the individual i is a member of the population (i=1,2,...,N)

0 if the individual i is a fixed zero (i=N+1,...,M)

where zi ∼ Bern(ψ); i = 1, 2, ...,M . Hence, the encounter data for each individual in

the augmented population can be modeled by:

(yijk|zi = 1) ∼ Poisson(λij)

(yijk|zi = 0) ∼ I(yijk = 0)

(4.22)

and hence, the population size is:

N =
M∑
i=1

zi (4.23)

In turn we have:

N̂ =
M∑
i=1

ẑi (4.24)

Finally, the joint posterior distribution can be written by:

[y, z, sd, si, λ0, ψ|n, [Cd, Cj], σreg,M, S] ∝
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{
n∏
d=1

{
J∏
j=1

K∏
k=1

[njk|ydjk][ydjk|zd, sd, σ, λ0]

}
[zd|ψ][sd]

}
[ψ][λ0][σreg]

+

{
b=M−n∏
i=1

{
J∏
j=1

K∏
k=1

[njk|yijk][yijk|zi, si, σ, λ0]

}
[zi|ψ][si]

}
[ψ][λ0][σreg] (4.25)

where prior distributions are assumed to be independent and hence:

[ψ, λ0, σreg] ∝ [ψ][λ0][σreg] (4.26)
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Chapter 5

A Real Application of the Model for

Population Estimation

This investigation took place within the boundaries of the Kennedy Space Center (KSC)

along with the east-central coast of Florida, specifically on the Merritt Island National

Wildlife Refuge (MINWR). In this study, we apply the spatial model and the proposed

model to estimate the hog population in KSC. Data for this research was collected in two

study sites in KSC.

5.1 Population Estimation: Happy Creek

Population size, encounter rate, density, home range, and home range centers of Happy

Creek were estimated separately for each batch. The estimated parameters for different

values of M are depicted in Table 5.1. The estimated population size N ranges from 39

to 64 hogs for M = 150 and from 89 to 125 for M = 300 that represents a considerable

difference. Interquartile range of estimated N for different batches of data for HC is shown

in Table 5.2. Overall, the interquartile range for all batches for HC is 89 with minimum

25th percentile of 9 and maximum 75th percentile of 98.
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The estimated N using different time batches were merged by averaging the size to

determine the final estimate of HC, which is 55 using M = 150 and 108 for M = 300.

Table 5.1: Estimated Population Size for HC Using Different Batches of Data

Batch
M = 150 M = 300

N̂ Sd λ0 σ N̂ Sd λ0 σ
1 54.16 42.42 1.30 3.44 106.07 86.00 2.04 0.25
2 38.42 41.19 0.06 3.59 88.92 85.21 0.06 2.86
3 52.55 40.71 0.38 0.64 99.46 85.02 0.34 0.54
4 63.87 41.66 0.30 0.54 120.9 84.22 0.26 0.53
5 63.66 41.10 0.32 1.98 124.64 84.09 0.36 0.36

5.2 Population Estimation: Tel-4

In a similar way, population size, encounter rate, density, home range, and home range

centers of Tel-4 were estimated separately for each batch. The estimated parameters for

the different values of M are depicted in Table 5.3. The estimated N varies considerably

from 54 to 76 for M = 150 and from 89 to 125 for M = 300. The interquartile range of

the estimated N for different batches of data for Tel-4 is shown in Table 5.4. Overall, the

interquartile range for all batches of Tel-4 is 98 with a minimum 25th percentile of 13 and

a maximum 75th percentile of 111.

The estimated N using different batches were averaged to determine the final estimate

of Tel-4, which is 62 using M = 150 and 115 for M = 300.

Table 5.2: Interquartile Range for the Estimated N for HC Using Different Batches of Data

Batch P25 P50 P75

1 16 46 91
2 9 38 88
3 23 46 85
4 32 60 98
5 23 45 84
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Table 5.3: Estimated Population Size for Tel-4 Using Different Batches of Data

Batch
M=150 M=300

N̂ Sd λ0 σ N̂ Sd λ0 σ
1 53.45 44.03 2.81 0.37 106.2 87.53 1.99 0.16
2 63.87 42.93 0.99 0.24 114.63 86.96 0.56 0.28
3 52.46 43.49 3.77 0.17 97.88 86.8 0.95 0.15
4 75.52 40.65 0.35 0.27 138.16 82.58 0.32 0.19

Table 5.4: Interquartile Range for the Estimated N of Tel-4 Using Different Batches of
Data

Batch P25 P50 P75

1 13 42 88
2 26 53 93
3 19 53 97
4 46 77 111

5.3 Estimated Population of KSC

The estimated population using different batches of HC and Tel-4 are shown in Figures 5.1

and 5.2. To estimate the population size of KSC, we used the estimatedN of HC and Tel-4.

First, we assumed KSC has a homogenous habitat as HC, and as a result, we proportionally

calculated the N based on the study areas of KSC and HC. With regard to different values

of M, the estimated N for HC is 55 and 108 (Table 5.5). The area of HC is 1765 ac or 7.1

sq km, and the area of KSC is 63, 000 ac or 254.8 sq km, which is 35.7 times larger than

HC. Hence, the estimated N of KSC using the estimated population of HC is 1, 947 for

M = 150 and 3, 856 for M = 300.

By contrast, the area of Tel-4 is 638.3 ac or 2.58 sq km, which means that KSC is 98.8

times larger than Tel-4. As a result, the estimatedN of KSC assuming it has a homogenous

habitat as Tel-4, which is 6, 060 for M = 150 and 11, 285 for M = 300.

Next, we designed a weighted averaging procedure with regard to the area of each study

site:

N̂KSC = ωHC × N̂HC + ωTel−4 × N̂Tel−4 (5.1)
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Table 5.5: Estimated Population Size of KSC Using the Estimates of HC and Tel-4

Area Population Size Weighted Average
Study Area AC Sq-KM KSC Ratio M = 150 M= 300 M = 150 M= 300

HC 1765 7.14 35.7 54.53 108
Tel-4 638.3 2.58 98.8 61.33 114.22

KSC (HC) 63000 254.8 1 1946.7 3855.6
KSC (Tel4) 63000 254.8 1 6059.4 11,285

KSC (HC & Tel4) 63000 254.8 1 3057.2 5861.5

Therefore, since HC (7.1 sq km) is about 2.76 times of Tel-4 (2.58 sq km), the assigned

weights of HC and Tel-4 are 0.73 and 0.27, respectively. The estimated N using the pro-

posed weighted averaging is 3, 058 for M = 150 and 5, 862 for M = 300 (Table 5.5).

These estimates suggest a hog density of 0.048 per acre for M = 150 and 0.094 per acre

for M = 300.

5.4 Sensitivity of the Estimated Population Size to M

An estimated value of N for happy creek for batch three with 30 camera encounters over

two-week period is shown in Table 5.6. As shown in Table 5.6, the estimated population

size N̂ is highly sensitive to value of M and sensitivity increases by increasing the value of

M . This sensitivity could be potentially related to convergence problems of the model for

large values of M . However, to gain some insight into the complexity and dimensionality

of the problem, assume M is 300, which means that there are 300 centers of activity, each

of which have two coordinates (x and y), with a total of 600 coordinate parameters. In addi-

tion, to these potential activity centers, we are also trying to estimate 300 z’s (i.e., whether

or not a hypothetical individual belongs to the actual population), along with home range,

encounter rate, and population size. This will introduce an approximately 1, 000 dimen-

sional search space to solve for all parameters, and as a result the model may not converge

to the global solution. Therefore, to address the variation in the estimated N and the sen-

sitivity of the estimates to M , we studied the convergence of the model. Figure 5.3 shows
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Figure 5.1: Estimated Population Size Based on Each Batch for HC

the convergence plots for estimated parameters. At first glance it appears that the model

has converged for all parameters. However, upon further investigation, and examining the

estimated posterior densities of the parameters (Figure 5.4), it appears that the model has

not converged, since the posterior density of N̂ has a heavy upper tail. We concluded that

due to the complexity of the problem with regard to the number of unknowns including

population size, home range centers, density, home range radius, and encounter rate, the

model may not converge. Even if it does converge, it may converge to a local solution,

because of the complexities of the different combinations of these values and because of

the nature of Gibbs sampling and the MCMC algorithm.
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Figure 5.2: Estimated Population Size Based on Each Batch of Tel-4

Table 5.6: Study the Sensitivity of the Estimated Posterior Population Mean to M Using
Batch 3 Data Collected for HC

M N̂ Median Mode σ̂ λ̂0
50 24.06 23.00 8.00 0.946 0.287

100 49.09 47.00 23.00 0.504 0.297
150 63.15 56.00 5.00 0.643 0.304
200 88.67 81.00 6.00 0.445 0.278
250 108.40 100.00 14.00 0.429 0.282
300 121.12 106.00 5.00 0.545 0.243
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Figure 5.3: Convergence Plots for Estimated σ (top left), λ0 (top right), ψ (bottom left) and
N (bottom right)

Figure 5.4: Estimated Posterior Densities for σ (top left), λ0 (top right), ψ (bottom left) and
N (bottom right)
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5.5 A Regression Model to Estimate Home Range

We used previous studies to estimate the home ranges of the hogs. To this end, 32 reported

studies [59] regarding the home range of hogs were used. We designed a multivariate

regression mode:

Y = B0 +B1X1 +BX2 +B3X3, (5.2)

where Y is the home range (HR), X1 is the average annual precipitation (Rain), X2 is

the average annual land temperature (Tmp), and X3 is the elevation (Elv). The estimated

coefficients are

HR = −7.96− 0.005 ∗Rain+ 0.92 ∗ Tmp+ 0.011 ∗ Elv. (5.3)

This model was used to predict home range of hogs at KSC, where recorded average

monthly temperatures in 2017 were 16, 16, 20, 22, 25, 27, 28, 28, 27, 24, 19, and 16 ◦C for

January to December, respectively. The average annual temperature was then calculated as

22.3 ◦C in 2017. Average annual rainfall in 2017 was 58.5 in., equal to 1, 486.4 mm and

KSC’s elevation was considered similar to Cape Canaveral’s elevation of 3.048 m. Latitude

was not significant and was removed from the proposed multivariate model. The estimated

home range in the present study, 4.84 sq km, is very close to the median home range of 4.85

sq km of the reported studies. The home range is positively correlated with the tempera-

ture and elevation but has a negative correlation with precipitation. Poffenberger’s (1979)

previous estimate of the home range at KSC is 130 ac or 1.3 sq km.Using both estimates,

we ascertain a range of 640 to 1200 m for the home range radius.

As discussed earlier, the estimate of N is somewhat sensitive to the selected value

of M . When using different M values, the model converges due to the nature of Gibbs

sampling in the MCMC method. When multiple parameters are estimated at the same time,

the model may converge toward a different set of estimated values. While the estimate
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of N for M = 300 is greater than that of 150, the estimated σ for M = 300 is less

than that of M = 150. The smaller σ indicates lower correlations in camera encounters

while larger σ suggests higher correlations in camera encounters. This means that using

the same encounter data, the model will converge toward a different estimated vector for

different values of M . By comparing the estimated σ using two different values of M , we

selected the estimate of N that is obtained using M = 150, because the calculated home

range using estimated σ is closer to the proposed range for the hog’s home range in KSC.

The estimated population was calculated by extrapolation using the weighted average of

the estimated population for HC and Tel-4. The estimated population for selected M was

3, 058. The weighted interquartile range is 91.5 with the 25th percentile of 10 hogs and

the 75th percentile of 101.5 hogs for estimated N for HC and Tel-4. The extrapolated

interquartile range for KSC was calculated using these two sites, and was 3953 with the

25th percentile of 432 hogs and 75th percentile of 4385 hogs.

We should point out that a more accurate estimate of hog population size in KSC can

be obtained by installing more cameras to cover more sections of the KSC area. How-

ever, due to the limited resources, we monitored two study sites, i.e. HC and Tel-4. As

a result, the estimated population size for KSC was calculated as an extrapolation using a

weighted averaging of estimated population for these two study sites. Therefore, this may

not accurately represent the whole population of KSC.

5.6 Informative Prior Distribution for Estimating the Pop-

ulation

The numerical optimization techniques aim to find the optimum values of the objective

function [60]. However, with high dimensional space, finding the globally optimal solution

is not an easy task and may be unreachable. In our problem, we could conclude that the

separate trials are not converged to the same posterior distribution, but we can argue that
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we can reach the optimal solution even the problem is highly dimensional.

Moreover, since we do not have enough information for prior distributions, a new set

of random sampling of each parameter generated. As a result, we have separate spaces in

each trial. For Tel-4 site Batch 1, for example, we wanted to see if the 50 trials came from

the same distribution set. In Figure 5.5, we can see that the samples are not in the bell

shape and that the distribution is multimodal. In the quantile-quantile (QQ) plot, we can

visualize that the points do not match along a straight line, which shows that the quantiles

do not match, leading us to reason that the sampling distribution of 50 trials most likely

does not come from identical distributions. As a result, we conclude that the chain has

converged to a different posterior distribution in each trial.

The only informative prior distribution is for σ with a shape parameter of 10 and a scale

parameter of 55, which are the equivalent values of the home range’s estimated values using

the regression model. The results in the next two sections summarizes a four-month study

on feral hog population analysis and management at the Kennedy Space Center (KSC). In

this study, we monitored hogs in two study sites using two 12-camera systems for 16 weeks

in two-week periods in the summer of 2018. The collected images were preprocessed to

remove nonanimal images and the number of animals counted and recorded along with

pole identification numbers, dates, times, and genders (if possible).

A camera grid map with the camera distances, coordinates, and number of camera

encounters were produced for each two-week monitoring period. At the beginning of a new

two-week period, new poles were installed in each study site, and cameras were moved

from previous poles to the new positions. After four time periods and after substantial

coverage in each study area, we chose new camera locations by randomizing the existing

installed poles.
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Figure 5.5: Histogram (left) and QQ Plot (right) of 50 Runs using Batch 1 Collected for
Tel-4

5.6.1 Estimated Population in Happy Creek (HC)

The population size, encounter rate, density, home range, and home range centers of Happy

Creek were estimated separately for each batch. The estimated parameters for the value of

M = 100.

