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ABSTRACT
Title:
Optimal Control of the Second Order Elliptic Equations with Biomedical Applications
Author:
Saleheh Seif

Major Advisor:

Ugur G. Abdulla, Ph.D., Dr.Sci., Dr.rer.nat.habil.

Dissertation analyzes optimal control of systems with distributed parameters described
by the general boundary value problems in a bounded Lipschitz domain for the linear
second order uniformly elliptic partial differential equations (PDE) with bounded mea-
surable coefficients. Broad class of elliptic optimal control problems under Dirichlet or
Neumann boundary conditions are considered, where the control parameter is the den-
sity of sources, and the cost functional is the L,-norm difference of the weak solution
of the elliptic problem from measurement along the boundary or subdomain. The opti-
mal control problems are fully discretized using the method of finite differences. Two
types of discretization of the elliptic boundary value problem depending on Dirichlet
or Neumann type boundary condition are introduced. Convergence of the sequence of
finite-dimensional discrete optimal control problems both with respect to the cost func-
tional and the control is proved. The methods of the proof are based on energy estimates
in discrete Sobolev spaces, Lax-Milgram theory, weak compactness and convergence of
interpolations of solutions of discrete elliptic problems, and delicate estimation of the
cost functional along the sequence of interpolations of the minimizers for the discrete
optimal control problems. Dissertation pursues application of the optimal control theory
of elliptic systems with distributed parameters to biomedical problem on the identifica-

tion of cancerous tumor. The Inverse Electrical Impedance Tomography (EIT) problem
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on recovering electrical conductivity tensor and potential in the body based on the mea-
surement of the boundary voltages on the m electrodes for a given electrode current is
analyzed. A PDE constrained optimal control framework in Besov space is developed,
where the electrical conductivity tensor and boundary voltages are control parameters,
and the cost functional is the norm difference of the boundary electrode current from the
given current pattern and boundary electrode voltages from the measurements. The state
vector is a solution of the second order elliptic PDE in divergence form with bounded
measurable coefficients under mixed Neumann/Robin type boundary condition. The
novelty of the control theoretic model is its adaptation to clinical situation when addi-
tional "voltage-to-current” measurements can increase the size of the input data from
m up to m! while keeping the size of the unknown parameters fixed. Existence of
the optimal control is established. Fréchet differentiability in the Banach-Besov spaces
framework is proved and the formula for the Frechet gradient expressed in terms of the
adjoined state vector is derived. Optimality condition is formulated, and gradient type
iterative algorithm in Hilbert-Besov spaces setting is developed. EIT optimal control
problem is fully discretized using the method of finite differences. New Sobolev-Hilbert
space is introduced, and the convergence of the sequence of finite-dimensional optimal
control problems to EIT coefficient optimal control problem is proved both with respect

to functional and control in 2- and 3-dimensional domains.
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List of Notations

In this section, assume Q is a domain in R”. B,(x) C R”" - ball of radius r and center x;

my(+) - d-dimensional Lebesgue measure;

e For 1 < p < oo, L,(Q) is a Banach space of measurable functions on Q with finite

norm

lulleyo = ( |, (o))

In particular if p =2, L,(Q) is a Hilbert space with inner product
(F 8o = [ sl

e L..(Q) is a Banach space of measurable functions on Q with finite norm

lullr...) == esssup |u(x)|
x€Q
e Fors € Z, W;(Q) is the Banach space of measurable functions on Q with finite

norm

1
lullwy o) = (/Q Y |D%u(x)Pax)",

lo|<s

where o0 = (04, 0%z, ..., 0 ), O are nonnegative integers, || = o) + ...+ 0y, Dy =

viil



aixk, D% = D‘f51 ...D%_ In particular if p =2, H*(Q) := W;(Q) is a Hilbert space

with inner product

(f,8)m0) = Y, (D¥f(x),D(x))1,(0)

o[ <s

e H/(Q) - linear subspace of elements u of H'(Q) which satisfy

in the sense of traces.

e Fors ¢ Z., B,(Q) is the Banach space of measurable functions on Q with finite
norm

H”HB-;,(Q) = HuHWp[sl(Q) + [”]Bf,(Q)

where

e rintete o AT
!5, P
// x—y| TPl dady)

HE(Q) := B5(Q) is a Hilbert space.

e H\(Q), n=2,3is a linear subspace of H'(Q) which is defined as follows:

H(Q) = {ue H'(Q)|uxr, € L2(Q)}, if QR (1)

I:II(Q) = {I/t 6 Hl (Q)‘uxlxz,ux1X37ux2x3aux1x2x3 e L2(Q)}7 lf Q E R3 (2)
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and their respective norms are defined accordingly:

3
llZ, o) = leelZin o)+ X N 17, 0) + vy lI7, o) IFQER (4
ij=1
i<j

e ba(Q) = (Loo(Q))/ is the Banach space of bounded and finitely additive signed

measures on Q and the dual space of L..(Q) with finite norm

191lvaco) = 191(Q),

|¢](Q) is total variation of ¢ and defined as |¢|(Q) = suqu)(E,-), where the

1
supremum 1s taken over all partitions UE; of E into measurable subsets E;.
o M"™*" is a space of real m x n matrices.
o 7 = Lo(Q;M"*") is the Banach space of n x n matrices of L..(Q) functions.

o & :=ba(Q;M"") = (Lw(Q;M"X”))/ is the Banach space of n x n matrices of

ba(Q) measures.
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Chapter 1

Introduction

The understanding of optimal control problems for systems with distributed parameters
is one of the most important and challenging problems in modern industrial, econom-
ical, and biomedical applications, to name a few. Solving optimal control problems is
a crucial step in the transition from mathematical model based simulations to the ac-
tual design and control of complex systems. The development of effective methods of
optimization of complex systems modeled by partial differential equations (or PDE-
constrained optimization), combined with powerful software development, also plays
a central role in many areas of operations research and management science. Yet an-
other important application of the mathematical theory of optimal control in infinite-
dimensional settings arises in the early stages of mathematical modeling of complex
systems that provide the most effective tools to solve inverse problems for the identifi-
cation of parameters based on experimental data.

Optimal control of systems with distributed parameters described by second order
linear elliptic PDEs has a well established theory. The book [81] was the first with sys-

tematic outline of the mathematical theory of optimal control of systems with distributed



parameters. Literature in this field within the last half-century is enormous. Without any
ambition to pursue a complete survey, we refer to monographs [81, 95, 43, 94, 52] for
the outline of the mathematical theory of the optimal control of elliptic PDEs, includ-
ing the questions of existence and uniqueness of the optimal control in Banach spaces
setting, necessary and sufficient optimality conditions via adjoined approach, Fréchet
and Gateaux differentiability, Pontryagin’s Maximum Principle, theory of constrained
optimal control including both control and state constrains. Theoretical advance along
with development of the powerful computational tools opened the way for the devel-
opment and implementation of numerical methods for solving PDE constrained opti-
mal control problems [93, 95, 28, 82, 47, 94, 52, 33]. The most effective idea for the
development of effective numerical methods for optimal control problems in infinite-
dimensional setting is based on approximation with the sequence of finite-dimensional
optimal control problems via discretization by methods of finite elements or finite dif-
ferences. Necessary and sufficient condition for the convergence of the sequence of
discrete finite-dimensional optimal control problems to the infinite-dimensional optimal
control problem both with respect to cost functional and control was formulated and
proved in abstract setting in [95]. State-to-the-art introduction and survey of the re-
sults on discrete concepts, and numerical algorithms for the Elliptic PDE constrained
optimization we refer to [52, 53, 33], the latter having more focus on computational
aspects. In general, to solve optimal control numerically there are two approaches: first
Discretize, then Optimize (DO) vs. first Optimize, then Discretize (OD) [52]. DO ap-
proach first discretizes optimal control problem via method of finite elements, followed
by derivation of the necessary optimality condition for the finite-dimensional problem.
In particular, this requires an introduction of the discrete adjoined vector determined by

the ansatz of the discrete state vector. OD approach first derives first order optimality



condition in infinite-dimensional setting, followed by the discretization of all the vari-
ables, including the adjoined variable. The latter includes some freedom, and in fact
choice of the ansatz space of the adjoined variable forms the difference between two
approaches. In [52] both DO and OD approaches are analyzed and the convergence
of the finite element approximation, along with error estimates, is established for the
uniquely solvable PDE optimality system in canonical convex optimal control problem
for the Poisson equation with zero Dirichlet boundary values. There is a broad liter-
ature on convergence and error estimates for finite element approximation of the PDE
optimality systems in linear elliptic control problems in space dimension two or three
[26, 25, 39, 38, 36, 84, 37, 35, 22]. In contrast, convergence of the method of finite
differences in optimal control problems for elliptic PDEs is not as widely investigated.
In [33, 32, 31] convergence of the finite difference multigrid solution to PDE optimality
system for the same control problem in two dimensional rectangular domain such that
boundaries coincide with the grid lines.

