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ABSTRACT

Title:

Critical Elliptic Boundary Value Problems with Singular

Trudinger-Moser Nonlinearities

Author:

Shiqiu Fu

Major Advisor:

Kanishka Perera, Ph.D.

In this dissertation, we prove the existence of solutions for two classes of eliptic 

problems that are critical with respect to singular Trudinger-Moser embedding. 

The proofs are based on compactness and regularity arguments.
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Chapter 1

Introduction

Elliptic problems with critical Trudinger-Moser nonlinearities have been widely

studied in the literature. The well-known Sobolev embedding theorem says that

W 1,p
0 (Ω) ↪→ Lq(Ω)

if

1 ≤ q ≤ Np

N − p
,

where Ω is a bounded domain in RN , N ≥ 2, p < N , and W 1,p
0 (Ω) is the standard

Sobolev space of Lp-functions whose weak derivatives also belong to Lp(Ω). The

Trudinger-Moser inequality concerns the borderline cases N = p, where
Np

N − p
∼

+∞ and W 1,N
0 (Ω) is not embedded in L∞(Ω). Trudinger [15] showed that

∫
Ω

e |u|N/(N− 1)

dx < ∞ ∀u ∈ W 1,N
0 (Ω)
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by developing the exponential in a power series and controlling the embedding

constants of W 1,N
0 (Ω) ↪→ Lm(Ω), m ∈ N.

Moser [13] improved the above result by showing that

∫
Ω

eα |u|N/(N− 1)

dx < ∞ ∀u ∈ W 1,N
0 (Ω)

for all α > 0, and

sup
∥u∥

W
1,N
0 (Ω)

≤1

∫
Ω

eα |u|N/(N− 1)

dx < ∞

if and only if

α ≤ Nω
1/(N−1)
N−1 ,

where ωN−1 is the area of the unit sphere in RN .

For the case N = 2, we obtain that

∫
Ω

eαu
2

dx < ∞ ∀u ∈ H1
0 (Ω)

for all α > 0, and

sup
∥u∥

H1
0(Ω)

≤1

∫
Ω

eαu
2

dx < ∞

if and only if

α ≤ 4π.

The following generalization of this embedding was obtained in Adimurthi and

Sandeep [14]: ∫
Ω

eαu
2

|x|γ
dx < ∞ ∀u ∈ H1

0 (Ω)
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for all α > 0 and 0 ≤ γ < 2, and

sup
∥u∥

H1
0(Ω)

≤1

∫
Ω

eαu
2

|x|γ
dx < ∞ (1.1)

if and only if

α

4π
+

γ

2
≤ 1.

In this dissertation we prove the existence of solutions to two classes of elliptic

problems that are critical with respect to this singular Trudinger-Moser embedding.

As is usually the case with critical growth problems, the main difficulty here is the

lack of compactness of the associated variational functionals.

First we establish an existence result for the class of singular elliptic problems

with exponential nonlinearities

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∆u = h(u)

eαu
2

|x|γ
in Ω

u = 0 on ∂Ω,

(1.2)

where Ω is a bounded domain in R2 containing the origin, α > 0, 0 ≤ γ < 2, and

h is a continuous function for which the limit

β = lim
|t|→∞

th(t) (1.3)

exists. The case β = ∞ was considered in [14], so we focus on the case 0 < β < ∞

here. The nonsingular case γ = 0 has been widely studied in the literature (see,

e.g., Adimurthi [1], Adimurthi and Yadava [2], de Figueiredo et al. [11, 9], Marcos

B. do Ó [12], de Figueiredo et al. [10], Perera and Yang [16], and their references).
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Let λ1(γ) > 0 be the first eigenvalue of the singular eigenvalue problem

⎧⎪⎪⎨⎪⎪⎩
−∆u = λ

u

|x|γ
in Ω

u = 0 on ∂Ω,

given by

λ1(γ) = inf
u∈H1

0 (Ω)\{0}

∫
Ω

|∇u|2 dx∫
Ω

u2

|x|γ
dx

. (1.4)

Set

G(t) =

∫ t

0

h(s) eαs
2

ds.

Our main result for problem (1.2) is the following theorem.

Theorem 1.1. Assume that α > 0 and 0 ≤ γ < 2 satisfy

α

4π
+

γ

2
≤ 1,

G satisfies

G(t) ≥ 0 for t ≥ 0, (1.5)

G(t) ≤ 1

2
(λ1(γ)− σ) t2 for |t| ≤ δ (1.6)

for some σ, δ > 0, and

(2− γ)2

2αd2−γ
< β < ∞, (1.7)

where d is the radius of the largest open ball centered at the origin that is contained

in Ω. Then problem (1.2) has a nontrivial solution.
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This theorem is new even in the nonsingular case γ = 0. Indeed, the corre-

sponding result for the nonsingular case is proved in de Figueiredo et al. [11, 9]

and Marcos B. do Ó [12] only assuming that h(t) ≥ 0 for all t ≥ 0. This implies

our assumption (1.5), but (1.5) is weaker. The proof of the theorem will be given

in Section 2.2, after proving a suitable compactness property of the associated

variational functional in Section 2.1.

Theorem 1.2. Assume that α > 0 and 0 ≤ γ < 2 satisfy

α

4π
+

γ

2
≤ 1,

G satisfies

G(t) ≤ 1

2
(λ1(γ)− σ) t2 for |t| ≤ δ

for some σ, δ > 0, and

(2− γ)2

αd2−γ
< β < ∞. (1.8)

Then problem (1.2) has a nontrivial solution.

Proofs of Theorems 1.1 and 1.2 will be given in Section 2.2, after proving a

suitable compactness property of the associated variational functional in Section

2.1.

