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ABSTRACT

Title:

Optimal Control of Coefficients for the Second Order Parabolic Free Boundary Problems

Author:

Ali Hagverdiyev

Major Advisor:

Ugur G. Abdulla, Ph.D., Dr.Sci., Dr.rer.nat.habil.

Dissertation aims to analyze inverse Stefan type free boundary problem for the second

order parabolic PDE with unknown parameters based on the additional information given

in the form of the distribution of the solution of the PDE and the position of the free

boundary at the final moment. This type of ill-posed inverse free boundary problems

arise in many applications such as biomedical engineering problem about the laser ab-

lation of biomedical tissues, in-flight ice accretion modeling in aerospace industry, and

various phase transition processes in thermophysics and fluid mechanics. The set of un-

known parameters include a space-time dependent diffusion, convection and reaction co-

efficients, density of the sources, time-dependent boundary flux and the free boundary.

New PDE constrained optimal control framework in Hilbert-Besov spaces introduced in

U.G. Abdulla, Inverse Problems and Imaging, 7, 2(2013), 307-340; 10, 4(2016), 869-898

is employed, where the missing data and the free boundary are components of the control

vector, and optimality criteria are based on the final moment measurement of the temper-

ature and position of the free boundary, and available information on the phase transition

temperature on the free boundary. The latter presents a key advantage in dealing with ap-

plications, where phase transition temperature is not known explicitly, but involve some

measurement error. Another advantage of the new variational approach is based on the

fact that for a given control parameter, Stefan boundary condition turns into Neumann

boundary condition on the given boundary, and parabolic PDE problem is solved in a

fixed domain, and therefore a perspective opens for the development of numerical meth-
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ods of least computational cost. Discretization of the optimal control problem via method

of finite differences is pursued and the sequence of finite-dimensional optimal control

problems are introduced. The results of the dissertation are different depending on the

structure of the unknown diffusion coefficient. In the case if it is only time-dependent,

the well-posedness of the optimal control problem is established in Hilbert-Besov spaces.

Existence of the optimal control and convergence of the sequence of the discrete optimal

control problems to the continuous optimal control problem both with respect to func-

tional and control is proved. The methods of the proof are based on uniform H1-energy

estimates in discrete Sobolev-Hilbert norms, weak compactness argument, Weierstrass

theorem in weak topology and weak convergence of the bilinear interpolations of the so-

lutions of the discrete PDE problems to the solution of the optimal PDE problem in the

class of weakly differentiable functions. To prove similar results in the case when un-

known diffusion coefficient is space-time dependent, a new Banach space is introduced.

The motivation for the new space is dictated with the optimal result on the convergence

of the bilinear interpolations of the grid functions in the class of weakly differentiable

functions, and establishment of the discrete H1-energy estimate under minimal assump-

tions on the diffusion coefficient. Existence of the optimal control and convergence of the

sequence of discrete optimal control problems to the continuous optimal control problem

both with respect to functional and control is proved in the setting of the new Banach

space.
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List of Notations

Let U be open subset of the real line R.

• The Sobolev-Besov space Bk
2(U), for k = 1,2, . . . is the Banach space of L2(U) func-

tions whose weak derivatives up to order k exist and are in L2(U). The norm in

Bk
2(U) is

‖u‖2
Bk

2(U)
:=

k∑
i=0

∥∥∥∥∥∥diu
dxi

∥∥∥∥∥∥2

L2(U)
.

• For ` < Z+, B`2(U) is the Banach space of measurable functions with finite norm

‖u‖B`2(U) := ‖u‖B(`)
2 (U) + [u]B`2(U)

where

[u]2
B`2(U)

:=
∫

U

∫
U

∣∣∣∣∂[`]u(x)
∂x[`] −

∂[`]u(y)
∂x[`]

∣∣∣∣2
|x− y|1+2(`−[`]) dxdy.

• Let `1, `2 > 0 and D = U×(0,T ). The Besov space B`1,`2
2 (D) is defined as the closure

of the set of smooth functions under the norm

‖u‖
B
`1,`2
2 (D)

:=
(∫ T

0
‖u(x, t)‖2

B
`1
2 (U)

dt
)1/2

+

(∫
U
‖u(x, t)‖2

B
`2
2 (0,T )

dx
)1/2

.

When `1 = `2 ≡ `, the corresponding Besov space is denoted by B`2(D). B̊`1,`2
2 (D)

denotes the closure of the set of smooth functions with compact support with respect

vii



to x in U under the B`1,`2
2 -norm.

• V2(Ω) is the subspace of B1,0
2 (Ω) for which the norm

‖u‖2V2(Ω) = esssup
0≤t≤T

‖u(·, t)‖2
L2
(
0,s(t)

) +

∥∥∥∥∥∂u
∂x

∥∥∥∥∥2

L2(Ω)
<∞.

• V1,0
2 (Ω) is the completion of B1,1

2 (Ω) in the V2(Ω) norm. V1,0
2 (Ω) is a Banach space

with norm

‖u‖2
V1,0

2 (Ω)
= max

0≤t≤T
‖u(·, t)‖2

L2
(
0,s(t)

) +

∥∥∥∥∥∂u
∂x

∥∥∥∥∥2

L2(Ω)
.

In the next section we describe the new variational formulation of this inverse problem.

Let U be open subset of the real line R and and D = U × (0,T ).

L∞(D) - Banach space of essentially bounded real-valued measurable functions on D with

norm

||u||L∞(D) = esssup
(x,t)∈D

|u(x, t)| < +∞

L∞,γ(D) - Banach Space with the following norm (here γ > 1):

||u||L∞,γ(D) =
(∫ T

0
esssup

0≤x≤l
|u|γ dt

) 1
γ

L2[0,T ] - Hilbert space with scalar product

(u,v) =

∫ T

0
uvdt

Wk
2[0,T ],k = 1,2, ... - Hilbert space of all elements of L2[0,T ] whose weak derivatives up

viii



to order k belongs to L2[0,T ] and scalar product is defined as

(u,v) =

∫ T

0

k∑
s=0

dsu
dts

dsv
dts dt

W
1
4
2 [0,T ] - Banach space of all elements of L2[0,T ] with finite norm

‖u‖
W

1
4

2 [0,T ]
=

(
‖u‖2L2[0,T ] +

∫ T

0
dt

∫ T

0

|u(t)−u(τ)|2

|t−τ|
3
2

dτ
) 1

2

L2(Ω) - Hilbert space with scalar product

(u,v) =

∫
Ω

uvdxdt

W1,0
2 (Ω) - Hilbert space of all elements of L2(Ω) whose weak derivative ∂u

∂x belongs to

L2(Ω), and scalar product is defined as

(u,v) =

∫
Ω

(
uv +

∂u
∂x

∂v
∂x

)
dxdt

W1,1
2 (Ω) - Hilbert space of all elements of L2(Ω) whose weak derivatives ∂u

∂x , ∂u
∂t belong to

L2(Ω), and scalar product is defined as

(u,v) =

∫
Ω

(
uv +

∂u
∂x

∂v
∂x

+
∂u
∂t
∂v
∂t

)
dxdt

V2(Ω) - Banach space of all elements of W1,0
2 (Ω) with finite norm

‖u‖V2(Ω) =
(
esssup0≤t≤T ‖u(x, t)‖2L2[0,s(t)] +

∥∥∥∥∂u
∂x

∥∥∥∥2

L2(Ω)

) 1
2

V1,0
2 (Ω) - Banach space which is the completion of W1,1

2 (Ω) in the norm of V2(Ω). It

consists of all elements of V2(Ω), continuous with respect to t in norm of L2[0, s(t)] and
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with finite norm

‖u‖V1,0
2 (Ω) =

(
max
0≤t≤T

‖u(x, t)‖2L2[0,s(t)] +
∥∥∥∥∂u
∂x

∥∥∥∥2

L2(Ω)

) 1
2

W2,1
2 (Ω) - Hilbert space of all elements of L2(Ω) whose weak derivatives ∂u

∂x , ∂u
∂t , ∂2u

∂x2

belong to L2(Ω), and scalar product is defined as

(u,v) =

∫
Ω

(
uv +

∂u
∂x

∂v
∂x

+
∂u
∂t
∂v
∂t

+
∂2u
∂x2

∂2v
∂x2

)
dxdt

W̃1,1
2 (D) = {u ∈W1,1

2 (D) : uxt ∈ L2(D)}

‖u‖2
W̃1,1

2 (D)
= ‖u‖2L2(D) + ‖ux‖

2
L2(D) + ‖ut‖

2
L2(D) + ‖uxt‖

2
L2(D).

W̃1,1
∞,γ(D) = { u | u, ux ∈ L∞(D), ut ∈ L∞,γ(D)} is a Banach space with the norm

||u||W̃1,1
∞,γ(D) = ||u||L∞(D) + ||ux||L∞(D) + ||ut||L∞,γ(D)

where γ > 1.
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Chapter 1

Introduction

1.1 Free Boundary Problems

In many important applications arising in science, engineering and economy some partial

differential equation (PDE) or system of PDEs must be solved in a domain which is apriori

unknown. This type of problems are called free boundary problems, where the term free

boundary is associated with unknown portion of the boundary of the domain. Some exam-

ples of free boundary problems are various phase transition processes in fluid mechanics

and thermophysics; growth of cancerous tumor or laser ablation of tissues in medicine;

evolution of the price of American option with random payoff chosen by holder in stock

market; in-flight ice accretion modeling in aerospace industry etc. The classical example

of a free boundary problem in mathematical physics is the so-called Stefan problem. The

Stefan problem is a boundary value problem for the heat/diffusion equation, where the

unknown/free phase transition boundary between two or several phases is changing as a

function of time. Few examples of Stefan problem in applications are the melting of ice,

or freezing of water, the formations of crystals from liquid, or the laser ablation of skin

tissue. The key mathematical feature of the Stefan problem is expressed via additional

condition on the free boundary expressing dynamic of the movement of the free boundary
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in time, in terms of the conservation of energy during the phase transition process. As

an example, consider the classical one-phase Stefan problem about the melting of the ice

[34]: let a semi-infinite block of ice, initially at melting temperature of 0 degrees, starts

melting under the time dependent heat flux f (t) applied on the left end. Then the unknown

temperature profile u(x, t) and unknown boundary curve s(t) between water and ice satisfy

the following system of equations:

ut = uxx, 0 < x < s(t), t > 0 (1.1)

ux(0, t) = f (t), t > 0 (1.2)

u(s(t), t) = 0, t > 0 (1.3)

ds
dt

= −ux(s(t), t), t > 0 (1.4)

u(x,0) = 0, x ≥ 0 (1.5)

s(0) = 0 (1.6)

Stefan condition (1.4) expresses the fact that the free boundary is pushed forward due

to jump of the flux on the free boundary during the phase transition. Generalization of the

Stefan problem presents a relevant mathematical model for phase transition phenomenon

in biomedical engineering applications. For example, consider bioengineering problem

about the laser ablation of biomedical tissues in a simplified one-dimensional case where

space variable x is measuring the ablation depth of the tissue. Then the temperature

function u(x, t) and the free boundary x = s(t), measuring the ablation depth at the moment

2



t, satisfy the general one-phase Stefan problem [42, 62]:

Lu ≡ (a(x, t)ux)x + c(x, t)ux + d(x, t)u−ut = f (x, t)−
∂p(x, t)
∂x

, in Ω (1.7)

u(x,0) = φ(x), 0 ≤ x ≤ s(0) =: s0 (1.8)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T (1.9)

a
(
s(t), t)

)
ux

(
s(t), t

)
+γ

(
s(t), t

)
s′(t) = χ

(
s(t), t

)
, 0 ≤ t ≤ T (1.10)

u
(
s(t), t

)
= µ(t), 0 ≤ t ≤ T, (1.11)

where a, b, c, d, f , p, φ, g, γ, χ, µ are known functions with a(x, t) ≥ a > 0, s0 > 0, and

Ω = {(x, t) : 0 < x < s(t), 0 < t ≤ T }

In the context of heat conduction, γ represents latent heat released by the melting at the

boundary, χ a heat source or sink on the boundary, f and p characterize the density of the

sources, φ is the initial temperature, g is the heat flux on the fixed boundary x = 0, and

µ is the phase transition temperature. The coefficients a, c, and d represent the diffusive,

convective, and reactive properties, respectively, in the domain Ω.

The 1D Stefan problem has a well-established mathematical theory, and an extensive

list of works on it can be found in [76]. The existence and uniqueness of the classical

solution of the one dimensional Stefan problem is a well known result [34, 40]. For

example, it can be established by reduction to Volterra type integral equations by using

Green’s functions [40]. In the multidimensional case, classical, i.e. smooth solution of the

Stefan problem in general exists in the short time interval only [62]. Local existence and

uniqueness of a classical solution to the multidimensional Stefan problem is established

in [61]. In general, the solution may develop singularities and thus a global solution

will only exist in the weak sense. In the one phase case, in [41, 55], the Stefan problem

is transformed to an obstacle problem and existence and uniqueness of a global weak

3



solution is proved through the method of variational inequalities. Significant progress

in regularity of free boundaries of the weak solution in the one-phase case are proved

in celebrated papers [30, 31]. A very powerful method of solving the multidimensional

multiphase Stefan problem is based on the transformation introduced in [67, 53]. The

method transforms the free boundary problem into a nonlinear PDE in a fixed domain

with discontinuous coefficients.

1.2 Inverse Free Boundary Problems

Inverse free boundary problems arise in applications where some or several parameters of

the system are not known, and must be identified along with the solution of the PDE and

the free boundary. Motivation for the inverse free boundary problems in applications is

twofold. First motivation is associated with the development of the mathematical models

of free boundary systems. Identification of various input parameters of such models is

pursued via series of experiments in which some accessible measurements of the system

are taken, and inverse problem on the identification of input parameters which produce

the observed measurements is analyzed. Second motivation arise in problems of control

or design of free boundary systems. It is required to identify input control parameter

which develops the system to desired state, or provides particular design with desirable

features. This type of inverse problems are equivalent to optimal control problems for

free boundary systems with distributed parameters.

Relevance of inverse Stefan type free boundary problems (ISP) appears in two dif-

ferent contexts: ISP with given or unknown free boundary. Consider typical example

of ISP with given free boundary arising in Aerospace Industry for in-flight ice accretion

modeling [45]. Protection of new aircrafts from atmospheric hazards is one of the most

challenging problems in aerospace industry. During the flight aerocraft is exposed to

supercooled droplets forming the ice layer on its surface which may significantly com-

4



promise aerodynamic performances [45]. In a simplified one-dimensional situation math-

ematical model of in-flight ice accretion is described with Stefan problem (1.7)-(1.11),

where u(x, t) is a temperature and the free boundary x = s(t) is ice layer depth on the sur-

face of the plane. It is required to select heat flux on the fixed boundary in such a way that

to achieve a desired ice accretion front. The following is the mathematical formulation of

the inverse Stefan problem with given free boundary:

Inverse Stefan Problem (ISP) with known free boundary : given the free boundary

s(t), find the temperature function u(x, t) and the boundary heat flux g(t), which satisfy

the conditions (1.7)-(1.11).

ISP with known free boundary is similar to the non-characteristic Cauchy problem for

the heat equation. It is not a well-posed problem in the sense of Hadamard. Existence

of the solution is conditioned on the coordination of the data. Even if solution exists, it

may be non-unique, and there is no continuous dependence of the solution on the input

data. Historically, ISP with known free boundary was first considered in the paper [33]. A

posteriori estimate of the error in the position of the free boundary is determined without

the assumption of the existence of a solution of the stated problem, and an a priori bound

is derived in the case a solution exists. The most popular methods for solving ISP with

known free boundary is based on variational formulation in an optimal control framework.

Historically, variational method for the solution of the ISP with known free boundary was

first developed in [26, 27, 28]. Optimal control problem for the minimization of the cost

functional

J(g) =

∫ T

0

∫ s(t)

0
|u1(x, t)−u2(x, t)|2 dxdt (1.12)

over the control set g ∈ G is analyzed, where the state vectors u1 = u1(x, t;g) and u2 =

u2(x, t;g) are weak solutions of the parabolic initial bondary value problems (1.7)–(1.10)

and (1.7),(1.8),(1.9),(1.11) respectively. Hence, Stefan condition (1.10), and phase tran-

sition temperature boundary condition (1.9) are assigned to two different initial boundary

value problems as a Neumann and Dirichlet boundary conditions imposed on a given free

5



boundary x = s(t), respectively. Optimal control parameter g(t) is searched via minimiza-

tion of the mismatch between two solutions u1 and u2. In [27] existence of the optimal

control is proved and gradient method based on Frechet differentiability is suggested.

Uniqueness of the solution is proved in [28] under various smoothness assumptions on

the data.

Alternative variational formulation in an optimal control framework for solving ISP

with known free boundary can be posed as a minimization of the cost functional

J(g) =

∫ T

0

∣∣∣u(s(t), t
)
−µ(t)

∣∣∣2 dt (1.13)

over the control set g ∈ G, where the state vector u = u(x, t;g) solves parabolic Neu-

mann boundary value problem (1.7)–(1.10). In this formulation, Stefan condition is

assigned as a Neumann boundary condition on the given free boundary, and optimal

boundary heat flux on the fixed boundary x = 0 is searched through minimization of

the mismatch of the trace of the solution of the parabolic Neumann problem on the

given free boundary from the phase transition temperature. This approach turned to

be the most popular approach for solving ISP with known free boundary. The main

methods were functional-analytic methods for proving existence and uniqueness of so-

lutions, necessary conditions of optimality, Frechet differentiability in functional set-

ting, Tikhonov regularization and development of numerical methods based on gradi-

ent type methods in functional spaces were developed and successfully implemented in

[21, 23, 35, 37, 38, 48, 72, 43, 68, 69, 36, 82, 54, 83, 45].

ISP with unknown free boundary is more relevant in many applications. For exam-

ple, consider the modeling of bioengineering problem on the laser ablation of biological

tissues through the Stefan problem (1.7)–(1.14), where s(t) is the ablation depth at the

moment t. Assume now that some of the data is not available, or involves some measure-

ment error. For example, assume that the coefficients a, c and d, heat flux g on the fixed

6



boundary x = 0 and the “regular part” of the density of heat sources, f are unknown and

must be found along with the temperature u and the free boundary s. The unknown pa-

rameters of the model are very difficult to measure directly through experiments. In order

to find the unknown parameters inverse problem must be solved based on the available

measurements taken in the lab experiments. For example, assume that this information

is provided in the form of a measurement of temperature and the position of the free

boundary at the final time t = T ,

u(x,T ) = w(x), 0 ≤ x ≤ s(T ) =: s̄ (1.14)

and consequently, ISP must be solved for the identification of some, or all, of the unknown

parameters a, b, c, g, f , etc. Alternatively, measurement can be taken on a fixed boundary

x = 0:

u(0, t) = ν(t), 0 ≤ t ≤ T (1.15)

Still another important motivation arises from the optimal control of the laser ablation

process. A typical control problem arises when unknown control parameters, such as the

intensity of the laser source f , heat flux g on the known boundary, and the coefficients

a, c and d, must be chosen with the purpose of achieving a desired ablation depth and

temperature distribution at the end of the time interval.

The following is the mathematical formulation of the general Inverse Stefan Prob-

lem (ISP) with unknown free boundary: find functions u(x, t) and s(t), the boundary

heat flux g(t), density of sources f (x, t), and coefficients a(t), c(x, t), d(x, t) satisfying

conditions (1.7)–(1.14) (or (1.7)–(1.11), (1.15)).

Furthermore across the dissertation ISP with unknown free boundary will be referred

simply as ISP. ISP is heavily ill-posed problem, and as such the properties of existence

and uniqueness of solution, and property of continuous dependence of solution on the data

may be violated. Historically, the first result on ISP appeared in [78] in optimal control
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framework. Precisely, it analyzed the problem on finding external temperature on the

fixed boundary x = 0, to ensure that the solution of the one-phase Stefan problem for the

heat equation are close to measurements taken at the final moment. In [78] existence of the

optimal control was established. For the same problem in [81] the Frechet differentiability

and the convergence of the difference schemes was proved and Tikhonov regularization

is implemented.

Research on the optimal control of Stefan type free boundary problems, or equiva-

lently ISP with unknown free boundaries was pursued in [22, 39, 48, 49, 51, 52, 56, 60,

66, 64, 70, 71, 75, 43, 44, 24, 46, 47]. Summarizing the research development up to 2012

one can observe that the main methods used to solve the ISP are based on variational for-

mulation, method of quasisolutions or Tikhonov regularization which takes into account

ill-posedness in terms of the dependence of the solution on the inaccuracy involved in the

measurement, Frechet differentiability and iterative gradient type methods for numerical

solution. For example, typical variational formulation of the ISP with unknown flux on

the known boundary x = 0, or equivalently optimal control of Stefan problem arising in

bioengineering problem on the laser ablation of tissues, would be minimization of the

cost functional

I(g) = β1

∫ s(T )

0
|u(x,T )−w(x)|2 dx +β2 |s(T )− s̄|2 (1.16)

in certain control set G, where the state vector u = u(x, t;g) is a solution of the Stefan

problem (1.7)-(1.11). As it is mentioned in [1, 2], despite effectiveness, this approach has

some deficiencies in many practical applications:

• Solution of the inverse Stefan problem is not continuously dependent on the phase

transition temperature µ(t): small perturbation of the phase transition temperature

may imply significant change of the solution to the inverse Stefan problem. Accord-

ingly, any regularization which equally takes into account instability with respect to
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both w(x) and s(T ) from measurement (3.10), and the phase transition temperature

µ(t) from (3.5) will be preferred. It should be also mentioned that in many appli-

cations the phase transition temperature is not known explicitly. In many processes

the melting temperature of pure material at a given external action depends on the

process evolution. For example, gallium (Ga, atomic number 31) may remain in

the liquid phase at temperatures well below its mean melting temperature ([62]).

• Numerical implementation of iterative gradient type methods within the existing

approach requires solving the full free boundary problem at every step of the iter-

ation, and accordingly has quite a high computational cost. An iterative gradient

method which requires solution of the boundary value problem in a fixed region at

every step would definitely be much more effective in terms of the computational

cost.

In recent papers [1, 2] a new variational approach is developed based on the optimal

control theory which is capable of addressing both of the mentioned issues and allows the

inverse Stefan problem to be solved numerically with least computational cost by using

gradient methods in Hilbert spaces. The main idea of the new variational formulation is

that the unknown free boundary x = s(t) is treated as a control parameter. Having the

free boundary s as one of the components of the control vector, for any given control,

state vector is taken as a solution of the Neumann initial boundary value problem for

the parabolic PDE in a fixed domain. Moreover, Stefan condition turns into Neumann

boundary condition on the fixed boundary, and the second condition on the free boundary

expressing phase transition temperature is added to the cost functional to express the

criterion for the mismatch of the temperature on the free boundary vs phase transition

temperature. The latter addresses the first concern raised above, while the former settles

down a framework for the development of the iterative methods with least computational

cost.

In [1] the new variational framework is introduced for the ISP with unknown boundary
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flux function g(t). The existence of the optimal control and convergence of the family of

time-discretized optimal control problems to the continuous problem is proved. In [2] full

discretization through finite differences is implemented and convergence of the discrete

optimal control problems to the continuous problem both with respect to cost functional

and control is established. The new variational formulation introduced in [1, 2] employs

a Sobolev spaces framework which allows to reduce the regularity and structural require-

ments on the data. In [8] the new variational formulation and results of [1, 2] is extended

to solve ISP with unknown parameters a(t),c(x, t),d(x, t), f (x, t),g(t). Frechet differentia-

bility and derivation of the necessary condition for optimality in a new variational formu-

lation of the ISP is addressed in [3, 4]. In [3] ISP with unknown boundary heat flux g

and the unknown density of the sources f is analyzed in the optimal control framework

introduced in [1, 2]. Frechet differentiability in Besov spaces is proved, and the formula

for the Frechet differential, expressed in terms of the adjoined PDE problem, is derived

under minimal regularity assumptions on the data. The result of [3] implied a necessary

condition for optimal control and opened the way to the application of projective gradi-

ent methods in Besov spaces for the numerical solution of the ISP. In [4] the results of

[3] are extended to ISP with unknown parameters a(x, t),c(x, t),d(x, t),g(t), f (x, t),g(t). In

[5] computational analysis of ISP with unknown boundary flux g is pursued via gradient

descent algorithm in Hilbert-Besov spaces based on Frechet differentiability results and

Frechet gradient formula derived in [3]. Primarily by applying the Frechet differentiabilty

result of [4], in [8] computational analysis based on gradient descent method is performed

for ISP with unknown time-dependent diffusion coefficient a(t).

