Florida Institute of Technology Scholarship Repository @ Florida Tech

Theses and Dissertations

5-2021

Machine Learning Approach To Predict Mortality Rates Based On Hospital Clinical Data

Rebecca Smith

Follow this and additional works at: https://repository.fit.edu/etd

Part of the Mathematics Commons

MACHINE LEARNING APPROACH TO PREDICT MORTALITY RATES BASED ON HOSPITAL CLINICAL DATA

by

Rebecca Smith

Bachelor of Science Mathematics Florida Southern College 2019

A thesis submitted to the College of Engineering and Science at Florida Institute of Technology in partial fulfillment of the requirements for the degree of

> Master of Science in Operations Research

Melbourne, Florida May, 2021 © Copyright 2021 Rebecca Smith All Rights Reserved

The author grants permission to make single copies.

We the undersigned committee hereby approve the attached thesis MACHINE LEARNING APPROACH TO

PREDICT MORTALITY RATES BASED ON HOSPITAL CLINICAL DATA by Rebecca Smith

Munevver Mine Subasi, Ph.D. Associate Professor and Department Head Mathematical Sciences Committee Chair

Joo Young Park, Ph.D. Assistant Professor Education and Interdisciplinary Studies Outside Committee Member

Ryan White, Ph.D. Assistant Professor Mathematical Sciences Committee Member

Susan Serrano, Ph.D. Associate Professor Mathematics, Florida Southern College Guest Member

ABSTRACT

Title:

Machine Learning Approach to Predict Mortality Rates Based on Hospital Clinical Data

Author:

Rebecca Smith

Major Advisor:

Munevver Mine Subasi, Ph.D.

This thesis integrates fundamental concepts from conventional statistics with the more explanatory, algorithmic, and computational techniques offered by machine learning to predict early mortality risk of surgical patients. Well-known classification methods, including Random Forest, Decision Trees, Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naïve Bayes, Bayes Network, Neural Networks, and Support Vector Machines, are utilized to predict mortality risk of elective general surgical patients treated between January 2005 and September 2010 at the Cleveland Clinic [33]. Clinical factors include surgery type, age, gender, race, BMI, underlying chronic conditions, surgical risk indices, surgical timing predictors, the 30-day mortality, and in-hospital complication for each patient. 10×10 -folding cross validation experiments are conducted to evaluate the prediction performance on low, medium, and high mortality risk groups. A Decision Tree classification model consisting of 83 low and 135 high risk patterns is presented. The overall average accuracy of the classifiers applied to predict low and high risk mortality is 85.2% with precision of 0.89, recall of 0.95, and F-measure of 0.92. The overall accuracy of the classifiers applied to predict low, medium, and high risk mortality is 84.7% with precision of 0.89, recall of 0.94, and F-measure of 0.91.

Table of Contents

A	Abstract ii			ii
Li	ist of	Figur	es	vi
\mathbf{Li}	ist of	Table	S	x
A	ckno	wledgr	nents x	V
D	edica	tion	xv	vi
1	Intr	oducti	ion	1
2	Rev	view of	Classification Methods	4
	2.1	Machi	ne Learning	4
		2.1.1	Logistic Regression	5
		2.1.2	Decision Tree and Random Forest	6
		2.1.3	Bayesian Network and Naïve Bayes Method	6
		2.1.4	Stochastic Gradient Descent	7
		2.1.5	k-Nearest Neighbors	8
		2.1.6	Multilayer Perceptron	8
		2.1.7	Support Vector Machines	0
	2.2	Perfor	mance Evaluation Metrics for Classification Methods 1	0

		2.2.1	Area Under ROC	•	10
		2.2.2	Precision and Recall		11
		2.2.3	F-Measure		11
		2.2.4	Mean Absolute Error		12
3	\mathbf{Stu}	dy Sul	ojects & Data Preprocessing		13
	3.1	Input	Data		13
	3.2	Predic	ction of Mortality RSI		23
4	Pre	diction	n of Mortality Risk in Surgery Patients		25
	4.1	Predic	ction of Low and High Risk Mortality		25
		4.1.1	Identification of Low and High Risk Patients		25
		4.1.2	Prediction of Low and High Risk Patients		54
		4.1.3	Combinatorial Patterns of Low and High Risk Patients		66
	4.2	Predic	ction of Low, Medium, and High Risk Mortality		81
		4.2.1	Identification of Low, Medium, and High Risk Patients		81
		4.2.2	Prediction of Low, Medium, and High Risk Patients	•	110
5	Cor	nclusio	n	1	L 20
R	efere	nces		1	$\lfloor 22 ightharpoonup$

List of Figures

2.1	Illustration of Decision Tree	9
2.2	Illustration of Multi-layer Perceptron Neural Network	9
3.1	Mortality RSI for Surgery Timing Data	21
3.2	Complication RSI for Surgery Timing Data	22
4.1	Surgery Type Distribution among Low Risk and High Risk Patients	28
4.2	Age Distribution among Low Risk and High Risk Patients	30
4.3	Gender Distribution among Low Risk and High Risk Patients	31
4.4	Race Distribution among Low Risk and High Risk Patients	32
4.5	ASA Physical Status Distribution among Low Risk and High Risk	
	Patients	33
4.6	BMI Distribution among Low Risk and High Risk Patients	34
4.7	Baseline Cancer Distribution among Low Risk and High Risk Patients	36
4.8	Baseline CVD Distribution among Low Risk and High Risk Patients	37
4.9	Baseline Dementia Distribution among Low Risk and High Risk	
	Patients	38
4.10	Baseline Digestive Disorder Distribution among Low Risk and High	
	Risk Patients	39

4.11	Baseline Osteoarthritis Distribution among Low Risk and High Risk	
	Patients	40
4.12	Baseline Psychiatric Disorder Distribution among Low Risk and	
	High Risk Patients	41
4.13	Baseline Pulmonary Disease Distribution among Low Risk and High	
	Risk Patients	42
4.14	Baseline Charlson Index Distribution among Low Risk and High	
	Risk Patients	44
4.15	Overall Incidence of 30-day Mortality Distribution among Low Risk	
	and High Risk Patients	45
4.16	$Overall\ Incidence\ of\ Complication\ Distribution\ among\ Low\ Risk\ and$	
	High Risk Patients	46
4.17	Hour of Surgery Distribution among Low Risk and High Risk Patients	48
4.18	Day of Surgery Distribution among Low Risk and High Risk Patients	49
4.19	Month of Surgery Distribution among Low Risk and High Risk Pa-	
	tients	50
4.20	Moon Phase of Surgery Distribution among Low Risk and High Risk	
	Patients	51
4.21	30-day Patient Mortality Distribution among Low Risk and High	
	Risk Patients	52
4.22	Patient Complication Distribution among Low Risk and High Risk	
	Patients	53
4.23	Surgery Type Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	84

4.24	Age Distribution among Low Risk, Medium Risk, and High Risk	
	Patients	86
4.25	Gender Distribution among Low Risk, Medium Risk, and High Risk	
	Patients	87
4.26	Race Distribution among Low Risk, Medium Risk, and High Risk	
	Patients	88
4.27	ASA Physical Status Distribution among Low Risk, Medium Risk,	
	and High Risk Patients	89
4.28	BMI Distribution among Low Risk, Medium Risk, and High Risk	
	Patients	90
4.29	Baseline Cancer Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	92
4.30	Baseline CVD Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	93
4.31	Baseline Dementia Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	94
4.32	Baseline Digestive Disorder Distribution among Low Risk, Medium	
	Risk, and High Risk Patients	95
4.33	Baseline Osteoarthritis Distribution among Low Risk, Medium Risk,	
	and High Risk Patients	96
4.34	Baseline Psychiatric Disorder Distribution among Low Risk, Medium	
	Risk, and High Risk Patients	97
4.35	Baseline Pulmonary Disease Distribution among Low Risk, Medium	
	Risk, and High Risk Patients	98

4.36	Baseline Charlson Index Distribution among Low Risk, Medium	
	Risk, and High Risk Patients	.00
4.37	Overall Incidence of 30-day Mortality Distribution Low Risk, Medium	
	Risk, and High Risk Patients	.01
4.38	Overall Incidence of Complication Distribution Low Risk, Medium	
	Risk, and High Risk Patients	.02
4.39	Hour of Surgery Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	.04
4.40	Day of Surgery Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	.05
4.41	Month of Surgery Distribution among Low Risk, Medium Risk, and	
	High Risk Patients	.06
4.42	Moon Phase of Surgery Distribution among Low Risk, Medium Risk,	
	and High Risk Patients	.07
4.43	30-day Patient Mortality Distribution among Low Risk, Medium	
	Risk, and High Risk Patients	.08
4.44	Patient Complication Distribution among Low Risk, Medium Risk,	
	and High Risk Patients	.09

List of Tables

3.1	Clinical Features in Surgery Timing Dataset	14
3.2	Surgical Procedures	15
3.3	Surgery Timing Dataset Characteristics	18
3.4	Correlations Between Mortality RSI and Other Features	23
3.5	Linear Regression Cross-Validation Results for Mortality RSI \ldots	24
3.6	Locally Weighted Naïve Bayes Cross-Validation Results for Mortal-	
	ity RSI	24
4.1	Low Risk and High Risk Patients Data Characteristics - Surgery Type	27
4.2	Low Risk and High Risk Patients Data Characteristics - Age, Gen-	
	der, Race, ASA Physical Status, BMI	29
4.3	Low Risk and High Risk Patients Data Characteristics - Underlying	
	Health Conditions	35
4.4	Low Risk and High Risk Patients Data Characteristics - Baseline	
	Charlson Index, Overall Incidence of 30-day Mortality for Each	
	Surgery, and Overall Incidence of In-hospital Complications for Each	
	Surgery	43
4.5	Low Risk and High Risk Patients Data Characteristics - Hour, Day,	
	Month, Moon Phase of Surgery, 30-Mortality of Patients, In-hospital	
	Complication of Patients	47

4.6	Cross-Validation of Low Risk and High Risk Patients Using Random	
	Forest	55
4.7	Cross-Validation of Low Risk and High Risk Patients Using J48	
	Decision Tree	56
4.8	Cross-Validation of Low Risk and High Risk Patients Using $k\mbox{-Nearest}$	
	Neighbor	57
4.9	Cross-Validation of Low Risk and High Risk Patients Using Stochas-	
	tic Gradient Descent	58
4.10	Cross-Validation of Low Risk and High Risk Patients Using Logistic	
	Regression	59
4.11	Cross-Validation of Low Risk and High Risk Patients Using Naïve	
	Bayes	60
4.12	Cross-Validation of Low Risk and High Risk Patients Using Bayes	
	Network	61
4.13	Cross-Validation of Low Risk and High Risk Patients Using Multi-	
	layer Perceptron	62
4.14	Cross-Validation of Low Risk and High Risk Patients Using Support	
	Vector Machines	63
4.15	Average Cross-Validation Results for Nine Classification Methods -	
	Mortality RSI LH Data	65
4.16	Low Risk Mortality Patterns $L1-L15$	67
4.17	Low Risk Mortality Patterns $L16-L30$	68
4.18	Low Risk Mortality Patterns $L31$ - $L45$	69
4.19	Low Risk Mortality Patterns L46-L62	70
4.20	Low Risk Mortality Patterns L63-L83	71