As we can see in Table 5.7, the estimated population size N ranges from 10 to 20 hogs

using the first sampling batch (Batch1). The average estimated population is approximately

15 hogs. The standard error of the estimates is between 18 to 24. The range of the high-

est Bayesian credible interval from 1 to 43 is quite wide. However, the estimated median
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ranges from 3 to 9. The estimated value for σ is more stable since we used gamma distri-

bution as a prior distribution. The estimated mean and median for sigma are 485 and 471,

respectively. Moreover, the estimated mean and median ranges are comparable, from 436

to 532 for the mean and 424 to 515 for the median (see Table A.7 and Figure 5.6).

The correlation of estimated σ and N are not small enough. However, by looking at

the histogram and the running mean of the estimated values, we conclude that they reached

their converged values as we can see in Figure 5.7, A.1, and A.2.
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Table 5.7: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Happy Creek Using Batch 1

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 15.247 5 21.743 1 45
2 14.445 6 20.378 1 40
3 13.278 5 19.612 1 37
4 15.05 5 21.381 1 44
5 16.839 6 22.223 1 49
6 16.83 6 22.63 1 50
7 10.465 3 17.782 1 27
8 15.598 5 22.524 1 47
9 13.769 6 19.188 1 37

10 17.791 7 22.538 1 50
11 18.522 8 23.423 1 53
12 19.743 9 24.079 1 56
13 14.985 5 21.338 1 44
14 13.533 4 20.639 1 40
15 12.71 4 19.73 1 36
16 12.951 4 20.741 1 38
17 18.468 8 23.474 1 53
18 13.774 4 21.028 1 41
19 13.917 5 20.988 1 41
20 16.858 6 23.437 1 51
21 12.41 4 19.168 1 35
22 16.621 6 22.796 1 50
23 18.131 7 23.507 1 53
24 15.126 5 21.076 1 44
25 17.132 6 23.182 1 51
26 11.974 4 18.985 1 33
27 13.474 4 20.103 1 39
28 18.128 7 23.555 1 54
29 13.817 5 20.155 1 39
30 12.493 4 19.458 1 35
31 12.139 4 19.183 1 34
32 17.035 6 23.451 1 51
33 13.807 5 20.183 1 39
34 14.437 5 20.808 1 41
35 10.432 3 17.928 1 28
36 15.957 6 21.781 1 46
37 16.277 6 21.751 1 47
38 16.052 6 22.178 1 47
39 14.562 5 20.637 1 42
40 12.771 4 20.147 1 36
41 15.31 5 22.072 1 45
42 11.957 4 18.928 1 34
43 16.192 6 22.09 1 48
44 16.947 6 22.746 1 49
45 18.538 7 23.756 1 54
46 13.943 5 20.434 1 39
47 15.374 5 22.063 1 46
48 15.241 5 22.337 1 46
49 12.463 4 19.933 1 36
50 10.885 3 18.691 1 29

Mean 14.888 5.26 21.239 1 42.98
Min 10.432 3 17.782 1 27
Max 19.743 9 24.079 1 56
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Figure 5.6: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 1 from HC

For Batch 2, the average estimated N is about 19 hogs and ranges from 11 to 26 hogs.

Clearly, the density function of the population size twists on the right with an average of

the median about 10 hogs. The standard error of the estimate N ranges from 16 to 26. The

Bayesian credible interval is from 1 to 48 as illustrate in Table 5.8 and Figure 5.8.
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Figure 5.7: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 1

The running mean of the estimated values of the population size N converges to its

posterior distribution as it is demonstrated in Figures 5.9, A.3, and A.4 for three different

trials. The average mean and median of σ are comparable with the values of 522 and 504,

respectively as shown in Table A.8. The credible interval for the mean of σ ranges from

257 to 768.
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Table 5.8: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Happy Creek Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 18.647 9 21.883 1 49
2 21.672 11 24.521 1 59
3 21.065 11 23.608 1 56
4 11.631 5 16.364 1 28
5 21.547 11 24.181 1 59
6 18.314 9 21.726 1 48
7 21.019 11 23.39 1 56
8 14.37 6 19.495 1 39
9 23.829 13 25.188 1 63

10 22.952 12 25.528 1 63
11 21.226 11 23.571 1 56
12 19.555 10 22.448 1 52
13 18.611 9 22.741 1 51
14 19.711 10 22.269 1 51
15 17.483 9 20.416 1 44
16 12.469 6 16.652 1 30
17 17.335 8 21.462 1 47
18 18.557 10 21.503 1 48
19 18.848 10 21.549 1 49
20 24.941 16 24.487 1 62
21 13.15 5 19.122 1 34
22 17.927 9 21.02 1 47
23 13.441 6 18.195 1 33
24 17.21 8 22.135 1 47
25 15.817 8 19.75 1 40
26 26.053 17 24.866 1 64
27 15.089 7 19.595 1 40
28 23.381 13 24.062 1 60
29 17.341 9 20.899 1 45
30 22.25 13 23.931 1 58
31 17.554 8 21.74 1 47
32 15.11 7 19.039 1 38
33 11.212 5 15.536 1 26
34 11.488 6 15.948 1 26
35 20.028 10 22.749 1 53
36 25.748 15 25.669 1 66
37 20.357 11 22.452 1 53
38 18.87 9 22.297 1 50
39 25.634 15 26.318 1 68
40 23.358 13 24.812 1 61
41 13.133 7 16.301 1 31
42 14.336 7 18.273 1 36
43 15.926 8 19.645 1 41
44 19.56 10 22.837 1 53
45 20.488 11 22.313 1 53
46 14.756 8 17.879 1 36
47 14.778 6 20.28 1 39
48 19.39 10 22.113 1 51
49 22.474 12 24.035 1 59
50 21.074 11 23.263 1 55

Mean 18.614 9.62 21.601 1 48.4
Min 11.212 5 15.536 1 26
Max 26.053 17 26.318 1 68
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Figure 5.8: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 2 from HC

Figure 5.10 shows the estimated N for Batch 3, using the mean of 50 trials and the

fluctuations of the estimated N in each trial, comparing the average N , which is about 10

hogs, a number that is still acceptable considering all prior informative distributions we

had. The range of estimated N is from 4 to 22. For the median, the average is around 7

hogs, ranging from 3 to 17 hogs. Comparing the average mean with the average median,

the density function of the posterior distribution twists to the right. The average of the
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Figure 5.9: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 2

highest Bayesian credible interval ranges from 1 to 20 as we can observe in Table 5.9.

In Table A.9, the average mean and median of σ are comparable at 432 and 405, respec-

tively. Additionally, the estimated σ ranged from 229 to 610 for the mean and from 256 to

597 for the median.

In Figures 5.11, A.5 and A.6, the running mean still gradually converges to its posterior

distribution. For a strong convergence, running more simulations are needed.
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Table 5.9: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Happy Creek Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 5.887 4 4.890 1 12
2 17.958 14 14.589 2 37
3 7.187 5 7.303 1 14
4 16.474 11 16.158 1 36
5 12.098 9 11.765 1 24
6 14.749 12 11.774 1 28
7 7.668 6 6.381 1 15
8 6.471 4 6.793 1 14
9 10.159 7 10.505 1 22

10 15.874 12 14.100 1 33
11 7.759 6 7.514 1 16
12 7.781 7 5.789 1 15
13 12.27 9 11.242 1 23
14 7.691 7 5.214 1 14
15 10.828 8 10.914 1 23
16 5.300 4 5.110 1 11
17 13.851 9 15.138 1 31
18 4.275 3 4.429 1 8
19 12.925 9 12.365 1 26
20 9.577 7 9.702 1 18
21 10.718 9 7.857 1 20
22 6.538 5 7.520 1 13
23 13.029 8 14.394 1 29
24 22.337 17 17.609 1 44
25 14.994 11 13.893 1 30
26 5.950 4 6.753 1 12
27 13.495 10 13.185 1 29
28 6.557 5 5.578 1 13
29 3.882 3 3.853 1 8
30 6.991 5 6.384 1 14
31 6.464 3 6.545 1 15
32 9.265 7 8.204 1 17
33 7.280 6 6.035 1 14
34 14.507 12 11.11 1 27
35 10.351 8 10.122 1 20
36 4.657 3 4.731 1 9
37 8.692 5 9.790 1 19
38 6.130 5 4.983 1 11
39 7.485 5 8.048 1 15
40 6.053 4 5.856 1 13
41 11.441 8 10.904 1 24
42 17.693 14 14.498 1 34
43 8.943 7 7.330 1 18
44 13.86 10 13.207 1 28
45 9.121 7 8.473 1 17
46 13.572 10 12.072 1 30
47 7.293 5 7.023 1 15
48 12.759 9 12.613 1 25
49 8.753 7 8.173 1 17
50 12.7 9 11.843 1 25

Mean 10.166 7.48 9.405 1.02 20.5
Min 3.882 3 3.853 1 8
Max 22.337 17 17.609 2 44
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Figure 5.10: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 3 from HC

For Batch 4, the estimated value of the population size N range from 17 to 41 hogs

with an average of 17 hogs. The density of population size twists to the right with a median

average of 10 hogs, and the median ranges from 11 to 36 hogs. Moreover, the credible

interval is between 1 and 64 as we can see in Table 5.10 and Figure 5.12. In Table A.10,

the average estimated mean and median for σ are 474 and 450, respectively. The average

standard error of σ is about 168, and its credible interval ranges from 218 to 715.
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Figure 5.11: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 3

The histogram and the running mean of the estimated values reached their converged

posterior distributions as demonstrates in Figures 5.13, A.7, and A.8.
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Table 5.10: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Happy Creek Using Batch 4

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 24.484 17 22.053 1 56
2 39.661 34 27.013 3 81
3 30.911 21 27.252 1 74
4 28.370 20 23.966 2 65
5 28.481 19 25.630 1 69
6 30.918 21 26.839 1 73
7 22.076 14 22.053 1 54
8 17.236 11 18.676 1 39
9 28.488 20 24.624 2 68

10 27.448 19 24.776 1 65
11 24.219 14 24.078 1 61
12 28.337 20 23.916 2 65
13 35.590 28 26.668 2 78
14 26.799 17 24.551 1 64
15 27.565 19 23.387 2 63
16 23.053 14 22.496 1 56
17 28.583 21 24.295 1 65
18 29.695 21 25.525 2 70
19 32.738 25 25.516 2 72
20 29.357 21 25.188 1 68
21 24.308 14 24.236 1 62
22 32.988 24 26.721 1 75
23 40.529 35 27.200 4 84
24 24.874 15 24.195 1 61
25 26.595 18 24.260 1 64
26 25.450 16 24.264 1 63
27 29.620 20 26.311 1 70
28 34.118 26 26.326 1 74
29 21.748 13 21.783 1 53
30 23.547 14 23.629 1 59
31 25.918 17 23.655 2 63
32 33.263 25 26.412 1 74
33 29.987 22 25.735 1 69
34 29.025 19 25.993 1 69
35 28.182 19 25.563 1 68
36 21.788 13 22.329 1 54
37 18.070 10 20.355 1 45
38 25.888 17 23.562 1 61
39 28.660 19 26.003 1 69
40 21.992 12 22.751 1 56
41 25.434 17 22.727 1 58
42 26.182 17 23.925 1 63
43 19.821 12 20.329 1 46
44 21.765 14 21.375 1 51
45 26.317 18 23.449 2 63
46 20.937 12 22.555 1 54
47 17.909 11 19.013 1 41
48 37.962 32 27.103 2 79
49 26.341 17 24.735 1 64
50 29.395 20 25.272 2 70

Mean 27.252 18.68 24.205 1.32 63.76
Min 17.236 10 18.676 1 39
Max 40.529 35 27.252 4 84
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Figure 5.12: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 4 from HC

For Batch 5, from simulation summary results in Table 5.11 and Figure 5.14, we con-

clude that the average mean and median of the estimated population size are 16 and 12

hogs respectively, with a standard error of about 14. The estimated mean ranges from 12

to 31 and 7 to 25 for the estimated median. Moreover, the highest density credible interval

is between 2 and 31. For σ, the average of the mean and median is 350 and 316 with a

standard error of 317. The credible interval for σ ranges from 172 to 520 as we can see in
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Figure 5.13: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 4

Table A.11. The running mean of the estimated values of the population size N converges

gradually to their posterior distributions as we can see in Figures 5.15, A.9, and A.10
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Table 5.11: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Happy Creek Using Batch 5

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 16.066 12 12.769 4 31
2 12.015 10 7.609 4 22
3 22.254 15 20.246 2 49
4 31.421 25 21.376 4 63
5 13.623 10 10.930 3 25
6 11.826 9 9.597 3 21
7 12.293 10 10.26 3 21
8 19.176 13 17.008 3 40
9 12.293 10 8.689 4 23

10 14.715 11 14.600 1 23
11 12.376 8 14.252 2 22
12 13.899 7 17.882 1 31
13 15.301 11 15.263 1 26
14 14.412 12 10.106 4 26
15 17.253 13 14.742 3 32
16 18.082 14 14.454 3 33
17 14.602 10 15.406 2 28
18 15.417 12 12.089 3 27
19 12.577 9 12.686 2 23
20 19.761 13 18.714 2 43
21 16.776 11 16.744 2 32
22 17.746 12 17.392 2 36
23 19.450 13 18.539 3 43
24 14.054 9 15.107 2 25
25 14.717 13 8.711 4 27
26 27.465 23 19.517 3 53
27 25.152 20 17.520 4 49
28 18.800 15 12.478 4 35
29 14.522 11 12.187 3 26
30 14.162 10 14.467 2 22
31 15.429 13 9.095 5 28
32 18.671 14 15.956 3 36
33 15.771 13 10.088 4 28
34 11.818 8 12.816 1 20
35 17.324 13 14.662 3 32
36 15.292 11 14.080 3 30
37 16.842 12 13.495 4 34
38 16.326 11 15.743 3 32
39 12.669 10 10.549 3 22
40 18.750 15 12.598 5 36
41 15.253 11 13.136 3 30
42 16.473 12 14.175 3 31
43 12.595 9 11.928 3 23
44 17.667 14 13.640 4 33
45 14.668 11 12.642 3 28
46 20.594 12 21.027 1 49
47 12.163 10 10.951 3 20
48 18.467 14 16.180 2 35
49 12.216 10 8.255 4 21
50 16.584 12 14.715 3 33

Mean 16.356 12.12 13.941 2.92 31.16
Min 11.818 7 7.609 1 20
Max 31.421 25 21.376 5 63
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Figure 5.14: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 5 from HC
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Figure 5.15: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 5

5.6.2 Estimated Population in Tel-4

In a similar way, population size, density, home range, and home range centers were esti-

mated separately for Tel-4 for each batch. The estimated parameters for M = 100. For

Batch 1, the average estimated population size N varies from 7 to 17 hogs with a mean of

11 hogs. The standard error is 17.7, and the highest density credible interval ranges from
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1 to 29. Clearly, the density function of the posterior distribution twists to the right with

a median of 4 hogs and a range of 3 to 7 hogs (Table 5.12 and Figure 5.16). Moreover,

the running mean of the estimated values of the N converges to the posterior distributions

(Figures 5.17, A.11, and A.12).