The new variational approach developed in [1, 2] is not applicable to the inverse mul-

tiphase Stefan problem. The reason is that the Stefan condition on the phase transition

boundary includes the flux calculated from both phases. Therefore, it can’t be treated

as a Neumann condition, even if we include the free boundary as one of the control

components. In [6] a new approach was developed based on the weak formulation of
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the multiphase Stefan problem as a boundary value problem for the nonlinear PDE with

discontinuous coefficient. The optimal control framework was applied to the inverse mul-

tiphase Stefan problem with non-homogeneous Neumann conditions on the fixed bound-

aries in the case when the space dimension is one. Existence of the optimal control

is proved. Optimal control problem is discretized and convergence of the sequence of

finite-dimensional discrete optimal control problems to original optimal control problem

is established both with respect to functional and control. In [9], the results of [6] are

extended to the case of general second order parabolic PDEs. Multiphase ISP with un-

known boundary flux g is transformed to boundary optimal control of singular parabolic

PDE problem with time-derivative term being a distributional derivative of the maximal

monotone graph. Existence of optimal control and convergence of sequence of discrete

optimal control problems is proved. In a recent paper [7] the new method of [6] is devel-

oped to solve multi-dimensional and multiphase inverse Stefan problem with unknown

source density function f (x, t). The method transforms the problem to boundary optimal

control problem for the singular PDE with measure coefficient in the time derivative term.

Existence of the optimal control and convergence of the sequence of discrete optimal con-

trol problems to the continuous problem both with respect to the functional and control

is proved. The proof is based on establishing a uniform L∞ bound, and W1,1
2 -energy esti-

mate for the discrete multiphase Stefan problem, and delicate results on the convergence

of suitable interpolations of the discrete solutions.
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1.3 Formulation of the Open Problem and Outline of Main

Results

Consider optimal control problem on the minimization of the cost functional

J(v) = β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx +β1

∫ T

0

∣∣∣u(s(t), t
)
−µ(t)

∣∣∣2 dt

+β2 |s(T )− s̄|2 , (1.17)

on the control set

VR =
{
v = (s,g, f ,a,c,d) ∈ H : δ ≤ s(t), s(0) = s0, s′(0) = 0, a(x, t) ≥ a, ‖v‖H ≤ R

}
, (1.18)

where u = u(x, t;v) is a solution of the following Neumann problem for the second order

parabolic PDE

(a(x, t)ux)x + c(x, t)ux + d(x, t)u−ut = f (x, t)−
∂p(x, t)
∂x

, 0 < x < s(t),0 < t ≤ T (1.19)

u(x,0) = φ(x), 0 ≤ x ≤ s(0) (1.20)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T (1.21)

a
(
s(t), t)

)
ux

(
s(t), t

)
+γ

(
s(t), t

)
s′(t) = χ

(
s(t), t

)
, 0 ≤ t ≤ T (1.22)

where p, φ, γ, χ, µ, w are known functions, βi ∈R, i = 1,2,3 and H is some suitably chosen

Banach space of vector-function v.

Optimal control problem (1.17)-(1.22) is a variational formulation of the general In-

verse Stefan Problem with unknown parameters g, f ,a,c,d. It was introduced in [1, 2] as

a new variational formulation of ISP with unknown boundary flux g. It is essential to note

that optimal control problem (1.17)-(1.22) can be adjusted to be a variational formulation

of the ISP with known free boundary x = s(t). In this case one have to remove s(t) from
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the control set VR, and set up β0 = β2 = 0, β1 = 1 in (1.17). The aim of the dissertation is

to generalize the results of [1, 2] to the case of the optimal control problem (1.17)-(1.22).

The main goal is the following:

• Prove existence of the optimal control under minimal conditions on the input data

and control parameters;

• Introduce discretization via method of finite differences and prove the convergence

of the sequence of finite-dimensional optimal control problems to the original opti-

mal control problem both with respect to functional and control;

In Chapter 2 the general Inverse Stefan Problem with unknown parameters such as

time-dependent diffusion coefficient a(t), space-time dependent convection coefficient

c(x, t), reaction coefficient d(x, t) and density of sources f (x, t), boundary heat flux g(t)

and a free boundary s(t) is considered. Optimal control problem for the free boundary

system with distributed parameters for the second order parabolic equation in Hilbert-

Besov space

H = B1
2(0,T )×B1+ε

2 (D)×B1+ε
2 (D)×L2(D)×B1

2(0,T )×B2
2(0,T )

is introduced, where unknown parameters and the free boundary are components of the

control vector, and the state vector is the weak solution of the parabolic Neumann problem

in Sobolev-Hilbert space B1
2(D). Optimality criteria are based on the final moment mea-

surement of the temperature and the position of the free boundary, and the temperature on

the phase transition boundary.

• Existence of the optimal control is proved. The methods of proof are based on

energy estimates in Sobolev-Hilbert spaces, weak continuity of the cost functional

and Weierstrass theorem in weak topology of the Hilbert-Besov spaces.

• Method of finite differences is implemented and space-time discretization of the
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optimal control problem is introduced. Convergence of the sequence of the finite-

dimensional discrete optimal control problems to the original optimal control prob-

lem both with respect to functional and control is proved. Namely,

– it is proved that the sequence of infima of the discrete optimal control prob-

lems converge to the infimum of the original optimal control problem,

– It is proved that sequence of interpolations of the discrete optimal controls

converge to the optimal control in a weak topology of H, and the sequence of

multi-linear interpolations of the discrete PDE problems associated with dis-

crete minimizers converge weakly in the class of weakly differentiable func-

tions to the solution of the PDE problem associated with optimal control. The

methods of the proof are based on establishing two energy estimates in dis-

crete Sobolev-Hilbert spaces, use of weak compactness criteria, and delicate

interpolation results in Sobolev spaces.

The results of Chapter 2 are published in [8]. It presents solution of the general ISP or

equivalently optimal control of parameters (a,c,d, f ,g) for the second order Stefan type

parabolic free boundary problems. One of the most challenging problems in optimal con-

trol of systems with distributed parameters described by elliptic and parabolic PDEs is the

problem where control parameter is a diffusion or heat conduction coefficient. Mathemat-

ical difficulties are associated with the fact that the diffusion coefficient is embedded in

terms with second order spatial derivatives in state PDEs, and therefore they provide high

sensitivity and ill-posedness with respect to small errors in measurements. The results of

Chapter 2 are valid when diffusion coefficient component a of the control vector is only

time dependent. The methods developed in Chapter 2 are not applicable to the case when

diffusion coefficient depends on both time variable t and spatial variable x.

In Chapter 3 we consider the Inverse Stefan Problem with unknown space-time de-

pendent diffusion coefficient a(x, t). Dissertation introduces a new Banach space
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(
W̃1,1

2 (D)∩ W̃1,1
∞,γ(D)

)
×B2

2(0,T ).

Following the new variational formulation introduced in [1, 2], ISP is formulated as a

parabolic PDE constrained optimal control problem with control vector (a(x, t), s(t)) in a

Banach space H. The following are the main results of the Chapter 3:

• Finite difference discretization of the optimal control problem is carried out and

sequence of finite-dimensional optimal control problems is introduced. Conver-

gence of the sequence of discrete optimal control problems to continuous optimal

control problem both with respect to functional and control is proved.

• Convergence of the sequence of multi-linear interpolations of the minimizing

discrete optimal control parameters to optimal diffusion coefficient a(x, t) in a weak

topology of W̃1,1
2 (D) is proved. Convergence of the multi-linear interpolations of

the associated discrete PDE problems to the optimal state PDE problem in a weak

topology of the space of weakly differentiable functions is established.

• H1-energy estimates are proved for the solutions of the discrete and continuous

PDE problems under the minimal assumption a ∈ W̃1,1
∞,γ(D). Primarily by applying

energy estimate, and new interpolation results, existence of the optimal control is

proved.

The results of Chapters 2 and 3 can be extended to ISP, and associated optimal control

problem with unknown parameter vector (a(x, t),c(x, t),d(x, t), f (x, t),g(t), s(t) in the Ba-

nach space

H =
(
W̃1,1

2 (D)∩ W̃1,1
∞,γ(D)

)
×B1+ε

2 (D)×B1+ε
2 (D)×L2(D)×B1

2(0,T )×B2
2(0,T )
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Dissertation is outlined as follows. In Section 2.1 variational formulation of ISP with

unknown parameter vector (a(t),c(x, t),d(x, t), f (x, t),g(t) is presented. Section 2.2 in-

troduces space-time discretization of the optimal control problem via method of finite

differences, and formulates finite-dimensional discrete optimal control problems. Main

results of the Chapter 2 and respective assumptions on the data are presented in Section

2.3. Some essential preliminary results are summarized in Section 2.4. In Section 2.5

proofs of the main results are carried out. In Section 2.5.1 energy estimates and com-

pactness results are proved. Finally, in Section 2.5.2 proof of the existence of the optimal

control and convergence of the discrete optimal control problems to the original optimal

control problem are completed. In Section 3.1 of Chapter 3 general ISP with unknown

space-time dependent diffusion coefficient is formulated. Section 3.1 presents variational

formulation of the ISP with unknown vector (a(x, t), s(t) as an optimal control problem

in the new Banach space. Discretization via finite differences is pursued in Section 3.3,

where sequence of finite-dimensional optimal control problems are introduced. Main re-

sults of Chapter 3 and respective assumptions are formulated in Section 3.4. Section 3.5

describes some preliminary results. Proofs of the main results are described in Section

3.6. Section 3.6.1 proves the first energy estimation and V1,0
2 -approximation theorem.

In Section 3.6.2 the second energy estimate and the existence of the optimal control is

proved. Section 3.6.3 presents the proof of the main convergence theorem. Finally, main

conclusions of the dissertation are outlined in Section 4.1 of Chapter 4. Section 4.2 lists

research publication and conference presentations.
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Chapter 2

Optimal Control of Coefficients in

Parabolic Free Boundary Problems

Results of this Chapter are published in [8].

2.1 Variational Formulation of ISP

Let R, δ > 0, 0 < ε � 1. We introduce the following control set:

VR =
{
v = (s,g, f ,a,c,d) ∈ H : δ ≤ s(t), s(0) = s0, s′(0) = 0, a(t) ≥ a, (2.1)

‖v‖H ≤ R
}
,

H = B2
2(0,T )×B1

2(0,T )×L2(D)×B1
2(0,T )×B1+ε

2 (D)×B1+ε
2 (D),

‖v‖H := max
(
‖s‖B2

2(0,T );‖g‖B1
2(0,T );‖ f ‖L2(D);‖a‖B1

2(0,T );‖c‖B1+ε
2 (D);

‖d‖B1+ε
2 (D)

)
(2.2)

where we define D as follows

D := {(x, t) : 0 ≤ x ≤ `, 0 ≤ t ≤ T } ,
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here ` = `(R) > 0 and it is chosen so that v ∈ VR, s satisfies s(t) ≤ `. Such ` exists due to

Morrey’s inequality [58, 25]. We extend f ∈ L2(D) to L2(R2) by zero.

Definition 2.1.1. Fix βi ≥ 0, i = 0,1,2. Define by problem I the minimization of the

following functional

J(v) = β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx +β1

∫ T

0

∣∣∣u(s(t), t
)
−µ(t)

∣∣∣2 dt

+β2 |s(T )− s̄|2 (2.3)

over the control set VR, where the state vector u = u(x, t;v) solves (1.7)–(1.10).

Definition 2.1.2. We call u ∈ B1,1
2 (Ω) to be a weak solution of the problem (1.7)–(1.10) if

u(x,0) = φ(x) ∈ B1
2(0, s0) and

0 =

∫ T

0

∫ s(t)

0

[
abuxΦx− cuxΦ−duΦ + utΦ + f Φ + pΦx

]
dxdt

+

∫ T

0

[
γ
(
s(t), t

)
s′(t)−χ

(
s(t), t

)]
Φ(s(t), t)dt +

∫ T

0
g(t)Φ(0, t)dt (2.4)

for any Φ ∈ B1,1
2 (Ω).

Definition 2.1.3. u ∈ V2(Ω) is called a weak solution of the problem (1.7)–(1.10) if

u(x,0) = φ(x) ∈ B1
2(0, s0) and

0 =

∫ T

0

∫ s(t)

0

[
abuxΦx− cuxΦ−duΦ + utΦ + f Φ + pΦx

]
dxdt

−

∫ s(0)

0
φ(x)Φ(x,0)dx +

∫ T

0
g(t)Φ(0, t)dt

+

∫ T

0

[
γ
(
s(t), t

)
s′(t)−u

(
s(t), t

)
s′(t)−χ

(
s(t), t

)]
Φ(s(t), t)dt (2.5)

for any Φ ∈ B1,1
2 (Ω) with Φ(x,T ) = 0.
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2.2 Discrete Optimal Control Problem

Let

ωτ =
{
t j = jτ, j = 0,1, . . . ,n

}
be a grid on [0,T ] and τ = T

n . Following standard notations will be used for {di},

dk,t̄ =
dk −dk−1

τ
, dkt = dk+1,t̄, dk,t̄t =

dk+1,t̄ −dk,t̄

τ
(2.6)

Next we introduce the spatial grid in a following way. Let [s]n ∈ R
n+1 be a discrete

boundary and (p0, p1, . . . , pn) be a permutation of (0,1, . . . ,n) corresponding to the order

sp0 ≤ sp1 ≤ · · · ≤ spn . For arbitrary k there exists a unique jk such that sk = sp jk
. Instead of

subscript jk we are going to use subscript j. Let

ωp0 = {xi : xi = ih, i = 0,1, . . . ,m(n)
0 }

be a grid on [0, sp0] and h =
sp0

m(n)
0

. We will impose the following assumption on the grid

h = O(
√
τ), as τ→ 0. (2.7)

Construction of the spatial grid is carried out by induction. Based on ωpk−1 on [0, spk−1]

we construct

ωpk = {xi : i = 0,1, . . . ,m(n)
k }

on [0, spk], where m(n)
k ≥mn

k−1, and inequality is strict if and only if spk > spk−1; for i≤m(n)
k−1

points xi are the same as in grid ωpk−1 . If spn < `, then we define a grid on [spn , `]

ω = {xi : xi = spn + (i−m(n)
n )h, i = m(n)

n , . . . ,N}
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with the stepsize of order h, i.e. h = O(h) as h→ 0. For simplicity we will write m(n)
k ≡mk.

Let

hi = xi+1− xi, i = 0,1, . . . ,N −1;

We denote ωh to be the space grid on [0, `] and set

∆ = max
i=0,...,N−1

hi

Assume that mk → +∞, as n→∞. We define Steklov averages of c,d, p, f ,b,w,a, ν,µ,g

as follows

hk =
1
τ

∫ tk

tk−1

h(t)dt, b̄i =
1
hi

∫ xi+1

xi

b̄(x)dx,

c̄ik =
1

hiτ

∫ xi+1

xi

∫ tk

tk−1

c̄(x, t)dt dx,

where i = 0,1, . . . ,N − 1; k = 1, . . . ,n; c̄ stands for any of the functions c, d, p, or f ; b̄

stands for b ,w; and h stands for a, ν, µ, g, etc. We define the discrete control set Vn
R in a

following way

Vn
R =

{
[v]n = ([s]n, [g]n, [ f ]nN , [a]n, [c]n, [d]n) ∈ H̄ : δ ≤ sk; a ≤ ak;

‖[v]n‖H̄ ≤ R
}

(2.8)

where

H̄ := Rn+1×Rn+1×RnN ×Rn+1×Rn+1×Rn+1

‖[v]n‖H̄ := max
(
‖[s]n‖b2

2
;‖[g]n‖b1

2
;‖[ f ]nN‖`2

;‖[a]n‖b1
2
;‖[c]n‖b2;‖[d]n‖b2

)
,
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and

‖[ḡ]n‖
2
b1

2
=

n−1∑
k=0

τḡ2
k +

n∑
k=1

τḡ2
k,t̄, ‖[s]n‖

2
b2

2
= ‖[s]n‖

2
b1

2
+

n−1∑
k=1

τs2
k,t̄t,

‖[ f ]nN‖
2
`2

=

n∑
k=1

N−1∑
i=0

τhi f 2
ik, ‖[c̄]n‖

2
b2

=

n∑
k=0

|c̄k|
2 ,

where sk ≡ s0 for k ≤ 1, ḡ represents a or g, and c̄ represents c or d. Let {ψk, k = 0,1, . . . }

be an orthonormal set in B1+ε
2 (D). We denote the inner product on the Hilbert space

B1+ε
2 (D) by 〈·, ·〉B1+ε

2
. Next, we are introducing the following mappingsQn andPn between

continuous and discrete control sets: Define Qn(v) for v ∈ VR by sk = s(tk) for k = 2, . . . ,n,

gk = g(tk) and ak = a(tk) for k = 0,1, . . . ,n, and

fik =
1

hiτ

∫ tk

tk−1

∫ xi+1

xi

f (x, t)dxdt, k = 0, . . . ,n, i = 0, . . . ,N,

c̄k = 〈c̄,ψk〉B1+ε
2

for k = 0,1, . . . where c̄ represents c or d. DefinePn([v]n) = vn = (sn,gn, f n,an,cn,dn) ∈

H for [v]n ∈ Vn
R by

sn(t) = sk−1 +

(
t− tk−1−

τ

2

)
sk−1,t̄ +

1
2

(t− tk−1)2sk−1,t̄t, tk−1 ≤ t ≤ tk, (2.9)

ān(t) = āk−1 + āk,t̄(t− tk−1), tk−1 ≤ t ≤ tk,

f n(x, t) = fik, xi ≤ x < xi+1, tk−1 ≤ t < tk, i = 0,N −1

c̄n(x, t) =

n∑
k=0

c̄kψk(x, t)

for any k = 1,n where ā represents a or g, and c̄ represents c or d. Given v = (s,g, f ,a,c,d) ∈

VR. We also introduce the Steklov averages of traces by

χk
s =

1
τ

∫ tk

tk−1

χ(s(t), t)dt, (γss′)k =
1
τ

∫ tk

tk−1

γ(s(t), t)s′(t)dt, k = 1,2, . . . ,n (2.10)
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For any [v]n ∈ Vn
R we introduce Steklov averages χk

sn and (γsn(sn)′)k by (2.10) with s

replaced by sn. The Steklov averages cik, and dik are defined by

c̄ik =
1

hiτ

∫ tk

tk−1

∫ xi+1

xi

c̄n(x, t)dxdt. (2.11)

Here c̄ represents c or d. Definition of a discrete state vector is given through discretiza-

tion of the integral identity (2.4)

Definition 2.2.1. Given discrete control vector [v]n ∈ Vn
R, the vector function

[u([v]n)]n = (u(0),u(1), . . . ,u(n)), u(k) = (u0, . . . ,uN) ∈ ReN+1, k = 0, . . . ,n

is called a discrete state vector if

(a) The first m0 +1 components of the vector u(0) satisfy ui(0) = φi := φ(xi), i = 0,1, . . . ,m0;

(b) For arbitrary k = 1, . . . ,n first m j +1 components of the vector u(k) solve the following

system of m j + 1 linear algebraic equations:

[
b0ak + hc0k −h2d0k +

h2

τ

]
u0(k)−

[
b0ak + hc0k

]
u1(k) =

h2

τ
u0(k−1)

−h2 f0k −hgn
k −hp0k,[

bi−1akhi + biakhi−1 + cikhihi−1−dikh2
i hi−1 +

h2
i hi−1

τ

]
ui(k)

−bi−1akhiui−1(k)−
[
biakhi−1 + cikhihi−1

]
ui+1(k) = −h2

i hi−1 fik

+hihi−1 pik,x̄ +
h2

i hi−1

τ
ui(k−1), i = 1, . . . ,m j−1

−bm j−1akum j−1(k) + bm j−1akum j(k) = −hm j−1
[
(γsn(sn)′)k −χk

sn

]
. (2.12)

(c) For arbitrary k = 0,1, . . . ,n, we define the remaining components of u(k) as ui(k) =

û(xi;k) for m j ≤ i ≤ N. Here û(x;k) ∈ B1
2(0, `) is a piecewise linear interpolation of
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{ui(k) : i = 0, . . . ,m j}, i.e

û(x;k) = ui(k) + uix(k)(x− xi), xi ≤ x ≤ xi+1, i = 0, . . . ,m j−1,

iteratively continued for 0 ≤ x <∞ as

û(x;k) = û(2nsk − x;k), 2n−1sk ≤ x ≤ 2nsk,n = 1,2, . . . (2.13)

It is enough to consider n∗ = 1 + log2

[
`
δ

]
reflections to cover [0, `]. Note that for any

k = 1,2, . . . ,n system (3.19) is equivalent to the following summation identity

m j−1∑
i=0

hi
[
biakuix(k)ηix− cikuix(k)ηi−dikui(k)ηi + fikηi + pikηix + uit(k)ηi

]
+
[
(γsn(sn)′)k −χk

sn

]
ηm j + gn

kη0 = 0, (2.14)

for arbitrary numbers ηi, i = 0,1, . . . ,m j.

Definition 2.2.2. Denote by problem In the minimization of the functional

In([v]n) = β0

mn−1∑
i=0

hi
(
ui(n)−wi

)2
+β1τ

n∑
k=1

(
umk(k)−µk

)2
+β2 |sn− s̄|2 (2.15)

on the set Vn
R subject where the state vector [u([v]n)]n satisfies Definition 3.3.1.

From now on we are going to use piecewise constant and piecewise linear interpola-

tions of the discrete state vector: given discrete state vector [u([v]n)]n, let

uτ(x, t) = û(x;k), if tk−1 < t ≤ tk, 0 ≤ x ≤ `, k = 0,n,

ûτ(x, t) = û(x;k−1) + ût(x;k)(t− tk−1), if tk−1 < t ≤ tk, 0 ≤ x ≤ `,
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for k = 1,n,

ûτ(x, t) = û(x;n), if t ≥ T, 0 ≤ x ≤ `.

ũτ(x, t) = ui(k), if tk−1 < t ≤ tk, xi ≤ x < xi+1, k = 1,n, i = 0,N −1.

Standard notations for difference quotients of the discrete state vector are employed:

uix(k) =
ui+1(k)−ui(k)

hi
, uit =

ui(k)−ui(k−1)
τ

, etc.

Let φn be a piecewise constant approximation to φ:

φn(x) = φi, xi < x ≤ xi+1, i = 0, . . . ,N −1

2.3 Main Results

Here are our assumptions on functions b,w,φ,µ, p,χ,γ

b ∈ B1
∞(0, l)

w ∈ L2(0, `), χ,γ ∈ B1,1
2 (D), φ ∈ B1

2(0, s0), µ ∈ L2(0,T ), p ∈ B̊0,1
2 (Dδ).

where Dδ = (0, δ)× (0,T ). Note that the distributional derivative ∂p
∂x is understood in the

sense of measures. Extend arbitrary µ ∈ L2(0,T ) to L2(R) by zero. Now we are going to

state the main result of Chapter 2:

Theorem 2.3.1 (Existence of an Optimal Control). Problem I has a solution. That is,

V∗ :=
{

v ∈ VR :J(v) = J∗ =: inf
v∈VR
J(v)

}
, ∅

Theorem 2.3.2. In approximate the continuous problem I with respect to functional in
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the sense that

lim
n→∞

I∗n = J∗, where I∗n = inf
Vn

R

In, and J∗ = inf
VR
J

Moreover, the sequence In approximates I with respect to control in the sense that if

[u]n,ε ∈ Vn
R is chosen such that

I∗n ≤ In([v]n,ε) ≤ I∗n + εn, where εn ↓ 0

then the sequence vn = (sn,gn, f n,an,cn,dn) = Pn([v]n,ε) converges to an element v∗ =

(s∗,g∗, f∗,a∗,c∗,d∗) ∈V∗ weakly in B2
2(0,T )×B1

2(0,T )×L2(D)×B1
2(0,T )×B1+ε

2 (D)×B1+ε
2 (D),

and (sn,gn,an,bn,cn) converge strongly in B1
2(0,T )× L2(0,T )× L2(0,T )× L2(D)× L2(D).