Despite its importance, the result on the convergence of the finite differences method for
optimal control problem for the general elliptic PDEs in arbitrary domains is not avail-
able in the literature. One of the main goals of the dissertation is to prove such
convergence result for a broad class of elliptic optimal control problems under
Dirichlet and Neumann boundary conditions. It should be pointed out that we are not
analyzing PDE optimality system, but aiming to prove that the necessary and sufficient
condition for the convergence of the sequence of discrete optimal control problems is
satisfied. This is essential both for OD and DO approaches, and in particular it provides
legitimacy for the solution of the finite-dimensional discrete optimal control problems
instead of infinite-dimensional optimal control problem.

In Chapter 2 we analyze optimal control problem for the general linear elliptic PDE



with bounded measurable coefficients, where control parameter is the density of sources
and the cost functional is the Ly-norm difference of the weak solution of the elliptic
Dirichlet or Neumann problem from measurement along the boundary or subdomain.
The optimal control problems are fully discretized using the method of finite differences.
Two types of discretization of the elliptic boundary value problem depending on Dirich-
let or Neumann type boundary condition are introduced. The main result of the Chapter

2 is the following:

o Convergence of the sequence of finite-dimensional discrete optimal control prob-
lems both with respect to the cost functional and the control is proved. The meth-
ods of the proof are based on energy estimates in discrete Sobolev spaces, Lax-
Milgram theory, weak compactness and convergence of interpolations of solutions
of discrete elliptic problems, and delicate estimation of the cost functional along
the sequence of interpolations of the minimizers for the discrete optimal control

problems.

Another major goal of the dissertation is to apply elliptic PDE constrained op-
timal control theory to solve an inverse Electrical Impedance Tomography (EIT)
problem of estimating an unknown electrical conductivity tensor inside the body
based on voltage measurements on the surface of the body when electric currents
are applied through a set of contact electrodes. Inverse EIT problem has many im-
portant applications in medicine, industry, gepphysics and material science [54]. We
are especially motivated with medical applications on the detection of cancerous tumors
from breast tissue or other parts of the body. Relevance of the inverse EIT problem
for cancer detection is based on the fact that the conductivity of the cancerous tumor is
higher than the condactivity of normal tissues [77]. Inverse EIT Problem is an ill-posed

problem and belongs to the class of so-called Calderon type inverse problems, due to
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celebrated work by [34] where well-posedness of the inverse problem for the identifica-

tion of the conductivity coefficient 6 : Q@ — R of the second order elliptic PDE

div(6(x)Vu) =0 (1.1)

through Dirichlet-to-Neumann or Neumann-to-Dirichlet boundary maps is presented.
Significant development in Calderon’s inverse problem in the class of smooth con-
ductivity function with spatial dimension n > 3, concerning questions on uniqueness,
stability, reconstruction procedure, reconstruction with partial data was achieved in
[92, 85, 15, 24, 61, 62]. Global uniqueness in spatial dimension n = 2 and reconstruction
procedure through scattering transform and employment of the, so-called D-bar method
was presented in a key paper [86]. Further essential development of the D-bar method
for the reconstruction of discontinuous parameters, regularization due to inaccuracy of
measurements, joint recovery of the shape of domain and conductivity are pursued in
[64, 65, 66, 69]. Inverse EIT problem with unknown anisotropic conductivity tensor as
in (3.3) is highly ill-posed, and even with perfect Dirichlet to Neumann map there is a
non-uniqueness [91]. This is the structural non-uniqueness, and one can talk about the
identification of the conductivity tensor up to diffeomorphisms which keep the bound-
ary fixed [79, 91, 86, 75, 76, 27, 23]. Alternative approach is based on imposing apriori
structural constraints on the class of anisotropies [67, 68, 80, 17, 44, 45, 16].

Mathematical model for the EIT Problem, referred as complete electrode model, was
suggested in [90] in the case of given isotropic electrical conductivity tensor. The model
suggests replacement of the complete potential measurements along the boundary with
measurements of constant potential along the electrodes with contact impedances. In

[90] it was demonstrated that the complete electrode model is physically more relevant,



and it is capable of predicting the experimentally measured voltages to within 0.1 per-
cent. Existence and uniqueness of the solution to the EIT problem was proved in [90].
Inverse EIT Problem is more difficult than the Calderon’s problem due to the fact that
the infinite-dimensional conductivity function ¢ (or tensor A) and finite-dimensional
voltage vector U must be identified based on the finitely many boundary electrode volt-
age measurements. Indeed, there are only finitely many electrodes are available where
input current pattern can be injected for the successful measurement of the voltage.
Hence the input data is finite-dimensional current vector, while in Calderon’s prob-
lem input data is given through infinite-dimensional boundary operator "Dirichlet-to-
Neuman" or "Neuman-to-Dirichlet". Therefore, inverse EIT problem is highly ill-posed
and powerful regularization methods are required for its solution. It is essential to note
that the size of the input current vector is limited to the number of electrodes, and there
is no flexibility to increase its size. It would be natural to suggest that multiple data
sets - input currents can be implemented for the identification of the same conductivity
function. However, note that besides unknown conductivity function, there is unknown
boundary voltage vector with size directly proportional to the size of the input current
vector. Accordingly, multiple experiments with "current-to-voltage" measurements is
not reducing underdeterminacy of the inverse problem. One can prove uniqueness and
stability results by restricting isotropic conductivity to the finite-dimensional subset of
piecewise analytic functions provided that the number of electrodes is large enough
[78, 50]. Within last three decades many methods developed for numerical solution
of the ill-posed inverse EIT problem both in isotropic and anisotropic conductivities.
Without any ambition to present a full review we refer to some significant develop-
ments such as recovery of small inclusions from boundary measurements [21, 70]; hy-

brid conductivity imaging methods [20, 89, 96]; multi-frequency EIT imaging methods



[19, 88]; finite element and adaptive finite element method [57, 83]; imaging algorithms
based on the sparsity reconstruction [19, 56]; globally convergent method for shape
reconstruction in EIT [51]; D-bar method, diction reconstruction method, recovering
boundary shape and imaging the anisotropic electrical conductivity [18, 40, 48, 49, 55];
globally convergent regularization method using Carleman weight function [63]. In-
verse EIT problem was widely studied in the framework of Bayesian statistics [60]. In
[58] inverse EIT problem is formulated as a Bayesian problem of statistical inference
and Markov Chain Monte Carlo method with various prior distributions is implemented
for calculation of the posterior distributions of the unknown parameters conditioned on
measurement data. In [59] Bayesian model of the regularized version of the inverse
EIT problem is analyzed. In [73] the Bayesian method with Whittle-Matérn priors is
applied to inveres EIT problem. In general the strategy of the Bayesian approach to in-
verse EIT problem in infinite-dimensional setting is twofold. First approach is based on
discretization followed by the application of finite-dimensional Bayesian methods. All
the described papers are following this approach, which is nicely outlined in [60]. Al-
ternative approach is based on direct application of the Bayesian methods in functional
spaces before discretization [74, 41].

Dissertation introduces new variational formulation of the inverse EIT problem as a
PDE constrained optimal control problem in a Besov space. The methods of Chapter
2 are developed and applied to biomedical problem on the detection of the cancerous
tumor. In Chapters 3-5 we analyze the inverse EIT problem in a PDE constrained op-
timal control framework in Besov space, where the electrical conductivity tensor and
boundary voltages are control parameters, and the cost functional is the norm differ-
ence of the boundary electrode current from the given current pattern and boundary

electrode voltages from the measurements. The state vector is a solution of the sec-



ond order elliptic PDE in divergence form with bounded measurable coefficients under
mixed Neumann/Robin type boundary condition. The following are the main results of

Chapters 3-5:

o The novelty of the control theoretic model is its adaptation to clinical situation
when additional "voltage-to-current” measurements can increase the size of the
input data from the number of boundary electrodes m up to m! while keeping the

size of the unknown parameters fixed.

e Existence of the optimal control and Fréchet differentiability in the Besov space
setting is proved. The formula for the Fréchet gradient and optimality condition
is derived. Numerical method based on the projective gradient method in Hilbert-

Besov spaces is developed.

e EIT optimal control problem is fully discretized using the method of finite dif-
ferences. New Sobolev-Hilbert space is introduced, and the convergence of the
sequence of finite-dimensional optimal control problems to EIT coefficient opti-
mal control problem is proved both with respect to functional and control in 2-

and 3-dimensional domains.

