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ABSTRACT
Title:
MACHINE LEARNING APPROACH TO PREDICT MORTALITY RATES BASED ON
HospiTAL CLINICAL DATA
Author:
Rebecca Smith
Major Advisor:
Munevver Mine Subasi, Ph.D.

This thesis integrates fundamental concepts from conventional statistics with the
more explanatory, algorithmic, and computational techniques offered by machine
learning to predict early mortality risk of surgical patients. Well-known classi-
fication methods, including Random Forest, Decision Trees, Nearest Neighbor,
Stochastic Gradient Descent, Logistic Regression, Naive Bayes, Bayes Network,
Neural Networks, and Support Vector Machines, are utilized to predict mortality
risk of elective general surgical patients treated between January 2005 and Septem-
ber 2010 at the Cleveland Clinic [33]. Clinical factors include surgery type, age,
gender, race, BMI, underlying chronic conditions, surgical risk indices, surgical tim-
ing predictors, the 30-day mortality, and in-hospital complication for each patient.
10 x 10-folding cross validation experiments are conducted to evaluate the predic-
tion performance on low, medium, and high mortality risk groups. A Decision Tree
classification model consisting of 83 low and 135 high risk patterns is presented.
The overall average accuracy of the classifiers applied to predict low and high risk
mortality is 85.2% with precision of 0.89, recall of 0.95, and F-measure of 0.92.
The overall accuracy of the classifiers applied to predict low, medium, and high

risk mortality is 84.7% with precision of 0.89, recall of 0.94, and F-measure of 0.91.
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Chapter 1

Introduction

Early mortality, defined as 30-day mortality, after surgery received considerable
attention in literature [6, 20, 21, 22, 33, 34]. These studies aim at predicting the
mortality risk or identifying survivors and nonsurvivors based on the clinical fea-
tures of surgery patient. It was shown that human factors such as fatigue, surgery
schedule, and surgery staff had an impact on mortality risk of surgery patients.
Sessler et al. (2011)[33] investigated impact of surgery schedule on the risk of 30-
day mortality associated with elective general surgery. As part of the study, Sessler
et al. (2011) [33] collected “Surgery Timing” dataset containing 32,001 elective
general surgical patients treated between January 2005 and September 2010 at the
Cleveland Clinic. In addition to the surgical timing predictors such as hour, day of
week, month, moon phase, the clinical feature included surgery type, age, gender,
race, BMI, underlying chronic conditions, surgical risk indices as well as the 30-day
mortality and in-hospital complication for each patient.

The primary outcome of “Surgery Timing” study conducted by Sessler et al.

(2011) [33] was all-cause 30-day mortality obtained from a review of hospital



records and the Social Security Death Index database. Sessler et al. (2011) [33]
modeled the 30-day mortality using multivariable logistic regression. In the same
study, Sessler et al. (2011) [33] considered the composite complications defined by
United States Agency for Healthcare Research and Quality’s Clinical Classifica-
tions Software (AHRQ-CCS) diagnosis categories 237 of which were complication
of device, implant or graft and 238 of which were complications of surgical proce-
dures or medical care.

Sessler et al. (2011) [33] adjusted for diagnoses and procedures using the Risk
Stratification Index (RSI) for 30-day mortality. Mortality RSI of the Cleveland
Clinic surgery patients was obtained to predict 3-day mortality from the Interna-
tional Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM).
30-day mortality and in-hospital complications of the Clevend Clinic surgery pa-
tients were modeled using multivariable logistic regression that provided the ad-
jucted incidence of 30-day mortality and in-hospital complication based on hour,
day, month of the surgery and moon phase when the surgical procedure was started.

In this study, we adopt the more explanatory, algorithmic, and computa-
tional techniques offered by machine learning to stratify surgery patients into low,
medium, and high mortality risk groups and identify the clinical features for mor-
tality risk of patients in “Surgery Timing” dataset.

The organization of this thesis is as follows. Chapter 2 briefly outlines well-
known and commonly used machine learning methods and metrics that can be
used to evaluate the prediction power of classification methods. describes the
study subjects and preprocessing of Surgery Timing dataset. Chapter 3 describes
the study subjects and provides the statistics for clinical features used in Surgery

Timing study. Identification of low risk, medium risk, and high risk are presented



in Chapter 4. Overall performance of well-known classification methods and com-
binatorial patterns that can be used to predict the mortality risk groups are also
presented in Chapter 4. Finally, in Chapter 5, the discussion concludes with a

summary of data analysis results.



Chapter 2

Review of Classification Methods

2.1 Machine Learning

Machine Learning is a data analysis method that focuses on building applications
learned from data and automates analytical model building to improve predictions
through experience. The fundamental concepts from conventional statistics and
optimization are integrated with machine learning techniques to develop system-
atic procedures to analyze large-scale, complex structured datasets generated by
sophisticated technologies used in science and engineering. A typical data analysis

process comprises four phases [2, 4]:

e data preprocessing, including data transformation, imputation, feature se-

lection, and dimensionality reduction,

e class discovery (unsupervised learning) or classs comparison and discrimina-

tion (supervised learning),

e cvaluation (statistical tests or cross-validation) of the prediction, and

4



e interpretation of the results.

Unsupervised learning uses clustering analysis to identify subgroups of obser-
vations in datasets with no known outcome. Supervised learning is a machine
learning technique that learns from the data predict continuous valued outcome
(regression analysis), discrete valued outcome (classification), and time-to-event
outcome (survival analysis).

Our study focuses on stratifying surgery patients into different groups based
on their mortality risk. To achieve this, we adopt well-known and commonly used
supervised learning classification methods, including Logistic Regression, Decision
Trees, Random Forest, Naive Bayes, Stochastic Gradient Descent, Nearest Neigh-
bor, Neural Networks, and Support Vector Machines. Below we briefly outline

these methods.

2.1.1 Logistic Regression

Logistic Regression is a parametric classification model that is used to predict the
discrete outcome in multivariate data. The method uses the weighted sum given
in Equation (2.1):
n
X =B+ By (2.1)
i=1
where O,k = 0,1,...,n are parameters. The weighted sum is used in Sigmoid

function given in Equation (2.2) to calculate the probability of the input being in

a specific category.

1
1+ e*(ﬁoJrZ::l BrXr)

Sigmoid(X) = (2.2)

Logistic Regression uses the log odds ratio and an iterative maximum likelihood



to fit the final model. It is relatively efficient classification method.

2.1.2 Decision Tree and Random Forest

Decision Tree, illustrated in Figure 2.1, is a classification method that uses tree-like
models containing explicit decision rules that can predict discrete valued outcomes
[5, 9]. J48 (C4.5) Decision Tree algorithm [29] is an extension of Iterative Di-
chotomiser 3 algorithm. Although over-fitting is common, Decision Tree is often
adopted in data analysis due to its high interpretability and intuitive nature.
Random Forest method builds a large collection of de-correlated decision trees
and report the average predictions of the decision trees generated [7]. The method
can also be referred to as average tree estimator. Random Forest uses bagging

technique to minimize over-fitting.

