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ABSTRACT

Title:

Optimal Control of the Second Order Elliptic Equations with Biomedical Applications

Author:

Saleheh Seif

Major Advisor:

Ugur G. Abdulla, Ph.D., Dr.Sci., Dr.rer.nat.habil.

Dissertation analyzes optimal control of systems with distributed parameters described

by the general boundary value problems in a bounded Lipschitz domain for the linear

second order uniformly elliptic partial differential equations (PDE) with bounded mea-

surable coefficients. Broad class of elliptic optimal control problems under Dirichlet or

Neumann boundary conditions are considered, where the control parameter is the den-

sity of sources, and the cost functional is the L2-norm difference of the weak solution

of the elliptic problem from measurement along the boundary or subdomain. The opti-

mal control problems are fully discretized using the method of finite differences. Two

types of discretization of the elliptic boundary value problem depending on Dirichlet

or Neumann type boundary condition are introduced. Convergence of the sequence of

finite-dimensional discrete optimal control problems both with respect to the cost func-

tional and the control is proved. The methods of the proof are based on energy estimates

in discrete Sobolev spaces, Lax-Milgram theory, weak compactness and convergence of

interpolations of solutions of discrete elliptic problems, and delicate estimation of the

cost functional along the sequence of interpolations of the minimizers for the discrete

optimal control problems. Dissertation pursues application of the optimal control theory

of elliptic systems with distributed parameters to biomedical problem on the identifica-

tion of cancerous tumor. The Inverse Electrical Impedance Tomography (EIT) problem

iii



on recovering electrical conductivity tensor and potential in the body based on the mea-

surement of the boundary voltages on the m electrodes for a given electrode current is

analyzed. A PDE constrained optimal control framework in Besov space is developed,

where the electrical conductivity tensor and boundary voltages are control parameters,

and the cost functional is the norm difference of the boundary electrode current from the

given current pattern and boundary electrode voltages from the measurements. The state

vector is a solution of the second order elliptic PDE in divergence form with bounded

measurable coefficients under mixed Neumann/Robin type boundary condition. The

novelty of the control theoretic model is its adaptation to clinical situation when addi-

tional "voltage-to-current" measurements can increase the size of the input data from

m up to m! while keeping the size of the unknown parameters fixed. Existence of

the optimal control is established. Fréchet differentiability in the Banach-Besov spaces

framework is proved and the formula for the Frechet gradient expressed in terms of the

adjoined state vector is derived. Optimality condition is formulated, and gradient type

iterative algorithm in Hilbert-Besov spaces setting is developed. EIT optimal control

problem is fully discretized using the method of finite differences. New Sobolev-Hilbert

space is introduced, and the convergence of the sequence of finite-dimensional optimal

control problems to EIT coefficient optimal control problem is proved both with respect

to functional and control in 2- and 3-dimensional domains.
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List of Notations

In this section, assume Q is a domain in Rn. Br(x)⊂ Rn - ball of radius r and center x;

md(·) - d-dimensional Lebesgue measure;

• For 1 ≤ p < ∞, Lp(Q) is a Banach space of measurable functions on Q with finite

norm

∥u∥Lp(Q) :=
(︂∫︂

Q
|u(x)|pdx

)︂ 1
p

In particular if p = 2, L2(Q) is a Hilbert space with inner product

( f ,g)L2(Q) =
∫︂

Q
f (x)g(x)dx

• L∞(Q) is a Banach space of measurable functions on Q with finite norm

∥u∥L∞(Q) := esssup
x∈Q

|u(x)|

• For s ∈ Z+, W s
p(Q) is the Banach space of measurable functions on Q with finite

norm

∥u∥W s
p(Q) :=

(︂∫︂
Q

∑
|α|≤s

|Dαu(x)|pdx
)︂ 1

p
,

where α = (α1,α2, ...,αn), α j are nonnegative integers, |α|= α1+ ...+αn, Dk =
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∂

∂xk
, Dα = Dα1

1 ...Dαn
n . In particular if p = 2, Hs(Q) := W s

2 (Q) is a Hilbert space

with inner product

( f ,g)Hs(Q) = ∑
|α|≤s

(Dα f (x),Dαg(x))L2(Q)

• H1
0 (Q) - linear subspace of elements u of H1(Q) which satisfy

u
⃓⃓⃓
S
= 0,

in the sense of traces.

• For s /∈ Z+, Bs
p(Q) is the Banach space of measurable functions on Q with finite

norm

∥u∥Bs
p(Q) := ∥u∥

W [s]
p (Q)

+[u]Bs
p(Q)

where

[u]Bs
p(Q) :=

∫︂
Q

∫︂
Q

⃓⃓
∂ [s]u(x)

∂x[s]
− ∂ [s]u(y)

∂x[s]
⃓⃓p

|x− y|1+p(s−[s])
dxdy

)︂ 1
p

Hε(Q) := Bε
2(Q) is a Hilbert space.

• H̃1(Q), n = 2,3 is a linear subspace of H1(Q) which is defined as follows:

H̃1(Q) = {u ∈ H1(Q)|ux1x2 ∈ L2(Q)}, if Q ∈ R2 (1)

H̃1(Q) = {u ∈ H1(Q)|ux1x2,ux1x3,ux2x3 ,ux1x2x3 ∈ L2(Q)}, if Q ∈ R3 (2)
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and their respective norms are defined accordingly:

∥u∥2
H̃1(Q) = ∥u∥2

H1(Q)+∥ux1x2∥
2
L2(Q), if Q ∈ R2 (3)

∥u∥2
H̃1(Q) = ∥u∥2

H1(Q)+
3

∑
i, j=1
i< j

∥uxix j∥
2
L2(Q)+∥ux1x2x3∥

2
L2(Q), if Q ∈ R3 (4)

• ba(Q) =
(︁
L∞(Q)

)︁′ is the Banach space of bounded and finitely additive signed

measures on Q and the dual space of L∞(Q) with finite norm

∥φ∥ba(Q) = |φ |(Q),

|φ |(Q) is total variation of φ and defined as |φ |(Q) = sup∑
i

φ(Ei), where the

supremum is taken over all partitions ∪Ei of E into measurable subsets Ei.

• Mm×n is a space of real m×n matrices.

• L := L∞(Q;Mn×n) is the Banach space of n×n matrices of L∞(Q) functions.

• L ′ := ba(Q;Mn×n) =
(︁
L∞(Q;Mn×n)

)︁′ is the Banach space of n× n matrices of

ba(Q) measures.
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Chapter 1

Introduction

The understanding of optimal control problems for systems with distributed parameters

is one of the most important and challenging problems in modern industrial, econom-

ical, and biomedical applications, to name a few. Solving optimal control problems is

a crucial step in the transition from mathematical model based simulations to the ac-

tual design and control of complex systems. The development of effective methods of

optimization of complex systems modeled by partial differential equations (or PDE-

constrained optimization), combined with powerful software development, also plays

a central role in many areas of operations research and management science. Yet an-

other important application of the mathematical theory of optimal control in infinite-

dimensional settings arises in the early stages of mathematical modeling of complex

systems that provide the most effective tools to solve inverse problems for the identifi-

cation of parameters based on experimental data.

Optimal control of systems with distributed parameters described by second order

linear elliptic PDEs has a well established theory. The book [81] was the first with sys-

tematic outline of the mathematical theory of optimal control of systems with distributed
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parameters. Literature in this field within the last half-century is enormous. Without any

ambition to pursue a complete survey, we refer to monographs [81, 95, 43, 94, 52] for

the outline of the mathematical theory of the optimal control of elliptic PDEs, includ-

ing the questions of existence and uniqueness of the optimal control in Banach spaces

setting, necessary and sufficient optimality conditions via adjoined approach, Fréchet

and Gateaux differentiability, Pontryagin’s Maximum Principle, theory of constrained

optimal control including both control and state constrains. Theoretical advance along

with development of the powerful computational tools opened the way for the devel-

opment and implementation of numerical methods for solving PDE constrained opti-

mal control problems [93, 95, 28, 82, 47, 94, 52, 33]. The most effective idea for the

development of effective numerical methods for optimal control problems in infinite-

dimensional setting is based on approximation with the sequence of finite-dimensional

optimal control problems via discretization by methods of finite elements or finite dif-

ferences. Necessary and sufficient condition for the convergence of the sequence of

discrete finite-dimensional optimal control problems to the infinite-dimensional optimal

control problem both with respect to cost functional and control was formulated and

proved in abstract setting in [95]. State-to-the-art introduction and survey of the re-

sults on discrete concepts, and numerical algorithms for the Elliptic PDE constrained

optimization we refer to [52, 53, 33], the latter having more focus on computational

aspects. In general, to solve optimal control numerically there are two approaches: first

Discretize, then Optimize (DO) vs. first Optimize, then Discretize (OD) [52]. DO ap-

proach first discretizes optimal control problem via method of finite elements, followed

by derivation of the necessary optimality condition for the finite-dimensional problem.

In particular, this requires an introduction of the discrete adjoined vector determined by

the ansatz of the discrete state vector. OD approach first derives first order optimality
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condition in infinite-dimensional setting, followed by the discretization of all the vari-

ables, including the adjoined variable. The latter includes some freedom, and in fact

choice of the ansatz space of the adjoined variable forms the difference between two

approaches. In [52] both DO and OD approaches are analyzed and the convergence

of the finite element approximation, along with error estimates, is established for the

uniquely solvable PDE optimality system in canonical convex optimal control problem

for the Poisson equation with zero Dirichlet boundary values. There is a broad liter-

ature on convergence and error estimates for finite element approximation of the PDE

optimality systems in linear elliptic control problems in space dimension two or three

[26, 25, 39, 38, 36, 84, 37, 35, 22]. In contrast, convergence of the method of finite

differences in optimal control problems for elliptic PDEs is not as widely investigated.

In [33, 32, 31] convergence of the finite difference multigrid solution to PDE optimality

system for the same control problem in two dimensional rectangular domain such that

boundaries coincide with the grid lines.

Despite its importance, the result on the convergence of the finite differences method for

optimal control problem for the general elliptic PDEs in arbitrary domains is not avail-

able in the literature. One of the main goals of the dissertation is to prove such

convergence result for a broad class of elliptic optimal control problems under

Dirichlet and Neumann boundary conditions. It should be pointed out that we are not

analyzing PDE optimality system, but aiming to prove that the necessary and sufficient

condition for the convergence of the sequence of discrete optimal control problems is

satisfied. This is essential both for OD and DO approaches, and in particular it provides

legitimacy for the solution of the finite-dimensional discrete optimal control problems

instead of infinite-dimensional optimal control problem.

In Chapter 2 we analyze optimal control problem for the general linear elliptic PDE

3



with bounded measurable coefficients, where control parameter is the density of sources

and the cost functional is the L2-norm difference of the weak solution of the elliptic

Dirichlet or Neumann problem from measurement along the boundary or subdomain.

The optimal control problems are fully discretized using the method of finite differences.

Two types of discretization of the elliptic boundary value problem depending on Dirich-

let or Neumann type boundary condition are introduced. The main result of the Chapter

2 is the following:

• Convergence of the sequence of finite-dimensional discrete optimal control prob-

lems both with respect to the cost functional and the control is proved. The meth-

ods of the proof are based on energy estimates in discrete Sobolev spaces, Lax-

Milgram theory, weak compactness and convergence of interpolations of solutions

of discrete elliptic problems, and delicate estimation of the cost functional along

the sequence of interpolations of the minimizers for the discrete optimal control

problems.

Another major goal of the dissertation is to apply elliptic PDE constrained op-

timal control theory to solve an inverse Electrical Impedance Tomography (EIT)

problem of estimating an unknown electrical conductivity tensor inside the body

based on voltage measurements on the surface of the body when electric currents

are applied through a set of contact electrodes. Inverse EIT problem has many im-

portant applications in medicine, industry, gepphysics and material science [54]. We

are especially motivated with medical applications on the detection of cancerous tumors

from breast tissue or other parts of the body. Relevance of the inverse EIT problem

for cancer detection is based on the fact that the conductivity of the cancerous tumor is

higher than the condactivity of normal tissues [77]. Inverse EIT Problem is an ill-posed

problem and belongs to the class of so-called Calderon type inverse problems, due to
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celebrated work by [34] where well-posedness of the inverse problem for the identifica-

tion of the conductivity coefficient σ : Ω → R of the second order elliptic PDE

div(σ(x)∇u) = 0 (1.1)

through Dirichlet-to-Neumann or Neumann-to-Dirichlet boundary maps is presented.

Significant development in Calderon’s inverse problem in the class of smooth con-

ductivity function with spatial dimension n ≥ 3, concerning questions on uniqueness,

stability, reconstruction procedure, reconstruction with partial data was achieved in

[92, 85, 15, 24, 61, 62]. Global uniqueness in spatial dimension n= 2 and reconstruction

procedure through scattering transform and employment of the, so-called D-bar method

was presented in a key paper [86]. Further essential development of the D-bar method

for the reconstruction of discontinuous parameters, regularization due to inaccuracy of

measurements, joint recovery of the shape of domain and conductivity are pursued in

[64, 65, 66, 69]. Inverse EIT problem with unknown anisotropic conductivity tensor as

in (3.3) is highly ill-posed, and even with perfect Dirichlet to Neumann map there is a

non-uniqueness [91]. This is the structural non-uniqueness, and one can talk about the

identification of the conductivity tensor up to diffeomorphisms which keep the bound-

ary fixed [79, 91, 86, 75, 76, 27, 23]. Alternative approach is based on imposing apriori

structural constraints on the class of anisotropies [67, 68, 80, 17, 44, 45, 16].

Mathematical model for the EIT Problem, referred as complete electrode model, was

suggested in [90] in the case of given isotropic electrical conductivity tensor. The model

suggests replacement of the complete potential measurements along the boundary with

measurements of constant potential along the electrodes with contact impedances. In

[90] it was demonstrated that the complete electrode model is physically more relevant,
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and it is capable of predicting the experimentally measured voltages to within 0.1 per-

cent. Existence and uniqueness of the solution to the EIT problem was proved in [90].

Inverse EIT Problem is more difficult than the Calderon’s problem due to the fact that

the infinite-dimensional conductivity function σ (or tensor A) and finite-dimensional

voltage vector U must be identified based on the finitely many boundary electrode volt-

age measurements. Indeed, there are only finitely many electrodes are available where

input current pattern can be injected for the successful measurement of the voltage.

Hence the input data is finite-dimensional current vector, while in Calderon’s prob-

lem input data is given through infinite-dimensional boundary operator "Dirichlet-to-

Neuman" or "Neuman-to-Dirichlet". Therefore, inverse EIT problem is highly ill-posed

and powerful regularization methods are required for its solution. It is essential to note

that the size of the input current vector is limited to the number of electrodes, and there

is no flexibility to increase its size. It would be natural to suggest that multiple data

sets - input currents can be implemented for the identification of the same conductivity

function. However, note that besides unknown conductivity function, there is unknown

boundary voltage vector with size directly proportional to the size of the input current

vector. Accordingly, multiple experiments with "current-to-voltage" measurements is

not reducing underdeterminacy of the inverse problem. One can prove uniqueness and

stability results by restricting isotropic conductivity to the finite-dimensional subset of

piecewise analytic functions provided that the number of electrodes is large enough

[78, 50]. Within last three decades many methods developed for numerical solution

of the ill-posed inverse EIT problem both in isotropic and anisotropic conductivities.

Without any ambition to present a full review we refer to some significant develop-

ments such as recovery of small inclusions from boundary measurements [21, 70]; hy-

brid conductivity imaging methods [20, 89, 96]; multi-frequency EIT imaging methods
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[19, 88]; finite element and adaptive finite element method [57, 83]; imaging algorithms

based on the sparsity reconstruction [19, 56]; globally convergent method for shape

reconstruction in EIT [51]; D-bar method, diction reconstruction method, recovering

boundary shape and imaging the anisotropic electrical conductivity [18, 40, 48, 49, 55];

globally convergent regularization method using Carleman weight function [63]. In-

verse EIT problem was widely studied in the framework of Bayesian statistics [60]. In

[58] inverse EIT problem is formulated as a Bayesian problem of statistical inference

and Markov Chain Monte Carlo method with various prior distributions is implemented

for calculation of the posterior distributions of the unknown parameters conditioned on

measurement data. In [59] Bayesian model of the regularized version of the inverse

EIT problem is analyzed. In [73] the Bayesian method with Whittle-Matérn priors is

applied to inveres EIT problem. In general the strategy of the Bayesian approach to in-

verse EIT problem in infinite-dimensional setting is twofold. First approach is based on

discretization followed by the application of finite-dimensional Bayesian methods. All

the described papers are following this approach, which is nicely outlined in [60]. Al-

ternative approach is based on direct application of the Bayesian methods in functional

spaces before discretization [74, 41].

Dissertation introduces new variational formulation of the inverse EIT problem as a

PDE constrained optimal control problem in a Besov space. The methods of Chapter

2 are developed and applied to biomedical problem on the detection of the cancerous

tumor. In Chapters 3-5 we analyze the inverse EIT problem in a PDE constrained op-

timal control framework in Besov space, where the electrical conductivity tensor and

boundary voltages are control parameters, and the cost functional is the norm differ-

ence of the boundary electrode current from the given current pattern and boundary

electrode voltages from the measurements. The state vector is a solution of the sec-

7



ond order elliptic PDE in divergence form with bounded measurable coefficients under

mixed Neumann/Robin type boundary condition. The following are the main results of

Chapters 3-5:

• The novelty of the control theoretic model is its adaptation to clinical situation

when additional "voltage-to-current" measurements can increase the size of the

input data from the number of boundary electrodes m up to m! while keeping the

size of the unknown parameters fixed.

• Existence of the optimal control and Fréchet differentiability in the Besov space

setting is proved. The formula for the Fréchet gradient and optimality condition

is derived. Numerical method based on the projective gradient method in Hilbert-

Besov spaces is developed.

• EIT optimal control problem is fully discretized using the method of finite dif-

ferences. New Sobolev-Hilbert space is introduced, and the convergence of the

sequence of finite-dimensional optimal control problems to EIT coefficient opti-

mal control problem is proved both with respect to functional and control in 2-

and 3-dimensional domains.

The organization of the dissertation is as follows. Chapter 2 pursues discretization

and convergence for the method of finite differences for the optimal control problems

for the second order elliptic PDEs. In Section 2.1 we introduce optimal control prob-

lems, outline the well-posedness facts of the formulated optimal control problems, pur-

sue discretization by the method of finite differences, formulate discrete optimal control

problems and describe the main results on the convergence of the sequence of discrete

optimal control problems both with respect to functional and control. Some preliminary
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results are formulated in Section 2.2. In particular, in Section 2.2.1 we prove approxi-

mation lemma on the convergence of the interpolations of the discrete state vectors to

weak solutions of the respective elliptic PDE problems. In Section 2.3 we prove the

main results.

Chapter 3 analyzes inverse EIT problem in framework of optimal control of elliptic

PDEs. In Section 3.1 we describe inverse EIT problem. Section 3.2 introduces vari-

ational formulation of the inverse EIT problem in a optimal control framework. Main

results of Chapter 3 are formulated in Section 3.3. Finally, in Section 3.4 we prove the

main results.

Chapter 4 analyzes discretization and convergence of the EIT optimal control prob-

lem in 2D domains. In Section 4.1 we describe 2D inverse EIT problem with isotropic

conductivity map, its formulation as an optimal control problem and discretization with

method of finite differences. Main convergence result is formulated in Section 4.2. In

Section 4.3 we prove energy estimates and some essential interpolation theorems. Ap-

proximation lemma is established in Section 4.4. Finally, the proof of the main conver-

gence theorem is completed in Section 4.5.

In Chapter 5 we analyze discretization and convergence of the EIT optimal control

problem in 3D domains. Section 5.1 introduces EIT optimal control in 3D domains and

its finite difference discretization. Main result is formulated in Section 5.2. We prove

the main result in Section 5.3.

Finally, in Chapter 6 we describe main conclusions.
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Chapter 2

Discretization and Convergence of

Optimal Control Problems for Second

Order Elliptic PDEs

2.1 Introduction and Main Results

2.1.1 Optimal Control Problems

Let Q ⊂ Rn is bounded domain with Lipschitz boundary S = ∂Q. Let D ⊆ Q be an

open subset of Q. Consider the optimal control problem on the minimization of the cost

functional

I ( f ) =
∫︂

D
|u(x; f )−g(x)|2dx+β

∫︂
Q
| f − f̄ |2dx (2.1)
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on a control set

F R =
{︁

f ∈ L2(Q)
⃓⃓⃓
∥ f∥2 ≤ R

}︁
(2.2)

where g ∈ L2(D), f̄ ∈ L2(Q) are given, β ≥ 0, and u = u(·; f ) ∈ H1
0 (Q) is a solution of

the following Dirichlet problem for the second order linear elliptic PDE

n

∑
i, j=1

(ai j(x)ux j)xi +∑
i

bi(x)uxi +a(x)u = f (x) x ∈ Q (2.3)

u(x) = 0 x ∈ S (2.4)

with bounded measurable coefficients ai j,bi,a which satisfy the structural condition

n

∑
i, j=1

ai j(x)ξiξ j −
n

∑
i=1

bi(x)ξiξ0 −a(x)ξ 2
0 ≥ ν

n

∑
i=1

ξ
2
i +λξ

2
0 (2.5)

for arbitrary ξi ∈ R, i = 0,1, ...,n with positive constants ν and λ . This optimal control

problem will be called Problem D .

Next, we formulate optimal control problem for the elliptic PDE (2.3) under Neumann

boundary condition. Let Γ ⊂ S is a subset with positive N − 1-dimensional Hausdorff

measure and z ∈ L2(Γ) is a given function. Consider minimization of the cost functional

J ( f ) = β1

∫︂
D
|u(x; f )−g(x)|2dx+β2

∫︂
Γ

|u(x; f )− z(x)|2ds+β

∫︂
Q
| f − f̄ |2dx (2.6)

on the control set (2.2), where β ,βi ≥ 0, i= 1,2 and β 2
1 +β 2

2 > 0 and u= u(·; f )∈H1(Q)

is a solution of the Neumann problem for the elliptic PDE (2.3) under the boundary
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condition

∂u(x)
∂N

+ k(x)u(x) = 0 x ∈ S (2.7)

where ∂u(x)
∂N = ∑

i, j
ai j(x)ux jν

i is a conormal derivative, k ∈ L∞(S). If k ≥ 0 then we

assume that the ν and λ are arbitrary positive numbers, while if k is non-positive, then

the constant λ in (2.5) should be sufficiently large. The formulated optimal control

problem will be called Problem N . We refer to Chapter 1 for literature review on

elliptic optimal control theory. The goal of this chapter is to discretize both optimal

control problems using the method of finite differences and prove the convergence of

the sequence of discrete finite-dimensional optimal control problems to original problem

both with respect to cost functional and control.

2.1.2 Well-posedness of the Optimal Control Problems

Let bilinear form B : H(Q)×H(Q)→ R be defined as follows

B[u,η ] =
∫︂

Q

(︁ n

∑
i, j=1

ai jux jηxi −∑
i

biuxiη −auη
)︁
dx

where H stands for H1
0 (Q) in Dirichlet problem, and for H1(Q) in Neumann problem.

The following are definitions of the weak solutions of the Dirichlet and Neumann prob-

lems (2.3),(2.4) and (2.3),(2.7) respectively.

Definition 2.1.1. u ∈ H1
0 (Q) is called the weak solution to the problem (2.3),(2.4) if

B[u,η ] =−( f ,η)L2, ∀η ∈ H1
0 (Q) (2.8)
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Definition 2.1.2. u ∈ H1(Q) is called the weak solution to the problem (2.3)-(2.7) if

B[u,η ]+
∫︂

S
kuηds =−( f ,η)L2, ∀η ∈ H1(Q) (2.9)

From Lax-Milgram theory ([46, 72, 71]) it follows that for a given f ∈ F R there

exist unique weak solutions to the problems (2.3),(2.4) and (2.3),(2.7) respectively, and

the following energy estimate is valid

∥u∥H ≤C∥ f∥L2(Q), (2.10)

Due to bounded embedding H1(Q) ↪→ L2(Q), cost functionals I and J in both prob-

lems are well defined. Cost functionals are weakly lower semicontinuous and convex in

a bounded, closed and convex control set F R. Therefore, there exists an optimal control

in both problems [81, 95, 43]. If β > 0, then functionals I and J are strictly convex,

and therefore there is a unique optimal control in both problems [81, 95, 43].