The organization of the dissertation is as follows. Chapter 2 pursues discretization
and convergence for the method of finite differences for the optimal control problems
for the second order elliptic PDEs. In Section 2.1 we introduce optimal control prob-
lems, outline the well-posedness facts of the formulated optimal control problems, pur-
sue discretization by the method of finite differences, formulate discrete optimal control
problems and describe the main results on the convergence of the sequence of discrete

optimal control problems both with respect to functional and control. Some preliminary



results are formulated in Section 2.2. In particular, in Section 2.2.1 we prove approxi-
mation lemma on the convergence of the interpolations of the discrete state vectors to
weak solutions of the respective elliptic PDE problems. In Section 2.3 we prove the
main results.

Chapter 3 analyzes inverse EIT problem in framework of optimal control of elliptic
PDEs. In Section 3.1 we describe inverse EIT problem. Section 3.2 introduces vari-
ational formulation of the inverse EIT problem in a optimal control framework. Main
results of Chapter 3 are formulated in Section 3.3. Finally, in Section 3.4 we prove the
main results.

Chapter 4 analyzes discretization and convergence of the EIT optimal control prob-
lem in 2D domains. In Section 4.1 we describe 2D inverse EIT problem with isotropic
conductivity map, its formulation as an optimal control problem and discretization with
method of finite differences. Main convergence result is formulated in Section 4.2. In
Section 4.3 we prove energy estimates and some essential interpolation theorems. Ap-
proximation lemma is established in Section 4.4. Finally, the proof of the main conver-
gence theorem is completed in Section 4.5.

In Chapter 5 we analyze discretization and convergence of the EIT optimal control
problem in 3D domains. Section 5.1 introduces EIT optimal control in 3D domains and
its finite difference discretization. Main result is formulated in Section 5.2. We prove
the main result in Section 5.3.

Finally, in Chapter 6 we describe main conclusions.



Chapter 2

Discretization and Convergence of
Optimal Control Problems for Second

Order Elliptic PDEs

2.1 Introduction and Main Results

2.1.1 Optimal Control Problems

Let Q C R" is bounded domain with Lipschitz boundary S = dQ. Let D C Q be an
open subset of Q. Consider the optimal control problem on the minimization of the cost

functional

7(5)= [ Iute ) gl e p [ 1f = i Rl
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on a control set

7R = {1 eL(0)|lfl2 <R} 2.2)

where g € L*(D), f € L*(Q) are given, 8 >0, and u = u(-; f) € Hj(Q) is a solution of

the following Dirichlet problem for the second order linear elliptic PDE

i (@i ()t )x; +Zb,~(x)uxi +alx)u=f(x) x€Q (2.3)

i,j=1

u(x)=0 xes (2.4)
with bounded measurable coefficients a;;, b;,a which satisfy the structural condition

Y a0 - ébi(x)iiio _aWE > v Z 24AE 25)

=

for arbitrary & € R, i =0, 1,...,n with positive constants v and A. This optimal control
problem will be called Problem .

Next, we formulate optimal control problem for the elliptic PDE (2.3) under Neumann
boundary condition. Let I' C § is a subset with positive N — 1-dimensional Hausdorff

measure and z € L?(I) is a given function. Consider minimization of the cost functional

F (1) =B [ Ju(xif) =Pt Bo [ (s f) <) ds+ B | |/~ P @6)

on the control set (2.2), where 8,5;>0,i=1,2and 7+ 7 >0andu=u(-; f) € H'(Q)

is a solution of the Neumann problem for the elliptic PDE (2.3) under the boundary

11



condition

du(x)
oN

+k(x)u(x) =0 xeSs (2.7)

where %’f/(;ﬁ) = Zaij(x)uxjvi is a conormal derivative, k € L(S). If kK > 0 then we
J

assume that the v and A are arbitrary positive numbers, while if k is non-positive, then
the constant A in (2.5) should be sufficiently large. The formulated optimal control
problem will be called Problem .#". We refer to Chapter 1 for literature review on
elliptic optimal control theory. The goal of this chapter is to discretize both optimal
control problems using the method of finite differences and prove the convergence of
the sequence of discrete finite-dimensional optimal control problems to original problem

both with respect to cost functional and control.

2.1.2 Well-posedness of the Optimal Control Problems

Let bilinear form B : H(Q) x H(Q) — R be defined as follows

B[I/t,rl] = ( Z aijuxjnxi_zbiuxin —aun)dx
0

ij=1 i

where H stands for Hl(Q) in Dirichlet problem, and for H!(Q) in Neumann problem.
The following are definitions of the weak solutions of the Dirichlet and Neumann prob-

lems (2.3),(2.4) and (2.3),(2.7) respectively.

Definition 2.1.1. u € H(} (Q) is called the weak solution to the problem (2.3),(2.4) if

Blu,n] = —(f,n)r,, VN € HY(Q) (2.8)

12



Definition 2.1.2. u € H'(Q) is called the weak solution to the problem (2.3)-(2.7) if

Blu, 1] +/Skunds — (M), VN e H'(Q) (2.9)

From Lax-Milgram theory ([46, 72, 71]) it follows that for a given f € .#X there
exist unique weak solutions to the problems (2.3),(2.4) and (2.3),(2.7) respectively, and

the following energy estimate is valid

ullz < Cl|fllL,(0)» (2.10)

Due to bounded embedding H'(Q) < Ly (Q), cost functionals .# and _¢ in both prob-
lems are well defined. Cost functionals are weakly lower semicontinuous and convex in
a bounded, closed and convex control set .#&. Therefore, there exists an optimal control
in both problems [81, 95, 43]. If B > 0, then functionals .# and _¢# are strictly convex,

and therefore there is a unique optimal control in both problems [81, 95, 43].

2.1.3 Discrete Optimal Control Problems

To discretize optimal control problems & and .4 we pursue finite difference method

following the framework introduced in [14]. Let 2 > 0 and cut R" by the planes
x; = kih, i=1,...,n, Vk; € Z.

into a collection of elementary cells with length /4 in each x;-direction. We denote the
discretization with step size h by A. We introduce an ordering in the class of discretiza-

tions by setting A(hy) < A(hy) if hy < hy. For every discretization A and multi-index

13



o = (ki,ka,...,k,) we define a cell CY as
CY={xeR"kh<x;<(ki+1)h, i=1,...,n}, (2.11)
and consider the collection of these cells
Cr={Cl | aeZ"}. (2.12)

Denote the subcollection of cells which lie in Q as %”Q, and the subcollection of cells

which have non-empty intersection with Q as ‘KAQ*:
Y ={CR et | RO} o) ={CRetr|cino#0)  (213)
We now introduce interior and exterior approximations of Q as follows:

= U @& a= U & (2.14)
CX‘G%’AQ CX‘E%AQ*
Obviously, we have Qp C O C Qj. Let Sp = 904 and S} = 9 Q5.
The vertex of the prism C{ whose coordinates are smallest relative to the other vertices,
is called its natural corner. We are going to identify each prism (cell) by its natural
corner.

Now define the lattice of points

_ d d L
¥ = R txi=kh,i=1,....n.
{xe | o € Z¢ s.t. xi = kih, i =1 n}
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We will write xo = (k1h,koh, ... k,h). Note the obvious bijections & — x; bijections
of this form will henceforth be referred as natural. Given a set X which is in natural
bijection with a subset of the set of multi-indexes o, we write ./ (X) as the indexing
set. Moreover, if X C R, then .Z(X) := 2 NX. When X = .Z(Y) C R?, we’ll agree to
write o7 (Y') instead of o7 (.Z(Y)). These indexes are also in natural bijection with the
natural corners of these prisms. In particular, some of the corresponding lattice points
may fall on the boundary Sx. We contrast this set to the set . (Q/,) of indexes in natural
bijection to the lattice points that lie strictly in the interior of Qp, and to the set <7 (Qp),
of all indexes which are in natural bijection with the lattice points that lie in Q. We will

write

Z instead of Z ,

(X) acd (X)

and likewise for other expressions requiring subscripts. We adopt the notation
ate:= (kl,...,ki:]: 1, ...,kn).

To discretize optimal control problem .4", we need to introduce some refined subsets of
grid pints of Q). Let
O ={xa € 03 : CXNQ #0}

be a subset of natural corners of the cells in Q3. We denote as

017 = (x4 € Q4 : Xure; € QL)

the subset of all grid points xq in Q} such that the edge [xq,Xq+¢;] is in Q) too. The

sets QZ and Q(Ai) are defined similarly. Subset of natural corners xq of cells in Q3 which
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intersect the boundary S is denoted as
Si = {xq € Q4 : CINS # 0}
Similar to Qa, Q) and SZ we define

Dya={xqe€2|C¢cD}
Di={xa €€ |C¢ND#0}

Ty={xq €85 |C¥NT # 0}

Note that we don’t use superscript + in preceding definition. We are going to assume
that the coeffcients a;;,b;,a € L*(Q) are extended to a larger set Q + B1(0) as bounded
measurable functions with preservation of the structural condition (2.5). Any control
vector f € .ZK and given function f € L,(Q) are continued as zero to Q + B1(0). We
introduce discrete grid functions by discretizing a;;, b;,a, f and f through Steklov aver-
ages:

xX1+h xo+h  x,+h

1

0o = P / / / o (x)dx, a € <7(Q)), where x; is the i-th coordinate of x,
X1 X2 Xn

(2.15)

and ¢ stands for any of the functions a;;,b;,a, f and f. Similar grid function is intro-

duced for g € L,(D) after zero continuation to D+ B (0). For k € L(S) and z € L(T)

we define

a::/ k(x)ds, € (S5, Sq:=SNCE (2.16)
Sa

1

= Tal Jr z(x)ds, a € ([y), q:=CeNT. (2.17)

I
2o
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For a given discretization A, we employ the notation [f]x = { fo }, & € 7 (Q}) and define

the discrete ¢, norm of [f], as

AHiz ( Z hnfoc)j'

We use standard notation for finite differences of grid function uq, o0 € 27 (Q3):

_ Ugte;, — Ua _ Ug —Uq—e;
Ugx; = h , Ua; = h .