The summary of results to estimate σ depicted in Table A.12 shows that the average

estimated mean and median are comparable with values of 420 for the mean and 398 for

the median. The standard error is about 161, and the credible interval is from 171 to 643.

For Batch 2, the estimated population sizeN ranges from 27 to 34 hogs with an average

of about 30 hogs. The standard error of the estimates N is between 25.4 and 27.8. More-

over, the highest Bayesian credible interval ranges from 1.6 to 74.6. The estimated median

ranges from 16 to 24 with an average of about 20 hogs (Table 5.13 and Figure 5.18). The

running mean of the estimated parameters converges to the posterior distributions (Figures

5.19, A.13, and A.14). The estimated mean and median of σ are 404 and 382, respectively,

and they range from 387 to 424 for the mean and from 361 to 404 for the median (Table

A.13).

Using the collected data from Batch 3, the estimated N ranges from 10 to 12 hogs

with an average of 11 hogs. The median average is about 6 hogs, ranging from 5 to 7

hogs. Comparing the average mean with the average median, the density function of the

posterior distribution twists to the right. The average of the highest Bayesian credible

interval ranges from 1 to 40 (Table 5.14 and Figure 5.20). Moreover, the running mean

of the estimated parameters converges to the posterior distributions (Figures 5.21, A.15,

and A.16). The mean and median of σ are comparable with an average of 340 and 332,

respectively. Additionally, the estimated σ ranges from 332 to 347 for the mean and from

326 to 339 for the median (Table A.14).

For Batch 4, the average estimated population size N is about 9 hogs and ranges from

5 to 25 hogs and the Bayesian credible interval is from 2 to 18 (Table 5.15 and Figure

5.22). The density function of the population size twists to the right with an average of the
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median about 6 hogs (Figures 5.23, A.17, and A.18). The standard error of the estimate

N ranges from 3.9 to 22.5 with an average of 10.1. The average mean and median of σ

are comparable with the values of 338 and 310, respectively (Table A.15). The credible

interval for the estimated N ranges from 160 to 527.
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Table 5.12: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Tel-4 Using Batch 1

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 7.340 3 13.519 1 13
2 10.388 4 16.242 1 25
3 10.501 4 17.431 1 26
4 13.545 4 20.214 1 39
5 11.175 3 18.758 1 31
6 9.761 3 17.097 1 23
7 13.004 5 19.894 1 36
8 10.866 4 17.060 1 28
9 8.375 3 14.394 1 18

10 10.639 4 16.985 1 26
11 8.399 3 15.377 1 18
12 10.912 4 18.293 1 28
13 14.881 6 20.635 1 43
14 10.730 4 17.203 1 27
15 12.341 5 17.645 1 32
16 11.697 5 18.054 1 29
17 16.601 7 21.945 1 46
18 9.889 4 15.223 1 23
19 11.830 4 19.052 1 32
20 12.130 5 18.254 1 31
21 10.280 4 16.098 1 24
22 13.173 5 19.547 1 35
23 15.132 6 20.721 1 43
24 9.497 3 16.500 1 22
25 8.947 3 15.837 1 20
26 8.168 3 14.553 1 17
27 11.413 4 18.204 1 28
28 11.313 4 18.387 1 31
29 15.546 5 22.679 1 48
30 11.094 4 18.083 1 29
31 11.831 5 16.814 1 30
32 11.401 4 17.708 1 29
33 10.267 3 17.383 1 27
34 11.072 4 17.963 1 29
35 11.943 4 18.797 1 33
36 12.177 5 17.907 1 30
37 8.957 4 14.271 1 18
38 8.254 3 14.563 1 18
39 7.656 3 13.640 1 17
40 10.381 4 16.389 1 26
41 10.092 4 16.050 1 25
42 14.228 5 20.800 1 40
43 10.506 4 16.376 1 25
44 9.924 3 17.268 1 24
45 14.912 5 20.705 1 42
46 11.555 4 18.091 1 30
47 14.970 6 20.889 1 42
48 10.770 4 17.621 1 26
49 14.824 5 21.409 1 44
50 14.376 5 20.772 1 41

Mean 11.393 4.18 17.786 1 29.34
Min 7.34 3 13.519 1 13
Max 16.601 7 22.679 1 48
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Figure 5.16: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 1 from Tel-4
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Figure 5.17: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 1
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Table 5.13: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Tel-4 Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 29.834 19 26.598 1 73
2 32.676 23 27.353 2 77
3 29.043 19 26.608 1 73
4 29.783 19 26.630 2 74
5 32.853 23 27.491 2 78
6 30.060 20 26.786 2 75
7 28.347 18 26.347 1 72
8 31.124 21 27.056 2 76
9 32.509 23 27.180 2 77

10 30.551 20 26.759 2 75
11 28.494 18 26.687 1 73
12 27.932 17 26.131 1 71
13 30.838 21 26.745 2 75
14 27.259 17 26.061 1 70
15 30.903 20 27.097 2 76
16 27.485 17 26.035 1 70
17 30.369 20 26.987 1 75
18 32.544 22 27.369 2 77
19 30.761 20 26.809 2 76
20 32.699 22 27.492 1 77
21 30.418 20 27.104 2 76
22 31.317 21 27.203 2 77
23 28.379 18 26.266 1 72
24 29.559 19 26.781 2 75
25 30.535 20 26.897 2 76
26 28.759 18 26.446 1 73
27 30.231 20 26.748 2 75
28 27.509 17 26.363 1 71
29 30.968 20 27.207 2 77
30 31.372 21 27.026 2 76
31 30.005 20 26.626 2 75
32 30.011 19 26.898 2 75
33 27.594 17 25.907 1 70
34 29.810 19 26.584 2 75
35 31.169 21 27.280 2 77
36 31.795 21 27.398 2 77
37 32.513 22 27.360 2 78
38 26.540 16 25.399 1 68
39 34.191 24 27.762 2 79
40 28.879 18 26.527 1 73
41 29.397 19 26.799 1 74
42 30.843 21 26.847 2 76
43 29.628 19 26.535 1 73
44 32.092 22 27.244 2 77
45 28.824 18 26.422 1 73
46 31.010 20 27.30 2 77
47 29.953 19 27.104 2 76
48 29.974 19 26.908 2 75
49 29.383 18 26.843 2 75
50 27.907 17 26.126 1 71

Mean 30.133 19.640 26.803 1.620 74.640
Min 26.540 16.000 25.399 1.000 68.000
Max 34.191 24.000 27.762 2.000 79.000
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Figure 5.18: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 2 from Tel-4
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Figure 5.19: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 2
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Table 5.14: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Tel-4 Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 10.741 6 15.555 1 43
2 10.256 6 13.974 1 36
3 11.354 6 15.668 1 44
4 10.436 6 14.551 1 39
5 11.175 6 15.261 1 42
6 12.066 7 16.137 1 47
7 10.525 6 14.414 1 37
8 11.826 6 16.729 1 49
9 11.267 6 15.419 1 43

10 10.896 6 14.803 1 40
11 11.147 6 15.051 1 41
12 10.047 5 14.606 1 38
13 9.928 6 13.328 1 33
14 11.329 6 15.421 1 43
15 11.449 6 15.692 1 44
16 10.626 6 14.515 1 38
17 10.961 6 15.708 1 43
18 10.812 6 14.780 1 39
19 10.941 6 14.847 1 40
20 11.140 6 14.840 1 40
21 10.499 6 14.120 1 36
22 10.102 6 13.607 1 35
23 11.104 6 15.390 1 43
24 11.017 6 15.203 1 41
25 10.191 6 13.912 1 36
26 11.417 6 15.331 1 42
27 11.431 6 15.449 1 43
28 11.197 6 14.755 1 41
29 11.588 6 15.774 1 45
30 11.483 6 15.733 1 45
31 11.248 6 15.071 1 41
32 11.618 6 15.721 1 44
33 10.905 6 14.501 1 39
34 10.572 6 14.291 1 37
35 10.969 6 14.839 1 40
36 11.404 6 15.764 1 44
37 11.024 6 14.751 1 40
38 11.099 6 14.809 1 40
39 11.746 7 15.306 1 43
40 10.778 6 14.873 1 40
41 10.215 6 13.743 1 34
42 11.449 6 15.703 1 44
43 10.997 6 14.734 1 39
44 9.8670 6 13.481 1 34
45 11.041 6 14.823 1 40
46 10.758 6 14.256 1 38
47 10.672 6 14.586 1 38
48 10.403 6 14.056 1 37
49 11.336 6 15.921 1 45
50 10.532 6 14.751 1 39

Mean 10.952 6.020 14.931 1.000 40.440
Min 9.867 5 13.328 1 33
Max 12.066 7 16.729 1 49
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Figure 5.20: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 3 from Tel-4
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Figure 5.21: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 3
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Table 5.15: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N for Tel-4 Using Batch 4

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 9.399 6 10.108 2 19
2 11.447 7 13.94 2 25
3 14.339 10 13.559 2 29
4 8.499 5 12.217 2 15
5 8.734 6 10.151 2 17
6 9.288 7 9.802 2 17
7 12.028 9 11.611 2 23
8 7.257 5 6.989 2 14
9 12.621 11 8.783 2 23

10 18.273 14 15.452 2 38
11 25.022 17 22.492 2 58
12 8.044 6 7.444 2 15
13 9.858 6 11.41 2 20
14 6.853 4 9.139 2 12
15 11.284 8 11.342 2 23
16 8.479 5 10.806 2 17
17 9.152 6 10.478 2 17
18 7.134 5 7.854 2 13
19 7.199 5 8.098 2 13
20 6.344 5 6.723 2 12
21 5.778 4 5.19 2 11
22 6.752 4 8.234 2 13
23 5.533 4 4.739 2 11
24 7.956 5 8.713 2 15
25 9.959 7 9.934 2 18
26 9.155 6 9.352 2 19
27 5.192 3 5.601 2 9
28 10.534 7 12.017 2 20
29 9.4 7 10.494 2 17
30 7.857 4 10.597 2 16
31 5.466 4 5.053 2 10
32 8.705 6 8.453 2 16
33 10.055 5 14.207 2 21
34 12.765 9 12.695 2 27
35 5.599 5 3.911 2 10
36 13.377 10 11.178 2 27
37 8.559 5 12.477 2 15
38 12.419 7 14.966 2 26
39 7.328 4 9.707 2 15
40 5.603 4 4.319 2 11
41 6.837 5 6.495 2 13
42 9.221 6 11.514 2 15
43 7.85 5 9.371 2 14
44 10.374 7 12.144 2 20
45 7.47 5 9.691 2 14
46 10.928 7 11.803 2 21
47 7.292 6 6.975 2 12
48 8.285 6 9.078 2 15
49 11.694 6 14.854 2 25
50 8.539 6 11.541 2 14

Mean 9.355 6.32 10.074 2 18.2
Min 5.192 3 3.911 2 9
Max 25.022 17 22.492 2 58
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Figure 5.22: The Estimated Population Size by Mean (top) and Median (bottom) using the
Average of 50 Runs of Batch 4 from Tel-4
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Figure 5.23: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 4

5.7 Estimating Hog Population using Regularized ψ

Results in Table 5.16 show the simulations for Happy Creek (HC) using Batch 4 of the

collected data. The highest effective sample size ESS for N and ψ are 842.2 and 902.9,

respectively, associated with the constraint ψ ≤ 0.50 and M = 100.

The results in Tables 5.17 and 5.18 reveal the range of the N with no constraint on
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Table 5.16: Summary of the Estimated Mean of σ, λ0, ψ, and N with a Constraint on ψ (0
to 0.5) and M = 200

ψ σ̂ λ̂0 ψ̂ N̂ ESSN ESSψ Lag10N Lag10ψ

M=100
0.00 1.00 473.783 0.120 0.277 27.252 451.415 472.341 0.871 0.860
0.00 0.50 459.706 0.148 0.182 17.739 842.211 902.896 0.741 0.708

M=200
0.00 1.00 461.215 0.110 0.217 42.797 251.548 258.152 0.926 0.921
0.00 0.50 459.776 0.126 0.139 27.206 491.443 508.260 0.839 0.825

parameter ψ is 17 to 41 hogs with an average of 17. The estimated N ranges between 14

and 22 hogs with an average of 18 under the constraint on the ψ between 0.00 and 0.50.

Furthermore, the standard error ranges between 18.7 to 27.2 with an average of 24.2 under

no constraint on the ψ. When ψ ≤ 0.5, then the average standard error ranges from 11.2

to 13.6, reduced to 12.7, a much smaller number than the standard error obtained with no

constraint on the ψ.