2.1.3 Discrete Optimal Control Problems

To discretize optimal control problems D and N we pursue finite difference method

following the framework introduced in [14]. Let h > 0 and cut Rn by the planes

xi = kih, i = 1, . . . ,n, ∀ki ∈ Z.

into a collection of elementary cells with length h in each xi-direction. We denote the

discretization with step size h by ∆. We introduce an ordering in the class of discretiza-

tions by setting ∆(h1) ≤ ∆(h2) if h1 ≤ h2. For every discretization ∆ and multi-index

13



α = (k1,k2, . . . ,kn) we define a cell Cα
∆

as

Cα
∆ = {x ∈ Rn| kih ≤ xi ≤ (ki +1)h, i = 1, . . . ,n}, (2.11)

and consider the collection of these cells

C∆ = {Cα
∆ | α ∈ Zn}. (2.12)

Denote the subcollection of cells which lie in Q as C Q
∆

, and the subcollection of cells

which have non-empty intersection with Q as C Q∗

∆
:

C Q
∆
= {Cα

∆ ∈ C∆ | Cα
∆ ⊂ Q̄}, C Q∗

∆
= {Cα

∆ ∈ C∆ | Cα
∆ ∩Q ̸= /0} (2.13)

We now introduce interior and exterior approximations of Q as follows:

Q∆ =
⋃︂

Cα
∆
∈C Q

∆

Cα
∆ , Q∗

∆ =
⋃︂

Cα
∆
∈C Q∗

∆

Cα
∆ (2.14)

Obviously, we have Q∆ ⊂ Q ⊂ Q∗
∆

. Let S∆ = ∂Q∆ and S∗
∆
= ∂Q∗

∆
.

The vertex of the prism Cα
∆

whose coordinates are smallest relative to the other vertices,

is called its natural corner. We are going to identify each prism (cell) by its natural

corner.

Now define the lattice of points

L =
{︂

x ∈ Rd | ∃α ∈ Zd s.t. xi = kih, i = 1, . . . ,n
}︂
.

14



We will write xα = (k1h,k2h, . . . ,knh). Note the obvious bijections α ↦→ xα ; bijections

of this form will henceforth be referred as natural. Given a set X which is in natural

bijection with a subset of the set of multi-indexes α , we write A (X) as the indexing

set. Moreover, if X ⊂Rd , then L (X) :=L ∩X . When X =L (Y )⊂Rd , we’ll agree to

write A (Y ) instead of A (L (Y )). These indexes are also in natural bijection with the

natural corners of these prisms. In particular, some of the corresponding lattice points

may fall on the boundary S∆. We contrast this set to the set A (Q′
∆
) of indexes in natural

bijection to the lattice points that lie strictly in the interior of Q∆, and to the set A (Q∆),

of all indexes which are in natural bijection with the lattice points that lie in Q∆. We will

write

∑
A (X)

instead of ∑
α∈A (X)

,

and likewise for other expressions requiring subscripts. We adopt the notation

α ± ei := (k1, ...,ki ±1, ...,kn).

To discretize optimal control problem N , we need to introduce some refined subsets of

grid pints of Q∗
∆

. Let

Q∗+
∆

= {xα ∈ Q∗
∆ : Cα

∆ ∩Q ̸= /0}

be a subset of natural corners of the cells in Q∗
∆

. We denote as

Q∗(i)
∆

= {xα ∈ Q∗
∆ : xα+ei ∈ Q∗

∆}

the subset of all grid points xα in Q∗
∆

such that the edge [xα ,xα+ei] is in Q∗
∆

too. The

sets Q+
∆

and Q(i)
∆

are defined similarly. Subset of natural corners xα of cells in Q∗
∆

which
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intersect the boundary S is denoted as

Ŝ∗∆ = {xα ∈ Q∗
∆ : Cα

∆ ∩S ̸= /0}

Similar to Q∆, Q∗
∆

and Ŝ∗
∆

we define

D∆ = { xα ∈ C Q
∆

| Cα
∆ ⊂ D }

D∗
∆ = { xα ∈ C Q

∆
| Cα

∆ ∩D ̸= /0 }

Γ∆ = { xα ∈ Ŝ∗∆ | Cα
∆ ∩Γ ̸= /0}

Note that we don’t use superscript + in preceding definition. We are going to assume

that the coeffcients ai j,bi,a ∈ L∞(Q) are extended to a larger set Q+B1(0) as bounded

measurable functions with preservation of the structural condition (2.5). Any control

vector f ∈ F R and given function f̄ ∈ L2(Q) are continued as zero to Q+B1(0). We

introduce discrete grid functions by discretizing ai j,bi,a, f and f̄ through Steklov aver-

ages:

φα =
1
hn

x1+h∫︂
x1

x2+h∫︂
x2

· · ·
xn+h∫︂
xn

φ(x)dx, α ∈ A (Q∗
∆), where xi is the i-th coordinate of xα ,

(2.15)

and φ stands for any of the functions ai j,bi,a, f and f̄ . Similar grid function is intro-

duced for g ∈ L2(D) after zero continuation to D+B1(0). For k ∈ L∞(S) and z ∈ L2(Γ)

we define

kα :=
∫︂

Sα

k(x)ds, α ∈ A (Ŝ∗∆), Sα := S∩Cα
∆ (2.16)

zΓ
α =

1
|Γα |

∫︂
Γα

z(x)ds, α ∈ A (Γ∆), Γα :=Cα
∆ ∩Γ. (2.17)

16



For a given discretization ∆, we employ the notation [ f ]∆ = { fα}, α ∈A (Q∗
∆
) and define

the discrete ℓ2 norm of [ f ]∆ as

∥[ f ]∆∥ℓ2 :=
(︂

∑
A (Q∗

∆
)

hn f 2
α

)︂ 1
2
.

We use standard notation for finite differences of grid function uα ,α ∈ A (Q∗
∆
):

uαxi =
uα+ei −uα

h
, uα x̄i =

uα −uα−ei

h
.

For fixed R > 0, define the discrete control sets as

F R
∆ :=

{︁
[ f ]∆ : ∥[ f ]∆∥ℓ2 ≤ R

}︁
(2.18)

and the interpolating map P∆ as

P∆ :
⋃︂
R

F R
∆ →

⋃︂
R

F R, P∆([ f ]∆) = f ∆

where

f ∆

⃓⃓⃓
Cα

∆

= fα , α ∈ A (Q∗
∆).

Also, we define the discretizing map Q∆ as

Q∆ :
⋃︂
R

F R →
⋃︂
R

F R
∆ , Q∆( f ) = [ f ]∆

where [ f ]∆ = { fα} and fα is given by (2.15) for each α ∈ A (Q∗
∆
).

Next, we define a solution of the discrete Dirichlet problem.
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Definition 2.1.3. Given [ f ]∆ ∈ F R
∆

, the discrete valued function

[u([ f ]∆)]∆ = {uα ∈ R : α ∈ A (Q∆)}

is called a discrete state vector of problem D , or solution of the discrete Dirichlet prob-

lem if uα = 0 for α ∈ A (S∆) and it satisfies

∑
A (Q+

∆
)

hn

[︄
n

∑
i, j=1

ai jαuαx jηαxi +(−∑
i

biαuαxi −aαuα + f ∆
α )ηα

]︄
= 0 (2.19)

for arbitrary collection of values {ηα}, α ∈ A (Q∆) such that ηα

⃓⃓
S∆

= 0.

Note that the collection { f ∆
α} in the (2.19) is the function Q∆(P∆([ f ]α)).

In Section 2.2 it will be proved that for a given [ f ]α ∈ F R
∆

, there exists a unique dis-

crete state vector [u([ f ]∆)]∆ of problem D . Consider minimization of the discrete cost

functional

I∆([ f ]∆) = ∑
A (D+

∆
)

hn|uα −gα |2 +β ∑
A (Q+

∆
)

hn| fα − f̄α |2 (2.20)

on a control set F R
∆

, where uα ’s are components of the discrete state vector [u([ f ]∆)]∆,

gα and f̄α are Steklov averages of g and f̄ based on formula (2.15). The formulated

discrete optimal control problem will be called Problem D∆.

Next, we define a solution of the discrete Neumann problem.

Definition 2.1.4. Given [ f ]∆ ∈ F R
∆

, the discrete valued function

[u([ f ]∆)]∆ = {uα ∈ R : α ∈ A (Q∗
∆)}

is called a discrete state vector of problem N , or solution of the discrete Neumann
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problem if it satisfies

∑
A (Q∗+

∆
)

hn

[︄
n

∑
i, j=1

ai jαuαx jηαxi −∑
i

biαuαxiηα −aαuαηα + f ∆
α ηα

]︄

+Jα(uα ,ηα)+ ∑
A (Ŝ∗

∆
)

kαuαηα = 0 (2.21)

for arbitrary collection of values {ηα}, α ∈ A (Q∗
∆
),where

Jα(uα ,ηα) = hn
∑

A (S∗
∆
)

[︁
θαuαηα +

n

∑
i=1

θ
i
αuαxiηαxi], (2.22)

θα =

⎧⎪⎪⎨⎪⎪⎩
1 if α ∈ A (S∗

∆
\ Ŝ∗

∆
)

0 otherwise
, θ

i
α =

⎧⎪⎪⎨⎪⎪⎩
1 if α ∈ A (Q∗(i)

∆
)\A (Q∗+

∆
)

0 otherwise
.

The necessity of adding Jα to (2.21) is that the term hn
∑

A (Q∗+
∆

)

ηαuα of (2.21) does

not extend to whole grid points in Q∗
∆

. The missing terms will be added through the

first term of Jα . Moreover, some uαxi and ηαxi values on S∗
∆

are not present in the term

hn
∑

A (Q∗+
∆

)

ηαxiuαxi of (2.21). These values are added to (2.21) through the second term

of Jα . For stability of our discrete scheme, it is essential to add these two terms to the

discrete integral identity (2.21).

In Section 2.2 it will be proved that for a given [ f ]α ∈ F R
∆

, there exists a unique dis-

crete state vector [u([ f ]∆)]∆ of problem N . Consider minimization of the discrete cost

functional

J∆([ f ]∆) = ∑
A (D∗+

∆
)

hn|uα −gα |2+ ∑
A (Γ∆)

|Γα ||uα −zΓ
α |2+β ∑

A (Q∗+
∆

)

hn| fα − f̄α |2 (2.23)

on a control set F R
∆

, where uα ’s are components of the discrete state vector [u([ f ]∆)]∆
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of the Problem N , gα , f̄α and zΓ
α are Steklov averages of g, f̄ and z based on (2.15),

(2.17). The formulated discrete optimal control problem will be called Problem N∆.

Definition 2.1.5. The discrete H 1(Q∗
∆
) norm for [u([ f ]∆)]∆ = {uα} is defined as

∥[u([ f ]∆)]∆∥H 1(Q∗
∆
) :=

(︂
∑

A (Q∗
∆
)

hnu2
α +

n

∑
i=1

∑
A (Q∗(i)

∆
)

hnu2
αxi

)︂ 1
2
.

The discrete norm H 1(Q∆) is defined similarly.

2.1.4 Main Results

Theorem 2.1.6. The sequence of discrete optimal control problems D∆ approximates

the optimal control problem D with respect to functional, i.e.

lim
∆→0

I∆∗ = I∗, (2.24)

where

I∆∗ = inf
F R

∆

I∆([ f ]∆), I∗ = inf
F R

I ( f ). (2.25)

Furthermore, let {ε∆} be a sequence of positive real numbers with lim
∆→0

ε∆ = 0. If the

sequence [ f ]∆,ε ∈ F R
∆

is chosen so that

I∆∗ ≤ I∆([ f ]∆,ε)≤ I∆∗ + ε∆, (2.26)

then we have

lim
∆→0

I (P∆([ f ]∆,ε)) = I∗ (2.27)
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Also, the sequence {P∆([ f ]∆,ε)} is uniformly bounded in L2(Q) and all of its L2(Q)-

weak limit points lie in optimal control set

F∗ := { f ∈ F R|I ( f ) = I∗}

In particular, if β > 0, then the sequence {P∆([ f ]∆,ε)} converges weakly in L2(Q) to

unique optimal control f∗. Moreover, if f∗ is such a weak limit point, then there is

a subsequence ∆′ such that the multilinear interpolations of the discrete state vectors

[u([ f ]∆′,ε)]∆′ converge to weak solution u = u(x; f∗) of the Dirichlet problem (2.3)–(2.4)

weakly in H1
0 (Q), strongly in L2(Q), and almost everywhere on Q.

Theorem 2.1.7. The sequence of discrete optimal control problems N∆ approximates

the optimal control problem N with respect to functional, i.e.

lim
∆→0

J∆∗ = J∗, (2.28)

where

J∆∗ = inf
F R

∆

J∆([ f ]∆), J∗ = inf
F R

J ( f ). (2.29)

Furthermore, let {ε∆} be a sequence of positive real numbers with lim
∆→0

ε∆ = 0. If the

sequence [ f ]∆,ε ∈ F R
∆

is chosen so that

J∆∗ ≤ J∆([ f ]∆,ε)≤ J∆∗ + ε∆, (2.30)

then we have

lim
∆→0

J (P∆([ f ]∆,ε)) = J∗ (2.31)

Also, the sequence {P∆([ f ]∆,ε)} is uniformly bounded in L2(Q) and all of its L2(Q)-

21



weak limit points lie in optimal control set

F∗ := { f ∈ F R|J ( f ) = J∗}

In particular, if β > 0, then the sequence {P∆([ f ]∆,ε)} converges weakly in L2(Q) to

unique optimal control f∗. Moreover, the multilinear interpolations of the discrete state

vectors [u([ f ]∆′,ε)]∆′ converge to weak solution u = u(x; f∗) of the Neumann problem

(2.3), (2.7) weakly in H1(Q), strongly in L2(Q), and almost everywhere on Q.

2.2 Preliminary Results

In this section we recall known results about the unique solvability of the discrete Dirich-

let and Neumann problems for the second order elliptic PDEs [71]. The next proposition

formulates discrete Dirichlet problem as a system of linear algebraic equations for the

unknown grid components of the discrete state vector of the problem D .

Proposition 2.2.1. For a given discretization ∆ and control [ f ]∆ ∈F R
∆

, a vector [u([ f ]∆)]∆

is a solution of the discrete Dirichlet problem if and only if it satisfies the conditions

n

∑
i, j=1

(︁
ai jα(x)uαx j

)︁
x̄i
+∑

i
biα(x)uαxi +aαuα − f ∆

α = 0, ∀α ∈ A (Q′
∆) (2.32)

uα = 0, ∀α ∈ A (S∆) (2.33)

Proof. Suppose [u([ f ]∆)]∆ satisfies (2.32). Take an arbitrary collection of {ηα} for

α ∈ A (Q∆) which satisfies ηα = 0 for α ∈ A (S∆). Multiplying (2.32) by hnηα and
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adding them for all α ∈ A (Q′
∆
) we have

∑
A (Q′

∆
)

hn
ηα

[︂ n

∑
i, j=1

(︁
ai jα(x)uαx j

)︁
x̄i
+∑

i
biα(x)uαxi +aαuα − f ∆

α

]︂
= 0 (2.34)

Observe that for any i, j = 1, ...,n we have

∑
A (Q′

∆
)

(︁
ai jαuαx j

)︁
x̄i

ηα = ∑
A (Q′

∆
)

ai jαuαx j

h
ηα − ∑

A (Q′
∆
)

ai j(α−ei)u(α−ei)x j

h
ηα

= ∑
A (Q′

∆
)

ai jαuαx j

h
ηα − ∑

A (Q′
∆
−ei)

ai jαuαx j

h
ηα+ei =

− ∑
A (Q′

∆
)∩A (Q′

∆
−ei)

ai jαuαx jηαxi + ∑
A (Q′

∆
)\A (Q′

∆
−ei))

ai jαuαx j

h
ηα

− ∑
A (Q′

∆
−ei)\A (Q′

∆
)

ai jαuαx j

h
ηα+ei

=− ∑
A (Q′

∆
)∩A (Q′

∆
−ei)

− ∑
A (Q′

∆
)\A (Q′

∆
−ei)

− ∑
A (Q′

∆
−ei)\A (Q′

∆
)

ai jαuαx jηαxi

=− ∑
A (Q′

∆
)∪A (Q′

∆
−ei)

ai jαuαx jηαxi =− ∑
A (Q+

∆
)

ai jαuαx jηαxi. (2.35)

Plugging this calculation into (2.34) and using the fact that ηα = 0 for each α ∈A (S∆),

we derive (2.19). Conversely, from (2.19) and (2.35), (2.34) easily follows. Since

ηα ,α ∈ A (Q′
∆
) are arbitrary, from (2.34), (2.32) follows. □

The next lemma presents energy estimate for the discrete Dirichlet problem.

Lemma 2.2.2 (Energy Estimate for Discrete Dirichlet Problem [71]). For any R > 0,

∆ and [ f ]∆ ∈ F R
∆

the discrete state vector [u([ f ]∆)]∆ of the problem D satisfies the

following energy estimate:

∥ [u([ f ]∆)]∆∥H 1(Q∆)
≤ M∥ f∥L2(Q) (2.36)
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with M independent of ∆,R.

In particular, energy estimate implies the existence and uniqueness of the discrete

state vector of the problem D .

Corollary 2.2.3. For a fixed ∆ and any R > 0, there exists a unique discrete state vector

[u([ f ]∆)]∆ in a problem D for each [ f ]∆ ∈ F R
∆

.

Indeed, the number of unknowns in the system (2.32)-(2.33) are the same as the

number of equations. From the energy estimate (2.36) it follows that the corresponding

homogeneous system has only trivial solution. Well known linear algebra fact implies

the claim of the corollary.

Next lemma formulates the energy estimate for the discrete Neumann problem.

Lemma 2.2.4 (Energy Estimate for Discrete Neumann Problem [71]). For any R > 0,

∆ and [ f ]∆ ∈ F R
∆

the discrete state vector [u([ f ]∆)]∆ of the problem N satisfies the

following energy estimate:

∥ [u([ f ]∆)]∆∥H 1(Q∗
∆
) ≤ M∥ f∥L2(Q∆)

(2.37)

As in Corollary 2.2.3, the energy estimate implies the existence and uniqueness of

the discrete state vector in a problem N .

Corollary 2.2.5. For a fixed ∆ and any R > 0, there exists a unique discrete state vector

[u([ f ]∆)]∆ in a problem N for each [ f ]∆ ∈ F R
∆

.

Indeed, by explicitly writing uαxi and ηαxi in terms of uα and ηα from (2.21) it

follows that

∑
A (Q∗

∆
)

L∆(uα).ηα = ∑
A (Q∗

∆
)

F∆( fα).ηα (2.38)
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where L∆ and F∆ are linear mappings. Due to arbitrariness of values of ηα at α ∈

A (Q∗
∆
) we have

L∆(uα) = F∆( fα), ∀α ∈ A (Q∗
∆) (2.39)

which presents a system of linear algebraic equations for the unknown values {uα} of

the discrete state vector in a problem N at the grid points of Q∗
∆

. System (2.39) has

the same number of equations as unknowns. From the energy estimate it follows that

the corresponding homogeneous system has only trivial solution. Therefore, the system

(2.39) has a unique solution.

Next, we recall the well-known necessary and sufficient condition for the conver-

gence of the discrete optimal control problems to the continuous optimal control prob-

lem, formulated in the context of the optimal control problem N :

Theorem 2.2.6. [95] The sequence of discrete optimal control problems N∆ approxi-

mates the continuous optimal control problem N with respect to the functional if and

only if the following conditions are satisfied:

1. For any f ∈ F R, we have Q∆( f ) ∈ F R
∆

, and the following inequality is satisfied

lim sup
∆→0

(J∆(Q∆( f ))−J ( f ))≤ 0.

2. For each [ f ]∆ ∈ F R
∆

, we have P∆([ f ]∆) ∈ F R, and the following inequality is

satisfied

lim sup
∆→0

(J (P∆([ f ]∆))−J∆([ f ]∆))≤ 0.

Similar necessary and sufficient condition can be formulated for the optimal control

problem B. Next proposition proves that mappings P∆ and Q∆ satisfy the conditions

of the Theorem 2.2.6.
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Proposition 2.2.7. The maps P∆and Q∆ satisfy the conditions of Theorem 2.2.6

Proof. Fix ε > 0 and ∆ arbitrary. First let f ∈ F R. Then we note

∥Q∆( f )∥2
ℓ2
= hn

∑
A (Q∗

∆
)

f 2
α = hn

∑
A (Q∗+

∆
)

f 2
α = hn

∑
A (Q∗+

∆
)

(
1
hn

∫︂
Cα

∆

f dx)2 (2.40)

≤ ∑
A (Q∗+

∆
)

∫︂
Cα

∆

f 2 dx =
∫︂

Q∗
∆

f 2 dx =
∫︂

Q
f 2 dx ≤ R2 (2.41)

Now let [ f ]∆ ∈ F R
∆

which implies ∥[ f ]∆∥l2 =
(︂

∑
A (Q∗

∆
)

hn f 2
α

)︂ 1
2 ≤ R. We have

∥P∆([ f ]∆)∥2
L2(Q) =

∫︂
Q
( f ∆)2 dx ≤

∫︂
Q∗

∆

( f ∆)2 dx = ∑
A (Q∗+

∆
)

∫︂
Cα

∆

( f ∆)2 dx

= ∑
A (Q∗+

∆
)

hn f 2
α ≤ ∑

A (Q∗
∆
)

hn f 2
α = ∥[ f ]∆∥2

ℓ2
≤ R2

which proves the claim of the proposition. □

Following the frame of the recent paper [14] we define three types of interpolations

of the discrete state vector in problem D .

The first interpolation is denoted by Ũ∆ which is a piece-wise constant function Ũ∆ :

Q → R, which assigns to the interior of each cell in Q∆ the value of uα at its natural

corner and it is defined as following

Ũ∆

⃓⃓
Cα

∆

= uα , ∀α ∈ A (Q+
∆
) (2.42)

and we let Ũ∆ be 0 elsewhere in Q that it is not already defined.

Now for each i = 1,2, ..,n, we define the second piece-wise constant interpolating func-

tion Ũ i
∆

: Q → R which assign to each cell in Q∆ the value of the forward spatial differ-
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ence at the natural corner and it is defined as following

Ũ i
∆

⃓⃓
Cα

∆

= uαxi, ∀α ∈ A (Q+
∆
) (2.43)

and 0 elsewhere in Q that it is not already defined.

Next, we define U ′
∆

: Q → R which assigns the value uα to each grid point in L (Q∆),

and it is a peicewise linear with respect to each variable xi when the rest of variables are

fixed. It is also extended as 0 on Q−Q∆.

U ′
∆
(x) can be represented as the weighted average of uα∗ values for each α∗ ∈ A (Cα

∆
)

U ′
∆(x) = ∑

α∗∈A (Cα
∆
)

wα∗(x)uα∗, x ∈Cα
∆ (2.44)

where coefficient functions, wα∗ : Cα
∆
→ [0,1], are continuous in Cα

∆
and satisfy

∑
α∗∈A (Cα

∆
)

wα∗(x) = 1, x ∈Cα
∆ (2.45)

Using this property we obtain the following estimation:

∫︂
Q
|U ′

∆|2dx =
∫︂

Q∆

|U ′
∆|2dx ≤ ∑

A (Q∆)

hn max
A (Q′

∆
)
|uα∗|2 ≤ 2n

∑
A (Q∆)

hn|uα |2. (2.46)

Now, we claim that ∂

∂xi
U ′

∆
(x) can be represented as weighted average of forward differ-

ences in a fixed cell. To this end, we fix a xi direction and denote the forward differences

defined on one dimensional lines parallel to the xi direction which join the vertices of

Cα
∆

to each other with uα∗xi where α∗ ∈ A (Cα
∆
, i) := A (Cα

∆
)∩{α∗

i = αi}. Note that

there are 2n−1 forward spatial differences of this type.
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Then, for each x ∈ Cα
∆

, the value ∂

∂xi
U ′

∆
(x) will be represented as weighted average of

uα∗xi where α∗ ∈ A (Cα
∆
, i).

∂

∂xi
U ′

∆(x) = ∑
α∗∈A (Cα

∆
,i)

Wα∗(x)uα∗xi, x ∈Cα
∆ (2.47)

where the weight functions Wα∗ : Cα
∆
→ [0,1] are continuous and satisfy

∑
α∗∈A (Cα

∆
,i)

Wα∗(x) = 1, x ∈Cα
∆ (2.48)

Using this property we obtain the following estimation:

∫︂
Q

⃓⃓⃓
∂

∂xi
U ′

∆

⃓⃓⃓2
dx ≤ 2n−1

∑
α∈A (Q∆)

hn|uαxi|
2. (2.49)

Lemma 2.2.8 (Interpolation of a Discrete Dirichlet Problem [14]). For each ∆, let

{[ f ]∆} ∈ F R
∆

be a sequence of discrete control vectors for some R > 0. The follow-

ing statements hold for interpolations of the discrete state variable of the problem D:

(a) The sequences {U ′
∆
} and {Ũ∆} are uniformly bounded in L2(Q).

(b) For each i ∈ {1,2, . . . ,n}, the sequences {Ũ i
∆
}, {∂U ′

∆

∂xi
} are uniformly bounded in

L2(Q).

(c) the sequence {Ũ∆ −U ′
∆
} converges strongly to 0 in L2(Q) as h → 0.

(d) For each i ∈ {1,2, . . . ,n}, the sequences {∂U ′
∆

∂xi
− Ũ i

∆
} converges weakly to zero in

L2(Q) as h → 0.

We define interpolations of the discrete state vector of the problem N in a similar

manner.