For fixed R > 0, define the discrete control sets as

FR = {fla: [flall, <R} (2.18)

and the interpolating map Z, as

f@A:Ugf_)Ung QA([]C]A):

R

where
A =Ta @€ d(Q})
CA
Also, we define the discretizing map 2, as
2x:JF = UZK,  2a()=1fla
R R

where [f]a = {fa} and fq is given by (2.15) for each a € &7 (Q}).

Next, we define a solution of the discrete Dirichlet problem.
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Definition 2.1.3. Given [f] € ZX, the discrete valued function

[u([fla)la = {ua € R: @ € &7 (04a)}

is called a discrete state vector of problem &, or solution of the discrete Dirichlet prob-

lem if ug = 0 for o € .7 (Sa) and it satisfies

n
Y 1Y aijatiax Ny + (= Y biattar, — datta + f3)Na | =0 (2.19)
(g  Lii=1 ,~

for arbitrary collection of values {1y}, & € 27 (Qn) such that 1 0.

|sA -

Note that the collection {3} in the (2.19) is the function 25 (Za([f]«)).
In Section 2.2 it will be proved that for a given [f]q € .ZX, there exists a unique dis-
crete state vector [u([f]a)]a of problem 2. Consider minimization of the discrete cost

functional

A(fla) =Y W'lua—zga*+B Y, H'|fa—ful® (2.20)

(Dy) 7 (Qy)
on a control set ZX, where uy’s are components of the discrete state vector [u([f]a)]as
gq and fy are Steklov averages of g and f based on formula (2.15). The formulated
discrete optimal control problem will be called Problem Z,.

Next, we define a solution of the discrete Neumann problem.

Definition 2.1.4. Given [f] € ZX, the discrete valued function

[u([fla)la = {ua €R: a € o (Q})}

is called a discrete state vector of problem .4, or solution of the discrete Neumann

18



problem if it satisfies

n
Z n" Z AjjoUax;Mox; — Zbiauaxina —daglgTa "‘féna
(@) Li=l i

+Ja(uaNa)+ Y, katigNe =0 2.21)
o (83)
for arbitrary collection of values {1y}, o € &7 (Q}),where

n

Ja(ta,Na) = H" Z [eauana + Z Gécuocx,-rlaxi]a (2.22)
4 (8%) i=1

1 ifoe .o/ (S5\8%) 1 ifae o (Q\)\ (057

9(1 — 5 Qa - .
0 otherwise 0 otherwise

The necessity of adding Jy to (2.21) is that the term A" Z Note of (2.21) does

o (0))
not extend to whole grid points in Q3. The missing terms will be added through the

first term of Jo. Moreover, some uqy; and 7)q,,; values on S are not present in the term

h" Z Nax;Uax; of (2.21). These values are added to (2.21) through the second term
7 (Qx")
of Jy. For stability of our discrete scheme, it is essential to add these two terms to the

discrete integral identity (2.21).
In Section 2.2 it will be proved that for a given [f]y € .-Z f, there exists a unique dis-
crete state vector [u([f]a)]a of problem .#". Consider minimization of the discrete cost

functional

Ia(fla)=" Y Hlua—gal+ Y |Tallia—za+B Y, H'|fa—fa® (2.23)

(D) /(L) o/ (Qx")

on a control set 7L, where uy’s are components of the discrete state vector [u([f]a)]a
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of the Problem .4, go, fo and zg are Steklov averages of g, f and z based on (2.15),

(2.17). The formulated discrete optimal control problem will be called Problem .#,.

Definition 2.1.5. The discrete 57! (Q}) norm for [u([f]a)]a = {uq} is defined as

()l = (X Wty ¥ #ud )
(QR)

=)

The discrete norm 571 (Q,) is defined similarly.

2.1.4 Main Results

Theorem 2.1.6. The sequence of discrete optimal control problems Y approximates

the optimal control problem & with respect to functional, i.e.

ilg(l) Iy, = I, (2.24)
where
I, = inf Ip([f]a), F« = inf I (f). (2.25)
FR FR

Furthermore, let {€x} be a sequence of positive real numbers with iin}) er=0. If the
%

sequence [fla¢ € Z, f is chosen so that

In. S IA([flae) < Fa, +En, (2.26)
then we have
lim S(Pa([flae)) = S (2.27)
—0
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Also, the sequence { PA([flae)} is uniformly bounded in Ly(Q) and all of its L,(Q)-

weak limit points lie in optimal control set

T ={fe FRI(f) =5}

In particular, if B > 0, then the sequence { Px([f]ae)} converges weakly in L,(Q) to
unique optimal control f.. Moreover, if f. is such a weak limit point, then there is
a subsequence A such that the multilinear interpolations of the discrete state vectors
[u([f]ar.e)|ar converge to weak solution u = u(x; fi) of the Dirichlet problem (2.3)—(2.4)

weakly in H} (Q), strongly in Ly(Q), and almost everywhere on Q.

Theorem 2.1.7. The sequence of discrete optimal control problems N5 approximates

the optimal control problem A with respect to functional, i.e.

lim 7y = 7., (2.28)
where
Ss.=int Fo([fls). 7. = inf £ (f). (2.29)

Furthermore, let {€px} be a sequence of positive real numbers with iirr(l) ea=0. If the
_)

sequence [flae € FR is chosen so that

In < IA[flae) < Fa, €, (2.30)
then we have
lim 7 (Zs([flae) = 5. (231)

Also, the sequence { Pa([flae)} is uniformly bounded in L,(Q) and all of its L>(Q)-
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weak limit points lie in optimal control set

T ={feFN 7(f)= 7.}

In particular, if B > 0, then the sequence { Za([f]ae)} converges weakly in Lr(Q) to
unique optimal control f,.. Moreover, the multilinear interpolations of the discrete state
vectors [u([f]a¢)a converge to weak solution u = u(x; f.) of the Neumann problem

(2.3), (2.7) weakly in H'(Q), strongly in L,(Q), and almost everywhere on Q.

2.2 Preliminary Results

In this section we recall known results about the unique solvability of the discrete Dirich-
let and Neumann problems for the second order elliptic PDEs [71]. The next proposition
formulates discrete Dirichlet problem as a system of linear algebraic equations for the

unknown grid components of the discrete state vector of the problem Z.

Proposition 2.2.1. For a given discretization A and control [fa € F R, avector u([f]a)]a

is a solution of the discrete Dirichlet problem if and only if it satisfies the conditions

Z (aija(x)”axj)fi +Zbia(x)”ocx,- +aquo —fg =0, Va e W(Q/A) (2.32)
ij=1 i

Ug =0, Vo€ o/(Sh) (2.33)

Proof. Suppose [u([f]a)]a satisfies (2.32). Take an arbitrary collection of {1y} for
o € o/ (Qa) which satisfies ¢ = 0 for @ € o7 (S,). Multiplying (2.32) by A"ny and
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adding them for all o € &7 (Q),) we have

Z hn’?a[ Z aleC uax] +Zbl05 uaxi'f’aaua_fé] =0 (2.34)
i,j=1

Observe that for any i, j = 1,...,n we have

ij X; Qij(o—e))UW(o—e;)x;
Z (aij(xuaxj)iir’a: Z aja:oc jna_ Z j(o )h(oc )]na

Q) (Q)) (0))
AjjoUox ; AijoUoyx;
_ Z zJ(xh ox na . Z Jah ox; na+ei _
(Qy) o (Q)—e;)
dijalox;
- Z aijauaxjrlax,- + Z Tna
o (Q))N (Qy—ei) A (QN)\ (Q)—ei))

Z aijOCuOtxj' n
- o+e;

20Ny M

= Z Z Z AijaUax;Tox;

A (Q )N (Qy—ei) A (Q\F (Qy—ei)  (Qp—ei)\F (Qy)

= Z dijaUax;Mox; = — Z Qijotox;Moux;- (2.35)
o (Q))V (Q)—ei) (Q})

Plugging this calculation into (2.34) and using the fact that 1o, = 0 for each o € 27 (S4),
we derive (2.19). Conversely, from (2.19) and (2.35), (2.34) easily follows. Since
Na, o € o7 (Q)) are arbitrary, from (2.34), (2.32) follows. O

The next lemma presents energy estimate for the discrete Dirichlet problem.