4.21	High Risk Mortality Patterns $H1-H16$	72
4.22	High Risk Mortality Patterns $H17-H27$	73
4.23	High Risk Mortality Patterns $H28-H37$	74
4.24	High Risk Mortality Patterns $H38-H50$	75
4.25	High Risk Mortality Patterns $H51$ - $H70$	76
4.26	High Risk Mortality Patterns $H71-H85$	77
4.27	High Risk Mortality Patterns $H86-H104$	78
4.28	High Risk Mortality Patterns $H105-H120$	79
4.29	High Risk Mortality Patterns $H121$ - $H135$	80
4.30	Low Risk, Medium Risk, and High Risk Patients Data Characteris-	
	tics - Surgery Type	83
4.31	Low Risk, Medium Risk, and High Risk Patients Data Characteris-	
	tics - Age, Gender, Race, ASA Physical Status, BMI	85
4.32	Low Risk, Medium Risk, and High Risk Patients Data Characteris-	
	tics - Underlying Health Conditions	91
4.33	Low Risk, Medium Risk, and High Risk Patients Data Characteris-	
	tics - Baseline Charlson Index, Overall Incidence of 30-day Mortality	
	for Each Surgery, and Overall Incidence of In-hospital Complications	
	for Each Surgery	99
4.34	Low Risk, Medium Risk, and High Risk Patients Data Character-	
	istics - Hour, Day, Month, Moon Phase of Surgery, 30-Mortality of	
	Patients, In-hospital Complication of Patients	103
4.35	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using Random Forest	111

4.36	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using J48 Decision Tree	
4.37	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using k-Nearest Neighbor $\ldots \ldots 113$	
4.38	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using Logistic Regression	
4.39	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using Naïve Bayes	
4.40	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using Bayes Network	
4.41	Cross-Validation of Low Risk, Medium Risk, and High Risk Patients	
	Using Multi-layer Perceptron	
4.42	Average Cross-Validation Results for Seven Classification Methods -	
	Mortality RSI LMH Data	

List of Symbols, Nomenclature or Abbreviations

kNN	k-Nearest Neighbors
RF	Random Forests
SVM	Support Vector Machines
SVC	Support Vector Classifiers
SVR	Support Vector Regression
SMO	Sequential Minimal Optimization
MLP	Multilayer Perceptron
CVD	Cardiovascular Disease
Osteoart	Osteoarthritis
Psych	Psychiatric Disorder
RSI	Risk Stratification Index
ASA	American Society of Anesthesiologist
BMI	Body Mass Index

Acknowledgements

I would like to start off by thanking my research and academic advisor Dr. Munevver Mine Subasi, Associate Professor and Department Head of Mathematical Sciences. Without her help and support throughout this process, I would not have been able to complete the work on this research. I am sure that when she met me at the 2019 ASPIRE Conference hosted by Florida Gulf Coast University and gave me advice on my project that she did not expect I would be coming to her college to complete my Master's degree under her.

I would also like to thank each of my committee members, Dr. Ryan White, Dr. Susan Serrano, Dr. Joo Young Park, and Dr. Munevver Mine Subasi for being a sounding board for my ideas and for giving me such helpful suggestions. I also want to thank Florida Institute of Technology for the opportunity to continue my education and doing the research that I have come to love. I also would like to commend the school for the facilities that are available to the students and for the academic quality of each of the courses. I especially want to state that the professors at this university show a genuine interest in the students and want to help them succeed in any way possible.

Dedication

I would like to dedicate this thesis to my family who has supported me through this entire journey. They have been there through the happy and tough times and have given me the support that I needed to keep on going and reach my goals. I would also like to dedicate this thesis to Dr. Susan Serrano who introduced me to statistics and my love of research. I appreciate all the time that you took to teach me and guide me through my first research project as an undergraduate student. Finally, I would like to dedicate this to Dr. Roxanne Back who helped to push me to keep going even when I thought that I could not reach my goals. I would just like to thank everyone who has pushed me to be the person that I am today. I would not be here without all the love and support they have given me.

Chapter 1

Introduction

Early mortality, defined as 30-day mortality, after surgery received considerable attention in literature [6, 20, 21, 22, 33, 34]. These studies aim at predicting the mortality risk or identifying survivors and nonsurvivors based on the clinical features of surgery patient. It was shown that human factors such as fatigue, surgery schedule, and surgery staff had an impact on mortality risk of surgery patients. Sessler et al. (2011)[33] investigated impact of surgery schedule on the risk of 30day mortality associated with elective general surgery. As part of the study, Sessler et al. (2011) [33] collected "Surgery Timing" dataset containing 32,001 elective general surgical patients treated between January 2005 and September 2010 at the Cleveland Clinic. In addition to the surgical timing predictors such as hour, day of week, month, moon phase, the clinical feature included surgery type, age, gender, race, BMI, underlying chronic conditions, surgical risk indices as well as the 30-day mortality and in-hospital complication for each patient.

The primary outcome of "Surgery Timing" study conducted by Sessler et al. (2011) [33] was all-cause 30-day mortality obtained from a review of hospital records and the Social Security Death Index database. Sessler et al. (2011) [33] modeled the 30-day mortality using multivariable logistic regression. In the same study, Sessler et al. (2011) [33] considered the composite complications defined by United States Agency for Healthcare Research and Quality's Clinical Classifications Software (AHRQ-CCS) diagnosis categories 237 of which were complication of device, implant or graft and 238 of which were complications of surgical procedures or medical care.

Sessler et al. (2011) [33] adjusted for diagnoses and procedures using the Risk Stratification Index (RSI) for 30-day mortality. *Mortality RSI* of the Cleveland Clinic surgery patients was obtained to predict 3-day mortality from the International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM). 30-day mortality and in-hospital complications of the Clevend Clinic surgery patients were modeled using multivariable logistic regression that provided the adjucted incidence of 30-day mortality and in-hospital complication based on hour, day, month of the surgery and moon phase when the surgical procedure was started.

In this study, we adopt the more explanatory, algorithmic, and computational techniques offered by machine learning to stratify surgery patients into low, medium, and high mortality risk groups and identify the clinical features for mortality risk of patients in "Surgery Timing" dataset.

The organization of this thesis is as follows. Chapter 2 briefly outlines wellknown and commonly used machine learning methods and metrics that can be used to evaluate the prediction power of classification methods. describes the study subjects and preprocessing of Surgery Timing dataset. Chapter 3 describes the study subjects and provides the statistics for clinical features used in Surgery Timing study. Identification of low risk, medium risk, and high risk are presented in Chapter 4. Overall performance of well-known classification methods and combinatorial patterns that can be used to predict the mortality risk groups are also presented in Chapter 4. Finally, in Chapter 5, the discussion concludes with a summary of data analysis results.

Chapter 2

Review of Classification Methods

2.1 Machine Learning

Machine Learning is a data analysis method that focuses on building applications learned from data and automates analytical model building to improve predictions through experience. The fundamental concepts from conventional statistics and optimization are integrated with machine learning techniques to develop systematic procedures to analyze large-scale, complex structured datasets generated by sophisticated technologies used in science and engineering. A typical data analysis process comprises four phases [2, 4]:

- data preprocessing, including data transformation, imputation, feature selection, and dimensionality reduction,
- class discovery (unsupervised learning) or classs comparison and discrimination (supervised learning),
- evaluation (statistical tests or cross-validation) of the prediction, and

• interpretation of the results.

Unsupervised learning uses clustering analysis to identify subgroups of observations in datasets with no known outcome. Supervised learning is a machine learning technique that learns from the data predict continuous valued outcome (regression analysis), discrete valued outcome (classification), and time-to-event outcome (survival analysis).

Our study focuses on stratifying surgery patients into different groups based on their mortality risk. To achieve this, we adopt well-known and commonly used supervised learning classification methods, including Logistic Regression, Decision Trees, Random Forest, Naïve Bayes, Stochastic Gradient Descent, Nearest Neighbor, Neural Networks, and Support Vector Machines. Below we briefly outline these methods.

2.1.1 Logistic Regression

Logistic Regression is a parametric classification model that is used to predict the discrete outcome in multivariate data. The method uses the weighted sum given in Equation (2.1):

$$X = \beta_0 + \sum_{i=1}^n \beta_k x_k \tag{2.1}$$

where $\beta_k, k = 0, 1, ..., n$ are parameters. The weighted sum is used in Sigmoid function given in Equation (2.2) to calculate the probability of the input being in a specific category.

$$Sigmoid(X) = \frac{1}{1 + e^{-(\beta_0 + \sum_{i=1}^n \beta_k X_k)}}$$
(2.2)

Logistic Regression uses the log odds ratio and an iterative maximum likelihood

to fit the final model. It is relatively efficient classification method.

2.1.2 Decision Tree and Random Forest

Decision Tree, illustrated in Figure 2.1, is a classification method that uses tree-like models containing explicit decision rules that can predict discrete valued outcomes [5, 9]. J48 (C4.5) Decision Tree algorithm [29] is an extension of Iterative Dichotomiser 3 algorithm. Although over-fitting is common, Decision Tree is often adopted in data analysis due to its high interpretability and intuitive nature.

Random Forest method builds a large collection of de-correlated decision trees and report the average predictions of the decision trees generated [7]. The method can also be referred to as average tree estimator. Random Forest uses bagging technique to minimize over-fitting.

2.1.3 Bayesian Network and Naïve Bayes Method

Bayesian Networks are built off the idea of Bayes' theorem [12]. The Bayesian Network is a directed acyclic graphs that allows efficient and effective representation of the joint probability distribution variables in data. Nodes in the network represent random variables and edges represent directed correlations between the variables, where nodes are assumed to be conditionally independent of the parent nodes. It uses the conditional probability

$$P[Cause|Evidence] = P[Evidence|Cause] * \frac{P[Cause]}{P[Evidence]}$$
(2.3)

Naïve Bayes is another probabilistic classifier [5, 9, 24] that also uses Bayes' theorem. The method is called naive because it assumes that the features are independent random variables. Let P(X|c) be the probability of the predictor for a paricular class c. Then given that the predictor of X, the probability of assigning class c, P(c|X), is defined by

$$P(c|X) = P(X_1|c)P(X_2|c)...P(X_n|c)P(c)$$
(2.4)

where P(c) is the prior probability of the class and P(X) is the prior probability of the predictor.

Naïve Bayes is a computationally inexpensive method which performs well if the input dataset indeed contains independent features.

2.1.4 Stochastic Gradient Descent

Stochastic Gradient Descent classifier [1] is an iterative algorithm that implements stochastic gradient descent method for learning various linear models. The method consists of six steps [36]:

- find the slope of the objective function also known as finding the gradient of the function,
- pick a random initial value for each of the parameters,
- update the gradient function by plugging in the parameter values,
- calculate the step sizes for each feature using the following equation:

$$stepsize = gradient * learningrate,$$
 (2.5)

• calculate the new parameters

$$newparams = oldparams - stepsize \tag{2.6}$$

• repeat steps three to five until the gradient is close to 0.

2.1.5 k-Nearest Neighbors

k-Nearest Neighbors, commonly known as kNN, is an algorithm that classifies observations based on the distance between them [23]. The algorithm uses a hyperparameter k that represents the number of neighbors. Class of an observation is determined based on the most common classes (closest distance) among the observation's neighbors. Nearest Neighbor is an instance-based learning method and assumes that the distance between the observations is sufficient enough to make an inference about the observation to be predicted.

2.1.6 Multilayer Perceptron

Multilayer Perceptron is a feed forward neural network with multiple layers [10]. For example, in a 3-layer network, the first layer would be the input layer, the second would be the hidden layer and the final layer would be the output layer. The number of hidden layers is determined by the user. Feed forward neural network assumes all of nodes are fully connected (i.e., it is a complete graph) as illustrated in Figure 2.2.

Figure 2.1: Illustration of Decision Tree

Figure 2.2: Illustration of Multi-layer Perceptron Neural Network

2.1.7 Support Vector Machines

Support Vector Machines (SVM) [8, 31] can be used for both regression and classification problems: Support Vector Regression and Support Vector Classification. The method find a hyperplane that can separate the data into different classes where the margin of the separation is maximized. Observations in different subgroups closest to the hyperplane are called the support vectors. The method then aims at maximizing the distance between the support vectors and the hyperplane.