Our second result concerns a class of semipositone problems with singular ex-

ponential nonlinearities. We recall that the semilinear elliptic boundary value

problem ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆u = f(x, u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

5



where f is a Carathéodory function on Ω × [0,∞), is said to be of semipositone

type if f(·, 0) < 0 on a set of positive measure. It is notoriously difficult to find

positive solutions of this class of problems due to the fact that u = 0 is not a

subsolution (see, e.g., Castro and Shivaji [6], Ali et al. [3], Ambrosetti et al. [4],

Chhetri et al. [7], Castro et al. [5], Costa et al. [8], and their references). We

consider the problem

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∆u = λu
eαu

2

|x|γ
+ µ g(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(1.9)

where Ω is a smooth bounded domain in R2 containing the origin, α > 0, 0 ≤ γ < 2,

λ, µ > 0 are parameters, and g is a continuous function on [0,∞) satisfying

lim
t→∞

g(t)

eβt2
= 0 ∀β > 0 (1.10)

and

sup
t∈[0,∞)

(
2G(t)− tg(t)

)
< ∞, (1.11)

where G(t) =
∫ t

0
g(s) ds. We make no assumptions about the sign of g(0) and

hence allow the semipositone case g(0) < 0. For example, the functions g(t) = −1,

g(t) = tp−1, where p ≥ 1, and g(t) = et−2 all satisfy (1.10), (1.11), and g(0) < 0.

We will show that problem (1.9) has a positive solution for all 0 < λ < λ1(γ)

and µ > 0 sufficiently small. We have the following theorem.
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Theorem 1.3. Assume that α > 0 and 0 ≤ γ < 1 satisfy

α

4π
+

γ

2
≤ 1,

0 < λ < λ1(γ), and g satisfies (1.10) and (1.11). Then there exists a µ∗ > 0 such

that for all 0 < µ < µ∗, problem (1.9) has a solution uµ.

We note that this result does not follow from standard arguments based on

the maximum principle since g(0) is not assumed to be nonnegative. Our proof is

based on regularity arguments and will be given in Section 3.2, after establishing

a suitable compactness property of an associated variational functional in Section

3.1.
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Chapter 2

Proof of Theorem 1.1 and 1.2

2.1 Compactness

Weak solutions of problem (1.2) coincide with critical points of the C1-functional

E(u) =
1

2

∫
Ω

|∇u|2 dx−
∫
Ω

G(u)

|x|γ
dx, u ∈ H1

0 (Ω).

We recall that a (PS)c sequence of E is a sequence (uj) ⊂ H1
0 (Ω) such that E(uj) →

c and E ′(uj) → 0. Proof of Theorem 1.1 and 1.2 will be based on the following

compactness result.

Proposition 2.1. Assume that α > 0 and 0 ≤ γ < 2 satisfy

α

4π
+

γ

2
≤ 1

8



and 0 < β < ∞. Then for all c ̸= 0 with

c <
2π

α

(
1− γ

2

)
,

every (PS)c sequence of E has a subsequence that converges weakly to a nontrivial

solution of problem (1.2).

Proof. Let (uj) ⊂ H1
0 (Ω) be a (PS)c sequence of E. Then

E(uj) =
1

2
∥uj∥2 −

∫
Ω

G(uj)

|x|γ
dx = c+ o(1) (2.1)

and

E ′(uj)uj = ∥uj∥2 −
∫
Ω

uj h(uj)
eαu

2
j

|x|γ
dx = o(∥uj∥). (2.2)

First we show that (uj) is bounded in H1
0 (Ω). Multiplying (2.1) by 4 and subtract-

ing (2.2) gives

∥uj∥2 +
∫
Ω

(
uj h(uj) e

αu2
j − 4G(uj)

) dx

|x|γ
= 4c+ o(∥uj∥ + 1),

so it suffices to show that th(t) eαt
2 − 4G(t) is bounded from below. Let ε > 0.

By (1.3), ∃Mε > 0 such that |th(t) − β| < ε for |t| > Mε. So, for some constant

Cε > 0,

th(t) eαt
2 ≥ (β − ε) eαt

2 − Cε ∀t (2.3)

and

|G(t)| ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(β + ε)

∫ |t|

Mε

eαs
2

s
ds+ Cε if |t| > Mε

Cε otherwise.

(2.4)
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Taking Mε larger if necessary, we may assume that (β+ε)/s ≤ 2εαs for all s ≥ Mε,

so (2.4) gives

|G(t)| ≤ ε eαt
2

+ Cε ∀t, (2.5)

which together with (2.3) gives the desired conclusion if ε < β/5.

Since (uj) is bounded in H1
0 (Ω), a renamed subsequence converges to some u

weakly in H1
0 (Ω), strongly in Lp(Ω) for all p ∈ [1,∞), and a.e. in Ω. We have

E ′(uj) v =

∫
Ω

∇uj · ∇v dx−
∫
Ω

v h(uj)
eαu

2
j

|x|γ
dx → 0 (2.6)

for all v ∈ H1
0 (Ω). By (1.3), given any ε > 0, there exists a constant Cε > 0 such

that

|h(t) eαt2| ≤ ε eαt
2

+ Cε ∀t. (2.7)

By (2.2),

sup
j

∫
Ω

uj h(uj)
eαu

2
j

|x|γ
dx < ∞,

which together with (2.3) gives

sup
j

∫
Ω

eαu
2
j

|x|γ
dx < ∞. (2.8)

For v ∈ C∞
0 (Ω), it follows from (2.7) and (2.8) that the sequence (v h(uj) e

αu2
j/|x|γ)

is uniformly integrable and hence

∫
Ω

v h(uj)
eαu

2
j

|x|γ
dx →

∫
Ω

v h(u)
eαu

2

|x|γ
dx

10



by Vitali’s convergence theorem, so it follows from (2.6) that

∫
Ω

∇u · ∇v dx−
∫
Ω

v h(u)
eαu

2

|x|γ
dx = 0.