• Ṽ∆ : Q∗
∆
→ R, Ṽ∆

⃓⃓
Cα

∆

= uα , ∀α ∈ A (Q∗+
∆
).
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• Ṽ i
∆

: Q∗
∆
→ R, Ṽ i

∆

⃓⃓
Cα

∆

= uαxi, ∀α ∈ A (Q∗+
∆
)

• V ′
∆

: Q∗
∆
→ R which assigns the value uα to each grid point in L (Q∗

∆
), and it is

a peicewise linear with respect to each variable xi when the rest of variables are

fixed.

By the same techniques that we used before we obtain these two evaluations for V ′
∆
(x)

and ∂

∂xi
V ′

∆
(x)

∫︂
Q
|V ′

∆|2dx =
∫︂

Q∆

|V ′
∆|2dx ≤ ∑

A (Q∗
∆
)

hn max
A (Q′

∆
)
|uα∗|2 ≤ 2n

∑
A (Q∗

∆
)

hn|uα |2. (2.50)

∫︂
Q

⃓⃓⃓
∂

∂xi
V ′

∆

⃓⃓⃓2
dx ≤ 2n−1

∑
A (Q∗

∆
)

hn|uαxi|
2. (2.51)

Lemma 2.2.9 (Interpolation of a Discrete Neumann Problem [14]). For each ∆, let

{[ f ]∆} ∈ F R
∆

be a sequence of discrete control vectors for some R > 0. The following

statements hold:

(a) The sequences {V ′
∆
} and {Ṽ∆} are uniformly bounded in L2(Q∗

∆
).

(b) For each i ∈ {1,2, . . . ,n}, the sequences {Ṽ i
∆
}, {∂V ′

∆

∂xi
} are uniformly bounded in

L2(Q∗
∆
).

(c) the sequence {Ṽ∆ −V ′
∆
} converges strongly to 0 in L2(Q) as h → 0.

(d) For each i ∈ {1,2, . . . ,n}, the sequences {∂V ′
∆

∂xi
− Ṽ i

∆
} converges weakly to zero in

L2(Q) as h → 0.

(e) the sequence {Ṽ∆ −V ′
∆
} converges strongly to 0 in L2(S) as h → 0.

The claims (a)-(d) are proved in Theorem 14 of [14]. We present the proof of the

claim (e), which is similar to the proof of the claim (d) in Theorem 14 of [14]. We
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observe that for each α ∈ A (Q∗+
∆
)

|Ṽ∆(x)−V ′
∆(x)|2 = |uα − ∑

α∗∈A (Cα
∆
)

wα∗(x)uα∗|2 (2.52)

= | ∑
α∗∈A (Cα

∆
)

wα∗(x)(uα −uα∗)|2 ≤ ∑
α∗∈A (Cα

∆
)

|uα −uα∗|2, a.e. x ∈Cα
∆ (2.53)

We note that if α = (k1,k2, . . . ,kn), then each α∗ ∈ Cα
∆

satisfies that α∗
i = {ki,ki + 1}.

Therefore, for each fixed α∗ ∈A (Cα
∆
), there is a (not necessarily unique) path along the

edges of the cell Cα
∆

which starts at xα , ends at xα∗ , and is made up of gluing together

at most n one-dimensional edges of the cell. Call such a path Pα→α∗ , and TP(x) the

tangent vector to the path at point x. It is easy to see then that we can write

uα∗ −uα =
∫︂

Pα→α∗
DxV∆.dP = ∑

Pα→α∗

huα ′x j (2.54)

where the sum on the right-hand side of (2.54) is taken over the α ′ that correspond

to vertices of Cα
∆

which lie on the path Pα→α∗ (except for the end-point x∗α )), and j

corresponds to the spatial direction that the path Pα→α∗ takes in moving from xα ′ to the

next vertex that lies on the path. With this observation in hand and using the Cauchy-

Schwartz inequality, the following estimate is true, uniformly over the path chosen, and

uniformly over α∗

|uα∗ −uα |2 ≤ n ∑
edges of Pα→α∗

h2|uα ′x j |
2 ≤ n ∑

edges of Cα
∆

h2|uα ′x j |
2 (2.55)

where the sum on the right-hand side of (2.55) is taken over all α ′ and j such that

α ′ ∈ A (Cα
∆
) and α ′+ e j ∈ A (Cα

∆
) (intuitively, recall that the spatial differences uα ′x j

are in natural bijection with the edges of the lattice. So effectively, the sum is over all
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edges of the cell Cα
∆
). Therefore, using (2.53) and (2.55), we have

|Ṽ∆(x)−V ′
∆(x)|2 ≤ ∑

α∗∈A (Cα
∆
)

n ∑
edges of Cα

∆

h2|uα ′x j |
2

≤ (2n −1)n ∑
edges of Cα

∆

h2|uα ′x j |
2, a.e. x ∈Cα

∆ (2.56)

since there are 2n −1 vertexes xα∗ other than xα in Cα
∆

. Now, using (2.56) we evaluate

∥Ṽ∆ −V ′
∆
∥2

L2(S)

∫︂
S
|Ṽ∆(x)−V ′

∆(x)|2 = ∑
A (Ŝ∗

∆
)

∫︂
Γα

|Ṽ∆(x)−V ′
∆(x)|2dx

≤ ∑
A (Ŝ∗

∆
)

∫︂
Γα

(2n −1)n ∑
edges of Cα

∆

h2|uα ′x j |
2ds ≤ ∑

A (Ŝ∗
∆
)

(2n −1)n2n−1
n

∑
i=1

h2|uαx j |
2
∫︂

Γα

ds

as Γα is part of the smooth boundary S, for a fixed x0 on Γα there exists r > 0 and

γ ∈C1 : Rn−1 → R such that

Br(x0)∩Γα = {x ∈ Br(x0)|xn = γ(x1,x2, . . . ,xn−1)} (2.57)

then for each x ∈ Γα ∩Br(x0) we use the following coordinate change:

yi = xi =: φ
i(x), i = 1 : n−1

yn = xn − γ(x1, . . . ,xn−1) =: φ
n(x)

where |Dφφφ |= 1, then we have

∫︂
Γα∩Br(x0)

ds =
∫︂

yn=0

√︄
1+
(︁ ∂γ

∂y1

)︁2
+ · · ·+

(︁ ∂γ

∂yn−1

)︁2 dy1 . . .dyn−1 ≤Chn−1
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since Γα is compact, so

∫︂
Γα

ds ≤C1hn−1

so

∫︂
S
|Ṽ∆(x)−V ′

∆(x)|2 ≤C ∑
A (Ŝ∗

∆
)

(2n −1)n2n−1
n

∑
i=1

h2|uαx j |
2hn−1

≤Ch(2n −1)n2n−1
∑
A

hn
n

∑
i=1

|uαx j |
2

By energy estimate (2.37) proof of this part is complete.

2.2.1 Approximation Lemmas

In this section we prove convergence of the interpolations of the discrete state vectors to

weak solutions of the respective elliptic PDE problems. In Lemma 2.2.10 we prove the

convergence of the multilinear interpolations of the discrete state vector of the problem

D to the weak solution of the Dirichlet problem. In the following Lemma 2.2.11 we

prove similar approximation result for the problem N . The proofs are similar to the

proofs given in [71].

Lemma 2.2.10. Let {[ f ]∆} be a sequence of discrete control vectors such that there

exists R> 0 for which [ f ]∆ ∈F R
∆

for each ∆, and such that the sequence of interpolations

{P∆([ f ]∆)} converges weakly to f in L2(Q). Then the sequence of interpolations {U ′
∆
}

of associated discrete state vectors converges weakly in H1(Q) to u = u(x; f ) ∈ H1
0 (Q),

with u the unique weak solution to the (2.3)–(2.4) in the sense of Definition 2.1.1.

Proof. From (a) and (b) of Lemma 2.2.8, it follows that {U ′
∆
} is uniformly bounded
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in H1(Q). Consequently, {U ′
∆
} has a weak limit point in H1(Q). Let u ∈ H1(Q) be

any weak limit point of {U ′
∆
} in H1(Q). By the Rellich-Kondrachev Theorem [42], it

is known that a subsequence of {U ′
∆
} converges strongly to u in L2(Q). Moreover, by

construction, U ′
∆
= 0 on S for each ∆. Due to u being a weak limit point of {U ′

∆
} in

H1(Q), it follows that

lim
∆′→0

∥u|S −U ′
∆′|S∥L2(S) = ∥u|S∥L2(S) = 0

from which we conclude u|S = 0. Thus u ∈ H1
0 (Q). Now, we proceed to show that u

satisfies the integral identity (2.8). For simplicity of notation we write the subsequence

of {U ′
∆
} that converges weakly to u in H1(Q) as the whole sequence ∆. Let η ∈

•
C 1(Q),

where
•

C 1(Q) be a space of all continuously differentiable functions on Q̄ whose support

is a positive distance away from S. Since Q∆′ ↗ Q, it follows that there exists ∆∗ small

enough so that suppη ⊂ Q∆ for all ∆ ≤ ∆∗. The collection of values {ηα}, α ∈ A (Q∆)

is an admissible test collection for the summation identity (2.19). Let us remind the

equation (2.19)

∑
A (Q∆)

hn

[︄
n

∑
i, j=1

ai jαuαx jηαxi +(−∑
i

biαuαxi −aαuα + f ∆
α )ηα

]︄
= 0 (2.58)

Then we define the piecewise constant interpolations āi j∆, b̄i∆ , ā∆ of discrete valued

functions ai jα , biα , aα as following

β̄∆

⃓⃓⃓
Cα

∆

= βα , β̄∆ ≡ 0 elsewhere onQ, ∀α ∈ A (Q∆)

where β̄∆ represents āi j∆, b̄i∆ , ā∆.

in addition, we define the interpolations for ηα and ηαxi for each α ∈A (Q∆) as follow-
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ing

η̄∆

⃓⃓⃓
Cα

∆

= ηα , η̄∆ ≡ 0 elsewhere onQ,

η̄
i
∆

⃓⃓⃓
Cα

∆

= ηαxi, η̄
i
∆ ≡ 0 elsewhere onQ,

With these functions and with the interpolations described for discrete state vector, iden-

tity (2.58) becomes

∑
A (Q∆)

∫︂
Cα

∆

[︄
n

∑
i, j=1

āi j∆Ũ i
∆η̄

i
∆ +(−∑

i
b̄i∆Ũ i

∆ − ā∆Ũ∆ + f ∆)η̄∆

]︄
= 0 (2.59)

It can be easily proved that interpolations η̄∆ and η̄ i
∆

converge uniformly on Q̄ to the

functions η and ηxi as ∆ → 0. Consequently, the above identity can be written as

∑
A (Q∆)

∫︂
Cα

∆

[︄
n

∑
i, j=1

āi j∆Ũ i
∆ηxi +(−∑

i
b̄i∆Ũ i

∆ − ā∆Ũ∆ + f ∆)η

]︄
+ J = 0 (2.60)

where

J = ∑
A (Q∆)

∫︂
Cα

∆

[︄
n

∑
i, j=1

(āi j∆Ũ i
∆)(η̄

i
∆ −ηxi)+(−∑

i
b̄i∆Ũ i

∆ − ā∆Ũ∆ + f ∆)(η̄∆ −η)

]︄

We claim |J| → 0 as ∆ → 0. {āi j∆}, {b̄i∆}, {ā∆} are uniformly bounded in L∞(Q), and

{Ũ i
∆
}, {Ũ∆}, { f ∆} are uniformly bounded in L2(Q) and η̄∆ and η̄ i

∆
converge uniformly

on Q̄ to the functions η and ηxi as ∆ → 0, they imply |J| → 0 as ∆ → 0. In the following,

we show the convergence to zero for just one term.

⃓⃓⃓⃓
∑

A (Q∆)

∫︂
Cα

∆

n

∑
i, j=1

āi j∆Ũ i
∆(η̄

i
∆ −ηxi)

⃓⃓⃓⃓
≤ ∥āi j∆∥L∞(Q∆)∥Ũ i

∆∥L2(Q∆)

(︁∫︂
Q∆

(η̄ i
∆ −ηxi)

2)︁ 1
2 → 0

It can be easily proved that āi j∆, b̄i∆ , ā∆, f ∆ converge to the functions ai j, bi, a, f strongly
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in L2(Q) norm, hence in the following relation

∑
A (Q∆)

∫︂
Cα

∆

[︄
n

∑
i, j=1

ai jŨ i
∆ηxi +(−∑

i
biŨ i

∆ −aŨ∆ + f )η

]︄
+ I = 0 (2.61)

where

I = ∑
A (Q∆)

∫︂
Cα

∆

[︄
n

∑
i, j=1

(āi j∆ −ai j)Ũ i
∆ηxi

−∑
i

(︃
(b̄i∆ −bi)Ũ i

∆ − (ā∆ −a)Ũ∆ +( f ∆ − f )
)︃

η

|I| → 0 as ∆ → 0. In the following, we show the convergence to zero for just one term.

⃓⃓⃓⃓
∑

A (Q∆)

∫︂
Cα

∆

n

∑
i, j=1

(āi j∆ −ai j)Ũ i
∆ηxi

⃓⃓⃓⃓
≤ c∥Ũ i

∆∥L2(Q∆)

(︁∫︂
Cα

∆

(āi j∆ −ai j)
2)︁ 1

2 → 0

Finally, from Lemma 2.2.8 (c) and (d), we know that sequence {Ũ i
∆
} converges weakly

to uxi in L2(Q) and sequence {Ũ∆} converges strongly to u in L2(Q). It follows that

taking ∆ → 0 on (2.61) gives the identity

∫︂
Q

[︂ n

∑
i, j=1

ai juxiηxi −∑
i

biuxiη −auη

]︂
dx =

∫︂
Q

f ηdx, ∀η ∈
•

C 1(Q) (2.62)

which is (2.8). Since
•

C 1(Q) is dense in set of admissible test functions for integral

identity (2.8) we have that u is a weak solution to the Problem (2.3)–(2.4) in the sense of

Definition 2.1.1. Therefore, we have proved that if u is a weak limit point of {U ′
∆
} then

it must be a weak solution to the Problem (2.3)–(2.4). Due to uniqueness of the weak

solution it follows that {U ′
∆
} has one and only one weak limit point, which shows that

the whole sequence {U ′
∆
} converges weakly to u in H1(Q). Lemma is proved. □
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Lemma 2.2.11. Let {[ f ]∆} be a sequence of discrete control vectors such that there

exists R> 0 for which [ f ]∆ ∈F R
∆

for each ∆, and such that the sequence of interpolations

{P∆([ f ]∆)} converges weakly to f in L2(Q). Then the sequence of interpolations {V ′
∆
}

of associated discrete state vectors converges weakly in H1(Q) to u = u(x; f ) ∈ H1(Q),

with u the unique weak solution to the (2.3), (2.7) in the sense of Definition 2.1.2.

Proof. From (a) and (b) of Lemma 2.2.9, it follows that {V ′
∆
} is uniformly bounded

in H1(Q). Consequently, {V ′
∆
} has a weak limit point in H1(Q). Let u ∈ H1(Q) be

any weak limit point of {V ′
∆
} in H1(Q). By the Rellich-Kondrachev Theorem, it is

known that a subsequence of {V ′
∆
} converges strongly to u in L2(Q). In addition, {V ′

∆
}

converges to u on the boundary S in L2(S) norm. Now, we proceed to show that u

satisfies the integral identity (2.9). For simplicity of notation we write the subsequence

of {V ′
∆
} that converges weakly to u in H1(Q) as the whole sequence ∆. Let η ∈ C 1(Q̃),

where Q̄ ⊂ Q̃ and C 1(Q) be a space of all continuously differentiable functions on Q̄.

We also assume that h > 0 is small enough that Q∗
∆
⊂ Q̃. Then the collection of values

{ηα}, α ∈ A is an admissible test collection for the summation identity (2.21). We

claim that the limit function, u, satisfies the integral identity (2.9) . Let call the discrete

integral identity (2.21) as I∆ and the continuous integral identity (2.9) as I.

I∆ := ∑
A (Q∗+

∆
)

hn

[︄
n

∑
i, j=1

ai jαuαx jηαxi −∑
i

biαuαxiηα −aαuαηα + f ∆
α ηα

]︄

+ Jα(uα ,ηα)+ ∑
A (Ŝ∗

∆
)

kαuαηα (2.63)

I :=
∫︂

Q

(︁ n

∑
i, j=1

ai jux jηxi −∑
i

biuxiη −auη
)︁
dx+

∫︂
S

kuηds+
∫︂

Q
uηdx

Then we define the piecewise constant interpolations āi j∆, b̄i∆ , ā∆ of discrete valued
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functions ai jα , biα , aα as following

β̄∆

⃓⃓⃓
Cα

∆

= βα , β̄∆ ≡ 0 elsewhere onQ, ∀α ∈ A (Q∗
∆)

where β̄∆ represents āi j∆, b̄i∆ , ā∆. In addition, we define the interpolations for ηα and

ηαxi for each α ∈ A (Q∗
∆
) as following

η̄∆

⃓⃓⃓
Cα

∆

= ηα , ∀α ∈ A (Q∗
∆)

η̄
i
∆

⃓⃓⃓
Cα

∆

= ηαxi, ∀α ∈ A (Q∗
∆)

Note that f ∆ is the interpolation of f ∆
α . Using these interpolation functions I∆ is trans-

formed as follows:

I∆ := ∑
A (Q∗+

∆
)

∫︂
Cα

∆

[︄
n

∑
i, j=1

āi j∆Ṽ j
∆

η̄
i
∆ −∑

i
b̄i∆Ṽ i

∆η̄∆ − ā∆Ṽ∆η̄∆ + f ∆
η̄∆

]︄

+ Jα(uα ,ηα)+ ∑
A (Ŝ∗

∆
)

∫︂
Sα

k(x)Ṽ∆η̄∆ds

=
∫︂

Q∗
∆

[︄
n

∑
i, j=1

āi j∆Ṽ j
∆

η̄
i
∆ −∑

i
b̄i∆Ṽ i

∆η̄∆ − ā∆Ṽ∆η̄∆ + f ∆
η̄∆

]︄

+ Jα(uα ,ηα)+
∫︂

S
k(x)Ṽ∆η̄∆ds = 0

Adding and subtracting some terms to I∆, we obtain the following identity:

I∆ = I +
5

∑
i=1

Ri,
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where

R1 =
∫︂

Q∗
∆
\Q

[︄
n

∑
i, j=1

āi j∆Ṽ j
∆

η̄
i
∆ −∑

i
b̄i∆Ṽ i

∆η̄∆ − ā∆Ṽ∆η̄∆ + f ∆
η̄∆

]︄
,

R2 = Jα(uα ,ηα) = hn
∑

A (S∗
∆
)

[︁
θαuαηα +

n

∑
i=1

θ
i
αuαxiηαxi],

R3 =
∫︂

Q

[︄
n

∑
i, j=1

āi j∆Ṽ j
∆
(η̄ i

∆ −ηxi)−∑
i

b̄i∆Ṽ i
∆(η̄∆ −η)− ā∆Ṽ∆(η̄∆ −η)+ f ∆(η̄∆ −η)

]︄

+
∫︂

S
k(x)Ṽ∆(η̄∆ −η)ds,

R4 =
∫︂

Q

[︄
n

∑
i, j=1

(āi j∆ −ai j)Ṽ
j

∆
ηxi −∑

i
(b̄i∆ −bi)Ṽ i

∆η − (ā∆ −a)Ṽ∆η +( f ∆
α − f )η

]︄
,

R5 =
∫︂

Q

[︄
n

∑
i, j=1

ai j(Ṽ
j

∆
−ux j)η −∑

i
bi(Ṽ i

∆ −uxi)η +a(Ṽ∆ −u)η

]︄

+
∫︂

S
k(x)(Ṽ∆ −u)ηds.

We claim that by passing to the limit when ∆ → 0, I∆ → I and Ri → 0 for i = 1, . . . ,5.

Using Cauchy Schwartz inequality and extending the region of integration from Q∗
∆
\Q

to Q∗
∆

for functions Ṽ i
∆

and Ṽ∆ we obtain the following estimate for R1:

|R1| ≤C1

n

∑
i, j=1

∥Ṽ j
∆
∥L2(Q∗

∆
)∥η̄

i
∆∥L2(Q∗

∆
\Q)+C2

n

∑
i=1

∥Ṽ i
∆∥L2(Q∗

∆
)∥η̄∆∥L2(Q∗

∆
\Q)

+C3∥Ṽ∆∥L2(Q∗
∆
)∥η̄∆∥L2(Q∗

∆
\Q)+C4∥ f ∆∥L2(Q∗

∆
)∥η̄∆∥L2(Q∗

∆
\Q)

Lemma 2.2.9 (a) and (b), Proposition 2.2.7, and the fact that all ai j,bi,a are bounded
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functions imply that

|R1| ≤C5

n

∑
i=1

∥η̄
i
∆∥L2(Q∗

∆
\Q)+C6∥η̄∆∥L2(Q∗

∆
\Q)

interpolations η̄∆ and η̄ i
∆

converge uniformly on Q̄ to the functions η and ηxi as ∆ → 0

and since η ∈ C 1(Q̃) and |Q∗
∆
\Q| → 0 and we have

|R1| → 0, as ∆ → 0

Now we try to show that R2 is small.

R2 = hn
∑

A (S∗
∆
)

[︁
θαuαηα +

n

∑
i=1

θ
i
αuαxiηαxi] = R21 +R22

|R21|= |hn
∑

A (S∗
∆
)

θαuαηα | ≤C2n−1nh∥[u([ f ]∆)]∆∥2
H 1(Q∗

∆
)+ ∑

A (Ŝ∗
∆
)

hnuαηα

≤C2n−1nh∥[u([ f ]∆)]∆∥2
H 1(Q∗

∆
)+∥Ṽ∆∥L2(Q∗

∆
)∥η̄∆∥L2(Q∗

∆
\Q)

≤ Mh+N∥η̄∆∥L2(Q∗
∆
\Q) → 0

where 2n−1 is the number of vertices in Cα
∆

other than the natural corner, and n is the
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maximum number of edges that connect xα to the natural corner in Cα
∆

.

|R22|= |hn
∑

A (S∗
∆
)

n

∑
i=1

θ
i
αuαxiηαxi|

≤ ( ∑
A (S∗

∆
)

n

∑
i=1

hn
θ

i
αu2

αxi
)

1
2 ( ∑

A (S∗
∆
)

n

∑
i=1

hn
θ

i
αη

2
αxi

)
1
2

≤ (
n

∑
i=1

∑
A (Q∗(i)

∆
)

hnu2
αxi

)
1
2∥η∥C1(

n

∑
i=1

∑
A (S∗

∆
)

hn)
1
2

≤ (
n

∑
i=1

∑
A (Q∗(i)

∆
)

hnu2
αxi

)
1
2∥η∥C1

√
n( ∑

A (S∗
∆
)

hn)
1
2

≤ (
n

∑
i=1

∑
A (Q∗(i)

∆
)

h2u2
αxi

)
1
2∥η∥C1

√
nh(2|S|)

1
2 → 0

Sum with respect to all grid points of S∗
∆

is bounded by the Lebesgue measure of S∗
∆

.

Since S is Lipschitz, the latter converges to Lebesgue measure of S as h → 0; This imply

that for sufficiently small h, it will be bounded by 2|S|. The same argument that we used

for R1 implies that R21,R22 → 0 as ∆ → 0.

Using Cauchy Schwartz inequality and Lemma 2.2.9 (a) and (b) we get the following

estimation for R3:

|R3|=

⃓⃓⃓⃓
⃓
∫︂

Q

[︂ n

∑
i, j=1

āi j∆Ṽ j
∆
(η̄ i

∆ −ηxi)−∑
i

b̄i∆Ṽ i
∆(η̄∆ −η)− ā∆Ṽ∆(η̄∆ −η)+ f ∆(η̄∆ −η)

]︂
+
∫︂

S
k(x)Ṽ∆(η̄∆ −η)ds

⃓⃓⃓⃓
⃓≤ N1

n

∑
i=1

∥η̄
i
∆ −ηxi∥L2(Q)+N2∥η̄∆ −η∥L2(Q)+N3∥η̄∆ −η∥L2(S)

It can be easily proved that interpolations η̄∆ and η̄ i
∆

converge uniformly on Q̄ to the

functions η and ηxi as ∆ → 0, so R3 → 0.