Sequential Minimal Optimization (SMO) is an implementation of SVM algorithm that does not require the use of any more matrix storage and numerical quadratic programming steps. The method chooses two Lagrange multipliers and analytically optimizes the multipliers, avoiding quadratic optimization.

2.2 Performance Evaluation Metrics for Classification Methods

2.2.1 Area Under ROC

The area under the ROC is referring to what all falls below the ROC curve. The ROC curve is an illustration that checks how the classifier is performing by looking at the true positive rate as the false positive rate is changing. Now when you look at this you want it to stand out and be higher in the top-left corner of the plot. Now where that higher point is located is where you can look to see what the area under ROC value is going to be.

2.2.2 Precision and Recall

Precision of a classification method is the proportion of correctly classified positive observations:

$$Precision = \frac{Number of True Positives}{Number of True Positives + Number of False Positives}.$$
 (2.7)

Recall of a classification method is the proportion of positive observations that were correctly predicted:

$$Recall = \frac{Number of True Positives}{Number of True Positives + Number of False Negatives}.$$
 (2.8)

For example, a precision of 0.8 means when the classifier assigns an observation to the positive class, it is correct 80% of the time. Similarly, a precision of 0.15 means, the classifier correctly identifies 15% of the positive observations. The higher the precision and recall are the better the prediction perfomance of the classifier is.

2.2.3 F-Measure

The F-measure is a weighted mean of precision (P) and recall (R) defined as

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}}$$
(2.9)

where $\alpha \in [0, 1]$.

F-measure can be considered as compromise between precision and recall. When both precision and recall are high, the corresponding F-measure is closer to 1 which is considered as significant prediction.

2.2.4 Mean Absolute Error

Mean Absolute Error measure how far the predicted observations in test set are away from the observations in a specific class in training set. It is the average over the test sample of the absolute differences between predicted value and observed value. The smaller the value of mean absolute error is, the better the prediction of classes in the input dataset.

Chapter 3

Study Subjects & Data Preprocessing

3.1 Input Data

The goal of this study is to stratify elective general surgical patients into different risk groups based on clinical features. To achieve this goal we use the "Surgery Timing" dataset containing 32,001 elective general surgical patients treated between January 2005 and September 2010 at the Cleveland Clinic [33]. The clinical features include surgery type, age, gender, race, BMI, underlying chronic conditions, surgical risk indices, the surgical timing predictors such as hour, day of week, month, moon phase as well as the 30-day mortality and in-hospital complication for each patient as shown in Table 3.1.

V1	Surgery Type
V2	Age
V3	Gender
V4	Race
V5	ASA Status
V6	BMI
V7	Baseline Cancer
V8	Baseline CVD
V9	Baseline Dementia
V10	Baseline Diabetes
V11	Baseline Digestive
V12	Baseline Osteoart
V13	Baseline Psych
V14	Baseline Pulmonary
V15	Baseline Charlson
V16	ccsMort30rate
V17	ccsComplicationRate
V18	Hour
V19	Day of Week
V20	Month
V21	Moon Phase
V22	mort30
V23	complication

Table 3.1: Clinical Features in Surgery Timing Dataset

Label	Surgery Type
А	Other
В	Arthroplasty Knee
С	Colorectal Resection
D	Endoscopy and Endoscopic Biopsy of the Urinary Tract
Е	Gastrectomy; Partial and Total
F	Genitourinary Incontinence Procedures
G	Hip Replacement; Total and Partial
Н	Hysterectomy; Abdominal and Vaginal
Ι	Inguinal and Femoral Hernia Repair
J	Laminectomy; Excision Intervertebral Disk
Κ	Lumpectomy; Quadrantectomy of Breast
L	Mastectomy
М	Nephrectomy; Partial and Complete
Ν	Oophorectomy; Unilateral and Bilateral
0	Open Prostatectomy
Р	Other Excision of Cervix and Uterus
Q	Other Hernia Repair
R	Plastic Procedures on Nose
S	Repair of Cystocele and Rectocele; Obliteration of Vaginal Vault
Т	Small Bowel Resection
U	Spinal Fusion
V	Thyroidectomy; Partial or Complete
W	Transurethral Resection of Prostates(TURP)

 Table 3.2: Surgical Procedures

Below, we briefly outline the characteristics of clinical features in Surgery Timing dataset. The specific surgical procedures performed on Cleveland Clinic patients during the period of January 2005 to September 2010 are presented in Table 3.2. The characteristics of clinical features included in Surgery Timing dataset are shown in Table 3.3, where N is the number of patients and N^* is the number of patients with missing values in corresponding features. <u>V1-Surgery Type</u>: Nominal valued feature representing the specific surgery that was performed.

V2-Age: Continuous valued feature representing patient's age at the time of surgery.

<u>V3-Gender</u>: Binary feature representing gender of patient: male (0), female (1). <u>V4-Race</u>: Discrete values feature representing race of patient: Caucasian (1), African-American (2), other (3).

<u>V5-ASA Physical Status</u>: Categorical feature representing anesthesiologist physical status, where a value of 1 is assigned if the anesthesiologist of a surgery patient had a level of I-II, a value of 2 for level III, and a value of 3 for level IV-VI physical status.

<u>V6-BMI</u>: Continuous valued feature representing patient's body mass index (BMI) at the time of surgery.

<u>V7-Baseline Cancer</u>: Binary feature representing if patient has cancer (1) or not (0).

<u>V8-Baseline CVD</u>: Binary feature representing if patient has cardiovascular/cerebrovascular disease (1) or not (0).

<u>V9-Baseline Dementia</u>: Binary feature representing if patient has dementia (1) or not (0).

<u>V10-Baseline Diabetes:</u> Binary feature representing if patient is diabetic (1) or not (0).

<u>V11-Baseline Digestive</u>: Binary feature representing if patient has digestive disorder (1) or not (0).

<u>V12-Baseline Osteoart</u>: Binary feature representing if patient has osteoarthritis (1) or not (0).

<u>V13-Baseline Psych</u>: Binary feature representing if patient has psychiatric disorder (1) or not (0).

<u>V14-Baseline Pulmonary</u>: Binary feature representing if patient has pulmonary problems (1) or not (0).

<u>V15-Baseline Charlson</u>: Continuous valued feature representing the Charlson Comorbidity Index for each patient.

<u>V16-ccsMort30rate</u>: Nominal valued feature representing the overall incidence of 30-day mortality for each procedure category.

<u>V17-ccsComplicationRate</u>: Nominal valued feature representing the overall incidence of in-hospital complications for each procedure category.

<u>V18-Hour</u>: Discrete valued feature representing the specific hour that the procedure was performed. The values for this run from 1 to 24 with this being military time for each of the different hours throughout the day.

<u>V19-Day of Week:</u> Discrete valued feature representing the specific day on which the procedure was performed: Monday (1), Tuesday (2), Wednesday (3), Thursday (4), and Friday (5).

<u>V20-Month</u>: Discrete valued feature (1,...,12) representing the specific month that the procedure was performed.

<u>V21-Moonphase</u>: Discrete valued feature representing the moon phase in which the procedure has started: new moon (1), first quarter (2), full moon (3), and last quarter (4).

<u>V22-mort30</u>: Binary feature representing whether a patient experienced mortality within the first thirty days after the procedure (1) or not (0).

<u>V23-Complication</u>: Binary feature representing whether a patient experienced any complications while in the hospital (1) or not (0).

Feature	N	N^*	Mean	StDev	Quartile 1	Median	Quartile 3
Age	31999	2	57.66	15.04	48.2	58.6	68.3
Gender	31998	3	0.46	0.50	0	0	
Race	31521	480	1.20	0.49	1	1	
ASA Phsical Status	31993	8	1.49	0.56	1	H	2
BMI	28711	3290	29.45	7.27	24.6	28.19	32.81
Baseline_cancer	32001	0	0.34	0.47	0	0	1
Baseline_cvd	32001	0	0.51	0.50	0		
Baseline_dementia	32001	0	0.01	0.09	0	0	0
Baseline_diabetes	32001	0	0.13	0.34	0	0	0
Baseline_digestive	32001	0	0.22	0.41	0	0	0
Baseline_osteoart	32001	0	0.18	0.38	0	0	0
Baseline_psych	32001	0	0.09	0.29	0	0	0
Baseline_pulmonary	32001	0	0.11	0.31	0	0	0
Baseline_Charlson	32001	0	1.18	1.88	0	0	2
Mortality_rsi	32001	0	-0.53	1.04	-1.24	-0.3	0
Complication_rsi	32001	0	-0.41	1.20	-0.84	-0.27	0
ccsMort30Rate	32001	0	0.00	0.00	0.000789	0.002764	0.007398
ccsComplicationRate	32001	0	0.13	0.09	0.08198	0.10937	0.18337
Hour	32001	0	10.38	2.92	7.65	9.65	12.72
Day of Week	32001	0	2.90	1.42	2	3	4
Month	32001	0	6.42	3.33	4	9	6
Moonphase	32001	0	2.52	1.11	2	3	4
mort30	32001	0	0.00	0.07	0	0	0
Complication	32001	0	0.13	0.34	0	0	0

Table 3.3: Surgery Timing Dataset Characteristics
The primary outcome of Surgery Timing study conducted by Sessler et al. (2011) [33] was all-cause 30-day mortality, V22-mort30, obtained from a review of hospital records and the Social Security Death Index database. Sessler et al. (2011) [33] modeled the 30-day mortality using multivariable logistic regression. In the same study, Sessler et al. (2011) [33] considered the composite complications defined by United States Agency for Healthcare Research and Quality's Clinical Classifications Software (AHRQ-CCS) diagnosis categories 237 of which were complication of device, implant or graft and 238 of which were complications of surgical procedures or medical care.

Sessler et al. (2011) [33] adjusted for diagnoses and procedures using the Risk Stratification Index (RSI) for 30-day mortality. *Mortality RSI*, shown in Figure 3.1, was obtained to predict 3-day mortality from the International Classification of Diseases, 9th revision, Clinical Modification (ICD-9-CM). Similarly, *Complication RSI*, shown in Figure 3.2, was made available in Surgery Timing dataset.

Mortality RSI values range from -4.4 to 4.86. The values are assigned based on the ICD-9-CM system to diagnoses and procedures associated with hospitals in the United States. Mortality RSI is equal to the logit of 30-day mortality defined as

$$logit = log(odds) = log(\frac{p}{1-p}) = \beta_0 + \beta_1 X_1 + \dots \beta_k X_k.$$
(3.1)

Then the probability that the patient dies within 30 days after the surgery is given by

$$p = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_k X_k}}.$$
(3.2)

For example, a patient who has a mortality RSI value of 4.86 has the logit value of 4.86 and from Equation (3.2) the probability that the patient dies within

30 days after the surgical procedure is 0.9923:

$$p = \frac{e^{4.86}}{1 + e^{4.86}} = 0.9923 \tag{3.3}$$

Both *Mortality RSI* and *Complication RSI* are continuous valued outcomes. In this study, we aim at predicting *Mortality RSI* values of the patients in Surgery Timing dataset.

As an initial step, we find the correlation between *Mortality RSI* and each feature, including *Complication RSI*. As can be seen from Table 3.4, none of the features is significantly correlated with *Mortality RSI* whereas there is a significant positive correlation between *Mortality RSI* and *Complication RSI*. It is indeed expected to have a patient's mortality risk increase as the patient's in-hospital complication risk increases. In order to avoid any bias, we remove *Complication RSI* from the dataset to identify a classification model that can predict the mortality risk of patients in Surgery Timing dataset.