2.1.3 Bayesian Network and Naive Bayes Method

Bayesian Networks are built off the idea of Bayes’ theorem [12]. The Bayesian
Network is a directed acyclic graphs that allows efficient and effective representa-
tion of the joint probability distribution variables in data. Nodes in the network
represent random variables and edges represent directed correlations between the
variables, where nodes are assumed to be conditionally independent of the parent

nodes. It uses the conditional probability

P[Cause]

P[Cause| Bvidence] = PlBvidence|Cause] + oo s

(2.3)

Naive Bayes is another probabilistic classifier [5, 9, 24] that also uses Bayes’

theorem. The method is called naive because it assumes that the features are



independent random variables. Let P(X|c) be the probability of the predictor for
a paricular class c. Then given that the predictor of X, the probability of assigning
class ¢, P(c|X), is defined by

P(c|X) = P(X1|c)P(Xa|c)...P(X,|c) P(c) (2.4)

where P(c) is the prior probability of the class and P(X) is the prior probability
of the predictor.
Naive Bayes is a computationally inexpensive method which performs well if

the input dataset indeed contains independent features.

2.1.4 Stochastic Gradient Descent

Stochastic Gradient Descent classifier [1] is an iterative algorithm that implements
stochastic gradient descent method for learning various linear models. The method

consists of six steps [36]:

find the slope of the objective function also known as finding the gradient of

the function,

pick a random initial value for each of the parameters,

update the gradient function by plugging in the parameter values,

calculate the step sizes for each feature using the following equation:

stepsize = gradient x learningrate, (2.5)



e calculate the new parameters

newparams = oldparams — stepsize (2.6)

e repeat steps three to five until the gradient is close to 0.

2.1.5 k-Nearest Neighbors

k-Nearest Neighbors, commonly known as kNN, is an algorithm that classifies
observations based on the distance between them [23]. The algorithm uses a hy-
perparameter k that represents the number of neighbors. Class of an observation
is determined based on the most common classes (closest distance) among the ob-
servation’s neighbors. Nearest Neighbor is an instance-based learning method and
assumes that the distance between the observations is sufficient enough to make

an inference about the observation to be predicted.

2.1.6 Multilayer Perceptron

Multilayer Perceptron is a feed forward neural network with multiple layers [10].
For example, in a 3-layer network, the first layer would be the input layer, the
second would be the hidden layer and the final layer would be the output layer.
The number of hidden layers is determined by the user. Feed forward neural
network assumes all of nodes are fully connected (i.e., it is a complete graph) as

illustrated in Figure 2.2.
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2.1.7 Support Vector Machines

Support Vector Machines (SVM) [8, 31] can be used for both regression and clas-
sification problems: Support Vector Regression and Support Vector Classification.
The method find a hyperplane that can separate the data into different classes
where the margin of the separation is maximized. Observations in different sub-
groups closest to the hyperplane are called the support vectors. The method then
aims at maximizing the distance between the support vectors and the hyperplane.

Sequential Minimal Optimization (SMO) is an implementation of SVM algo-
rithm that does not require the use of any more matrix storage and numerical
quadratic programming steps. The method chooses two Lagrange multipliers and

analytically optimizes the multipliers, avoiding quadratic optimization.

2.2 Performance Evaluation Metrics for Classifi-

cation Methods

2.2.1 Area Under ROC

The area under the ROC is referring to what all falls below the ROC curve. The
ROC curve is an illustration that checks how the classifier is performing by looking
at the true positive rate as the false positive rate is changing. Now when you look
at this you want it to stand out and be higher in the top-left corner of the plot.
Now where that higher point is located is where you can look to see what the area

under ROC value is going to be.

10



2.2.2 Precision and Recall

Precision of a classification method is the proportion of correctly classified positive

observations:

Number of True Positives

Precision =

(2.7)

Number of True Positives+Number of False Positives’

Recall of a classification method is the proportion of positive observations that

were correctly predicted:

Number of True Positives

Recall =

. 2.8
Number of True Positives+Number of False Negatives (28)

For example, a precision of 0.8 means when the classifier assigns an observation
to the positive class, it is correct 80% of the time. Similarly, a precision of 0.15
means, the classifier correctly identifies 15% of the positive observations. The
higher the precision and recall are the better the prediction perfomance of the

classifier is.

2.2.3 F-Measure

The F-measure is a weighted mean of precision (P) and recall (R) defined as

b= ag+(1—a) (2:9)

==

where a € [0, 1].

11



F-measure can be considered as compromise between precision and recall.
When both precision and recall are high, the corresponding F-measure is closer

to 1 which is considered as significant prediction.

2.2.4 Mean Absolute Error

Mean Absolute Error measure how far the predicted observations in test set are
away from the observations in a specific class in training set. It is the average over
the test sample of the absolute differences between predicted value and observed
value. The smaller the value of mean absolute error is, the better the prediction

of classes in the input dataset.

12



Chapter 3

Study Subjects & Data

Preprocessing

3.1 Input Data

The goal of this study is to stratify elective general surgical patients into different
risk groups based on clinical features. To achieve this goal we use the “Surgery
Timing” dataset containing 32,001 elective general surgical patients treated be-
tween January 2005 and September 2010 at the Cleveland Clinic [33]. The clinical
features include surgery type, age, gender, race, BMI, underlying chronic condi-
tions, surgical risk indices, the surgical timing predictors such as hour, day of week,
month, moon phase as well as the 30-day mortality and in-hospital complication

for each patient as shown in Table 3.1.
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Table 3.1: Clinical Features in Surgery Timing Dataset

V1 | Surgery Type

V2 | Age

V3 | Gender

V4 | Race

V5 | ASA Status
V6 | BMI

V7 | Baseline Cancer

V8 | Baseline CVD

V9 | Baseline Dementia
V10 | Baseline Diabetes
V11 | Baseline Digestive
V12 | Baseline Osteoart
V13 | Baseline Psych

V14 | Baseline Pulmonary
V15 | Baseline Charlson
V16 | cesMort30rate

V17 | cesComplicationRate

V18 | Hour

V19 | Day of Week
V20 | Month

V21 | Moon Phase
V22 | mort30

V23 | complication

14



Table 3.2: Surgical Procedures

Label | Surgery Type

A Other
Arthroplasty Knee
Colorectal Resection
Endoscopy and Endoscopic Biopsy of the Urinary Tract
Gastrectomy; Partial and Total
Genitourinary Incontinence Procedures
Hip Replacement; Total and Partial
Hysterectomy; Abdominal and Vaginal
Inguinal and Femoral Hernia Repair
Laminectomy; Excision Intervertebral Disk