Lemma 2.2.2 (Energy Estimate for Discrete Dirichlet Problem [71]). For any R > 0,
A and [fla € FR the discrete state vector [u([f]a)|a of the problem  satisfies the

following energy estimate:

[ u([f]a)]all e o) < Ml fll2() (2.36)
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with M independent of A, R.

In particular, energy estimate implies the existence and uniqueness of the discrete

state vector of the problem Z.

Corollary 2.2.3. For a fixed A and any R > 0, there exists a unique discrete state vector

[u([f]a)]a in a problem 9 for each [f]a € FX.

Indeed, the number of unknowns in the system (2.32)-(2.33) are the same as the
number of equations. From the energy estimate (2.36) it follows that the corresponding
homogeneous system has only trivial solution. Well known linear algebra fact implies
the claim of the corollary.

Next lemma formulates the energy estimate for the discrete Neumann problem.

Lemma 2.2.4 (Energy Estimate for Discrete Neumann Problem [71]). For any R > 0,
A and [f]a € FR the discrete state vector [u([f]a)|a of the problem ¥ satisfies the

following energy estimate:

[ Tu(lf1a)]allrr o) < MUz, (2.37)

As in Corollary 2.2.3, the energy estimate implies the existence and uniqueness of

the discrete state vector in a problem /.

Corollary 2.2.5. For a fixed A and any R > 0, there exists a unique discrete state vector

[u([f]a)]a in a problem N for each [f]s € FX.

Indeed, by explicitly writing uq,, and 1y, in terms of ug and 1q from (2.21) it

follows that

Y, Za(ue)Na= Y, Zalfa)Na (2.38)
o/ (03) o/ (Q3)
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where £, and .%#, are linear mappings. Due to arbitrariness of values of 1y at o €
o/ (Qx) we have
Lnug) = Falfa), Ya e (0Or) (2.39)

which presents a system of linear algebraic equations for the unknown values {uy} of
the discrete state vector in a problem .4 at the grid points of Q). System (2.39) has
the same number of equations as unknowns. From the energy estimate it follows that
the corresponding homogeneous system has only trivial solution. Therefore, the system
(2.39) has a unique solution.

Next, we recall the well-known necessary and sufficient condition for the conver-
gence of the discrete optimal control problems to the continuous optimal control prob-

lem, formulated in the context of the optimal control problem ./4:

Theorem 2.2.6. [95] The sequence of discrete optimal control problems N approxi-
mates the continuous optimal control problem A with respect to the functional if and

only if the following conditions are satisfied:

1. Forany f € FR we have 25(f) € F f, and the following inequality is satisfied

lim sup(_Z5(2a(f)) — 7 ()) <.

A—0

2. For each [f]a € FR, we have Pa([f]a) € FX, and the following inequality is

satisfied

timsup (7 (2([f1a) = Za(lf]a)) <O0.

A—0

Similar necessary and sufficient condition can be formulated for the optimal control
problem Z. Next proposition proves that mappings &x and 2, satisfy the conditions

of the Theorem 2.2.6.
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Proposition 2.2.7. The maps Prand 24 satisfy the conditions of Theorem 2.2.6

Proof. Fix € > 0 and A arbitrary. First let f € .Z%. Then we note

!
l2aNZ=n Y f2=n Y fi=w Y (ﬁ/cafdx)z (2.40)
(05") ;

/(Q}) (0}

<y /fzdx:/ fzdx:/fzdngz 2.41)

1
Now let [f]a € FRwhich implies ||[f]all;, = ( ) h"fé) * < R. We have
7 (Q1)

12l = [ ax< |

*
A

(f*)dx= Y (f*)?dx
#(05F) /Cf

= Y W< Y W=l <R
(03" “(Q4)
which proves the claim of the proposition. []
Following the frame of the recent paper [14] we define three types of interpolations
of the discrete state vector in problem Z.
The first interpolation is denoted by U, which is a piece-wise constant function Uy :
Q — R, which assigns to the interior of each cell in Qx the value of u at its natural

corner and it is defined as following
UA|Cg = U, Vo€ o/ (0F) (2.42)

and we let Uy be 0 elsewhere in Q that it is not already defined.
Now for each i = 1,2, ..,n, we define the second piece-wise constant interpolating func-

tion U i : QO — R which assign to each cell in Q4 the value of the forward spatial differ-
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ence at the natural corner and it is defined as following
Oplpa =ttax, V€ (0F) (2.43)
A

and O elsewhere in Q that it is not already defined.

Next, we define U, : Q — R which assigns the value uq to each grid point in £ (Qn),
and it is a peicewise linear with respect to each variable x; when the rest of variables are
fixed. It is also extended as O on Q — Qa.

U, (x) can be represented as the weighted average of uq- values for each o* € &7 (CY)

Usx)= Y  wo@ue, xeC} (2.44)
ared (CY)

where coefficient functions, wq: : CY — [0, 1], are continuous in C} and satisfy

Y, waex)=1, x€CY (2.45)
ared (CF)

Using this property we obtain the following estimation:

/ UL |2dx = / UpPdx< Y 1" max |ug-|><2" Y K'lug|*. (2.46)
0 Oa S0y 7O A (Qa)

Now, we claim that %U 1 (x) can be represented as weighted average of forward differ-
ences in a fixed cell. To this end, we fix a x; direction and denote the forward differences
defined on one dimensional lines parallel to the x; direction which join the vertices of
CY to each other with ug+,, where a* € o7 (Cy,i) := o/ (C{) N{a; = ;}. Note that

there are 2"~ ! forward spatial differences of this type.
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Then, for each x € C¥, the value %U 1 (x) will be represented as weighted average of

Ugry, Where o € o7 (CR Q).

d
TUg(x): Y  Weugy, xeCy (2.47)
Xi el (C2,i)

where the weight functions Wy« : CY — [0, 1] are continuous and satisfy

Y  Wel)=1, x €CY (2.48)
ared (CE,i)

Using this property we obtain the following estimation:

d
AR

Lemma 2.2.8 (Interpolation of a Discrete Dirichlet Problem [14]). For each A, let

2
dx<2"" Y 1ugy . (2.49)
€/ (0n)

{[fla} € Z f be a sequence of discrete control vectors for some R > 0. The follow-
ing statements hold for interpolations of the discrete state variable of the problem 9:
(a) The sequences {Uy} and {Ua} are uniformly bounded in L>(Q).

(b) For each i € {1,2,...,n}, the sequences {U\}, {%—%} are uniformly bounded in
L (0Q).

(c) the sequence {Ux — Uy} converges strongly to 0 in L,(Q) as h — 0.

(d) For each i € {1,2,...,n}, the sequences {% — UL} converges weakly to zero in

Ly(Q) as h — 0.

We define interpolations of the discrete state vector of the problem .4 in a similar

manner.
° VA:QZ—>R, Vi ca = Ug, Vae%(gf).
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V0 R Vg = e, Vo€ (0

e V{: Qi — R which assigns the value uy to each grid point in .Z’(Q}), and it is
a peicewise linear with respect to each variable x; when the rest of variables are

fixed.

By the same techniques that we used before we obtain these two evaluations for V,(x)

and a%VA/ (x)

/|VA’|2dx=/ ViPdx< ¥ 0" max JugP <2 Y W'lug’.  (2.50)
Q J0y) 7O 4(03)

<20 Y W'ug | (2.51)
o (0})

/ ’ax, Va

Lemma 2.2.9 (Interpolation of a Discrete Neumann Problem [14]). For each A, let

{[f]a} € FR be a sequence of discrete control vectors for some R > 0. The following
statements hold:

(a) The sequences {Vx} and {Vx} are uniformly bounded in L,(Q}).

(b) For each i € {1,2,...,n}, the sequences {Vi}, {%—‘;é} are uniformly bounded in
Lr(Q})-

(c) the sequence {Vy — Vi} converges strongly to 0 in Ly(Q) as h — 0.

(d) For each i € {1,2,...,n}, the sequences {%—‘;IA/ — Vi} converges weakly to zero in
L(Q)ash— 0.

(e) the sequence {Va —V{} converges strongly to 0 in L,(S) as h — 0.