Compared Features	Correlation Value
Mortality-RSI vs. Age	-0.099
Mortality-RSI vs. Gender	-0.019
Mortality-RSI vs. Race	0.033
Mortality-RSI vs. ASA-Status	0.064
Mortality-RSI vs. BMI	-0.108
Mortality-RSI vs. Baseline Cancer	0.198
Mortality-RSI vs. Baseline CVD	-0.132
Mortality-RSI vs. Baseline Dementia	0.054
Mortality-RSI vs. Baseline Diabetes	-0.052
Mortality-RSI vs. Baseline Digestive	-0.025
Mortality-RSI vs. Baseline Osteoart	-0.554
Mortality-RSI vs. Baseline Psych	-0.023
Mortality-RSI vs. Baseline Pulmonary	0.010
Mortality-RSI vs. Baseline Charlson	0.254
Mortality-RSI vs. Hour	0.122
Mortality-RSI vs. Day of Week	0.075
Mortality-RSI vs. Month	-0.002
Mortality-RSI vs. Moon Phase	-0.002
Mortality-RSI vs. Complication-RSI	0.723

Table 3.4: Correlations Between Mortality RSI and Other Features

3.2 Prediction of Mortality RSI

Our first attempt is to use regression analysis methods to predict *Mortality RSI* of 32,001 patients in Surgery Timing dataset. We run our analyses using WEKA data mining software [13]. Table 3.5 show the average of 10×10 folding cross-validation experiments for Linear Regression and Locally Weighted Naïve Bayes, respectively.

Based on 10×10 -folding cross-validation experiments presented in Tables 3.5 and 3.6, we conclude that both Linear Regression and Locally Weighted Naïve Bayes have poor accuracy of predicting *Mortality RSI* (continuous valued outcome)

Correlation coefficient	0.73
Mean absolute error	0.52
Root mean squared error	0.71
Relative absolute error	64.84%
Root relative squared error	68.45%

Table 3.5: Linear Regression Cross-Validation Results for Mortality RSI

Table 3.6: Locally Weighted Naïve Bayes Cross-Validation Results for Mortality RSI

Correlation coefficient	0.61
Mean absolute error	0.62
Root mean squared error	0.82
Relative absolute error	77.14%
Root relative squared error	79.29%

of the patients in Surgery Timing dataset.

In this study, we adopt the more explanatory, algorithmic, and computational techniques offered by machine learning to stratify surgery patients into subgroups based on their low, medium, and high risk of mortality.

Chapter 4

Prediction of Mortality Risk in Surgery Patients

4.1 Prediction of Low and High Risk Mortality

4.1.1 Identification of Low and High Risk Patients

We recall that the values of *Mortality RSI* range from -4.4 to 4.86, i.e., the probability of patients dying within 30 days of surgery varies between 1.21% to 99.23% as calculated by Equation (3.2).

In this section, we aim at identifying two disjoint subgroups of Surgery Timing data, representing the high risk and low risk patients based on their *Mortality RSI* values. To achieve this we consider the two extreme ends of the *Mortality RSI* distribution presented in Figure 3.1.

• A patient is labeled as "low risk" patient if the patient's corresponding *Mor*tality RSI value is between -4.4 and -1, i.e., the probability that the patient's dies within 30 days after the surgery is between 1.21% and 26%.

• A patient is labeled as "high risk" patient if the patient's corresponding *Mortality RSI* value is between 1 and 4.86, i.e., the probability that the patient's dies within 30 days after the surgery is between 73.1% and 99.2%.

Patients whose *Mortality RSI* values fall into interval (-1, 1) are removed from the dataset. The resulting dataset, referred to as "Surgery Timing LH", contains 9,559 low risk and 1,469 high risk patients and their corresponding clinical features in Table 3.1.

Table 4.1 and Figure 4.1 show the distribution of the low risk and high risk patients based on their surgical procedure. Table 4.2 and Figures 4.2-4.6 give the distribution of the low risk and high risk patients based on their age, gender, race, ASA physical status, and BMI, respectively. Distribution of underlying health conditions among low risk and high risk patients are presented in Table 4.3 and Figures 4.7-4.13. In Table 4.4 and Figures 4.14-4.16, we give the distribution of baseline Charlson index, ccsMort30rate, and ccsComplication rate among low risk and high risk patients, respectively. Table 4.5 and Figures 4.17-4.22 show the distribution of hour, day of week, month, moon phase, 30-day mortality and in-hospital complication of low risk and high risk patients, respectively.

Class	# of Patients
Low Risk	9,559
High Risk	1,469
Surgery Type	# of Patients
Surgery A	95
Sugery B	3,005
Surgery C	487
Surgery D	25
Surgery E	95
Surgery F	4
Surgery G	1800
Surgery H	358
Surgery I	32
Surgery J	1,401
Surgery K	40
Surgery L	249
Surgery M	1,012
Surgery N	63
Surgery O	509
Surgery P	20
Surgery Q	62
Surgery R	7
Surgery S	11
Surgery T	124
Surgery U	1,378
Surgery V	69
Surgery W	182

Table 4.1: Low Risk and High Risk Patients Data Characteristics - Surgery Type

Age	Min Val. = 1, Max Val = 90,	
	Mean = 60.081 , St. Dev. = 14.52 ,	
	Missing Val. $= 1$,	
	Distinct Val. = 728, Unique Val. = 35	
Gender		
Male	5,561	
Female	5,467	
Race		
Caucasian	9,322	
African American	1,144	
Other	393	
ASA Physical Status		
I-II	5,315	
III	5,255	
IV-VI	456	
BMI	Min Val. = 12.15 , Max Val. = 92.59 ,	
	Mean=30.06, St. Dev. 7.179,	
	Missing = 1,222,	
	Unique Val. $= 819$, Distinct Val. $= 26$	

Table 4.2: Low Risk and High Risk Patients Data Characteristics - Age, Gender, Race, ASA Physical Status, BMI

Baseline Cancer	
No	7,930
Yes	3,098
E	Baseline CVD
Yes	6,229
No	4,799
Baseline Dementia	
No	10,906
Yes	122
Baseline Diabetes	
No	9,451
Yes	1,577
Baseline Digestive	
	Senine Digestive
Yes	2,472
Yes No	2,472 8.556
Yes No Ba	2,4728.556seline Osteoart
Yes No Ba Yes	2,472 8.556 seline Osteoart 4,605
Yes No Yes No	2,472 8.556 seline Osteoart 4,605 6,423
Yes No Yes No B	2,472 8.556 seline Osteoart 4,605 6,423 aseline Psych
Yes No Yes No Ba	2,472 8.556 seline Osteoart 4,605 6,423 aseline Psych 10,005
Yes No Ba Yes No B No Yes	2,472 8.556 seline Osteoart 4,605 6,423 aseline Psych 10,005 1,023
Yes No Ba No No Yes Base	2,472 8.556 seline Osteoart 4,605 6,423 aseline Psych 10,005 1,023 eline Pulmonary
Yes No Ba No Base No Second Se	2,472 8.556 seline Osteoart 4,605 6,423 aseline Psych 10,005 1,023 eline Pulmonary 9,793

Table 4.3: Low Risk and High Risk Patients Data Characteristics - Underlying Health Conditions

Figure 4.8: Baseline CVD Distribution among Low Risk and High Risk Patients

Table 4.4: Low Risk and High Risk Patients Data Characteristics - Baseline Charlson Index, Overall Incidence of 30-day Mortality for Each Surgery, and Overall Incidence of In-hospital Complications for Each Surgery

Baseline Charlson	Min Val. = 0, Max Val. = 13,
	Mean = 1.203 , St. Dev. = 2.034 ,
	Missing Val. $= 0,$
	Distinct Val. = 14, Unique Val. = 1
ccsMort30rate	Min Val. $= 0$, Max Val. $= 0.017$.
	Mean = 0.005 , St. Dev= 0.004 ,
	Missing Val. $= 0,$
	Distinct Val. $= 21$, Unique Val. $= 0$
ccsComplicationRate	Min Val. $= 0.016$, Max Val. $= 0.466$,
	Mean = 0.128 , St. Dev. = 0.07 ,
	Missing Val. $= 0,$
	Distinct Val. $= 23$, Unique Val. $= 0$

Table 4.5: Low Risk and High Risk Patients Data Characteristics - Hour, Day, Month, Moon Phase of Surgery, 30-Mortality of Patients, In-hospital Complication of Patients

Hour	Min Val. $= 6.07$, Max Val. $= 19$,		
	Mean = 10.117 , St. Dev. = 2.846 ,		
	Missing Val. $= 0,$		
	Distinct Val. = 724 , Unique Val. = 57		
	Day of Week		
Monday	2,703		
Tuesday	2,559		
Wednesday	1,950		
Thursday	1,952		
Friday	1,864		
Month			
January	937		
February	884		
March	943		
April	974		
May	946		
June	1,026		
July	770		
August	1,073		
September	1,109		
October	953		
November	817		
December	596		
Moon Phase			
First Quarter	2,820		
Last Quarter	2,785		
New Moon	2,639		
Full Moon	2,784		
mort30			
No	10,922		
Yes	106		
Complication			
No	9,589		
Yes	1,439		

4.1.2 Prediction of Low and High Risk Patients

To predict low risk and high risk patients in "Surgery Timing LH" dataset, we use 10×10 -folding cross-validation experiments on nine commonly used and wellknown classification methods, including Random Forest, Decision Trees, Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naïve Bayes, Bayes Network, Neural Networks, and Support Vector Machines [13]. Surgery Timing LH dataset is randomly partitioned into ten approximately equal parts; one of these subsets is designated as "test set", a model is built on the remaining nine subsets which form the "training dataset", and then tested by predicting the classes of patients in the test set using a classification method. This procedure is repeated 10 times, always taking another one of the ten parts in the role of the test set (re-randomizing the patients into 10 new subsets and repeat the procedure 9 additional times) for a total of 100 tests for each of the nine classification methods. Tables 4.6-4.14 show the average accuracy, proportion of correctly classified low risk patients, proportion of correctly classified high risk patients as well as average precision, recall, F-measure (weighted mean of the precision and recall), and area under Receiver Operating Characteristic (ROC) curve for Random Forest, Decision Trees, Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naïve Bayes, Bayes Network, Neural Networks, and Sequential Minimal Optimization, respectively.
Random Forest	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	960.4
Number Incorrect	142.4
Percent Correct	87.1%
Percent Incorrect	12.9%
Mean Absolute Error	0.198
Area Under ROC	0.722
F-Measure	0.929
True Positive Rate	0.981
Number of True Positives	940.5
False Positive Rate	0.862
Number of False Positives	124.1
True Negative Rate	0.137
Number of True Negatives	19.8
False Negative Rate	0.019
Number of False Negatives	18.3
Weighted True Positive Rate	0.871
Weighted False Positive Rate	0.752
Weighted True Negative Rate	0.247
Weighted False Negative Rate	0.129
Weighted F-Measure	0.836
Weighted Area Under ROC	0.722

Table 4.6: Cross-Validation of Low Risk and High Risk Patients Using Random Forest

J48 Decision Tree	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	963
Number Incorrect	139.8
Percent Correct	87.3%
Percent Incorrect	12.6%
Mean Absolute Error	0.194
Area Under ROC	0.643
F-Measure	0.931
True Positive Rate	0.976
Number of True Positives	936.1
False Positive Rate	0.812
Number of False Positives	116.9
True Negative Rate	0.187
Number of True Negatives	26.9
False Negative Rate	0.023
Number of False Negatives	22.8
Weighted True Positive Rate	0.873
Weighted False Positive Rate	0.709
Weighted True Negative Rate	0.290
Weighted False Negative Rate	0.127
Weighted F-Measure	0.845
Weighted Area Under ROC	0.643