Lumpectomy; Quadrantectomy of Breast
Mastectomy

Nephrectomy; Partial and Complete
Oophorectomy; Unilateral and Bilateral
Open Prostatectomy

Other Excision of Cervix and Uterus

Other Hernia Repair

Plastic Procedures on Nose

Repair of Cystocele and Rectocele; Obliteration of Vaginal Vault
Small Bowel Resection

Spinal Fusion

Thyroidectomy; Partial or Complete
Transurethral Resection of Prostates(TURP)

<8 v mO]| T O| 2| 2| F| —| —| = Q= E| T | @

Below, we briefly outline the characteristics of clinical features in Surgery Tim-
ing dataset. The specific surgical procedures performed on Cleveland Clinic pa-
tients during the period of January 2005 to September 2010 are presented in Table
3.2. The characteristics of clinical features included in Surgery Timing dataset are
shown in Table 3.3, where N is the number of patients and N* is the number of

patients with missing values in corresponding features.
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V1-Surgery Type: Nominal valued feature representing the specific surgery that

was performed.

V2-Age: Continuous valued feature representing patient’s age at the time of
surgery.

V3-Gender: Binary feature representing gender of patient: male (0), female (1).
V4-Race: Discrete values feature representing race of patient: Caucasian (1),
African-American (2), other (3).

V'5-ASA Physical Status: Categorical feature representing anesthesiologist phys-

ical status, where a value of 1 is assigned if the anesthesiologist of a surgery patient
had a level of I-11, a value of 2 for level I1I, and a value of 3 for level IV-VI physical
status.

V6-BMI: Continuous valued feature representing patient’s body mass index (BMI)
at the time of surgery.

V7-Baseline Cancer: Binary feature representing if patient has cancer (1) or not
(0).

V8-Baseline CVD: Binary feature representing if patient has cardiovascular/cere-

brovascular disease (1) or not (0).

V9-Baseline Dementia: Binary feature representing if patient has dementia (1)

or not (0).

V10-Baseline Diabetes: Binary feature representing if patient is diabetic (1) or

not (0).

V'11-Baseline Digestive: Binary feature representing if patient has digestive dis-

order (1) or not (0).

V12-Baseline Osteoart: Binary feature representing if patient has osteoarthritis

(1) or not (0).
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V'13-Baseline Psych: Binary feature representing if patient has psychiatric dis-

order (1) or not (0).

V14-Baseline Pulmonary: Binary feature representing if patient has pulmonary

problems (1) or not (0).

V15-Baseline Charlson: Continuous valued feature representing the Charlson

Comorbidity Index for each patient.

V16-ccsMort30rate: Nominal valued feature representing the overall incidence

of 30-day mortality for each procedure category.

V17-ccsComplicationRate: Nominal valued feature representing the overall in-

cidence of in-hospital complications for each procedure category.

V18-Hour: Discrete valued feature representing the specific hour that the proce-
dure was performed. The values for this run from 1 to 24 with this being military
time for each of the different hours throughout the day.

V'19-Day of Week: Discrete valued feature representing the specific day on which

the procedure was performed: Monday (1), Tuesday (2), Wednesday (3), Thursday
(4), and Friday (5).

V20-Month: Discrete valued feature (1,...,12) representing the specific month that
the procedure was performed.

V21-Moonphase: Discrete valued feature representing the moon phase in which

the procedure has started: new moon (1), first quarter (2), full moon (3), and last
quarter (4).

V22-mort30: Binary feature representing whether a patient experienced mortality
within the first thirty days after the procedure (1) or not (0).

V23-Complication: Binary feature representing whether a patient experienced

any complications while in the hospital (1) or not (0).

17
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The primary outcome of Surgery Timing study conducted by Sessler et al.
(2011) [33] was all-cause 30-day mortality, V'22-mort30, obtained from a review
of hospital records and the Social Security Death Index database. Sessler et al.
(2011) [33] modeled the 30-day mortality using multivariable logistic regression. In
the same study, Sessler et al. (2011) [33] considered the composite complications
defined by United States Agency for Healthcare Research and Quality’s Clinical
Classifications Software (AHRQ-CCS) diagnosis categories 237 of which were com-
plication of device, implant or graft and 238 of which were complications of surgical
procedures or medical care.

Sessler et al. (2011) [33] adjusted for diagnoses and procedures using the Risk
Stratification Index (RSI) for 30-day mortality. Mortality RSI, shown in Figure
3.1, was obtained to predict 3-day mortality from the International Classification of
Diseases, 9th revision, Clinical Modification (ICD-9-CM). Similarly, Complication
RSI shown in Figure 3.2, was made available in Surgery Timing dataset.

Mortality RSI values range from -4.4 to 4.86. The values are assigned based
on the ICD-9-CM system to diagnoses and procedures associated with hospitals in
the United States. Mortality RSI is equal to the logit of 30-day mortality defined
as

logit = log(odds) = log(lﬁp) = [o + 51.X1 + ... B Xy (3.1)

Then the probability that the patient dies within 30 days after the surgery is given

by
eBotPrLXi+..Be Xy

p= 1 + ePotBrXat.. .BuXp

(3.2)

For example, a patient who has a mortality RSI value of 4.86 has the logit

value of 4.86 and from Equation (3.2) the probability that the patient dies within

19



30 days after the surgical procedure is 0.9923:

64'86

p

Both Mortality RSI and Complication RSI are continuous valued outcomes.
In this study, we aim at predicting Mortality RSI values of the patients in Surgery
Timing dataset.

As an initial step, we find the correlation between Mortality RSI and each
feature, including Complication RSI. As can be seen from Table 3.4, none of the
features is significantly correlated with Mortality RSI whereas there is a signifi-
cant positive correlation between Mortality RST and Complication RSI. It is indeed
expected to have a patient’s mortality risk increase as the patient’s in-hospital com-
plication risk increases. In order to avoid any bias, we remove Complication RSI
from the dataset to identify a classification model that can predict the mortality

risk of patients in Surgery Timing dataset.
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Table 3.4: Correlations Between Mortality RSI and Other Features

|

Compared Features

Correlation Value H

Mortality-RSI vs. Age -0.099
Mortality-RSI vs. Gender -0.019
Mortality-RSI vs. Race 0.033
Mortality-RSI vs. ASA-Status 0.064
Mortality-RSI vs. BMI -0.108
Mortality-RSI vs. Baseline Cancer 0.198
Mortality-RSI vs. Baseline CVD -0.132
Mortality-RSI vs. Baseline Dementia 0.054
Mortality-RSI vs. Baseline Diabetes -0.052
Mortality-RSI vs. Baseline Digestive -0.025
Mortality-RSI vs. Baseline Osteoart -0.554
Mortality-RSI vs. Baseline Psych -0.023
Mortality-RSI vs. Baseline Pulmonary 0.010
Mortality-RSI vs. Baseline Charlson 0.254
Mortality-RSI vs. Hour 0.122
Mortality-RSI vs. Day of Week 0.075
Mortality-RSI vs. Month -0.002
Mortality-RSI vs. Moon Phase -0.002
Mortality-RSI vs. Complication-RSI 0.723

3.2 Prediction of Mortality RSI

Our first attempt is to use regression analysis methods to predict Mortality RSI
of 32,001 patients in Surgery Timing dataset. We run our analyses using WEKA
data mining software [13]. Table 3.5 show the average of 10 x 10 folding cross-
validation experiments for Linear Regression and Locally Weighted Naive Bayes,
respectively.