For M = 200, the estimated N with no constraint on parameter ψ ranges between

27 and 58 hogs with an average of about 43. After setting the constraint on the psi, the

estimated N ranges from 21 to 35 hogs with an average of 27. The standard error ranges

from 34.8 to 53.8 with an average of 46 with no constraint on parameter ψ. For ψ ≤ 0.5, the

average standard error ranges from 20.5 to 26.6 with an average of 24.3. With a constraint,

the smaller standard error ranges from 6.1 to 19 in comparison with the estimated values

for no constraint on the ψ (Tables 5.19 and 5.20).

Comparing Figures 5.24 to 5.27, parameter sigma and lambda0 are comparable, and in

all cases, we see that the densities of the parameter converged to the posterior distribution.

In the case with the constraint on parameter ψ, we have a better mixing of the chains,

making the estimated in is more accurate.

With 0 to 0.50 constraint on the parameter ψ and M = 100, which has the highest

ESS = 842.211 , we have good mixing of chains of the unknown parameters. The densi-

ties are twists to the right. Moreover, the histogram tail of the estimated N is shorter than

all cases.
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Table 5.17: Happy Creek, Batch 4, Summary of 50 Runs to Estimate Mean, Median, Mode,
Standard Error, and Credible Interval of Population SizeN with no Constraint on the ψ and
M = 100

Sim Number Estimated N Median sd
Credible interval (HDI)
LB UB

1 24.484 17 22.053 1 56
2 39.661 34 27.013 3 81
3 30.911 21 27.252 1 74
4 28.370 20 23.966 2 65
5 28.481 19 25.630 1 69
6 30.918 21 26.839 1 73
7 22.076 14 22.053 1 54
8 17.236 11 18.676 1 39
9 28.488 20 24.624 2 68

10 27.448 19 24.776 1 65
11 24.219 14 24.078 1 61
12 28.337 20 23.916 2 65
13 35.590 28 26.668 2 78
14 26.799 17 24.551 1 64
15 27.565 19 23.387 2 63
16 23.053 14 22.496 1 56
17 28.583 21 24.295 1 65
18 29.695 21 25.525 2 70
19 32.738 25 25.516 2 72
20 29.357 21 25.188 1 68
21 24.308 14 24.236 1 62
22 32.988 24 26.721 1 75
23 40.529 35 27.200 4 84
24 24.874 15 24.195 1 61
25 26.595 18 24.260 1 64
26 25.450 16 24.264 1 63
27 29.620 20 26.311 1 70
28 34.118 26 26.326 1 74
29 21.748 13 21.783 1 53
30 23.547 14 23.629 1 59
31 25.918 17 23.655 2 63
32 33.263 25 26.412 1 74
33 29.987 22 25.735 1 69
34 29.025 19 25.993 1 69
35 28.182 19 25.563 1 68
36 21.788 13 22.329 1 54
37 18.070 10 20.355 1 45
38 25.888 17 23.562 1 61
39 28.660 19 26.003 1 69
40 21.992 12 22.751 1 56
41 25.434 17 22.727 1 58
42 26.182 17 23.925 1 63
43 19.821 12 20.329 1 46
44 21.765 14 21.375 1 51
45 26.317 18 23.449 2 63
46 20.937 12 22.555 1 54
47 17.909 11 19.013 1 41
48 37.962 32 27.103 2 79
49 26.341 17 24.735 1 64
50 29.395 20 25.272 2 70

Mean 27.252 18.68 24.205 1.32 63.76
Min 17.236 10 18.676 1 39
Max 40.529 35 27.252 4 84
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Figure 5.24: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with no Constraint on the ψ and M = 100 for Happy Creek, Batch 4
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Table 5.18: Happy Creek, Batch 4, Summary of 50 Runs to Estimate Mean, Median, Mode,
Standard Error, and Credible Interval of Population SizeN with ψ ∈ [0, 0.50] andM = 100

Sim # Mean Median sd
Credible interval (HDI)
LB UB

1 18.187 15 12.732 2 45
2 16.214 12 12.472 1 42
3 18.159 15 12.736 2 44
4 16.469 13 11.914 1 41
5 19.020 16 13.328 1 45
6 16.513 12 12.911 1 43
7 17.825 14 13.120 1 44
8 16.566 13 12.260 2 43
9 17.856 14 13.361 1 44

10 22.343 20 13.477 3 48
11 19.716 17 12.619 2 45
12 15.699 13 11.489 1 40
13 20.327 18 13.502 2 46
14 16.702 13 12.423 1 42
15 16.606 13 12.627 1 43
16 16.503 12 12.735 1 43
17 15.053 11 12.642 1 42
18 21.455 19 13.29 2 46
19 15.647 12 12.411 1 42
20 15.209 12 11.462 1 40
21 21.322 19 13.125 3 47
22 13.864 10 11.156 1 38
23 15.968 12 12.442 1 42
24 20.514 18 13.172 2 46
25 15.129 11 12.615 1 42
26 21.308 19 13.111 3 47
27 21.220 19 12.890 2 45
28 17.079 13 12.821 1 43
29 16.619 13 12.886 1 43
30 15.628 12 12.665 1 42
31 16.786 13 12.577 2 44
32 18.541 15 13.170 2 45
33 18.845 16 13.161 1 44
34 17.787 14 13.273 1 44
35 16.202 13 12.342 1 42
36 18.339 15 12.655 2 44
37 17.142 13 12.886 1 43
38 17.428 14 12.887 2 44
39 18.133 15 13.094 1 44
40 17.655 14 12.591 2 44
41 18.483 16 12.291 2 43
42 17.097 14 12.280 1 42
43 16.546 13 12.563 1 43
44 17.031 13 12.666 1 43
45 18.195 15 12.756 2 44
46 20.351 18 12.907 2 45
47 18.457 15 13.103 2 45
48 20.334 17 13.549 2 47
49 16.558 13 12.136 1 41
50 16.305 13 12.177 1 42

Mean 17.739 14.38 12.709 1.48 43.52
Min 13.864 10 11.156 1 38
Max 22.343 20 13.549 3 48
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Figure 5.25: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0, 0.50] and M = 100 for Happy Creek, Batch 4
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Table 5.19: Happy Creek, Batch 4, Summary of 50 Runs to Estimate Mean, Median, Mode,
Standard Error, and Credible Interval of Population SizeN with no Constraint on the ψ and
M = 200

Sim # Mean Median sd
Credible interval (HDI)
LB UB

1 44.281 23 47.868 1 158
2 41.266 23 44.932 1 148
3 40.701 22 46.255 1 153
4 57.476 40 51.584 1 167
5 35.218 18 41.774 1 133
6 53.462 32 52.538 1 169
7 48.087 29 47.572 1 157
8 32.923 16 40.488 1 132
9 41.830 20 47.350 1 150

10 47.513 26 50.882 1 166
11 34.244 18 39.543 1 128
12 34.797 14 46.164 1 152
13 44.958 25 47.975 1 157
14 26.555 13 34.831 1 108
15 43.255 23 47.501 1 157
16 42.764 23 46.334 1 152
17 30.819 15 37.915 1 120
18 33.053 17 38.984 1 124
19 51.725 31 50.990 1 163
20 37.179 18 44.436 1 144
21 44.846 21 51.656 1 166
22 48.986 29 49.402 1 160
23 33.839 17 40.184 1 130
24 47.368 25 50.587 1 165
25 36.842 21 40.032 1 133
26 46.203 26 50.007 1 167
27 41.092 23 44.173 1 145
28 52.396 32 50.981 1 165
29 45.932 26 48.259 1 160
30 46.324 29 45.912 1 151
31 44.944 22 50.726 1 162
32 37.963 21 41.236 1 137
33 46.456 25 49.310 1 159
34 55.794 34 53.792 1 171
35 43.774 26 45.097 1 149
36 43.015 25 45.458 1 146
37 57.198 38 52.735 1 171
38 40.024 19 46.612 1 150
39 55.812 36 51.391 1 166
40 35.497 20 39.131 1 127
41 42.303 24 45.005 1 145
42 48.266 30 47.181 2 157
43 32.617 17 38.570 1 121
44 54.578 37 50.261 2 168
45 38.321 21 43.334 1 142
46 38.13 20 43.132 1 142
47 46.526 24 50.706 1 166
48 39.645 22 43.965 1 142
49 33.179 15 42.942 1 140
50 39.876 22 43.831 1 145

Mean 42.797 23.86 46.031 1.04 149.72
Min 26.555 13 34.831 1 108
Max 57.476 40 53.792 2 171
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Figure 5.26: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with no Constraint on the ψ and M = 200 for Happy Creek, Batch 4

118



Table 5.20: Happy Creek, Batch 4, Summary of 50 Runs to Estimate Mean, Median, Mode,
Standard Error, and Credible Interval of Population SizeN with ψ ∈ [0, 0.50] andM = 200

Sim # Mean Median sd
Credible interval (HDI)
LB UB

1 30.893 22 25.526 2 85
2 22.083 13 22.130 1 72
3 30.012 22 25.149 1 83
4 26.992 17 25.460 1 83
5 27.050 17 24.907 1 82
6 31.127 22 26.329 1 86
7 24.667 15 24.722 1 81
8 28.685 19 25.585 1 84
9 22.912 14 22.175 1 74
10 27.123 18 24.951 1 83
11 31.937 24 25.767 1 85
12 22.797 15 22.498 1 75
13 28.807 22 23.360 1 79
14 28.721 21 24.695 1 81
15 31.335 23 26.023 1 85
16 24.917 16 23.983 1 79
17 30.237 22 25.067 1 83
18 31.004 23 24.794 1 83
19 26.500 18 23.757 1 80
20 25.847 17 23.698 1 79
21 25.561 15 25.254 1 83
22 26.248 17 24.066 1 80
23 28.936 19 25.916 1 85
24 29.666 20 26.509 1 85
25 32.339 24 26.198 1 86
26 27.319 19 23.936 1 80
27 26.231 17 24.028 2 81
28 23.738 15 22.982 1 76
29 24.175 14 24.069 1 79
30 20.746 13 20.512 1 68
31 25.029 17 21.906 1 74
32 28.182 20 24.521 1 82
33 25.188 16 23.954 1 79
34 29.594 22 24.643 1 82
35 26.881 18 24.319 1 80
36 24.284 16 22.632 1 76
37 28.730 20 25.309 1 83
38 26.981 18 24.548 1 81
39 23.952 15 23.015 1 77
40 28.684 20 24.442 1 82
41 25.902 17 23.755 1 79
42 28.479 20 24.918 1 82
43 24.393 16 22.709 1 76
44 30.076 22 25.398 2 85
45 21.163 13 20.994 1 70
46 27.604 18 25.294 1 83
47 25.847 17 24.102 1 80
48 30.641 22 26.038 1 85
49 34.929 27 26.637 2 89
50 25.131 16 23.691 1 80

Mean 27.206 18.46 24.337 1.08 80.6
Min 20.746 13 20.512 1 68
Max 34.929 27 26.637 2 89
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Figure 5.27: Convergence plots (first column), Running Mean (second column), and Es-
timated Posterior Densities (third column) for σ (first row), λ0 (second row) and N (third
row) with ψ ∈ [0, 0.50] and M = 200 for Happy Creek, Batch 4
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Chapter 6

Discussion, Contributions, and

Conclusions

In this work, a real population analysis problem was investigated. Population analysis

based on virtual spatial sampling using camera encounters is an emerging field of research

and is finding a broad range of applications. Important applications include preservation

of the population of endangered species and controlling the population of invasive species,

which might not be native to the host ecosystem. The main task in population analysis,

whether for preservation of endangered animals or control of invasive ones is to estimate

the population size.

Conventional capture-mark-recapture methods have been widely employed by sam-

pling the population using physical traps, marking the captured individuals and release

them, re-sampling the population, counting the marked ones, and marking the unmarked

captures and then continue this procedure for a prefixed number of sampling occasions.

The intuition behind this method is that some marked and some unmarked animals will be

captured in the consecutive sampling. At the end of survey, each marked animal will have

a capturing history. For instance, a history of six samples ”100110” for a specific animal

means that it has been caught in the first, fourth, and fifth sampling occasions. The fraction
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of the captured animals that are recaptured will be used to extrapolate the size of the entire

population.

One of the shortcomings of the capture-mark-recapture methods is required resources to

perform physical capturing and marking of the animals. In contrast with the capture-mark-

recapture methods, the recent virtual spatial sampling methods rely on camera encounters

to collect the encounter history data. In these methods, cameras are placed near the animal

habitats to monitor them. Although, virtual trapping methods eliminate the need for phys-

ical capture and marking, they have their own challenges. Virtual marking of the animals

demands for identification of animals in the phonographs. Because, animal identification

methods have not been well developed yet, often these methods are reduced to virtually

capture-recapture of unmarked animals. As a result, an Non-deterministic polynomial ac-

ceptable problems hard count problem is inherited. It means we need to deal with multiple

camera encounters of the same animal possibly at the same camera location, multiple cam-

era locations, one sampling occasion, or multiple sampling occasions.

The contributions of this work to population analysis using virtual traps are summarized

below.

• Comprehensive study of the current state of the art spatial capture model. We inves-

tigated the sensitivity of the spatial capture method to the independent variables and

unknown parameters including:

– Data Augmentation Parameter M

– Probability of Detection P

– Number of Occasions K

– Base encounter rate λ0

– Probability that an individual in the augmented population of size M is a mem-

ber of the actual population (of size N ) ψ
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• Extending and improving the spatial capture model by:

– Introducing an informative prior distribution for ψ using adaptive estimation of

ψ based on estimated population size N̂

– Introducing an informative prior distribution for home range radius σ based on

a multiple regression model of climate and geographical factors

– Using convergence criteria including effective sample size (ESS) and auto-

correlation lag of posterior distribution, as a secondary acceptance measure in

Gibbs Sampler

– Introducing two groups including detected and missed based on camera en-

counters in the augmented population

– Improving the Bayesian model using spatial camera coordinates in conjunction

with detected and missed groups

• Addressing and solving a real application of KSC hog population analysis as follow:

– Designing and optimizing a camera grid for two different study sites based on

available resources

– Randomizing pole locations near hog habitats and installing camera poles for

sampling using motion activated photography for a period of about two weeks.