Table 4.7: Cross-Validation of Low Risk and High Risk Patients Using J48 Decision Tree

k-Nearest Neighbor	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	891.9
Number Incorrect	210.8
Percent Correct	80.8%
Percent Incorrect	19.1%
Mean Absolute Error	0.191
Area Under ROC	0.579
F-Measure	0.889
True Positive Rate	0.889
Number of True Positives	853.1
False Positive Rate	0.730
Number of False Positives	105.1
True Negative Rate	0.269
Number of True Negatives	38.7
False Negative Rate	0.110
Number of False Negatives	105.7
Weighted True Positive Rate	0.808
Weighted False Positive Rate	0.649
Weighted True Negative Rate	0.350
Weighted False Negative Rate	0.191
Weighted F-Measure	0.808
Weighted Area Under ROC	0.579

Table 4.8: Cross-Validation of Low Risk and High Risk Patients Using k-Nearest Neighbor

Stochastic Gradient Descent	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	960.2
Number Incorrect	142.6
Percent Correct	87.1%
Percent Incorrect	12.9%
Mean Absolute Error	0.129
Area Under ROC	0.521
F-Measure	0.930
True Positive Rate	0.994
Number of True Positives	953.4
False Positive Rate	0.952
Number of False Positives	137.1
True Negative Rate	0.047
Number of True Negatives	6.8
False Negative Rate	0.006
Number of False Negatives	5.5
Weighted True Positive Rate	0.871
Weighted False Positive Rate	0.829
Weighted True Negative Rate	0.171
Weighted False Negative Rate	0.129
Weighted F-Measure	0.820
Weighted Area Under ROC	0.521

Table 4.9: Cross-Validation of Low Risk and High Risk Patients Using Stochastic Gradient Descent

_

Logistic Regression	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	960.9
Number Incorrect	141.8
Percent Correct	87.1%
Percent Incorrect	12.8%
Mean Absolute Error	0.194
Area Under ROC	0.736
F-Measure	0.929
True Positive Rate	0.977
Number of True Positives	937.5
False Positive Rate	0.837
Number of False Positives	120.5
True Negative Rate	0.162
Number of True Negatives	23.3
False Negative Rate	0.022
Number of False Negatives	21.3
Weighted True Positive Rate	0.871
Weighted False Positive Rate	0.731
Weighted True Negative Rate	0.268
Weighted False Negative Rate	0.128
Weighted F-Measure	0.841
Weighted Area Under ROC	0.736

Table 4.10: Cross-Validation of Low Risk and High Risk Patients Using Logistic Regression

Naïve Bayes	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	924.6
Number Incorrect	178.2
Percent Correct	83.8%
Percent Incorrect	16.1%
Mean Absolute Error	0.181
Area Under ROC	0.723
F-Measure	0.907
True Positive Rate	0.906
Number of True Positives	863.3
False Positive Rate	0.615
Number of False Positives	88.6
True Negative Rate	0.384
Number of True Negatives	55.3
False Negative Rate	0.093
Number of False Negatives	89.5
Weighted True Positive Rate	0.838
Weighted False Positive Rate	0.547
Weighted True Negative Rate	0.452
Weighted False Negative Rate	0.161
Weighted F-Measure	0.838
Weighted Area Under ROC	0.722

Table 4.11: Cross-Validation of Low Risk and High Risk Patients Using Naïve Bayes

Bayes Network	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	907.2
Number Incorrect	195.6
Percent Correct	82.2%
Percent Incorrect	17.7%
Mean Absolute Error	0.198
Area Under ROC	0.726
F-Measure	0.895
True Positive Rate	0.878
Number of True Positives	842.4
False Positive Rate	0.551
Number of False Positives	79.2
True Negative Rate	0.449
Number of True Negatives	64.7
False Negative Rate	0.121
Number of False Negatives	116.5
Weighted True Positive Rate	0.822
Weighted False Positive Rate	0.494
Weighted True Negative Rate	0.505
Weighted False Negative Rate	0.177
Weighted F-Measure	0.831
Weighted Area Under ROC	0.726

Table 4.12: Cross-Validation of Low Risk and High Risk Patients Using Bayes Network

Multi-layer Perceptron	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	926.9
Number Incorrect	175.8
Percent Correct	84.1%
Percent Incorrect	15.9%
Mean Absolute Error	0.163
Area Under ROC	0.665
F-Measure	0.911
True Positive Rate	0.931
Number of True Positives	892.9
False Positive Rate	0.764
Number of False Positives	109.9
True Negative Rate	0.236
Number of True Negatives	33.6
False Negative Rate	0.068
Number of False Negatives	65.9
Weighted True Positive Rate	0.841
Weighted False Positive Rate	0.673
Weighted True Negative Rate	0.326
Weighted False Negative Rate	0.159
Weighted F-Measure	0.827
Weighted Area Under ROC	0.655

Table 4.13: Cross-Validation of Low Risk and High Risk Patients Using Multi-layer Perceptron

Support Vector Machines	Average Cross-Validation Results
Training Instances	9925.2
Testing Instance	1102.8
Number Correct	960.2
Number Incorrect	142.6
Percent Correct	87.1%
Percent Incorrect	12.9%
Mean Absolute Error	0.129
Area Under ROC	0.521
F Measure	0.930
True Positive Rate	0.994
Number of True Positives	953.4
False Positive Rate	0.953
Number of False Positives	137.1
True Negative Rate	0.047
Number of True Negatives	6.8
False Negative Rate	0.006
Number of False Negatives	5.5
Weighted True Positive Rate	0.871
Weighted False Positive Rate	0.829
Weighted True Negative Rate	0.171
Weighted False Negative Rate	0.129
Weighted F Measure	0.820
Weighted Area Under ROC	0.521

Table 4.14: Cross-Validation of Low Risk and High Risk Patients Using Support Vector Machines

The average of 10×10 -folding cross validation results for all nine classification methods are summarized in Table 4.15. The overall average accuracy of nine classification methods is 85.20%. Overall, the performance of the nine methods is validated by high values of prediction metrics: precision value of 0.89, recall value of 0.95, F-measure value of 0.92. Although not as significant, we observe that the overall average of value of areas under ROC curves is 0.65.

As can be seen from Table 4.15, all classification methods have comparable accuracy, precision, recall, F-measure and area under ROC curve. We also note that J48 Decision Tree method provides the combination of best accuracy, precision, recall, and F-value and its corresponding area under ROC curve is better than or comparable to those corresponding to the other classification methods.

Classification Method	Accuracy	Precision	Recall	F-Measure	Area under ROC Curve
Random Forest	87.09%	0.88	0.98	0.93	0.72
J48 Decision Tree	87.32%	0.89	0.98	0.93	0.64
Nearest Neighbor	80.86%	0.89	0.89	0.89	0.58
Stochastic Gradient Descent	87.08%	0.87	0.99	0.93	0.52
Logistic Regression	87.13%	0.89	0.98	0.93	0.74
Naïve Bayes	83.84%	0.91	0.91	0.91	0.72
Bayes Network	82.25%	0.91	0.88	0.90	0.73
Multilayer Perceptron	84.10%	0.89	0.93	0.91	0.67
Support Vector Machines	87.10%	0.87	0.99	0.93	0.52
Average	85.20%	0.89	0.95	0.92	0.65

Table 4.15: Average Cross-Validation Results for Nine Classfication Methods - Mortality RSI LH Data

4.1.3 Combinatorial Patterns of Low and High Risk Patients

Table 4.15 shows that J48 Decision Tree method provides us with best combination of average cross-validation accuracy, precision, recall, and F-measure. Because J48 Decision Tree method can be used to identify explicit/explainable patterns that can accurately predict low risk and high risk patients in Surgery Timing LH dataset, we apply the method on entire dataset to identify combinatorial patterns corresponding to low risk and high risk surgery patients stratified based on their *Mortality RSI* values.

The resulting J48 Decision Tree classification model consists of 83 low risk mortality patterns and 135 high risk mortality patterns presented in Tables 4.16-4.20 and Tables 4.21-4.29, respectively. Average 10×10 -folding cross-validation accuracy of the J48 classification model is 87.32%. Average precision is 0.89 precision, recall is 0.98, F-measure value is 0.93, and value of the area under ROC curve is 0.64.

Pattern	Pattern Description
L1	$V17 \le 0.031 \text{ and } V16 \le 0 \text{ and } V23 = No \text{ and } V15 \le 3$
L2	$V4 = Caucasian$ and $V15 \leq 1$ and $V3 = Female$ and $V8 = Yes$ and $V17 > 0.031$ and $V16 \leq 0$ and $V23 = No$
L3	$V4 = Other$ and $V15 \leq 1$ and $V3 = Female$ and $V8 = Yes$ and $V17 > 0.031$ and $V16 \leq 0$ and $V23 = No$
L4	$V6 \leq 30.56$ and $V8 = No$ and $V17 > 0.031$ and $V16 \leq 0$ and $V23 = No$
L_5	$V12 = Yes$ and $V16 > 0$ and $V23 = No$ and $V15 \leq 3$
L6	$V16 \leq 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L7	V1 = B and $V16 > 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L8	V1 = M and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L9	$V18 \leq 11.6 \text{ and } V1 = A \text{ and } V16 > 0.0141 \text{ and } V5 = III \text{ and } V9 = No \text{ and } V22 = No \text{ and } V12 = No$
L10	V1 = J and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L11	V1 = L and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L12	V1 = H and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L13	$V14 = No$ and $V15 \leq 1$ and $V1 = U$ and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L14	V15 > 0 and $V14 = Yes$
10 7 1	$V2 \leq 74.2$ and $V8 = Yes$ and $V10 = No$ and $V15 > 1$ and $V1 = U$ and $V16 > 0.0141$ and $V5 = III$
0171	and $V9 = No$ and $V22 = No$ and $V12 = No$

L1-L15	
Patterns	
Mortality	~
Risk	
Low	
Table 4.16 :	

Dottorn	Dattam Decemention
T GUUCITI	
L16	V10 = Yes and $V15 > 1$ and $V1 = U$ and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L17	$V2 \le 61.1 \text{ and } V1 = G \text{ and } V16 > 0.0141 \text{ and } V5 = III \text{ and } V9 = No \text{ and } V22 = No \text{ and } V12 = No$
1 10	$V18 \leq 14.2 \text{ and } V13 = No \text{ and } V2 > 61.1 \text{ and } V1 = G \text{ and } V16 > 0.0141$
ГТО	and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L19	V1 = O and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L20	V1 = K and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L21	V1 = W and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L22	V1 = C and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L23	$V15 \leq 2$ and $V1 = N$ and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L24	V1 = V and $V16 > 0.0141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L25	$V6 > 30.68 \text{ and } V15 \leq 0 \text{ and } V10 = No$
L26	$V10 = Yes$ and $V15 \le 1$ and $V1 = Q$ and $V16 > 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L27	$V1 = E$ and $V16 \leq 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L28	$V1 = P$ and $V16 \leq 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L29	$V1 = T$ and $V16 \leq 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$
L30	$V1 = S$ and $V16 \leq 0.00141$ and $V5 = III$ and $V9 = No$ and $V22 = No$ and $V12 = No$