Based on 10 x 10-folding cross-validation experiments presented in Tables 3.5
and 3.6, we conclude that both Linear Regression and Locally Weighted Naive

Bayes have poor accuracy of predicting Mortality RSI (continuous valued outcome)
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Table 3.5: Linear Regression Cross-Validation Results for Mortality RSI

Correlation coefficient 0.73
Mean absolute error 0.52
Root mean squared error 0.71

Relative absolute error 64.84%
Root relative squared error || 68.45%

Table 3.6: Locally Weighted Naive Bayes Cross-Validation Results for Mortality
RSI

Correlation coefficient 0.61
Mean absolute error 0.62
Root mean squared error 0.82

Relative absolute error 77.14%
Root relative squared error || 79.29%

of the patients in Surgery Timing dataset.
In this study, we adopt the more explanatory, algorithmic, and computational
techniques offered by machine learning to stratify surgery patients into subgroups

based on their low, medium, and high risk of mortality.
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Chapter 4

Prediction of Mortality Risk in

Surgery Patients

4.1 Prediction of Low and High Risk Mortality

4.1.1 Identification of Low and High Risk Patients

We recall that the values of Mortality RSI range from -4.4 to 4.86, i.e., the proba-
bility of patients dying within 30 days of surgery varies between 1.21% to 99.23%
as calculated by Equation (3.2).

In this section, we aim at identifying two disjoint subgroups of Surgery Timing
data, representing the high risk and low risk patients based on their Mortality RSI
values. To achieve this we consider the two extreme ends of the Mortality RSI

distribution presented in Figure 3.1.

e A patient is labeled as “low risk” patient if the patient’s corresponding Mor-

tality RSI value is between -4.4 and -1, i.e., the probability that the patient’s
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dies within 30 days after the surgery is between 1.21% and 26%.

e A patient is labeled as “high risk” patient if the patient’s corresponding
Mortality RSI value is between 1 and 4.86, i.e., the probability that the

patient’s dies within 30 days after the surgery is between 73.1% and 99.2%.

Patients whose Mortality RSI values fall into interval (—1, 1) are removed from
the dataset. The resulting dataset, referred to as “Surgery Timing LH”, contains
9,559 low risk and 1,469 high risk patients and their corresponding clinical features
in Table 3.1.

Table 4.1 and Figure 4.1 show the distribution of the low risk and high risk
patients based on their surgical procedure. Table 4.2 and Figures 4.2-4.6 give the
distribution of the low risk and high risk patients based on their age, gender, race,
ASA physical status, and BMI, respectively. Distribution of underlying health
conditions among low risk and high risk patients are presented in Table 4.3 and
Figures 4.7-4.13. In Table 4.4 and Figures 4.14-4.16, we give the distribution
of baseline Charlson index, ccsMort30rate, and ccsComplication rate among low
risk and high risk patients, respectively. Table 4.5 and Figures 4.17-4.22 show
the distribution of hour, day of week, month, moon phase, 30-day mortality and

in-hospital complication of low risk and high risk patients, respectively.
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Table 4.1: Low Risk and High Risk Patients Data Characteristics - Surgery Type

’ Class H # of Patients ‘
Low Risk 9,559
High Risk 1,469

’ Surgery Type H # of Patients ‘
Surgery A 95
Sugery B 3,005
Surgery C 487
Surgery D 25
Surgery E 95
Surgery F 4
Surgery G 1800
Surgery H 358
Surgery 1 32
Surgery J 1,401
Surgery K 40
Surgery L 249
Surgery M 1,012
Surgery N 63
Surgery O 509
Surgery P 20
Surgery Q 62
Surgery R 7
Surgery S 11
Surgery T 124
Surgery U 1,378
Surgery V 69
Surgery W 182

27
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Table 4.2: Low Risk and High Risk Patients Data Characteristics - Age, Gender,
Race, ASA Physical Status, BMI

Min Val. = 1, Max Val = 90,
Age Mean = 60.081, St. Dev. = 14.52,
Missing Val. =1,
Distinct Val. = 728, Unique Val. = 35
] Gender ‘
Male 5,561
Female 5,467
’ Race ‘
Caucasian 9,322
African American 1,144
Other 393
’ ASA Physical Status
I-11 5,315
11 5,255
IV-VI 456
Min Val. = 12.15, Max Val. = 92.59,
Mean=30.06, St. Dev. 7.179,
BMI Missing = 1,222,
Unique Val. = 819, Distinct Val. = 26
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Table 4.3: Low Risk and High Risk Patients Data Characteristics - Underlying
Health Conditions

’ Baseline Cancer ‘

No 7,930

Yes 3,098
’ Baseline CVD ‘
Yes 6,229

No 4,799
’ Baseline Dementia ‘
No 10,906

Yes 122
’ Baseline Diabetes ‘
No 9,451

Yes 1,577
’ Baseline Digestive ‘
Yes 2,472

No 8.556
] Baseline Osteoart ‘
Yes 4,605

No 6,423
’ Baseline Psych ‘
No 10,005

Yes 1,023
] Baseline Pulmonary ‘
No 9,793

Yes 1,235
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Table 4.4: Low Risk and High Risk Patients Data Characteristics - Baseline Charl-
son Index, Overall Incidence of 30-day Mortality for Each Surgery, and Overall
Incidence of In-hospital Complications for Each Surgery

Min Val. = 0, Max Val. = 13,
Mean = 1.203, St. Dev. = 2.034,
Missing Val. = 0,

Distinct Val.= 14, Unique Val. =1
Min Val. = 0, Max Val. = 0.017.
Mean = 0.005, St. Dev= 0.004,
Missing Val. = 0,

Distinct Val. = 21, Unique Val. =0
Min Val. = 0.016, Max Val. = 0.466,
Mean = 0.128, St. Dev. = 0.07,
Missing Val. = 0,