Repeat this task several times to collect multiple samples

– Preprocessing of collected image sequences to clean up and remove non hog

images

– Processing and counting the number of hogs at each camera location in each

occasion in each study site to generate camera encounter histories of unmarked

individuals

– Use the proposed spatial model to estimate hog population in KSC
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We should point out that activity center of each member of hypothetical population has

two unknown coordinates (x, y). As a result, the search space is highly dimensional and

grows with a factor of 2M where M is data augmentation parameter. In the original spa-

tial capture model, they sample the spatial activity center locations from M uninformative

bivariate priors. The proposed model has extended the original spatial capture model by

introducing n informative bivariate priors for sampling spatial activity center locations. To

this end, we could improve the original model. However, we still needM−n uninformative

priors to sample spatial locations of undetected members of hypothetical population. For

further improving this model, it is crucial to perform digital marking of virtually captured

individuals through camera encounters. This demands for advanced identification tech-

niques to recognize each virtually captured individual and assign a unique ID to them. A

potential future extension of the proposed model is using deep learning methods to develop

advanced feature identification algorithms for the species of interest.
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Oedekoven. Distance sampling: methods and applications. Springer, 2015.

131



[70] Richard Glennie, Stephen Terrence Buckland, Roland Langrock, Tim Gerrodette, Lisa

Ballance, Susan Chivers, Michael Scott, and William Perrin. Incorporating animal

movement into distance sampling. Journal of the American Statistical Association,

2017.

132



Appendix

A.1 Estimated Parameters for M = 100
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Table A.1: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with no
Constraint on ψ and M = 100

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.622 0.262 0.466 46.594
2 0.452 0.348 0.389 38.620
3 0.826 0.179 0.359 35.607
4 0.414 0.515 0.398 39.617
5 0.401 0.552 0.475 47.420
6 0.888 0.378 0.158 15.129
7 0.540 0.470 0.367 36.459
8 0.365 0.509 0.434 43.232
9 0.301 0.508 0.613 61.516
10 0.568 0.330 0.379 37.617
11 0.531 0.544 0.355 35.184
12 0.663 0.588 0.148 14.074
13 0.485 0.463 0.385 38.323
14 0.586 0.342 0.324 32.097
15 0.570 0.497 0.296 29.161
16 0.574 0.369 0.293 28.835
17 0.590 0.360 0.377 37.492
18 0.500 0.505 0.389 38.681
19 0.471 0.723 0.277 27.289
20 0.460 0.568 0.237 23.206
21 0.635 0.410 0.373 37.039
22 0.592 0.833 0.181 17.509
23 0.588 0.443 0.257 25.269
24 0.564 0.505 0.258 25.343
25 0.538 0.499 0.215 20.912
26 0.747 0.191 0.350 34.684
27 0.455 0.690 0.318 31.442
28 0.415 0.385 0.397 39.457
29 0.574 0.418 0.256 25.126
30 0.370 0.522 0.441 44.033
31 0.484 0.531 0.280 27.587
32 0.497 0.660 0.178 17.123
33 0.446 0.552 0.323 31.891
34 0.465 0.884 0.260 25.522
35 0.657 0.414 0.274 26.965
36 0.484 0.517 0.268 26.291
37 2.026 0.283 0.084 7.616
38 0.440 0.631 0.312 30.783
39 0.440 0.805 0.235 22.957
40 0.364 0.616 0.531 53.207
41 0.727 0.362 0.170 16.335
42 0.476 0.612 0.247 24.173
43 0.507 0.739 0.189 18.290
44 0.580 0.483 0.404 40.149
45 0.320 0.661 0.487 48.687
46 0.699 0.321 0.238 23.265
47 0.437 0.522 0.481 48.052
48 0.507 0.513 0.390 38.741
49 0.594 0.474 0.240 23.422
50 0.561 0.360 0.394 39.106

Mean 0.560 0.497 0.323 31.943
Min 0.301 0.179 0.084 7.616
Max 2.026 0.884 0.613 61.516
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Table A.2: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with ψ ∈
[0, 0.50] and M = 100

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.824 0.344 0.166 15.961
2 0.535 0.559 0.239 23.497
3 0.548 0.390 0.296 29.486
4 0.450 0.807 0.346 34.753
5 0.534 0.744 0.241 23.674
6 0.545 0.420 0.347 35.129
7 0.475 0.518 0.350 35.331
8 1.720 0.242 0.072 6.311
9 0.460 0.591 0.274 27.271
10 0.492 0.853 0.192 18.626
11 0.570 0.379 0.357 36.326
12 0.648 0.413 0.249 24.611
13 0.560 0.386 0.171 16.466
14 0.538 0.734 0.261 25.798
15 0.480 0.704 0.258 25.463
16 0.396 0.959 0.144 13.702
17 0.611 0.363 0.291 28.947
18 0.408 0.599 0.328 32.953
19 0.529 0.481 0.314 31.333
20 0.606 0.447 0.242 23.745
21 0.524 0.566 0.218 21.302
22 0.481 0.827 0.229 22.409
23 0.515 0.704 0.271 26.768
24 0.391 0.791 0.366 37.145
25 0.533 0.593 0.202 19.587
26 0.569 0.374 0.277 27.441
27 0.507 0.646 0.217 21.185
28 0.513 0.454 0.309 30.886
29 0.595 0.336 0.298 29.765
30 0.409 0.535 0.293 29.288
31 1.284 0.154 0.308 31.077
32 0.543 0.342 0.369 37.623
33 0.585 0.355 0.318 31.815
34 0.503 0.663 0.297 29.531
35 0.534 0.538 0.298 29.670
36 0.445 0.780 0.245 24.040
37 0.474 0.580 0.358 36.223
38 0.520 0.397 0.368 37.492
39 0.694 0.276 0.293 29.247
40 0.490 0.605 0.300 29.912
41 0.407 0.907 0.254 24.976
42 0.436 0.764 0.244 23.978
43 0.447 0.628 0.360 36.558
44 0.688 0.208 0.322 32.551
45 0.515 0.633 0.232 22.691
46 0.472 0.629 0.335 33.604
47 0.543 0.644 0.184 17.826
48 0.487 0.420 0.259 25.594
49 0.584 0.498 0.216 21.052
50 0.541 0.538 0.283 28.013

Mean 0.563 0.546 0.273 27.173
Min 0.391 0.154 0.072 6.311
Max 1.720 0.959 0.369 37.623
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Table A.3: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with ψ ∈
[0.10, 0.40] and M = 100

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.464 0.639 0.288 29.159
2 0.627 0.284 0.250 24.919
3 0.432 0.715 0.240 23.655
4 0.405 0.799 0.268 26.832
5 0.480 0.601 0.276 27.923
6 0.581 0.476 0.207 19.963
7 0.456 0.685 0.294 29.888
8 0.462 0.579 0.261 26.117
9 0.530 0.321 0.222 21.702
10 0.453 0.628 0.325 34.317
11 0.752 0.250 0.257 25.729
12 0.600 0.394 0.303 31.279
13 0.515 0.453 0.270 27.167
14 0.795 0.319 0.241 23.889
15 0.408 0.770 0.232 22.732
16 0.487 0.543 0.314 32.604
17 0.605 0.452 0.243 23.994
18 0.516 0.464 0.262 26.383
19 0.448 0.694 0.276 27.906
20 0.485 0.587 0.195 18.636
21 0.460 0.611 0.315 32.836
22 0.586 0.452 0.232 22.798
23 0.470 0.502 0.342 36.800
24 0.657 0.626 0.173 16.097
25 0.404 0.458 0.276 27.947
26 0.496 0.622 0.269 26.937
27 0.564 0.707 0.259 26.021
28 0.510 0.660 0.283 28.736
29 0.528 0.376 0.324 34.275
30 0.418 0.755 0.276 27.847
31 0.487 0.467 0.218 21.297
32 0.517 0.527 0.244 24.071
33 0.547 0.436 0.265 26.627
34 0.483 0.678 0.283 28.644
35 0.485 0.908 0.232 22.743
36 0.631 0.311 0.294 30.205
37 0.386 0.503 0.324 34.228
38 0.470 0.551 0.270 27.206
39 0.547 0.963 0.182 17.133
40 0.534 0.447 0.286 29.206
41 0.509 0.424 0.227 22.291
42 0.538 0.445 0.323 34.094
43 0.464 0.693 0.252 25.009
44 0.536 0.503 0.305 31.366
45 0.444 0.598 0.264 26.443
46 0.580 0.460 0.222 21.593
47 0.507 0.507 0.278 28.088
48 0.441 0.855 0.196 18.725
49 0.545 0.564 0.195 18.541
50 0.564 0.579 0.207 19.956

Mean 0.516 0.557 0.261 26.251
Min 0.386 0.250 0.173 16.097
Max 0.795 0.963 0.342 36.8
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A.2 Estimated Parameters for M = 200

Table A.4: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with no
Constraint on ψ and M = 200

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.672 0.316 0.164 32.062
2 0.500 0.448 0.173 33.923
3 1.493 0.278 0.036 6.269
4 1.189 0.280 0.063 11.800
5 0.544 0.454 0.183 35.968
6 0.502 0.516 0.149 29.156
7 0.464 0.537 0.161 31.532
8 0.437 0.651 0.148 28.962
9 0.534 0.504 0.137 26.670

10 0.732 0.592 0.038 6.628
11 0.491 0.602 0.107 20.689
12 0.646 0.828 0.038 6.769
13 0.505 0.499 0.157 30.677
14 0.568 0.791 0.068 12.648
15 0.462 0.420 0.228 45.056
16 0.719 0.318 0.162 31.795
17 0.629 0.565 0.066 12.354
18 0.649 0.305 0.108 20.768
19 0.491 0.623 0.094 17.976
20 0.457 0.541 0.224 44.185
21 0.641 0.318 0.127 24.546
22 0.364 1.146 0.139 27.044
23 0.501 0.371 0.117 22.761
24 0.488 0.766 0.099 18.978
25 0.593 0.503 0.109 21.125
26 0.302 0.886 0.248 49.104
27 0.520 0.355 0.169 33.149
28 0.370 0.592 0.282 56.048
29 0.549 0.351 0.113 21.875
30 0.299 0.718 0.335 66.648
31 0.434 0.471 0.286 56.766
32 0.48 0.678 0.172 33.674
33 0.499 0.557 0.148 28.945
34 0.524 0.598 0.126 24.424
35 0.647 0.326 0.166 32.501
36 0.523 0.381 0.135 26.326
37 0.684 0.319 0.144 28.025
38 0.502 0.592 0.154 30.152
39 0.751 0.372 0.151 29.509
40 0.455 0.536 0.169 33.082
41 0.519 0.430 0.167 32.765
42 0.326 0.579 0.533 106.598
43 0.438 0.568 0.181 35.537
44 0.725 0.514 0.092 17.486
45 0.293 0.541 0.514 102.871
46 0.405 0.752 0.178 34.880
47 0.479 0.436 0.240 47.434
48 0.459 0.506 0.196 38.490
49 0.378 0.652 0.261 51.749
50 0.454 0.462 0.241 47.666

Mean 0.546 0.527 0.169 33.321
Min 0.293 0.278 0.036 6.269
Max 1.493 1.146 0.533 106.598
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Table A.5: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with ψ ∈
[0, 0.50] and M = 200

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.514 0.333 0.217 43.012
2 0.546 0.573 0.121 23.433
3 0.518 0.606 0.115 22.297
4 0.719 0.305 0.169 33.096
5 0.576 0.351 0.186 36.655
6 0.639 0.226 0.248 49.402
7 0.778 0.388 0.086 16.325
8 0.525 0.725 0.112 21.625
9 0.650 0.500 0.104 19.885
10 0.562 0.400 0.161 31.491
11 0.378 0.862 0.231 45.702
12 0.451 0.583 0.221 43.621
13 0.594 0.294 0.211 41.679
14 0.531 0.540 0.129 25.083
15 0.645 0.383 0.146 28.388
16 0.465 0.759 0.180 35.338
17 0.479 0.932 0.095 18.235
18 0.541 0.612 0.119 23.003
19 0.469 0.793 0.147 28.767
20 0.344 0.533 0.245 48.774
21 0.438 0.650 0.212 41.805
22 0.397 0.748 0.134 26.085
23 0.555 0.278 0.240 47.601
24 0.589 0.343 0.081 15.414
25 0.411 0.674 0.183 35.971
26 0.360 0.821 0.189 37.320
27 0.571 0.714 0.097 18.529
28 0.758 0.337 0.061 11.234
29 1.099 0.232 0.084 15.867
30 0.414 0.734 0.154 30.112
31 0.455 0.343 0.166 32.660
32 0.475 0.642 0.157 30.691
33 0.482 0.459 0.187 36.815
34 0.474 0.790 0.089 16.915
35 0.378 0.503 0.203 40.058
36 0.446 0.835 0.141 27.430
37 0.453 0.716 0.185 36.404
38 0.442 0.837 0.137 26.706
39 0.476 0.532 0.161 31.562
40 0.521 0.671 0.113 21.900
41 0.662 0.329 0.163 32.010
42 0.727 0.521 0.086 16.359
43 0.466 0.882 0.108 20.778
44 0.613 0.311 0.211 41.873
45 0.491 1.227 0.063 11.678
46 0.634 0.430 0.103 19.856
47 0.401 0.340 0.276 55.258
48 0.321 0.665 0.304 60.856
49 0.454 0.520 0.180 35.424
50 0.473 0.427 0.204 40.311

Mean 0.527 0.564 0.158 31.026
Min 0.321 0.226 0.061 11.234
Max 1.099 1.227 0.304 60.856
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Table A.6: Summary of 50 Runs to Estimate σ, λ0, ψ, and Population size N with ψ ∈
[0.10, 0.40] and M = 200