The claims (a)-(d) are proved in Theorem 14 of [14]. We present the proof of the

claim (e), which is similar to the proof of the claim (d) in Theorem 14 of [14]. We
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observe that for each a € &7 (Q}")

Va() = Vi@ =lua— Y}, wor(x)uas|? (2.52)
ared (CY)
= | Z Weorr () (g — g ) |> < Z lug —ugr|*, ae.xeCy (2.53)
ared (CY) ored (CY)

We note that if a = (kq,k2,...,k,), then each a* € C¥ satisfies that o = {k;, k; +1}.
Therefore, for each fixed a* € o7 (CY), there is a (not necessarily unique) path along the
edges of the cell CY which starts at x4, ends at xq+ , and is made up of gluing together
at most n one-dimensional edges of the cell. Call such a path Py_, ¢+ , and Tp(x) the

tangent vector to the path at point x. It is easy to see then that we can write

Ugr — Uy = DyVadP =Y hugy, (2.54)

P, *
o—a Py o

where the sum on the right-hand side of (2.54) is taken over the o’ that correspond
to vertices of C{ which lie on the path Py_,o+ (except for the end-point xj, )), and j
corresponds to the spatial direction that the path Py_, ¢+ takes in moving from x, to the
next vertex that lies on the path. With this observation in hand and using the Cauchy-
Schwartz inequality, the following estimate is true, uniformly over the path chosen, and

uniformly over o*

ug- —ugl* <n Y, Rlug P <n Y Rugyl? (2.55)

edges of Py_, g edges of C{

where the sum on the right-hand side of (2.55) is taken over all &’ and j such that
o' € /(CY) and @' +e; € </ (CY) (intuitively, recall that the spatial differences uqry,

are in natural bijection with the edges of the lattice. So effectively, the sum is over all
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edges of the cell CY). Therefore, using (2.53) and (2.55), we have

A -Vi@PP<s Y 0 Y Plugyl
ared (CY) edges of CF

<@2'-Dn Y Rlugy|’, ae.xeCy (2.56)
edges of C¥

since there are 2" — 1 vertexes xq+ other than xq in C{. Now, using (2.56) we evaluate

17— VAI2,s)

(8
n
< Z /1“(2”_1)11 Z h2|ua/xj|2dS§ Z (2n_1)n2n_lzh2|uaxi|2/r ds
2 (S3) a edges of C¥ #(S) =~ .

as 'y is part of the smooth boundary S, for a fixed xog on Iy there exists r > 0 and

ye C' : R"~! — R such that

B (x0) NTq = {x € By(x0)|xn = Y(x1,X2,- -, Xn—1)} (2.57)

then for each x € I'y, N B,(xp) we use the following coordinate change:

where |D¢| = 1, then we have

Y \2 Iy \2 -1
d :/ 1+ (202 dyy...dyn_1 < CH"
/l"aﬁB,(xo) ’ yn_o\/ (3)’1) (3)’n—1) o Ynl
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since Iy 1s compact, so

ds < C{h"!
Iy

SO

n
/|VA(x)—VA’(x)|2 <c Y (2" —1)n2""! Zh2|uaxj|2h”_]
s o (8%) i=1

n
<Ch(2"—1)n2" 'Y 1" Y |uay|?
o i=1

By energy estimate (2.37) proof of this part is complete.

2.2.1 Approximation Lemmas

In this section we prove convergence of the interpolations of the discrete state vectors to
weak solutions of the respective elliptic PDE problems. In Lemma 2.2.10 we prove the
convergence of the multilinear interpolations of the discrete state vector of the problem
2 to the weak solution of the Dirichlet problem. In the following Lemma 2.2.11 we
prove similar approximation result for the problem .#". The proofs are similar to the

proofs given in [71].

Lemma 2.2.10. Let {[f]a} be a sequence of discrete control vectors such that there
exists R > 0 for which [f]a € F g foreach A, and such that the sequence of interpolations
{Pa([f]a)} converges weakly to f in Ly(Q). Then the sequence of interpolations {U, }
of associated discrete state vectors converges weakly in H'(Q) to u = u(x; f) € H}(Q),

with u the unique weak solution to the (2.3)—(2.4) in the sense of Definition 2.1.1.

Proof. From (a) and (b) of Lemma 2.2.8, it follows that {U A} is uniformly bounded
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in H'(Q). Consequently, {U;} has a weak limit point in H'(Q). Let u € H'(Q) be
any weak limit point of {U,} in H'(Q). By the Rellich-Kondrachev Theorem [42], it
is known that a subsequence of {U}} converges strongly to u in L,(Q). Moreover, by

construction, Uy = 0 on § for each A. Due to u being a weak limit point of {U}} in

H'(Q), it follows that

. /
Jim luls = Uklsllzo(s) = lslos) = O

from which we conclude uls = 0. Thus u € H}(Q). Now, we proceed to show that u
satisfies the integral identity (2.8). For simplicity of notation we write the subsequence
of {U,} that converges weakly to u in H'(Q) as the whole sequence A. Let 1 € (6;1 (0),
where %;1 (Q) be a space of all continuously differentiable functions on Q whose support
is a positive distance away from S. Since Qn " Q, it follows that there exists A* small
enough so that supp 7 C Oy for all A < A*. The collection of values {nq}, & € &7 (Q0n)
is an admissible test collection for the summation identity (2.19). Let us remind the

equation (2.19)

n
Z hn[ Z Ajjottax; Nox; + (_Zbiauaxi —dglUg +f§>noc =0 (2.58)
(s Lig=1 :

Then we define the piecewise constant interpolations a;,, b;,, aa of discrete valued

ins

functions a;jq, bja, aq as following

Ba = Bas BA =0elsewhere onQ, Va € 97(Qp)
A

where ﬁA represents d;j, , l_vl-A, an.

in addition, we define the interpolations for 14 and 7Ny, for each o € .7 (Q,) as follow-
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ing

= Na, fla = 0 elsewhere on Q,
A

Na

= Nay,, n 3 = 0 elsewhere on Q,

7l

C(X
With these functions and with the interpolations described for discrete state vector, iden-
tity (2.58) becomes

Z /C'X [ Z dijAUiﬁg-I— ZblAUA—aAUA—f—f )”A] =0 (2.59)
/(Qa) " ~A

ij=1 i

It can be easily proved that interpolations 1 and 7 3 converge uniformly on Q to the

functions 1 and 7, as A — 0. Consequently, the above identity can be written as

+J=0 (2.60)

Z / [ Z aij, Upx, + Zl_?iA 75 —anOa+ f*)n

i,j=1 i

where

Z/ [ al]AUA)(nA Ny,) + Z i—ﬁAUA—FfA)(ﬁA—TI)]
i,j=1

i

We claim |J| — 0 as A — 0. {ajj, }, {bi,}, {@a} are uniformly bounded in L=(Q), and
{Ui}, {Ua}, {2} are uniformly bounded in L»(Q) and 7j5 and 7} converge uniformly
on Q to the functions 1 and 1, as A — 0, they imply |J| — 0 as A — 0. In the following,

we show the convergence to zero for just one term.

1

' X / Y. 5,050 ~10)| < 1@l Ohlson () (Th=ms?)* =0

Al,j 1

It can be easily proved that g, , , b, aa, f® converge to the functions a; i, bi, a, f strongly

A
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in L,(Q) norm, hence in the following relation

+1=0 2.61)

y / Y @ Uing+ (= Y. billh — aly + f)n
o (0a) 7R i

i,j=1

where

Z / [ ale —daij )Uinxl‘

i,j=1

—Z( ~@s- a0+ (A=) )

|I| — 0 as A — 0. In the following, we show the convergence to zero for just one term.

1

< 108t ( [, @i —a)* =0

‘ Z / Z Aijy — aij UA’?x,

Alj 1

Finally, from Lemma 2.2.8 (c) and (d), we know that sequence {U}} converges weakly
to uy, in Ly(Q) and sequence {Up} converges strongly to u in Ly(Q). It follows that

taking A — 0 on (2.61) gives the identity

A

which is (2.8). Since €!(Q) is dense in set of admissible test functions for integral

Z ijt My, — ) itk —aun}dxz /Q fndx, ¥ €' (Q) (2.62)

i,j=1

identity (2.8) we have that u is a weak solution to the Problem (2.3)—(2.4) in the sense of
Definition 2.1.1. Therefore, we have proved that if u is a weak limit point of {U} } then
it must be a weak solution to the Problem (2.3)—(2.4). Due to uniqueness of the weak
solution it follows that {U} } has one and only one weak limit point, which shows that

the whole sequence {U}} converges weakly to u in H'(Q). Lemma is proved. [J
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Lemma 2.2.11. Ler {[f]|a} be a sequence of discrete control vectors such that there
exists R > 0 for which [f]a € F f for each A, and such that the sequence of interpolations
{Pa([fla)} converges weakly to f in L,(Q). Then the sequence of interpolations {V,}
of associated discrete state vectors converges weakly in H'(Q) to u = u(x; f) € H'(Q),

with u the unique weak solution to the (2.3), (2.7) in the sense of Definition 2.1.2.