Using Cauchy Schwartz inequality and Lemma 2.2.9 (a) and (b) and the fact that η ∈
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C 1(Q̃) we get the following estimation for R4:

|R4|=

⃓⃓⃓⃓
⃓
∫︂

Q

[︂ n

∑
i, j=1

(āi j∆ −ai j)Ṽ
j

∆
ηxi −∑

i
(b̄i∆ −bi)Ṽ i

∆η − (ā∆ −a)Ṽ∆η +( f ∆ − f )η
]︂⃓⃓⃓⃓⃓

≤
n

∑
i, j=1

H1∥āi j∆−ai j∥L2(Q)+H2

n

∑
i=1

∥b̄i∆−bi∥L2(Q)+H3∥ā∆−a∥L2(Q)+H4∥ f ∆− f∥L2(Q)

(2.64)

By convergence of the Steklov averages to the original function in L2, it implies that

āi j∆, b̄i∆ , ā∆, f ∆ converge to ai j, bi, a, f strongly in L2(Q) norm; Thus, it follows that

R4 → 0

By adding and subtracting V ′
∆

and ∂V ′
∆

∂x j
and using the fact that ai j, bi, a are bounded we

calculate the following estimate:

|R5|=

⃓⃓⃓⃓
⃓
∫︂

Q

[︂ n

∑
i, j=1

ai j(Ṽ
j

∆
−ux j)η −∑

i
bi(Ṽ i

∆ −uxi)η +a(Ṽ∆ −u)η
]︂

+
∫︂

S
k(x)(Ṽ∆ −u)ηds

⃓⃓⃓⃓
⃓≤ K1

n

∑
j=1

∥Ṽ j
∆
−

∂V ′
∆

∂x j
∥L2(Q)+K1

n

∑
j=1

∥
∂V ′

∆

∂x j
−ux j∥L2(Q)

+K2

n

∑
i=1

∥Ṽ i
∆ −

∂V ′
∆

∂xi
∥L2(Q)+K2

n

∑
i=1

∥
∂V ′

∆

∂xi
−uxi∥L2(Q)+K3∥Ṽ∆ −V ′

∆∥L2(Q)

+K3∥V ′
∆ −u∥L2(Q)+K4∥Ṽ∆ −V ′

∆∥L2(S)+K4∥V ′
∆ −u∥L2(S)

Lemma 2.2.9 (c),(d), (e) and Approximation Lemma implies that R5 → 0.

Finally, since C 1(Q) is dense in set of admissible test functions for integral identity (2.9)

we have that u is a weak solution to the Problem (2.3)–(2.7) in the sense of Definition

2.1.2. Therefore, we have proved that if u is a weak limit point of {V ′
∆
} then it must be

a weak solution to the Problem (2.3)–(2.7). Due to uniqueness of the weak solution it

follows that {V ′
∆
} has one and only one weak limit point, which shows that the whole
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sequence {V ′
∆
} converges weakly to u in H1(Q). Lemma is proved. □

2.3 Proofs of Main Results

2.3.1 Proof of Theorem 2.1.6

Proof of Theorem 2.1.6. To prove 2.24 and 2.27, it is enough to show that conditions (i)

and (ii) of Lemma 2.2.6 for problem D are satisfied.

Step 1. In this step we show that for any f ∈ F R,

lim
∆→0

|I∆(Q∆( f ))−I ( f )|= 0 (2.65)

In Preposition 2.2.7 it is shown that Q∆( f )= [ f ]∆ ∈F R
∆

, and the sequence {P∆(Q∆( f ))}

converges strongly to f

P∆([ f ]∆)→ f strongly in L2(Q) as ∆ → 0 (2.66)

this shows that the requirement of the Theorem 2.2.10 is satisfied and it follows that the

interpolations {U ′
∆
} of the discrete state vectors [u([ f ]∆)]∆ converge weakly in H1(Q) to

the unique weak solution u = u(x : f ) of the PDE problem with control f .

Let define G̃∆, F̃∆ and ̃̄F∆ as piece wise constant interpolation of collection {gα},{ fα}

and { f̄α}which is defined by the formula (2.15)

.G̃∆

⃓⃓⃓⃓
Cα

∆

= gα , ∀α ∈ A (D∆), G̃∆ = 0 elsewhere on D

F̃∆

⃓⃓⃓⃓
Cα

∆

= fα , ∀α ∈ A (Q∆), F̃∆ = 0 elsewhere on Q
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̃̄F∆

⃓⃓⃓⃓
Cα

∆

= f̄α , ∀α ∈ A (Q∆),
̃̄F∆ = 0 elsewhere on Q

then we note that

I∆(Q∆( f )) = ∑
A (D∆)

hn|uα −gα |2 +β ∑
A (Q+

∆
)

hn| fα − f̄α |2

= ∑
A (D∆)

∫︂
Cα

∆

|Ũ∆ − G̃∆|2 +β ∑
A (Q+

∆
)

hn|F̃∆ − ̃̄F∆|2

= ∥Ũ∆ − G̃∆∥L2(D∆)+∥F̃∆ − ̃̄F∆∥L2(Q∆)

= ∥Ũ∆ ±u±g− G̃∆∥L2(D)+∥F̃∆ ± f ± f̄ − G̃∆∥L2(Q)

≤ ∥Ũ∆ −u∥L2(D∆)+∥G̃∆ −g∥L2(D∆)+∥u−g∥L2(D∆)

+∥F̃∆ − f∥L2(Q∆)+∥ ̃̄F∆ − f̄∥L2(Q∆)+∥ f − f̄∥L2(Q∆)

= ∥Ũ∆ −u∥L2(D∆)+∥G̃∆ −g∥L2(D∆)+∥F̃∆ − f∥L2(Q∆)+∥ ̃̄F∆ − f̄∥L2(Q∆)+I ( f )

Lemma 2.2.8(c) and Theorem 2.2.10 imply that when ∆ → 0

∥Ũ∆ −u∥L2 → 0

strong convergence of Steklov average to the original function as ∆ → 0 implies that

∥G̃∆ −g∥L2 → 0, ∥F̃∆ − f∥L2(Q∆) → 0, ∥ ̃̄F∆ − f̄∥L2(Q∆) → 0

so

lim
∆→0

I (Q∆( f ))−I ( f ) = 0
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Hence, (2.65) is proved.

Step 2. In this step we show that for any collection of numbers {[ f ]∆} such that [ f ]∆ ∈

F R
∆

,

lim
∆→0

|I (P∆([ f ]∆))−I∆([ f ]∆))|= 0 (2.67)

Preposition 2.2.7 implies that the sequence P∆([ f ]∆) is uniformly bounded in L2(Q)

norm. Hence, there exists a subsequence of that converging weakly in L2(Q) to some

f̄ ∈ F R. We know that there is a unique state vector ū := u(x; f̄ ) ∈ H1
0 (Q) which solves

the problem (2.3)–(2.4). By Theorem 2.2.10, we also know that the sequence of inter-

polations {U ′
∆
} of [u([ f ]∆)]∆, discrete state vectors associated to [ f ]∆, converges weakly

in H1(Q) to ū. For simplicity, we use the whole sequence P∆([ f ]∆) instead of the sub-

sequence.

To prove (2.67), we add and subtract I ( f̄ ) to (2.67) and we get the following inequality

|I (P∆([ f ]∆))−I∆([ f ]∆))| ≤ I1 + I2

where

I1 = |I (P∆([ f ]∆))−I ( f̄ )|

and

I2 = |I ( f̄ )−I∆([ f ]∆))|
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Then weak continuity of I implies that I1 → 0 as ∆ → 0 .

To show that I2 → 0 as ∆ → 0, let consider the following

|I∆([ f ]∆))−I ( f̄ )|=
⃓⃓⃓⃓
∑
A

hn|uα −gα |2 −
∫︂

Q
|ū−g(x)|2dx

⃓⃓⃓⃓
=

⃓⃓⃓⃓∫︂
Q
|Ũ∆ − G̃∆ ± ū|2 −

∫︂
Q
|ū−g(x)± G̃∆|2dx

⃓⃓⃓⃓
≤
∫︂

Q
|Ũ∆ − ū|2 +

∫︂
Q
|G̃∆ −g|2 +2

∫︂
Q
|Ũ∆ − ū||ū− G̃∆|

+2
∫︂

Q
|G̃∆ −g||ū− G̃∆| ≤ A1 +A2 +2A3 +2A4

By Lemma 2.2.10 and Theorem 2.2.8, it follows that A1 → 0. By convergence of the in-

terpolation of Steklov average to the original function, A2 → 0. Theorem 2.2.10, Lemma

2.2.8, and the fact that g ∈ L2(Q) and ū ∈ H1
0 (Q) imply that A3,A4 → 0. Therefore, it is

proved that I2 → 0.

In step 1 and step 2, we have proved conditions of the Lemma 2.2.6. Thus, 2.24 and

2.27 are satisfied. In order to prove the rest of Theorem 2.1.6, we consider the sequence

{[ f ]∆,ε} ∈ F R
∆

. It is followed by lemma 2.2.7 that {P∆([ f ]∆,ε)} is uniformly bounded

in L2(Q). Assume f∗ ∈ L2(Q) is a weak limit point of this sequence. Weak continuity

of I and 2.27 implies that I ( f∗) = I∗ and f∗ ∈ V∗. In addition, referring to Theo-

rem 2.2.10 there exists a unique discrete state vector [u([ f ]∆,ε)]∆ corresponding to [ f ]∆,ε

whose interpolations, {U ′
∆
}, converge weakly in W 1

2 (Q) to u∗ = u(x; f∗), a weak solution

to the (2.3)–(2.4) in the sense of (2.1.1).□

2.3.2 Proof of Theorem 2.1.7

Proof of Theorem 2.1.7. To prove (2.28) and (2.31), it is enough to show that conditions

(1) and (2) of Lemma 2.2.6 are satisfied.
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Step 1.In this step we show that for any f ∈ F R,

lim
∆→0

|J∆(Q∆( f ))−J ( f )|= 0 (2.68)

In Preposition 2.2.7 it is shown that Q∆( f ) = [ f ]∆ ∈ F R
∆

, and by convergence of the

Steklov averages to the original function in L2, it follows that the sequence {P∆(Q∆( f ))}

converges to f

P∆([ f ]∆)→ f strongly in L2(Q) as ∆ → 0 (2.69)

Therefore, the conditions of the Lemma 2.2.11 is satisfied and it follows that the inter-

polations {V ′
∆
} of the discrete state vectors [u([ f ]∆)]∆ converge weakly in H1(Q) to the

unique weak solution u = u(x : f ) of the PDE problem with control f .

Let define G̃∆ and Z̃∆ as piece wise constant interpolation of collection {gα} and {zΓ
α}

which are defined by the formula (2.15).

G̃∆

⃓⃓⃓⃓
Cα

∆

= gα , ∀α ∈ A (D∗+
∆
), Z̃∆

⃓⃓⃓⃓
Γα

= zΓ
α , ∀α ∈ A (Γ∆)

where

∥Z̃∆∥2
L2(Γ)

=
∫︂

Γ

|Z̃∆|2 ds = ∑
A (Γ∆)

∫︂
Γα

|Z̃∆|2 ds = ∑
A (Γ∆)

|Γα |
(︁ 1
|Γα |

∫︂
Γα

zds
)︁2

≤ ∑
A (Γ∆)

1
|Γα |

|Γα |
∫︂

Γα

z2ds =
∫︂

Γ

z2ds

In the proof, we use the following identity for elements a, b, c of the Hilbert space H

∥a−b∥2
H −∥c−b∥2

H = ⟨a− c,a− c⟩−2⟨a− c,b− c⟩ (2.70)
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In this section, we skip the third term of J∆(Q∆( f )) and J ( f ) due to strong conver-

gence of Steklov average to the original function.

J∆(Q∆( f ))−J ( f ) =

∑
A (D∗+

∆
)

hn|uα −gα |2 + ∑
A (Γ∆)

|Γα ||uα − zΓ
α |2

−
∫︂

D
|u(x; f )−g(x)|2dx−

∫︂
Γ

|u(x; f )− z(x)|2ds

= J1 + J2

where

J1 := ∑
A (D∗+

∆
)

hn|uα −gα |2 −
∫︂

D
|u(x; f )−g(x)|2dx

J2 := ∑
A (Γ∆)

|Γα ||uα − zΓ
α |2 −

∫︂
Γ

|u(x; f )− z(x)|2ds

We claim that J1 → 0 as ∆ → 0

J1 := ∑
A (D∗+

∆
)

∫︂
Cα

∆

|Ṽ∆ − G̃∆|2 −
∫︂

D
|u(x; f )−g(x)|2dx

= ∥Ṽ∆ − G̃∆∥2
L2(D̄∗

∆
)−∥u−g∥2

L2(D)

= ∥Ṽ∆ − G̃∆∥2
L2(D̄∗

∆
)−∥u−g∥2

L2(D)−∥u−g∥2
L2(D̄∗

∆
)+∥u−g∥2

L2(D̄∗
∆
)

= ∥Ṽ∆ − G̃∆∥2
L2(D̄∗

∆
)−∥u−g∥2

L2(D̄∗
∆
)+∥u−g∥2

L2(D̄∗
∆
\D)

= J11 + J12 + J13
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Where we extended g to a bigger set D̃ which covers D̄∗
∆

when h > 0 is small enough,

then due to absolute continuity of integral we have

J13 = ∥u−g∥2
L2(D̄∗

∆
\D) → 0, as ∆ → 0

Using (2.70) and adding and subtracting some additional terms to J1 we get

J11 + J12 = ∥Ṽ∆ − G̃∆∥2
L2(D̄∗

∆
)±∥u− G̃∆∥2

L2(D̄∗
∆
)−∥u−g∥2

L2(D̄∗
∆
)

= ∥Ṽ∆ −u∥2
L2(D̄∗

∆
)−2⟨Ṽ∆ −u, G̃∆ −u⟩

+∥G̃∆ −g∥2
L2(D̄∗

∆
)−2⟨G̃∆ −g,u−g⟩

By convergence of the Steklov averages to the original function in L2, it follows

∥G̃∆ −g∥2
L2(D̄∗

∆
) → 0, as ∆ → 0 (2.71)

By Lemma (c) and Approximation Lemma, we also have

∥Ṽ∆ −u∥2
L2(D̄∗

∆
) ≤ ∥Ṽ∆ −V ′

∆∥2
L2(D̄∗

∆
)+∥V ′

∆ −u∥2
L2(D̄∗

∆
) (2.72)

≤ ∥Ṽ∆ −V ′
∆∥2

L2(Q∗
∆
)+∥V ′

∆ −u∥2
L2(Q∗

∆
) → 0, as ∆ → 0 (2.73)

Cauchy Schwartz inequality implies

|J11 + J12| ≤ ∥Ṽ∆ −u∥2
L2(D̄∗

∆
)∥G̃∆ −u∥2

L2(D̄∗
∆
)+∥G̃∆ −g∥2

L2(D̄∗
∆
)∥u−g∥2

L2(D̄∗
∆
) (2.74)

48



(2.71), (2.73) and the fact that G̃∆ is bounded in L2(D̄∗
∆
) proves that

J1 → 0, as ∆ → 0 (2.75)

In addition, we claim that J2 → 0 as ∆ → 0

J2 := ∑
A (Γ∆)

|Γα ||uα − zΓ
α |2 −

∫︂
Γ

|u(x; f )− z(x)|2ds

= ∑
A (Γ∆)

∫︂
Γα

|Ṽ∆ − Z̃∆|2 −
∫︂

Γ

|u(x; f )− z(x)|2dx

= ∥Ṽ∆ − Z̃∆∥2
L2(Γ)

−∥u− z∥2
L2(Γ)

Using (2.70), J2 becomes

J2 = ∥Ṽ∆ − Z̃∆∥2
L2(Γ)

±∥u− Z̃∆∥2
L2(Γ)

−∥u− z∥2
L2(Γ)

= ∥Ṽ∆ −u∥2
L2(Γ)

−2⟨Ṽ∆ −u, Z̃∆ −u⟩

+∥Z̃∆ − z∥2
L2(Γ)

−2⟨Z̃∆ − z,u− z⟩

By convergence of the Steklov averages to the original function in L2, it follows

∥Z̃∆ − z∥2
L2(Γ)

→ 0, as ∆ → 0 (2.76)

By Lemma (e) and Approximation Lemma, we also have

∥Ṽ∆ −u∥2
L2(Γ)

≤ ∥Ṽ∆ −V ′
∆∥2

L2(Γ)
+∥V ′

∆ −u∥2
L2(Γ)

≤ ∥Ṽ∆ −V ′
∆∥2

L2(S)+∥V ′
∆ −u∥2

L2(S) → 0, as ∆ → 0 (2.77)
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Cauchy Schwartz inequality implies

|J2| ≤ ∥Ṽ∆ −u∥2
L2(Γ)

∥Z̃∆ −u∥2
L2(Γ)

+∥Z̃∆ − z∥2
L2(Γ)

∥u− z∥2
L2(Γ)

(2.78)

(2.76), (2.77) and the fact that Z̃∆ is bounded in L2(Γ) proves that

J2 → 0, as ∆ → 0 (2.79)

so

lim
∆→0

J (Q∆( f ))−J ( f ) = 0

Hence, (2.68) is proved.

Step 2. In this step we show that for any sequence {[ f ]∆} such that [ f ]∆ ∈F R
∆

, we have

lim
∆→0

|J (P∆([ f ]∆))−J∆([ f ]∆))|= 0 (2.80)

Preposition 2.2.7 implies that the sequence P∆([ f ]∆) is uniformly bounded in L2(Q)

norm. Hence, there exists a subsequence of that converging weakly in L2(Q) to some f̄ ∈

F R. For simplicity, we use the whole sequence P∆([ f ]∆) instead of the subsequence.

P∆([ f ]∆)→ f̄ weakly in L2(Q) as ∆ → 0 (2.81)

this shows that the requirement of the Theorem 2.2.11 is satisfied, so the same argument

that proved (2.68) can lead us to the following assertion

lim
∆→0

|J∆([ f ]∆)−J ( f̄ )|= 0 (2.82)
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To prove (2.80), we add and subtract J ( f̄ ) to (2.80) and we get the following inequality

|J (P∆([ f ]∆))−J∆([ f ]∆))| ≤ |J (P∆([ f ]∆))−J ( f̄ )|+ |J ( f̄ )−J∆([ f ]∆))|

Then weak continuity of J implies that I1 → 0 as ∆ → 0 .

In step 1 and step 2, we have proved conditions of the Lemma 2.2.6. Thus, 2.28 and

2.31 are satisfied. In order to prove the rest of Theorem 2.1.7, we consider the sequence

{[ f ]∆,ε} ∈ F R
∆

. It is followed by lemma 2.2.7 that {P∆([ f ]∆,ε)} is uniformly bounded

in L2(Q). Assume f∗ ∈ L2(Q) is a weak limit point of this sequence. Weak continuity of

J and 2.31 implies that J ( f∗) = J∗ and f∗ ∈ F∗. In addition, referring to Theorem

2.2.11 there exists a unique discrete state vector [u([ f ]∆,ε)]∆ corresponding to [ f ]∆,ε

whose interpolations, {V ′
∆
}, converge weakly in W 1

2 (Q) to u∗ = u(x; f∗), a weak solution

to the Neumann problem (2.3), (2.7) in the sense of (2.1.2).□

Remark 2.3.1. It is an important open problem to extend the methods of this Chapter

to analyze the optimal control problem for elliptic and parabolic PDEs in domains with

non-compact boundaries by employing well-posedness and regularity theory of elliptic

and parabolic PDEs in general unbounded open sets [1, 2, 3, 4, 7].
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Chapter 3

Cancer Detection through Electrical

Impedance Tomography and Optimal

Control of Elliptic PDEs

3.1 Introduction and Problem Description

This chapter of the dissertation analyzes inverse EIT problem of estimating an unknown

conductivity inside the body based on voltage measurements on the surface of the body

when electric currents are applied through a set of contact electrodes. Let Q ∈ Rn be an

open and bounded set representing body, and assume A(x) =
(︁
ai j(x)

)︁n
i j=1 be a matrix

representing the electrical conductivity tensor at the point x ∈ Q. Electrodes, (El)
m
l=1,

with contact impedances vector Z := (Zl)
m
l=1 ∈ Rm

+ are attached to the periphery of the

body, ∂Q. Electric current vector I := (Il)
m
l=1 ∈ Rm is applied to the electrodes. Vector
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I is called current pattern if it satisfies conservation of charge condition

m

∑
l=1

Il = 0 (3.1)

The induced constant voltage on electrodes is denoted by U := (Ul)
m
l=1 ∈ Rm. By spec-

ifying ground or zero potential it is assumed that

m

∑
l=1

Ul = 0 (3.2)

EIT problem is to find the electrostatic potential u : Q →R and boundary voltages U on

(El)
m
l=1. The mathematical model of the EIT problem is described through the following

boundary value problem for the second order elliptic partial differential equation:

−
n

∑
i, j=1

(︁
ai j(x)ux j

)︁
xi
= 0, x ∈ Q (3.3)

∂u(x)
∂N

= 0, x ∈ ∂Q−
m⋃︂

l=1

El (3.4)

u(x)+Zl
∂u(x)
∂N

=Ul, x ∈ El, l = 1,m (3.5)∫︂
El

∂u(x)
∂N

ds = Il, l = 1,m (3.6)

where
∂u(x)
∂N

= ∑
i, j

ai j(x)ux jν
i

be a co-normal derivative at x, and ν = (ν1, ...,νn) is the outward normal at a point x to

∂Q. Electrical conductivity matrix A = (ai j) is positive definite with

n

∑
i, j=1

ai j(x)ξiξ j ≥ µ

n

∑
i=1

ξ
2
i , ∀ξ ∈ Rn; µ > 0. (3.7)

53



The following is the EIT Problem: Given electrical conductivity tensor A, electrode

contact impedance vector Z, and electrode current pattern I it is required to find elec-

trostatic potential u and electrode voltages U satisfying (3.2)–(3.6):

(A,Z, I)−→ (u,U)

The goal of this chapter is to analyze inverse EIT problem of determining conductivity

tensor A from the measurements of the boundary voltages U∗. Inverse EIT Problem:

Given electrode contact impedance vector Z, electrode current pattern I and boundary

electrode measurement U∗, it is required to find electrostatic potential u and electrical

conductivity tensor A satisfying (3.2)–(3.6) with U =U∗.

We refer to Chapter 1 for literature review on inverse EIT problem.

3.2 Optimal Control Problem

We formulate Inverse EIT Problem as the following PDE constrained optimal control

problem. Consider the minimization of the cost functional

J (v) =
m

∑
l=1

⃓⃓⃓∫︂
El

Ul −u(x)
Zl

ds− Il

⃓⃓⃓2
+β |U −U∗|2 (3.8)

on the control set

VR =
{︁

v = (A,U) ∈
(︂

L∞(Q;Mn×n)
⋂︂

Hε(Q;Mn×n)
)︂
×Rm

⃓⃓⃓ m

∑
l=1

Ul = 0,

∥A∥L∞
+∥A∥Hε + |U | ≤ R, ξ

T Aξ ≥ µ|ξ |2, ∀ξ ∈ Rn, µ > 0
}︁
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where β > 0, and u = u(·;v) ∈ H1(Q) is a solution of the elliptic problem (3.3)–(3.5).

This optimal control problem will be called Problem J . The first term in the cost

functional J (v) characterizes the mismatch of the condition (3.6) in light of the Robin

condition (3.5).

Note that the variational formulation of the EIT Problem is a particular case of the

Problem J , when the conductivity tensor A is known, and therefore is removed from

the control set by setting R =+∞ and β = 0:

I (U) =
m

∑
l=1

⃓⃓⃓∫︂
El

Ul −u(x)
Zl

ds− Il

⃓⃓⃓2
→ inf (3.9)

in a control set

W =
{︁

U ∈ Rm
⃓⃓⃓ m

∑
l=1

Ul = 0
}︁

(3.10)

where u = u(·;v) ∈ H1(Q) is a solution of the elliptic problem (3.3)–(3.5). This optimal

control problem will be called Problem I . It is a convex PDE constrained optimal

control problem (Remark 3.4.3, Section 2.3).

Inverse EIT problem on the identification of the electrical conductivity tensor A with

m input data (Il)
m
l=1 is highly ill-posed. Next, we formulate an optimal control problem

which is adapted to the situation when the size of input data can be increased through

additional measurements while keeping the size of the unknown parameters fixed. Let

U1 =U, I1 = I and consider m−1 new permutations of boundary voltages

U j = (U j, ...,Um,U1, ...,U j−1), j = 2, ...,m (3.11)

applied to electrodes E1,E2, . . . ,Em respectively. Assume that the “voltage–to–current”

measurement allows us to measure associated currents I j = (I j
1, · · · , I

j
m). By setting
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U1 =U∗ and having a new set of m2 input data (I j)m
j=1, we now consider optimal control

problem on the minimization of the new cost functional

K (v) =
m

∑
j=1

m

∑
l=1

⃓⃓⃓∫︂
El

U j
l −u j(x)

Zl
ds− I j

l

⃓⃓⃓2
+β |U −U∗|2 (3.12)

on a control set VR, where each function u j(·;A,U j), j = 1, ...,m, solves elliptic PDE

problem (3.3)–(3.5) with U replaced by U j. This optimal control problem will be called

Problem K . Note that the number of input currents in the Problem K has increased

from m to m2. However, the size of unknown control vector is unchanged, and in partic-

ular there are only m unknown voltages U1, · · · ,Um. The price we pay for this gain is the

increase of the number of PDE constrains, which has increased from 1 to m. It should

be noted that similar approach can be pursued to increase the size of input data up to m!

by adding possible permutations of U in (3.11).

We effectively use Problem I to generate model examples of the inverse EIT prob-

lem which adequately represents the diagnosis of the breast cancer in reality. Computa-

tional analysis based on the Fréchet differentiability result and gradient method in Besov

spaces for the Problems J and K is pursued in realistic model examples.