Distinct Val. = 23, Unique Val. = 0

Baseline Charlson

ccsMort30rate

ccsComplicationRate
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Table 4.5: Low Risk and High Risk Patients Data Characteristics - Hour, Day,
Month, Moon Phase of Surgery, 30-Mortality of Patients, In-hospital Complication
of Patients

Min Val. = 6.07, Max Val. = 19,
Hour Mean = 10.117, St. Dev. = 2.846,
Missing Val. = 0,
Distinct Val. = 724, Unique Val. = 57
’ Day of Week ‘
Monday 2,703
Tuesday 2,559
Wednesday 1,950
Thursday 1,952
Friday 1,864
’ Month
January 937
February 884
March 943
April 974
May 946
June 1,026
July 770
August 1,073
September 1,109
October 953
November 817
December 596
’ Moon Phase
First Quarter 2,820
Last Quarter 2,785
New Moon 2,639
Full Moon 2,784
’ mort30 ‘
No 10,922
Yes 106
| Complication |
No 9,589
Yes 1,439
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4.1.2 Prediction of Low and High Risk Patients

To predict low risk and high risk patients in “Surgery Timing LH” dataset, we
use 10 x 10-folding cross-validation experiments on nine commonly used and well-
known classification methods, including Random Forest, Decision Trees, Nearest
Neighbor, Stochastic Gradient Descent, Logistic Regression, Naive Bayes, Bayes
Network, Neural Networks, and Support Vector Machines [13]. Surgery Timing LH
dataset is randomly partitioned into ten approximately equal parts; one of these
subsets is designated as “test set”, a model is built on the remaining nine subsets
which form the “training dataset”, and then tested by predicting the classes of
patients in the test set using a classification method. This procedure is repeated
10 times, always taking another one of the ten parts in the role of the test set
(re-randomizing the patients into 10 new subsets and repeat the procedure 9 ad-
ditional times) for a total of 100 tests for each of the nine classification methods.
Tables 4.6-4.14 show the average accuracy, proportion of correctly classified low
risk patients, proportion of correctly classified high risk patients as well as average
precision, recall, F-measure (weighted mean of the precision and recall), and area
under Receiver Operating Characteristic (ROC) curve for Random Forest, Decision
Trees, Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naive
Bayes, Bayes Network, Neural Networks, and Sequential Minimal Optimization,

respectively.
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Table 4.6: Cross-Validation of Low Risk and High Risk Patients Using Random
Forest

’ Random Forest H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 960.4
Number Incorrect 142.4
Percent Correct 87.1%
Percent Incorrect 12.9%
Mean Absolute Error 0.198
Area Under ROC 0.722
F-Measure 0.929
True Positive Rate 0.981
Number of True Positives 940.5
False Positive Rate 0.862
Number of False Positives 124.1
True Negative Rate 0.137
Number of True Negatives 19.8
False Negative Rate 0.019
Number of False Negatives 18.3
Weighted True Positive Rate 0.871
Weighted False Positive Rate 0.752
Weighted True Negative Rate 0.247
Weighted False Negative Rate 0.129
Weighted F-Measure 0.836
Weighted Area Under ROC 0.722
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Table 4.7: Cross-Validation of Low Risk and High Risk Patients Using J48 Decision
Tree

’ J48 Decision Tree H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 963
Number Incorrect 139.8
Percent Correct 87.3%
Percent Incorrect 12.6%
Mean Absolute Error 0.194
Area Under ROC 0.643
F-Measure 0.931
True Positive Rate 0.976
Number of True Positives 936.1
False Positive Rate 0.812
Number of False Positives 116.9
True Negative Rate 0.187
Number of True Negatives 26.9
False Negative Rate 0.023
Number of False Negatives 22.8
Weighted True Positive Rate 0.873
Weighted False Positive Rate 0.709
Weighted True Negative Rate 0.290
Weighted False Negative Rate 0.127
Weighted F-Measure 0.845
Weighted Area Under ROC 0.643
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Table 4.8: Cross-Validation of Low Risk and High Risk Patients Using k-Nearest
Neighbor

’ k-Nearest Neighbor H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 891.9
Number Incorrect 210.8
Percent Correct 80.8%
Percent Incorrect 19.1%
Mean Absolute Error 0.191
Area Under ROC 0.579
F-Measure 0.889
True Positive Rate 0.889
Number of True Positives 853.1
False Positive Rate 0.730
Number of False Positives 105.1
True Negative Rate 0.269
Number of True Negatives 38.7
False Negative Rate 0.110
Number of False Negatives 105.7
Weighted True Positive Rate 0.808
Weighted False Positive Rate 0.649
Weighted True Negative Rate 0.350
Weighted False Negative Rate 0.191
Weighted F-Measure 0.808
Weighted Area Under ROC 0.579
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Table 4.9: Cross-Validation of Low Risk and High Risk Patients Using Stochastic
Gradient Descent

’ Stochastic Gradient Descent H Average Cross-Validation Results ‘

Training Instances 9925.2
Testing Instance 1102.8
Number Correct 960.2
Number Incorrect 142.6
Percent Correct 87.1%
Percent Incorrect 12.9%
Mean Absolute Error 0.129
Area Under ROC 0.521
F-Measure 0.930

True Positive Rate 0.994

Number of True Positives 953.4
False Positive Rate 0.952
Number of False Positives 137.1
True Negative Rate 0.047
Number of True Negatives 6.8
False Negative Rate 0.006
Number of False Negatives 5.5
Weighted True Positive Rate 0.871
Weighted False Positive Rate 0.829
Weighted True Negative Rate 0.171
Weighted False Negative Rate 0.129
Weighted F-Measure 0.820
Weighted Area Under ROC 0.521
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Table 4.10: Cross-Validation of Low Risk and High Risk Patients Using Logistic
Regression

’ Logistic Regression H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 960.9
Number Incorrect 141.8
Percent Correct 87.1%
Percent Incorrect 12.8%
Mean Absolute Error 0.194
Area Under ROC 0.736
F-Measure 0.929
True Positive Rate 0.977
Number of True Positives 937.5
False Positive Rate 0.837
Number of False Positives 120.5
True Negative Rate 0.162
Number of True Negatives 23.3
False Negative Rate 0.022
Number of False Negatives 21.3
Weighted True Positive Rate 0.871
Weighted False Positive Rate 0.731
Weighted True Negative Rate 0.268
Weighted False Negative Rate 0.128
Weighted F-Measure 0.841
Weighted Area Under ROC 0.736
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Table 4.11: Cross-Validation of Low Risk and High Risk Patients Using Naive
Bayes