Moreover, sn converges to s∗ uniformly on [0,T ]. For any δ > 0, define

Ω′ = Ω∩{x < s(t)−δ, 0 < t < T }

Then the piecewise linear interpolations ûτ of the corresponding discrete state vectors[
[v]n,ε

]
n converge to the solution u(x, t;v∗) ∈ B1,1

2 (Ω∗) of the Neumann problem (1.7)–

(1.10) weakly in B1,1
2 (Ω′).

2.4 Preliminary Results

Lemma 2.4.1. For arbitrary sufficiently small ε > 0, there exists nε such that

Qn(v) ∈ Vn
R, for all v ∈ VR−ε , n > nε (2.16)

Pn
(
[v]n

)
∈ VR+ε , for all [v]n ∈ Vn

R, n > nε (2.17)

Proof. The first two entries of either Qn(v) for v ∈ VR−ε or Pn
(
[v]n

)
for [v]n ∈ Vn

R are

estimated as in [2, Lem. 2.2]; therefore we are going to focus on estimating the com-

ponents corresponding to f , a, c, and d in both. We will carry out estimation for d
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component and will omit the details for c component due to similarity. Fix v ∈ VR−ε

and let
(
[s]n, [g]n, [ f ]nN , [a]n, [c]n, [d]n

)
= Qn(v). Estimation for a(t) term is performed as

for g(t) term in [2, Lem. 2.2] since both a(t) and g(t) terms belong to B1
2. By Cauchy-

Bunyakovski-Schwarz (CBS) inequality,

‖[ f ]nN‖
2
`2
≤

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

| f (x, t)|2 dt dx

=

∫ T

0

∫ `

0
| f (x, t)|2 dxdt = ‖ f ‖2L2(D) ≤ (R− ε)2 (2.18)

By Bessel’s inequality,

‖[d]n‖
2
b2

=

n∑
k=0

|dk|
2 ≤

∞∑
k=0

|dk|
2 ≤ ‖d‖2

B1+ε
2 (D)

≤ (R− ε)2 (2.19)

By (2.18), (2.19), and the proof of [2, Lem. 2.1], it follows that

‖Qn(v)‖2Vn
R
≤ R2

for τ sufficiently small, which implies (2.16). Next, consider [v]n ∈Vn
R and let

(
s,g, f ,a,c,d

)
=

Pn([v]n). Since a is a piecewise-linear interpolation of the values [a]n, on each interval

[tk−1, tk] the interpolation attains its maximum on the boundary, and in particular, ak ≥ a.

The estimate of the norm of a(t) follows from estimate for g as in [2, Lem. 2.2].

Lets consider the estimate for the term f , we get

‖ f ‖2L2(D) =

∫ T

0

∫ `

0
| f (x, t)|2 dxdt =

n∑
k=1

τ

N−1∑
i=0

hi | fik|2 = ‖[ f ]n‖
2
`2(0,`) ≤ R2 (2.20)

26



By definition,

∥∥∥dn
∥∥∥2

B1+ε
2 (D) =

〈
dn,dn〉

B1+ε
2

=

〈 n∑
k=0

dkψk(x, t),
n∑

j=0

d jψ j(x, t)
〉

B1+ε
2

=

n∑
k=0

n∑
j=0

dkd j
〈
ψk,ψ j

〉
B1+ε

2
= ‖[d]n‖

2
b2(D) ≤ R2 (2.21)

By (2.20), (2.21), and the proof of [2, Lem. 2.1], it follows that

‖Pn([v]n)‖2H ≤ (R + ε)2

for τ sufficiently small, which implies (2.17). Lemma is proved. �

As in [1], it follows from Theorem 2.4.1 that

Corollary 2.4.2. Let either [v]n ∈ Vn
R or [v]n = Qn(v) for v ∈ VR. Then for large n,

|sk − sk−1| ≤C′τ, k = 1,2, . . . ,n (2.22)

where C′ is independent of n.

Notice that we might only have one of the following: hi = h, or hi = h, or hi ≤ |sk− sk−1|

for some k. Hence, from (3.15) and (2.22), it follows that

∆ = O(
√
τ), as τ→ 0. (2.23)

Using Lemma 2.4.1, we derive

Corollary 2.4.3. For a given discrete control vectors [d]n ∈ b2, the coefficients {dik} de-

fined by (2.11) satisfy the estimate

max
ik
|dik| ≤C‖[d]n‖b2 (2.24)
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for C independent of n and [d]n. In particular, when ‖[d]n‖b2 are bounded, then {dik}

are uniformly bounded. Using similar argument, we can show that coefficients {cik} are

uniformly bounded.

Proof. By embedding of B1+ε
2 (D) in L∞(D) [25, 65, 73, 74],

max
ik
|dik| = max

ik

1
hiτ

∣∣∣∣∣∣
∫ tk

tk−1

∫ xi+1

xi

dn(x, t)dxdt

∣∣∣∣∣∣ ≤ ∥∥∥dn
∥∥∥

L∞(D)

≤C
∥∥∥dn

∥∥∥
B1+ε

2 (D) ≤C‖[d]n‖b2(D) �

Lemma 2.4.4. For given [v]n ∈ Vn
R, the discrete state vector

[
u
(
[v]n

)]
n exists and is unique

for all sufficiently small τ > 0.

As the regularity of the coefficients is proven to be sufficient, and the form of the

corresponding homogeneous equations to (3.19) are the same after renaming, we can

prove Lemma 2.4.4 as in [2, Lem. 2.1].

2.5 Proof of Main Results

2.5.1 Energy Estimates and their Consequences

Theorem 2.5.1. For τ sufficiently small, and for any discrete control [v]n ∈ Vn
R, the corre-

sponding discrete state vector satisfies the estimate

max
0≤k≤n

N−1∑
i=0

hiu2
i (k) +

n∑
k=1

τ

N−1∑
i=0

hiu2
ix(k) ≤C

(∥∥∥φn
∥∥∥2

L2(0,s0) +
∥∥∥gn

∥∥∥2
L2(0,T )

+
∥∥∥ f n

∥∥∥2
L2(D) +

∥∥∥γ(sn(t), t)(sn)′(t)
∥∥∥2

L2(0,T ) +
∥∥∥χ(sn(t), t)

∥∥∥2
L2(0,T )

+

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

)
, (2.25)

Theorem 2.5.1 is an extension of [2, Thm. 3.1]. As in [1, Thm. 3.4], from Theo-

rem 2.5.1 we have
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Theorem 2.5.2. Let [v]n ∈ Vn
R for n = 1,2, . . . be a sequence of discrete controls with{

Pn
(
[v]n

)}
converging weakly in B2

2(0,T )×B1
2(0,T )×L2(D)×B1

2(0,T )×B1+ε
2 (D)×B1+ε

2 (D)

to an element v = (s,g, f ,a,c,d). Then {uτ} converges as τ→ 0 weakly in B1,0
2 (D) to a weak

solution u ∈ V1,0
2 (Ω) of (1.7)–(1.10). Moreover, u satisfies the energy estimate

‖u‖2
V1,0

2 (D)
≤C

[
‖φ‖2L2(0,s0) + sup

n

∥∥∥ f n
∥∥∥2

L2(D) + ‖p‖2L2(D) + ‖γ‖2
B1,0

2 (D)

+‖χ‖2
B1,0

2 (D)
+ ‖g‖2L2(0,T )

]
(2.26)

From application of CBS inequality, equivalence of the piecewise constant interpola-

tions cik and cn(x, t) in L2(D) follows. We get the following Corollary from Theorem 2.5.2

Corollary 2.5.3. For any v = (s,g, f ,a,c,d) ∈ VR, there exists a weak solution u ∈ V1,0
2 (Ω)

of the Neumann problem (1.7)–(1.10) satisfying the energy estimate (2.26).

Given any discrete control vector [v]n and the corresponding discrete state vector[
u([v]n)

]
n, define the constant continuation

[
ũ([v]n)

]
n by ũi(k) = ui(k) for 0 ≤ i ≤ m j and

ũi(k) = um j(k) for m j < i for k = 0, . . . ,n.

Theorem 2.5.4 (Second Energy Estimate). For τ sufficiently small, and for any discrete

control [v]n ∈ Vn
R, the modified discrete state vector

[
ũ([v]n)

]
satisfies

max
1≤k≤n

m j−1∑
i=0

hiu2
ix(k) +τ

n∑
k=1

m j−1∑
i=0

hiũit̄(k)2 +τ2
n∑

k=1

m j−1∑
i=0

hiũ2
ixt̄(k)

≤C
[∥∥∥φn

∥∥∥2
L2(0,s0) + ‖φ‖2

B1
2(0,s0)

+
∥∥∥ f n

∥∥∥2
L2(D) +

∥∥∥gn
∥∥∥2

B1/4
2 (0,T ) + ‖p‖2

B̊0,1
2 (Dδ)

+
∥∥∥γ(sn(t), t)

(
sn)′(t)∥∥∥2

B1/4
2 (0,T ) +

∥∥∥χ(sn(t), t)
∥∥∥2

B1/4
2 (0,T )

]
(2.27)
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Proof. In (3.21), take η = 2τũit̄(k) to derive

m j−1∑
i=0

2τhi
[
biakuix(k)ũixt̄(k)− cikuix(k)ũit̄(k)−dikui(k)ũit̄(k) + fikũit̄(k)

+pikũixt̄(k) + uit̄(k)ũit̄(k)
]
+ 2τ

[(
γsn(sn)′

)k
−χk

sn

]
ũm j t̄(k) + 2τgn

k ũ0t̄(k) = 0 (2.28)

Arguing as in [2, Thm. 3.3] (in particular, Eq. 3.46), it follows that

m jq−1∑
i=0

hiũ2
ix(q) +τ2

q∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +τ

q∑
k=1

m j−1∑
i=0

hiũ2
it̄(k) ≤C

m j0−1∑
i=0

hiφ
2
ix

+C
q∑

k=1

m j−1∑
i=0

τhiũ2
ix(k) +C max

1≤k≤q

m j−1∑
i=0

hiũ2
i (k) +C

q∑
k=1

m j−1∑
i=0

τhi f 2
ik

−

q∑
k=1

m j−1∑
i=0

τhi pikũixt̄(k)−2τ
q∑

k=1

[(
γsn(sn)′

)k
−χk

sn

]
ũm j t̄(k)−2τ

q∑
k=1

gn
k ũ0t̄(k) (2.29)

for any 1 ≤ q ≤ n. We estimate the second and third terms on the right-hand side of (2.29)

using the first energy estimate; To handle the term with pik we use summation by parts;

since p has a compact support with respect to x in (0, δ), there exists iδ with iδ < m jk − 1

for all k such that pik ≡ 0 for i > iδ, and hence

q∑
k=1

m j−1∑
i=0

τhi pikũixt̄(k) =

iδ∑
i=0

hi piqũix(q)−
iδ∑

i=0

hi pi,1φix

−

q−1∑
k=1

iδ∑
i=0

τhi pi,k+1,t̄ũix(k) (2.30)

Therefore, from (2.29), (2.30), Corollary 2.4.3, and Cauchy inequality with ε, it follows
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that

a0

2

m jq−1∑
i=0

hiũ2
ix(p) +τ2a0

q∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +

τ

2

q∑
k=1

m j−1∑
i=0

hiũ2
it̄(k)

≤C
{m j0−1∑

i=0

hiφ
2
ix +

q∑
k=1

m j−1∑
i=0

τhiũ2
ix(k) + max

1≤k≤p

m j−1∑
i=0

hiũ2
i (k) +

q∑
k=1

m j−1∑
i=0

τhi f 2
ik

+

iδ∑
i=0

hi p2
iq +

iδ∑
i=0

hi p2
i1 +

q−1∑
k=1

iδ∑
i=0

τhi p2
i,k+1,t̄ +τ

q∑
k=1

[(
γsn(sn)′

)k
−χk

sn

]
ũm j t̄(k)

+τ

q∑
k=1

gn
k ũ0t̄(k)

}
(2.31)

for some C independent of τ. By CBS inequality and Fubini’s theorem we have

τ

m−1∑
k=1

m j−1∑
i=0

hi p2
i,k+1,t ≤

1
τ2

m−1∑
k=1

∫ sk

0

∫ tk

tk−1

|p(x, t +τ)− p(x, t)|2 dt dx

≤ ‖pt‖
2
L2(D) (2.32)

By CBS inequality and Sobolev embedding theorem [65, 25]

m j−1∑
i=0

hi p2
ik =

m j−1∑
i=0

1
hiτ2

(∫ xi+1

xi

∫ tk

tk−1

p(x, t)dt dx
)2

≤
1
τ

∫ tk

tk−1

∫ δ

0
p2(x, t)dxdt ≤C‖p‖2

B̊0,1
2 (Dδ)

(2.33)

Having (2.33) and (2.32), from (2.31) it follows that

a0

2

m jq−1∑
i=0

hiũ2
ix(q) +τ2a0

q∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +

τ

2

q∑
k=1

m j−1∑
i=0

hiũ2
it̄(k)

≤C
{m j0−1∑

i=0

hiφ
2
ix +

q∑
k=1

m j−1∑
i=0

τhiũ2
ix(k) + max

1≤k≤q

m j−1∑
i=0

hiũ2
i (k) +

q∑
k=1

m j−1∑
i=0

τhi f 2
ik

+‖p‖2
B̊0,1

2 (Dδ)
+τ

q∑
k=1

[(
γsn(sn)′

)k
−χk

sn

]
ũm j t̄(k) +τ

q∑
k=1

gn
k ũ0t̄(k)

}
(2.34)
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Since this inequality holds for all 1 ≤ q ≤ n, it follows that

a0

2
max
1≤k≤n

m jk−1∑
i=0

hiũ2
ix(k) +τ2a0

n∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +

τ

2

n∑
k=1

m j−1∑
i=0

hiũ2
it̄(k)

≤C
{m j0−1∑

i=0

hiφ
2
ix +

n∑
k=1

m j−1∑
i=0

τhiũ2
ix(k) + max

1≤k≤n

m j−1∑
i=0

hiũ2
i (k) + ‖ f ‖2L2(D)

+‖p‖2
B̊0,1

2 (Dδ)
+τ

n∑
k=1

[(
γsn(sn)′

)k
−χk

sn

]
ũm j t̄(k) +τ

n∑
k=1

gn
k ũ0t̄(k)

}
(2.35)

Applying the method of [1] allows the estimation of the last two terms of (2.35); if

γ,χ ∈ B1,1
2 (D) and [v]n = ([s]n, [g]n, [ f ]nN , [a]n, [c]n, [d]n) ∈ Vn

R, then for n large enough,

Pn([v]n) ∈ VR+1 by Theorem 2.4.1, and hence the traces of χ and γ · (sn)′ on the curves

x = sn(t) are in B1/4
2 (0,T ) [65, 25] and

∥∥∥γ(sn(t), t
)
(sn)′(t)

∥∥∥
B1/4

2 (0,T ) ≤C‖γ‖B1,1
2 (D),∥∥∥χ(sn(t), t

)∥∥∥
B1/4

2 (0,T ) ≤C‖χ‖B1,1
2 (D) (2.36)

Let Ψ(x, t) ∈ B2,1
2 (D) be a solution of the heat equation satisfying

Ψ(x,0) = φ(x), for x ∈ [0, s0], b(0)a(t)Ψx(0, t) = gn(t), for a.e. t ∈ [0,T ],

b
(
sn(t)

)
a(t)Ψx(sn(t), t) = χ

(
sn(t), t

)
−γ

(
sn(t), t

)
(sn)′(t), for a.e. t ∈ [0,T ]

and

‖Ψ‖B2,1
2 (D) ≤C

[∥∥∥gn
∥∥∥

B1/4
2 (0,T ) + ‖φ‖B1

2(0,s0)

+
∥∥∥χ(sn(t), t

)
−γ

(
sn(t), t

)
(sn)′(t)

∥∥∥
B1/4

2 (0,T )

]
(2.37)

Existence of such Ψ follows from e.g. [58, Ch. 3, Thm. 6.1]. Then replacing u, s and g
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with u−Ψ, sn, and gn in (2.35) with f (x) replaced by f (x)−LΨ(x) ∈ L2(D), we derive

a
2

max
1≤k≤n

m jk−1∑
i=0

hiũ2
ix(k) +τ2a

n∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +

τ

2

n∑
k=1

m j−1∑
i=0

hiũ2
it̄(k)

≤C
{m j0−1∑

i=0

hiφ
2
ix +

n∑
k=1

m j−1∑
i=0

τhiũ2
ix(k) + max

1≤k≤n

m j−1∑
i=0

hiũ2
i (k) + ‖ f ‖2L2(D)

+‖LΨ‖2L2(D) + ‖p‖2
B̊0,1

2 (Dδ)

}
(2.38)

Using first energy estimate (2.25), together with (2.37), and (2.36), from (2.38) it follows

that for τ sufficiently small, u satisfies

a
2

max
1≤k≤n

m jk−1∑
i=0

hiũ2
ix(k) +τ2a

n∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) +

τ

2

n∑
k=1

m j−1∑
i=0

hiũ2
it̄(k)

≤C
{
‖φ‖B1

2(0,s0) +
∥∥∥φn

∥∥∥2
L2(0,s0) + ‖ f ‖2L2(D) +

∥∥∥gn
∥∥∥

B1/4
2 (0,T ) + ‖φ‖B1

2(0,s0)

+
∥∥∥χ(sn(t), t

)
−γ

(
sn(t), t

)
(sn)′(t)

∥∥∥
B1/4

2 (0,T ) + ‖p‖2
B̊0,1

2 (Dδ)

+

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

}
(2.39)

where C independent of τ has been used to absorb the constants on the left-hand side, and

τ is sufficiently small as in the hypotheses of Theorem 2.5.1, which implies (2.27). �

As in [2, Thm. 3.4], from Theorem 2.5.4 we have

Theorem 2.5.5. Let [v]n ∈ Vn
R for n = 1,2, . . . be a sequence of discrete controls with{

Pn
(
[v]n

)}
converging weakly to an element v = (s,g, f ,a,c,d) in H (with (sn,gn,an,bn,cn)

converging strongly in B1
2(0,T )× L2(0,T )× L2(0,T )× L2(D)× L2(D) to (s,g,a,c,d)) and,

for any δ > 0, define

Ω′ = Ω∩{x < s(t)−δ, 0 < t < T } .

Then {ûτ(x, t;vn)} converges as τ→ 0 weakly in B1,1
2 (Ω′) to a weak solution u ∈ B1,1

2 (Ω)
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of (1.7)–(1.10). Moreover, u satisfies the energy estimate

‖u‖2
B1,1

2 (Ω)
≤C

[
‖φ‖2

B1
2(0,s0)

+ sup
n

∥∥∥ f n
∥∥∥2

L2(D) + ‖p‖2
B0,1

2 (D)
+ ‖γ‖2

B1,1
2 (D)

+‖χ‖2
B1,1

2 (D)
+ ‖g‖2

B1/4
2 (0,T )

]
(2.40)

Theorem 2.5.5 implies the following

Corollary 2.5.6. For any v ∈ VR, there exists a weak solution u ∈ B1,1
2 (Ω) of the Neumann

problem (1.7)–(1.10) satisfying the energy estimate (2.40). By Sobolev extension theorem,

u may be extended to a B1,1
2 (D) function with norm preservation, so it satisfies the energy

estimate

‖u‖2
B1,1

2 (D)
≤C

[
‖φ‖2

B1
2(0,s0)

+ ‖ f ‖2L2(D) + ‖p‖2
B̊0,1

2 (Dδ)
+ ‖γ‖2

B1,1
2 (D)

+‖χ‖2
B1,1

2 (D)
+ ‖g‖2

B1/4
2 (0,T )

]

2.5.2 Proof of the Existence and Convergence Results

Compactness results of Theorems 2.5.2 and 2.5.5 imply the weak continuity of the func-

tional J , so Theorem 2.3.1 follows from Weierstrass Theorem in the weak topology of

B2
2(0,T )×B1

2(0,T )×L2(D)×B1
2(0,T )×B1+ε

2 (D)×B1+ε
2 (D). The necessary results to com-

plete Theorem 2.3.2 will be given in three Lemmas.

Lemma 2.5.7. For ε > 0 define J∗(±ε) = infVR±εJ(v) Then

lim
ε→0

J∗(ε) = J∗ = lim
ε→0

J∗(−ε) (2.41)

Lemma 2.5.7 is established as in [1, Lem. 3.9]

Lemma 2.5.8. For v ∈ VR,

lim
n→∞

In(Qn(v)) =J(v) (2.42)
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Proof. Fix v ∈ VR and let [v]n = ([s]n, [g]n, [ f ]nN , [a]n, [c]n, [d]n) = Qn(v). Let u = u(x, t;v)

and
[
u([v]n)

]
n be the corresponding continuous and discrete state vector, respectively,

and denote by vn = (sn,gn, f n,an,cn,dn) = Pn([v]n). By Sobolev embedding theorem,

sn(t)→ s(t) uniformly on [0,T ]. Let εm ↓ 0 be an arbitrary sequence, and define

Ωm = {(x, t) : 0 < x < s(t)− εm,0 < t ≤ T }

and fix m > 0.

In Theorem 2.5.5 it was shown that {ûτ} converges to u weakly in B1,1
2 (Ωm) for any

fixed m; by the embeddings of traces, it follows that {ûτ(s(t)− εm, t)} and {ûτ(x,T )} con-

verge to the corresponding traces u(s(t)−εm, t) and u(x,T ) weakly in L2(0,T ) and L2(0, s(t)−

εm), respectively. We shall prove that the corresponding traces of uτ satisfy the same prop-

erty.

By Sobolev embedding theorem, it is enough to show that {uτ} and {ûτ} are equivalent

in B1,0
2 (Ωm).

Denote by sm
k = xı̂ where

ı̂ = max
{

i ≤ N : −εm ≤ xi− max
tk−1≤t≤tk

s(t) ≤ −
εm

2

}
.