Then this holds for all v ∈ H1
0 (Ω) by density, so the weak limit u is a solution of

problem (1.2).

Suppose that u = 0. Then

∫
Ω

G(uj)

|x|γ
dx → 0

since (2.5) and (2.8) imply that the sequence (G(uj)/|x|γ) is uniformly integrable,

so (2.1) gives c ≥ 0 and

∥uj∥ → (2c)1/2. (2.9)

Let 2c < ν < 4π (1 − γ/2)/α. Then ∥uj∥ ≤ ν1/2 for all j ≥ j0 for some j0. Let

q = 4π (1− γ/2)/αν > 1 and let 1/(1− 1/q) < r < 2/γ (1− 1/q). By the Hölder

inequality,

⏐⏐⏐⏐⏐
∫
Ω

uj h(uj)
eαu

2
j

|x|γ
dx

⏐⏐⏐⏐⏐ ≤
(∫

Ω

|uj h(uj)|p dx
)1/p

(∫
Ω

eqαu
2
j

|x|γ
dx

)1/q(∫
Ω

dx

|x|γr (1−1/q)

)1/r

,

where 1/p+ 1/q + 1/r = 1. The first integral on the right-hand side converges to

zero since th(t) is bounded and u = 0, the second integral is bounded for j ≥ j0

by (1.1) since qαu2
j = 4π (1 − γ/2) ũ2

j , where ũj = uj/ν
1/2 satisfies ∥ũj∥ ≤ 1, and

the last integral is finite since γr (1− 1/q) < 2, so

∫
Ω

uj h(uj)
eαu

2
j

|x|γ
dx → 0.

11



Then uj → 0 by (2.2) and hence c = 0 by (2.9), contrary to assumption. So u is

nontrivial.

2.2 Proof of Theorem 1.1 and 1.2

In this section we prove Theorem 1.1 and 1.2. We will show that the functional

E has the mountain pass geometry with the mountain pass level c ∈ (0, 2π (1 −

γ/2)/α) and apply Proposition 2.1.

Lemma 2.2. If (1.6) holds, then there exists a ρ > 0 such that

inf
∥u∥=ρ

E(u) > 0.

Proof. Since (1.3) implies that h is bounded, there exists a constant Cδ > 0 such

that

|G(t)| ≤ Cδ |t|3 eαt
2

for |t| > δ,

which together with (1.6) gives

∫
Ω

G(u)

|x|γ
dx ≤ 1

2
(λ1(γ)− σ)

∫
Ω

u2

|x|γ
dx+ Cδ

∫
Ω

|u|3 e
αu2

|x|γ
dx. (2.10)

By (1.4), ∫
Ω

u2

|x|γ
dx ≤ ρ2

λ1(γ)
, (2.11)

where ρ = ∥u∥. Let 2 < r < 4/γ. By the Hölder inequality,

∫
Ω

|u|3 e
αu2

|x|γ
dx ≤

(∫
Ω

|u|3p dx
)1/p

(∫
Ω

e2αu
2

|x|γ
dx

)1/2(∫
Ω

dx

|x|γr/2

)1/r

, (2.12)

12



where 1/p+1/r = 1/2. The first integral on the right-hand side is bounded by Cρ3p

for some constant C > 0 by the Sobolev embedding. Since 2αu2 = 2αρ2 ũ2, where

ũ = u/ρ satisfies ∥ũ∥ = 1, the second integral is bounded when ρ2 ≤ 2π (1−γ/2)/α

by (1.1). The last integral is finite since γr < 4. So combining (2.10)–(2.12) gives

∫
Ω

G(u)

|x|γ
dx ≤ 1

2

(
1− σ

λ1(γ)

)
ρ2 +O(ρ3) as ρ → 0.

Then

E(u) ≥ 1

2

σ

λ1(γ)
ρ2 +O(ρ3),

and the desired conclusion follows from this for sufficiently small ρ > 0.

We have Bd(0) ⊂ Ω. For j ≥ 2, let

vj(x) =
1√
2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
log j if |x| ≤ d/j

log (d/|x|)√
log j

if d/j < |x| < d

0 otherwise.

It is easily seen that vj ∈ H1
0 (Ω) with ∥vj∥ = 1.

Lemma 2.3. Assume that 0 < β < ∞.

(i) For all j ≥ 2, E(tvj) → −∞ as t → ∞.

(ii) If (1.6) holds, then there exists j0 ≥ 2 such that

sup
t≥0

E(tvj0) <
2π

α

(
1− γ

2

)
(2.13)

13



in each of the following cases:

(a) (1.5) and (1.7) hold,

(b) (1.8) holds.

Proof. Fix ε > 0. By (1.3), ∃Mε > 0 such that

th(t) eαt
2

> (β − ε) eαt
2

for |t| > Mε. (2.14)

Since eαt
2
> α2 t4/2 for all t, then there exists a constant Cε > 0 such that for all

t ≥ 0,

h(t) eαt
2 ≥ 1

2
(β − ε)α2 t3 − Cε (2.15)

and hence

G(t) ≥ 1

8
(β − ε)α2 t4 − Cε t. (2.16)

Since ∥vj∥ = 1 and vj ≥ 0, then

E(tvj) ≤
t2

2
− 1

8
(β − ε)α2 t4

∫
Ω

v4j
|x|γ

dx+ Cε t

∫
Ω

vj
|x|γ

dx

and (i) follows.

Set

Hj(t) = E(tvj) =
t2

2
−
∫
Ω

G(tvj)

|x|γ
dx, t ≥ 0.