3.3 Main Results

Let bilinear form B : H1(Q)×H1(Q)→ R be defined as

B[u,η ] =
∫︂

Q

n

∑
i, j=1

ai jux jηxidx+
m

∑
l=1

1
Zl

∫︂
El

uηds, (3.13)

Definition 3.3.1. For a given v ∈ VR, u = u(·;v) ∈ H1(Q) is called a solution of the
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problem (3.3)–(3.5) if

B[u,η ] =
m

∑
l=1

1
Zl

∫︂
El

ηUlds, ∀η ∈ H1(Q). (3.14)

For a given control vector v ∈ VR and corresponding u(·;v) ∈ H1(Q), consider the

adjoined problem:

∑
i j
(ai jψxi)x j = 0, x ∈ Q (3.15)

∂ψ

∂N
= 0, x ∈ ∂Q−

m⋃︂
l=1

El (3.16)

ψ +Zl
∂ψ

∂N
= 2

∫︂
El

u−Ul

Zl
ds+2Il, x ∈ El, l = 1,m (3.17)

Definition 3.3.2. ψ ∈ H1(Q) is called a solution of the adjoined problem (3.15)–(3.17)

if

B[ψ,η ] = ∑
l

∫︂
El

η

Zl

[︂
2
∫︂

El

u−Ul

Zl
ds+2Il

]︂
ds, ∀η ∈ H1(Q). (3.18)

In Lemma 3.4.1, Section 2.3 it is demonstrated that for a given v ∈VR, both elliptic

problems are uniquely solvable.

Definition 3.3.3. Let V be a convex and closed subset of the Banach space H. We say

that the functional J : V →R is differentiable in the sense of Fréchet at the point v ∈V

if there exists an element J ′(v) ∈ H ′ of the dual space such that

J (v+h)−J (v) =
⟨︁
J ′(v),h

⟩︁
H +o(h,v), (3.19)

where v+ h ∈ V ∩{u : ∥u∥ < γ} for some γ > 0; ⟨·, ·⟩H is a pairing between H and its
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dual H ′, and
o(h,v)
∥h∥

→ 0, as ∥h∥→ 0.

The expression dJ (v) = ⟨J ′(v), ·⟩H is called a Fréchet differential of J at v ∈ V ,

and the element J ′(v) ∈ H ′ is called Fréchet derivative or gradient of J at v ∈V .

Note that if Fréchet gradient J ′(v) exists at v ∈ V , then the Fréchet differential

dJ (v) is uniquely defined on a convex cone ([5, 6, 10, 12, 13, 11, 9])

Hv = {w ∈ H : w = λ (u− v),λ ∈ [0,+∞),u ∈V}.

The following are the main theoretical results of this chapter:

Theorem 3.3.4. (Existence of an Optimal Control). Problem J has a solution, i.e.

V∗ = {v = (A,U) ∈VR;J (v) = J∗ = inf
v∈VR

J (v)} ̸= /0 (3.20)

Theorem 3.3.5. (Fréchet Differentiability): The functional J (v) is differentiable on

VR in the sense of Fréchet; the Fréchet differential dJ (v) and the gradient J ′(A,U)∈

L ′×Rm are

⟨︁
J ′(v),δv

⟩︁
H =−

∫︂
Q

n

∑
i, j=1

ux jψxiδai jdx

+
m

∑
k=1

(︂ m

∑
l=1

2
[︂∫︂

El

Ul −u
Zl

ds− Il

]︂∫︂
El

1
Zl
(δlk −wk(s))ds+2β (Uk −U∗

k )
)︂

δUk (3.21)

J ′(A,U) =
(︂
J ′

A(A,U),J ′
U(A,U)

)︂
=

(︄
−
(︁
ψxiux j

)︁n
i, j=1,

(︂ m

∑
l=1

2
[︂∫︂

El

Ul −u
Zl

ds− Il

]︂∫︂
El

1
Zl
(δlk −wk(s))ds+2β (Uk −U∗

k )
)︂m

k=1

)︄
(3.22)
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where u= u(·;v),ψ =ψ(·;v); wk = ∂u
∂Uk

= u(·;A,ek), k = 1,2, ..,m is a solution of (3.3)–

(3.5) with v = (A,ek), ek ∈R is a unit ort vector in xk-direction; δlk is a Kronecker delta;

δv = (δA,δU) = ((δai j)
n
i, j=1,(δUk)

m
k=1) is a variation of the control vector v ∈VR such

that v+δv ∈VR.

Corollary 3.3.6. (Optimality Condition) If v ∈VR is an optimal control in Problem J ,

then the following variational inequality is satisfied:

⟨︁
J ′(vvv),v− vvv

⟩︁
H ≥ 0, ∀v ∈VR. (3.23)

Corollary 3.3.7. (Fréchet Differentiability): The functional K (v) is differentiable on

VR in the sense of Fréchet and the Fréchet gradient K ′(σ ,U) ∈ L ′×Rm is

K ′(v) =
(︂
K ′

A(A,U),K ′
U(A,U)

)︂
=(︄

−
(︂ m

∑
j=1

ψ
j

xp
u j

xq

)︂n

p,q=1
,
(︂ m

∑
j=1

m

∑
l=1

2
[︂∫︂

El

U j
l −u j

Zl
ds− I j

l

]︂∫︂
El

δl,θk j −wθk j(s)

Zl
ds

+2β (Uk −U∗
k )
)︂m

k=1

)︄
(3.24)

where ψ j(·), j = 1, ...,m, be a solution of the adjoined PDE problem (3.15)–(3.17) with

u(·),U and I replaced with u j(·),U j, I j respectively, and

θk j =

⎧⎪⎨⎪⎩
k− j+1, if j ≤ k,

m+ k− j+1, if j > k.
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3.3.1 Gradient Method in Banach Space

Fréchet differentiability result of Theorem 3.3.5 and the formula (3.22) for the Fréchet

derivative suggest the following algorithm based on the projective gradient method in

Banach space H for the Problem J .

Step 1. Set N = 0 and choose initial vector function (A0,U0) ∈VR where

A0 = (a0
i j)

n
i j=1, U0 = (U0

1 , ...,U
0
m),

m

∑
l=0

U0
l = 0

Step 2. Solve the PDE problem (3.3)–(3.5) to find uN = u(·;AN ,UN) and J (AN ,UN).

Step 3. If N = 0, move to Step 4. Otherwise, check the following criteria:

⃓⃓⃓⃓
J (AN ,UN)−J (AN−1,UN−1)

J (AN−1,UN−1)

⃓⃓⃓⃓
< ε,

⃦⃦
AN −AN−1

⃦⃦
∥AN−1∥ < ε,

|UN −UN−1|
|UN−1|

< ε

(3.25)

where ε is the required accuracy. If the criteria are satisfied, then terminate the

iteration. Otherwise, move to Step 4.

Step 4. Solve the PDE problem (3.3)–(3.5) to find wN
k = u(·;AN ,ek),k = 1, ...,m,

Step 5. Solve the adjoined PDE problem (3.15)–(3.17) to find ψN = ψ(·;AN ,UN ,uN).

Step 6. Choose stepsize parameter αN > 0 and compute a new control vector compo-

nents ÃN+1 = (ãN+1
i j (x))n

i, j=1,Ũ
N+1 ∈ Rm as follows:

ãN+1
i j (x) = aN

i j(x)+αNψ
N
xi

uN
x j
, i, j = 1, ...,n, (3.26)

ŨN+1
k =UN

k −αN

[︂ m

∑
l=1

2
(︂∫︂

El

UN
l −uN(s)

Zl
ds− Il

)︂∫︂
El

1
Zl
(δlk −wN

k (s))ds

+2β (UN
k −U∗

k )
]︂
,k = 1, ...,m. (3.27)
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Step 7. Replace (ÃN+1,ŨN+1) with (AN+1,UN+1) ∈VR as follows

aN+1
i j (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
µ, i f ãN+1

i j (x)≤ µ,

ãN+1
i j (x), i f µ ≤ ãN+1

i j (x)≤ R,

R, i f ãN+1
i j (x)> R.

(3.28)

UN+1
k = ŨN+1

k − 1
m

m

∑
k=1

ŨN+1
k , k = 1, ...,m (3.29)

Then replace N with N +1 and move to Step 2.

Based on formula (3.24) similar algorithm is implemented for solving Problem K .

Remark 3.3.8. Differentiability result and optimality condition similar to Theorem 3.3.5

and Corollary 3.3.6 are true for the Problem I and the gradient I ′
U coincides with J ′

U

from (3.22). Similar algorithm for the gradient method in Rm applies to the Problem I

in which case only iteration of the parameter U is pursued.

3.4 Proofs of the Main Results

Well-posedness of the elliptic problems (3.3)–(3.5) and (3.15)–(3.17) follow from the

Lax-Milgram theorem ([42]).

Lemma 3.4.1. For ∀v ∈ VR there exists a unique solution u = u(·,v) ∈ H1(Q) to the

problem (3.3)–(3.5) which satisfy the energy estimate

∥u∥2
H1(Q) ≤C

m

∑
l=1

Z−2
l U2

l (3.30)
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Proof: Step 1. Introduction of the equivalent norm in H1(Q). Let

|||u|||H1(Q) :=
[︃∫︂

Q
|∇u|2dx+

m

∑
l=1

∫︂
El

u2ds
]︃ 1

2

, (3.31)

and prove that this is equivalent to the standard norm of H1(Q), i.e. there is c > 1 such

that ∀u ∈ H1(Q)

c−1∥u∥H1(Q) ≤ |||u|||H1(Q) ≤ c∥u∥H1(Q) (3.32)

The second inequality immediately follows due to bounded embedding H1(Q) ↪→L2(∂Q)

([42]). To prove the first inequality assume on the contrary that

∀k > 0, ∃uk ∈ H1(Q) such that ∥uk∥H1(Q) > k|||uk|||H1(Q).

Without loss of generality we can assume that ∥uk∥= 1, and therefore

∥∇uk∥L2(Q)−→ 0, ∥uk∥L2(El)−→ 0, as k → ∞, l = 1,2, ...m. (3.33)

Since {uk} is a bounded sequence in H1(Q), it is weakly precompact in H1(Q) and

strongly precompact in both L2(Q) and L2(∂Q) ([87, 29, 30]). Therefore, there exists

a subsequence {uk j} and u ∈ H1(Q) such that uk j converges to u weakly in H1(Q)

and strongly in L2(Q) and L2(∂Q). Without loss of generality we can assume that the

whole sequence {uk} converges to u. From the first relation of (3.33) it follows that ∇uk

converges to zero strongly, and therefore also weakly in L2(Q). Due to uniqueness of

the limit ∇u = 0, and therefore u = const a.e. in Q, and on the ∂Q in the sense of traces.

According to the second relation in (3.33), and since |El|> 0, it follows that const = 0.

This fact contradicts with ∥uk∥= 1, and therefore the second inequality is proved.
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Step 2. Application of the Lax-Milgram theorem. Since v ∈ VR, by using Cauchy-

Bunyakowski-Schwartz (CBS) inequality, bounded trace embedding H1(Q) ↪→ L2(∂Q)

and (3.32) we have the following estimations for the bilinear form B:

|B[u,η ]| ≤ α∥u∥H1(Q)∥η∥H1(Q), B[u,u]≥ β∥u∥2
H1(Q) (3.34)

where α,β > 0 are independent of u,η . Note that the component U of the control vector

v defines a bounded linear functional Û : H1(Q)→ R according to the right-hand side

of (3.14):

Û(η) :=
m

∑
l=1

Ul

Zl

∫︂
El

ηds. (3.35)

Indeed, by using CBS inequality and bounded trace embedding H1(Q) ↪→ L2(∂Q) we

have

|Û(η)| ≤ |Q|
1
2
(︁ m

∑
l=1

Z−2
l U2

l
)︁ 1

2∥η∥L2(∂Q) ≤C∥η∥H1(Q) (3.36)

From (3.34),(3.36) and Lax-Milgram theorem ([42]) it follows that there exists a unique

solution of the problem (3.3)–(3.5) in the sense of Definition 3.14.

Step 3. Energy estimate. By choosing η as a weak solution u in (3.14), using (3.7)

and Cauchy’s inequality with ε we derive

µ∥∇u∥2
L2(Q)+ z0

m

∑
l=1

∥u∥2
L2(El)

≤ c
ε

m

∑
l=1

Z−2
l U2

l + ε|∂Q|
m

∑
l=1

(︃∫︂
El

|u|2ds
)︃

(3.37)

where z0 = min
1≤l≤m

Z−1
l . By choosing ε = (2|∂Q|)−1z0 from (3.37) it follows that

|||u|||H1(Q) ≤C
m

∑
l=1

Z−2
l U2

l . (3.38)

From (3.32) and (3.38), energy estimate (3.30) follows. Lemma is proved.■
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Corollary 3.4.2. For ∀v ∈VR there exists a unique solution ψ = ψ(·,v) ∈ H1(Q) of the

adjoined problem (3.15)–(3.17) which satisfy the energy estimate

∥ψ∥2
H1(Q) ≤C

m

∑
l=1

Z−2
l

[︂∫︂
El

Ul −u
Zl

ds− Il

]︂2
(3.39)

where u = u(·;v) ∈ H1(Q) is a solution of the problem (3.3)–(3.5) .

Proof of Theorem 3.3.4. Let {vk}= {(Ak,Uk)} ⊂VR be a minimizing sequence

lim
k→∞

J (vk) = J∗

Since {Ak} is a bounded sequence in Hε(Q;Mn×n), it is weakly precompact in Hε(Q;Mn×n)

and strongly precompact in L2(Q;Mn×n) ([87, 29, 30]). Therefore, there exists a subse-

quence {Akp} which converges weakly in Hε(Q;Mn×n) and strongly in L2(Q;Mn×n) to

some element A ∈ Hε(Q;Mn×n). Since any strong convergent sequence in L2(Q;Mn×n)

has a subsequence which converges a.e. in Q, without loss of generality one can assume

that the subsequence Akp converges to A a.e. in Q, which implies that A∈ L∞(Q;Mn×n)∩

Hε(Q;Mn×n)∩VR. Since Uk is a bounded sequence in Rm it has a subsequence which

converges to some U ∈Rm, |U | ≤ R. Without loss of generality we cam assume that the

whole minimizing sequence vk = (Ak,Uk) converges v = (A,U) ∈ VR in the indicated

way.

Let uk = u(x;vk), u = u(x;v) ∈ H1(Q) are weak solutions of (3.3)–(3.5) correspond-

ing to vk and v respectively. By Lemma 3.4.1 uk satisfy the energy estimate (3.30)

with Uk on the right hand side, and therefore it is uniformly bounded in H1(Q). By

the Rellich-Kondrachov compact embedding theorem there exists a subsequence {ukp}

which converges weakly in H1(Q) and strongly in both L2(Q) and L2(∂Q) to some func-
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tion ũ ∈H1(Q)([87, 29, 30]). Without loss of generality assume that the whole sequence

uk converges to ũ weakly in H1(Q) and strongly both in L2(Q) and L2(∂Q). For any

fixed η ∈C1(Q) weak solution uk satisfies the following integral identity

∫︂
Q

n

∑
i, j=1

ak
i jukx j

ηxidx+
m

∑
l=1

1
Zl

∫︂
El

ukηds =
m

∑
l=1

1
Zl

∫︂
El

ηUk
l ds. (3.40)

Due to weak convergence of ∇uk to ∇ũ in L2(Q;Rn), strong convergence of uk to ũ in

L2(∂Q), strong convergence of ak
i j to ai j in L2(Q) and convergence of Uk to U , passing

to the limit as k → ∞, from (3.40) it follows

∫︂
Q

n

∑
i, j=1

ai jũx jηxidx+
m

∑
l=1

1
Zl

∫︂
El

ũηds =
m

∑
l=1

1
Zl

∫︂
El

ηUlds. (3.41)

Due to density of C1(Q) in H1(Q) ([87, 29, 30]) the integral identity (3.41) is true for

arbitrary η ∈ H1(Q). Hence, ũ is a weak solution of the problem (3.3)–(3.5) corre-

sponding to the control vector v = (A,U) ∈VR. Due to uniqueness of the weak solution

it follows that ũ = u, and the sequence uk converges to the weak solution u = u(x;v)

weakly in H1(Q), and strongly both in L2(Q) and L2(∂Q). The latter easily implies that

J (v) = lim
n→∞

J (vn) = J∗

Therefore, v ∈V∗ is an optimal control and (3.20) is proved. ■

Proof of Theorem 3.3.5. Let v= (A,U)∈VR is fixed and δv= (δA,δU) is an incre-

ment such that v̄ = v+δv ∈VR and u = u(·;v), ū = u(·;v+δv) ∈ H1(Q) are respective

weak solutions of the problem (3.3)–(3.5). Since u(·;A,U) is a linear function of U it

65



easily follows that

wk =
∂u

∂Uk
= u(·;A,ek) ∈ H1(Q), k = 1,2, ..,m

is a solution of (3.3)–(3.5) with v = (A,ek), ek ∈ Rm is a unit ort vector in xk-direction.

Straightforward calculation imply that

∂J

∂Uk
=

m

∑
l=1

2
[︂∫︂

El

Ul −u
Zl

ds− Il

]︂∫︂
El

1
Zl
(δlk −wk)ds+2β (Uk −U∗

k ), k = 1, ...,m.

where δlk is a Kronecker delta.

In order to prove the Fréchet differentiability with respect to A, assume that δU = 0

and transform the increment of J as follows

δJ := J (v+δv)−J (v) =
m

∑
l=1

1
Zl

∫︂
El

2
(︃∫︂

El

u−Ul

Zl
ds+ Il

)︃
δuds+R1, (3.42)

R1 =
m

∑
l=1

Z−2
l

(︃∫︂
El

δuds
)︃2

≤
m

∑
l=1

|El|Z−2
l |||δu|||2H1(Q), (3.43)

where δu = ū−u. By subtracting integral identities (3.14) for ū and u, and by choosing

test function η = ψ(·;v) as a solution of the adjoined problem (3.15)–(3.17) we have

∫︂
Q
∑
i j

(︃
δai jux j +ai j(δu)x j +δai j(δu)x j

)︃
ψxidx+

m

∑
l=1

1
Zl

∫︂
El

ψδuds = 0. (3.44)

By choosing η = δu in the integral identity (3.18) for the weak solution ψ of the ad-

joined problem we have

−
∫︂

Q
∑
i j

ai jψxiδux jdx+∑
l

∫︂
El

δu
Zl

[︁
2
∫︂

El

u−Ul

Zl
ds+2Il −ψ

]︁
ds = 0 (3.45)
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Adding (3.44) and (3.45) we derive

m

∑
l=1

1
Zl

∫︂
El

2
(︃∫︂

El

u−Ul

Zl
dS(x)+ Il

)︃
δuds =

∫︂
Q
(−∑

i j
δai jux jψxi −∑

i j
δai j(δu)x jψxi)dx.

(3.46)

From (3.42) and (3.46) it follows that

δJ =−
∫︂

Q
∑
i j

ux jψxiδai jdx+R1 +R2 (3.47)

where

R2 =−
∫︂

Q
∑
i j

δai j(δu)x jψxidx. (3.48)

To complete the proof it remains to prove that

R1 +R2 = o(∥δA∥L∞(Q;Mn×n)) as ∥δA∥L∞(Q;Mn×n) → 0. (3.49)

By subtracting integral identities (3.14) for ū and u again, and by choosing test function

η = δu we have

∫︂
Q
∑
i j

āi j(δu)x j(δu)xidx+
m

∑
l=1

1
Zl

∫︂
El

(δu)2ds =−
∫︂

Q
∑
i j

δai jux j(δu)xidx. (3.50)

By using positive definiteness of Ā ∈VR and by applying Cauchy inequality with ε > 0

to the right hand side, from (3.50) it follows that

µ

∫︂
Q
|∇δu|2dx+

m

∑
l=1

1
Zl

∫︂
El

(δu)2ds ≤ ε

∫︂
Q
|∇δu|2dx+

c
ε

∫︂
Q
|∑

i j
δai j|2|∇u|2. (3.51)

By choosing ε = µ/2 and by applying the energy estimate (3.30) from (3.51) we derive
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|||δu|||2H1(Q) ≤C∥δA∥2
L∞(Q;Mn×n). (3.52)

From (3.48) it follows that

|R2| ≤C∥δA∥L∞(Q;Mn×n)∥∇δu∥L2(Q)∥∇ψ∥L2(Q). (3.53)

From (3.30), (3.32), (3.39), (3.43), (3.52) and (3.53), desired estimation (3.49) follows.

Theorem is proved.■

Remark 3.4.3. Functional (3.9) in the optimal control Problem I is convex due to the

following formula

I (αU1 +(1−α)U2) = αI (U1)+(1−α)I (U2)−α(1−α)
m

∑
l=1

Z−2
l

⃓⃓⃓∫︂
El

(U1
l −U2

l −u1 +u2)ds
⃓⃓⃓2

where U1,U2 ∈W,α ∈ [0,1];ui = u(·;U i), i = 1,2 is a solution of (3.3)–(3.5) with U =

U i. Therefore, unique solution of the EIT problem would be a unique global minimizer

of the Problem I .

Results of this Chapter are contained in a recent preprint [8].
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Chapter 4

Discretization and Convergence of the

EIT Optimal Control Problem in 2D

Domains

4.1 Introduction and Problem Description

In this chapter, we consider the following EIT problem for Q ∈ R2:

div
(︁
σ(x)∇u

)︁
= 0, x ∈ Q (4.1)

∂u(x)
∂n

= 0, x ∈ S−
m⋃︂

l=1

El (4.2)

u(x)+Zlσ(x)
∂u(x)

∂n
=Ul, x ∈ El, l = 1,m (4.3)∫︂

El

σ(x)
∂u(x)

∂n
ds = Il, l = 1,m (4.4)
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where
∂u(x)

∂n
=

2

∑
i=1

uxiν
i

and ν = (ν1,ν2) is the outward normal at a point x to S, electrical conductivity σ is a

positive function. The difference of this problem with one in Chapter 3 is that we remove

the assumption on anisotropy for electrical conductivity tensor A(x), i.e. A(x) = σ(x)I,

where I is a 2×2 unit matrix.

4.1.1 Optimal Control Problem

Consider the optimal control problem on the minimization of the cost functional

J (v) =
m

∑
l=1

⃓⃓⃓∫︂
El

Ul −u(x)
Zl

ds− Il

⃓⃓⃓2
+β |U −U∗|2 (4.5)

on the control set

F R =
{︂

v = (σ ,U) ∈
(︁
L∞(Q)

⋂︂
H̃1(Q)

)︁
×Rm

⃓⃓⃓ m

∑
l=1

Ul = 0, ∥σ∥2
H̃1 + |U |2 ≤ R2 (4.6)

0 < σ0 ≤ σ(x)≤ R, ∀x ∈ Q
}︂

where β > 0, and u = u(·;v) ∈ H1(Q) is a solution of the elliptic problem (4.1)–(4.3).

The following is the definition of the weak solution of problem (4.1)–(4.3):

Definition 4.1.1. For a given v ∈ F R, u = u(·;v) ∈ H1(Q) is called the weak solution

of the problem (4.1)–(4.3) if

∫︂
Q

σ∇u ·∇ηdx+
m

∑
l=1

1
Zl

∫︂
El

uηds =
m

∑
l=1

1
Zl

∫︂
El

ηUlds, ∀η ∈ H1(Q). (4.7)

This optimal control problem will be called Problem E . The first term in the cost
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functional J (v) characterizes the mismatch of the condition (4.4) in light of the Robin

condition (4.3).

4.1.2 Discrete Optimal Control Problem

To discretize optimal control problems E we pursue finite difference method which is

outlined in Chapter 2. In addition to discrete sets, Q∗
∆
,Q∗+

∆
,Q∗(i)

∆
, and S∗

∆
that we defined

in Chapter 2, we introduce the following notation as well:

Êl∆ = { xα ∈ Q∗
∆ : Cα

∆ ∩El ̸= /0 }, l = 1, · · · ,m

which is a collection of grid pints which are natural corners of Cα
∆

containing boundary

curve El , and

Elα =Cα
∆ ∩El, l = 1, · · · ,m

is a portion of the boundary curve which is contained in Cα
∆

. Γlα = |Elα |, l = 1, · · · ,m is

(n−1) dimensional Lebesgue measure of Elα . We are going to assume that any control

vector σ is extended to a larger set Q+B1(0) as bounded measurable functions with

preservation of conditions in the control set (4.6). We introduce discrete grid function by

discretizing σ through Steklov average (2.15). For a given discretization ∆, we employ

the notation [σ ]∆ = {σα}, α ∈ A (Q∗
∆
) where σα ∈ R. Then We define the discrete

H̃ 1(Q∗
∆
) norm as

∥[σ ]∆∥2
H̃ 1(Q∗

∆
)
= ∑

A (Q∗
∆
)

h2
σ

2
α +

2

∑
i=1

∑
A (Q∗(i)

∆
)

h2
σ

2
αxi

+ ∑
A (Q∗+

∆
)

h2
σ

2
αx1x2

∥[σ ]∆∥L∞(Q∗
∆
) = max

α∈A (Q∗
∆
)
|σα |
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We use standard notation for finite differences of grid function uα ,σα :

uαxi =
uα+ei −uα

h
, uα x̄i =

uα −uα−ei

h
, i = 1,2

σαx1 =
σα+e1 −σα

h
,σαx2 =

σα+e2 −σα

h

and

σαx1x2 =
σ(α+e2)x1 −σαx1

h
=

σα+e2+e1 −σα+e2 −σα+e1 +σα

h2

For fixed R > 0, define the discrete control sets F R
∆

as

F R
∆ :=

{︃
[v]∆ = ([σ ]∆,U)

⃓⃓⃓ m

∑
l=1

Ul = 0, ∥[σ ]∆∥2
H̃ 1(Q∗

∆
)
+ |U |2Rm ≤ R2

0 < σ0 ≤ σα ≤ R, ∀α ∈ A (Q∗
∆)

}︃
(4.8)

and the interpolating map P∆ as

P∆ :
⋃︂
R

F R
∆ →

⋃︂
R

F R, P∆([v]∆) = (P∆([σ ]∆),U) = (σ∆,U)

where σ∆ in each cell Cα
∆

is a multilinear interpolation which assigns the value σα to

each grid point of Cα
∆

, and it is a peicewise linear with respect to each variable xi when

the other variable is fixed.