Arguing as in [2, Eqs. 101–104] it follows that there exists N = N(εm) such that n > N

implies

sm
k < min(sk, sk−1), k = 1, . . . ,n (2.43)

and accordingly

∥∥∥∥∥∂ûτ

∂x
−
∂uτ

∂x

∥∥∥∥∥2

L2(Ωm)
=
τ3

3

n∑
k=1

ı̂−1∑
i=0

hiu2
ixt̄(k) ≤

τ3

3

n∑
k=1

m j−1∑
i=0

hiũ2
ixt̄(k) = O(τ). (2.44)
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Estimate the first term in In(Qn(v))−J(v) as

∣∣∣∣∣∣∣β0

mn−1∑
i=0

hi |ui(n)−wi|
2 dx−β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx

∣∣∣∣∣∣∣
≤ β0

{ ∣∣∣∣∣∣∣
ı̂−1∑
i=0

[
hi |ui(n)−wi|

2−

∫ xi+1

xi

|u(x,T )−w(x)|2 dx
]∣∣∣∣∣∣∣+ In,m + Ĩm

}
(2.45)

where

In,m =

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |ui(n)−wi|
2

∣∣∣∣∣∣∣ , Ĩm =

∣∣∣∣∣∣
∫ s(T )

sm
n

|u(x,T )−w(x)|2 dx

∣∣∣∣∣∣ (2.46)

By absolute continuity of the integral, Ĩm→ 0 as m→∞. Considering In,m,

In,m ≤ 2

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |ui(n)|2
∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |wi|
2

∣∣∣∣∣∣∣
By Morrey’s inequality,

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |ui(n)|2
∣∣∣∣∣∣∣ ≤C

∣∣∣sn(T )− s(T ) + εm
∣∣∣‖û(x;n)‖2

B1
2(0,`)

From (2.25) and (2.27), it follows that

‖û(x;n)‖2
B1

2(0,`)
≤C1 (2.47)

For a constant C1 depending on the given data φ, f , etc. but not τ (or m). Now, considering

the second term in In,m, by CBS inequality,

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |wi|
2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
mn−1∑
ı̂

1
hi

∣∣∣∣∣∣
∫ xi+1

xi

w(x)dx

∣∣∣∣∣∣2
∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣
∫ sn(T )

s(T )
|w(x)|2 dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ s(T )

s(T )−εm
|w(x)|2 dx

∣∣∣∣∣∣

36



From convergence sn(T )→ s(T ) and absolute continuity of the integral we get that there

is some N1 = N1(m) such that for n > N1,

∣∣∣∣∣∣∣
mn−1∑
ı̂

hi |wi|
2

∣∣∣∣∣∣∣ ≤ 2
∫ s(T )

s(T )−εm
|w(x)|2 dx +

1
m

(2.48)

By (2.47) and (2.48), it follows that for n > N1

0 ≤ In,m ≤CC1
(
εm +

∣∣∣sn(T )− s(T )
∣∣∣)+ 2

∫ s(T )

s(T )−εm
|w(x)|2 dx +

1
m

(2.49)

By (2.45) and (2.49), it follows that

0 ≤ limsup
n→∞

∣∣∣∣∣∣∣β0

mn−1∑
i=0

hi |ui(n)−wi|
2 dx−β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx

∣∣∣∣∣∣∣
≤CC1εm + 2

∫ s(T )

s(T )−εm
|w(x)|2 dx +

1
m

+ Ĩm

for all m. Passing to the limit as m→∞ it follows that

lim
n→∞

β0

mn−1∑
i=0

hi |ui(n)−wi|
2 = β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx

The convergence of the second and third terms of In to corresponding terms in J is

established in a similar way. Lemma is proved. �

Lemma 2.5.9. For arbitrary [v]n ∈ Vn
R, limn→∞

(
J

(
Pn([v]n)

)
− In

(
[v]n

))
= 0

Proof. Let [v]n ∈ Vn
R and vn = (sn,gn, f n,an,cn,dn) = Pn([v]n). Then {vn} is weakly pre-

compact in H; assume that the whole sequence converges to ṽ = (s̃, g̃, f̃ , ã, c̃, d̃). Then ṽ ∈

VR, and moreover, Rellich-Kondrachov compactness theorem implies that (sn,gn,an,bn,cn)→

(s̃, g̃, ã, b̃, c̃) strongly in B1
2(0,T )×L2(0,T )×L2(0,T )×L2(D)×L2(D); in particular, sn→ s̃

uniformly on [0,T ]. Write the differenceJ
(
Pn([v]n)

)
− In

(
[v]n

)
in the preceding notation,
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as

In
(
[v]n

)
−J

(
Pn([v]n)

)
= In

(
[v]n

)
−J

(
vn) = In

(
[v]n

)
−J(ṽ) +J(ṽ)−J

(
vn)

By weak continuity of J , we have limn→∞
(
J(ṽ)−J

(
vn)) = 0. Lastly, we need to show

lim
n→∞

(
In
(
[v]n

)
−J(ṽ)

)
= 0

Since ṽ ∈ VR+ε for some ε > 0, and by strong convergence of Pn([v]n)→ ṽ, similar argu-

ment as in the proof of Lemma 2.5.8 completes the result. �

By Lemmas 2.5.7–2.5.9 and [2, Lem. 2.2], Theorem 2.3.2 is proved.
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Chapter 3

Optimal Control of Diffusion Coefficient

in Parabolic Free Boundary Problems

3.1 Inverse Stefan Problem with Unknown Diffusion Co-

efficient

Consider the general one-phase Stefan problem ([41, 62]): find the temperature function

u(x, t) and the free boundary x = s(t) from the following conditions

(a(x, t)ux)x + b(x, t)ux + c(x, t)u−ut = f (x, t), for (x, t) ∈Ω (3.1)

u(x,0) = φ(x), 0 ≤ x ≤ s(0) = s0 (3.2)

a(0, t)ux(0, t) = g(t), 0 ≤ t ≤ T (3.3)

a(s(t), t)ux(s(t), t) +γ(s(t), t)s′(t) = χ(s(t), t), 0 ≤ t ≤ T (3.4)

u(s(t), t) = µ(t), 0 ≤ t ≤ T (3.5)

(3.6)
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where a,b,c, f ,φ,g,γ,χ,µ are known functions and (3.7)

a(x, t) ≥ a > 0, s0 > 0 (3.8)

Ω = {(x, t) : 0 < x < s(t), 0 < t ≤ T } (3.9)

Function f (x, t) can be characterized as the density of the sources, function φ(x) is the

initial temperature, g(t) is the heat flux on the fixed boundary, µ is the phase transition

temperature. We are going to make the following assumption: some of the data is not

available, or has some measurement error. For istance, assume that the diffusion coefficint

a(x, t) is not known and we need to find it along with the temperature function u(x, t) and

the free boundary s(t). For that, we need to introduce some new information. One way of

doing this is by adding a new measurement of temperature at the final moment t = T :

u(x,T ) = w(x), for 0 ≤ x ≤ s(T ) =: s̄, (3.10)

Inverse Stefan Problem (ISP): Find the functions u(x, t), s(t) and a(x, t) satisfying con-

ditions (3.1)-(3.10).

3.2 Optimal Control Problem

Consider a minimization of the cost functional

J(v) = β0

∫ s(T )

0
|u(x,T )−w(x)|2 dx +β1

∫ T

0

∣∣∣u(s(t), t
)
−µ(t)

∣∣∣2 dt +β2|s(T )− s̄|2
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on the control set

VR = {v = (s,a) ∈ H : δ ≤ s(t) ≤ l, s(0) = s0, s′(0) = 0,a(x, t) ≥ a

||v||H ≤ R}

H = B2
2(0,T )×

(
W̃1,1

2 (D)∩ W̃1,1
∞,γ(D)

)
||v||H := max

(
||s||B2

2(0,T ); ||a||W̃1,1
2 (D); ||a||W̃1,1

∞,γ(D)
)

where δ, l,R,β0,β1 are given positive numbers, and u = u(x, t;v) be a solution of the Neu-

mann problem (3.1)-(3.4). By employing standard Sobolev extension results [25, 74], we

are going to assume throughout the paper that any control function a ∈ VR is continued to

(0, l)× (−1,0) as an element of W̃1,1
2 (D)∩ W̃1,1

∞,γ(D)

Definition 3.2.1. The function u ∈W1,1
2 (Ω) is called a weak solution of the problem (3.1)-

(3.4) if u(x,0) = φ(x) ∈W1
2 [0, s0] and

0 =

∫ T

0

∫ s(t)

0
[auxΦx−buxΦ− cuΦ + utΦ + f Φ]dxdt

+

∫ T

0
[γ(s(t), t)s′(t)−χ(s(t), t)]Φ(s(t), t)dt +

∫ T

0
g(t)Φ(0, t)dt (3.11)

for arbitrary Φ ∈W1,1
2 (Ω)

Definition 3.2.2. The function u ∈ V2(Ω) is called a weak solution of (3.1)-(3.4) if

0 =

∫ T

0

∫ s(t)

0
[auxΦx−buxΦ− cuΦ−uΦt + f Φ]dxdt−

∫ s0

0
φ(x)Φ(x,0)dx+∫ T

0
g(t)Φ(0, t)dt +

∫ T

0
[γ(s(t), t)s′(t)−u(s(t), t)s′(t)−χ(s(t), t)]Φ(s(t), t)dt (3.12)

for arbitrary Φ ∈W1,1
2 (Ω) such that Φ|t=T = 0.
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3.3 Discrete Optimal Control Problem

Consider the grid

ωτ =
{
t j = jτ, j = 0,1, . . . ,n

}
on [0,T ] where τ = T

n . We are going to use the following notation for {di},

dk,t̄ =
dk −dk−1

τ
, dkt = dk+1,t̄, dk,t̄t =

dk+1−2dk + dk−1

τ2 (3.13)

Next we introduce the spatial grid. Given a discrete boundary [s]n ∈R
n+1, let (p0, p1, . . . , pn)

be a permutation of (0,1, . . . ,n) according to the order sp0 ≤ sp1 ≤ · · · ≤ spn .

Note that, for every k there exists a unique jk so that

sk = sp jk
(3.14)

Throughout the work instead of subscript jk we will use j. Let

ωp0 = {xi : xi = ih, i = 0,1, . . . ,m(n)
0 }

be a grid on [0, sp0] and h =
sp0

m(n)
0

. We will assume

h = O(
√
τ), as τ→ 0. (3.15)
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By induction once ωpk−1 is constructed on [0, spk−1] we construct

ωpk = {xi : i = 0,1, . . . ,m(n)
k }

on [0, spk], where m(n)
k ≥mn

k−1, where we have a strict inequality if and only if spk > spk−1;

for i ≤ m(n)
k−1 points xi are the same as in grid ωpk−1 . Finally, if spn < `, then we introduce

a grid on [spn , `]

ω = {xi : xi = spn + (i−m(n)
n )h, i = m(n)

n , . . . ,N}

of stepsize order h, i.e. h = O(h) as h→ 0. Furthermore we simplify the notation and write

m(n)
k ≡ mk. Let

hi = xi+1− xi, i = 0,1, . . . ,N −1;

and denote the space grid on [0, `] by ωh and set

∆ = max
i=0,...,N−1

hi

Discretized control set have the following form:

Vn
R = {[v]n = ([s]n, [a]nN) ∈ H̄ : 0 < δ ≤ sk ≤ l, aik ≥ a, ||[v]n||H̄ ≤ R}

||[v]n||H̄ = max
(
||[s]n||b2

2
; ||[a]nN ||w̃1,1

2
; ||[a]nN ||w̃1,1

∞,γ

)
where,

H̄ = Rn+1×RnN

[s]n = (s0, s1, ..., sn) ∈ Rn+1, [a]nN = {aik} i = 0,1, . . . ,N;k = 0,1, . . . ,n

‖[s]n‖
2
b2

2
=

n−1∑
k=0

τs2
k +

n∑
k=1

τs2
t,k +

n−1∑
k=0

τs2
tt,k,

43



||[a]nN ||
2
w̃1,1

2
=

n∑
k=1

N−1∑
i=0

τhia2
ik +

n∑
k=1

N−1∑
i=0

τhia2
ikx +

n∑
k=1

N−1∑
i=0

τhia2
ikt̄ +

n∑
k=1

N−1∑
i=0

τhia2
ikxt̄

||[a]nN ||w̃1,1
∞,γ

= max
0≤i≤N−1

1≤k≤n

|aik|+ max
0≤i≤N−1

0≤k≤n

|aik,x|+
( n∑

k=1

τ max
0≤i≤N

|aik,t̄|
γ
) 1
γ

where we assign s−1 = s0 and use the standard notation for the finite differences:

st,k =
sk − sk−1

τ
, st,k =

sk+1− sk

τ
, stt,k =

sk+1−2sk + sk−1

τ2 .

Next we define two mappings Qn and Pn between continuous and discrete control sets as

follows:

Qn(v) = [v]n = ([s]n, [a]nN), for v ∈ VR

where sk = s(tk), k = 0,1, ...,n.

aik =
1
τ

∫ tk

tk−1

a(xi, t)dt, i = 0,1, . . . ,N; k = 0,1, . . . ,n

Pn([v]n) = vn = (sn,an) ∈ H for [v]n ∈ Vn
R,

where

sn(t) =


s0 + t2

2τ st,1 0 ≤ t ≤ τ,

sk−1 + (t− tk−1−
τ
2 )st,k−1 + 1

2 (t− tk−1)2stt,k−1 tk−1 ≤ t ≤ tk,k = 2,n.
(3.16)

an(x, t) = aik + aikx(x− xi) + aikt̄(t− tk) + aikxt̄(x− xi)(t− tk), (3.17)

tk−1 ≤ t < tk, xi ≤ x < xi+1 for i = 0,1, . . . ,N −1; k = 1, . . . ,n

Define Steklov averages

dk(x) =
1
τ

∫ tk

tk−1

d(x, t)dt, hk =
1
τ

∫ tk

tk−1

h(t)dt, dik =
1

hiτ

∫ xi+1

xi

∫ tk

tk−1

d(x, t)dt dx,
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where i = 0,1, · · · ,N − 1; k = 1, · · · ,n; d represents functions b, c, f , and h represents

functions ν, µ, g. For v = (s,a) ∈ VR we introduce Steklov averages of traces as follows

χk
s =

1
τ

∫ tk

tk−1

χ(s(t), t)dt, (γss′)k =
1
τ

∫ tk

tk−1

γ(s(t), t)s′(t)dt. (3.18)

Given [v]n = ([s]n, [a]nN) ∈ Vn
R we define Steklov averages χk

sn and (γsn(sn)′)k through

(3.18) with s replaced by sn from (3.16).

Let φn be a piecewise constant approximation of φ:

φn(x) = φi := φ(xi), for xi < x ≤ xi+1, i = 0, ..,N −1

Next we define a discrete state vector through discretization of the integral identity

(3.11)

Definition 3.3.1. For a given discrete control vector [v]n, the vector function

[u([v]n)]n = (u(0),u(1), ...,u(n)), u(k) ∈ RN+1, k = 0, · · · ,n

is called a discrete state vector if

(a) First m0 + 1 components of the vector u(0) ∈ RN+1 satisfy

ui(0) = φi := φ(xi), i = 0,1, · · · ,m0;

(b) Recalling (3.14), for arbitrary k = 1, · · · ,n first m j +1 components of the vector u(k) ∈
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RN+1 solve the following system of m j + 1 linear algebraic equations:

[
a0k + hb0k −h2c0k +

h2

τ

]
u0(k)−

[
a0k + hb0k

]
u1(k) =

h2

τ
u0(k−1)−h2 f0k −hgk,

−ai−1,khiui−1(k) +
[
ai−1,khi + aikhi−1 + bikhihi−1− cikh2

i hi−1 +
h2

i hi−1

τ

]
ui(k)−[

aikhi−1 + bikhihi−1
]
ui+1(k) = −h2

i hi−1 fik +
h2

i hi−1

τ
ui(k−1), i = 1, · · · ,m j−1

−am j−1,kum j−1(k) + am j−1,kum j(k) = −hm j−1
[
(γsn(sn)′)k −χk

sn

]
. (3.19)

(c) For arbitrary k = 0,1, ...,n, the remaining components of u(k) ∈ RN+1 are calculated

as

ui(k) = û(xi;k), m j ≤ i ≤ N

where û(x;k) ∈W1
2 [0, l] is a piecewise linear interpolation of {ui(k) : i = 0, · · · ,m j},

that is to say

û(x;k) = ui(k) +
ui+1(k)−ui(k)

hi
(x− xi), xi ≤ x ≤ xi+1, i = 0, · · · ,m j−1,

iteratively continued to [0, l] as

û(x;k) = û(2nsk − x;k), 2n−1sk ≤ x ≤ 2nsk,n = 1,nk, nk ≤ n∗ = 1 + log2

[ l
δ

]
(3.20)

where [r] means integer part of the real number r.

It is worth to note that for any k = 1,2, · · · ,n system (3.19) is equivalent to the follow-

ing summation identity

m j−1∑
i=0

hi
[
aikuix(k)ηix−bikuix(k)ηi− cikui(k)ηi + fikηi + uit(k)ηi

]
+

[
(γsn(sn)′)k −χk

sn

]
ηm j + gkη0 = 0, (3.21)
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for any numbers ηi, i = 0,1, · · · ,m j.

Next we introduce a discrete optimal control problem of minimization of the following

cost functional

In([v]n) = β0

mn−1∑
i=0

hi
(
ui(n)−wi

)2
+β1τ

n∑
k=1

(
umk(k)−µk

)2
+β2|sn− s̄|2 (3.22)

over a set Vn
R subject to the state vector which was described in Definition 1.3. Throughout

the paper we will call the discrete optimal control problem by Problem In.

Several interpolations of the discrete state vector will be used among which we are

going to take advantage of piecewise constant and piecewise linear interpolations. Let

[u([v]n)]n = (u(0),u(1), ...,u(n)) be a discrete state vector, the we define

uτ(x, t) = û(x;k), if tk−1 < t ≤ tk, 0 ≤ x ≤ l, k = 0,n,

ûτ(x, t) = û(x;k−1) + ût(x;k)(t− tk−1), if tk−1 < t ≤ tk, 0 ≤ x ≤ l, k = 1,n,

ûτ(x, t) = û(x;n), if t ≥ T, 0 ≤ x ≤ l.

ũτ(x, t) = ui(k), if tk−1 < t ≤ tk, xi ≤ x < xi+1, k = 1,n, i = 0,N −1.

We have

uτ ∈ V2(D), ûτ ∈W1,1
2 (D), ũτ ∈ L2(D).

Here are some standard notations for difference quotients of the discrete state vector:

uix(k) =
ui+1(k)−ui(k)

hi
, uit =

ui(k)−ui(k−1)
τ

, etc.
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3.4 Main Result

In this section we are going to formulate the main results of the chapter 3.

We denote

D = {(x, t) : 0 < x < l, 0 < t ≤ T }

We impose the following assumption on the data:

b,c ∈ L∞(D), f ∈ L2(D), g ∈W
1
4
2 (0,T ), w ∈ L2(0, l)

φ ∈W1
2 [0, s0], γ,χ ∈W1,1

2 (D), µ ∈ L2[0,T ],

Main theorems:

Theorem 3.4.1. The Problem I has a solution, i.e.

V∗ = {v ∈ VR : J(v) =J∗ ≡ inf
v∈VR
J(v)} , ∅

Theorem 3.4.2. Sequence of discrete optimal control problems In approximates the opti-

mal control problem I with respect to functional, i.e.

lim
n→+∞

In∗ =J∗, (3.23)

where

In∗ = inf
Vn

R

In([v]n), n = 1,2, ...

If [v]nε ∈ Vn
R is chosen such that

In∗ ≤ In([v]nε ) ≤ In∗ + εn, εn ↓ 0,

then the sequence vn = (sn,an) = Pn([v]nε ) converges to some element v∗ = (s∗,a∗) ∈ V∗
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weakly in W2
2 [0,T ]× W̃1,1

2 (D), and strongly in W1
2 [0,T ]× L2[0,T ]. In particular sn con-

verges to s∗ uniformly on [0,T ]. For any δ > 0, define

Ω‘
∗ = Ω∗∩{x < s∗(t)−δ, 0 < t < T }

Then the piecewise linear interpolation ûτ of the discrete state vector [u[v]nε ]n con-

verges to the solution u(x, t;v∗) ∈ W1,1
2 (Ω∗) of the Neumann problem (3.1)-(3.4) weakly

in W1,1
2 (Ω‘

∗).

3.5 Preliminary Results

The proof of the existence and uniqueness of the discrete state vector r [u([v]n)]n (see Def-

inition 3.3.1) for arbitrary discrete control vector [v]n ∈ Vn
R is carried out in Lemma 3.5.1.

Then in Lemma 3.5.2 we present general approximation criteria for the optimal control

problems from ([79]). Lemma 3.6.8 highlights some properties of the Qn and Pn map-

pings.

Lemma 3.5.1. For sufficiently small time step τ, there exists a unique discrete state vector

[u([v]n)]n for arbitrary discrete control vector [v]n ∈ Vn
R.

Proof. We are going to use the fact that for any k = 1,2, · · · ,n system (3.19) is equivalent

to the summation identity (3.21) where ηi, i = 0,1, · · · ,m j can be chosen arbitrarily. Next,

let {ũi(k)} be a solution of the homogeneous system corresponding to (3.19). In other

words let {ũi(k)} be a solution of the system (3.19) where

gk = (γsn(sn)′)k = χk
sn = fik = ui(k−1) = 0.
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Since ηi can be chosen arbitrarily, let us choose ηi = ũi(k) in (3.21). Thus we get

m j−1∑
i=0

hiaikũ2
ix(k) +

1
τ

m j−1∑
i=0

hiũ2
i (k) =

m j−1∑
i=0

hi
[
bikũix(k)ũi(k) + cikũ2

i (k)
]

(3.24)

Since a is bounded from below by a and applying Cauchy inequality with ε > 0 we derive

the following inequality

a
m j−1∑
i=0

hiũ2
ix(k) +

1
τ

m j−1∑
i=0

hiũ2
i (k) ≤

εM
2

m j−1∑
i=0

hiũ2
ix(k) +

( M
2ε

+ M
)m j−1∑

i=0

hiũ2
i (k). (3.25)

Here

M = max
(
||b||L∞(D); ||c||L∞(D)

)
.

If we choose ε = a/M in (3.25) we get

a
2

m j−1∑
i=0

hiũ2
ix(k) +

(1
τ
−

1
τ0

)m j−1∑
i=0

hiũ2
i (k) ≤ 0, (3.26)

where

τ0 =
(M2

2a
+ M

)−1
.

Therefore if τ < τ0, (3.26) implies ũi(k) = 0, i = 0,1, · · · ,m j i.e the homogeneous sys-

tem only has a trivial solution. Therefore, system has a unique solution thus for any given

discrete control vector [v]n there exists a unique discrete state vector defined by Definition

1.3. This completes the proof of the Lemma. �

Next we are going to state very important approximation criteria. It will be used to

prove Theorem 3.4.2.

Lemma 3.5.2. [78] Sequence of discrete optimal control problems In approximates the

continuous optimal control problem I if and only if the following conditions are satisfied:

(1) for arbitrary sufficiently small ε > 0 there exists number N1 = N1(ε) such thatQN(v) ∈
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Vn
R for all v ∈ VR−ε and N ≥ N1; and for any fixed ε > 0 and for all v ∈ VR−ε the

following inequality is satisfied:

limsup
N→∞

(
IN(QN(v))−J(v)

)
≤ 0. (3.27)

(2) for arbitrary sufficiently small ε > 0 there exists number N2 = N2(ε) such thatPN([v]N) ∈

VR+ε for all [v]N ∈ VN
R and N ≥ N2; and for all [v]N ∈ VN

R , N ≥ 1 the following in-

equality is satisfied:

limsup
N→∞

(
J(PN([v]N))−IN([v]N)

)
≤ 0. (3.28)

(3) the following inequalities are satisfied:

limsup
ε→0

J∗(ε) ≥ J∗, liminf
ε→0

J∗(−ε) ≤ J∗, (3.29)

where J∗(±ε) = inf
VR±ε
J(u).

Corollary 3.5.3. ([1]) Let either [v]n ∈ Vn
R or [v]n = Qn(v) for v ∈ VR. Then

|sk − sk−1| ≤C′τ, k = 1,2, · · · ,n (3.30)

where C′ is independent of n.

Let v ∈ VR, then s′ ∈W1
2 [0,T ]. Applying Morrey inequality we get

‖s′‖C[0,T ] ≤C1‖s′‖W1
2 [0,T ] ≤C1R (3.31)

Therefore for the first component [s]n of [v]n = Qn(v) we conclude (3.30). Now, let [v]n ∈

Vn
R, then the sequence vn = Pn([v]n) belongs to VR+1 by Lemma 3.6.8 and the component

sn of vn satisfies (3.31). Since, (sn)′(tk) = st̄,k,k = 1, ...,n, from (3.31), (3.30) follows.
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Notice that a given step size hi can satisfy eather one of the following cases hi = h, hi = h,

or hi ≤ |sk − sk−1 for some k. By employing (3.15) and (3.30) we get

max
0≤i≤N−1

hi = O(
√
τ), as τ→ 0. (3.32)

3.6 Proofs of the Main Results

3.6.1 First Energy Estimate and its Consequences

Next we prove the following energy estimation for the discrete state vector.

Theorem 3.6.1. For all sufficiently small τ discrete state vector [u([v]n)]n satisfies the

following stability estimations:

max
0≤k≤n

N−1∑
i=0

hiu2
i (k) +

n∑
k=1

τ

N−1∑
i=0

hiu2
ix(k) ≤

C
(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T )

+‖χ(sn(t), t)‖2L2(0,T ) +

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

)
, (3.33)

where C is independent of τ and 1+ be an indicator function of the positive semiaxis.