If (ii) is false, then it follows from Lemma 2.2 and (i) that for all j, ∃tj > 0 such

14



that

Hj(tj) =
t2j
2
−
∫
Ω

G(tjvj)

|x|γ
dx = sup

t≥0
Hj(t) ≥

2π

α

(
1− γ

2

)
, (2.17)

H ′
j(tj) = tj −

∫
Ω

vj h(tjvj)
eαt

2
jv

2
j

|x|γ
dx = 0. (2.18)

Since G(t) ≥ −Cε t for all t ≥ 0 by (2.16), (2.17) gives

t2j ≥ t20 − 2δj tj, (2.19)

where

t0 =

√
4π

α

(
1− γ

2

)
and

δj = Cε

∫
Bd(0)

vj
|x|γ

dx =
Cε d

2−γ

(2− γ)2

√
2π

log j

(
1− 1

j2−γ

)
→ 0 as j → ∞. (2.20)

First we will show that tj → t0.

By (2.19), tj ≥
√

t20 + δ2j − δj and hence

lim inf
j→∞

tj ≥ t0. (2.21)

Write (2.18) as

t2j =

∫
{tjvj>Mε}

tjvj h(tjvj)
eαt

2
jv

2
j

|x|γ
dx+

∫
{tjvj≤Mε}

tjvj h(tjvj)
eαt

2
jv

2
j

|x|γ
dx =: I1 + I2.

(2.22)

Set rj = de−Mε
√
2π log j/tj . Since lim inf tj > 0, for all sufficiently large j, d/j < rj <

15



d and hence tjvj(x) > Mε if and only if |x| < rj. So (2.14) gives

I1 ≥ (β − ε)

∫
{|x|<rj}

eαt
2
jv

2
j

|x|γ
dx = (β − ε)

(∫
{|x|≤d/j}

eαt
2
jv

2
j

|x|γ
dx

+

∫
{d/j<|x|<rj}

eαt
2
jv

2
j

|x|γ
dx

)
=: (β − ε) (I3 + I4). (2.23)

We have

I3 = eαt
2
j log j/2π

∫
{|x|≤d/j}

dx

|x|γ
=

2π

2− γ

(
d

j

)2−γ

jαt
2
j/2π =

2πd2−γ

2− γ
jα (t2j−t20)/2π.

(2.24)

Since th(t) eαt
2 ≥ −Cε t for all t ≥ 0 by (2.15),

I2 ≥ −Cε tj

∫
{tjvj≤Mε}

vj
|x|γ

dx ≥ −δjtj. (2.25)

Combining (2.22)–(2.25) and noting that I4 ≥ 0 gives

t2j ≥ (β − ε)
2πd2−γ

2− γ
jα (t2j−t20)/2π − δjtj.

It follows from this that

lim sup
j→∞

tj ≤ t0,

which together with (2.21) shows that tj → t0.
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Next we estimate I4. We have

I4 =

∫
{d/j<|x|<rj}

eαt
2
j [log (d/|x|)]2/2π log j

|x|γ
dx

= 2π

(∫ d

d/j

eαt
2
j [log (d/r)]

2/2π log j r1−γ dr −
∫ d

rj

eαt
2
j [log (d/r)]

2/2π log j r1−γ dr

)

= 2πd2−γ

(
log j

∫ 1

0

e−(2−γ) t [1−(tj/t0)
2 t] log j dt−

∫ 1

sj

s1−γ eαt
2
j (log s)

2/2π log j ds

)
,

(2.26)

where t = log (d/r)/ log j, s = r/d, and sj = rj/d = e−Mε
√
2π log j/tj → 0. For

sj ≤ s ≤ 1, αt2j (log s)
2/2π log j is bounded by αM2

ε and goes to zero as j → ∞,

so the last integral converges to

∫ 1

0

s1−γ ds =
1

2− γ
.

So combining (2.22)–(2.26), letting j → ∞, and noting that

lim
j→∞

jα (t2j−t20)/2π ≥ lim
j→∞

j−αδj tj/π = lim
j→∞

e−αδj tj log j/π = 1

by (2.19) and (2.20) gives

t20 ≥ 2π (β − ε) d2−γL,

where

L = lim
j→∞

log j

∫ 1

0

e−(2−γ) t [1−(tj/t0)
2 t] log j dt =

1

2− γ
lim
j→∞

∫ 1

0

ne−nt [1−(tj/t0)
2 t] dt

17



and n = (2− γ) log j → ∞. Letting ε → 0 in this inequality gives

β ≤ 2− γ

Lαd2−γ
. (2.27)

We will show that this leads to a contradiction if (a) or (b) holds.

(a) By (1.5), G(tjvj) ≥ 0 and hence (2.17) gives tj ≥ t0, so

L ≥ 1

2− γ
lim
n→∞

∫ 1

0

ne−nt (1−t) dt =
2

2− γ

(see de Figueiredo et al. [11, 9]). Then (2.27) gives β ≤ (2 − γ)2/2αd2−γ,

contradicting (1.7).

(b) Let κ > 0. For all sufficiently large j, (tj/t0)
2 ≥ 1− κ and hence

L ≥ 1

2− γ
lim
n→∞

∫ 1

0

ne−nt [1−(1−κ) t] dt,

and letting κ → 0 gives L ≥ 1/(2 − γ) (see de Figueiredo et al. [11, 9]). Then

β ≤ (2− γ)2/αd2−γ by (2.27), contradicting (1.8).

We are now ready to prove Theorem 1.1 and 1.2.