σ
∆(x) = σα +σαx1(x1 − k1h)+σαx2(x2 − k2h)+σαx1x2(x1 − k1h)(x2 − k2h), ∀x ∈Cα

∆

(4.9)
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Also, we define the discretizing map Q∆ as

Q∆ :
⋃︂
R

F R →
⋃︂
R

F R
∆ , Q∆(v) = (Q∆(σ),U) = ([σ ]∆,U)

where [σ ]∆ = {σα} where σα is given by (2.15) for each α ∈ A (Q∗
∆
).

Using the newly introduced notations we can define a solution of the discrete elliptic

problem (4.1)–(4.3)

Definition 4.1.2. Given [v]∆, the discrete valued function

[u([v]∆)]∆ = {uα ∈ R : α ∈ A (Q∗
∆)}

is called a discrete state vector of problem E if it satisfies

h2
∑

A (Q∗+
∆

)

σ
∆
α

2

∑
i=1

uαxiηαxi +
m

∑
l=1

1
Zl

∑
A (Êl∆)

Γlαuαηα + Jα(uα ,ηα) =
m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαηα

(4.10)

for arbitrary collection of values {ηα}, α ∈ A (Q∗
∆
), where

Jα(uα ,ηα) = h2
∑

A (S∗
∆
)

2

∑
i=1

θ
i
αuαxiηαxi, (4.11)

θ
i
α =

⎧⎪⎨⎪⎩ 1 if α ∈ A (Q∗(i)
∆

\Q∗+
∆
)

0 otherwise

The necessity of adding Jα to (4.10) is that some uαxi and ηαxi values on S∗
∆

are not

present in the term h2
∑

A (Q∗+
∆

)

ηαxiuαxi of (4.10). These values are added to (4.10) through

h2
∑

A (S∗
∆
)

2

∑
i=1

θ
i
αuαxiηαxi of Jα . For stability of our discrete scheme, it is essential to add
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this term to the discrete integral identity (4.10).

In Section 4.3, it will be proved that for a given [σ ]α ∈F R
∆

there exists a unique discrete

state vector of problem E. Consider minimization of the discrete cost functional

J∆([v]∆) = ∑
l

(︂
∑

A (Êl∆)

Γlα
Ul −uα

Zl
− Il

)︂2
+β |U −U∗|2 → in f (4.12)

on a control set F R
∆

, where uα ’s are components of the discrete state vector [u([v]∆)]∆ of

the Problem E . The formulated discrete optimal control problem will be called Problem

E∆.

4.2 Main Result

The following is the main result on the convergence of the sequence of finite-dimensional

discrete optimal control problems to EIT optimal control problem both with respect to

functional and control.

Theorem 4.2.1. The sequence of discrete optimal control problems E∆ approximates the

optimal control problem E with respect to functional, i.e.

lim
∆→0

J∆∗ = J∗, (4.13)

where

J∆∗ = inf
F R

∆

J∆([v]∆), (4.14)

Furthermore, let {ε∆} be a sequence of positive real numbers with lim
∆→0

ε∆ = 0. If the
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sequence [v]∆,ε ∈ F R
∆

is chosen so that

J∆∗ ≤ J∆([v]∆,ε)≤ J∆∗ + ε∆, (4.15)

then we have

lim
∆→0

J (P∆([v]∆,ε)) = J∗ (4.16)

Also, the sequence {P∆([σ ]∆,ε)} is uniformly bounded in H̃1(Q) and all of its H̃1(Q)-

weak limits points lie in F∗. Moreover, the multilinear interpolations of the discrete

state vectors [u([v]∆′,ε)]∆′ converge weakly in H1(Q) to u = u(x;v∗), a weak solution to

the (4.1)-(4.3).

4.3 Preliminary Results

Following the frame of the interpolations in Chapter 2, we have three interpolations

Ũ∆,Ũ i
∆

and U ′
∆

which are defined in Chapter 2. As in Chapter 2, we have the following

estimations for U ′
∆

and ∂

∂xi
U ′

∆
:

∫︂
Q∗

∆

|U ′
∆|2dx ≤ ∑

A (Q∗
∆
)

h2 max
A (Q∗

∆
)
|uα∗|2 ≤ 22

∑
A (Q∗

∆
)

h2|uα |2. (4.17)

∫︂
Q∗

∆

⃓⃓⃓
∂

∂xi
U ′

∆

⃓⃓⃓2
dx ≤ 2 ∑

A (Q∗(i)
∆

)

h2u2
αxi

(4.18)

The following lemma is a discrete analogy of the norm equivalency result in space

H1(Q) proved in Step 1 of Lemma 3.4.1.
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Lemma 4.3.1. For any [u]∆ = {uα : α ∈ A (Q∗
∆
)}, we have an estimation

∥ [u]∆ ∥H 1(Q∗
∆
) ≤ c||| [u]∆ |||H 1(Q∗

∆
) (4.19)

where C is independent of [u]∆ and

∥|[u]∆∥|2H 1(Q∗
∆
) :=

2

∑
i=1

h2
∑

A (Q∗(i)
∆

)

u2
αxi

+
m

∑
l=1

∑
A (Êl∆)

Γlαu2
α (4.20)

Proof: To prove this inequality assume on the contrary that

∀k > 0, ∃ [u]k∆ ∈ H 1(Q∗
∆); k||| [u]k∆ |||H 1(Q∗

∆
) < ∥ [u]k∆ ∥H 1(Q∗

∆
)

where [u]k
∆
= {uk

α}. Without loss of generality we can assume that

∥[u]k∆∥H 1(Q∗
∆
) = 1

and therefore

∥| [u]k∆ ∥|H 1(Q∗
∆
) <

1
k
, ∀k > 0 (4.21)

which means

2

∑
i=1

h2
∑

A (Q∗(i)
∆

)

|uk
αxi

|2 < 1
k
, and

m

∑
l=1

∑
A (Êlα )

Γlα |uk
α |2 <

1
k
, ∀k > 0 (4.22)

and consequently

2

∑
i=1

∫︂
Q∗

∆

|Ũ ik
∆ |2 < 1

k
, and

m

∑
l=1

∫︂
El

|Ũk
∆|2 <

1
k
, ∀k > 0 (4.23)
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where Ũ ik
∆

and Ũk
∆

are piece-wise constant interpolations of uk
αxi

and uk
α . These two

inequalities imply that

∥Ũ ik
∆ ∥L2(Q∗

∆
) → 0, i = 1,2, ∥Ũk

∆∥L2(El) → 0, l = 1,2, ...m, as k → ∞ (4.24)

On the other hand, [u]k
∆

is a bounded sequence in H 1(Q∗
∆
), by relations (4.17) and

(4.18), it follows that corresponding multilinear interpolations {Uk′
∆
} is weakly precom-

pact in H1(Q) and strongly precompact in both L2(Q) and L2(S) [87, 29, 30]. Therefore,

there exists a subsequence of {Uk′
∆
} and u ∈ H1(Q) such that the subsequence converges

weakly to u in H1(Q) and strongly in L2(Q) and L2(S). Without loss of generality we

can take the whole sequence {Uk′
∆
} instead of the subsequence and summarize the useful

results of the last paragraph into the following:

Uk′
∆ → u, in L2(Q), (4.25)

∂Uk′
∆

∂xi
⇀

∂u
∂xi

, weakly in L2(Q), i = 1,2, (4.26)

Uk′
∆ → u, in L2(S), (4.27)

From the first claim of (4.24), it follows that

Ũ ik
∆ ⇀ 0, weakly on L2(Q), i = 1,2, (4.28)

In [14] (Theorem 14, parts (e) and (f)), it is proved that the sequences Ũ ik
∆

and ∂Uk′
∆

∂xi
are
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equivalent in a weak topology of L2(Q). Therefore, from (4.28) and (4.26) it follows

that
∂u
∂xi

= 0

and hence u = c a.e. in Q. By the second relation (4.24), and the fact that |El| > 0, it

follows that u = 0 almost everywhere. This fact contradicts with ∥[u]k
∆
∥H 1(Q∗

∆
) = 1, and

therefore the inequality is proved.

Lemma 4.3.2 (Discrete Energy Estimate). Let [u([v]∆)]∆ be the discrete state vector,

then it satisfies the following energy estimate:

∥[u([v]∆)]∆∥H 1(Q∗
∆
) ≤ M

(︂ m

∑
l=1

(︂Ul

Zl

)︂2)︂ 1
2 (4.29)

Proof: The proof follows the method developed in [71]. We set ηα = uα in (4.10)

which implies

h2
∑

A (Q∗+
∆

)

σ
∆
α

2

∑
i=1

u2
αxi

+
m

∑
l=1

1
Zl

∑
A (Êl∆)

Γlαu2
α + Jα(uα ,uα) =

m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαuα (4.30)

recalling the definition of Jα and the norm ∥|[u([v]∆)]∆∥|H 1(Q∗
∆
) and the fact that 0 <

σ0 ≤ σα we have

µ∥|[u([v]∆)]∆∥|2H 1(Q∗
∆
) ≤

m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαuα (4.31)

where µ = min{1,σ0,min
l

(︁ 1
Zl

)︁
}. Using Cauchy–Schwarz inequality we can estimate
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the right hand side as following

m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαuα ≤
(︃ m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2
(︃ m

∑
l=1

(︁
∑

A (Êl∆)

Γlαuα

)︁2
)︃ 1

2

≤
(︃ m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2
(︃ m

∑
l=1

( ∑
A (Êl∆)

Γlα)( ∑
A (Êl∆)

Γlαu2
α)

)︃ 1
2

≤
(︃ m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2
(︃
|∂Q|

m

∑
l=1

∑
A (Êl∆)

Γlαu2
α

)︃ 1
2

≤
(︃
|∂Q|

m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2
(︃ m

∑
l=1

∑
A (Êl∆)

Γlαu2
α

)︃ 1
2

≤
(︃
|∂Q|

m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2
(︃ m

∑
l=1

∑
A (Êl∆)

Γlαu2
α +

2

∑
i=1

h2
∑

A (Q∗(i)
∆

)

u2
αxi

)︃ 1
2

=

(︃
|∂Q|

m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2

∥|[u([v]∆)]∆∥|H 1(Q∗
∆
)

using this estimate, the inequality (4.31) turns into

µ∥|[u([v]∆)]∆∥|H 1(Q∗
∆
) ≤
(︃
|∂Q|

m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2

(4.32)

By Lemma 4.3.1, it follows that

∥[u([v]∆)]∆∥H 1(Q∗
∆
) ≤ µ

−1|∂Q|1/2
(︃ m

∑
l=1

(︁Ul

Zl

)︁2
)︃ 1

2

□ (4.33)

In particular, energy estimate implies the existence and uniqueness of the discrete state

vector of the problem E .

Corollary 4.3.3. For a fixed ∆ and any R > 0, there exists a unique discrete state vector

[u([v]∆)]∆ in a problem E for each [v]∆ ∈ F R
∆

.
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This corollary can be proved as the Corollary 2.2.5

Lemma 4.3.4. For each ∆, let {[v]∆} ∈ F R
∆

be a sequence of discrete control vectors

for some R > 0, and [u([v]∆)]∆ be the corresponding state variable. Then the following

statements hold:

(a) The sequences {U ′
∆
} and {Ũ∆} are uniformly bounded in L2(Q∗

∆
).

(b) For each i∈{1,2}, the sequences {Ũ i
∆
}, {∂U ′

∆

∂xi
} are uniformly bounded in L2(Q∗

∆
).

(c) the sequence {Ũ∆ −U ′
∆
} converges strongly to 0 in L2(Q) as h → 0.

(d) For each i ∈ {1,2}, the sequences {∂U ′
∆

∂xi
−Ũ i

∆
} converges weakly to zero in L2(Q)

as h → 0.

(e) the sequence {Ũ∆ −U ′
∆
} converges strongly to 0 in L2(S) as h → 0.

The proof of this theorem is similar to the proof in Theorem 14 of [14] by using

(4.29).

Next, we recall the suitable version of the necessary and sufficient condition for the

convergence of the discrete optimal control problems to the continuous optimal control

problem formulated in the context of the optimal control problem E .

Lemma 4.3.5. [95] The sequence of discrete optimal control problems E∆ approximates

the continuous optimal control problem E with respect to the functional if and only if

the following conditions are satisfied:

1. For arbitrary sufficiently small ε > 0 there exists ∆1 = ∆1(ε) such that Q∆(v) ∈

F R
∆

for all v ∈ F (R−ε) and ∆ ≤ ∆1; Moreover, for any fixed ε > 0 and for all

v ∈ F (R−ε) the following inequality is satisfied:

lim sup
∆→0

(J∆(Q∆(v))−J (v))≤ 0.
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2. For arbitrary sufficiently small ε > 0 there exists ∆2 =∆2(ε) such that P∆([v]∆)∈

F (R+ε) for all [v]∆ ∈ F R
∆

and ∆ ≤ ∆2; moreover, for all [v]∆ ∈ F R
∆

, the following

inequality is satisfied:

lim sup
∆→0

(J (P∆([v]∆))−J∆([v]∆))≤ 0.

3. For arbitrary sufficiently small ε > 0, the following inequalities are satisfied:

lim sup
ε→0

J∗(ε)≥ J∗, lim inf
ε→0

J∗(−ε)≤ J∗,

where J∗(±ε) = inf
F R±ε

J (v).

Now, our goal is to show P∆ and Q∆ satisfy the conditions of Lemma 4.3.5. The

following lemma plays a key role to prove this claim. The proof is similar to the proof

of Proposition in [14].

Lemma 4.3.6. For ε > 0, there exists δ > 0 such that

∑
A (Q∗+

∆
)

h2|σαx1x2|
2 ≤ (1+ ε)

⃦⃦⃦
∂ 2σ

∂x1∂x2

⃦⃦⃦2

L2(Q∗
∆
)

whenever h < δ .

Proof: For each h > 0, define the function σ̃12
h as

σ̃
12
h

⃓⃓⃓
Cα

∆

= σαx1x2, ∀α ∈ A (Q∗+
∆
) (4.34)

where

σαx1x2 =
σα+e2+e1 −σα+e2 −σα+e1 +σα

h2
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In the following we will prove that

σ̃
12
h → ∂ 2σ

∂x1∂x2
strongly in L2(Q) as h → 0 (4.35)

As an element of H̃1(Q), almost all restrictions of σ to lines parallel to the x1 and x2

direction are absolutely continuous, moreover, restrictions of σx1 to lines parallel to the

x2 direction are absolutely continuous and restrictions of σx2 to lines parallel to the x1

direction are absolutely continuous. Hence if we let z = (z1,z2) and x = (x1,x2), then

for almost every z ∈ Q we have

∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 2σ

∂x1∂x2
(y, t)dydt

= σ(z1 +h,z2 +h)−σ(z1 +h,z2)−σ(z1,z2 +h)+σ(z1,z2)

= σ(z+he2 +he1)−σ(z+he2)−σ(z+he1)+σ(z) (4.36)

In this lemma, for simplicity, instead of ∑
α∈A (Q∗+

∆
)

we use ∑
A

. Using the definition of
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Steklov average (2.15) and Cauchy-Schwartz inequality, we get

⃦⃦⃦
σ̃

12
h − ∂ 2σ

∂x1∂x2

⃦⃦⃦2

L2(Q∗
∆
)
=
∫︂

Q∗
∆

⃓⃓⃓
σ̃

12
h − ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dx = ∑
A

∫︂
Cα

∆

⃓⃓⃓
σαx1x2 −

∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dx

= ∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h4

[︂ ∫︂
Cα+e1+e2

∆

dz−
∫︂

Cα+e1
∆

dz−
∫︂

Cα+e2
∆

dz+
∫︂

Cα
∆

dzσ(z)
]︂
− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dx

= ∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h4

∫︂
Cα

∆

[σ(z+he1 +he2)−σ(z+he2)−σ(z+he1)+σ(z)]dz− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dx

= ∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h4

∫︂
Cα

∆

[
∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 2σ

∂x1∂x2
(y, t)dydt]dz− ∂ 2σ

∂x1∂x2
(x)

h4

h4

⃓⃓⃓2
dx

= ∑
A

1
h8

∫︂
Cα

∆

⃓⃓⃓∫︂
Cα

∆

[
∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 2σ

∂x1∂x2
(y, t)dydt − ∂ 2σ

∂x1∂x2
(x)h2]dz

⃓⃓⃓2
dx

= ∑
A

1
h8

∫︂
Cα

∆

⃓⃓⃓∫︂
Cα

∆

[
∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)dydt]dz

⃓⃓⃓2
dx

≤ ∑
A

1
h6

∫︂
Cα

∆

∫︂
Cα

∆

⃓⃓⃓∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)dydt

⃓⃓⃓2
dzdx

≤ ∑
A

1
h4

∫︂
Cα

∆

∫︂
Cα

∆

[︂∫︂ z2+h

z2

∫︂ z1+h

z1

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt
]︂
dzdx (4.37)

Assume mα = (m1,m2) be the natural corner of Cα
∆

. Now, we employ Fubini theorem
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to switch the order of integration with respect to y and z1. Hence we observe

∑
A

1
h4

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ z2+h

z2

∫︂ z1+h

z1

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt
]︂
dz1dz2

)︄
dx

= ∑
A

1
h4

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ z2+h

z2

∫︂ y

m1

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz1dt
]︂
dydz2

)︄
dx

+∑
A

1
h4

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

[︂∫︂ z2+h

z2

∫︂ m1+h

y−h

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz1dt
]︂
dydz2

)︄
dx

= ∑
A

1
h4

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ z2+h

z2

(y−m1)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx+

∑
A

1
h4

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

[︂∫︂ z2+h

z2

(m1 +h− y+h)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx

≤ ∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ z2+h

z2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

[︂∫︂ z2+h

z2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx (4.38)

We utilize Fubini theorem again to switch the order of integration with respect to t and
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z2. Hence we observe

∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ z2+h

z2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

[︂∫︂ z2+h

z2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dt
]︂
dydz2

)︄
dx

= ∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

[︂∫︂ t

m2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2

]︂
dydt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+h∫︂
m1

[︂∫︂ m2+h

t−h

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2

]︂
dydt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

[︂∫︂ t

m2

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2

]︂
dydt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+2h∫︂
m1+h

[︂∫︂ m2+h

t−h

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2

]︂
dydt

)︄
dx

= ∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

(t −m2)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+h∫︂
m1

(m2 +h− t +h)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2dt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

(t −m2)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+2h∫︂
m1+h

(m2 +h− t +h)
⃓⃓⃓

∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dz2dt

)︄
dx
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≤ ∑
A

1
h2

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+h∫︂
m1

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx

+∑
A

1
h2

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+h∫︂
m1

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx

+∑
A

1
h2

∫︂
Cα

∆

(︄ m2+h∫︂
m2

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx

+∑
A

1
h2

∫︂
Cα

∆

(︄ m2+2h∫︂
m2+h

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 2σ

∂x1∂x2
(y, t)− ∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2

dydt

)︄
dx (4.39)

without loss of generality, we replace (y, t) with (z1,z2) and we get

⃦⃦⃦
σ̃

12
h − ∂ 2σ

∂x1∂x2

⃦⃦⃦2

L2(Q∗
∆
)
≤ ∑

A

1
h2

∫︂
Cα

∆

(︄ ∫︂
Cα+e1+e2

∆

dz

+
∫︂

Cα+e1
∆

dz+
∫︂

Cα+e2
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 2σ

∂x1∂x2
(z1,z2)−

∂ 2σ

∂x1∂x2
(x)
⃓⃓⃓2)︄

dx (4.40)

For fixed ε > 0, we pick a g ∈C2(Q+B1(0)) such that

∥σ −g∥2
H̃1(Q+B1(0))

≤ c(ε) (4.41)

Now, we add and subtract ∂ 2g(z)
∂x1∂x2

and ∂ 2g(x)
∂x1∂x2

to the integrands of (4.40)

⃦⃦⃦
σ̃

12
h − ∂ 2σ

∂x1∂x2

⃦⃦⃦2

L2(Q∗
∆
)
≤ I1 + I2 + I3 (4.42)
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where

I1 = ∑
A

3
h2

∫︂
Cα

∆

(︄ ∫︂
Cα+he1+he2

∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓
∂ 2σ(z)
∂x1∂x2

− ∂ 2g(z)
∂x1∂x2

⃓⃓⃓2)︄
dx

I2 = ∑
A

3
h2

∫︂
Cα

∆

(︄ ∫︂
Cα+he1+he2

∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 2g(z)
∂x1∂x2

− ∂ 2g(x)
∂x1∂x2

⃓⃓⃓2)︄
dx

I3 = ∑
A

3
h2

∫︂
Cα

∆

(︄ ∫︂
Cα+he1+he2

∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 2g(x)
∂x1∂x2

− ∂ 2σ(x)
∂x1∂x2

⃓⃓⃓2)︄
dx

Since g ∈ C2(Q+B1(0)), it follows that ∂ 2g
∂x1∂x2

is uniformly continuous on Q+B1(0).