We start by proving the Lemma (3.6.2)

Lemma 3.6.2. For all sufficiently small τ, discrete state vector [u([v]n)]n satisfies the

following estimation:

max
1≤k≤n

m j−1∑
i=0

hiu2
i (k) +

n∑
k=1

τ

m j−1∑
i=0

hiu2
ix(k) +

n∑
k=1

τ2
m j−1∑
i=0

hiu2
it(k) ≤

C
(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T )

+‖χ(sn(t), t)‖2L2(0,T ) +

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

)
, (3.34)
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where C is independent of τ.

Proof. . If we choose ηi = 2τui(k) in (3.21) and make use of the following equality

2τuit(k)ui(k) = u2
i (k)−u2

i (k−1) +τ2u2
it(k)

we obtain the equality

m j−1∑
i=0

hiu2
i (k)−

m j−1∑
i=0

hiu2
i (k−1) +τ2

m j−1∑
i=0

hiu2
it(k) + 2τ

m j−1∑
i=0

hiaiku2
ix(k) =

2τ
m j−1∑
i=0

hi
[
bikuix(k)ui(k) + ciku2

i (k)− fikui(k)
]
−

2τ
[
(γsn(sn)′)k −χk

sn

]
um j(k)−2τgku0(k). (3.35)

Employing (3.8), Morrey inequality and Cauchy inequalities with ε > 0 we derive

max
0≤i≤m j

u2
i (k) ≤C∗‖û(x;k)‖2

W1
2 [0,sk]

≤C
m j−1∑
i=0

hi(u2
i (k) + u2

ix(k)) (3.36)

Here C∗,C don’t depend on τ and [u([v]n)]n. Using (3.35) we obtain

m j−1∑
i=0

hiu2
i (k)−

m j−1∑
i=0

hiu2
i (k−1) + aτ

m j−1∑
i=0

hiu2
ix(k) +τ2

m j−1∑
i=0

hiu2
it(k) ≤

C1τ
[
|(γsn(sn)′)k|2 + |χk

sn |
2 + |gk|

2 +

m j−1∑
i=0

hi f 2
ik +

m j−1∑
i=0

hiu2
i (k)

]
. (3.37)

where C1 does not depend on τ. If we assume τ <C1, then from (3.37) we derive

(1−C1τ)
m j−1∑
i=0

hiu2
i (k) ≤

m jk−1−1∑
i=0

hiu2
i (k−1) + 1+(sk − sk−1)

m j−1∑
i=m jk−1

hiu2
i (k−1)+

C1τ

|(γsn(sn)′)k|2 + |χk
sn |

2 + |gk|
2 +

m j−1∑
i=0

hi f 2
ik

 , (3.38)
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Using induction we obtain

m j−1∑
i=0

hiu2
i (k) ≤ (1−C1τ)−k

m j0−1∑
i=0

hiu2
i (0) +

k∑
l=1

(1−C1τ)−k+l−1
{
C1τ

[
|(γsn(sn)′)l|2+

|χl
sn |

2 + |gl|
2 +

m jl−1∑
i=0

hi f 2
il

]
+ 1+(sl− sl−1)

m jl−1∑
i=m jl−1

hiu2
i (l−1)

}
. (3.39)

For any 1 ≤ l ≤ k ≤ n we get

(1−C1τ)−k+l−1 ≤ (1−C1τ)−k ≤ (1−C1τ)−n =
(
1−

C1T
n

)−n
→ eC1T , (3.40)

as τ→ 0. Therefore for sufficiently small τ we get

(1−C1τ)−k+l−1 ≤ 2eC1T for 1 ≤ l ≤ k ≤ n, (3.41)

Using (CBS) inequality from (3.39)-(3.41) it derive that

max
1≤k≤n

m j−1∑
i=0

hiu2
i (k) ≤C2

(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T )+

‖χ(sn(t), t)‖2L2(0,T ) + ‖ f ‖2L2(D) +

n−1∑
l=1

1+(sl+1− sl)
m jl+1−1∑

i=m jl

hiu2
i (l)

)
. (3.42)

where C2 does not depend on τ. Using (3.42), and after performing summation of (3.37)

with respect to k from 1 to n we obtain

m jn−1∑
i=0

hiu2
i (n) + a

n∑
k=1

τ

m j−1∑
i=0

hiu2
ix(k) +

n∑
k=1

τ2
m j−1∑
i=0

hiu2
it(k) ≤

‖φn‖2L2(0,s0) +C3
(
‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T )

+‖χ(sn(t), t)‖2L2(0,T ) +

n∑
k=1

τ

m j−1∑
i=0

hiu2
i (k)

)
+

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m jk

hiu2
i (k) (3.43)
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From (3.42) and (3.43), (3.34) follows. This concludes the proof of the lemma. �

Next we are going to prove Theorem 3.6.1:

Proof. Using (3.34), it is enough to show that the LHS of (3.33) is bounded by the LHS

of (3.34). Reflective continuation property of û(x;k) helps us to obtain

n∑
k=1

τ

N−1∑
i=0

hiu2
ix(k) = τ

n∑
k=1

∫ l

0

∣∣∣∣dû(x;k)
dx

∣∣∣∣2dx ≤

2n∗τ

n∑
k=1

∫ sk

0

∣∣∣∣du(x;k)
dx

∣∣∣∣2dx = 2n∗
n∑

k=1

τ

m j−1∑
i=0

hiu2
ix(k). (3.44)

By using (3.15) and (3.31) we have

N−1∑
i=0

hiu2
i (k) ≤ 2

∫ l

0
û2(x;k)dx +

2
3

N−1∑
i=0

h3
i u2

ix(k) ≤ 2n∗+1
∫ sk

0
û2(x;k)dx+

C1τ

N−1∑
i=0

hiu2
ix(k) ≤ 2n∗+2

m j−1∑
i=0

hiu2
i (k) + 2n∗+2

m j−1∑
i=0

1
3

h3
i u2

ix(k)+

C1τ

N−1∑
i=0

hiu2
ix(k) ≤ 2n∗+2

m j−1∑
i=0

hiu2
i (k) +C2τ

N−1∑
i=0

hiu2
ix(k). (3.45)

and (3.33) follows from (3.44), (3.45) and (3.34). Theorem is proved. �

Take [v]n ∈Vn
R,n = 1,2, ... to be a sequence of discrete controls. Then using Lemma 3.6.8

we conclude that the sequence {Pn([v]n)} is weakly precompact in W2
2 [0,T ]× W̃1,1

2 (D).

Assume that the whole sequence converges to v = (s,a) weakly in W2
2 [0,T ]× W̃1,1

2 (D).

This implies strong convergence in W1
2 [0,T ]×L2(D). Since ||an||W̃1,1

∞,γ(D) ≤R, from Mazur’s

Theorem [80] it follows that a ∈ W̃1,1
2 (D)∩ W̃1,1

∞,γ(D). On the other hand, given control

v = (s,a) ∈ VR we can select a sequence of discrete controls [v]n = Qn(v). After us-

ing Lemma 3.6.8 twice one can easily deduce that the sequence {Pn([v]n} converges to

v = (s,a) weakly in W2
2 [0,T ]× W̃1,1

2 (D), and strongly in W1
2 [0,T ]× L2(D). Next we are

going to show the continuous dependence of the family of interpolarions {uτ} on this
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convergence.

Theorem 3.6.3. Let [v]n ∈ Vn
R,n = 1,2, ... be a sequence of discrete controls and the se-

quence {Pn([v]n} converges weakly in W2
2 [0,T ]× W̃1,1

2 (D) (and strongly in W1
2 [0,T ]×

L2(D) to v = (s,a) ∈ VR). Then the sequence {uτ} converges as τ→ 0 weakly in W1,0
2 (Ω)

to weak solution u ∈ V1,0
2 (Ω) of the problem (3.1)-(3.4), i.e. to the solution of the integral

identity (3.12). Moreover, u satisfies the energy estimate

‖u‖2
V1,0

2 (D)
≤C

(
‖φ‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ‖2

W1,0
2 (D)

+ ‖χ‖2
W1,0

2 (D)

)
(3.46)

Proof. In (3.16) we considered quadratic interpolation of [s]n. We introduce the

following two linear interpolations:

s̃n(t) = sk−1 +
sk − sk−1

τ
(t− tk−1), tk−1 ≤ t ≤ tk,k = 1,n; s̃n(t) ≡ sn, t ≥ T ;

s̃n
1(t) = s̃n(t +τ), 0 ≤ t ≤ T.

It can be easily shown that sequences s̃n and s̃n
1 are equivalent to the sequence sn in

W1
2 [0,T ] and they converge strongly to s in W1

2 [0,T ]. Moreover,

sup
n
‖s̃n

1‖W1
2 [0,T ] <C∗ (3.47)

Here C∗ does not depend n.

Next we are going to absorb the last term on the RHS of (3.33) into the LHS. We have

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k) ≤

2
n−1∑
k=1

1+(sk+1− sk)
∫ sk+1

sk

û2(x;k)dx +
2
3

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

h3
i u2

ix(k) (3.48)

If sk+1 > sk, then all the factors hi in the second term are bounded by sk+1 − sk then by
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employing (3.30) we get

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

h3
i u2

ix(k) ≤ (C‘)2τ

n−1∑
k=1

τ

∫ sk+1

sk

∣∣∣∣dû
dx

∣∣∣∣2dx (3.49)

Using reflective continuation property of û(x;k) we obtain

∫ sk+1

sk

∣∣∣∣dû
dx

∣∣∣∣2dx ≤ 2n∗−1
∫ sk

0

∣∣∣∣dû
dx

∣∣∣∣2dx = 2n∗−1
m j−1∑
i=0

hiu2
ix(k). (3.50)

Applying (3.49) and (3.50) leads to

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

h3
i u2

ix(k) ≤ 2n∗−1(C‘)2τ

n−1∑
k=1

τ

m j−1∑
i=0

hiu2
ix(k) (3.51)

For sufficiently small τ and from (3.48) - (3.51) in (3.33), last term on the RHS of (3.51)

can be absorbed into the LHS of (3.33) which lets us to get modified (3.33) with a new

constant C:

max
0≤k≤n

N−1∑
i=0

hiu2
i (k) +

n∑
k=1

τ

N−1∑
i=0

hiu2
ix(k) ≤

C
(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ(sn(t), t)(sn)′(t)‖2L2(0,T )

+‖χ(sn(t), t)‖2L2(0,T ) +

n−1∑
k=1

1+(sk+1− sk)
∫ sk+1

sk

û2(x;k)dx
)
, (3.52)

Next we will estimate the last term on the RHS of (3.52) as in [1]:

n−1∑
k=1

1+(sk+1− sk)
∫ sk+1

sk

û2(x;k)dx =

n−1∑
k=1

1+(sk+1− sk)
∫ tk+1

tk
(s̃n)

′

(t)û2(s̃n(t);k)dt =

n−1∑
k=1

1+(sk+1− sk)
∫ tk+1

tk
(s̃n)

′

(t)
(
uτ(s̃n(t), t−τ)

)2
dt =

n−1∑
k=1

1+(sk+1− sk)
∫ tk

tk−1

(s̃n
1)
′

(t)
(
uτ(s̃n

1(t), t)
)2

dt. (3.53)
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Applying CBS inequality we get

∣∣∣∣ n−1∑
k=1

1+(sk+1− sk)
∫ sk+1

sk

û2(x;k)dx
∣∣∣∣ ≤ ‖(s̃n

1)‘‖L2[0,T ]‖uτ(s̃n
1(t), t)‖2L4[0,T ]. (3.54)

For arbitrary u ∈ V2(D) results on traces of the elements of space V2(D) ([58, 25, 65])

implies

‖u(s̃n
1(t), t)‖L4[0,T ] ≤ C̃‖u‖V2(D), (3.55)

here the constant C̃ doesn’t depend on u and n. From (3.47),(3.54) and (3.55) we derive

∣∣∣∣ n−1∑
k=1

1+(sk+1− sk)
∫ sk+1

sk

u2(x;k)dx
∣∣∣∣ ≤C∗C̃‖uτ‖2V2(D). (3.56)

If C∗ from (3.47) satisfies

C∗ < (CC̃)−1 (3.57)

then from (3.52) and (3.56) we derive

‖uτ‖2
V1,0

2 (D)
≤C

(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D)+

‖γ(sn(t), t)(sn)′(t)‖2L2(0,T ) + ‖χ(sn(t), t)‖2L2(0,T )

)
, (3.58)

where C is a new constant which does not depend on n. Applying traces theorems in

W1,0
2 (D) ([25, 65]) to the x = sn(t) along with Morrey inequality for (sn)′ and (3.105) we

get

‖γ(sn(t), t)(sn)′(t)‖L2(0,T ) ≤ ‖(sn)‘‖C[0,T ]‖γ(sn(t), t)‖L2[0,T ] ≤C3‖γ‖W1,0
2 (D)

‖χ(sn(t), t)‖L2[0,T ] ≤C3‖χ‖W1,0
2 (D), (3.59)

where C3 does not depend on γ,χ and n. Thus, from (3.58), (3.59) we receive the follow-

58



ing estimate

‖uτ‖2
V1,0

2 (D)
≤C

(
‖φn‖2L2(0,s0) + ‖g‖2L2(0,T ) + ‖ f ‖2L2(D) + ‖γ‖2

W1,0
2 (D)

+ ‖χ‖2
W1,0

2 (D)

)
, (3.60)

where C does not depend on n.

If the condition (3.57) is not satisfied, then using (3.30) we can partition the interval

[0,T ] into finitely many closed intervals [tn j−1 , tn j], j = 1,q with tn0 = 0, tnq = T so that

when replacing interval [0,T ] with any of the intervals [tn j−1 , tn j] (3.47) is satisfied with

C∗ small enough to satisfy (3.57). Therefore, we partition D into finitely many sets of the

form

D j = D∩{tn j−1 < t ≤ tn j}

so that norms ‖uτ‖2
V2(D j)

are uniformly bounded by the RHS of (3.60). After performing

summation with over j = 1, . . . ,q we get (3.60).

Due to the fact that φn converge to φ strongly in L2[0, s0], from (3.60) it follows that

the sequence {uτ} is weakly precompact in W1,0
2 (D). Now, let u ∈W1,0

2 (D) be a weak limit

of uτ in W1,0
2 (D), and assume that whole sequence {uτ} converges to u weakly in W1,0

2 (D).

Let us show that u satisfies the integral identity (3.12) for any test function Φ ∈W1,1
2 (Ω)

so that Φ|t=T = 0. Since C1(Ω) is dense in W1,1
2 (Ω) it suffices to consider Φ ∈ C1(Ω).

Without loss of generality we consider Φ ∈C1(DT+τ), Φ ≡ 0, for T ≤ t ≤ T +τ, where

DT+τ = {(x, t) : 0 < x < l + 1, 0 < t ≤ T +τ}

Otherwise, we can extend Φ to DT+τ with the same properties. Let

Φi(k) = Φ(xi, tk), k = 0, · · · ,n + 1, i = 0, · · · ,N
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Φτ(x, t) = Φi(k),Φτ
x(x, t) = Φix(k),Φτ

t (x, t) = Φit̄(k + 1), for tk−1 < t ≤ tk, xi ≤ x < xi+1.

and

ãτ(x, t) = aik, i f tk−1 < t ≤ tk, xi ≤ x < xi+1, k = 1,n, i = 0,N −1 (3.61)

It is easy to show that the sequences {Φτ}, {Φτ
x} and {Φτ

t } converge as τ→ 0 uniformly

in D to Φ, ∂Φ
∂x and ∂Φ

∂t respectively. By taking ηi = τΦi(k) in (3.21) and after summation

with respect to k = 1,n and transforming the time difference term in the following form

n∑
k=1

τ

m j−1∑
i=0

hiuit̄(k)Φi(k) = −

n−1∑
k=1

τ

m jk+1−1∑
i=0

hiui(k)Φit̄(k + 1)−
m j1−1∑

i=0

hiui(0)Φi(1)+

n−1∑
k=1

sign(sk − sk+1)
βk−1∑
i=αk

hiui(k)Φi(k) = −

n∑
k=1

∫ tk

tk−1

∫ sk+1

0
ũτΦτ

t dxdt−

∫ s1

0
φn(x)Φτ(x, τ)dx +

n−1∑
k=1

sign(sk − sk+1)
βk−1∑
i=αk

∫ xi+1

xi

(
û(x;k)−uix(k)(x− xi)

)
Φi(k)dx =

−

∫ T

0

∫ s(t)

0
ũτΦτ

t dxdt−
∫ s1

0
φn(x)Φτ(x, τ)dx−

∫ T−τ

0
(s̃n

1)‘(t)uτ((s̃n
1)(t), t)Φτ((s̃n

1)(t), t)dt

−

n−1∑
k=1

∫ tk

tk−1

∫ sk+1

s(t)
ũτΦτ

t dxdt−
1
2

n−1∑
k=1

sign(sk − sk+1)
βk−1∑
i=αk

h2
i uix(k)Φi(k), (3.62)

where

αk = min(m jk ,m jk+1), βk = max(m jk ,m jk+1),
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we obtain

∫ T

0

∫ s(t)

0

{
ãτ
∂uτ

∂x
Φτ

x−b
∂uτ

∂x
Φτ− cũτΦτ+ f Φτ− ũτΦτ

t

}
dxdt−

∫ s0

0
φn(x)Φτ(x, τ)dx

−

∫ T−τ

0
(s̃n

1)‘(t)uτ((s̃n
1)(t), t)Φτ((s̃n

1)(t), t)dt +

∫ T

0
g(t)Φτ(0, t)dt

+

∫ T

0

[
γ(sn(t), t)(sn)‘(t)−χ(sn(t), t))

]
Φτ(sn(t), t)dt + R = 0 (3.63)

where

R =

n∑
k=1

∫ tk

tk−1

∫ sk

s(t)

{
ãτ
∂uτ

∂x
Φτ

x−b
∂uτ

∂x
Φτ− cũτΦτ+ f Φτ

}
dxdt−

n−1∑
k=1

∫ tk

tk−1

∫ sk+1

s(t)
ũτΦτ

t dxdt

+

n∑
k=1

∫ tk

tk−1

∫ sk

sn(t)

[
γ(sn(t), t)(sn)‘(t)−χ(sn(t), t))

]∂Φτ

∂x
dxdt +

∫ s1

s0

φn(x)Φτ(x, τ)dx

+

n−1∑
k=1

∫ tk

tk−1

∫ sk+1

s(t)
ũτΦτ

t dxdt−
1
2

n−1∑
k=1

sign(sk − sk+1)
βk−1∑
i=αk

h2
i uix(k)Φi(k)

Notice that the sequences {ũτ}, {uτ} are equivalent in strong and weak topology of L2(D),

and therefore {ũτ} converges to u weakly in L2(D). In fact from (3.33) we get

‖ũτ−uτ‖2L2(D) =
1
3

n∑
k=1

τ

N−1∑
i=0

hiu2
ix(k)max

i
h2

i → 0, as n→∞. (3.64)

Denote

∆̃ =

n⋃
k=1

{(x, t) : tk−1 < t < tk, min(s(t), sk) < x < max(s(t), sk)}

where |∆̃| represents the Lebesgue measure of ∆̃. Since s̃n(tk) = sk, we get

|∆̃| ≤

n∑
k=1

∫ tk

tk−1

∫ tk

t
|s′(τ)|dτdt +

n∑
k=1

τ|s(tk)− s̃n(tk)| ≤

√
T‖s′‖L2(0,T )τ+ T‖s− s̃n‖C[0,T ]→ 0 as τ→ 0

and all of the integrands are uniformly bounded in L1(D). It follows that the first term
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in R tends to zero as τ→ 0. Similarly second, third and fifth terms also tends to zero as

τ→ 0. The fourth term in R tends to zero by the Corollary 3.5.3 and uniform convergence

of {Φτ} in D. In order to prove convergence to zero of the last term of R, consider

∆̃ =

n−1⋃
k=1

{(x, t) : tk−1 < t < tk,dk ≡ min(sk, sk+1) < x < dk+1 ≡max(sk, sk+1)}

Then using Corollary 3.5.3 we obtain

|∆̃| ≤Cτ→ 0, as τ→ 0.

Since
βk−1∑
i=αk

hi = |sk − sk+1|

we derive

∣∣∣∣ n−1∑
k=1

sign(sk − sk+1)
βk−1∑
i=αk

h2
i uix(k)Φi(k)

∣∣∣∣ ≤ n−1∑
k=1

|sk − sk+1|

∫ dk+1

dk

∣∣∣∣∂uτ

∂x

∣∣∣∣|Φτ|dx ≤

C
n−1∑
k=1

τ

∫ dk+1

dk

∣∣∣∣∂uτ

∂x

∣∣∣∣|Φτ|dx ≤
∥∥∥∥∂uτ

∂x

∥∥∥∥
L2(∆̃)
‖Φτ‖L2(∆̃) (3.65)

By the uniform boundedness of the integrands in L2(D) RHS of (3.65) tends to zero as

τ→ 0.

We are going to show calculations for the first term in R:
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n∑
k=1

∫ tk

tk−1

∫ sk

s(t)
ãτ
∂uτ

∂x
Φτ

xdxdt ≤
n∑

k=1

∫ tk

tk−1

∫ sk

s(t)
|ãτ
∂uτ

∂x
Φτ

x|dxdt

≤ ||ãτ||L∞ ||Φx||C(D)

n∑
k=1

∫ tk

tk−1

∫ sk

s(t)

∣∣∣∣∂uτ

∂x

∣∣∣∣dxdt

≤ ||ãτ||L∞ ||Φx||C(D)
( n∑

k=1

∫ tk

tk−1

∫ sk

s(t)
1 dxdt

) 1
2
( n∑

k=1

∫ tk

tk−1

∫ sk

s(t)

∣∣∣∣∂uτ

∂x

∣∣∣∣2dxdt
) 1

2

≤ ||ãτ||L∞ ||Φx||C(D)

∣∣∣∣∣∣∣∣∂uτ

∂x

∣∣∣∣∣∣∣∣
L2(D)

√
∆̃→ 0 (3.66)

(latter tends to zero since ||ãτ||L∞ is bounded by R, L2 norm of ∂uτ
∂x is bounded by the

energy estimate, and ||Φx||C(D) is bounded)

Thus we get

lim
τ→0

R = 0 (3.67)

Using the weak convergence of uτ to u in W1,0
2 (D), weak convergence of ũτ to u in L2(D)

and uniform convergence of the sequences {Φτ}, {∂Φτ

∂x } and {Φτ
t } to Φ, ∂Φ

∂x and ∂Φ
∂t respec-

tively, and taking the limit as τ→ 0, we obtain that the first, second and fourth integrals

on the left-hand side of (3.63) converge to respective integrals with uτ (or ũτ), Φτ, Φτ
t ,

Φτ(x, τ), φn(x) and Φτ(0, t) replaced by u,Φ, ∂Φ
∂t , Φ(x,0), φ(x) and Φ(0, t) respectively.

Due to strong convergence of sn to s strongly in W1
2 [0,T ], the traces γ(sn(t), (t)), χ(sn(t), t)

converge strongly in L2[0,T ] to traces γ(s(t), (t)), χ(s(t), t) respectively. Due to the uni-

form convergence of Φτ(sn(t), t) to Φ(s(t), t) on [0,T ] by taking limit as τ→ 0, the last

integral on the LHS of (3.63) converge to respective integral with sn and Φτ replaced by

s and Φ.