L16-L30	
Patterns	
Mortality	
Risk	
Low	
4.17:	
Table	

Table 4.18: Low Risk Mortality Patterns L31-L45

Pattern 1246 1247 1248 1248 1250 151 151 153 154 155 156 157	$\begin{array}{c} \mbox{Pattern Description} \\ \hline Put15 \leq 1 \mbox{ and } V18 > 7.4 \mbox{ and } V10 = No \mbox{ and } V5 = III \mbox{ and } V23 = Yes \\ \hline V115 \leq 1 \mbox{ and } V1 = J \mbox{ and } V18 > 7.4 \mbox{ and } V13 = No \mbox{ and } V13 = No \mbox{ and } V23 = Yes \mbox{ and } V15 \leq 3 \\ \hline V115 \leq 0 \mbox{ and } V12 = No \mbox{ and } V11 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V11 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V11 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.4 \\ \mbox{ and } V10 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V13 = No \\ V11 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V12 = No \mbox{ and } V13 = No \\ V11 = No \mbox{ and } V13 = No \mbox{ and } V12 = No \mbox{ and } V13 = No \\ V11 = No \mbox{ and } V12 = No \mbox{ and } V18 > 7.55 \mbox{ and } V13 = No \\ V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V13 = No \\ V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V1 = U \ V4 = Other \mbox{ and } V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V4 = Other \mbox{ and } V11 = No \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V1 = U \ V1 = O \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V1 = O \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ V1 = U \ V2 \leq 64.4 \mbox{ and } V18 > 7.55 \mbox{ and } V18 = No \\ W18 > 7.4 \mbox{ and } V18 = No \\ W18 > 7.4 \mbox{ and } V18 = No \\ W18 > 7.4 \mbox{ and } V18 = No \\ W18 > 7.4 \mbox{ and } V18 = No \\ W18 > 7.$
L58	$V1 = P \text{ and } V18 > 7.4 \text{ and } V10 = No \text{ and } V13 = No \text{ and } V5 = III \text{ and } V12 = No \text{ and } V23 = Yes \text{ and } V15 \le 3$
L58 L59	$V1 = P \text{ and } V18 > 7.4 \text{ and } V10 = No \text{ and } V13 = No \text{ and } V5 = III \text{ and } V12 = No \text{ and } V23 = Yes \text{ and } V15 \leq 3$ $V8 = Yes \text{ and } V10 = Yes \text{ and } V13 = No \text{ and } V5 = III \text{ and } V12 = No \text{ and } V23 = Yes \text{ and } V15 \leq 3$
L60 1 61	$V18 \le 8.32$ and $V8 = No$ and $V10 = Yes$ and $V13 = No$ and $V5 = III$ and $V12 = No$ and $V23 = Yes$ and $V15 \le 3$ $V19 = V_{20}$ and $V5 = III$ and $V19 = V_{20}$ and $V15 \le 2$
L62	V 15 = I es and V 5 = 111 and V 12 = IVO and V 25 = I es and V 15 \ge 5 V5 = I - II and V12 = No and V23 = Yes and V15 \le 3

Table 4.19: Low Risk Mortality Patterns L46-L62

Pattern	Pattern Description
L63	$V10 = Yes$ and $V5 = IV - VI$ and $V12 = No$ and $V23 = Yes$ and $V15 \leq 3$
L64	$V9 = No \text{ and } V17 \leq 0.049774 \text{ and } V15 > 3$
L65	$V17 \le 0.084034$ and $V10 = No$ and $V12 = Yes$
L66	$V2 \leq 58.1 \text{ and } V17 > 0.084034 \text{ and } V10 = No \text{ and } V12 = Yes$
L67	$V10 = Yes$ and $V12 = Yes$ and $V17 > 0.049774$ and $V15 > 3$ and $V16 \leq 0.007424$
L68	$V17 > 0.084034$ and $V11 = No$ and $V7 = No$ and $V16 \leq 0.004329$ and $V12 = No$
L69	$V23 = No \text{ and } V16 \leq 0.000373 \text{ and } V7 = Yes$
L70	$V1 = B$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
L71	$V2 \le 67$ and $V1 = A$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
L72	$V16 \leq 0.002959$ and $V5 = I - II$ and $V23 = No$ and $V18 \leq 15.55$ and $V10 = No$
L73	$V15 \le 4 \text{ and } V10 = Yes \text{ and } V16 > 0.001736$
L74	V2 > 69.9 and $V19 = Wednesday$ and $V15 > 4$ and $V10 = Yes$ and $V16 > 0.001736$
L75	V19 = Friday and $V15 > 4$ and $V10 = Yes$ and $V16 > 0.001736$
L76	V19 = Tuesday and V15 > 4 and V10 = Yes and V16 > 0.001736
L77	$V2 \leq 74.9 \text{ and } V18 \leq 12.75 \text{ and } V12 = No \text{ and } V5 = III \text{ and } V10 = No$ and $V1 = C$ and $V22 = No$ and $V15 < 3$ and $V23 = No$ and $V16 > 0.007424$
L78	$V5 = I - II$ and $V10 = No$ and $V1 = C$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
L79	$V10 = Yes$ and $V1 = C$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
L80	$V10 = Yes$ and $V1 = T$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
1 81	V18 leq9.95 and $V10 = No$ and $V4 = Caucasian$ and $V1 = D$ and $V22 = No$
гот	and $V15 \le 3$ and $V23 = No$ and $V16 > 0.007424$
L82	$V10 = Yes$ and $V4 = Caucasian$ and $V1 = D$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
L83	$V4 = Other$ and $V1 = D$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$

Table 4.20: Low Risk Mortality Patterns L63-L83

71

Table 4.21: High Risk Mortality Patterns H1-H16

Pattern	Pattern Description
H17	V1 = A and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H18	$V6 \leq 28.9 \text{ and } V1 = J \text{ and } V13 = No \text{ and } V10 = No \text{ and } V17 > 0.084034 \text{ and } V5 = IV - VI$ and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H19	V1 = L and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H20	V1 = H and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H21	$V14 = Yes$ and $V8 = Yes$ and $V15 \le 1$ and $V1 = U$ and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VI$ and $V9 = No$ and $V22 = No$ and $V12 = No$ and $V16 > 0$ and $V23 = No$
H22	$V8 = No \text{ and } V15 \le 1 \text{ and } V1 = U \text{ and } V13 = No \text{ and } V10 = No \text{ and } V17 > 0.084034 \text{ and } V5 = IV - VI$ and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No$
H23	V15 > 1 and $V1 = U$ and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No$
H24	V1 = G and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H25	V1 = O and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H26	V1 = K and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \leq 3$
H27	V1 = W and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \leq 3$

Table 4.22: High Risk Mortality Patterns H17-H27

Pattern	Pattern Description
H28	V1 = C and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \le 3$
H29	$V1 = N$ and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VI$ and $V9 = No$ and $V22 = No$ and $V12 = No$ and $V16 > 0$ and $V23 = No$ and $V15 \le 3$
H30	V1 = V and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \leq 3$
H31	V1 = Q and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \leq 3$
H32	V1 = E and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \le 3$
H33	V1 = P and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \le 3$
H34	V1 = T and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \leq 3$
H35	V1 = S and V13 = No and V10 = No and V17 > 0.084034 and V5 = IV - VI and $V9 = No \text{ and } V22 = No \text{ and } V12 = No \text{ and } V16 > 0 \text{ and } V23 = No \text{ and } V15 \le 3$
H36	V1 = I and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \leq 3$
H37	V1 = D and $V13 = No$ and $V10 = No$ and $V17 > 0.084034$ and $V5 = IV - VIand V9 = No and V22 = No and V12 = No and V16 > 0 and V23 = No and V15 \le 3$

Table 4.23: High Risk Mortality Patterns H28-H37

H38-H50	
Patterns	
Mortality	2
Risk	
High	0
Table 4.24:	

Table 4.25: High Risk Mortality Patterns H51-H70

Pattern	Pattern Description
H71	V2 > 58.1 and $V17 > 0.084034$ and $V10 = No$ and $V12 = Yes$
H72	$V11 = Yes$ and $V7 = No$ and $V17 > 0.049774$ and $V15 > 3$ and $V16 \le 0.007424$
H73	$V17 \leq 0.084034$ and $V11 = No$ and $V7 = No$ and $V16 \leq 0.004329$ and $V12 = No$
H74	$V23 = Yes$ and $V16 \leq 0.000373$ and $V7 = Yes$
H75	$V16 \le 0.001736$
H76	$V1 = M$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H77	$V2 > 67$ and $V1 = A$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H78	$V1 = J$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H79	$V1 = L$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H80	$V1 = H$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H81	$V1 = U$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H82	$V1 = G \text{ and } V5 = III \text{ and } V23 = No \text{ and } V18 \leq 15.55 \text{ and } V10 = No \text{ and } V16 > 0.001736$
H83	$V1 = O \text{ and } V5 = III \text{ and } V23 = No \text{ and } V18 \leq 15.55 \text{ and } V10 = No \text{ and } V16 > 0.001736$
H84	$V1 = K$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$
H85	$V1 = W$ and $V5 = III$ and $V23 = No$ and $V18 \le 15.55$ and $V10 = No$ and $V16 > 0.001736$

Table 4.26: High Risk Mortality Patterns H71-H85

Table 4.27: High Risk Mortality Patterns H86-H104

Pattern	Pattern Description
H105	V16 > 0.004329 and $V12 = No$ and $V17 > 0.049774$ and $V15 > 3$
H106	$V1 = B$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H107	$V1 = M$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H108	$V1 = A \text{ and } V22 = No \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$
H109	$V1 = J$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H110	$V1 = L$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H111	$V1 = H$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H112	$V1 = U$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H113	$V1 = G \text{ and } V22 = No \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$
H114	$V1 = O \text{ and } V22 = No \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$
H115	$V1 = K$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H116	$V1 = W$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H117	$V12 = Yes$ and $V5 = III$ and $V10 = No$ and $V1 = C$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H118	$V2 > 74.9$ and $V18 \le 12.75$ and $V12 = No$ and $V5 = III$ and $V10 = No$ and $V1 = C$ and $V22 = No$ and $V15 \le 3$ and $V23 = No$ and $V16 > 0.007424$
11110	V18 > 12.75 and $V12 = No$ and $V5 = III$ and $V10 = No$ and $V1 = C$
1119	and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$
H120	$V5 = IV - VI$ and $V10 = No$ and $V1 = C$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$

Table 4.28: High Risk Mortality Patterns H105-H120

n Pattern Description	$V1 = N \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = V \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = Q \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = E \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = P \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V10 = No \text{ and } V1 = T \text{ and } V22 = No \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = S \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = I \text{ and } V22 = No \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	V18 > 9.95 and V10 = No and V4 = Caucasian and V1 = D and V22 = No	and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.007424$	$\ V4 = African - American$ and $V1 = D$ and $V22 = No$ and $V15 \leq 3$ and $V23 = No$ and $V16 > 0.00742$.	$V1 = F \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V1 = R \text{ and } V22 = No \text{ and } V15 \le 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	$V22 = Yes \text{ and } V15 \leq 3 \text{ and } V23 = No \text{ and } V16 > 0.007424$	V15 > 3 and V23 = No and V16 > 0.007424	V23 = Yes and V16 > 0.007424
Patter	H121	H122	H123	H124	H125	H126	H127	H128	H129		H130	H131	H132	H133	H134	H135

H121-H135	
Patterns	
Mortality	
gh Risk	
4.29: Hi	
Table	

4.2 Prediction of Low, Medium, and High Risk Mortality

4.2.1 Identification of Low, Medium, and High Risk Patients

As discussed in Section 4.1, we are able to accurately predict low and high risk mortality of patients who had a surgery in Cleveland Clinic between January 2005 and September 2010. In this section we extend our investigation to predict low, medium, and high risk mortality in Surgery Timing dataset based on the *Mortality RSI* values ranging from -4.4 to 4.86. The initial step of our investigation is to discretize the *Mortality RSI* values as follows:

- A patient is labeled as "low risk" patient if the patient's corresponding *Mor*tality RSI value is between -4.4 to -1, i.e., the probability that the patient's dies within 30 days after the surgery is between 1.21% and 26%. Note that these are the same low risk patients included in Surgery Timing LH dataset.
- A patient is labeled as "medium risk" patient if the patient's corresponding *Mortality RSI* value is between -0.5 to 0.5, i.e., the probability that the patient's dies within 30 days after the surgery is between 37.75% and 62.2%.
- A patient is labeled as "high risk" patient if the patient's corresponding Mortality RSI value is between 1 and 4.86, i.e., the probability that the patient's dies within 30 days after the surgery is between 73.1% and 99.2%. Note that these are the same high risk patients included in Surgery Timing LH dataset.