Therefore, there exists δ = δ (g,ε)> 0 such that

| ∂ 2g(z)
∂x1∂x2

− ∂ 2g(x)
∂x1∂x2

|2 ≤ c(ε) (4.43)

whenever |z− x|< δ . Let hε > 0 satisfy

√
8hε < δ (4.44)

Then it follows that for each h < hε , any α ∈ A , and any x,z ∈Cα+he1+he2
∆

∪Cα+he1
∆

∪

Cα+he2
∆

∪Cα
∆

,

| ∂ 2g(z)
∂x1∂x2

− ∂ 2g(x)
∂x1∂x2

|2 ≤ c(ε). (4.45)
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Therefore,

I1 =
3
h2 ∑

A

h2

(︄ ∫︂
Cα+he1+he2

∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓
∂ 2σ(z)
∂x1∂x2

− ∂ 2g(z)
∂x1∂x2

⃓⃓⃓2)︄

≤ 12
∫︂

Q+B1(0)

⃓⃓⃓
∂ 2σ(z)
∂x1∂x2

− ∂ 2g(z)
∂x1∂x2

⃓⃓⃓2
dz ≤ 12∥σ −g∥2

H̃1(Q+B1(0))

I2 ≤ ∑
A

3
h2

∫︂
Cα

∆

(︄ ∫︂
Cα+he1+he2

∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

Cα
∆

dzc(ε)

)︄
dx ≤ 12c(ε)m(Q∗

∆)

I3 = 12
∫︂

Q∗
∆

⃓⃓⃓
∂ 2g(x)
∂x1∂x2

− ∂ 2σ(x)
∂x1∂x2

⃓⃓⃓2
dx ≤ 12∥σ −g∥2

H̃1(Q∗
∆
)

If we take c(ε) = ε

24+12m(Q∗
∆
) , these calculations imply that

I1 + I2 + I3 < ε, ∀h ≤ hε (4.46)

This proves the strong convergence of σ̃12
h to ∂ 2σ

∂x1∂x2
in L2(Q∗

∆
), and strong convergence

implies the claim of the lemma. Lemma is proved. □

Proposition 4.3.7. For arbitrary sufficiently small ε > 0 there exists hε such that

Q∆(v) ∈ F R
∆ for all v ∈ F (R−ε) and h ≤ hε (4.47)

P∆([v]∆) ∈ F (R+ε) for all [v]∆ ∈ F R
∆ and h ≤ hε (4.48)
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Proof. Let 0 < ε << R and ∆ arbitrary. First let σ ∈ F (R−ε). Then we note

∥Q∆(σ)∥2
H̃ 1(Q∗

∆
)
= ∑

A (Q∗
∆
)

h2
σ

2
α +

2

∑
i=1

∑
A (Q∗(i)

∆
)

h2
σ

2
αxi

+ ∑
A (Q∗+

∆
)

h2
σ

2
αx1x2

= Q1 +Q2 +Q3

where

Q1 = h2
∑

A (Q∗
∆
)

σ
2
α = h2

∑
A (Q∗

∆
)

(
1
h2

∫︂
Cα

∆

σ dx)2 ≤ ∑
A (Q∗

∆
)

∫︂
Cα

∆

σ
2 dx ≤

∫︂
Q+B1(0)

σ
2 dx

for Q2 and Q3, referring to the Proposition 11 in [14] and Lemma 4.3.6 respectively, we

deduce that for any 0 < ε1 <
(︁ R

R−ε

)︁2−1 there exists a positive δ such that for h ≤ δ we

have

Q1 = h2
∑

A (Q∗
∆
)

σ
2
α ≤ (1+ ε1)||σ ||2L2(Q∗

∆
). (4.49)

Q2 =
2

∑
i=1

∑
A (Q∗(i)

∆
)

h2
σ

2
αxi

≤ (1+ ε1)∥Dσ∥2
L2(Q∗

∆
)

Q3 = ∑
A (Q∗+

∆
)

h2
σ

2
αx1x2

≤ (1+ ε1)
⃦⃦⃦

∂ 2σ

∂x1∂x2

⃦⃦⃦2

L2(Q∗
∆
)

Then, for small enough ε1 > 0 we have

∥Q∆(σ)∥2
H̃ 1(Q∗

∆
)
≤ (1+ ε1)∥σ∥2

L2(Q)+(1+ ε1)∥Dσ∥2
L2(Q)+(1+ ε1)∥σx1x2∥

2
L2(Q)

≤ (1+ ε1)(R− ε)2 ≤ R2

In addition, max
α∈A (Q∗

∆
)
|σα | ≤ R is automatically correct since σ ∈ F (R−ε).
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Now let [σ ]∆ ∈ F R
∆

which implies

max
{︁

max
α∈A (Q∗

∆
)
|σα |+ ∑

A (Q∗
∆
)

h2
σ

2
α +

2

∑
i=1

∑
A (Q∗(i)

∆
)

h2
σ

2
αxi

+ ∑
A (Q∗+

∆
)

h2
σ

2
αx1x2

}︁
≤ R (4.50)

we claim that σ∆ := P∆([σ ]∆) ∈ F R. where

σ
∆(x) = σα +σαx1(x1 − k1h)+σαx2(x2 − k2h)+σαx1x2(x1 − k1h)(x2 − k2h), ∀x ∈Cα

∆

(4.51)

In order to prove this claim we first prove

∥σ
∆∥L∞(Q∗

∆
) ≤ R+ ε (4.52)

and then we need to prove

∥σ
∆∥2

L2(Q∗
∆
)+∥Dσ

∆∥2
L2(Q∗

∆
)+∥σ

∆
x1x2

∥2
L2(Q∗

∆
)

= ∑
A (Q∗

∆
)

∫︂
Cα

∆

[︁
(σ∆)2 +(σ∆(x))2

x1
+(σ∆(x))2

x2
+(σ∆(x))2

x1x2

]︁
dx1dx2 ≤ (R+ ε)2 (4.53)

The proof of (4.52) is obvious, since the interpolation σ∆ is multilinear and it takes its

maximum on one of the corners of the cell; therefore, considering the fact that [σ ]∆ ∈

F R
∆

, claim (4.52) is proved .

We prove (4.53) directly by evaluating the L2 norm of σ∆, Dσ∆ and σ∆
x1x2

over a fixed

cell Cα
∆

, α ∈ A (Q∗
∆
).

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(σ∆(x))2
x1x2

dx1dx2 =

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

|σαx1x2|
2dx2dx1 = h2

σ
2
αx1x2

(4.54)
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(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(σ∆(x))2
x1

dx2dx1 =

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

|σαx1 +σαx1x2(x2 − k2h)|2dx2dx1

=

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

|σαx1|
2 + |σαx1x2(x2 − k2h)|2 + |2σαx1σαx1x2(x2 − k2h)|dx2dx1

= h2
σ

2
αx1

+
h4

3
σ

2
αx1x2

+h3
σαx1σαx1x2 (4.55)

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(σ∆(x))2
x2

dx2dx1 = h2
σ

2
αx2

+
h4

3
σ

2
αx1x2

+h3
σαx2σαx1x2 (4.56)

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(σ∆(x))2dx2dx1 = h2
σ

2
α +

h4

3
σ

2
αx1

+
h4

3
σ

2
αx2

+
h6

9
σ

2
αx1x2

+h3
σασαx1

+h3
σασαx2 +

h4

2
σασαx1x2 +

h4

2
σαx1σαx2 +

h5

3
σαx1σαx1x2 +

h5

3
σαx2σαx1x2 (4.57)

except the first terms of each evaluation, the rest of the terms are higher order terms,

since [σ ]∆ ∈ F R
∆

. we show this fact for all the terms in the last integral:

|h3
σασαx1| ≤

h
2
(h2

σ
2
α +h2

σ
2
αx1

)

|h
4

3
σ

2
αx1

|= h2

3
(h2

σ
2
αx1

)≤ h2

3
R2
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|h
6

9
σ

2
αx1x2

|= h4

9
(h2

σ
2
αx1x2

)≤ h4

9
R2

|h
4

2
σασαx1x2| ≤

h2

4
(h2

σ
2
α +h2

σ
2
αx1x2

)≤ h2

2
R2

|h
5

3
σαx2σαx1x2| ≤

h3

6
(h2

σ
2
αx2

+h2
σ

2
αx1x2

)≤ h2

2
R2

So, we have

∥P∆([σ ]∆)∥2
H̃1(Q∗

∆
) = ∥σ

∆∥2
H̃1(Q∗

∆
) ≤ ∥[σ ]∆∥2

H̃ 1(Q∗
∆
)
+O(h)

which proves that P∆([v]∆) ∈ F (R+ε).□

4.4 Approximation Theorem

Theorem 4.4.1. Let {[v]∆}= {([σ ]∆,U)} be a sequence of discrete control vectors such

that there exists R > 0 for which [v]∆ ∈F R
∆

for each ∆, and such that the sequence of in-

terpolations {P∆([σ ]∆)} converges weakly to some σ in H̃1(Q) (strongly in L2(Q) and

L2(S)). Then the sequence of interpolations {U ′
∆
} of associated discrete state vectors

converges weakly in H1(Q) to u = u(x;v) ∈ H1(Q), with u the unique weak solution to

the (4.1)–(4.3).

Proof. Proof follows the method of the similar result proved in [14]. From (a) and

(b) of Lemma 4.3.4, it follows that {U ′
∆
} is uniformly bounded in H1(Q). Consequently,

{U ′
∆
} has a weak limit point in H1(Q). Let u ∈ H1(Q) be any weak limit point of {U ′

∆
}

in H1(Q). By the Rellich-Kondrachev Theorem, it is known that a subsequence of {U ′
∆
}
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converges strongly to u in L2(Q). In addition, {U ′
∆
} converges to u on the boundary S

in L2(S) norm. Now, we proceed to show that u satisfies the integral identity (4.1.1).

For simplicity of notation we write the subsequence of {U ′
∆
} that converges weakly to

u in H1(Q) as the whole sequence ∆. Let η ∈ C 1(Q̃), where Q̄ ⊂ Q̃ and C 1(Q̃) be a

space of all continuously differentiable functions on Q̃. We also assume that h > 0 is

small enough that Q∗
∆
⊂ Q̃. Then the collection of values {ηα}, α ∈A is an admissible

test collection for the summation identity (4.10). We claim that the limit function ,u,

satisfies the integral identity (4.7). Let call the discrete integral identity (4.10) as I∆ and

the continuous integral identity (4.7) as I.

I∆ = h2
∑

A (Q∗+
∆

)

σ
∆
α

2

∑
i=1

uαxiηαxi +
m

∑
l=1

1
Zl

∑
A (Êl∆)

Γlαuαηα +Jα(uα ,ηα)−
m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαηα

(4.58)

I :=
∫︂

Q
σ∇u ·∇ηdx+

m

∑
l=1

1
Zl

∫︂
El

uηds−
m

∑
l=1

1
Zl

∫︂
El

ηUlds

We define the interpolations for ηα and ηαxi for each α ∈ A (Q∗+
∆
) as following

η̄∆

⃓⃓⃓
Cα

∆

= ηα , ∀α ∈ A (Q∗+
∆
)

η̄
i
∆

⃓⃓⃓
Cα

∆

= ηαxi, ∀α ∈ A (Q∗+
∆
)

Using these interpolations and the ones described in the interpolation Section 4.3 and
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definition steklov average in 2.15.

I∆ := ∑
A (Q∗+

∆
)

∫︂
Cα

∆

[︂
σ

∆
2

∑
i=1

Ũ i
∆η̄

i
∆

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

Ũ∆η̄∆ds+ Jα(uα ,ηα)−
m

∑
l=1

Ul

Zl

∫︂
El

η̄∆ds

=
∫︂

Q∗
∆

[︂
σ

∆
2

∑
i=1

Ũ i
∆η̄

i
∆

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

Ũ∆η̄∆ds+ Jα(uα ,ηα)−
m

∑
l=1

Ul

Zl

∫︂
El

η̄∆ds

Adding and subtracting some terms to I∆, we obtain the following identity :

I∆ = I +
5

∑
i=1

Ri

where

R1 =
∫︂

Q∗
∆
\Q

[︂
σ

∆
2

∑
i=1

Ũ i
∆η̄

i
∆

]︂
dx (4.59)

R2 =Jα(uα ,ηα) = h2
∑

A (S∗
∆
)

2

∑
i=1

θ
i
αuαxiηαxi (4.60)

R3 =
∫︂

Q

[︂
σ

∆
2

∑
i=1

Ũ i
∆(η̄

i
∆ −ηxi)

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

Ũ∆(η̄∆ −η)ds−
m

∑
l=1

Ul

Zl

∫︂
El

(η̄∆ −η)ds

(4.61)

R4 =
∫︂

Q
(σ∆ −σ)

2

∑
i=1

Ũ i
∆ηxidx (4.62)

R5 =
∫︂

Q

[︂
σ

2

∑
i=1

(Ũ i
∆ −uxi)ηxi

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

(Ũ∆ −u)ηds (4.63)

We claim that by passing to the limit when ∆ → 0, I∆ → I and Ri → 0 for i = 1, . . . ,5.

Using Cauchy Schwartz inequality and extending the region of integration for function
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Ũ i
∆

from (Q∗
∆
\Q) to Q∗

∆
we obtain the following estimate for R1:

|R1| ≤C1

2

∑
i=1

∥Ũ i
∆∥L2(Q∗

∆
)∥η̄

i
∆∥L2(Q∗

∆
\Q)

Lemma 4.3.4 (b), and Proposition 4.3.7 implies that

|R1| ≤C2

2

∑
i=1

∥η̄
i
∆∥L2(Q∗

∆
\Q)

interpolation η̄ i
∆

converges uniformly on Q̄ to the function ηxi as ∆ → 0 and since η ∈

C 1(Q̃) and |Q∗
∆
\Q| → 0 and we have

|R1| → 0, as ∆ → 0

Now we try to show that R2 is small.

|R2|= |h2
∑

A (S∗
∆
)

2

∑
i=1

θ
i
αuαxiηαxi|

≤ ( ∑
A (S∗

∆
)

2

∑
i=1

h2
θ

i
αu2

αxi
)

1
2 ( ∑

A (S∗
∆
)

2

∑
i=1

h2
θ

i
αη

2
αxi

)
1
2

≤ (
2

∑
i=1

∑
A (Q∗(i)

∆
)

h2u2
αxi

)
1
2∥η∥C1(

2

∑
i=1

∑
A (S∗

∆
)

h2)
1
2

≤ (
2

∑
i=1

∑
A (Q∗(i)

∆
)

h2u2
αxi

)
1
2∥η∥C1

√
2( ∑

A (S∗
∆
)

h2)
1
2

≤ (
2

∑
i=1

∑
A (Q∗(i)

∆
)

h2u2
αxi

)
1
2∥η∥C1

√
2h(2|S|)

1
2 → 0

Sum with respect to all grid points of S∗
∆

is bounded by the Lebesgue measure of S∗
∆

.

Since S is Lipschitz, the latter converges to Lebesgue measure of S as h → 0; This imply
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that for sufficiently small h, it will be bounded by 2|S|. The same argument that we used

for R1 implies that R2 → 0 as ∆ → 0.

Using Cauchy Schwartz inequality and Lemma (4.3.4) (a) and (b) we get the following

estimation for R3:

|R3|=

⃓⃓⃓⃓
⃓
∫︂

Q

[︂
σ∆

2

∑
i=1

Ũ i
∆(η̄

i
∆ −ηxi)

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

Ũ∆(η̄∆ −η)ds−
m

∑
l=1

Ul

Zl

∫︂
El

(η̄∆ −η)ds

⃓⃓⃓⃓
⃓

≤ N1 ∥σ∆∥L∞(Q)

2

∑
i=1

∥Ũ i
∆∥L2(Q∗

∆
) ∥η̄

i
∆ −ηxi∥L2(Q)

+N2 max
1≤l≤m

⃓⃓⃓⃓
1
Zl

⃓⃓⃓⃓
∥η̄∆ −η∥L2(S)

(︃
∥Ũ∆ −U ′

∆∥L2(S)+∥U ′
∆ −u∥L2(S)

)︃
+N3 max

1≤l≤m

⃓⃓⃓⃓
Ul

Zl

⃓⃓⃓⃓
∥η̄∆ −η∥L2(S)

It can be easily proved that interpolations η̄∆ and η̄ i
∆

converge uniformly on Q̄ to the

functions η and ηxi on Q and S as ∆ → 0, so R3 → 0. Using Cauchy Schwartz inequal-

ity and Lemma (4.3.4) (a) and (b) and the fact that η ∈ C 1(Q̃) we get the following

estimation for R4:

|R4|=

⃓⃓⃓⃓
⃓
∫︂

Q
(σ∆ −σ)

2

∑
i=1

Ũ i
∆ηxidx

⃓⃓⃓⃓
⃓≤ H

2

∑
i=1

∥Ũ j
∆
∥L2(Q∗

∆
)∥σ

∆ −σ∥L2(Q) ≤ H1∥σ
∆ −σ∥L2(Q)

R4 goes to zero because of the theorem assumption.

By adding and subtracting U ′
∆

and ∂U ′
∆

∂x j
, we calculate the following estimate:

R5 =
∫︂

Q

[︂
σ

2

∑
i=1

(Ũ i
∆ −uxi)ηxi

]︂
dx+

m

∑
l=1

1
Zl

∫︂
El

(Ũ∆ −u)ηds = R51 +R52
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R51 =
∫︂

Q

[︂
σ

2

∑
i=1

(Ũ i
∆ −

∂U ′
∆

∂xi
)ηxi +(

∂U ′
∆

∂xi
−uxi)ηxi

]︂
dx

R51 converges to zero since {∂U ′
∆

∂xi
−Ũ i

∆
} converges weakly to zero (Lemma (4.3.4)(d))

and {U ′
∆
} converges weakly to u in H1(Q).

|R52|=
⃓⃓ m

∑
l=1

1
Zl

∫︂
El

[︁
(Ũ∆ −U ′

∆)η +(U ′
∆ −u)η

]︁
ds
⃓⃓

≤ K1∥Ũ∆ −U ′
∆∥L2(S)+K2∥U ′

∆ −u∥L2(S)

Lemma (4.3.4) (e) implies that R5 → 0.

Finally, since C 1(Q) is dense in set of admissible test functions for integral identity (4.7)

we have that u is a weak solution to the Problem (4.1)–(4.3) in the sense of Definition

4.1.1. Therefore, we have proved that if u is a weak limit point of {U ′
∆
} then it must be

a weak solution to the Problem (4.1)–(4.3). Due to uniqueness of the weak solution it

follows that {U ′
∆
} has one and only one weak limit point, which shows that the whole

sequence {U ′
∆
} converges weakly to u in H1(Q). This ends the proof of the theorem.□

4.5 Convergence of the Discrete Optimal Control Prob-

lem

Existence of the optimal control in Problem E is proved in Theorem 3.3.4. In particular,

from the proof of Theorem 3.3.4 it follows that the functional J is weakly continuous.

Proof of Theorem 4.2.1. To prove 4.13 and 4.16, it is enough to show that conditions (1)

and (2) of Lemma 4.3.5 are satisfied.
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Step 1. In this step we show that for any v ∈ F (R−ε),

lim
∆→0

|J∆(Q∆(v))−J (v)|= 0 (4.64)

From the Proposition 4.3.7 it follows that Q∆(σ) = [σ ]∆ ∈ F R
∆

. Applying Proposi-

tion 4.3.7 again, we deduce that P∆([σ ]∆) belong to F (R+ε), and hence,

∥P∆([σ ]∆)∥H̃1(Q∗
∆
) ≤ R+ ε

Therefore, there exists a σ0 ∈ H̃1(Q) and a subsequence of P∆([σ ]∆) converging weakly

to σ0 in H̃1(Q). Without loss of generality we can assume that the whole sequence

P∆([σ ]∆) is weakly convergent to σ0 in H̃1(Q). By using compact embedding theo-

rems, we therefore have

P∆([σ ]∆)⇀ σ0, weakly in H̃1(Q)

P∆([σ ]∆)→ σ0, strongly in L2(Q)

P∆([σ ]∆)→ σ0, strongly in L2(S) (4.65)

On the other side, we know that the piecewise constant interpolation of [σ ]∆ converges

strongly to σ . From Lemma 4.3.4 part (c), it follows that σ = σ0 almost everywhere on

Q. Therefore, we have

P∆([σ ]∆)⇀ σ , in H̃1(Q)

By applying approximation Theorem 4.4.1 it follows that the interpolations {U ′
∆
} of the

discrete state vectors [u([v]∆)]∆ converge weakly in H1(Q), and strongly in L2(Q) and

L2(S) to the unique weak solution u = u(x;v) of the PDE problem with control v.
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We transform the first term in the discrete cost functional (4.12) as folllows:

∑
l

(︂
∑

α∈A (Êl∆)

Γlα
Ul −uα

Zl
− Il

)︂2
= ∑

l

(︂∫︂
El

Ul −Ũ∆

Zl
ds− Il

)︂2

= ∑
l

(︂∫︂
El

Ul −Ũ∆ +U ′
∆
−U ′

∆
+u−u

Zl
ds− Il

)︂2

= ∑
l

(︂∫︂
El

U ′
∆
−Ũ∆

Zl
ds+

u−U ′
∆

Zl
ds+

Ul −u
Zl

ds− Il

)︂2

= ∑
l

(︂∫︂
El

U ′
∆
−Ũ∆

Zl
ds
)︂2

+
(︂∫︂

El

u−U ′
∆

Zl
ds
)︂2

+
(︂∫︂

El

Ul −u
Zl

ds− Il

)︂2

+2
(︂∫︂

El

U ′
∆
−Ũ∆

Zl
ds
)︂(︂∫︂

El

u−U ′
∆

Zl
ds
)︂

+2
(︂∫︂

El

U ′
∆
−Ũ∆

Zl
ds
)︂(︂∫︂

El

Ul −u
Zl

ds− Il

)︂
+2
(︂∫︂

El

u−U ′
∆

Zl
ds
)︂(︂∫︂

El

Ul −u
Zl

ds− Il

)︂
(4.66)

Since {U ′
∆
} converge strongly in L2(S) to u = u(x : v), we have

∫︂
El

u−U ′
∆

Zl
ds ≤ |S|

(︃∫︂
S
(
u−U ′

∆

Zl
)2ds

)︃ 1
2

→ 0, as ∆ → 0 (4.67)

By part (e) of Lemma 4.3.4, it follows that

∫︂
El

U ′
∆
−Ũ∆

Zl
ds ≤ |S|

(︃∫︂
S
(
U ′

∆
−Ũ∆

Zl
)2ds

)︃ 1
2

→ 0, as ∆ → 0 (4.68)

By (4.67) and (4.68), it follows that

lim
∆→0

(J∆(Q∆(v))−J (v)) = 0.
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which completes the proof of the Step 1.

Step 2. In this step we show that for any sequence {[v]∆} such that [v]∆ ∈ F R
∆

, we have

lim
∆→0

|J (P∆([v]∆))−J∆([v]∆))|= 0 (4.69)

Proposition 4.3.7 implies that the sequence P∆([v]∆) is uniformly bounded in H̃1(Q).

Hence, it has a a subsequence converging weakly in H̃1(Q) and strongly in L2(Q) and

L2(S) to some v̄ = (σ̄ ,U) ∈ F R. Without loss of generality we can assume that the

whole sequence

P∆([v]∆)⇀ v̄ weakly in H̃1(Q) as ∆ → 0. (4.70)

By applying Theorem 4.4.1 as in the proof of (4.64) in Step 1, it follows that

lim
∆→0

|J∆([v]∆)−J (v̄)|= 0 (4.71)

To prove (4.69), we add and subtract J (v̄) to (4.69) and we get the following inequality

|J (P∆([v]∆))−J∆([v]∆))| ≤ |J (P∆([v]∆))−J (v̄)|+ |J (v̄)−J∆([v]∆))|

= I1 + I2

Weak continuity of J implies that I1 → 0 as ∆ → 0. We proved I2 → 0 in (4.71), and

hence (4.69) follows.

Thus Step 1 and Step 2 of the proof implies that the conditions of the Lemma 4.3.5 are

satisfied. Therefore, assertiona (4.13) and (4.16) of Theorem 4.2.1 are proved. In order

to prove the rest of Theorem 4.2.1, we consider the sequence {[v]∆,ε} ∈ F R
∆

. From the

Proposition 4.3.7 it follows that {P∆([v]∆,ε)} is uniformly bounded in H̃1(Q). Assume
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v∗ ∈ H̃1(Q) is a weak limit point of this sequence. Weak continuity of J and (4.16)

implies that

lim
∆→0

J (P∆([v]∆,ε)) = J (v∗) = J∗

and v∗ ∈ F∗. In addition, referring to Theorem 4.4.1 there exists a unique discrete state

vector [u([v]∆,ε)]∆ corresponding to [v]∆,ε whose interpolations, {U ′
∆
}, converge weakly

in H1(Q) to u∗ = u(x;v∗), a weak solution to the (4.1)-(4.3). To complete the proof, it

remains to demonstrate that

lim
ε→0

J∗(ε) = J∗ = lim
ε→0

J∗(−ε) (4.72)

where J∗(±ε) = inf
F R±ε

J (v). The proof of (4.72) coincides with the proof of similar

fact in [6]. Theorem is proved. ■
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Chapter 5

Discretization and Convergence of the

EIT Optimal Control Problem in 3D

Domains

5.1 EIT Optimal Control in 3D Domains

In this chapter, we consider the EIT problem in Q ⊂ R3 with electrical conductivity

tensor A(x) = σ(x)I, where I is a 3×3 unit matrix:

div
(︁
σ(x)∇u

)︁
= 0, x ∈ Q (5.1)

∂u(x)
∂n

= 0, x ∈ S−
m⋃︂

l=1

El (5.2)

u(x)+Zlσ(x)
∂u(x)

∂n
=Ul, x ∈ El, l = 1,m (5.3)∫︂

El

σ(x)
∂u(x)

∂n
ds = Il, l = 1,m (5.4)
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where
∂u(x)

∂n
=

3

∑
i=1

uxiν
i

and ν = (ν1,ν2,ν3) is the outward normal at a point x to S, electrical conductivity σ

is a positive function. Consider the optimal control problem on the minimization of the

cost functional

J (v) =
m

∑
l=1

⃓⃓⃓∫︂
El

Ul −u(x)
Zl

ds− Il

⃓⃓⃓2
+β |U −U∗|2 (5.5)

on the control set

F R =
{︂

v = (σ ,U) ∈
(︁
L∞(Q)

⋂︂
H̃1(Q)

)︁
×Rm

⃓⃓⃓ m

∑
l=1

Ul = 0, ∥σ∥2
H̃1 + |U |2 ≤ R2 (5.6)

0 < σ0 ≤ σ(x)≤ R, ∀x ∈ Q
}︂

where β > 0, and u = u(·;v) ∈ H1(Q) is a solution of the elliptic problem (5.1)–(5.3).