We are going to show calculations for the first term of (3.63):
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∫ T

0

∫ s(t)

0
ãτ
∂uτ

∂x
Φτ

xdxdt =

∫ T

0

∫ s(t)

0
a
∂uτ

∂x
Φτ

xdxdt +

∫ T

0

∫ s(t)

0

(
ãτ−a

)∂uτ

∂x
Φτ

xdxdt

(3.68)∣∣∣∣∣∣
∫ T

0

∫ s(t)

0
ãτ
∂uτ

∂x
Φτ

xdxdt−
∫ T

0

∫ s(t)

0
a
∂uτ

∂x
Φτ

xdxdt

∣∣∣∣∣∣ ≤
∫ T

0

∫ s(t)

0

∣∣∣(ãτ−a
)∂uτ

∂x
Φτ

x

∣∣∣dxdt

(3.69)∫ T

0

∫ s(t)

0

∣∣∣(ãτ−a
)∂uτ

∂x
Φτ

x

∣∣∣dxdt ≤C
∣∣∣∣∣∣ãτ−a

∣∣∣∣∣∣
L2(D)

∣∣∣∣∣∣∣∣∂uτ

∂x

∣∣∣∣∣∣∣∣
L2(D)

→ 0, as n→∞ (3.70)

since ãτ converges to a strongly in L2(D), and ∂uτ
∂x is bounded in L2(D)

It only remains to show the following equality

lim
τ→0

∫ T−τ

0
(s̃n

1)‘(t)uτ(s̃n
1(t), t)Φτ(s̃n

1(t), t)dt =

∫ T

0
s′(t)u(s(t), t)Φ(s(t), t) (3.71)

Due to strong convergence of {s̃n
1} to s in W1

2 [0,T ], from (3.56) we get {uτ(s̃n
1(t), t)} is

uniformly bounded in L2[0,T ] and

‖uτ(s̃n
1(t), t)−uτ(s(t), t)‖L2[0,T ]→ 0 as τ→ 0 (3.72)

Due to weak convergence of {uτ} to u in W1,0
2 (D), we get

uτ(s(t), t)→ u(s(t), t), weakly in L2[0,T ] (3.73)

Since {Φτ(s̃n
1(t), t)} converges to Φ(s(t), t) uniformly in [0,T ], from (3.72),(3.73), we can

conclude (3.71).

Taking the limit as τ→ 0, from (3.63) we get that u satisfies integral identity (3.12), i.e

it is a weak solution of the problem (3.1)-(3.4). Due to uniqueness of the solution ([58])

it follows that the whole sequence {uτ} converges to u ∈ V1,0
2 (Ω) weakly in W1,0

2 (Ω). By
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the property of weak convergence and (3.59), we conclude (3.46). Theorem is proved.

Theorem 3.6.3 implies the following existence result ([58]):

Corollary 3.6.4. For arbitrary v = (s,a) ∈ VR there exists a weak solution u ∈ V1,0
2 (Ω) of

the problem (3.1)-(3.4) that satisfy the energy estimate (3.46)

Remark: We can use the following weaker assumptions in this section to carry out

the proves

φ ∈ L2[0, l], γ,χ ∈W1,0
2 (D),

and (3.8) instead of conditions given in Section 3.4. We would only need to define φi as a

Steklov average

φi =
1
hi

∫ xi+1

xi

φ(x)dx, i = 0, ...,N −1

and substitute the norm of φn in the first energy estimate by norm of φ.

3.6.2 Second Energy Estimate and Existence of the Optimal Control

Let [v]n to be a given discrete control vector and [u([v]n)]n discrete state vector, we deine

the vector

[ũ([v]n)]n = (ũ(0), ũ(1), ..., ũ(n))

as

ũi(k) =


ui(k) 0 ≤ i ≤ m j,

um j(k) m j < i ≤ N,k = 0,n.

We are going to prove the energy estimation for the vector ũ([v]n).

Theorem 3.6.5. For all sufficiently small τ discrete state vector [u([v]n)]n satisfies the
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following stability estimation:

max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(k) +τ

n∑
k=1

m j−1∑
i=0

hiũ2
it(k) +τ2

n∑
k=1

m j−1∑
i=0

hiũ2
ixt(k) ≤

C
[∥∥∥φn

∥∥∥2
L2[0,s0] + ‖φ‖2

W1
2 [0,s0]

+ ‖g‖2
W

1
4

2 [0,T ]
+

∥∥∥γ(sn(t), t)(sn)′(t)
∥∥∥2

W
1
4

2 [0,T ]

+
∥∥∥χ(sn(t), t)

∥∥∥2

W
1
4

2 [0,T ]
+ ‖ f ‖2L2(D)

]
, (3.74)

Proof: If sk−1 ≥ sk then we can substitute ui(k) by ũi(k) in all terms of (3.21). Choose

ηi = 2τũit(k) in (3.21) thus from equality

2τan
ikũix(k)ũixt(k) = an

ikũ2
ix(k)−an

i,k−1ũ2
ix(k−1)−τan

iktũ
2
ix(k−1) +τ2an

ikũ2
ikt(k), (3.75)

we get

m j−1∑
i=0

hian
ikũ2

ix(k)−
m j−1∑
i=0

hian
i,k−1ũ2

ix(k−1) + 2τ
m j−1∑
i=0

hiũ2
it(k) +τ2

m j−1∑
i=0

hian
ikũ2

ixt(k)

= τ

m j−1∑
i=0

hian
iktũ

2
ix(k−1) + 2τ

m j−1∑
i=0

hibikũix(k)ũit(k) + 2τ
m j−1∑
i=0

hicikũi(k)ũit(k)

−2τ
m j−1∑
i=0

hi fikũit(k)−2τ
[
(γsn(sn)′)k −χk

sn

]
ũm j,t(k)−2τgku0,t(k) (3.76)

If sk−1 < sk, then we can substitute ui(k) by ũi(k) in all terms of (3.21) except in the

term including backward discrete time derivative. The latter will be estimated using the

following inequality:

2τ
m j−1∑
i=0

hiuit(k)ũit(k) ≥ τ
m j−1∑
i=0

hiũ2
it(k)− (C‘)2τ

m j−1∑
i=m jk−1

hiu2
ix(k−1) (3.77)

In order to show (3.77), we transform the LHS employing CBS and Cauchy inequalty
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with ε = τ to derive

2τ
m j−1∑
i=0

hiuit(k)ũit(k) = 2τ
m j−1∑
i=0

hiũ2
it(k)−2

m j−1∑
i=m jk−1

hiũit(k)
i−1∑

p=m jk−1

hpupx(k−1)

≥ τ

m j−1∑
i=0

hiũ2
it(k)−

1
τ

m j−1∑
i=m jk−1

hi
( i−1∑

p=m jk−1

hpupx(k−1)
)2

≥ τ

m j−1∑
i=0

hiũ2
it(k)−

1
τ
|sk − sk−1|

2
m j−1∑

i=m jk−1

hiu2
ix(k−1) (3.78)

which gives us (3.77) due to (3.30). Thus (3.76) is replaced with the inequality

m j−1∑
i=0

hian
ikũ2

ix(k)−
m j−1∑
i=0

hian
i,k−1ũ2

ix(k−1) +τ

m j−1∑
i=0

hiũ2
it(k) +τ2

m j−1∑
i=0

hian
ikũ2

ixt(k)

≤ τ

m j−1∑
i=0

hian
iktũ

2
ix(k−1) + 2τ

m j−1∑
i=0

hibikũix(k)ũit(k) + 2τ
m j−1∑
i=0

hicikũi(k)ũit(k)

+(C‘)2τ

m j−1∑
i=m jk−1

hiu2
ix(k−1)−2τ

m j−1∑
i=0

hi fikũit(k)

−2τ
[
(γsn(sn)′)k −χk

sn

]
ũm j,t(k)−2τgkũ0,t(k) (3.79)

After summing inequalities (3.79) w.r.t k from 1 to arbitrary p ≤ n we obtain

m jp−1∑
i=0

hian
ipũ2

ix(p) +τ

p∑
k=1

m j−1∑
i=0

hiũ2
it(k) +τ2

p∑
k=1

m j−1∑
i=0

hian
ikũ2

ixt(k)

≤ (C‘)2τ

p∑
k=1

1+(sk − sk−1)
m j−1∑

i=m jk−1

hiu2
ix(k−1) +τ

p∑
k=1

m j−1∑
i=0

hian
iktũ

2
ix(k−1)

+2τ
p∑

k=1

[m j−1∑
i=0

hibikũix(k)ũit(k) + 2
m j−1∑
i=0

hicikũi(k)ũit(k)−2
m j−1∑
i=0

hi fikũit(k)
]

+

m j0−1∑
i=0

hian
i0φ

2
ix−2τ

p∑
k=1

[
(γsn(sn)′)k −χk

sn

]
ũm j,t(k)−2τ

p∑
k=1

gkũ0,t(k) (3.80)

Using (3.8) and by employing Cauchy inequalities with appropriately chosen ε > 0, from
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(3.80) we get

a
m jp−1∑

i=0

hiũ2
ix(p) +

τ

2

p∑
k=1

m j−1∑
i=0

hiũ2
it(k) + aτ2

p∑
k=1

m j−1∑
i=0

hiũ2
ixt(k) ≤ τ

p∑
k=1

m j−1∑
i=0

hian
iktũ

2
ix(k−1)

+Cτ
n∑

k=1

[m j−1∑
i=0

hiu2
i (k) +

m j−1∑
i=0

hiu2
ix(k) +

m j−1∑
i=0

hi f 2
ik

]
+C

m j0−1∑
i=0

hiφ
2
ix

+2τ
n∑

k=1

∣∣∣(γsn(sn)′)k −χk
sn

∣∣∣ ∣∣∣∣ũm j,t(k)
∣∣∣∣+ 2τ

n∑
k=1

|gk|
∣∣∣ũ0,t(k)

∣∣∣ (3.81)

where C does not depend n. First term on the RHS will be estimated as follows:

τ

p∑
k=1

m j−1∑
i=0

hian
iktũ

2
ix(k−1) =

n∑
k=1

m j−1∑
i=0

1
τ

∫ xi+1

xi

∫ tk

tk−1

∫ t

t−τ

∂an(x, ξ)
∂ξ

dξdtdxu2
ix(k−1)

≤ 2
∫ T

0
esssup0≤x≤l

∣∣∣∣∣∂an(x, t)
∂t

∣∣∣∣∣dt max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(k) +C

m j0−1∑
i=0

hiφ
2
ix (3.82)

Since p is chosen arbitrary, from (3.81) we derive

a max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(p) +

τ

2

n∑
k=1

m j−1∑
i=0

hiũ2
it(k) + a0τ

2
n∑

k=1

m j−1∑
i=0

hiũ2
ixt(k)

≤ 2
∫ T

0
esssup0≤x≤l

∣∣∣∣∣∂an(x, t)
∂t

∣∣∣∣∣dt max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(k) +C

m j0−1∑
i=0

hiφ
2
ix

+Cτ
n∑

k=1

[m j−1∑
i=0

hiu2
i (k) +

m j−1∑
i=0

hiu2
ix(k) +

m j−1∑
i=0

hi f 2
ik

]
+2τ

n∑
k=1

∣∣∣(γsn(sn)′)k −χk
sn

∣∣∣ ∣∣∣∣ũm j,t(k)
∣∣∣∣+ 2τ

n∑
k=1

|gk|
∣∣∣ũ0,t(k)

∣∣∣ (3.83)
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If

2
∫ T

0
esssup0≤x≤l

∣∣∣∣∂an(x, t)
∂t

∣∣∣∣dt

≤ 2
(∫ T

0
esssup0≤x≤l

∣∣∣∣∂an(x, t)
∂t

∣∣∣∣γdt
) 1
γT

γ−1
γ

≤ 2RT
γ−1
γ < a (3.84)

or, analogously

T <
( a
2R

) γ
γ−1 (3.85)

then the first term on the RHS of (3.83) is absorbed into the first term on the LHS. If

(3.84) is not satisfied, then [0,T ] can be partitioned into finitely many closed subintervals

which satisfy (3.84), absorb first term on the RHS into the LHS in each such subintervals

and using summation obtain the same for (3.83) in general. Therefore we get

max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(p) +τ

n∑
k=1

m j−1∑
i=0

hiũ2
it(k) +τ2

n∑
k=1

m j−1∑
i=0

hiũ2
ixt(k)

≤Cτ
n∑

k=1

[m j−1∑
i=0

hiu2
i (k) +

m j−1∑
i=0

hiu2
ix(k) +

m j−1∑
i=0

hi f 2
ik

]
+C

m j0−1∑
i=0

hiφ
2
ix

+Cτ
n∑

k=1

∣∣∣(γsn(sn)′)k −χk
sn

∣∣∣ ∣∣∣∣ũm j,t(k)
∣∣∣∣+Cτ

n∑
k=1

|gk|
∣∣∣ũ0,t(k)

∣∣∣ (3.86)

with constant C which does not depend on n.

Due to the fact that γ,χ ∈W1,1
2 (D) we get γ(sn(t), t),χ(sn(t), t) ∈W

1
4
2 [0,T ] ([65, 25, 58])

and

‖γ(sn(t), t)‖
W

1
4

2 [0,T ]
≤C‖γ‖W1,1

2 (D), ‖χ(sn(t), t)‖
W

1
4

2 [0,T ]
≤C‖χ‖W1,1

2 (D), (3.87)

where C is independent of n. By Lemma 3.6.8 Pn([v]n) ∈ VR+1. Applying Morrey in-
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equality to (sn)′ we can show that γ(sn(t), t)(sn)′(t) ∈W
1
4
2 [0,T ]. Furthermore

‖γ(sn(t), t)(sn)‘(t)‖
W

1
4

2 [0,T ]
≤C1‖γ(sn(t), t)‖

W
1
4

2 [0,T ]
‖sn‖W2

2 [0,T ] ≤C‖γ‖W1,1
2 (D), (3.88)

where C does not depend on n.

Consider w(x, t) to be a function in W2,1
2 (D) so that

w(x,0) = φ(x) for x ∈ [0, s0], a(0, t)wx(0, t) = g(t), for a.e. t ∈ [0,T ] (3.89)

a(sn(t), t)wx(sn(t), t) = γ(sn(t), t)(sn)‘(t)−χ(sn(t), t) for a.e. t ∈ [0,T ] (3.90)

and

‖w‖W2,1
2 (D) ≤C

[
‖g‖

W
1
4

2 [0,T ]
+ ‖φ(x)‖W1

2 [0,s0]

+
∥∥∥γ(sn(t), t)(sn)‘(t)−χ(sn(t), t)

∥∥∥
W

1
4

2 [0,T ]

]
(3.91)

Function w exists due to the result on traces of Sobolev functions [25, 65]. For instance,

w can be constructed as a solution from W2,1
2 (Ωn) of the heat equation in

Ωn = {0 < x < sn(t),0 < t < T }

with initial-boundary conditions (3.89),(3.90) and subsequent continuation to W2,1
2 (D)

with norm preservation [73, 74].

Therefore if we substitute in the original problem (3.1)-(3.4) u by u−w we can obtain

modified (3.86) without the last three terms on the RHS and with f , substituted by

F = f + wt − (awx)x−bwx− cw ∈ L2(D). (3.92)
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After using the stability estimation (3.34), from modified (3.86),(3.91) and (3.92), we

have the following estimate:

max
1≤k≤n

m j−1∑
i=0

hiũ2
ix(k) +τ

n∑
k=1

m j−1∑
i=0

hiũ2
it(k) +τ2

n∑
k=1

m j−1∑
i=0

hiũ2
ixt(k) ≤

C
[∥∥∥φn

∥∥∥2
L2[0,s0] + ‖φ‖2

W1
2 [0,s0]

+ ‖g‖2
W

1
4

2 [0,T ]
+

∥∥∥γ(sn(t), t)(sn)′(t)
∥∥∥2

W
1
4

2 [0,T ]
+

∥∥∥χ(sn(t), t)
∥∥∥2

W
1
4

2 [0,T ]
+ ‖ f ‖2L2(D) +

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

]
, (3.93)

After estimating the last term on the RHS of 3.93 as in the proof of Theorem 3.6.3, we

obtain (3.74). Theorem is proved.

Result of Theorem 3.6.3 is strenghten by Second energy estimate (3.74).

Theorem 3.6.6. Let [v]n = ([s]n, [a]nN) ∈ Vn
R,n = 1,2, ... be a sequence of discrete controls

and the sequence {Pn([v]n} converges weakly in W2
2 [0,T ]× W̃1,1

2 (D) to v = (s,a) ∈ H (i.e.

strongly in W1
2 [0,T ]×L2(D)) to v = (s,a) for any δ > 0,

Ω′ = Ω∩{x < s(t)−δ, 0 < t < T }

Then the sequence {ûτ} converges as τ → 0 weakly in W1,1
2 (Ω‘) to weak solution u ∈

W1,1
2 (Ω) of the problem (3.1)-(3.4), i.e. to the solution of the integral identity (3.11).

Moreover, u satisfies the energy estimate

‖u‖2
W1,1

2 (Ω)
≤C

(
‖φ‖2

W1
2 (0,s0)

+ ‖g‖2
W

1
4

2 [0,T ]
+ ‖ f ‖2L2(D) + ‖γ‖2

W1,1
2 (D)

+ ‖χ‖2
W1,1

2 (D)

)
(3.94)

Proof: Take εm ↓ 0 to be an arbitrary sequence and

Ωm = {(x, t) : 0 < x < s(t)− εm,0 < t ≤ T }
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Notice that the sequence sn converges to s uniformly in [0,T ]. Compute

‖ûτ‖2
W1,1

2 (Ωm)
=

n∑
k=1

∫ tk

tk−1

∫ s(t)−εm

0
|ûτ|2 +

∣∣∣∣∂ûτ

∂x

∣∣∣∣2 +
∣∣∣∣∂ûτ

∂t

∣∣∣∣2 dxdt

We define sm
k = xî, where

î = max
{
i ≤ N : max

tk−1≤t≤tk
s(t)− εm ≤ xi ≤ max

tk−1≤t≤tk
s(t)−

εm

2

}
and substitute to obtain

‖ûτ‖2
W1,1

2 (Ωm)
≤

n∑
k=1

∫ tk

tk−1

∫ sm
k

0
|û(x;k−1) + ût̄(x;k)(t− tk−1)|2 dxdt+

+

n∑
k=1

∫ tk

tk−1

∫ sm
k

0

∣∣∣∣dû(x;k−1)
dx

+
dût̄(x;k)

dx
(t− tk−1)

∣∣∣∣2 dxdt+

+

n∑
k=1

∫ tk

tk−1

∫ sm
k

0
|ût̄(x;k)|2 dxdt

then by using (3.15) we derive

‖ûτ‖2
W1,1

2 (Ωm)
≤C

{
τ

n∑
k=1

î−1∑
0

hiu2
i (k−1) +τ

n∑
k=1

î−1∑
0

hiu2
ix(k−1)+

+τ

n∑
k=1

î−1∑
0

hiu2
it̄(k) +τ2

n∑
k=1

î−1∑
0

hiu2
ixt̄(k)

}
(3.95)

where C does not depend on n or τ. We need to prove that the RHS of (3.95) is bounded

by the LHS of (3.74) for sufficiently large n. It is enough to prove that: for fixed εm, there

exists N = N(εm) so that for ∀n > N

sm
k < min(sk, sk−1), k = 1, . . . ,n (3.96)
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From (3.96) we get

τ

n∑
k=1

î−1∑
0

hiu2
ix(k−1) +τ

n∑
k=1

î−1∑
0

hiu2
it̄(k) +τ2

n∑
k=1

î−1∑
0

hiu2
ixt̄(k)

≤ τ

n∑
k=1

m j−1∑
0

hiũ2
ix(k−1) +τ

n∑
k=1

m j−1∑
0

hiũ2
it̄(k) +τ2

n∑
k=1

m j−1∑
0

hiũ2
ixt̄(k) (3.97)

In order to prove (3.96), first we prove that for sufficiently large n and all tk−1 ≤ t ≤ tk

s(t)− sk <
εm

2
(3.98)

We have

s(t)− sk = s(t)− s(tk) + s(tk)− sn(tk) + sn(tk)− sk

≤ ‖s′‖C[0,T ]τ+ ‖s− sn‖C[0,T ] + sn(tk)− sk

Note that

sn(tk) =
sk + sk−1

2

so

|s(t)− sk| ≤ ‖s′‖C[0,T ]τ+ ‖s− sn‖C[0,T ] +
|sk−1− sk|

2

Next, employing Morrey’s inequality and (3.5.3) we derive

|s(t)− sk| ≤

(
C‖s′‖W1

2 [0,T ] +
C′

2

)
τ+ ‖s− sn‖C[0,T ] (3.99)

Since sn→ s uniformly on [0,T ] then there exists N1 = N1(εm) for which (3.98) holds.

In a similar manner, there exists some N2 = N2(εm), such that for n > N2 and for all

tk−1 ≤ t ≤ tk, (3.98) is true with sk replaced by sk−1. Therefore, (3.96) holds with N =

max(N1,N2).

Using (3.95), (3.97), second energy estimate (3.74), and the first energy estimate (3.33),
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we derive

‖ûτ‖2
W1,1

2 (Ωm)
≤C

[∥∥∥φn
∥∥∥2

L2[0,s0] + ‖φ‖2
W1

2 [0,s0]
+ ‖ f ‖2L2(D) + ‖γ‖2

W1,1
2 (D)

+

+‖χ‖2
W1,1

2 (D)
+ ‖g‖2

W1/4
2 [0,T ]

+

n−1∑
k=1

1+(sk+1− sk)
m jk+1−1∑

i=m j

hiu2
i (k)

]
(3.100)

After estimating the last term on the RHS of (3.100) like in the proof of Theorem 3.6.3,

we obtain

‖ûτ‖2
W1,1

2 (Ωm)
≤C

(
‖φn‖2L2(0,s0) + ‖φ‖2

W1
2 (0,s0)

+ ‖g‖2
W

1
4

2 [0,T ]
+ ‖ f ‖2L2(D)+

‖γ‖2
W1,1

2 (D)
+ ‖χ‖2

W1,1
2 (D)

)
, (3.101)

Due to the fact that φn → φ strongly in L2[0, s0], the RHS is uniformly bounded inde-

pendent of n. Thus, {ûτ} is weakly precompact in W1,1
2 (Ωm). Therefore it is strongly

precompact in L2(Ωm). Let u be a weak limit point of {ûτ} in W1,1
2 (Ωm), and thus a strong

limit point in L2(Ωm). On the other hand the sequences {ûτ} and {uτ} are equivalent in

strong topology of L2(Ωm). In fact, we have that for all n > N(m)

‖ûτ−uτ‖2L2(Ωm) ≤ 2τ3
n∑

k=1

m j−1∑
i=0

[
hiũ2

it̄(k) +
1
3

h3
i ũ2

ixt(k)
]

= O(τ), as τ→ 0, (3.102)

because of the second energy estimate (3.74). Which implies that u is a strong limit point

of the sequence {uτ} in L2(Ωm). By Theorem 3.6.3 whole sequence {uτ} converges weakly

in W1,0
2 (Ω) to the unique weak solution from V1,0

2 (Ω) of the problem (3.1)-(3.4). Thus, u

is a weak solution of the problem (3.1)-(3.4) and we obtain that the whole sequence {ûτ}

converges weakly in W1,1
2 (Ωm) to u ∈W1,1

2 (Ωm) which is a weak solution of the problem

(3.1)-(3.4) from V1,0
2 (Ω). Therefore, ut exists in Ωm and ‖ut‖L2(Ωm) is uniformly bounded

by the RHS of (3.101). Consequently the weak derivative ut exists in Ω, and u ∈W1,1
2 (Ω).

Employing the property of the weak convergence, after passing to limit first as n→
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+∞, and then as m→ +∞, from (3.101), we derive (3.94). Theorem is proved.

Furthermore, Theorem 3.6.6 implies the following existence result:

Corollary 3.6.7. For arbitrary v = (s,a) ∈ VR there exists a weak solution u ∈ W1,1
2 (Ω)

of the problem (3.1)-(3.4) which satisfy the energy estimate (3.94). By Sobolev extension

theorem u can be continued to W1,1
2 (D) with the norm preservation:

‖u‖2
W1,1

2 (D)
≤C

(
‖φ‖2

W1
2 (0,s0)

+ ‖g‖2
W

1
4

2 [0,T ]
+ ‖ f ‖2L2(D) + ‖γ‖2

W1,1
2 (D)

+ ‖χ‖2
W1,1

2 (D)

)
(3.103)

Remark: Slightly higher regularity of u was proved and both in Theorem 3.6.6 and

Corollary 3.6.7 W1,1
2 (Ω) or W1,1

2 (D)-norm on the left-hand sides of (3.94) or (3.103) can

be substituted with

‖u‖2 = max
0≤t≤T

‖u(x, t)‖2
W1

2 [0,s(t)]
+ ‖ut‖

2
L2(Ω) or ‖u‖2 = max

0≤t≤T
‖u(x, t)‖2

W1
2 [0,l]

+ ‖ut‖
2
L2(D)

The proof of the Theorem 3.4.1 is the same as the proof ofl Theorem 3.4.1 in [1].