Due to high misclassification rate, we removed the patients whose *Mortality* RSI values are in interval (-1,-0.5) or in interval (0.5,1). The resulting dataset, referred to as "Surgery Timing LMH", contains 9,559 low risk, 15,217 medium risk, and 1,469 high risk patients and their corresponding features in Table 3.1.

Table 4.30 and Figure 4.23 show the distribution of the low risk, medium risk, and high risk patients based on their surgical procedure. Table 4.31 and Figures 4.24-4.28 give the distribution of the low risk, medium risk, and high risk patients based on their age, gender, race, ASA physical status, and BMI, respectively. Distribution of underlying health conditions among low risk, medium risk, and high risk patients are presented in Table 4.32 and Figures 4.29-4.35. In Table 4.33 and Figures 4.36-4.38, we give the distribution of baseline Charlson index, ccsMort30rate, and ccsComplication rate among low risk, medium risk, and high risk patients, respectively. Table 4.34 and Figures 4.39-4.44 show the distribution of hour, day of week, month, moon phase, 30-day mortality and in-hospital complication of low risk, medium risk, and high risk patients, respectively.

Class	# of Patients
Low Risk	9,559
Medium Risk	15,217
High Risk	1,469
Surgery Type	# of Patients
Surgery A	780
Sugery B	3,265
Surgery C	1,835
Surgery D	281
Surgery E	296
Surgery F	401
Surgery G	2,034
Surgery H	2,162
Surgery I	698
Surgery J	1,999
Surgery K	468
Surgery L	412
Surgery M	2,093
Surgery N	497
Surgery O	1,820
Surgery P	840
Surgery Q	1,042
Surgery R	430
Surgery S	420
Surgery T	515
Surgery U	2,186
Surgery V	1,289
Surgery W	482

Table 4.30: Low Risk, Medium Risk, and High Risk Patients Data Characteristics - Surgery Type

	Min Val. = 1, Max Val. = 90,					
Δσρ	Mean = 56.889 , St. Dev. = 15.212 ,					
Age	Missing Val. $= 2$,					
	Distinct Val. $= 807$, Unique Val. $= 52$					
Gender						
Male	14,604					
Female	11,639					
Race						
Caucasian	21,676					
African-American	3,163					
Other	1,013					
ASA Physical Status						
I-II	14,674					
III	10,739					
IV-VI	826					
	Min Val. $= 2.15$, Max Val. $= 92.59$,					
BMI	Mean = 29.463 , St. Dev. = 7.289 ,					
DIVII	Missing Val $= 2,732,$					
	Distinct Val. = $3,271$, Unique Val. = 735					

Table 4.31: Low Risk, Medium Risk, and High Risk Patients Data Characteristics - Age, Gender, Race, ASA Physical Status, BMI

Ba	aseline Cancer
No	18,068
Yes	8,177
E	Baseline CVD
Yes	12,660
No	13,585
Bas	seline Dementia
No	26,055
Yes	190
Ba	seline Diabetes
No	23,011
Yes	3,234
Bas	seline Digestive
Bas Yes	seline Digestive 5,660
Bas Yes No	Seline Digestive 5,660 20,585
Bas Yes No Ba	Seline Digestive5,66020,585seline Osteoart
Bas Yes No Ba Yes	Seline Digestive 5,660 20,585 seline Osteoart 5,264
BasYesNoBaYesNo	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981
Bas Yes No Yes No Ba	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981 aseline Psych
Bas Yes No Yes No Ba Yes No	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981 aseline Psych 23,859
Bas Yes No Ba Yes No B No Yes	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981 aseline Psych 23,859 2,386
Bas Yes No Yes No Yes Base	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981 aseline Psych 23,859 2,386 eline Pulmonary
Bas Yes No Yes No Yes Base No	Seline Digestive 5,660 20,585 seline Osteoart 5,264 20,981 aseline Psych 23,859 2,386 eline Pulmonary 23,418

Table 4.32: Low Risk, Medium Risk, and High Risk Patients Data Characteristics - Underlying Health Conditions

Figure 4.35: Baseline Pulmonary Disease Distribution among Low Risk, Medium Risk, and High Risk Patients

Table 4.33: Low Risk, Medium Risk, and High Risk Patients Data Characteristics - Baseline Charlson Index, Overall Incidence of 30-day Mortality for Each Surgery, and Overall Incidence of In-hospital Complications for Each Surgery

	Min Val. = 0, Max Val. = 13,
Begeline Charleen	Mean = 1.079 , St. Dev. = 1.825 ,
Baseline Charison	Missing Val. $= 0,$
	Distinct Val. = 14, Unique Val. = 0
	Min Val. $= 0$, Max Val. $= 0.017$,
accMont20nate	Mean = 0.004 , St. Dev = 0.004 ,
	Missing Val. $= 0,$
	Distinct Val. $= 21$, Unique Val $= 0$
	Min Val. $= 0.016$, Max Val. $= 0.466$,
angCompliantionDate	Mean = 0.13 , St. Dev. = 0.087 ,
ccsComplicationRate	Missing Val. $= 0,$
	Distinct Val. $= 23$, Unique Val. $= 0$

Table 4.34: Low Risk, Medium Risk, and High Risk Patients Data Characteristics - Hour, Day, Month, Moon Phase of Surgery, 30-Mortality of Patients, In-hospital Complication of Patients

	Min Val. = 6, Max Val. = 19,
Hour	Mean = 10.367 , St. Dev. = 2.909 ,
Hour	Missing Val. $= 0,$
	Distinct Val. = 767, Unique Val. = 27
	Day of Week
Monday	5,781
Tuesday	5,779
Wednesday	5,073
Thursday	4,631
Friday	4,981
	Month
January	2,171
February	2,039
March	2,245
April	2,255
May	2,156
June	2,452
July	1,884
August	2,606
September	2,656
October	2,218
November	2,075
December	1,488
	Moon Phase
First Quarter	6,698
Last Quarter	6,671
New Moon	6,321
Full Moon	6,555
	mort30
No	26,122
Yes	123
	Complication
No	22,990
Yes	3,255

Figure 4.43: 30-day Patient Mortality Distribution among Low Risk, Medium Risk, and High Risk Patients

4.2.2 Prediction of Low, Medium, and High Risk Patients

To predict low risk, medium risk, and high risk patients in "Surgery Timing LMH" dataset, we use 10×10 -folding cross-validation experiments on seven commonly used and well-known classification methods, including Random Forest, Decision Trees, Nearest Neighbor, Logistic Regression, Naïve Bayes, Bayes Network, and Neural Networks [13]. Surgery Timing LMH dataset is randomly partitioned into ten approximately equal parts; one of these subsets is designated as "test set", a model is built on the remaining nine subsets which form the "training dataset", and then tested by predicting the classes of patients in the test set using a classification method. This procedure is repeated 10 times, always taking another one of the ten parts in the role of the test set (re-randomizing the patients into 10 new subsets and repeat the procedure 9 additional times) for a total of 100 tests for each of the nine classification methods. Tables 4.35-4.41 show the average accuracy, proportion of correctly classified low risk patients, proportion of correctly classified high risk patients as well as average precision, recall, F-measure (weighted mean of the precision and recall), and area under Receiver Operating Characteristic (ROC) curve for Random Forest, Decision Trees, Nearest Neighbor, Logistic Regression, Naïve Bayes, Bayes Network, and Neural Networks, respectively. For Surgery Timing LMH dataset, we were unable to obtain results using Stochastic Gradient method and Support Vector Machines.

Random Forest	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2297.4
Number Incorrect	327.1
Percent Correct	87.5%
Percent Incorrect	12.5%
Mean Absolute Error	0.196
Area Under ROC	0.714
F-Measure	0.933
True Positive Rate	0.989
Number of True Positives	2274.1
False Positive Rate	0.928
Number of False Positives	302.2
True Negative Rate	0.072
Number of True Negatives	23.3
False Negative Rate	0.011
Number of False Negatives	24.9
Weighted True Positive Rate	0.875
Weighted False Positive Rate	0.815
Weighted True Negative Rate	0.185
Weighted False Negative Rate	0.125
Weighted F-Measure	0.833
Weighted Area Under ROC	0.714

Table 4.35: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using Random Forest

J48 Decision Tree	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2298.7
Number Incorrect	325.8
Percent Correct	87.6%
Percent Incorrect	12.4%
Mean Absolute Error	0.201
Area Under ROC	0.627
F-Measure	0.933
True Positive Rate	0.987
Number of True Positives	2270.6
False Positive Rate	0.914
Number of False Positives	297.4
True Negative Rate	0.086
Number of True Negatives	28.1
False Negative Rate	0.012
Number of False Negatives	28.4
Weighted True Positive Rate	0.875
Weighted False Positive Rate	0.802
Weighted True Negative Rate	0.198
Weighted False Negative Rate	0.124
Weighted F-Measure	0.835
Weighted Area Under ROC	0.627

Table 4.36: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using J48 Decision Tree

k-Nearest Neighbor	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2125.9
Number Incorrect	498.6
Percent Correct	81.0%
Percent Incorrect	18.9%
Mean Absolute Error	0.189
Area Under ROC	0.555
F-Measure	0.892
True Positive Rate	0.894
Number of True Positives	2055.7
False Positive Rate	0.784
Number of False Positives	255.3
True Negative Rate	0.216
Number of True Negatives	70.2
False Negative Rate	0.106
Number of False Negatives	243.3
Weighted True Positive Rate	0.810
Weighted False Positive Rate	0.700
Weighted True Negative Rate	0.299
Weighted False Negative Rate	0.189
Weighted F-Measure	0.808
Weighted Area Under ROC	0.555

Table 4.37: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using $k\text{-}\mathrm{Nearest}$ Neighbor

Logistic Regression	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2300.1
Number Incorrect	324.4
Percent Correct	87.6%
Percent Incorrect	12.4%
Mean Absolute Error	0.194
Area Under ROC	0.738
F-Measure	0.933
True Positive Rate	0.989
Number of True Positives	2275.9
False Positive Rate	0.926
Number of False Positives	301.4
True Negative Rate	0.074
Number of True Negatives	24.2
False Negative Rate	0.010
Number of False Negatives	23.0
Weighted True Positive Rate	0.876
Weighted False Positive Rate	0.812
Weighted True Negative Rate	0.187
Weighted False Negative Rate	0.123
Weighted F-Measure	0.833
Weighted Area Under ROC	0.738

Table 4.38: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using Logistic Regression

Naïve Bayes	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2177.6
Number Incorrect	446.9
Percent Correct	82.9%
Percent Incorrect	17.0%
Mean Absolute Error	0.193
Area Under ROC	0.728
F-Measure	0.902
True Positive Rate	0.899
Number of True Positives	2067.1
False Positive Rate	0.660
Number of False Positives	214.9
True Negative Rate	0.339
Number of True Negatives	110.5
False Negative Rate	0.101
Number of False Negatives	231.9
Weighted True Positive Rate	0.829
Weighted False Positive Rate	0.591
Weighted True Negative Rate	0.408
Weighted False Negative Rate	0.170
Weighted F-Measure	0.831
Weighted Area Under ROC	0.728

Table 4.39: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using Naïve Bayes

Bayes Network	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2147.8
Number Incorrect	476.7
Percent Correct	81.8%
Percent Incorrect	18.2%
Mean Absolute Error	0.211
Area Under ROC	0.731
F-Measure	0.895
True Positive Rate	0.880
Number of True Positives	2023.5
False Positive Rate	0.617
Number of False Positives	201.2
True Negative Rate	0.382
Number of True Negatives	122.4
False Negative Rate	0.119
Number of False Negatives	275.5
Weighted True Positive Rate	0.818
Weighted False Positive Rate	0.556
Weighted True Negative Rate	0.443
Weighted False Negative Rate	0.181
Weighted F-Measure	0.826
Weighted Area Under ROC	0.731

Table 4.40: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using Bayes Network

Multi-layer Perceptron	Average Cross-Validation Results
Training Instances	23620.4
Testing Instance	2624.5
Number Correct	2218.7
Number Incorrect	405.8
Percent Correct	84.5%
Percent Incorrect	15.5%
Mean Absolute Error	0.160
Area Under ROC	0.651
F-Measure	0.914
True Positive Rate	0.938
Number of True Positives	2157.6
False Positive Rate	0.813
Number of False Positives	264.5
True Negative Rate	0.187
Number of True Negatives	61.0
False Negative Rate	0.061
Number of False Negatives	141.3
Weighted True Positive Rate	0.845
Weighted False Positive Rate	0.719
Weighted True Negative Rate	0.280
Weighted False Negative Rate	0.154
Weighted F-Measure	0.829
Weighted Area Under ROC	0.651

Table 4.41: Cross-Validation of Low Risk, Medium Risk, and High Risk Patients Using Multi-layer Perceptron

The average of 10×10 -folding cross validation results for all seven classification methods are summarized in Table 4.42. The overall average accuracy of seven classification methods is 84.70%. Overall, the performance of the seven methods is validated by high values of prediction metrics: precision value of 0.89, recall value of 0.94, F-measure value of 0.91. The overall average value of area under ROC curves is 0.68.