Sim # σ̂ λ̂0 ψ̂ N̂
1 0.436 0.776 0.150 28.156
2 0.489 0.606 0.158 30.306
3 0.510 0.417 0.191 37.205
4 0.443 0.406 0.198 38.657
5 0.534 0.451 0.193 37.701
6 0.634 0.235 0.236 46.980
7 0.513 0.324 0.161 30.231
8 0.430 0.664 0.153 28.780
9 0.383 0.910 0.172 32.771
10 0.472 0.580 0.148 27.730
11 0.531 0.372 0.219 43.179
12 0.397 1.236 0.132 23.441
13 0.621 0.255 0.179 34.571
14 0.506 0.569 0.153 28.246
15 0.555 0.521 0.136 24.357
16 0.469 0.563 0.172 33.154
17 0.472 0.674 0.178 34.739
18 0.467 0.662 0.161 30.829
19 0.404 0.613 0.161 30.639
20 0.486 0.537 0.179 34.644
21 0.580 0.485 0.152 28.206
22 0.461 0.859 0.135 24.396
23 0.435 0.483 0.180 34.882
24 0.433 0.610 0.161 30.776
25 0.501 0.372 0.169 32.172
26 0.424 0.787 0.142 25.856
27 0.598 0.322 0.163 30.770
28 0.628 0.300 0.156 29.274
29 0.526 0.460 0.153 28.747
30 0.430 0.412 0.216 42.586
31 0.534 0.546 0.121 18.854
32 0.440 0.424 0.171 32.762
33 0.411 0.507 0.173 32.969
34 0.367 0.865 0.156 29.423
35 0.481 0.459 0.182 35.327
36 0.602 0.394 0.146 26.611
37 0.390 0.808 0.150 28.045
38 0.543 0.300 0.196 38.125
39 0.536 0.624 0.146 26.929
40 0.481 0.405 0.144 26.072
41 0.530 0.410 0.144 26.291
42 0.640 0.479 0.140 25.418
43 0.438 0.703 0.123 20.214
44 0.754 0.215 0.169 32.189
45 0.505 0.500 0.187 36.304
46 0.432 0.743 0.135 24.373
47 0.515 0.410 0.158 29.801
48 0.596 0.232 0.203 39.826
49 0.430 0.504 0.222 43.891
50 0.394 1.271 0.124 21.015

Mean 0.496 0.545 0.165 31.168
Min 0.367 0.215 0.121 18.854
Max 0.754 1.271 0.236 46.98
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A.3 Estimated Parameters for KSC-HC

Table A.7: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Happy Creek Using Batch 1

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 481.377 465.845 159.531 207.233 692.991
2 467.96 456.646 159.008 214.95 720.624
3 498.778 483.435 157.023 255.599 741.304
4 490.336 475.791 156.654 240.117 725.721
5 479.962 468.672 157.073 234.225 717.903
6 482.39 466.913 153.779 250.216 724.68
7 524.96 509.671 156.419 279.222 764.028
8 484.991 469.937 155.823 213.564 694.574
9 446.185 448.2 190.215 95.152 672.55

10 450.115 445.947 174.526 190.034 750.515
11 467.558 453.714 157.283 210.048 698.404
12 455.003 440.277 160.253 198.431 696.771
13 481.562 470.232 164.496 217.231 724.678
14 490.843 478.042 166.349 226.391 743.59
15 500.999 484.392 155.905 249.982 726.928
16 507.397 494.554 159.381 254.536 749.111
17 469.728 451.703 150.841 236.416 688.643
18 503.245 489.103 157.081 248.712 735.412
19 504.055 492.257 159.968 242.381 737.933
20 473.845 459.096 159.708 219.92 704.183
21 491.886 474.744 154.783 239.027 717.685
22 472.736 458.061 157.792 217.529 707.259
23 471.691 462.04 167.737 152.374 683.513
24 477.03 463.277 161.492 218.696 717.367
25 489.284 475.522 160.105 231.246 731.859
26 507.946 490.374 151.95 272.161 735.006
27 477.214 467.415 162.131 198.889 705.071
28 474.014 459.358 163.072 220.441 724.982
29 474.425 463.129 165.715 228.807 750.828
30 483.955 465.385 157.582 241.333 721.254
31 502.883 489.065 155.886 264.57 749.054
32 475.005 463.922 167.246 188.516 703.802
33 489.64 476.399 159.728 243.749 735.11
34 491.927 478.18 159.407 251.471 751.013
35 517.549 505.576 159.846 260.609 755.011
36 435.611 423.865 172.883 159.946 660.772
37 462.969 452.573 167.476 191.245 718.042
38 472.159 456.812 158.472 222.765 718.203
39 463.927 450.822 170.49 177.047 705.809
40 514.986 502.109 153.333 266.631 739.998
41 503.612 487.897 153.26 264.547 734.248
42 513.564 498.598 156.339 271.211 752.939
43 462.449 448.298 159.836 188.581 687.342
44 471.989 457.727 159.685 211.599 705.711
45 466.991 447.782 147.284 237.881 683.277
46 478.805 463.031 151.792 244.046 717.883
47 490.956 475.914 155.02 244.761 719.646
48 496.766 481.156 157.549 239.345 723.243
49 511.822 498.719 158.003 248.218 741.101
50 532.057 514.88 156.191 284.826 760.843

Mean 484.743 471.141 159.868 227.329 721.368
Min 435.611 423.865 147.284 95.152 660.772
Max 532.057 514.88 190.215 284.826 764.028

140



0 20000 60000

20
0

60
0

10
00

Index

si
gm

a

0e+00 4e+04 8e+04

45
0

50
0

55
0

60
0

Iteration

R
un

ni
ng

 M
ea

n
200 600 1000 1400

0.
00

00
0.

00
15

sigma

D
en

si
ty

0 20000 60000

0.
0

0.
2

0.
4

0.
6

Index

la
m

0

0e+00 4e+04 8e+04

0.
1

0.
2

0.
3

0.
4

Iteration

R
un

ni
ng

 M
ea

n

0.0 0.2 0.4 0.6

0
5

10
15

20
lam0

D
en

si
ty

0 20000 60000

0
20

60
10

0

Index

N

0e+00 4e+04 8e+04

0
10

20
30

Iteration

R
un

ni
ng

 M
ea

n

N

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
04

Figure A.1: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 1
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Figure A.2: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 1
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Table A.8: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Happy Creek Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 520.352 502.889 157.937 268.12 756.787
2 511.906 490.748 177.174 237.843 769.903
3 510.359 490.78 155.002 278.39 749.712
4 562.599 551.209 168.538 305.363 835.105
5 509.226 492.641 168.223 248.396 762.050
6 519.158 499.609 160.163 268.254 759.461
7 479.972 464.959 176.550 188.498 734.813
8 549.412 533.802 163.228 285.804 785.790
9 504.527 486.085 160.955 247.363 747.182

10 539.511 521.718 162.505 289.736 787.172
11 523.339 507.786 169.133 249.317 771.144
12 530.800 516.821 167.536 259.411 778.145
13 540.128 520.628 167.063 286.272 798.010
14 508.145 488.230 167.631 244.545 756.650
15 515.001 493.401 165.437 261.249 764.897
16 544.524 530.078 167.078 278.635 795.529
17 544.364 524.535 157.469 298.353 777.371
18 518.887 499.193 171.830 249.715 775.054
19 510.172 493.911 162.483 256.531 753.383
20 488.314 467.358 166.344 225.068 720.203
21 567.899 548.075 164.358 308.534 805.505
22 527.116 510.360 155.008 283.639 755.553
23 548.390 534.513 158.251 284.645 777.634
24 564.702 548.150 166.242 304.351 814.566
25 529.470 515.389 162.884 267.151 767.479
26 477.951 458.709 168.563 213.421 719.919
27 542.559 531.077 175.095 236.206 781.660
28 486.045 468.988 167.739 230.599 740.597
29 536.139 518.047 167.231 274.871 788.225
30 480.939 461.824 173.21 225.843 748.156
31 531.377 519.330 169.366 246.926 777.906
32 540.454 519.217 173.222 265.862 795.023
33 551.904 540.614 173.494 264.033 804.868
34 538.638 518.867 168.945 269.562 782.516
35 526.480 509.322 162.031 272.759 770.070
36 456.234 434.846 180.517 165.762 691.685
37 492.409 474.014 169.939 219.811 736.817
38 527.531 513.401 166.419 257.224 770.883
39 492.444 473.687 165.533 209.685 714.364
40 494.035 476.535 173.631 216.881 743.588
41 519.381 510.319 168.761 216.174 756.560
42 540.807 526.903 160.542 292.826 792.552
43 528.574 513.024 163.778 262.285 764.079
44 535.316 518.414 177.579 248.065 796.303
45 511.123 494.150 158.408 267.901 760.044
46 521.885 501.827 173.110 255.74 791.755
47 540.578 522.153 164.988 287.777 798.109
48 524.253 506.286 159.175 266.553 753.973
49 492.167 468.338 167.280 225.481 735.855
50 526.299 508.864 162.117 273.564 767.879

Mean 521.676 504.433 166.594 256.819 767.649
Min 456.234 434.846 155.002 165.762 691.685
Max 567.899 551.209 180.517 308.534 835.105
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Figure A.3: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 2
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Figure A.4: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 2
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Table A.9: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Happy Creek Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 488.626 468.090 156.003 263.467 761.218
2 356.476 324.783 146.018 156.385 544.775
3 471.020 443.263 168.380 214.287 725.176
4 354.908 312.179 155.325 157.334 550.017
5 409.777 383.258 156.639 171.911 614.117
6 342.790 290.969 154.006 159.726 550.689
7 441.901 413.004 153.514 202.109 649.521
8 499.805 504.400 189.304 149.522 734.849
9 474.783 466.330 165.055 153.149 675.686

10 387.431 363.929 168.837 136.214 602.529
11 440.711 432.385 138.976 204.432 604.974
12 369.557 312.943 185.248 154.485 630.956
13 392.844 370.164 153.109 170.262 587.482
14 406.711 364.558 151.450 202.425 600.779
15 411.015 395.082 168.513 153.645 627.961
16 524.418 505.717 142.046 305.370 748.644
17 407.102 390.186 154.159 165.318 609.504
18 509.965 482.606 134.961 327.800 745.136
19 397.183 366.512 153.044 176.604 602.583
20 436.777 418.084 170.211 167.139 671.662
21 363.432 319.880 138.476 193.857 565.133
22 530.928 529.206 199.850 193.087 809.351
23 480.071 454.710 162.717 211.601 717.489
24 288.894 256.000 116.739 151.471 416.013
25 397.122 366.764 176.550 166.091 638.735
26 518.459 505.171 166.567 202.518 750.405
27 385.411 356.755 169.450 138.415 593.017
28 474.998 455.406 155.635 222.878 678.028
29 609.823 597.120 179.882 328.288 902.328
30 454.849 434.179 157.917 223.276 671.042
31 438.617 453.042 175.102 161.149 636.044
32 417.122 372.697 168.694 193.714 656.589
33 432.632 400.920 186.663 175.779 684.368
34 346.686 310.152 125.901 184.705 508.925
35 433.261 413.480 149.362 209.613 632.028
36 503.020 480.395 149.039 263.676 732.917
37 496.931 484.931 150.237 281.568 758.575
38 441.847 402.036 168.525 219.427 686.081
39 467.895 446.308 162.446 218.053 701.720
40 481.487 466.443 153.019 235.195 712.134
41 433.984 416.863 169.787 174.111 666.014
42 335.328 293.073 139.776 158.507 517.898
43 412.223 387.431 160.541 185.588 614.836
44 403.782 375.916 174.901 163.141 645.765
45 429.361 397.433 156.371 204.881 643.225
46 366.993 303.972 209.239 136.342 668.194
47 484.643 471.562 154.846 219.114 698.768
48 410.149 390.965 160.575 170.162 628.721
49 421.237 390.487 160.168 194.13 638.108
50 394.504 349.955 164.768 174.121 620.012

Mean 431.589 405.834 160.571 194.921 652.614
Min 288.894 256.000 116.739 136.214 416.013
Max 609.823 597.12 209.239 328.288 902.328
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Figure A.5: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 3
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Figure A.6: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 3
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Table A.10: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Happy Creek Using Batch 4

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 439.332 409.374 191.278 126.684 693.625
2 360.644 328.890 140.204 152.396 542.669
3 548.876 529.362 163.613 298.609 795.552
4 401.785 374.941 173.413 130.964 630.816
5 460.672 435.096 164.002 214.422 692.028
6 563.224 553.881 164.905 289.887 818.920
7 483.042 457.713 168.823 231.522 745.337
8 498.396 482.327 183.215 199.248 742.104
9 431.696 407.286 161.457 161.774 640.591

10 454.718 435.620 177.119 160.453 681.609
11 482.373 455.288 164.389 224.86 703.222
12 396.306 357.004 161.998 173.451 619.524
13 480.938 457.259 166.175 236.202 740.091
14 515.750 499.100 167.024 250.321 762.304
15 405.614 375.672 158.708 187.434 650.083
16 512.340 503.969 185.061 216.275 765.886
17 392.705 358.716 173.263 140.927 622.913
18 493.011 473.522 147.835 269.609 716.982
19 417.286 385.774 159.899 196.183 654.978
20 440.309 419.586 161.891 171.102 649.219
21 498.318 475.713 161.575 254.73 740.851
22 443.019 412.569 155.382 221.492 671.774
23 347.478 318.639 145.351 153.174 533.533
24 494.094 467.888 165.851 254.23 755.856
25 476.756 454.452 162.539 238.114 726.543
26 506.635 489.521 170.500 256.01 778.952
27 543.779 522.565 156.061 311.247 783.618
28 423.542 392.781 161.782 186.417 640.740
29 503.853 487.563 177.573 222.127 771.147
30 486.530 464.133 180.459 208.456 755.073
31 451.763 422.878 180.128 178.18 691.244
32 486.436 461.425 160.372 230.069 710.277
33 555.875 541.768 156.719 302.485 785.947
34 534.420 521.957 166.282 261.681 779.247
35 480.466 454.988 165.260 226.005 721.179
36 503.971 485.287 187.048 220.600 790.942
37 537.111 526.529 198.072 215.454 807.406
38 458.976 438.546 163.485 206.19 686.550
39 521.051 501.576 160.712 274.288 762.597
40 516.143 502.139 177.697 234.584 792.749
41 459.644 430.282 165.523 202.224 685.835
42 455.014 428.868 171.294 204.788 712.219
43 459.614 427.227 174.942 222.69 729.137
44 462.385 428.960 189.899 187.086 732.312
45 440.979 403.189 172.714 197.173 685.874
46 513.433 497.369 169.245 260.359 769.252
47 512.021 494.351 184.386 218.679 772.031
48 382.037 349.030 170.111 150.929 604.940
49 574.939 557.495 155.467 325.615 801.285
50 479.866 459.196 151.188 255.841 715.082