Proof. From (a) and (b) of Lemma 2.2.9, it follows that {V,} is uniformly bounded
in H'(Q). Consequently, {V\} has a weak limit point in H'(Q). Let u € H'(Q) be
any weak limit point of {V{} in H 1(Q). By the Rellich-Kondrachev Theorem, it is
known that a subsequence of {V,} converges strongly to u in L,(Q). In addition, {V,}
converges to u on the boundary S in L(S) norm. Now, we proceed to show that u
satisfies the integral identity (2.9). For simplicity of notation we write the subsequence
of {V} that converges weakly to u in H'(Q) as the whole sequence A. Let n € ¢1(0),
where Q0 C O and €'! (Q) be a space of all continuously differentiable functions on Q.
We also assume that & > 0 is small enough that O} C 0. Then the collection of values
{Na}, o € &7 is an admissible test collection for the summation identity (2.21). We
claim that the limit function, u, satisfies the integral identity (2.9) . Let call the discrete

integral identity (2.21) as I, and the continuous integral identity (2.9) as 1.

n
I = Z n" [ Z Ajjolox;Nox; — Zbiauaxina —aqlUgNa ‘|‘f§na]
A (Q) i,j=1 i

+Ja(ta,Na) + Y, kattaMa (2.63)
7(83)

I::/ ( Z a,-juxjnxi—Zbiuxin—aun)dx+/kunds+/ undx
0 S Q0

ij=1 i

Then we define the piecewise constant interpolations a;,, b;,, a of discrete valued

ins
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functions a;jq, bja, aq as following

Ba = B Ba = 0 elsewhere onQ, Va € o7 (Q})
A

where B, represents g ias bi,, as. In addition, we define the interpolations for 7, and

ins

Nax; for each a € o7 (Q}) as following

Na

co = Na, Vo e ﬂ(QZ)

A

TTA = Nowx;> Va e M(QZ)

a

Note that f2 is the interpolation of f4. Using these interpolation functions I, is trans-

formed as follows:

=Y /a [ ) d,’jAVAjﬁi—ZBiAVAiﬁA_dAVAﬁA‘f‘fAﬁA]
(057w Lij=1 "
—|—Ja(lxt(x7rloc) + Z /S k(-x)VAﬁAds

(83)

n . - o .
- 0% [ Z dl’jAVA]ﬁZ_ZbiAVAlnA—aAVAnA+fA71A]
A i, j=1 i

+Ja(ua,na>+/sk(X)VAﬁAdS:0

Adding and subtracting some terms to /5, we obtain the following identity:

5
IN=1+Y R
i=1
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where

Ry = Z aiaVina — ZblAVAnA aaVafia + f1ia |,
ON\Q | ij=1

n
Ry =Jo(ug,Ne) =H" Z [Qauana + Z thxuocx,-naxi]a
o (S}) i=1

Rs—/[ZaUAV —Nx;) Z AVA(fIa — 1) — aaVa(fia — 1) + £ (s — n)]

i,j=1 i

¥ /S k() Va(fia — n)ds

Ry = /Q [ Z (dijA —Clij)VAjnxi —Z(EiA _bl)VAln - ((jA —G)VATI + (fﬁc _f>rl] )

We claim that by passing to the limit when A — 0, Iy — T and R; -0 fori=1,...,5.
Using Cauchy Schwartz inequality and extending the region of integration from Q3 \ Q

to Q7 for functions VA" and V we obtain the following estimate for R:

R <C Zl 7P (o 1MAllLy 0500 +CZZ VAl Lo 1 7all o500
i.j

"’CSHVAHLZ(QZ) 17l 2,05\0) +C4”fAHL2(QZ) 171l L,(05\0)

Lemma 2.2.9 (a) and (b), Proposition 2.2.7, and the fact that all a;;,b;,a are bounded
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functions imply that

[R1| <Cs Y 1AallLyo5\0) + Collfiallyiop00)
=1

1=

interpolations 7 and 7 i converge uniformly on Q to the functions N and 7y, as A — 0

and since 1 € €1(Q) and |Q} \ Q| — 0 and we have
IRi| —0, as A—0
Now we try to show that R, is small.

n
Rz =n" Z [eauana + Z e(lxuaxinocxi] = RZI +R22
() =

|R21| = |1" Z OattaNa| < Czn_lnh”[u([f]A)]A”ifl(Qz) + Z R'ugMNa
o (S3) o (83)

< 2" nh[[u([A1mall3p gy + 1Vallo(op sl acoz00

< Mh+N|7allL, 0500 — 0

where 27! is the number of vertices in Cg‘ other than the natural corner, and # is the
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maximum number of edges that connect x,, to the natural corner in C¥’.

n
|R22| - |hn Z Z e&uaxinaxi|

o (8)i=1
<() Zh”e‘uax H®Y Zh"eanam
,Qi(S* o (83)i=
<V Y W) e Z Y iz
= IW(QA ) i=1g/( SA
Z Y i) Inleval Y Ky
i=1 (QZ() A (S})

Y R )?nlle vk (2]S])? =0
i= 1szf(QA )

Sum with respect to all grid points of S} is bounded by the Lebesgue measure of S}.
Since S is Lipschitz, the latter converges to Lebesgue measure of S as 4 — 0; This imply
that for sufficiently small h, it will be bounded by 2|S|. The same argument that we used
for Ry implies that Ry1,R»; — 0as A — 0.

Using Cauchy Schwartz inequality and Lemma 2.2.9 (a) and (b) we get the following

estimation for R3:

R3] = ‘/Q Z aiaVi(Mh — 1) Z iaVA(Tla — 1) — @aVa(la — 1 )+fA(fIA—TI)]

i,j=1 i

<N Y 17iA = Mllyc0) + N2 lIfia — NlLy0) + Nallfia = 1|y (s)

+ /S k() Va (7l —10)ds 3

It can be easily proved that interpolations 1 and 7 3 converge uniformly on Q to the
functions 1 and 7, as A — 0, so R3 — 0.

Using Cauchy Schwartz inequality and Lemma 2.2.9 (a) and (b) and the fact that n €
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€' (Q) we get the following estimation for Ry:

R4| = | /Q [ Y (aija—aij)Viny — Y (bia — b)) Vin — (ay — a)Van + (f* - f)n]
i=1 ~

1

n

n
< Y Hillaia—aijllLy o) +Ha2 Y 1bia—billLy0) +Hsllaa —ally o) +Hall £~ fllLy(0)
ij=1 i=1

(2.64)

By convergence of the Steklov averages to the original function in L,, it implies that
dijy, biy, an, f* converge to a;j, b, a, f strongly in Ly(Q) norm; Thus, it follows that
R4 —0

By adding and subtracting V} and % and using the fact that a;;, b;, a are bounded we

calculate the following estimate:

n . o ~
[Rs| = ‘/Q[ Y aij(Vy —ue)n = Y bi(Va —ux)n +a(VA—u)n}
ij=1 7

" v n v

<KL VA= 50 o) +K1 L 150 = )
J= J=

noo_. dV] "9V -
+K Y [IVA— a_)f”Lg(Q) +K) | axA, — ||y 00) + K3l1Va = Vally(0)
=1 ! i=1 !

1

+ /S k(x) (Vs — u)nds

+K3||Va —ull 1, (0) + KallVa = Vall Ly (s) + KallVA = ull s

Lemma 2.2.9 (¢),(d), (¢) and Approximation Lemma implies that Rs — 0.

Finally, since ! (Q) is dense in set of admissible test functions for integral identity (2.9)
we have that u is a weak solution to the Problem (2.3)—(2.7) in the sense of Definition
2.1.2. Therefore, we have proved that if u is a weak limit point of {V,} then it must be
a weak solution to the Problem (2.3)—(2.7). Due to uniqueness of the weak solution it

follows that {V} has one and only one weak limit point, which shows that the whole
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sequence {V/} converges weakly to u in H 1(Q). Lemma is proved. [J

2.3 Proofs of Main Results

2.3.1 Proof of Theorem 2.1.6

Proof of Theorem 2.1.6. To prove 2.24 and 2.27, it is enough to show that conditions (i)
and (ii) of Lemma 2.2.6 for problem & are satisfied.

Step 1. In this step we show that for any f € .#K,
lim |73 (25(f)) — # (/)] =0 (2.65)
A—0

In Preposition 2.2.7 it is shown that 25 (f) = [f]a € .ZX, and the sequence { PA(2a(f))}

converges strongly to f
PA([f]a) = f strongly in Lr(Q) as A — 0 (2.66)

this shows that the requirement of the Theorem 2.2.10 is satisfied and it follows that the
interpolations {U} } of the discrete state vectors [u([f]a)]a converge weakly in H'(Q) to
the unique weak solution u = u(x : f) of the PDE problem with control f.