Similar to the prediction of low and high risk mortality, we observe that all classification methods applied to Mortality RSI LMH dataset have comparable accuracy, precision, recall, F-measure and area under ROC curve. Logistic Regression provides the combination of best accuracy, precision, recall, and F-value as well as area under ROC curve.

Classification Method	Accuracy	Precision	Recall	F-Measure	Area under ROC Curve
Random Forest	87.50	0.88	0.99	0.93	0.71
J48 Decision Tree	87.60	0.88	0.99	0.93	0.63
Nearest Neighbor	81.00	0.89	0.89	0.89	0.56
Logistic Regression	87.60	0.88	0.99	0.93	0.74
Naïve Bayes	82.90	0.91	0.90	0.00	0.73
Bayes Network	81.80	0.91	0.88	0.00	0.73
Multilayer Perceptron	84.50	0.89	0.94	0.91	0.65
Average	84.70	0.89	0.94	0.91	0.68

a
£
$\tilde{\sim}$
Ц
H
<u> </u>
\geq
5
Η
N,
ЪС
P.
÷
F
Ę,
Ľ
2
\geq
1
S
ð
õ
д.
£
ĭ
\geq
E
10.
Ę
ğ
2
Ψ.
ñ
5
5
\cup
Ч
G
×.
~
5
Set
r Sev
or Sev
for Sev
s for Sev
lts for Sev
ults for Sev
sults for Sev
esults for Sev
Results for Sev
Results for Sev
in Results for Sev
ion Results for Sev
tion Results for Sev
ation Results for Sev
dation Results for Sev
lidation Results for Sev
alidation Results for Sev
Validation Results for Sev
5-Validation Results for Sev
ss-Validation Results for Sev
oss-Validation Results for Sev
ross-Validation Results for Sev
Cross-Validation Results for Sev
Cross-Validation Results for Sev
ze Cross-Validation Results for Sev
age Cross-Validation Results for Sev
rage Cross-Validation Results for Sev
erage Cross-Validation Results for Sev
verage Cross-Validation Results for Sev
Average Cross-Validation Results for Sev
Average Cross-Validation Results for Sev
2: Average Cross-Validation Results for Sev
42: Average Cross-Validation Results for Sev
.42: Average Cross-Validation Results for Sev
4.42: Average Cross-Validation Results for Sev
e 4.42: Average Cross-Validation Results for Sev
hle 4.42: Average Cross-Validation Results for Sev
whe 4.42: Average Cross-Validation Results for Sev
Table 4.42: Average Cross-Validation Results for Sev

Chapter 5

Conclusion

In this thesis we integrate fundamental concepts from conventional statistics with the more explanatory, algorithmic, and computational techniques offered by machine learning to predict early mortality risk of surgical patients. Well-known and commonly used classification methods, including Random Forest, Decision Trees, Nearest Neighbor, Stochastic Gradient Descent, Logistic Regression, Naïve Bayes, Bayes Network, Neural Networks, and Support Vector Machines, are applied to predict low-risk, medium-risk, and high-risk mortality of elective general surgical patients treated between January 2005 and September 2010 at the Cleveland Clinic [33]. The mortality risk prediction is based on clinical factors including surgery type, age, gender, race, BMI, underlying chronic conditions, surgical risk indices, surgical timing predictors such as hour, day of week, month, moon phase as well as the 30-day mortality and in-hospital complication for each patient. We perform 10×10 -folding cross validation experiments to evaluate the prediction performance of the classification methods on low, medium, and high mortality risk groups. The overall average accuracy of the classification methods applied to predict low-risk and high-risk mortality is 85.20% with precision value of 0.89, recall value of 0.95, and F-measure value of 0.92. The overall accuracy of the classification method applied to predict low-risk, medium-risk, and high-risk mortality is 84.70% with precision value of 0.89, recall value of 0.94, and F-measure value of 0.91. A Decision Tree classification model consisting of 83 low risk patterns and 135 high risk patterns are presented to provide medical experts with an explainable classification model that can serve for further investigation of the clinical features associated with early mortality risk of surgical patients.

Bibliography

- S. Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5(4-5):185–196, 1993.
- [2] J.F. Avila-Herrera and M.M. Subasi. Logical analysis of multi-class data. In 2015 Latin American Computing Conference (CLEI), pages 1–10. IEEE, 2015.
- [3] N. Aylein. Support vector machines: A simple explaination. KD Nuggets, 1:1-5, 2016.
- [4] T.C. Bain, J.F. Avila-Herrera, E. Subasi, and M.M. Subasi. Logical analysis of multiclass data with relaxed patterns. Annals of Operations Research, 287(1):11–35, 2020.
- [5] C.M. Bishop. Pattern recognition and machine learning. springer, 2006.
- [6] P.C. Bonasso, M.S. Dassinger, M.L. Ryan, M.S. Gowen, J.M. Burford, and S.D. Smith. 24-hour and 30-day perioperative mortality in pediatric surgery. *Journal of pediatric surgery*, 54(4):628–630, 2019.
- [7] L. Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.
- [8] C.J.C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

- [9] R.O. Duda, P.E. Hart, et al. *Pattern classification*. John Wiley & Sons, 2006.
- [10] L.V. Fausett. Fundamentals of neural networks: architectures, algorithms, and applications. Prentice-Hall Englewood Cliffs, NJ, 1994.
- [11] K. Foote. A brief history of machine learning. *Dataversity*, 1:1–7, 2019.
- [12] N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine learning, 29(2):131–163, 1997.
- [13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutremann, and I. Witten. The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11(1), 2009.
- [14] F. Harrell. Why is logistic regression called a machine learning algorithm? Stack Exchange, 1:1–11, 2015.
- [15] M. Harrison. Machine Learning Pocket Reference Working with Structured Data in Python. O'Reilly, 2019.
- [16] O. Harrison. Machine learning basics with the k-nearest neighbors algorithm. Towards Data Science, 1:1–12, 2018.
- [17] M. Horny. Bayesian networks. Boston University School of Public Health, 5:1–15, 2014.
- [18] N. Kain. Understanding of multilayer perceptrons(mlp). *Medium*, 1:1–6, 2018.
- [19] J. Kelleher and B. Tierney. *Data Science*. Massachusetts Institute of Technology, 2018.

- [20] A.L. Luryi, M.M. Chen, S. Mehra, S.A. Roman, J.A. Sosa, and B.L. Judson. Hospital readmission and 30-day mortality after surgery for oral cavity cancer: Analysis of 21,681 cases. *Head & neck*, 38(S1):E221–E226, 2016.
- [21] E.J. Mascha, D. Yang, S. Weiss, and D.I. Sessler. Intraoperative mean arterial pressure variability and 30-day mortality in patients having noncardiac surgery. *Anesthesiology*, 123(1):79–91, 2015.
- [22] O. Miró, X. Rossello, V. Gil, F.J. Martín-Sánchez, P. Llorens, P. Herrero-Puente, J. Jacob, H. Bueno, and S.J. Pocock. Predicting 30-day mortality for patients with acute heart failure in the emergency department: a cohort study. *Annals of internal medicine*, 167(10):698–705, 2017.
- [23] H.B. Mitchell and P.A. Schaefer. A "soft" k-nearest neighbor voting scheme. International journal of intelligent systems, 16(4):459–468, 2001.
- [24] K.P. Murphy et al. Naive bayes classifiers. University of British Columbia, 18(60), 2006.
- [25] F. Pedregosa. The stochastic gradient method. fa. bianp.net, 1:1, 2018.
- [26] M. Pelillo. Who invented the nearest neighbor rule? 37 Steps, 1:1, 2014.
- [27] J. Platt. Sequential minimal optimization: A fast algorithm for training support vector machines. *Microsoft Research*, 1:1–21, 1998.
- [28] B. Poczos. Introduction to machine learning perceptron. Carnegie Mellon University, 1:1–10, 2019.
- [29] J.R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

- [30] N. Saravann and V. Gayathri. Performance and classification evaluation of j48 algorithm and kendall's based j48 algorithm(knj48). International Journal of Computational Intelligence and Informatics, 7:188–198, 2018.
- [31] B. Schölkopf and A. J. Smola. Learning with kernels: Support vector machines, regularization, optimization, and beyond. The MIT Press, Cambridge, MA, 2001.
- [32] C. Sehra. Decision trees explained easily. *Medium*, 1:1–6, 2018.
- [33] D.I. Sessler, A. Kurz, L. Saager, and J.E. Dalton. Operation timing and 30-day mortality after elective general surgery. *Anesthesia & Analgesia*, 113(6):1423– 1428, 2011.
- [34] M. Simard, C. Sirois, and B. Candas. Validation of the combined comorbidity index of charlson and elixhauser to predict 30-day mortality across icd-9 and icd-10. *Medical care*, 56(5):441–447, 2018.
- [35] N. Singh-Miller and M. Collins. Learning label embeddings for nearestneighbor multi-class classification with an application to speech recognition. In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, *Advances in Neural Information Processing Systems 22*, pages 1678–1686. 2009.
- [36] A. Srinivason. Stochastic gradient descent clearly explained!! Towards Data Science, 1:1–5, 2019.
- [37] A. Tandel. Support vector machines a brief overview. Towards Data Science, 1:1, 2017.

- [38] Z. Tang, K. Yang, M. Zhong, R. Yang, J. Zhang, Q. Jiang, and H. Liu. Predictors of 30-day mortality in traumatic brain-injured patients after primary decompressive craniectomy. World neurosurgery, 134:e298–e305, 2020.
- [39] P. Vadapalli. Naive bayes explained: Function, advantages & disadvantages, application in 2020. upGrad blog, 1:1–14, 2020.
- [40] A. Yadav. Support vector machines(svm). Towards Data Science, 1:1–17, 2018.
- [41] T. Yiu. Understanding random forest. Towards Data Science, 1:1–11, 2019.
- [42] E. Zhang and Y. Zhang. F-measure. *Encyclopedia of Database Systems*, 1:50, 2009.
- [43] J. Zornoza. Logistic regression explained. Towards Data Science, 1:1–8, 2020.