’ Naive Bayes H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 924.6
Number Incorrect 178.2
Percent Correct 83.8%
Percent Incorrect 16.1%
Mean Absolute Error 0.181
Area Under ROC 0.723
F-Measure 0.907
True Positive Rate 0.906
Number of True Positives 863.3
False Positive Rate 0.615
Number of False Positives 88.6
True Negative Rate 0.384
Number of True Negatives 55.3
False Negative Rate 0.093
Number of False Negatives 89.5
Weighted True Positive Rate 0.838
Weighted False Positive Rate 0.547
Weighted True Negative Rate 0.452
Weighted False Negative Rate 0.161
Weighted F-Measure 0.838
Weighted Area Under ROC 0.722
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Table 4.12: Cross-Validation of Low Risk and High Risk Patients Using Bayes
Network

’ Bayes Network H Average Cross-Validation Results ‘
Training Instances 9925.2
Testing Instance 1102.8
Number Correct 907.2
Number Incorrect 195.6
Percent Correct 82.2%
Percent Incorrect 17.7%
Mean Absolute Error 0.198
Area Under ROC 0.726
F-Measure 0.895
True Positive Rate 0.878
Number of True Positives 842.4
False Positive Rate 0.551
Number of False Positives 79.2
True Negative Rate 0.449
Number of True Negatives 64.7
False Negative Rate 0.121
Number of False Negatives 116.5
Weighted True Positive Rate 0.822
Weighted False Positive Rate 0.494
Weighted True Negative Rate 0.505
Weighted False Negative Rate 0.177
Weighted F-Measure 0.831
Weighted Area Under ROC 0.726
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Table 4.13: Cross-Validation of Low Risk and High Risk Patients Using Multi-layer
Perceptron

’ Multi-layer Perceptron H Average Cross-Validation Results ‘

Training Instances 9925.2
Testing Instance 1102.8
Number Correct 926.9
Number Incorrect 175.8
Percent Correct 84.1%
Percent Incorrect 15.9%
Mean Absolute Error 0.163
Area Under ROC 0.665
F-Measure 0.911

True Positive Rate 0.931

Number of True Positives 892.9
False Positive Rate 0.764
Number of False Positives 109.9
True Negative Rate 0.236
Number of True Negatives 33.6
False Negative Rate 0.068
Number of False Negatives 65.9
Weighted True Positive Rate 0.841
Weighted False Positive Rate 0.673
Weighted True Negative Rate 0.326
Weighted False Negative Rate 0.159
Weighted F-Measure 0.827
Weighted Area Under ROC 0.655

62



Table 4.14: Cross-Validation of Low Risk and High Risk Patients Using Support
Vector Machines

’ Support Vector Machines H Average Cross-Validation Results ‘

Training Instances 9925.2
Testing Instance 1102.8
Number Correct 960.2
Number Incorrect 142.6
Percent Correct 87.1%
Percent Incorrect 12.9%

Mean Absolute Error 0.129

Area Under ROC 0.521

F Measure 0.930
True Positive Rate 0.994
Number of True Positives 953.4
False Positive Rate 0.953
Number of False Positives 137.1
True Negative Rate 0.047
Number of True Negatives 6.8
False Negative Rate 0.006
Number of False Negatives 5.5
Weighted True Positive Rate 0.871
Weighted False Positive Rate 0.829
Weighted True Negative Rate 0.171
Weighted False Negative Rate 0.129
Weighted F Measure 0.820
Weighted Area Under ROC 0.521

63



The average of 10 x 10-folding cross validation results for all nine classification
methods are summarized in Table 4.15. The overall average accuracy of nine
classification methods is 85.20%. Overall, the performance of the nine methods is
validated by high values of prediction metrics: precision value of 0.89, recall value
of 0.95, F-measure value of 0.92. Although not as significant, we observe that the
overall average of value of areas under ROC curves is 0.65.

As can be seen from Table 4.15, all classification methods have comparable ac-
curacy, precision, recall, F-measure and area under ROC curve. We also note that
J48 Decision Tree method provides the combination of best accuracy, precision,
recall, and F-value and its corresponding area under ROC curve is better than or

comparable to those corresponding to the other classification methods.
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4.1.3 Combinatorial Patterns of Low and High Risk Pa-

tients

Table 4.15 shows that J48 Decision Tree method provides us with best combination
of average cross-validation accuracy, precision, recall, and F-measure. Because
J48 Decision Tree method can be used to identify explicit/explainable patterns
that can accurately predict low risk and high risk patients in Surgery Timing LH
dataset, we apply the method on entire dataset to identify combinatorial patterns
corresponding to low risk and high risk surgery patients stratified based on their
Mortality RSI values.

The resulting J48 Decision Tree classification model consists of 83 low risk mor-
tality patterns and 135 high risk mortality patterns presented in Tables 4.16-4.20
and Tables 4.21-4.29, respectively. Average 10 x 10-folding cross-validation accu-
racy of the J48 classification model is 87.32%. Average precision is 0.89 precision,
recall is 0.98, F-measure value is 0.93, and value of the area under ROC curve is

0.64.
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4.2 Prediction of Low, Medium, and High Risk

Mortality

4.2.1 Identification of Low, Medium, and High Risk Pa-

tients

As discussed in Section 4.1, we are able to accurately predict low and high risk
mortality of patients who had a surgery in Cleveland Clinic between January 2005
and September 2010. In this section we extend our investigation to predict low,
medium, and high risk mortality in Surgery Timing dataset based on the Mortality
RSI values ranging from -4.4 to 4.86. The initial step of our investigation is to

discretize the Mortality RSI values as follows:

e A patient is labeled as “low risk” patient if the patient’s corresponding Mor-
tality RSI value is between -4.4 to -1, i.e., the probability that the patient’s
dies within 30 days after the surgery is between 1.21% and 26%. Note that

these are the same low risk patients included in Surgery Timing LH dataset.

e A patient is labeled as “medium risk” patient if the patient’s corresponding
Mortality RSI value is between -0.5 to 0.5, i.e., the probability that the

patient’s dies within 30 days after the surgery is between 37.75% and 62.2%.

e A patient is labeled as “high risk” patient if the patient’s corresponding
Mortality RSI value is between 1 and 4.86, i.e., the probability that the
patient’s dies within 30 days after the surgery is between 73.1% and 99.2%.

Note that these are the same high risk patients included in Surgery Timing
LH dataset.
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Due to high misclassification rate, we removed the patients whose Mortality
RSI values are in interval (-1,-0.5) or in interval (0.5,1). The resulting dataset,
referred to as “Surgery Timing LMH”, contains 9,559 low risk, 15,217 medium
risk, and 1,469 high risk patients and their corresponding features in Table 3.1.