Proof of Theorem 1.1 and 1.2. The proofs are identical. Let j0 be as in Lemma

2.3 (ii). By Lemma 2.3 (i), ∃R > ρ such that E(Rvj0) ≤ 0. Let

Γ =
{
γ ∈ C([0, 1], H1

0 (Ω)) : γ(0) = 0, γ(1) = Rvj0
}

be the class of paths joining the origin to Rvj0 , and set

c := inf
γ∈Γ

max
u∈γ([0,1])

E(u).

18



By Lemma 2.2, c > 0. Since the path γ0(t) = tRvj0 , t ∈ [0, 1] is in Γ,

c ≤ max
u∈γ0([0,1])

E(u) ≤ sup
t≥0

E(tvj0) <
2π

α

(
1− γ

2

)

by (2.13). If there are no (PS)c sequences of E, then E satisfies the (PS)c condition

vacuously and hence has a critical point u at the level c by the mountain pass

theorem. Then u is a solution of problem (1.2) and u is nontrivial since c > 0. So

we may assume that E has a (PS)c sequence. Then this sequence has a subsequence

that converges weakly to a nontrivial solution of problem (1.2) by Proposition

2.1.
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Chapter 3

Proof of Theorem 1.3

3.1 Compactness

In this section we consider the modified problem

⎧⎪⎪⎨⎪⎪⎩
−∆u = λu+ eα (u+)2

|x|γ
+ µ g̃(u) in Ω

u = 0 on ∂Ω,

(3.1)

where u+(x) = max {u(x), 0} and

g̃(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, t ≤ −1

(1 + t) g(0), −1 < t < 0

g(t), t ≥ 0.

20



Weak solutions of this problem coincide with critical points of the C1-functional

Eµ(u) =

∫
Ω

[
1

2
|∇u|2 − λ

2α

eα (u+)2 − 1

|x|γ
− µ G̃(u)

]
dx, u ∈ H1

0 (Ω),

where G̃(t) =
∫ t

0
g̃(s) ds. The main result of this section is the following compact-

ness result.

Theorem 3.1. Assume that α > 0 and 0 ≤ γ < 2 satisfy α/4π + γ/2 ≤ 1 and g

satisfies (1.10) and (1.11). If µj > 0, µj → µ ≥ 0, (uj) ⊂ H1
0 (Ω), and

Eµj
(uj) → c, E ′

µj
(uj) → 0

for some c ̸= 0 satisfying

c <
2π

α

(
1− γ

2

)
− µθ

2
|Ω| , (3.2)

where

θ = sup
t∈R

(
2G̃(t)− tg̃(t)

)
and |·| denotes the Lebesgue measure in R2, then a subsequence of (uj) converges to

a critical point of Eµ at the level c. In particular, Eµ satisfies the (PS)c condition

for all c ̸= 0 satisfying (3.2).

First we prove the following lemma.

Lemma 3.2. If (uj) is a sequence in H1
0 (Ω) converging a.e. to u ∈ H1

0 (Ω) and

sup
j

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx < ∞, (3.3)
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then ∫
Ω

eα (u+
j )2

|x|γ
dx →

∫
Ω

eα (u+)2

|x|γ
dx.

Proof. For M > 0, write

∫
Ω

eα (u+
j )2

|x|γ
dx =

∫
{u+

j <M}

eα (u+
j )2

|x|γ
dx+

∫
{u+

j ≥M}

eα (u+
j )2

|x|γ
dx.

By (3.3),

∫
{u+

j ≥M}

eα (u+
j )2

|x|γ
dx ≤ 1

M2

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx = O

(
1

M2

)
as M → ∞.

Hence ∫
Ω

eα (u+
j )2

|x|γ
dx =

∫
{u+

j <M}

eα (u+
j )2

|x|γ
dx+O

(
1

M2

)
,

and the conclusion follows by first letting j → ∞ and then letting M → ∞.

We will also need the following result from Adimurthi and Sandeep [14, Theo-

rem 2.3].

Lemma 3.3. Let 0 ≤ γ < 2. If (uj) is a sequence in H1
0 (Ω) with ∥uj∥ = 1 for all

j and converging weakly to a nonzero function u, then

sup
j

∫
Ω

eβu
2
j

|x|γ
dx < ∞

for all β < 4π(1− γ/2)/(1− ∥u∥2).

We are now ready to prove Theorem 3.1.
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Proof of Theorem 3.1. We have

Eµj
(uj) =

1

2
∥uj∥2 −

λ

2α

∫
Ω

eα (u+
j )2 − 1

|x|γ
dx− µj

∫
Ω

G̃(uj) dx = c+ o(1) (3.4)

and

E ′
µj
(uj)uj = ∥uj∥2 − λ

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx− µj

∫
Ω

uj g̃(uj) dx = o(∥uj∥). (3.5)

Multiplying (3.4) by 4 and subtracting (3.5) gives

∥uj∥2 + λ

∫
Ω

([
(u+

j )
2 − 2

α

]
eα (u+

j )2 +
2

α

)
dx

|x|γ
+ µj

∫
Ω

(
uj g̃(uj)− 4G̃(uj)

)
dx

= 4c+ o(∥uj∥ + 1),

and this together with (1.10) implies that (uj) is bounded in H1
0 (Ω). Hence a

renamed subsequence converges to some u weakly in H1
0 (Ω), strongly in Lp(Ω) for

all p ∈ [1,∞), and a.e. in Ω. Moreover,

sup
j

∫
Ω

eβu
2
j dx < ∞

for all β ≤ 4π/(supj ∥uj∥) by (1.1), and hence
∫
Ω
uj g̃(uj) dx is bounded by (1.10).