Mean 473.783 450.385 167.838 218.265 715.253
Min 347.478 318.639 140.204 126.684 533.533
Max 574.939 557.495 198.072 325.615 818.920
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Figure A.7: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 4
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Figure A.8: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 4
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Table A.11: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Happy Creek Using Batch 5

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 290.486 269.393 101.238 144.699 396.815
2 321.918 298.484 106.798 194.132 441.923
3 368.628 335.514 139.11 199.44 551.599
4 229.078 209.327 87.985 127.1 334.628
5 331.675 300.156 135.285 160.524 478.103
6 345.335 313.145 123.067 181.086 489.916
7 332.920 307.587 121.952 155.076 477.458
8 376.705 341.300 138.535 177.249 546.918
9 350.159 327.205 125.948 177.231 479.862

10 374.182 306.922 187.535 170.483 640.862
11 476.531 430.218 199.772 177.135 749.371
12 518.343 450.861 215.184 231.014 818.000
13 380.638 317.440 183.375 170.159 634.912
14 303.706 277.185 114.678 163.797 429.926
15 322.343 288.147 125.722 177.343 439.257
16 331.339 296.395 126.435 170.749 488.603
17 402.502 341.341 188.236 169.743 641.422
18 295.962 261.920 139.153 142.275 441.393
19 389.816 351.574 146.675 199.682 564.592
20 420.740 387.062 168.730 184.947 652.465
21 440.165 389.798 188.777 180.97 700.529
22 375.499 350.834 134.532 180.065 544.714
23 368.886 344.045 125.509 174.474 521.497
24 409.442 373.952 158.822 178.952 617.789
25 321.504 296.888 128.559 163.715 472.585
26 287.918 262.069 140.700 121.047 440.123
27 267.429 238.263 111.310 138.257 402.157
28 277.423 266.930 91.980 129.423 386.738
29 334.100 317.225 96.835 187.299 440.200
30 395.432 317.883 205.653 170.725 697.182
31 269.207 259.426 69.046 165.946 352.167
32 344.701 305.281 137.814 172.943 511.892
33 271.550 246.645 95.658 161.332 374.103
34 447.778 400.342 189.656 193.304 708.186
35 322.881 303.720 92.045 195.907 448.256
36 329.354 304.726 115.576 191.123 466.744
37 287.443 275.654 86.066 170.953 374.223
38 365.886 330.654 146.575 157.029 546.863
39 391.940 356.644 143.897 194.455 564.365
40 267.655 250.971 87.229 150.192 369.031
41 407.332 383.530 167.856 147.729 617.378
42 327.534 300.887 118.105 175.117 453.305
43 390.024 345.859 155.739 191.016 579.878
44 318.939 282.233 128.351 162.396 463.131
45 326.437 304.959 103.904 182.383 450.523
46 412.726 367.423 168.869 190.933 638.412
47 367.949 306.361 178.508 176.623 614.350
48 377.459 325.085 183.784 161.761 626.626
49 318.224 299.070 87.402 206.655 426.355
50 327.510 292.858 130.140 163.980 472.026

Mean 350.267 316.228 136.886 172.211 519.587
Min 229.078 209.327 69.046 121.047 334.628
Max 518.343 450.861 215.184 231.014 818.000
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Figure A.9: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 5
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Figure A.10: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Happy Creek Using Batch 5
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A.4 Estimated Parameters for Tel-4 in KSC

Table A.12: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Tel-4 Using Batch 1

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 395.635 364.385 157.081 158.786 607.869
2 411.890 389.303 155.833 176.939 639.123
3 432.038 409.551 163.279 185.179 661.107
4 455.023 434.258 156.795 206.552 672.612
5 438.103 420.612 169.103 149.005 652.639
6 401.861 368.313 163.548 184.497 648.461
7 399.702 373.319 162.325 139.126 619.861
8 431.342 417.217 174.651 134.444 651.961
9 436.985 417.808 162.958 175.317 656.926

10 415.773 389.672 161.314 168.6 629.429
11 452.174 434.288 157.789 212.934 682.909
12 441.512 422.628 164.015 165.307 665.262
13 407.115 384.253 155.665 164.161 616.503
14 380.113 348.516 152.098 160.519 596.659
15 374.850 350.542 150.860 149.259 571.817
16 402.317 377.516 149.950 183.248 622.816
17 428.505 405.636 155.964 200.153 665.356
18 408.151 383.665 154.670 172.208 624.856
19 455.753 437.833 162.934 187.19 667.302
20 381.980 355.416 149.456 164.061 599.805
21 383.255 356.821 165.538 131.74 604.830
22 413.400 391.368 163.616 163.105 649.457
23 425.643 407.210 167.259 141.975 638.827
24 418.224 393.201 161.853 153.062 628.023
25 435.718 415.311 165.035 173.021 668.153
26 422.006 400.775 164.755 167.987 645.74
27 405.848 382.096 161.950 153.998 625.076
28 472.730 453.410 157.875 225.622 700.454
29 423.305 402.431 166.024 175.762 672.317
30 438.866 420.213 157.940 169.096 647.758
31 360.692 331.772 157.091 150.161 612.125
32 443.339 430.117 172.449 172.15 690.739
33 415.025 388.146 163.997 165.124 643.718
34 428.277 405.233 157.518 177.267 639.440
35 464.279 447.907 157.225 215.786 688.501
36 373.102 345.051 152.553 163.076 592.510
37 390.540 376.302 186.822 106.728 624.462
38 444.669 428.614 173.440 166.548 681.263
39 442.059 421.113 162.512 193.186 662.014
40 426.483 403.635 158.255 194.118 643.981
41 441.745 435.526 173.257 158.598 693.080
42 412.611 385.496 156.533 173.427 632.469
43 361.160 327.094 142.347 169.112 561.657
44 462.356 445.789 165.811 200.468 704.318
45 434.471 416.328 162.482 175.335 665.467
46 399.435 369.424 159.638 193.397 656.19
47 428.984 409.666 150.915 186.030 634.760
48 380.859 354.824 155.490 131.979 579.141
49 458.391 440.181 153.739 197.713 661.063
50 426.788 406.622 159.909 183.187 647.797

Mean 419.702 397.528 160.682 171.325 642.972
Min 360.692 327.094 142.347 106.728 561.657
Max 472.73 453.410 186.822 225.622 704.318
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Figure A.11: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 1
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Figure A.12: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 1
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Table A.13: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Tel-4 Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 404.258 382.444 141.217 189.342 598.843
2 399.173 377.599 139.189 178.751 590.333
3 406.848 385.983 146.715 185.026 613.061
4 394.743 373.494 138.577 188.153 589.453
5 395.614 374.953 136.619 182.549 578.599
6 407.790 386.325 136.957 190.581 601.616
7 400.525 375.906 144.944 182.181 599.434
8 386.994 360.841 146.603 174.558 596.153
9 393.926 374.124 140.428 184.037 595.753

10 401.383 379.721 139.950 198.931 606.783
11 419.359 395.899 146.095 206.403 631.043
12 405.636 382.201 144.445 186.555 602.085
13 395.614 371.792 143.332 188.382 604.434
14 416.359 393.997 143.830 200.835 617.676
15 408.189 386.840 142.345 189.281 611.025
16 405.718 383.216 146.999 184.649 612.706
17 401.569 378.265 143.459 184.482 604.713
18 396.382 376.272 141.104 174.564 589.697
19 394.554 376.310 141.344 170.577 589.371
20 406.625 386.703 138.906 205.479 617.920
21 400.312 377.561 140.371 180.803 600.800
22 412.275 387.789 145.282 202.255 628.359
23 406.886 387.700 139.211 197.651 613.866
24 405.127 385.464 138.316 194.453 597.813
25 403.784 381.745 138.606 190.512 598.519
26 402.962 380.418 139.920 208.016 616.100
27 397.365 376.405 138.509 193.573 597.642
28 424.285 403.790 144.767 199.587 631.347
29 406.216 384.023 139.477 196.220 611.568
30 404.700 383.223 139.645 194.584 603.666
31 402.453 378.611 141.334 186.120 601.755
32 413.461 391.391 139.821 205.226 618.333
33 415.692 394.837 141.585 195.650 619.850
34 409.602 388.152 139.250 201.224 615.550
35 396.895 373.427 140.609 182.673 595.232
36 401.167 378.288 144.169 196.100 614.157
37 397.505 375.815 137.595 189.713 592.287
38 402.771 380.625 144.351 183.166 605.646
39 391.666 369.837 141.494 183.705 600.525
40 416.829 396.318 141.522 198.489 616.930
41 406.212 383.891 142.335 195.339 611.124
42 397.720 378.979 142.182 165.831 593.862
43 405.881 386.371 144.030 200.466 639.733
44 396.054 375.851 137.734 183.062 597.899
45 411.425 389.412 143.950 200.684 628.190
46 404.924 383.490 139.376 183.289 596.082
47 405.369 382.003 144.667 188.402 616.021
48 406.790 381.780 146.049 196.685 627.065
49 396.671 372.780 137.819 181.355 586.016
50 408.019 384.036 146.154 202.143 631.976

Mean 403.846 381.938 141.664 190.446 607.172
Min 386.994 360.841 136.619 165.831 578.599
Max 424.285 403.790 146.999 208.016 639.733
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Figure A.13: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 2
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Figure A.14: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 2
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Table A.14: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Tel-4 Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 343.998 336.579 93.48 178.327 524.638
2 342.515 335.792 92.655 163.703 500.575
3 337.875 330.717 96.912 177.443 540.463
4 338.774 332.801 93.212 171.829 505.661
5 338.249 330.272 94.867 157.214 497.56
6 335.708 327.146 102.471 143.84 522.988
7 335.319 326.908 93.788 169.31 510.094
8 344.405 337.02 96.429 169.204 507.169
9 346.139 337.549 95.406 180.282 515.983

10 337.592 330.918 95.74 173.679 519.318
11 341.252 331.6 96.037 157.294 506.755
12 343.751 336.803 94.257 164.89 510.428
13 339.192 335.063 96.005 162.696 529.124
14 341.081 333.601 100.368 172.011 518.186
15 341.09 332.101 94.152 175.999 510.937
16 341.84 335.429 91.658 177.859 501.54
17 346.675 339.018 93.936 177.582 519.087
18 340.225 330.888 95.991 164.587 519.592
19 343.081 334.074 94.986 175.704 519.618
20 340.668 330.1 96.595 167.32 510.94
21 337.074 329.035 93.108 158.743 498.095
22 340.914 334.389 91.463 172.742 506.072
23 341.271 333.636 95.105 162.634 512.543
24 342.437 335.593 95.072 158.035 508.003
25 342.688 336.974 95.022 166.446 504.176
26 342.237 334.478 98.132 166.552 537.885
27 339.251 329.633 95.94 154.729 504.107
28 341.368 331.763 97.257 170.314 517.58
29 346.849 338.752 97.738 178.212 536.348
30 339.694 331.869 96.331 157.779 505.227
31 338.614 328.43 100.156 165.632 520.054
32 336.761 330.228 99.236 155.701 521.731
33 332.477 326.574 98.87 135.255 493.717
34 338.257 330.977 94.49 149.135 497.812
35 342.18 334.582 92.789 170.889 512.44
36 343.386 334.029 96.244 172.83 507.502
37 341.304 333.466 96.186 167.398 507.545
38 337.145 325.642 96.629 174.001 519.457
39 336.846 327.961 97.555 169.065 524.605
40 338.909 331.444 92.024 186.525 520.898
41 337.837 329.757 95.719 158.667 500.538
42 336.422 331.124 99.408 160.554 527.919
43 337.459 329.662 96.229 168.145 516.277
44 342.827 336.749 91.337 181.956 515.288
45 340.08 332.486 94.505 163.737 525.504
46 342.793 336.004 96.221 179.343 519.741
47 337.489 330.144 96.097 161.797 498.466
48 335.386 332.242 92.645 134.702 486.468
49 345.279 338.326 97.332 160.452 514.972
50 345.552 338.522 92.516 184.532 512.1

Mean 340.404 332.777 95.606 166.546 513.275
Min 332.477 325.642 91.337 134.702 486.468
Max 346.849 339.018 102.471 186.525 540.463
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Figure A.15: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 3
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Figure A.16: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 3
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Table A.15: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of σ for Tel-4 Using Batch 4

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 338.088 306.098 153.247 142.096 539.871
2 368.692 345.644 127.97 161.017 540.105
3 258.827 209.569 124.953 136.291 447.999
4 395.583 389.675 123.502 203.48 542.264
5 344.713 327.818 152.881 129.517 535.301
6 338.684 308.221 133.01 158.947 515.607
7 275.073 226.666 122.306 143.819 466.86
8 339.082 301.313 134.948 160.219 528.439
9 249.164 190.746 131.171 125.554 459.104