Table 4.30 and Figure 4.23 show the distribution of the low risk, medium risk,
and high risk patients based on their surgical procedure. Table 4.31 and Fig-
ures 4.24-4.28 give the distribution of the low risk, medium risk, and high risk
patients based on their age, gender, race, ASA physical status, and BMI, respec-
tively. Distribution of underlying health conditions among low risk, medium risk,
and high risk patients are presented in Table 4.32 and Figures 4.29-4.35. In Table
4.33 and Figures 4.36-4.38, we give the distribution of baseline Charlson index,
ccsMort30rate, and ccsComplication rate among low risk, medium risk, and high
risk patients, respectively. Table 4.34 and Figures 4.39-4.44 show the distribu-
tion of hour, day of week, month, moon phase, 30-day mortality and in-hospital

complication of low risk, medium risk, and high risk patients, respectively.
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Table 4.30: Low Risk, Medium Risk, and High Risk Patients Data Characteristics
- Surgery Type

Class # of Patients
Low Risk 9,559
Medium Risk 15,217
High Risk 1,469
’ Surgery Type H # of Patients ‘

Surgery A 780
Sugery B 3,265
Surgery C 1,835
Surgery D 281
Surgery E 296
Surgery F 401
Surgery G 2,034
Surgery H 2,162
Surgery 1 698
Surgery J 1,999
Surgery K 468
Surgery L 412
Surgery M 2,093
Surgery N 497
Surgery O 1,820
Surgery P 840
Surgery Q 1,042
Surgery R 430
Surgery S 420
Surgery T 515
Surgery U 2,186
Surgery V 1,289
Surgery W 482
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Table 4.31: Low Risk, Medium Risk, and High Risk Patients Data Characteristics
- Age, Gender, Race, ASA Physical Status, BMI

Min Val. = 1, Max Val. = 90,
Age Mean = 56.889, St. Dev. = 15.212,
Missing Val. = 2,
Distinct Val. = 807, Unique Val. = 52
] Gender ‘
Male 14,604
Female 11,639
’ Race ‘
Caucasian 21,676
African-American 3,163
Other 1,013
’ ASA Physical Status
I-11 14,674
11 10,739
IV-VI 826
Min Val. = 2.15, Max Val. = 92.59,
Mean = 29.463, St. Dev. = 7.289,
BMI Missing Val = 2,732,
Distinct Val. = 3,271, Unique Val. = 735
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Table 4.32: Low Risk, Medium Risk, and High Risk Patients Data Characteristics
- Underlying Health Conditions

’ Baseline Cancer ‘

No 18,068
Yes 8,177
’ Baseline CVD ‘
Yes 12,660
No 13,585
’ Baseline Dementia ‘
No 26,055
Yes 190
Baseline Diabetes
No 23,011
Yes 3,234
’ Baseline Digestive ‘
Yes 5,660
No 20,585
’ Baseline Osteoart ‘
Yes 5,264
No 20,981
’ Baseline Psych ‘
No 23,859
Yes 2,386
] Baseline Pulmonary ‘
No 23,418
Yes 2,827
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Table 4.33: Low Risk, Medium Risk, and High Risk Patients Data Characteristics
- Baseline Charlson Index, Overall Incidence of 30-day Mortality for Each Surgery,
and Overall Incidence of In-hospital Complications for Each Surgery

Min Val. = 0, Max Val. = 13,
Mean = 1.079, St. Dev. = 1.825,
Missing Val. = 0,

Distinct Val. = 14, Unique Val. = 0
Min Val. = 0, Max Val. = 0.017,
Mean = 0.004, St. Dev = 0.004,
Missing Val. = 0,

Distinct Val. = 21, Unique Val = 0
Min Val. = 0.016, Max Val. = 0.466,
Mean = 0.13, St. Dev. = 0.087,
Missing Val. = 0,

Distinct Val. = 23, Unique Val. = 0

Baseline Charlson

ccsMort30rate

ccsComplicationRate
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Table 4.34: Low Risk, Medium Risk, and High Risk Patients Data Characteristics
- Hour, Day, Month, Moon Phase of Surgery, 30-Mortality of Patients, In-hospital

Complication of Patients

Min Val. = 6, Max Val. =19,
Hour Mean = 10.367, St. Dev. = 2.909,
Missing Val. = 0,
Distinct Val.= 767, Unique Val. = 27
’ Day of Week ‘
Monday 5,781
Tuesday 5,779
Wednesday 5,073
Thursday 4,631
Friday 4,981
’ Month
January 2,171
February 2,039
March 2,245
April 2,255
May 2,156
June 2,452
July 1,884
August 2,606
September 2,656
October 2,218
November 2,075
December 1,488
’ Moon Phase
First Quarter 6,698
Last Quarter 6,671
New Moon 6,321
Full Moon 6,555
’ mort30 ‘
No 26,122
Yes 123
| Complication |
No 22,990
Yes 3,255
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4.2.2 Prediction of Low, Medium, and High Risk Patients

To predict low risk, medium risk, and high risk patients in “Surgery Timing LMH”
dataset, we use 10 x 10-folding cross-validation experiments on seven commonly
used and well-known classification methods, including Random Forest, Decision
Trees, Nearest Neighbor, Logistic Regression, Naive Bayes, Bayes Network, and
Neural Networks [13]. Surgery Timing LMH dataset is randomly partitioned into
ten approximately equal parts; one of these subsets is designated as “test set”, a
model is built on the remaining nine subsets which form the “training dataset”, and
then tested by predicting the classes of patients in the test set using a classification
method. This procedure is repeated 10 times, always taking another one of the ten
parts in the role of the test set (re-randomizing the patients into 10 new subsets and
repeat the procedure 9 additional times) for a total of 100 tests for each of the nine
classification methods. Tables 4.35-4.41 show the average accuracy, proportion of
correctly classified low risk patients, proportion of correctly classified high risk
patients as well as average precision, recall, F-measure (weighted mean of the
precision and recall), and area under Receiver Operating Characteristic (ROC)
curve for Random Forest, Decision Trees, Nearest Neighbor, Logistic Regression,
Naive Bayes, Bayes Network, and Neural Networks, respectively. For Surgery
Timing LMH dataset, we were unable to obtain results using Stochastic Gradient

method and Support Vector Machines.
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Table 4.35: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using Random Forest

’ Random Forest H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2297.4
Number Incorrect 327.1
Percent Correct 87.5%
Percent Incorrect 12.5%
Mean Absolute Error 0.196
Area Under ROC 0.714
F-Measure 0.933
True Positive Rate 0.989
Number of True Positives 2274.1
False Positive Rate 0.928
Number of False Positives 302.2
True Negative Rate 0.072
Number of True Negatives 23.3
False Negative Rate 0.011
Number of False Negatives 24.9
Weighted True Positive Rate 0.875
Weighted False Positive Rate 0.815
Weighted True Negative Rate 0.185
Weighted False Negative Rate 0.125
Weighted F-Measure 0.833
Weighted Area Under ROC 0.714
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Table 4.36: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using J48 Decision Tree