Then

sup
j

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx < ∞ (3.6)

by (3.5), and hence ∫
Ω

eα (u+
j )2

|x|γ
dx →

∫
Ω

eα (u+)2

|x|γ
dx (3.7)
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by Lemma 3.2. Denoting by C a generic positive constant,

|uj g̃(uj)| ≤ |uj|
(
eα (u+

j )2/2 + C
)
≤ eα (u+

j )2

|x|γ
+ C

(
u2
j + 1

)
by (1.10), so it follows from (3.7) and the dominated convergence theorem that

∫
Ω

uj g̃(uj) dx →
∫
Ω

u g̃(u) dx. (3.8)

Similarly, ∫
Ω

G̃(uj) dx →
∫
Ω

G̃(u) dx. (3.9)

We claim that the weak limit u is nonzero. Suppose u = 0. Then

∫
Ω

eα (u+
j )2

|x|γ
dx →

∫
Ω

dx

|x|γ
,

∫
Ω

uj g̃(uj) dx → 0,

∫
Ω

G̃(uj) dx → 0 (3.10)

by (3.7)–(3.9). So (3.4) implies that c ≥ 0 and

∥uj∥ → (2c)1/2. (3.11)

Noting that c < 2π (1− γ/2)/α by (3.2), let 2c < ν < 4π (1− γ/2)/α. Then (3.11)

implies that ∥uj∥ ≤ ν1/2 for all j ≥ j0 for some j0. Let q = 4π (1 − γ/2)/αν > 1

and let 1/(1− 1/q) < r < 2/γ (1− 1/q). By the Hölder inequality,

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx ≤

(∫
Ω

|uj|2p dx
)1/p

(∫
Ω

eqαu
2
j

|x|γ
dx

)1/q (∫
Ω

dx

|x|γr (1−1/q)

)1/r

,

where 1/p + 1/q + 1/r = 1. The first integral on the right-hand side converges

to zero since u = 0, the second integral is bounded for j ≥ j0 by (1.1) since
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qαu2
j = 4π (1−γ/2) ũ2

j , where ũj = uj/ν
1/2 satisfies ∥ũj∥ ≤ 1, and the last integral

is finite since γr (1− 1/q) < 2, so

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx → 0.

Then uj → 0 by (3.5) and (3.10), and hence c = 0 by (3.11), a contradiction. So

u is nonzero.

Since E ′
µj
(uj) → 0,

∫
Ω

∇uj · ∇v dx− λ

∫
Ω

u+
j

eα (u+
j )2

|x|γ
v dx− µj

∫
Ω

g̃(uj) v dx → 0 (3.12)

for all v ∈ H1
0 (Ω). For v ∈ C∞

0 (Ω), an argument similar to that in the proof of

Lemma 3.2 using the estimate

⏐⏐⏐⏐⏐
∫
{u+

j ≥M}
u+
j

eα (u+
j )2

|x|γ
v dx

⏐⏐⏐⏐⏐ ≤ sup |v|
M

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx

and (3.6) shows that

∫
Ω

u+
j

eα (u+
j )2

|x|γ
v dx →

∫
Ω

u+ eα (u+)2

|x|γ
v dx. Moreover, denoting

by C a generic positive constant,

|g̃(uj) v| ≤ sup |v|
(
eα (u+

j )2 + C
)
≤ C sup |v|

(
eα (u+

j )2

|x|γ
+ 1

)

by (1.10), so it follows from (3.7) and the dominated convergence theorem that

∫
Ω

g̃(uj) v dx →
∫
Ω

g̃(u) v dx.
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So it follows from (3.12) that

∫
Ω

∇u · ∇v dx = λ

∫
Ω

u+ eα (u+)2

|x|γ
v dx+ µ

∫
Ω

g̃(u) v dx.

Then this holds for all v ∈ H1
0 (Ω) by density, and taking v = u gives

∥u∥2 = λ

∫
Ω

(u+)2
eα (u+)2

|x|γ
dx+ µ

∫
Ω

u g̃(u) dx. (3.13)

Next we claim that

∫
Ω

(u+
j )

2 e
α (u+

j )2

|x|γ
dx →

∫
Ω

(u+)2
eα (u+)2

|x|γ
dx. (3.14)

We have

(u+
j )

2 e
α (u+

j )2

|x|γ
≤ u2

j

eαu
2
j

|x|γ
= u2

j

eα ∥uj∥2 ũ2
j

|x|γ
, (3.15)

where ũj = uj/ ∥uj∥. Setting

κ =
λ

2α

∫
Ω

eα (u+)2 − 1

|x|γ
dx+ µ

∫
Ω

G̃(u) dx,

we have

∥uj∥2 → 2 (c+ κ)

by (3.4), (3.7), and (3.9), so ũj converges weakly and a.e. to ũ = u/[2 (c + κ)]1/2.

Then

∥uj∥2
(
1− ∥ũ∥2

)
→ 2 (c+ κ)− ∥u∥2 . (3.16)

26



Since tet ≥ et − 1 for all t ≥ 0,

∫
Ω

(u+)2
eα (u+)2

|x|γ
dx ≥ 1

α

∫
Ω

eα (u+)2 − 1

|x|γ
dx,

and ∫
Ω

u g̃(u) dx ≥ 2

∫
Ω

G̃(u) dx− θ |Ω|

since θ ≥ 2G̃(t)−tg̃(t) for all t ∈ R, so it follows from (3.13) that ∥u∥2 ≥ 2κ−µθ |Ω|.

Hence

2 (c+ κ)− ∥u∥2 ≤ 2c+ µθ |Ω| < 4π

α

(
1− γ

2

)
(3.17)

by (3.2). We are done if ∥ũ∥ = 1, so suppose ∥ũ∥ < 1 and let

2c+ µθ |Ω|
1− ∥ũ∥2

< ν̃ − 2ε < ν̃ <
4π (1− γ/2)/α

1− ∥ũ∥2
.