10 215.477 143.915 144.212 110.237 442.611
11 210.315 164.435 116.359 110.595 389.332
12 328.204 284.964 135.446 175.145 551.809
13 340.461 304.789 120.331 189.2 511.649
14 385.459 383.899 142.886 191.381 583.891
15 286.319 237.913 132.942 143.539 503.417
16 384.047 390.854 132.516 168.478 554.907
17 320.115 272.81 150.848 124.859 528.995
18 379.491 363.953 127.481 188.734 553.121
19 328.822 271.15 143.574 145.642 529.423
20 387.773 385.993 139.641 185.232 573.553
21 398.337 408.512 134.485 178.433 572.772
22 417.44 418.376 120.832 219.695 580.932
23 367.262 382.048 147.079 151.803 542.209
24 338.007 314.344 133.253 151.221 504.813
25 299.686 238.924 135.588 163.739 513.076
26 338.118 316.878 150.772 145.844 545.148
27 436.772 439.081 119.306 219.437 589.795
28 334.534 308.604 134.756 149.119 518.029
29 287.475 230.174 140.415 134.714 490.514
30 390.267 399.38 137.622 149.491 548.49
31 374.72 390.835 139.042 165.348 548.936
32 311.096 253.586 138.718 160.391 513.636
33 394.264 399.504 129.728 189.292 582.287
34 319.309 293.298 164.305 125.361 540.145
35 359.531 304.934 171.639 147.308 571.079
36 234.147 166.368 140.417 111.204 449.272
37 384.856 373.667 136.097 177.206 548.29
38 329.127 290.232 126.713 167.114 515.435
39 413.774 416.996 129.617 209.425 602.526
40 348.991 326.997 139.294 147.746 528.64
41 305.224 261.085 137.297 139.79 495.414
42 315.819 249.479 157.574 149.991 528.813
43 397.323 392.913 134.866 188.278 569.292
44 332.964 293.046 133.042 161.734 515.431
45 394.741 395.331 134.355 180.616 560.338
46 302.025 254.458 136.612 144.573 499.848
47 319.126 274.013 126.391 170.772 497.23
48 306.153 271.901 126.213 147.206 484.724
49 352.498 321.213 130.728 175.939 536.573
50 339.481 289.327 145.323 170.391 539.745

Mean 338.349 309.719 136.446 159.743 526.633
Min 210.315 143.915 116.359 110.237 389.332
Max 436.772 439.081 171.639 219.695 602.526
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Figure A.17: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 4
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Figure A.18: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) for Tel-4 Using Batch 4
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Table A.16: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N by Original Spatial Model for Tel-4 Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 3.731 2 5.095 1 8
2 1.827 1 2.019 1 4
3 2.229 1 2.802 1 4
4 2.834 1 3.754 1 6
5 2.477 1 3.079 1 5
6 1.856 1 1.748 1 4
7 1.948 1 2.503 1 4
8 3.049 1 3.629 1 7
9 2.944 2 3.971 1 6

10 2.935 1 3.593 1 6
11 1.732 1 1.857 1 3
12 2.092 1 3.099 1 4
13 1.811 1 1.876 1 4
14 1.742 1 1.722 1 3
15 2.686 1 5.421 1 5
16 2.6 1 3.622 1 6
17 1.697 1 1.558 1 3
18 3.695 1 5.955 1 9
19 1.413 1 1.218 1 2
20 2.026 1 2.235 1 4
21 4.864 2 8.989 1 11
22 2.665 1 3.219 1 6
23 2.325 1 3.306 1 5
24 2.229 1 3.781 1 4
25 4.173 2 5.649 1 9
26 1.92 1 1.869 1 4
27 2.605 1 4.045 1 5
28 2.417 1 2.939 1 5
29 4.733 2 6.592 1 10
30 2.026 1 2.431 1 4
31 2.168 1 2.352 1 4
32 2.289 1 2.715 1 5
33 4.19 1 8.424 1 9
34 1.289 1 0.875 1 2
35 2.778 1 3.479 1 6
36 1.9 1 2.216 1 4
37 2.918 1 5.122 1 6
38 2.64 1 2.867 1 6
39 3.319 1 5.258 1 7
40 2.251 1 2.444 1 5
41 2.096 1 2.59 1 4
42 2.494 1 3.376 1 5
43 2.562 1 3.793 1 6
44 2.699 1 3.941 1 6
45 1.603 1 1.658 1 3
46 2.541 1 3.737 1 5
47 6.642 3 9.715 1 15
48 3.703 1 5.01 1 10
49 1.892 1 3.034 1 3
50 2.014 1 2.352 1 4

Mean 2.625 1.14 3.571 1 5.5
Min 1.289 1 0.875 1 2
Max 6.642 3 9.715 1 15
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Table A.17: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of of σ by Original Spatial Model for Tel-4 Using Batch 2

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 468.502 480.668 124.816 252.005 650.082
2 518.366 524.286 107.833 344.545 698.074
3 511.731 527.921 127.339 305.94 703.81
4 489.592 504.178 132.011 262.251 689.49
5 495.836 503.82 120.749 289.975 686.608
6 498.436 507.002 110.625 311.124 671.207
7 517.851 519.442 109.937 345.521 704.835
8 466.987 480.923 133.004 224.488 644.061
9 464.206 469.403 123.123 256.252 651.319

10 478.286 484.555 121.688 272.89 659.325
11 528.681 535.24 104.757 364.831 700.627
12 527.805 533.742 107.508 349.027 704.338
13 527.64 532.119 110.032 353.255 716.777
14 528.695 535.908 113.903 359.737 714.337
15 511.184 518.533 112.999 316.543 685.087
16 511.164 520.825 128.05 274.8 693.461
17 528.09 530.576 98.558 366.355 683.601
18 477.615 502.047 149.847 211.005 700.152
19 549.415 552.383 103.541 391.827 723.107
20 514.846 520.132 103.31 339.472 675.575
21 450.843 462.946 153.213 190.423 677.933
22 490.673 510.998 139.274 257.178 699.032
23 498.21 509.221 114.145 301.648 672.19
24 496.312 506.979 118.716 289.493 677.201
25 449.317 468.759 147.978 165.27 622.668
26 536.086 545.881 120.805 327.694 720.958
27 499.689 510.468 123.814 293.239 690.993
28 509.612 522.582 125.248 289.446 693.067
29 442.152 447.47 133.777 216.168 626.193
30 535.577 542.605 111.53 335.146 699.22
31 515.535 520.455 104.915 328.094 669.433
32 481.09 495.47 125.13 253.266 665.362
33 485.21 500.783 137.558 249.316 695.599
34 535.847 535.582 88.309 409.074 691.517
35 491.138 505.907 127.473 264.001 673.485
36 517.179 524.044 106.014 330.192 678.965
37 483.133 501.83 132.148 255.84 686.021
38 485.813 491.79 113.997 291.187 653.139
39 484.649 494.328 118.906 278.233 657.722
40 511.258 526.283 121.63 305.623 697.187
41 501.175 506.25 114.513 314.521 680.908
42 509.59 518.854 128.235 293.321 704.81
43 512.684 526.87 120.151 304.505 699.683
44 519.843 528.596 119.263 311.955 700.449
45 525.818 529.727 101.468 377.453 698.767
46 506.417 520.574 117.398 304.252 684.244
47 416.622 418.801 145.172 185.256 620.621
48 447.275 502.569 179.853 127.411 625.432
49 557.453 564.995 110.623 376.993 734.938
50 517.297 532.177 116.572 308.977 689.534

Mean 500.569 511.150 121.229 294.540 682.863
Min 416.622 418.801 88.309 127.411 620.621
Max 557.453 564.995 179.853 409.074 734.938
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Figure A.19: The Estimated Population Size of Tel-4 Using Mean and Median, and Their
Averages Over 50 Runs Using Batch 2 by Original Spatial Model
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Figure A.20: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 2 for M=100
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Figure A.21: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 2 for M=100
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Figure A.22: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 2 for M=100
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Table A.18: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of Population Size N by Original Spatial Model for Tel-4 Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)
LB UB

1 1.588 1 1.194 1 3
2 1.548 1 1.349 1 3
3 1.696 1 1.271 1 3
4 1.938 1 1.595 1 4
5 1.473 1 1.193 1 2
6 2.134 1 2.048 1 4
7 1.814 1 1.618 1 4
8 2.054 1 1.528 1 4
9 2.306 2 1.934 1 5

10 1.625 1 1.129 1 3
11 1.657 1 1.375 1 3
12 3.868 1 4.652 1 10
13 1.235 1 0.844 1 2
14 1.538 1 1.101 1 3
15 3.063 3 1.916 1 5
16 1.53 1 1.174 1 3
17 1.61 1 1.21 1 3
18 1.423 1 1.008 1 2
19 1.569 1 1.608 1 3
20 1.622 1 1.171 1 3
21 1.818 1 1.599 1 3
22 1.567 1 1.334 1 3
23 1.747 1 1.288 1 3
24 1.978 1 1.504 1 4
25 2.33 2 1.952 1 5
26 2.388 1 2.672 1 5
27 1.906 1 1.648 1 4
28 1.667 1 1.44 1 3
29 2.042 1 1.686 1 4
30 2.26 2 1.852 1 4
31 2.49 1 2.761 1 6
32 1.634 1 1.505 1 3
33 1.503 1 1.131 1 2
34 1.431 1 0.996 1 2
35 1.379 1 0.973 1 2
36 2.133 1 1.816 1 4
37 1.654 1 1.411 1 3
38 2.663 2 2.679 1 6
39 1.502 1 0.988 1 2
40 2.369 1 2.344 1 5
41 1.728 1 1.438 1 3
42 1.379 1 0.96 1 2
43 1.912 1 1.286 1 3
44 1.779 1 1.278 1 3
45 1.56 1 1.141 1 3
46 2.645 2 3.157 1 5
47 1.848 1 1.501 1 4
48 1.847 1 1.35 1 3
49 1.869 1 1.758 1 4
50 1.675 1 1.575 1 3

Mean 1.880 1.14 1.599 1 3.56
Min 1.235 1 0.844 1 2
Max 3.868 3 4.652 1 10
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Table A.19: Summary of 50 Runs to Estimate Mean, Median, Standard Error, and Credible
Interval of of σ by Original Spatial Model for Tel-4 Using Batch 3

Sim # Mean Median sd
Credible Interval (HDI)

LB UB
1 362.709 363.582 67.501 257.914 478.642
2 403.746 418.226 79.764 268.158 531.494
3 399.767 404.216 79.047 267.76 521.98
4 359.069 363.778 80.779 228 476.684
5 374.111 376.158 67.056 267.048 479.082
6 374.042 373.41 84.073 228.657 501.103
7 371.029 375.227 76.555 243.538 497.018
8 349.453 336.988 81.331 233.025 481.195
9 371.271 380.602 84.66 217.383 486.423

10 387.509 393.265 81.497 260.773 512.872
11 396.327 402.823 76.023 269.454 516.069
12 338.403 395.402 152.702 96.451 492.598
13 422.84 430.935 71.898 302.423 532.32
14 399.013 400.007 66.104 295.231 507.416
15 309.629 287.797 98.043 169.909 463.772
16 398.508 395.568 57.793 309.014 487.8
17 383.703 397.957 87.025 233.913 519.5
18 400.619 401.306 67.482 303.947 516.137
19 402.994 413.44 81.037 282.708 532.03
20 404.927 409.24 68.987 297.429 522.425
21 398.899 403.981 76.078 278.283 527.216
22 391.477 399.487 72.722 269.696 499.433
23 385.73 393.322 79.853 246.672 502.843
24 355.495 361.21 75.351 223.888 458.317
25 373.313 376.697 86.793 202.472 491.575
26 378.815 394.74 96.498 205.781 514.874
27 386.952 392.49 69.382 272.189 496.247
28 394.944 397.276 73.091 267.553 501.38
29 356.19 356.036 82.798 219.269 479.79
30 354.671 356.277 79.26 222.231 475.292
31 356.817 369.581 88.156 193.414 480.008
32 372.849 372.563 69.656 265.726 495.291
33 399.762 402.62 65.855 299.806 509.954
34 399.877 401.942 63.125 304.303 499.887
35 417.808 424.435 74.853 301.832 535.035
36 374.7 373.168 75.605 254.408 493.194
37 391.189 403.462 90.249 245.41 519.315
38 337.001 348.538 84.097 172.842 438.474
39 389.582 389.274 69.246 286.601 500.441
40 358.095 364.367 84.547 202.045 478.614
41 380.201 391.676 85.109 241.625 511.644
42 412.974 419.095 71.47 307.406 520.785
43 368.846 379.62 84.469 225.929 497.515
44 373.378 377.086 74.849 244.59 483.525
45 378.929 386.036 81.208 243.803 497.666
46 353.824 347.438 90.443 221.953 505.401
47 390.882 400.553 79.691 246.751 505.15
48 372.358 361.86 79.273 260.006 505.391
49 390.566 404.458 89.761 209.718 507.524
50 385.586 392.552 77.739 259.121 510.237

Mean 379.828 385.235 79.612 248.561 499.972
Min 309.629 287.797 57.793 96.451 438.474
Max 422.84 430.935 152.702 309.014 535.035
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Figure A.23: The estimated population size for Tel-4 using Batch 2 obtained by Mean and
Median, and their averages over 50 runs by Original Spatial Model
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Figure A.24: Random Trial 1: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 3 for M=100
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Figure A.25: Random Trial 2: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 3 for M=100

177



0 20000 60000

20
0

40
0

60
0

80
0

Index

si
gm

a

0e+00 4e+04 8e+04

35
0

40
0

45
0

50
0

Iteration

R
un

ni
ng

 M
ea

n
200 400 600 800

0.
00

0
0.

00
3

sigma

D
en

si
ty

0 20000 60000

0.
0

1.
0

2.
0

Index

la
m

0

0e+00 4e+04 8e+04

0.
3

0.
5

0.
7

0.
9

Iteration

R
un

ni
ng

 M
ea

n

0.0 1.0 2.0 3.0

0.
0

0.
2

0.
4

0.
6

0.
8
lam0

D
en

si
ty

0 20000 60000

0
5

15
25

Index

N

0e+00 4e+04 8e+04

1.
5

2.
5

3.
5

Iteration

R
un

ni
ng

 M
ea

n

N

D
en

si
ty

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

Figure A.26: Random Trial 3: Convergence plots (first column), Running Mean (second
column), and Estimated Posterior Densities (third column) for σ (first row), λ0 (second
row) and N (third row) by Original Spatial Model for Tel-4 Using Batch 3 for M=100
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A.5 Examples of Images Collected During This Research

Using Motion Activated Cameras Installed in The Study

Sites

Figure A.27: Photo 1: A closeup picture from a hog
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Figure A.28: Photo 2: A hog picture taken in its habitat with dominant green background
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Figure A.29: Photo 3: A partial hog picture in the background
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