The following is the definition of the weak solution of problem (5.1)–(5.3):

Definition 5.1.1. For a given v ∈ F R, u = u(·;v) ∈ H1(Q) is called the weak solution

of the problem (5.1)–(5.3) if

∫︂
Q

σ∇u ·∇ηdx+
m

∑
l=1

1
Zl

∫︂
El

uηds =
m

∑
l=1

1
Zl

∫︂
El

ηUlds, ∀η ∈ H1(Q). (5.7)

This optimal control problem will be called Problem E ′. The first term in the cost

functional J (v) characterizes the mismatch of the condition (5.4) in light of the Robin

condition (5.3).
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5.1.1 Discrete EIT Optimal Control Problem

To discretize optimal control problems E ′ we pursue finite difference method which is

explained in Chapter 2. In addition to discrete sets, Q∗
∆
,Q∗+

∆
,Q∗(i)

∆
,S∗

∆
, and Êl∆ that we

defined in Section 4.1.2 we introduce the following set as well:

Q∗(i, j)
∆

= {xα ∈ Q∗
∆ : xα + ei + e j ∈ Q∗

∆}, i, j = 1,2,3 (5.8)

For a given discretization ∆, we employ the notation [σ ]∆ = {σα}, α ∈ A (Q∗
∆
) where

σα ∈ R. Then We define the discrete H̃ 1(Q∗
∆
) norm as

∥[σ ]∆∥2
H̃ 1(Q∗

∆
)
= ∑

A (Q∗
∆
)

h3
σ

2
α +

3

∑
i=1

∑
A (Q∗(i)

∆
)

h3
σ

2
αxi

+
3

∑
i, j=1
i< j

∑
A (Q∗(i, j)

∆
)

h3
σ

2
αxix j

+ ∑
A (Q∗+

∆
)

h3
σ

2
αx1x2x3

(5.9)

We use standard notation for finite differences of grid function uα ,σα and

σαx1x2x3 =
σ(α+e3)x1x2 −σαx1x2

h
=

σ(α+e3+e2)x1 −σ(α+e3)x1 − (σ(α+e2)x1 −σαx1)

h2

= (σ(α+e3+e2+e1)−σ(α+e3+e2)−σ(α+e3+e1)−σ(α+e2+e1)+σ(α+e3)

+σ(α+e2)+σ(α+e1)−σα)/h3

We define discrete control set F R
∆

as in (4.1.2) with the discrete H̃ 1(Q∗
∆
) - norm defined

as in (5.9). Discretizing map Q∆ and interpolating map P∆ are defined as in Chapter 4.

Interpolating map P∆ assigns multilinear interpolation to discrete control vector, which

is defined as follows in 3D case:

104



σ
∆(x) = σα +

3

∑
i=1

σαxi(xi − kih)+
3

∑
i, j=1
i< j

σαxix j(xi − kih)(x j − k jh)

+σαx1x2x3 ∏
1≤i≤3

(xi − kih), ∀x ∈Cα
∆ (5.10)

Definition 5.1.2. Given [v]∆, the discrete valued function

[u([v]∆)]∆ = {uα ∈ R : α ∈ A (Q∗
∆)}

is called a discrete state vector of problem E ′ if it satisfies

h3
∑

A (Q∗+
∆

)

σ
∆
α

3

∑
i=1

uαxiηαxi +
m

∑
l=1

1
Zl

∑
A (Êl∆)

Γlαuαηα + Jα(uα ,ηα) =
m

∑
l=1

Ul

Zl
∑

A (Êl∆)

Γlαηα

(5.11)

for arbitrary collection of values {ηα}, α ∈ A (Q∗
∆
), where

Jα(uα ,ηα) = h3
∑

A (S∗
∆
)

3

∑
i=1

θ
i
αuαxiηαxi, (5.12)

θ
i
α =

⎧⎪⎨⎪⎩ 1 if α ∈ A (Q∗(i)
∆

\Q∗+
∆
)

0 otherwise

Discrete optimal control problem on the minimization of the cost functional J∆([v]∆)

(defined as in (4.12)) on a control set F R
∆

, with discrete state vector [u([v]∆)]∆ being

defined according to Definition 5.1.2, will be called Problem E ′
∆

.
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5.2 Main Result

Theorem 5.2.1. The sequence of discrete optimal control problems E ′
∆

approximates the

optimal control problem E ′ with respect to functional, i.e.

lim
∆→0

J∆∗ = J∗, (5.13)

where

J∆∗ = inf
F R

∆

J∆([v]∆), (5.14)

Furthermore, let {ε∆} be a sequence of positive real numbers with lim
∆→0

ε∆ = 0. If the

sequence [v]∆,ε ∈ F R
∆

is chosen so that

J∆∗ ≤ J∆([v]∆,ε)≤ J∆∗ + ε∆, (5.15)

then we have

lim
∆→0

J (P∆([v]∆,ε)) = J∗ (5.16)

Also, the sequence {P∆([σ ]∆,ε)} is uniformly bounded in H̃1(Q) and all of its H̃1(Q)-

weak limits points lie in F∗. Moreover, the multilinear interpolations of the discrete

state vectors [u([v]∆′,ε)]∆′ converge weakly in H1(Q) to u = u(x;v∗), a weak solution to

the (5.1)-(5.3).
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5.3 Proof of the Main Result

We pursue three interpolations Ũ∆,Ũ i
∆

and U ′
∆

as in in Chapter 2. The following estima-

tions for U ′
∆

and ∂

∂xi
U ′

∆
are proved as in Chapter 2:

∫︂
Q∗

∆

|U ′
∆|2dx ≤ ∑

A (Q∗
∆
)

h2 max
A (Q∗

∆
)
|uα∗|2 ≤ 23

∑
A (Q∗

∆
)

h2|uα |2, (5.17)

∫︂
Q∗

∆

⃓⃓⃓
∂

∂xi
U ′

∆

⃓⃓⃓2
dx ≤ 22

∑
A (Q∗(i)

∆
)

h2u2
αxi

(5.18)

Lemma 4.3.1, Lemma 4.3.2 and Corollary 4.3.3 apply to 3D case without any change.

The new discrete norm ∥| · ∥|H 1(Q∗
∆
) introduced in Lemma 4.3.1 modified as follows:

∥|[u([v]∆)]∆∥|2H 1(Q∗
∆
) :=

3

∑
i=1

h3
∑

A (Q∗(i)
∆

)

u2
αxi

+
m

∑
l=1

∑
A (Êl∆)

Γlαu2
α (5.19)

Index set is updated to i ∈ {1,2,3} for the part (b) and (d) of Lemma 4.3.4.

Lemma 5.3.1. For ε > 0, there exists δ > 0 such that

∑
A (Q∗+

∆
)

h3|σαx1x2x3|
2 ≤ (1+ ε)

⃦⃦⃦
∂ 3σ

∂x1∂x2∂x3

⃦⃦⃦2

L2(Q∗
∆
)

whenever h < δ .

Proof: For each h > 0, define the function σ̃123
h as

σ̃
123
h

⃓⃓⃓
Cα

∆

= σαx1x2x3, ∀α ∈ A (Q∗+
∆
) (5.20)
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where

σαx1x2x3 =

(σ(α+e3+e2+e1)−σ(α+e3+e2)−σ(α+e3+e1)−σ(α+e2+e1)+σ(α+e3)

+σ(α+e2)+σ(α+e1)−σα)/h3

In the following we will prove that

σ̃
123
h → ∂ 3σ

∂x1∂x2x3
strongly in L2(Q) as h → 0 (5.21)

As an element of H̃1(Q), almost all restrictions of σ to lines parallel to the x1,x2 and

x3 direction are absolutely continuous; Moreover, restrictions of σx1x2 to lines parallel

to the x3 direction, σx1x3 to lines parallel to the x2 direction, σx2x3 to lines parallel to the

x1 direction are absolutely continuous; Also, restrictions of σx1 to lines parallel to the

x2and x3, σx2 to lines parallel to the x1and x3 and σx3 to lines parallel to the x2and x1

directions are absolutely continuous. Hence if we let z = (z1,z2,z3) and x = (x1,x2,x3),

then for almost every z ∈ Q we have

∫︂ z3+h

z3

∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 3σ(y, t,w)
∂x1∂x2∂x3

dydt dw = σ(z+he3 +he2 +he1)−σ(z+he3 +he2)

−σ(z+he3 +he1)−σ(z+he2 +he1)+σ(z+he3)+σ(z+he2)+σ(z+he1)−σ(z)

(5.22)

In this lemma, for simplicity, instead of ∑
α∈A (Q∗+

∆
)

we write ∑
A

. Using the definition of
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Steklov average (2.15) and Cauchy-Schwartz inequality, we get

⃦⃦⃦
σ̃

123
h − ∂ 3σ

∂x1∂x2∂x3

⃦⃦⃦2

L2(Q∗
∆
)
=
∫︂

Q∗
∆

⃓⃓⃓
σ̃

123
h − ∂ 3σ(x)

∂x1∂x2∂x3

⃓⃓⃓2
dx

=∑
A

∫︂
Cα

∆

⃓⃓⃓
σαx1x2x3 −

∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dx

=∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h6

[︂ ∫︂
C

α+he1+he2+he3
∆

dz−
∫︂

Cα+he1+he2
∆

dz−
∫︂

C
α+he3+he2
∆

dz−
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz−
∫︂

Cα
∆

dzσ(z)
]︂
− ∂ 3σ(x)

∂x1∂x2∂x3

⃓⃓⃓2
dx

=∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h6

∫︂
Cα

∆

[σ(z+he3 +he2 +he1)−σ(z+he3 +he2)−σ(z+he3 +he1)

−σ(z+he2 +he1)+σ(z+he3)+σ(z+he2)+σ(z+he1)−σ(z)]dz− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dx

=∑
A

∫︂
Cα

∆

⃓⃓⃓ 1
h6

∫︂
Cα

∆

[
∫︂ z3+h

z3

∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 3σ(y, t,w)
∂x1∂x2∂x3

dydt dw]dz− ∂ 3σ(x)
∂x1∂x2∂x3

h6

h6

⃓⃓⃓2
dx

=∑
A

1
h12

∫︂
Cα

∆

⃓⃓⃓∫︂
Cα

∆

[
∫︂ z3+h

z3

∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 3σ(y, t,w)
∂x1∂x2∂x3

dydt dw− ∂ 3σ(x)
∂x1∂x2∂x3

h3]dz
⃓⃓⃓2

dx

=∑
A

1
h12

∫︂
Cα

∆

⃓⃓⃓∫︂
Cα

∆

[
∫︂ z3+h

z3

∫︂ z2+h

z2

∫︂ z1+h

z1

∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

dydtdw]dz
⃓⃓⃓2

dx

≤ ∑
A

1
h6

∫︂
Cα

∆

∫︂
Cα

∆

[
∫︂ z3+h

z3

∫︂ z2+h

z2

∫︂ z1+h

z1

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw]dzdx

Assume mα = (m1,m2,m3) be the natural corner of Cα
∆

. Now, we employ Fubini the-

orem three times to first switch the order of integration with respect to y and z1, then t
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and z2, and finally w and z3 . Hence we observe the

⃦⃦⃦
σ̃

123
h − ∂ 3σ

∂x1∂x2∂x3

⃦⃦⃦2

L2(Q∗
∆
)
≤

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+h∫︂
m3

m2+h∫︂
m2

m1+h∫︂
m1

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx

+∑
A

1
h3

∫︂
Cα

∆

(︄ m3+h∫︂
m3

m2+h∫︂
m2

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+h∫︂
m3

m2+2h∫︂
m2+h

m1+h∫︂
m1

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+2h∫︂
m3+h

m2+h∫︂
m2

m1+h∫︂
m1

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+h∫︂
m3

m2+2h∫︂
m2+h

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+2h∫︂
m3+h

m2+2h∫︂
m2+h

m1+h∫︂
m1

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+2h∫︂
m3+h

m2+h∫︂
m2

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx+

∑
A

1
h3

∫︂
Cα

∆

(︄ m3+2h∫︂
m3+h

m2+2h∫︂
m2+h

m1+2h∫︂
m1+h

⃓⃓⃓
∂ 3σ(y, t,w)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2
dydtdw

)︄
dx
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without loss of generality, we replace (y, t,w) with (z1,z2,z3) and we get

⃦⃦⃦
σ̃

123
h − ∂ 2σ

∂x1∂x2∂x3

⃦⃦⃦2

L2(Q∗
∆
)
≤ ∑

A

1
h3

∫︂
Cα

∆

(︄ ∫︂
C

α+he1+he2+he3
∆

dz

+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz

+
∫︂

Cα
∆

dz
⃓⃓⃓
∂ 3σ(z1,z2,z3)

∂x1∂x2∂x3
− ∂ 3σ(x)

∂x1∂x2∂x3

⃓⃓⃓2)︄
dx (5.23)

For fixed ε > 0, we pick a g ∈C3(Q+B1(0)) such that

∥σ −g∥2
H̃1(Q+B1(0))

≤ c(ε) (5.24)

Now, we add and subtract ∂ 3g(z)
∂x1∂x2∂x3

and ∂ 3g(x)
∂x1∂x2∂x3

to the integrands of (5.23)

⃦⃦⃦
σ̃

123
h − ∂ 3σ

∂x1∂x2∂x3

⃦⃦⃦2

L2(Q∗
∆
)
≤ I1 + I2 + I3 (5.25)

where

I1 = ∑
A

3
h3

∫︂
Cα

∆

(︄ ∫︂
C

α+he1+he2+he3
∆

dz+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 3σ(z)
∂x1∂x2∂x3

− ∂ 3g(z)
∂x1∂x2∂x3

⃓⃓⃓2)︄
dx
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I2 = ∑
A

3
h3

∫︂
Cα

∆

(︄ ∫︂
C

α+he1+he2+he3
∆

dz+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 3g(z)
∂x1∂x2∂x3

∂ 3g(x)
∂x1∂x2∂x3

⃓⃓⃓2)︄
dx

I3 = ∑
A

3
h3

∫︂
Cα

∆

(︄ ∫︂
C

α+he1+he2+he3
∆

dz+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 3g(x)
∂x1∂x2∂x3

− ∂ 3σ(x)
∂x1∂x2∂x3

⃓⃓⃓2)︄
dx

Since g ∈C3(Q+B1(0)), it follows that ∂ 3g
∂x1∂x2∂x3

is uniformly continuous on Q+B1(0).

Therefore, there exists δ = δ (g,ε)> 0 such that

| ∂ 3g(z)
∂x1∂x2∂x3

− ∂ 3g(x)
∂x1∂x2∂x3

|2 ≤ c(ε) (5.26)

whenever |z− x|< δ . Let hε > 0 satisfy

√
12hε < δ (5.27)

Then it follows that for each h < hε , any α ∈ A , and any x,z ∈ Cα+he1+he2+he3
∆

∪

Cα+he1+he2
∆

∪Cα+he3+he2
∆

∪Cα+he1+he3
∆

∪Cα+he3
∆

∪Cα+he1
∆

∪Cα+he2
∆

∪Cα
∆

,

| ∂ 3g(z)
∂x1∂x2∂x3

− ∂ 3g(x)
∂x1∂x2∂x3

|2 ≤ c(ε). (5.28)
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Therefore,

I1 =
3
h3 ∑

A

h3

(︄ ∫︂
C

α+he1+he2+he3
∆

dz+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz+
∫︂

Cα
∆

dz
⃓⃓⃓

∂ 3σ(z)
∂x1∂x2∂x3

− ∂ 3g(z)
∂x1∂x2∂x3

⃓⃓⃓2)︄

≤ 24
∫︂

Q+B1(0)

⃓⃓⃓
∂ 2σ(z)
∂x1∂x2

− ∂ 2g(z)
∂x1∂x2

⃓⃓⃓2
dz ≤ 24∥σ −g∥2

H̃1(Q+B1(0))

I2 ≤ ∑
A

3
h3

∫︂
Cα

∆

(︄ ∫︂
C

α+he1+he2+he3
∆

dz+
∫︂

Cα+he1+he2
∆

dz+
∫︂

C
α+he3+he2
∆

dz+
∫︂

C
α+he1+he3
∆

dz

+
∫︂

Cα+he1
∆

dz+
∫︂

Cα+he2
∆

dz+
∫︂

C
α+he3
∆

dz+
∫︂

Cα
∆

dzc(ε)

)︄
dx ≤ 24c(ε)m(Q∗

∆)

I3 = 24
∫︂

Q∗
∆

⃓⃓⃓
∂ 3g(x)

∂x1∂x2∂x3
− ∂ 3σ(x)

∂x1∂x2∂x3

⃓⃓⃓2
dx ≤ 24∥σ −g∥2

H̃1(Q∗
∆
)

If we take c(ε) = ε

48+24m(Q∗
∆
) , these calculations imply that

I1 + I2 + I3 < ε, ∀h ≤ hε (5.29)

Hence (5.21) is proved. Assertion of the lemma follows from (5.21). Lemma is proved.
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Proposition 5.3.2. For arbitrary sufficiently small ε > 0 there exists hε such that

Q∆(v) ∈ F R
∆ for all v ∈ F (R−ε) and h ≤ hε (5.30)

P∆([v]∆) ∈ F (R+ε) for all [v]∆ ∈ F R
∆ and h ≤ hε (5.31)

Proof. First side of proposition can be proved similar to Proposition 4.3.7 by using

Lemma 5.3.1. Now let [σ ]∆ ∈ F R
∆

. we claim that σ∆ := P∆([σ ]∆) ∈ F (R+ε). In order

to prove our claim, we need to show

∥σ∥2
H̃1(Q) = ∑

A (Q∗
∆
)

∫︂
Cα

∆

[︁
(σ∆)2 +(σ∆(x))2

x1
+(σ∆(x))2

x2
+(σ∆(x))2

x1x2
+(σ∆(x))2

x1x3

(σ∆(x))2
x3x2

+(σ∆(x))2
x1x2x3

]︁
dx1dx2 ≤ (R+ ε)2 (5.32)

We prove (5.32) directly by evaluating the L2 norm of every term in it over a fixed cell

Cα
∆

, α ∈ A (Q∗
∆
).

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(σ∆(x))2
x1x2x3

dx1dx2dx3

=

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

|σαx1x2x3|
2dx2dx1dx3

= h3
σ

2
αx1x2x3

, (5.33)
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(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(σ∆(x))2
x1x2

dx1dx2dx3

=

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

|σαx1x2 +σαx1x2x3(x3 − k3h)|2dx1dx2dx3

= h3
σ

2
αx1x2

+σ
2
αx1x2x3

h5

3
+σαx1x2σαx1x2x3

h4

2

where

|h
4

2
σαx1x2σαx1x2x3| ≤

h
4
(h3

σ
2
αx1x2

+h3
σ

2
αx1x2x3

), and

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(σ∆(x))2
x1x3

dx1dx2dx3

=

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

|σαx1x3 +σαx1x2x3(x2 − k2h)|2dx1dx2dx3

= h3
σ

2
αx1x3

+σ
2
αx1x2x3

h5

3
+σαx1x3σαx1x2x3

h4

2

where

|h
4

2
σαx1x3σαx1x2x3| ≤

h
4
(h3

σ
2
αx1x3

+h3
σ

2
αx1x2x3

), and
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(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(σ∆(x))2
x2x3

dx1dx2dx3

=

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

|σαx2x3 +σαx1x2x3(x1 − k1h)|2dx1dx2dx3

= h3
σ

2
αx2x3

+σ
2
αx1x2x3

h5

3
+σαx2x3σαx1x2x3

h4

2

where

|h
4

2
σαx2x3σαx1x2x3| ≤

h
4
(h3

σ
2
αx2x3

+h3
σ

2
αx1x2x3

).

We demonstrate the calculation for the term
(︁
σ∆(x)

)︁
x1

, and omit similar calculations for

the terms
(︁
σ∆(x)

)︁
x2
,
(︁
σ∆(x)

)︁
x3

:

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(︁
σ

∆(x)
)︁2

x1
dx2dx1dx3 =

(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(︁
σαx1 +σαx1x2(x2 − k2h)

+σαx1x3(x3 − k3h)+σαx1x2x3(x2 − k2h)(x3 − k3h)
)︁2dx2dx1dx3

= σ
2
αx1

h3 +σ
2
αx1x3

h5

3
+σ

2
αx1x2

h5

3
+σ

2
αx1x2x3

h7

9

+2σαx1σαx1x2

h4

2
+2σαx1σαx1x3

h4

2
+2σαx1σαx1x2x3

h5

4

+2σαx1x2σαx1x3

h5

4
+2σαx1x2σαx1x2x3

h6

6

+2σαx1x3σαx1x2x3

h6

6

where

|h4
σαx1σαx1x2 | ≤

h
2
(h3

σ
2
αx1

+h3
σ

2
αx1x2

)
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|h4
σαx1σαx1x3 | ≤

h
2
(h3

σ
2
αx1

+h3
σ

2
αx1x3

)

|h
5

2
σαx1σαx1x2x3| ≤

h2

4
(h3

σ
2
αx1

+h3
σ

2
αx1x2x3

)

|h
5

2
σαx1x2σαx1x3| ≤

h2

4
(h3

σ
2
αx1x2

+h3
σ

2
αx1x3

)

|h
6

3
σαx1x2σαx1x2x3| ≤

h3

6
(h3

σ
2
αx1x2

+h3
σ

2
αx1x2x3

)

|h
6

3
σαx1x3σαx1x2x3| ≤

h3

6
(h3

σ
2
αx1x3

+h3
σ

2
αx1x2x3

)
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(k1+1)h∫︂
k1h

(k2+1)h∫︂
k2h

(k3+1)h∫︂
k3h

(σ∆(x))2dxdx2dx3

= h3
σ

2
α +

h5

3
σ

2
αx1

+
h5

3
σ

2
αx2

+
h5

3
σ

2
αx3

+
h7

9
σ

2
αx1x2

+
h7

9
σ

2
αx1x3

+
h7

9
σ

2
αx2x3

+
h9

27
σ

2
αx1x2x3

+h4
σασαx1 +h4

σασαx2 +h4
σασαx3

+
h5

2
σασαx1x2 +

h5

2
σασαx1x3 +

h5

2
σασαx2x3 +

h6

4
σασαx1x2x3

+
h5

2
σαx1σαx2 +

h5

2
σαx1σαx3 +

h6

3
σαx1σαx1x2 +

h6

3
σαx1σαx1x3

+
h6

4
σαx1σαx2x3 +

h7

6
σαx1σαx1x2x3

+
h5

2
σαx2σαx3 +

h6

3
σαx2σαx1x2 +

h6

4
σαx2σαx1x3 +

h6

3
σαx2σαx2x3 +

h7

6
σαx2σαx1x2x3

+
h6

4
σαx3σαx1x2 +

h6

3
σαx3σαx1x3 +

h6

3
σαx3σαx2x3 +

h7

6
σαx3σαx1x2x3

+
h7

6
σαx1x2σαx1x3 +

h7

6
σαx1x2σαx2x3 +

h8

9
σαx1x2σαx1x2x3

+
h7

6
σαx1x3σαx2x3 +

h8

9
σαx1x3σαx1x2x3 +

h8

9
σαx2x3σαx1x2x3

After summation and using all these inequalities we deduce that

∥P∆([σ ]∆)∥2
H̃ 1(Q∗

∆
)
= ∥σ

∆∥2
H̃ 1(Q∗

∆
)
≤ ∥[σ ]∆∥2

H̃ 1(Q∗
∆
)
+O(h)

which easily implies that for some hε > 0, we have P∆([v]∆) ∈ F (R+ε) for all h < hε .

Lemma is proved. □

Having Lemma 5.3.1 and Proposition 5.3.2, the rest of the proof of Theorem 5.2.1 coin-

cides with the proof of Theorem 4.2.1 given in Chapter 4.
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Chapter 6

Conclusions

Dissertation research is on the analysis of optimal control problems for the systems with

distributed parameters described by general boundary value problems for the second

order linear elliptic PDEs with bounded measurable coefficients in Lipschitz domains.

Chapter 2 analyzes elliptic optimal control problem where control parameter is the den-

sity of sources and the cost functional is the L2-norm difference of the weak solution

of the elliptic Dirichlet or Neumann problem from measurement along the boundary

or subdomain. The optimal control problems are fully discretized using the method of

finite differences. Two types of discretization of the elliptic boundary value problem

depending on Dirichlet or Neumann type boundary condition are introduced. The main

result of the Chapter 2 is the following:

• Convergence of the sequence of finite-dimensional discrete optimal control prob-

lems both with respect to the cost functional and the control is proved. The meth-

ods of the proof are based on energy estimates in discrete Sobolev spaces, Lax-

Milgram theory, weak compactness and convergence of interpolations of solutions
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of discrete elliptic problems, and delicate estimation of the cost functional along

the sequence of interpolations of the minimizers for the discrete optimal control

problems.

The methods of Chapter 2 are developed and applied to biomedical problem on the de-

tection of the cancerous tumor. Chapters 3-5 analyze the inverse EIT problem in a PDE

constrained optimal control framework in Besov space, where the electrical conductiv-

ity tensor and boundary voltages are control parameters, and the cost functional is the

norm difference of the boundary electrode current from the given current pattern and

boundary electrode voltages from the measurements. The state vector is a solution of

the second order elliptic PDE in divergence form with bounded measurable coefficients

under mixed Neumann/Robin type boundary condition. The following are the main

results of Chapters 3-5:

• The novelty of the control theoretic model is its adaptation to clinical situation

when additional "voltage-to-current" measurements can increase the size of the

input data from the number of boundary electrodes m up to m! while keeping the

size of the unknown parameters fixed.

• Existence of the optimal control and Fréchet differentiability in the Besov space

setting is proved. The formula for the Fréchet gradient and optimality condition

is derived. Numerical method based on the projective gradient method in Hilbert-

Besov spaces is developed.

• EIT optimal control problem is fully discretized using the method of finite dif-

ferences. New Sobolev-Hilbert space is introduced, and the convergence of the

sequence of finite-dimensional optimal control problems to EIT coefficient opti-

mal control problem is proved both with respect to functional and control in 2-
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and 3-dimensional domains.
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