Then ∥uj∥2 ≤ ν̃ − 2ε for all j ≥ j0 for some j0 by (3.16) and (3.17), and

sup
j

∫
Ω

eαν̃ ũ2
j

|x|γ
dx < ∞ (3.18)

by Lemma 3.3. For M > 0 and j ≥ j0, (3.15) then gives

∫
{u+

j ≥M}
(u+

j )
2 e

α (u+
j )2

|x|γ
dx

≤
∫
{u+

j ≥M}
u2
j

eα (ν̃−2ε) ũ2
j

|x|γ
dx

= ∥uj∥2
∫
{u+

j ≥M}
ũ2
j e

−εα ũ2
j e−εα (uj/∥uj∥)2 e

αν̃ ũ2
j

|x|γ
dx

≤
(
max
t≥0

te−εα t

)
∥uj∥2 e−εα (M/∥uj∥)2

∫
Ω

eαν̃ ũ2
j

|x|γ
dx.
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The last expression goes to zero as M → ∞ uniformly in j since ∥uj∥ is bounded

and (3.18) holds, so (3.14) now follows as in the proof of Lemma 3.2.

Now it follows from (3.5), (3.14), (3.8), and (3.13) that

∥uj∥2 → λ

∫
Ω

(u+)2
eα (u+)2

|x|γ
dx+ µ

∫
Ω

u g̃(u) dx = ∥u∥2

and hence ∥uj∥ → ∥u∥, so uj → u. Clearly, Eµ(u) = c and E ′
µ(u) = 0.

3.2 Proof of Theorem 1.3

In this section we prove our main result. By Theorem 3.1, Eµ satisfies the (PS)c

condition for all c ̸= 0 satisfying

c <
2π

α

(
1− γ

2

)
− µθ

2
|Ω| .

First we show that Eµ has a uniformly positive mountain pass level below this

threshold for compactness for all sufficiently small µ > 0. Take r > 0 so small that

Br(0) ⊂ Ω and let

vj(x) =
1√
2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
log j, |x| ≤ r/j

log(r/|x|)√
log j

, r/j < |x| < r

0, |x| ≥ r.
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It is easily seen that vj ∈ H1
0 (Ω) with ∥vj∥ = 1 and

∫
Ω

v2j dx = O(1/ log j) as j → ∞. (3.19)

Lemma 3.4. There exist µ0, ρ, c0 > 0, j0 ≥ 2, R > ρ, and ϑ <
2π

α

(
1− γ

2

)
such

that the following hold for all µ ∈ (0, µ0):

(i) ∥u∥ = ρ =⇒ Eµ(u) ≥ c0,

(ii) Eµ(Rvj0) ≤ 0,

(iii) denoting by Γ = {γ ∈ C([0, 1], H1
0 (Ω)) : γ(0) = 0, γ(1) = Rvj0} the class of

paths joining the origin to Rvj0,

c0 ≤ cµ := inf
γ∈Γ

max
u∈γ([0,1])

Eµ(u) ≤ ϑ+ Cµ2 (3.20)

for some constant C > 0,

(iv) Eµ has a critical point uµ at the level cµ.

Proof. Set ρ = ∥u∥ and ũ = u/ρ. Since et − 1 ≤ t+ t2et for all t ≥ 0,

1

α

∫
Ω

eα (u+)2 − 1

|x|γ
dx ≤

∫
Ω

u2

|x|γ
dx+ α

∫
Ω

u4 e
αu2

|x|γ
dx. (3.21)

By (1.4), ∫
Ω

u2

|x|γ
dx ≤ ρ2

λ1(γ)
. (3.22)

Let 2 < r < 4/γ. By the Hölder inequality,

∫
Ω

u4 e
αu2

|x|γ
dx ≤

(∫
Ω

u4p dx

)1/p
(∫

Ω

e2αu
2

|x|γ
dx

)1/2(∫
Ω

dx

|x|γr/2

)1/r

, (3.23)
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where 1/p + 1/r = 1/2. The first integral on the right-hand side is bounded by

Cρ4 for some constant C > 0 by the Sobolev embedding. Since 2αu2 = 2αρ2 ũ2

and ∥ũ∥ = 1, the second integral is bounded when ρ2 ≤ 2π (1 − γ/2)/α by (1.1).

The last integral is finite since γr < 4. So combining (3.21)–(3.23) gives

1

α

∫
Ω

eα (u+)2 − 1

|x|γ
dx ≤ ρ2

λ1(γ)
+ O(ρ4) as ρ → 0.

On the other hand, it follows from (1.10) that

∫
Ω

G̃(u) dx is bounded on bounded

subsets of H1
0 (Ω). So

Eµ(u) ≥
1

2

(
1− λ

λ1(γ)

)
ρ2 +O(ρ4)− Cµ as ρ → 0

for some constant C > 0. Since λ(γ) < λ1, (i) follows from this for sufficiently

small ρ, µ, c0 > 0.

Since ∥vj∥ = 1 and vj ≥ 0,

Eµ(tvj) =
t2

2
−
∫
Ω

[
λ

2α

eαt
2v2j − 1

|x|γ
+ µG(tvj)

]
dx

for t ≥ 0. For µ ≤ λ/2, this gives

Eµ(tvj) ≤
t2

2
−
∫
Ω

[
λ

4α

eαt
2v2j − 1

|x|γ
+ µF (x, tvj)

]
dx,

where

F (x, t) =
1

2α

eαt
2 − 1

|x|γ
+G(t) =

∫ t

0

(
s
eαs

2

|x|γ
+ g(s)

)
ds ≥ −Ct
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for some generic positive constant C by (1.10), so

Eµ(tvj) ≤
t2

2
− λ

4α

∫
Ω

eαt
2v2j − 1

|x|γ
dx+ Cµt

∫
Ω

vj dx.