The main idea is that first and second energy estimates imply weak continuity of the

functional J(v) in W2
2 [0,T ]× W̃1,1

2 (D). Using Weierstrass theorem in weak topology and

weak compactness of VR existence of the optimal control follows.

3.6.3 Proof of Convergence Theorem 3.4.2

We divide the remainder of the proof of Theorem 3.4.2 into four lemmas. Lemma (3.6.8)

shows that the mappings Qn and Pn introduced in Section 3.3 satisfy the conditions of

Lemma 3.5.2.

Lemma 3.6.8. For arbitrary sufficiently small ε > 0 there exists nε such that

Qn(v) ∈ Vn
R, for all v ∈ VR−ε and n > nε . (3.104)
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Pn([v]n) ∈ VR+ε , for all [v]n ∈ Vn
R and n > nε . (3.105)

Proof. Let 0 < ε << R, v ∈ VR−ε and Q(v) = [v]n = ([s]n, [a]nN). The estimates for the first

component of the control vectors is handled as in ([1]). By applying Cauchy-Bunyakovski-

Schwarz (CBS) inequality and Fubini’s theorem we have

n−1∑
k=1

τs2
tt,k =

n−1∑
k=1

1
τ3

[ tk+1∫
tk

(s′(t)− s′(t−τ))dt
]2
≤

1
τ2

∫ T

τ
|s′(t)− s′(t−τ)|2dt

≤
1
τ

T∫
τ

dt

t∫
t−τ

|s′′(ξ)|2dξ ≤

T∫
0

|s′′(t)|2dt,
n∑

k=1

τs2
t,k ≤

T∫
0

|s′(t)|2dt, (3.106)

τs2
tt,0 =

1
τ3

[ τ∫
0

(s′(t)− s′(0))dt
]2
≤

1
2

τ∫
0

|s′′(t)|2dt, (3.107)

∣∣∣∣ n−1∑
k=0

τs2
k −

∫ T

0
s2(t)dt

∣∣∣∣ =
∣∣∣∣ n−1∑

k=0

tk+1∫
tk

tk∫
t

(s2(ξ))′dξdt
∣∣∣∣ ≤

n−1∑
k=0

tk+1∫
tk

t∫
tk

[s2(ξ) + (s′(ξ))2 ]dξdt ≤ τ

T∫
0

[s2(t) + (s′(t))2 ]dt ≤ (R− ε)2τ, (3.108)

Thus,

||[s]n||
2
w2

2
≤

T∫
0

|s′′(t)|2dt +

T∫
0

|s′(t)|2dt +
1
2

τ∫
0

|s′′(t)|2dt + (R− ε)2τ

≤ ||s||2
W2

2 [0,T ]
+ O(τ) (3.109)

Using triangle inequality to estimate the difference between corresponding norms, we
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get

 n∑
k=1

N−1∑
i=0

τhi |aik|
2


1/2

−

["
D
|a(x, t)|2 dxdt

]1/2

≤

 n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

|aik −a(x, t)|2 dxdt


1/2

(3.110)

We are going to show that RHS of (3.110) tends to zero

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

|aik −a(x, t)|2 dxdt

Calculate

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

|aik −a(x, t)|2 dxdt

=

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ2

∣∣∣∣∣∣
∫ tk

tk−1

[a(xi,z)−a(x, t)]dz

∣∣∣∣∣∣2 dxdt

=

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ2

∣∣∣∣∣∣
∫ tk

tk−1

[a(xi,z)−a(x,z) + a(x,z)−a(x, t)]dz

∣∣∣∣∣∣2 dxdt

=

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ2

∣∣∣∣∣∣
∫ tk

tk−1

[∫ xi

x

∂a
∂y

(y,z)dy +

∫ z

t

∂a
∂ξ

(x, ξ)dξ
]
dz

∣∣∣∣∣∣2 dxdt

CBS
≤ 2

[ n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ

∫ tk

tk−1

∣∣∣∣∣∣
∫ x

xi

∂a
∂x

(y,z)dy

∣∣∣∣∣∣2 dzdxdt,

+

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ

∫ tk

tk−1

∣∣∣∣∣∫ z

t

∂a
∂t

(x, ξ)dξ
∣∣∣∣∣2 dzdxdt

]
≤ I1 + I2
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Let’s denote terms on the right hand side by I1, I2 then

I1 =

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ

∫ tk

tk−1

∫ xi+1

xi

∣∣∣∣∂a
∂x

(y,z)
∣∣∣∣2 dy(x− xi)dzdxdt

≤
∆2

2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ

∫ tk

tk−1

∫ xi+1

xi

∣∣∣∣∂a
∂x

(y,z)
∣∣∣∣2 dydzdxdt

≤
∆2

2
||ax||

2
L2(D) ≤

∆2

2
(R− ε)2 (3.111)

Similarly,

I2 =

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

∫ tk

tk−1

∫ tk

tk−1

∣∣∣∣∣∂a
∂t

(x, ξ)
∣∣∣∣∣2 dξdzdxdt

= τ2||at||
2
L2(D) ≤ τ

2(R− ε)2 (3.112)

By (3.110), (3.111), (3.112) it follows that

 n∑
k=1

N−1∑
i=0

τhi |aik|
2


1/2

≤ ||a||L2(D) +

√
∆2

2
+τ2(R− ε)

Since

∆ ≤C
√
τ (3.113)

and hence

 n∑
k=1

N−1∑
i=0

τhi |aik|
2


1/2

≤ ||a||L2(D) +
√

Cτ+τ2(R− ε) (3.114)
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Next, consider the second term in ||[a]nN ||b2:

 n∑
k=1

N−1∑
i=0

τhi
∣∣∣aik,x

∣∣∣2
1/2

=

 n∑
k=1

N−1∑
i=0

1
hiτ

∣∣∣∣∣∣
∫ tk

tk−1

a(xi+1, t)−a(xi, t)dt

∣∣∣∣∣∣2

1/2

=

 n∑
k=1

N−1∑
i=0

1
hiτ

∣∣∣∣∣∣
∫ tk

tk−1

∫ xi+1

xi

∂a
∂x

(x, t)dxdt

∣∣∣∣∣∣2

1/2

≤

["
D

∣∣∣∣∣∂a
∂x

(x, t)
∣∣∣∣∣2 dxdt

]1/2

=
∣∣∣∣∣∣∣∣∂a
∂x

∣∣∣∣∣∣∣∣
L2(D)

(3.115)

Lets consider the third term in
∣∣∣∣∣∣∣∣[a]nN

∣∣∣∣∣∣∣∣
b2

:

By triangle inequality,

 n∑
k=1

N−1∑
i=0

τhi
∣∣∣aik,t̄

∣∣∣2
1/2

−

["
D

∣∣∣∣∣∂a
∂t

(x, t)
∣∣∣∣∣2 dxdt

]1/2

≤

 n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

∣∣∣∣∣aik,t̄ −
∂a
∂t

(x, t)
∣∣∣∣∣2 dxdt


1/2

It is enough then to estimate

J1 :=
n∑

k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

∣∣∣∣∣aik,t̄ −
∂a
∂t

(x, t)
∣∣∣∣∣2 dxdt (3.116)
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Calculate

J1 =

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

∣∣∣∣∣∣ 1
τ2

[∫ tk

tk−1

[a(xi, ξ)−a(xi, ξ−τ)]dξ
]
−
∂a
∂t

(x, t)

∣∣∣∣∣∣2 dxdt

=

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

∫ xi+1

xi

1
τ4

∣∣∣∣∣∣
∫ tk

tk−1

∫ ξ

ξ−τ
[
∂a
∂t

(xi,µ)−
∂a
∂t

(x, t)]dµdξ

∣∣∣∣∣∣2 dxdt

≤

n∑
k=1

N−1∑
i=0

1
τ2

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∫ ξ

ξ−τ

∣∣∣∣∂a(xi,µ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dµdξ ≤ K1 + K2

K1 =
2
τ2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∫ ξ

ξ−τ

∣∣∣∣∂a(xi,µ)
∂t

−
∂a(x,µ)
∂t

∣∣∣∣2dµdξ

=
2
τ2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∫ ξ

ξ−τ

∣∣∣∣∫ xi

x

∂2a(y,µ)
∂x∂t

dy
∣∣∣∣2dµdξ

≤
2∆

τ2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∫ ξ

ξ−τ

∫ xi+1

xi

∣∣∣∣∂2a(y,µ)
∂x∂t

∣∣∣∣2dydµdξ

By using Fubinis theorem:

K1 ≤
2∆

τ2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

dt
(∫ xi+1

xi

∫ tk−1

tk−2

dξ
∫ ξ+τ

tk−1

∣∣∣∣∂2a(y,µ)
∂x∂t

∣∣∣∣2dµdy +

∫ xi+1

xi

∫ tk

tk−1

dξ
∫ tk

ξ

∣∣∣∣∂2a(y,µ)
∂x∂t

∣∣∣∣2dµdy
)

≤ 2∆2
n∑

k=1

N−1∑
i=0

(∫ xi+1

xi

∫ tk

tk−1

∣∣∣∣∂2a(y,µ)
∂x∂t

∣∣∣∣2dµdy +

∫ xi+1

xi

∫ tk

tk−1

∣∣∣∣∂2a(y,µ)
∂x∂t

∣∣∣∣2dµdy
)

≤ 4∆2
∣∣∣∣∣∣∣∣ ∂2a
∂x∂t

∣∣∣∣∣∣∣∣2
L2(D)

(3.117)
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K2 =

n∑
k=1

N−1∑
i=0

2
τ2

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∫ ξ

ξ−τ

∣∣∣∣∂a(x,µ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dµdξ

=
2
τ2

n∑
k=1

N−1∑
i=0

∫ tk

tk−1

dt
∫ xi+1

xi

dx
∫ tk

tk−1

∣∣∣∣∂a(x,µ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dµ ·τ

=
2
τ

∫ l

0

n∑
k=1

∫ tk

tk−1

dt
∫ tk

tk−1

∣∣∣∣∂a(x,µ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dµ (3.118)

=
2
τ

∫ l

0

n∑
k=1

∫ tk

tk−1

dt
∫ tk−t

tk−1−t

∣∣∣∣∂a(x, t +σ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dσ

≤
2
τ

∫ l

0

n∑
k=1

∫ tk

tk−1

dt
∫ τ

−τ

∣∣∣∣∂a(x, t +σ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dσ

≤
2
τ

∫ τ

−τ
dσ

∫ l

0

∫ T

0

∣∣∣∣∂a(x, t +σ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣2dtdx

≤ 4max
|σ|≤τ

∣∣∣∣∣∣∣∣∂a(x, t +σ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣∣∣∣∣2
L2(D)

(3.119)

Lastly,

n−1∑
k=1

N−1∑
i=0

hiτ
∣∣∣aik,xt̄

∣∣∣2 =

n−1∑
k=1

N−1∑
i=0

1
hiτ

∣∣∣(ai+1,k −aik
)
−

(
ai+1,k−1−ai,k−1

)∣∣∣2 (3.120)

=

n−1∑
k=1

N−1∑
i=0

1
hiτ3

∣∣∣∣∣∣
∫ tk

tk−1

(
a(xi+1, t)−a(xi, t)

)
−

(
a(xi+1, t−τ)−a(xi, t−τ

)
dt

∣∣∣∣∣∣2 (3.121)

=

n−1∑
k=1

N−1∑
i=0

1
hiτ3

∣∣∣∣∣∣
∫ tk

tk−1

∫ xi+1

xi

∂a
∂x

(z, t)−
∂a
∂x

(z, t−τ)dzdt

∣∣∣∣∣∣2 (3.122)

=

n−1∑
k=1

N−1∑
i=0

1
hiτ3

∣∣∣∣∣∣
∫ tk

tk−1

∫ xi+1

xi

∫ t

t−τ

∂2a
∂x∂t

(z, ξ)dξdzdt

∣∣∣∣∣∣2 (3.123)

By CBS inequality,

n−1∑
k=1

N−1∑
i=0

hiτ
∣∣∣aik,xt̄

∣∣∣2 ≤ n−1∑
k=1

N−1∑
i=0

1
τ

∫ tk

tk−1

∫ xi+1

xi

∫ t

t−τ

∣∣∣∣∣∣ ∂2a
∂x∂t

(z, ξ)

∣∣∣∣∣∣2 dξdzdt (3.124)

=
1
τ

∫ T

0

∫ `

0

∫ t

t−τ

∣∣∣∣∣∣ ∂2a
∂x∂t

(z, ξ)

∣∣∣∣∣∣2 dξdzdt (3.125)
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By Fubini’s theorem, it follows that

n−1∑
k=1

N−1∑
i=0

hiτ
∣∣∣aik,xt̄

∣∣∣2 ≤ ∫ 0

−τ

∫ `

0

∣∣∣∣∣∣ ∂2a
∂x∂t

(x, t)

∣∣∣∣∣∣2 dxdt +

∫ T

0

∫ `

0

∣∣∣∣∣∣ ∂2a
∂x∂t

(x, t)

∣∣∣∣∣∣2 dxdt (3.126)

Thus,

||[a]nN ||w̃1,1
2
≤ ||a||W̃1,1

2 (D) + 2∆(R− ε) +
√
τ(R− ε)

+2∆
∣∣∣∣∣∣∣∣ ∂2a
∂x∂t

∣∣∣∣∣∣∣∣
L2(D)

+ 2

√
max
|σ|≤τ

∣∣∣∣∣∣∣∣∂a(x, t +σ)
∂t

−
∂a(x, t)
∂t

∣∣∣∣∣∣∣∣2
L2(D)

+
(∫ 0

−τ

∫ `

0

∣∣∣∣∣∣ ∂2a
∂x∂t

(x, t)

∣∣∣∣∣∣2 dxdt
) 1

2
≤ ||a||W̃1,1

2 (D) + O(
√
τ) + o(1), as τ ↓ 0 (3.127)

Next,

|aik| =

∣∣∣∣∣∣1τ
∫ tk

tk−1

a(xi, t)dt

∣∣∣∣∣∣ ≤ ||a||L∞(D) (3.128)
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n∑
k=1

τ|aik,t̄|
γ =

n∑
k=1

τ

∣∣∣∣∣∣ 1
τ2

∫ tk

tk−1

∫ t

t−τ
|aξ(xi, ξ)|dξdt

∣∣∣∣∣∣γ

≤

n∑
k=1

τ1−2γ
[(∫ tk

tk−1

∫ t

t−τ
|aξ(xi, ξ)|γdξdt

) 1
γ
(∫ tk

tk−1

∫ t

t−τ
1 dξdt

) γ−1
γ

]γ
≤

n∑
k=1

1
τ

∫ tk

tk−1

∫ t

t−τ
|aξ(xi, ξ)|γdξdt

≤

n∑
k=1

1
τ

[∫ tk−1

tk−2

∫ ξ+τ

tk−1

|aξ(xi, ξ)|γdtdξ+

∫ tk

tk−1

∫ tk

ξ
|aξ(xi, ξ)|γdtdξ

]

≤

n∑
k=1

1
τ

[∫ tk−1

tk−2

|aξ(xi, ξ)|γ(ξ+τ− tk−1)dξ+

∫ tk

tk−1

|aξ(xi, ξ)|γ(tk − ξ)dξ
]

=

n∑
k=1

1
τ

[∫ tk

tk−1

|aξ(xi, ξ−τ)|γ(ξ− tk−1)dξ+

∫ tk

tk−1

|aξ(xi, ξ)|γ(tk − ξ)dξ
]

=

n∑
k=1

1
τ

[∫ tk

tk−1

|aξ(xi, ξ)|γ(tk − tk−1)dξ+

∫ tk

tk−1

(
|aξ(xi, ξ−τ)|γ− |aξ(xi, ξ)|γ

)
(ξ− tk−1)dξ

]

≤

∫ T

0
esssup

0≤x≤l
|aξ(x, ξ)|γdξ+

∫ T

0

∣∣∣∣|aξ(xi, ξ−τ)|γ− |aξ(xi, ξ)|γ
∣∣∣∣∣∣ dξ (3.129)

We are going to show that the second term on the RHS tends to zero as τ→ 0

We have:

∫ T

0

∣∣∣∣|aξ(xi, ξ−τ)|γ− |aξ(xi, ξ)|γ
∣∣∣∣∣∣ dξ

=

∫ T

0

∣∣∣∣∣∣
∫ 1

0

d
dθ

(
θ|aξ(xi, ξ−τ)|+ (1− θ)|aξ(xi, ξ)|

)γ
dθ

∣∣∣∣∣∣dξ
=

∫ T

0
γ

∫ 1

0

(
θ|aξ(xi, ξ−τ)|+ (1− θ)|aξ(xi, ξ)|

)γ−1
dθ ·

∣∣∣∣|aξ(xi, ξ−τ)| − |aξ(xi, ξ)|
∣∣∣∣dξ
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≤ γ

∫ T

0

(
|at(xi, t−τ)|+ |at(xi, t)|

)γ−1
· |at(xi, t−τ)−at(xi, t)|dt

≤ γ
(∫ T

0
|at(xi, t−τ)−at(xi, t)|γdt

) 1
γ
(∫ T

0

(
|at(xi, t−τ)|+ |at(xi, t)|

)γdt
) γ−1

γ

≤ γ

[(∫ T

0
esssup

0≤x≤l
|at(x, t−τ)|γdt

) 1
γ

+

(∫ T

0
esssup

0≤x≤l
|at(x, t)|γdt

) 1
γ
]γ−1

×

(∫ T

0
esssup

0≤x≤l
|at(x, t−τ)−at(x, t)|γdt

) 1
γ

≤ γ2γ−1
[(∫ T

−τ
esssup

0≤x≤l
|at(x, t)|γdt

) 1
γ
]γ−1

·

(∫ T

0
esssup

0≤x≤l
|at(x, t−τ)−at(x, t)|γdt

) 1
γ

= γ2γ−1||at||
γ−1
L∞,γ(D)||at(x, t−τ)−at(x, t)||L∞,γ(D) = o(1), τ ↓ 0 (3.130)

|aik,x| =

∣∣∣∣∣∣ ∫ tk
tk−1

a(xi+1, t)dt−
∫ tk

tk−1
a(xi, t)dt

∣∣∣∣∣∣
τhi

≤

∫ tk
tk−1

∫ xi+1

xi
|aξ(ξ, t)|dξdt

τhi
≤

∣∣∣∣∣∣∣∣∂a
∂x

∣∣∣∣∣∣∣∣
L∞(D)

(3.131)

Thus,

||[a]nN ||w1,1
∞,γ
≤ ||a||W1,1

∞,γ
+ o(1) (3.132)

From (3.106)-(3.132) it follows that

max
(
||[s]n||b2

2
; ||[a]nN ||w̃1,1

2
; ||[a]nN ||w1,1

∞,γ

)
≤max

(
||s||B2

2(0,T ); ||a||W̃1,1
2 (D); ||a||W1,1

∞,γ(D)
)
+ O(

√
τ) + o(1), as τ ↓ 0 (3.133)

From (3.159), (3.104) follows. Now let [v]n ∈ Vn
R and let (s,a) = Pn([v]n)
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∫ l

0

∫ T

0
|an(x, t)|2dxdt

=

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

[
aik + aikx(x− xi) + aikt̄(t− tk) + aikxt̄(x− xi)(t− tk)

]2dtdx

=

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikdtdx +

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikx(x− xi)2dtdx

+

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikt̄(t− tk)2dtdx +

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikxt̄(x− xi)2(t− tk)2dtdx

+2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikx(x− xi)dtdx + 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikt̄(t− tk)dtdx
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+2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikxt̄(x− xi)(t− tk)dtdx

+2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikx(x− xi)aikt̄(t− tk)dtdx

+2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikxaikxt̄(x− xi)2(t− tk)dtdx

+2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikt̄aikxt̄(x− xi)(t− tk)2dtdx

=

10∑
i=1

Ki (3.134)

K1 =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikdtdx =

n∑
k=1

N−1∑
i=0

τhia2
ik = ||[a]n||

2
l2

K2 =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikx(x− xi)2dtdx =

n∑
k=1

N−1∑
i=0

τh3
i

3
a2

ikx ≤
∆2

3

n∑
k=1

N−1∑
i=0

τhi

3
a2

ikx

≤
∆2

3
R2 (3.135)

K3 =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikt̄(t− tk)2dtdx ≤

n∑
k=1

N−1∑
i=0

hiτ
3

3
a2

ikt̄ = τ2
n∑

k=1

N−1∑
i=0

hiτ

3
a2

ikt̄ ≤ τ
2R2

(3.136)
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K4 =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikxt̄(x− xi)2(t− tk)2dtdx ≤

n∑
k=1

N−1∑
i=0

h3
i τ

3

9
a2

ikxt̄ ≤
τ2∆2

9

n∑
k=1

N−1∑
i=0

hiτa2
ikxt̄

≤
τ2∆2

9

n∑
k=1

N−1∑
i=0

hiτa2
ikxt̄ ≤

τ2∆2R2

9
(3.137)

K5 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikx(x− xi)dtdx =

n∑
k=1

N−1∑
i=0

τh2
i aikaikx

≤ ∆
( n∑

k=1

N−1∑
i=0

τhia2
ik

) 1
2
( n∑

k=1

N−1∑
i=0

τhia2
ikx

) 1
2
≤ ∆R2 (3.138)

K6 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikt̄(t− tk)dtdx ≤
n∑

k=1

N−1∑
i=0

hiτ
2aikaikt̄

≤ τ
( n∑

k=1

N−1∑
i=0

hiτa2
ik

) 1
2
( n∑

k=1

N−1∑
i=0

hiτa2
ikt̄

) 1
2
≤ τR2 (3.139)

K7 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikaikxt̄(x− xi)(t− tk)dtdx ≤
n∑

k=1

N−1∑
i=0

τ2h2
i

2
aikaikxt̄

≤
τ∆

2

( n∑
k=1

N−1∑
i=0

τhia2
ik

) 1
2
( n∑

k=1

N−1∑
i=0

τhia2
ikxt̄

) 1
2
≤
τ∆R2

2
(3.140)
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K8 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikx(x− xi)aikt̄(t− tk)dtdx ≤
n∑

k=1

N−1∑
i=0

τ2h2
i

2
aikxaikt̄

≤
τ∆

2

( n∑
k=1

N−1∑
i=0

τhia2
ikt̄

) 1
2
( n∑

k=1

N−1∑
i=0

τhia2
ikx

) 1
2
≤
τ∆R2

2
(3.141)

K9 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikxaikxt̄(x− xi)2(t− tk)dtdx ≤
n∑

k=1

N−1∑
i=0

h3
i τ

2

3
aikxaikxt̄

≤
∆2τ

3

( n∑
k=1

N−1∑
i=0

hiτa2
ikx

) 1
2
( n∑

k=1

N−1∑
i=0

hiτa2
ikxt̄

) 1
2
≤

∆2τR2

3
(3.142)

K10 = 2
n∑

k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

aikt̄aikxt̄(x− xi)(t− tk)2dtdx ≤
n∑

k=1

N−1∑
i=0

h2
i τ

3

3
aikt̄aikxt̄

≤
∆τ2

3

( n∑
k=1

N−1∑
i=0

hiτa2
ikxt̄

) 1
2
( n∑

k=1

N−1∑
i=0

hiτa2
ikt̄

) 1
2
≤

∆τ2R2

3
(3.143)

Using CBS inequality and h = O(
√
τ) it follows that:∫ l

0

∫ T

0
|an(x, t)|2dxdt ≤

n∑
k=1

N−1∑
i=0

τhia2
ik +O(

√
τ) (3.144)

∫ l

0

∫ T

0
|
∂an

∂x
(x, t)|2dxdt =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

[
aikx + aikxt̄(t− tk)

]2dtdx

=

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

[
a2

ikx + a2
ikxt̄(t− tk)2 + 2aikxaikxt̄(t− tk)