’ J48 Decision Tree H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2298.7
Number Incorrect 325.8
Percent Correct 87.6%
Percent Incorrect 12.4%
Mean Absolute Error 0.201
Area Under ROC 0.627
F-Measure 0.933
True Positive Rate 0.987
Number of True Positives 2270.6
False Positive Rate 0.914
Number of False Positives 297.4
True Negative Rate 0.086
Number of True Negatives 28.1
False Negative Rate 0.012
Number of False Negatives 28.4
Weighted True Positive Rate 0.875
Weighted False Positive Rate 0.802
Weighted True Negative Rate 0.198
Weighted False Negative Rate 0.124
Weighted F-Measure 0.835
Weighted Area Under ROC 0.627
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Table 4.37: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using k-Nearest Neighbor

’ k-Nearest Neighbor H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2125.9
Number Incorrect 498.6
Percent Correct 81.0%
Percent Incorrect 18.9%
Mean Absolute Error 0.189
Area Under ROC 0.555
F-Measure 0.892
True Positive Rate 0.894
Number of True Positives 2055.7
False Positive Rate 0.784
Number of False Positives 255.3
True Negative Rate 0.216
Number of True Negatives 70.2
False Negative Rate 0.106
Number of False Negatives 243.3
Weighted True Positive Rate 0.810
Weighted False Positive Rate 0.700
Weighted True Negative Rate 0.299
Weighted False Negative Rate 0.189
Weighted F-Measure 0.808
Weighted Area Under ROC 0.555
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Table 4.38: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using Logistic Regression

’ Logistic Regression H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2300.1
Number Incorrect 324.4
Percent Correct 87.6%
Percent Incorrect 12.4%
Mean Absolute Error 0.194
Area Under ROC 0.738
F-Measure 0.933
True Positive Rate 0.989
Number of True Positives 2275.9
False Positive Rate 0.926
Number of False Positives 301.4
True Negative Rate 0.074
Number of True Negatives 24.2
False Negative Rate 0.010
Number of False Negatives 23.0
Weighted True Positive Rate 0.876
Weighted False Positive Rate 0.812
Weighted True Negative Rate 0.187
Weighted False Negative Rate 0.123
Weighted F-Measure 0.833
Weighted Area Under ROC 0.738
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Table 4.39: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using Naive Bayes

’ Naive Bayes H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2177.6
Number Incorrect 446.9
Percent Correct 82.9%
Percent Incorrect 17.0%
Mean Absolute Error 0.193
Area Under ROC 0.728
F-Measure 0.902
True Positive Rate 0.899
Number of True Positives 2067.1
False Positive Rate 0.660
Number of False Positives 214.9
True Negative Rate 0.339
Number of True Negatives 110.5
False Negative Rate 0.101
Number of False Negatives 231.9
Weighted True Positive Rate 0.829
Weighted False Positive Rate 0.591
Weighted True Negative Rate 0.408
Weighted False Negative Rate 0.170
Weighted F-Measure 0.831
Weighted Area Under ROC 0.728
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Table 4.40: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using Bayes Network

’ Bayes Network H Average Cross-Validation Results ‘
Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2147.8
Number Incorrect 476.7
Percent Correct 81.8%
Percent Incorrect 18.2%
Mean Absolute Error 0.211
Area Under ROC 0.731
F-Measure 0.895
True Positive Rate 0.880
Number of True Positives 2023.5
False Positive Rate 0.617
Number of False Positives 201.2
True Negative Rate 0.382
Number of True Negatives 122.4
False Negative Rate 0.119
Number of False Negatives 275.5
Weighted True Positive Rate 0.818
Weighted False Positive Rate 0.556
Weighted True Negative Rate 0.443
Weighted False Negative Rate 0.181
Weighted F-Measure 0.826
Weighted Area Under ROC 0.731
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Table 4.41: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients
Using Multi-layer Perceptron

’ Multi-layer Perceptron H Average Cross-Validation Results ‘

Training Instances 23620.4
Testing Instance 2624.5
Number Correct 2218.7
Number Incorrect 405.8
Percent Correct 84.5%
Percent Incorrect 15.5%
Mean Absolute Error 0.160
Area Under ROC 0.651
F-Measure 0.914

True Positive Rate 0.938

Number of True Positives 2157.6
False Positive Rate 0.813
Number of False Positives 264.5
True Negative Rate 0.187
Number of True Negatives 61.0
False Negative Rate 0.061
Number of False Negatives 141.3
Weighted True Positive Rate 0.845
Weighted False Positive Rate 0.719
Weighted True Negative Rate 0.280
Weighted False Negative Rate 0.154
Weighted F-Measure 0.829
Weighted Area Under ROC 0.651
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The average of 10 x 10-folding cross validation results for all seven classification
methods are summarized in Table 4.42. The overall average accuracy of seven
classification methods is 84.70%. Overall, the performance of the seven methods is
validated by high values of prediction metrics: precision value of 0.89, recall value
of 0.94, F-measure value of 0.91. The overall average value of area under ROC
curves is 0.68.

Similar to the prediction of low and high risk mortality, we observe that all
classification methods applied to Mortality RSI LMH dataset have comparable
accuracy, precision, recall, F-measure and area under ROC curve. Logistic Regres-
sion provides the combination of best accuracy, precision, recall, and F-value as

well as area under ROC curve.
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Chapter 5

Conclusion

In this thesis we integrate fundamental concepts from conventional statistics with
the more explanatory, algorithmic, and computational techniques offered by ma-
chine learning to predict early mortality risk of surgical patients. Well-known and
commonly used classification methods, including Random Forest, Decision Trees,
Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naive Bayes,
Bayes Network, Neural Networks, and Support Vector Machines, are applied to
predict low-risk, medium-risk, and high-risk mortality of elective general surgical
patients treated between January 2005 and September 2010 at the Cleveland Clinic
[33]. The mortality risk prediction is based on clinical factors including surgery
type, age, gender, race, BMI, underlying chronic conditions, surgical risk indices,
surgical timing predictors such as hour, day of week, month, moon phase as well
as the 30-day mortality and in-hospital complication for each patient. We perform
10 x 10-folding cross validation experiments to evaluate the prediction performance
of the classification methods on low, medium, and high mortality risk groups. The

overall average accuracy of the classification methods applied to predict low-risk
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and high-risk mortality is 85.20% with precision value of 0.89, recall value of 0.95,
and F-measure value of 0.92. The overall accuracy of the classification method
applied to predict low-risk, medium-risk, and high-risk mortality is 84.70% with
precision value of 0.89, recall value of 0.94, and F-measure value of 0.91. A Decision
Tree classification model consisting of 83 low risk patterns and 135 high risk pat-
terns are presented to provide medical experts with an explainable classification
model that can serve for further investigation of the clinical features associated

with early mortality risk of surgical patients.
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