Since

Cµt

∫
Ω

vj dx ≤ Cµt

(∫
Ω

v2j dx

)1/2

≤ Cµ2 +
t2

2

∫
Ω

v2j dx,

then

Eµ(tvj) ≤ Hj(t) + Cµ2,

where

Hj(t) =
t2

2

(
1 +

∫
Ω

v2j dx

)
− λ

4α

∫
Ω

eαt
2v2j − 1

|x|γ
dx → −∞ as t → ∞.

So to prove (ii) and (iii), it suffices to show that ∃j0 ≥ 2 such that

ϑ := sup
t≥0

Hj0(t) <
2π

α

(
1− γ

2

)
.

Suppose supt≥0Hj(t) ≥ 2π (1−γ/2)/α for all j. Since Hj(t) → −∞ as t → ∞,

there exists tj > 0 such that

Hj(tj) =
t2j
2
(1 + εj)−

λ

4α

∫
Ω

eαt
2
jv

2
j − 1

|x|γ
dx = sup

t≥0
Hj(t) ≥

2π

α

(
1− γ

2

)
(3.24)

and

H ′
j(tj) = tj

(
1 + εj −

λ

2

∫
Ω

v2j
eαt

2
jv

2
j

|x|γ
dx

)
= 0, (3.25)
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where εj =

∫
Ω

v2j dx → 0 by (3.19). The inequality in (3.24) gives

αt2j ≥
4π

1 + εj

(
1− γ

2

)
,

and then (3.25) gives

2

λ
(1 + εj) =

∫
Ω

v2j
eαt

2
jv

2
j

|x|γ
dx ≥

∫
Br/j(0)

v2j
e4π (1−γ/2) v2j /(1+εj)

|x|γ
dx

=
r2 (1−γ/2)

2 (1− γ/2)

log j

j2 (1−γ/2) εj/(1+εj)
.

This is impossible for large j since

j2 (1−γ/2) εj/(1+εj) ≤ j2 (1−γ/2) εj = e2 (1−γ/2) εj log j = O(1)

by (3.19).

By (i)–(iii), Eµ has the mountain pass geometry and the mountain pass level

cµ satisfies

0 < cµ ≤ ϑ+ Cµ2 <
2π

α

(
1− γ

2

)
− µθ

2
|Ω|

for all sufficiently small µ > 0, so Eµ satisfies the (PS)cµ condition. So Eµ has a

critical point uµ at this level by the mountain pass theorem.

Next we prove the following lemma.

Lemma 3.5. If (uj) is a convergent sequence in H1
0 (Ω), then

sup
j

∫
Ω

eβu
2
j

|x|γ
dx < ∞
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for all β > 0 and 0 ≤ γ < 2.

Proof. Let u ∈ H1
0 (Ω) be the limit of (uj). Since u2

j ≤ (|u| + |uj − u|)2 ≤ 2u2 +

2 (uj − u)2,

∫
Ω

eβu
2
j

|x|γ
dx ≤

(∫
Ω

e4βu
2

|x|γ
dx

)1/2(∫
Ω

e4β (uj−u)2

|x|γ
dx

)1/2

.

The first integral on the right-hand side is finite, and the second integral equals

∫
Ω

e4β ∥uj−u∥2w2
j

|x|γ
dx,

where wj = (uj − u)/ ∥uj − u∥. Since ∥wj∥ = 1 and ∥uj − u∥ → 0, this integral is

bounded by (1.1).

Now we show that uµ is positive in Ω, and hence a solution of problem (1.9),

for all sufficiently small µ ∈ (0, µ0). It suffices to show that for every sequence

µj > 0, µj → 0, a subsequence of uj = uµj
is positive in Ω. By (3.20), a renamed

subsequence of cµj
converges to some c satisfying

0 < c <
2π

α

(
1− γ

2

)
.

Then a renamed subsequence of (uj) converges in H1
0 (Ω) to a critical point u of

E0 at the level c by Theorem 3.1. Since c > 0, u is nontrivial.

Since uj is a critical point of Eµj
,

−∆uj = λu+
j

eα (u+
j )2

|x|γ
+ µj g̃(uj)
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in Ω. Let 2 < p < 2/γ and 1 < r < 2/γp. By the Hölder inequality,

∫
Ω

⏐⏐⏐⏐u+
j

eα (u+
j )2

|x|γ

⏐⏐⏐⏐p dx ≤
(∫

Ω

|uj|pq dx
)1/q

(∫
Ω

eprαu
2
j

|x|γpr
dx

)1/r

,

where 1/q + 1/r = 1. The first integral on the right-hand side is bounded by the

Sobolev embedding, and so is the second integral by Lemma 3.5 since γpr < 2, so

u+
j eα (u+

j )2/|x|γ is bounded in Lp(Ω). By (1.10) and Lemma 3.5 again, g̃(uj) is also

bounded in Lp(Ω). By the Calderon-Zygmund inequality, then (uj) is bounded in

W 2,p(Ω). Since W 2,p(Ω) is compactly embedded in C1(Ω) for p > 2, it follows that

a renamed subsequence of uj converges to u in C1(Ω).

Since u is a nontrivial solution of the problem

⎧⎪⎪⎨⎪⎪⎩
−∆u = λu+ eα (u+)2

|x|γ
in Ω

u = 0 on ∂Ω,

u > 0 in Ω by the strong maximum principle and its interior normal derivative

∂u/∂ν > 0 on ∂Ω by the Hopf lemma. Since uj → u in C1(Ω), then uj > 0 in Ω

for all sufficiently large j. This concludes the proof of Theorem 1.3.
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