]
dtdx

≤

n∑
k=1

N−1∑
i=0

τhia2
ikx +

n∑
k=1

N−1∑
i=0

τ3hi

3
a2

ikxt̄ +

n∑
k=1

N−1∑
i=0

τ2hiaikxaikxt̄

≤

n∑
k=1

N−1∑
i=0

τhia2
ikx +

τ2

3

n∑
k=1

N−1∑
i=0

τhia2
ikxt̄ +τ

( n∑
k=1

N−1∑
i=0

τhia2
ikxt̄

) 1
2
( n∑

k=1

N−1∑
i=0

τhia2
ikx

) 1
2

≤

n∑
k=1

N−1∑
i=0

τhia2
ikx +

τ2R2

3
+τR2

≤

n∑
k=1

N−1∑
i=0

τhia2
ikx +O(τ) (3.145)
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∫ l

0

∫ T

0
|
∂an

∂t
(x, t)|2dxdt =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

[
aikt̄ + aikxt̄(x− xi)

]2dtdx

=

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

[
a2

ikt̄ + a2
ikxt̄(x− xi)2 + 2aikt̄aikxt̄(x− xi)

]
dtdx

=

n∑
k=1

N−1∑
i=0

τhia2
ikt̄ +

n∑
k=1

N−1∑
i=0

τh3
i

3
a2

ikxt̄ +

n∑
k=1

N−1∑
i=0

τh2
i aikt̄aikxt̄

≤

n∑
k=1

N−1∑
i=0

τhia2
ikt̄ +

∆2

3

n∑
k=1

N−1∑
i=0

τhia2
ikxt̄ + ∆

( n∑
k=1

N−1∑
i=0

τhia2
ikxt̄

) 1
2
( n∑

k=1

N−1∑
i=0

τhia2
ikt̄

) 1
2

≤

n∑
k=1

N−1∑
i=0

τhia2
ikt̄ +

∆2R
3

+ ∆R2

≤

n∑
k=1

N−1∑
i=0

τhia2
ikt̄ +O(

√
τ) (3.146)

(3.147)

∫ l

0

∫ T

0

∣∣∣∣∂2an

∂x∂t
(x, t)

∣∣∣∣2dxdt =

n∑
k=1

N−1∑
i=0

∫ xi+1

xi

∫ tk

tk−1

a2
ikxt̄ dtdx =

n∑
k=1

N−1∑
i=0

τhia2
ikxt̄ (3.148)

Thus we get ||an||2
W̃1,1

2 (D)
≤ ||[a]n||

2
w̃1,1

2
+O(

√
τ) (3.149)
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||an(x, t)||L∞(D) = max
0≤i≤N−1

1≤k≤n

max
xi≤x≤xi+1
tk−1≤t≤tk

∣∣∣∣aik + aikx(x− xi) + aikt̄(t− tk) + aikxt̄(x− xi)(t− tk)
∣∣∣∣

= max
0≤i≤N−1

1≤k≤n

max
xi≤x≤xi+1
tk−1≤t≤tk

[
|aik|+ |aikx| · |x− xi|+ |aikt̄| · |t− tk|+ |aikxt̄| · |x− xi| · |t− tk|

]
≤ max

0≤i≤N−1
1≤k≤n

|aik|+ ∆ max
0≤i≤N−1

1≤k≤n

|aikx|

+τ max
0≤i≤N−1

1≤k≤n

|aikt̄|

+ max
0≤i≤N−1

1≤k≤n

max
tk−1≤t≤tk

|
ai+1kt̄ −aikt̄

hi
| ·hi · |t− tk|

≤ max
0≤i≤N−1

1≤k≤n

|aik|+ ∆ max
0≤i≤N−1

1≤k≤n

|aikx|

+τ max
0≤i≤N−1

1≤k≤n

|aikt̄|

+τ max
0≤i≤N−1

1≤k≤n

|ai+1kt̄ −aikt̄|

≤ max
0≤i≤N−1

1≤k≤n

|aik|+ ∆ max
0≤i≤N−1

1≤k≤n

|aikx|

+τ max
0≤i≤N−1

1≤k≤n

|aikt̄|

+τ max
0≤i≤N−1

1≤k≤n

|ai+1kt̄|+τ max
0≤i≤N−1

1≤k≤n

|aikt̄|

≤ max
0≤i≤N−1

1≤k≤n

|aik|+C1τ+C2
√
τ

≤ ||[a]nN ||l∞ +C1τ+C2
√
τ (3.150)
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||
∂an

∂x
(x, t)||L∞(D) = max

0≤i≤N−1
1≤k≤n

max
tk−1≤t≤tk

|aik,x + aikxt̄(t− tk)|

= max
0≤i≤N−1

1≤k≤n

max
tk−1≤t≤tk

|aik,x +
aik,x−aik−1,x

τ
(t− tk)|

≤ max
0≤i≤N−1

1≤k≤n

|aik,x| (3.151)

∣∣∣∣∣∣∣∣∂an

∂t
(x, t)

∣∣∣∣∣∣∣∣γ
L∞,γ(D)

=

∫ T

0
esssup

0≤x≤l

∣∣∣∣∂an(x, t)
∂t

∣∣∣∣γ dt

=

n∑
k=1

∫ tk

tk−1

max
0≤i≤N−1

max
xi≤x≤xi+1

|aikt̄ + aikxt̄(x− xi)|γ dt

=

n∑
k=1

∫ tk

tk−1

max
0≤i≤N−1

max
xi≤x≤xi+1

|aikt̄ +
ai+1kt̄ −aikt̄

hi
(x− xi)|γ dt

=

n∑
k=1

τ max
0≤i≤N−1

max
xi≤x≤xi+1

|aikt̄ +
ai+1kt̄ −aikt̄

hi
(x− xi)|γ dt

≤

n∑
k=1

τ max
0≤i≤N−1

{|ai+1kt̄|
γ; |aikt̄|

γ}

≤

n∑
k=1

τ max
0≤i≤N

|aikt̄|
γ (3.152)

Thus,

||an||W̃1,1
∞,γ(D) ≤ ||[a]nN ||w̃1,1

∞,γ
+O(

√
τ) (3.153)

Direct calculations lead to

‖s‖2
W2

2 [0,T ]
≤

n−1∑
k=0

τs2
k +

n−1∑
k=1

τs2
t̄,k +

n−1∑
k=0

τs2
t̄t,k +

1
3
τs2

t̄,1 +Cτ, (3.154)
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where C does not depend of τ. We use C for all constants which are independent of τ. By

applying CBS we get

1
3
τs2

t̄,1 =
4
3τ

(s(τ)− s(0))2 ≤
4
3

τ∫
0

|s′(t)|2dt (3.155)

After applying Morrey inequality to s′(t) in (3.155) we get the following estimate

1
3
τs2

t̄,1 ≤Cτ‖s‖2
W2

2 [0,T ]
(3.156)

Since [v]n ∈ Vn
R, from (3.154),(3.156) it follows that for all τ ≤ (2C)−1

‖s‖2
W2

2 [0,T ]
≤C, (3.157)

Thus from (3.154),(3.156),(3.157) it follows that for sufficiently small τ

‖s‖2
W2

2 [0,T ]
≤

n−1∑
k=0

τs2
k +

n−1∑
k=1

τs2
t̄,k +

n−1∑
k=0

τs2
t̄t,k +Cτ (3.158)

From (3.134)− (3.158) we conclude that for sufficiently small τ

max
(
||s||B2

2(0,T ); ||a||W̃1,1
2 (D); ||a||W1,1

∞,γ(D)
)

≤max
(
||[s]n||b2

2
; ||[a]nN ||w̃1,1

2
; ||[a]nN ||w1,1

∞,γ

)
+O(

√
τ) + o(1) (3.159)

From (3.133) and (3.159) lemma follows. �

Lemma 3.6.9. Let J∗(±ε) = inf
VR±ε
J(v), ε > 0. Then

lim
ε→0
J∗(ε) =J∗ = lim

ε→0
J∗(−ε) (3.160)

The proof of Lemma 3.6.9 is the same as the proof of lemma 3.9 from [1].
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Lemma 3.6.10. For arbitrary v = (s,g) ∈ VR,

lim
n→∞
In(Qn(v)) =J(v) (3.161)

Proof: Let v ∈ VR, u = u(x, t;v), Qn(v) = [v]n and [u([v]n)]n be a corresponding discrete

state vector. In Theorem 3.6.6 it is proved that the sequence {ûτ} converges to u weakly in

W1,1
2 (Ωm) for any fixed m. Therefore the sequences of traces {ûτ(0, t)} and {ûτ(s(t)−εm, t)}

converge strongly in L2[0,T ] to corresponding traces u(0, t) and u(s(t)− εm, t). We will

show that the sequences of traces {uτ(0, t)} and {uτ(s(t) − εm, t)} converge strongly in

L2[0,T ] to traces u(0, t) and u(s(t)− εm, t) respectively. Using Sobolev embedding the-

orem ([25, 65]) it suffices to show that the sequences {uτ} and {ûτ} are equivalent in strong

topology of W1,0
2 (Ωm). In Theorem 3.6.6 it is demonstrated that they are equivalent in

strong topology of L2(Ωm), therefore we only need to prove that the sequences of deriva-

tives ∂uτ
∂x and ∂ûτ

∂x are equivalent in strong topology of L2(Ωm). Using the proof of the

Theorem 3.6.6, from the second energy estimate (3.74) we conclude that for all n > N(m)

∥∥∥∥∂uτ

∂x
−
∂ûτ

∂x

∥∥∥∥2

L2(Ωm)
≤

1
3

n∑
k=1

τ3
m j−1∑
i=0

hiũ2
ixt(k) = O(τ), as τ→ 0. (3.162)

Let ω̃τ(x) = ωi, µ
τ(t) = µk , if tk−1 < t ≤ tk, k = 1, . . . ,n, xi ≤ x < xi+1, i = 0,m−1.

We have

‖µτ−µ‖L2[0,T ]→ 0 as τ→ 0 (3.163)

Estimation of the first term in In(Qn(v)) derived as follows:

We have

||ω̃τ(x)−ω(x)||L2(0,l)→ 0, as n→ 0 (3.164)
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m∑
i=1

h(ui(n)−ωi)2 =

m∑
i=1

∫ xi

xi−1

|ui(n)−ωi|
2dx =

∫ l

0
|ũτ(x,T )− ω̃τ(x)|2 (3.165)

= ||ũτ(x,T )− ω̃τ(x)||L2(0,l) (3.166)

Now we are going to use backward triangle inequality

∣∣∣∣||ũτ(x,T )− ω̃τ(x)||L2(0,l)− ||u(x,T )−ω(x)||L2(0,l)

∣∣∣∣
≤ ||ũτ(x,T )− ω̃τ(x)−u(x,T ) +ω(x)||L2(0,l)

≤ ||ũτ(x,T )−u(x,T )||L2(0,l) + ||ω̃τ(x)−ω(x)||L2(0,l)

= ||ũτ(x,T )−uτ(x,T ) + uτ(x,T )−u(x,T )||L2(0,l) + ||ω̃τ(x)−ω(x)||L2(0,l)

≤ ||ũτ(x,T )−uτ(x,T )||L2(0,l) + ||uτ(x,T )−u(x,T )||L2(0,l) + ||ω̃τ(x)−ω(x)||L2(0,l) (3.167)

Here 2nd term on the right hand side goes to zero as τ→ 0 by the similar argument

stated in the [1].

To prove that the first term goes to zero, lets consider the following:

||ũτ(x,T )−uτ(x,T )||2L2(0,l) =

m−1∑
i=0

∫ xi+1

xi

[
ui(n)− û(x,n)

]2
dx

=

m−1∑
i=0

∫ xi+1

xi

[ui+1(n)−ui(n)
h

(x− xi)
]2

dx =
h
3

m−1∑
i=0

[ui+1(n)−ui(n)]2

=
h3

3

m−1∑
i=0

[ui+1(n)−ui(n)]2

h2 =
h3

3

m−1∑
i=0

u2
ix(n) (3.168)
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Here is the estimation for the second term in In(Qn(v))

β1τ

n∑
k=1

|umk(k)−µk|2 = 2β1

n∑
k=1

∫ tk

tk−1

∫ sk

s(t)

∂uτ

∂x
(
uτ(s(t), t)−µτ(t)

)
dxdt

+β1

n∑
k=1

∫ tk

tk−1

|u(s(t);k)−µk|2 dt +β1

n∑
k=1

∫ tk

tk−1

(∫ sk

s(t)

∂uτ

∂x
dx

)2

dt = I1 + I2 + I3 (3.169)

Since
∥∥∥∥∂uτ
∂x

∥∥∥∥
L2(D)

and ‖uτ(s(t), t)−µτ‖L2[0,T ] are uniformly bounded, {sn} → s uniformly on

[0,T ], by using CBS inequality and (3.99) we obtain

lim
n→∞

I1 = 0, lim
n→∞

I3 = 0 (3.170)

Lastly we need to show that

lim
n→∞

I2 = lim
n→∞

β1

∫ T

0
|uτ(s(t), t)−µτ(t)|2 dt = β1

∫ T

0
|u(s(t), t)−µ(t)|2 dt (3.171)

Due to strong convergence of µτ to µ in L2[0,T ] it suffices to demonstrate

‖uτ(s(t), t)−u(s(t), t)‖L2[0,T ] → 0 (3.172)

as τ→ 0. For any fixed m > 0,

‖uτ(s(t), t)−u(s(t), t)‖L2[0,T ] ≤ ‖uτ(s(t), t)−uτ(s(t)− εm, t)‖L2[0,T ]+

+‖uτ(s(t)− εm, t)− ûτ(s(t)− εm, t)‖L2[0,T ]+

+‖ûτ(s(t)− εm, t)−u(s(t)− εm, t)‖L2[0,T ] + ‖u(s(t)− εm, t)−u(s(t), t)‖L2[0,T ] (3.173)

Next we estimate the first term on the RHS of (3.173) as

‖uτ(s(t), t)−uτ(s(t)− εm, t)‖L2[0,T ] =

(∫ T

0

∣∣∣∣∫ s(t)

s(t)−εm

∂uτ(x, t)
∂x

dx
∣∣∣∣2 dt

)1/2

(3.174)
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Using CBS inequality and the first energy estimate

‖uτ(s(t), t)−uτ(s(t)− εm, t)‖L2[0,T ] ≤
√
εm

∥∥∥∥∂uτ

∂x

∥∥∥∥
L2(D)

≤C
√
εm (3.175)

where C does not depend on n. In a similar manner we estimate the last term in (3.173)

by employing CBS and energy estimate (3.46):

‖u(s(t)− εm, t)−u(s(t), t)‖L2[0,T ] ≤C
√
εm (3.176)

Fix ε > 0 and find M such that for all m ≥ M, C
√
εm ≤ ε/4. Taking m = M, it follows

from (3.173)–(3.176)

‖uτ(s(t), t)−u(s(t), t)‖L2[0,T ] ≤
ε

2
+ ‖uτ(s(t)− εM, t)− ûτ(s(t)− εM, t)‖L2[0,T ]

+‖ûτ(s(t)− εM, t)−u(s(t)− εM, t)‖L2[0,T ] (3.177)

We estimate the second term in (3.177) by using Sobolev embedding of traces

‖uτ(s(t)− εM, t)− ûτ(s(t)− εM, t)‖L2[0,T ] ≤C‖ûτ−uτ‖W1,0
2 (ΩM) (3.178)

By (3.102), (3.162) there exists τ0(M) > 0 such that ∀τ < τ0

‖uτ(s(t)− εM, t)− ûτ(s(t)− εM, t)‖L2[0,T ] ≤
ε

4
(3.179)

Using well-known compact embedding theorem weak convergence of ûτ→ u in W1,1
2 (ΩM)

implies strong convergence of traces ûτ|x=s(t)−εM to u|x=s(t)−εM in L2[0,T ] [58]; i.e there

exists τ1(M) such that for all τ < τ1 we get

‖ûτ(s(t)− εM, t)−u(s(t)− εM, t)‖L2[0,T ] <
ε

4
(3.180)
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Therefore by (3.177), (3.179), (3.180), for arbitrary ε > 0 we can choose τ2 = min(τ0;τ1)

such that for all τ < τ2 we get

‖uτ(s(t), t)−u(s(t), t)‖L2[0,T ] < ε. (3.181)

This proves (3.171) and completes the proof of the Lemma.

Lemma 3.6.11. For arbitrary [v]n ∈ Vn
R

lim
n→∞

(
J(Pn([v]n))−In([v]n)

)
= 0 (3.182)

Proof: Let [v]n ∈ Vn
R and vn = (sn,an) = Pn([v]n). Lemma 3.6.8 implies that the se-

quence {Pn([v]n} is weakly precompact in W2
2 [0,T ]× W̃1,1

2 (D). Next, assume that the

whole sequence converges to ṽ = (s̃, ã) weakly in W2
2 [0,T ]× W̃1,1

2 (D). This implies the

strong convegence in W1
2 [0,T ]× L2(D). Using the property of weak convergence we de-

duce that ṽ ∈ VR. Furthermore sn→ s̃ uniformly on [0,T ] and we obtain

lim
n→∞

max
0≤i≤n

∣∣∣sn(ti)− s̃(ti)
∣∣∣ = 0 (3.183)

Consider the following equality

In
(
[v]n

)
−J(vn) = In

(
[v]n

)
−J(ṽ) +J(ṽ)−J(vn) (3.184)

Due to weak continuity of J(v) in W2
2 [0,T ]×W1

2 [0,T ] we get

lim
n→∞

(
J(ṽ)−J(vn)

)
= 0.

Thus, it remains to prove

lim
n→∞
In

(
[v]n

)
=J(ṽ) (3.185)
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But the proof of (3.185) is almost the same as the proof of Lemma 3.6.10. This completes

the proof of the Lemma.

Having Lemmas 3.6.9, 3.6.10 and 3.6.11, Theorem 3.4.2 follows from Lemma 3.5.2.
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Chapter 4

Conclusions

4.1 Conclusions

Dissertation analyzes inverse Stefan type free boundary problem for the second order

parabolic PDE with unknown parameters based on the additional information given in the

form of the distribution of the solution of the PDE and the position of the free boundary at

the final moment. This type of ill-posed inverse free boundary problems arise in many ap-

plications such as biomedical engineering problem about the laser ablation of biomedical

tissues, in-flight ice accretion modeling in aerospace industry, and various phase transi-

tion processes in thermophysics and fluid mechanics. The set of unknown parameters

include a space-time dependent diffusion, convection and reaction coefficients, density of

the sources, time-dependent boundary flux and the free boundary. New PDE constrained

optimal control framework in Hilbert-Besov spaces introduced in U.G. Abdulla, Inverse

Problems and Imaging, 7, 2(2013), 307-340; 10, 4(2016), 869-898 is employed, where

the missing data and the free boundary are components of the control vector, and optimal-

ity criteria are based on the final moment measurement of the temperature and position

of the free boundary, and available information on the phase transition temperature on

the free boundary. The latter presents a key advantage in dealing with applications, where
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phase transition temperature is not known explicitly, but involve some measurement error.

Another advantage of the new variational approach is based on the fact that for a given

control parameter, Stefan boundary condition turns into Neumann boundary condition on

the given boundary, and parabolic PDE problem is solved in a fixed domain, and there-

fore a perspective opens for the development of numerical methods of least computational

cost.

In Chapter 2 the general Inverse Stefan Problem with unknown parameters such as

time-dependent diffusion coefficient, space-time dependent convection coefficient, reac-

tion coefficient and density of sources, boundary heat flux and a free boundary is analyzed.

Optimal control problem for the free boundary system with distributed parameters for the

second order parabolic equation in Hilbert-Besov space is introduced, where unknown

parameters and the free boundary are components of the control vector, and the state

vector is the weak solution of the parabolic Neumann problem in Sobolev-Hilbert space.

Optimality criteria are based on the final moment measurement of the temperature and

the position of the free boundary, and the temperature on the phase transition boundary.

• Existence of the optimal control is proved. The methods of proof are based on

energy estimates in Sobolev-Hilbert spaces, weak continuity of the cost functional

and Weierstrass theorem in weak topology of the Hilbert-Besov spaces.

• Method of finite differences is implemented and space-time discretization of the

optimal control problem is introduced. Convergence of the sequence of the finite-

dimensional discrete optimal control problems to the original optimal control prob-

lem both with respect to functional and control is proved. Namely,

– it is proved that the sequence of infima of the discrete optimal control prob-

lems converge to the infimum of the original optimal control problem,

– It is proved that sequence of interpolations of the discrete optimal controls

converge to the optimal control in a weak topology of Hilbert-Besov space,
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and the sequence of multi-linear interpolations of the discrete PDE problems

associated with discrete minimizers converge weakly in the class of weakly

differentiable functions to the solution of the PDE problem associated with

optimal control. The methods of the proof are based on establishing two en-

ergy estimates in discrete Sobolev-Hilbert spaces, use of weak compactness

criteria, and delicate interpolation results in Sobolev spaces.

Chapter 3 analyzes the Inverse Stefan Problem with unknown space-time dependent

diffusion coefficient. Dissertation introduces a new Banach space, and formulates an in-

verse problem as a parabolic PDE constrained optimal control problem in a new Banach

space with control parameters being space-time dependent diffusion coefficient and a free

boundary. The motivation for the new space is dictated with the optimal result on the

convergence of the bilinear interpolations of the grid functions in the class of weakly dif-

ferentiable functions, and establishment of the discrete H1-energy estimate under minimal

assumptions on the diffusion coefficient.The following are the main results of Chapter 3:

• Finite difference discretization of the optimal control problem is carried out and

sequence of finite-dimensional optimal control problems is introduced. Conver-

gence of the sequence of discrete optimal control problems to continuous optimal

control problem both with respect to functional and control is proved.

• Convergence of the sequence of multi-linear interpolations of the minimizing

discrete optimal control parameters to optimal diffusion coefficient in a weak topol-

ogy of the new space is proved. Convergence of the multi-linear interpolations of

the associated discrete PDE problems to the optimal state PDE problem in a weak

topology of the space of weakly differentiable functions is established.

• H1-energy estimates are proved for the solutions of the discrete and continuous

PDE problems under the minimal assumption on the diffusion coefficient. Primarily
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by applying energy estimate, and new interpolation results, existence of the optimal

control is proved.

4.2 Publications and Conference Presentations

The results of the Chapter 2 of the dissertation is published in the following paper:

• U. G. Abdulla, J. Goldfarb, A. Hagverdiyev, Optimal Control of Coefficients in

Parabolic Free Boundary Problems Modeling laser Ablation, Journal of Computa-

tional and Applied Mathematics, Volume 372, July 2020, 112736

The research paper on the results of Chapter 3 are in process of submission.

The results of the dissertation are presented in the following conferences:

• U.G. Abdulla, J. Goldfarb, A. Hagverdiyev, Optimal Control of Coefficients in

Parabolic Free Boundary Problems Modeling Laser Ablation, Joint Mathematics

Meetings (JMM), Denver, January 15 - 18, 2020

• U.G. Abdulla, J. Goldfarb, A. Hagverdiyev, Optimal Control of Coefficients in

Parabolic Free Boundary Problems Modeling Laser Ablation, AMS Fall Southeast-

ern Meeting, University of Florida, Gainesville, November 2, 2019.

• U.G. Abdulla, J. Goldfarb, A. Hagverdiyev, Optimal Control of Coefficients in

Parabolic Free Boundary Problems Modeling Laser Ablation, 39th Southeastern-

Atlantic Regional Conference on Differential Equations (SEARCDE), Sat, Oct 26,

2019 – Sun, Oct 27, 2019. Embry-Riddle Aeronautical University, Daytona Beach,

Florida.
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4.3 Future Research

The results of the dissertation motivate the development of the implemented methods

to different open problems in the field. For example, it would be interesting to analyze

optimal control of free boundary problem for the nonlinear non-homogeneous reaction-

diffusion-convection equation of the type

ut =
(
a(x)um)

xx + b(x)
(
uγ

)
x + c(x)uβ = 0,

by exploiting mathematical theory in non-cylindrical domains ([10, 11, 12, 13]), and prop-

erties of the interfaces of nonlinear degenerate parabolic PDEs [14, 15].

Another important class of problems are optimal control or free boundary problems

for the elliptic and parabolic PDEs in domains with non-compact boundaries, and in par-

ticular with non-compact free boundaries. Generalization of the methods of [1, 2] to this

class of problems requires delicate use potential-theoretic results on the well-posedness of

the elliptic and parabolic boundary value problems in domains with non-compact bound-

aries [16, 17, 18, 19, 20].
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