Let define Gy, F and Fy as piece wise constant interpolation of collection {g¢},{fu}

and { fo }which is defined by the formula (2.15)

=ga, Vo€ (Dy), Gao=0 elsewhere on D

= fa, Vo€ (Qy), FA=0 elsewhere on Q
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FAl = fa, Yoed(Qy), ﬁA =0 elsewhere on Q
cx

then we note that

INEa(f Z h |ug — ga|2+B Z R\ fo— fa|2
M A) (QA)

Z / On—GalP+B Y H'|Fn—Fal?
o (0y)

= |0a — Gallyy) + I1Fa — Fally(0,)

= [|Ua£u+g—Gallyp) + 1Fa£ f £ F—GallLyg)
< ||UA—M||L2(DA) + HGA_gHLz(DA) +lu—gllL,y)
+1Fa— fllrac0 + ||ﬁA_f||L2(QA) +1f = FllLacon)

= |0a — ull Ly 0y) + 1Ga = &llLy(0) + 1Fa = Flliaton) + 1Fa = Fllyiom + 2 (f)
Lemma 2.2.8(c) and Theorem 2.2.10 imply that when A — 0
10a—ul|, =0
strong convergence of Steklov average to the original function as A — 0 implies that
1Ga—gl, =0, |IFa—FllLy0m) = 0 1Ea— FllLyon) — O
SO

lim 7 (24(f))— 7 () =0
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Hence, (2.65) is proved.
Step 2. In this step we show that for any collection of numbers {[f]a} such that [f]a €
N

iig%)Lﬁ(gZA([f]A))_jA([f]A))l =0 (2.67)

Preposition 2.2.7 implies that the sequence Z?5([f]a) is uniformly bounded in L,(Q)
norm. Hence, there exists a subsequence of that converging weakly in L,(Q) to some
f € FR. We know that there is a unique state vector & := u(x; f) € H} (Q) which solves
the problem (2.3)—(2.4). By Theorem 2.2.10, we also know that the sequence of inter-
polations {U, } of [u([f]a)]a, discrete state vectors associated to [f]a, converges weakly
in H'(Q) to @t. For simplicity, we use the whole sequence 4 ([f]4) instead of the sub-
sequence.

To prove (2.67), we add and subtract .7 (f) to (2.67) and we get the following inequality

|2 (PA(lf]a) = Aa(fla)l <L+ 1

where

and
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Then weak continuity of .# implies that I; —-0as A — 0.

To show that I — 0 as A — 0, let consider the following

A(A) — 2 ()| = 'gh"\ua—gaﬁ— [ - gtoa

= | [ 105 Gaap - [ oo+ GaPax
0 0

§/|UA—D7\2+/|GA—8|2+2/ |Oa — it |ii — G4
0 0 0

+2/Q|GA—ngZ—GA‘ <A +Ay;+2A3+2A4

By Lemma 2.2.10 and Theorem 2.2.8, it follows that A} — 0. By convergence of the in-
terpolation of Steklov average to the original function, A — 0. Theorem 2.2.10, Lemma
2.2.8, and the fact that g € L(Q) and & € H} (Q) imply that A3, A4 — 0. Therefore, it is
proved that I, — 0.

In step 1 and step 2, we have proved conditions of the Lemma 2.2.6. Thus, 2.24 and
2.27 are satisfied. In order to prove the rest of Theorem 2.1.6, we consider the sequence
{[flae} € ZFR. 1tis followed by lemma 2.2.7 that { Z5([f]a)} is uniformly bounded
in Ly(Q). Assume f. € Ly(Q) is a weak limit point of this sequence. Weak continuity
of .# and 2.27 implies that . (f,) = %, and f, € ¥.. In addition, referring to Theo-
rem 2.2.10 there exists a unique discrete state vector [u([f]a.¢)]a corresponding to [f]a ¢
whose interpolations, {Uy }, converge weakly in W, (Q) to u = u(x; f+), a weak solution

to the (2.3)—(2.4) in the sense of (2.1.1).0]

2.3.2 Proof of Theorem 2.1.7

Proof of Theorem 2.1.7. To prove (2.28) and (2.31), it is enough to show that conditions

(1) and (2) of Lemma 2.2.6 are satisfied.
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Step 1.In this step we show that for any f € .ZX,

lim | Za(25(f)— 7 (/)] =0 (2.68)

In Preposition 2.2.7 it is shown that 24(f) = [f]a € ZX, and by convergence of the
Steklov averages to the original function in Ly, it follows that the sequence { Zx(2a(f))}
converges to f

PA([f]a) — f strongly in Lr(Q) as A — 0 (2.69)

Therefore, the conditions of the Lemma 2.2.11 is satisfied and it follows that the inter-
polations {V} of the discrete state vectors [u([f]a)]a converge weakly in H'(Q) to the
unique weak solution u = u(x : f) of the PDE problem with control f.

Let define G, and Z, as piece wise constant interpolation of collection {gq} and {z},}

which are defined by the formula (2.15).

Ga| =ga, Yoed(Dy), ZA

Cx

where

1Zal2, 0, /]ZA|2ds— Z / ZpPds = Z Tyl |Fa!/ ods)?
<Y —|Fa|/ zzds:/zzds
/Ty Tal T r

In the proof, we use the following identity for elements a, b, ¢ of the Hilbert space H

|la— b”12q —|lc —bH,zq ={a—c,a—c)—2{a—c,b—c) (2.70)
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In this section, we skip the third term of _Zx(2a(f)) and _# (f) due to strong conver-

gence of Steklov average to the original function.

IA2af) = I (f) =
Z W'ug —gal*+ Y [Tallua — 25

o/ (D) A (Ta)
— [ It ) = ) P [ Juei ) =2(0ds
r
=1+

where

= ¥ Wlua—gal = [ Ju(xs) = gx) Pax

A (D)

hi= Y allua =P~ [ () —z(x)Pds

A (Tp)

We claim that J; - 0asA— 0

Y [V Gal = [t glo) P
D*+

5 A2 2
= [|Va— GA”Lz(DZ) - H“_gHLZ(D)

V= G2, ) — = 8l — = 12, )+ 11— g1
> ~ 12

:HVA_GA”LZ(' _H”_g”L2 "’H” g”LzD*\D)

=Ju+Ji2+J13
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Where we extended g to a bigger set D which covers D when /& > 0 is small enough,

then due to absolute continuity of integral we have

Using (2.70) and adding and subtracting some additional terms to J; we get

¥, A2 A2 2
Ju+Ji=|[Va— GAHLZ(DZ) =+ [|lu— GAHLZ(DZ) - H“_g“Lz(DZ)

+[|Ga — g”%z(DZ) —2(Gr—g,u—g)
By convergence of the Steklov averages to the original function in L,, it follows
||G~A—g||i2(DZ) —0, as A—0 (2.71)
By Lemma (c) and Approximation Lemma, we also have

[Va— “”iz(bz) < ||Va- VA”iz(DZ) +[[Va— ”Hiz(]jz) (2.72)

v 2 2
Cauchy Schwartz inequality implies

¥, 2 ~ 2 ~ 2 2
Vi1 +Ji2| < HVA—””LZ(DZ)HGA_”HLQ(DZ) + HGA_gHLz(DZ)H”_gHLZ(DZ) (2.74)
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(2.71), (2.73) and the fact that G, is bounded in L, (Dy) proves that
Ji—0, as A—0

In addition, we claim that J, - 0as A — 0

Bi= Y [Fallita =2 = [ Ju(xif) =20 Pds

o (Ta)

=%§A) /r IARAS /F u(x; f) — 2(x) Pelx

= 1Va = ZallZ, ) — llu—zllZ,m)
Using (2.70), J> becomes

D = |[Va—Zall 7,0y £ lu = Zall7, ) — llu =217
= [1Va—ull7, ) —2(Va—u,Zp —u)

+12a —Z||%2(r) —2(Zn—zu—2)

By convergence of the Steklov averages to the original function in L,, it follows

1Za —z||i2(r) —0, as A—0
By Lemma (e) and Approximation Lemma, we also have
% 2 % 2 2
1Va = ullz, iy < IVa = Vallzy o) +IVa —ullz,

- > 2
< Va=Vall,5) t1IVa—ullz,s — 0. as A—0
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Cauchy Schwartz inequality implies
ol < Wa—ull oy 1Za =l oy + 126~ 22 o lu—2leey  @78)
(2.76), (2.77) and the fact that Z, is bounded in L, (I") proves that
Jrp—0, as A—0 (2.79)

SO

lim _7(2A(f)) - 7 (f) =0

A—0

Hence, (2.68) is proved.

Step 2. In this step we show that for any sequence {[f]a} such that [f]x € ZX, we have

lim |7 (Za([f1a)) = £a(lfla) =0 280

Preposition 2.2.7 implies that the sequence Z?z([f]a) is uniformly bounded in L;(Q)
norm. Hence, there exists a subsequence of that converging weakly in L,(Q) to some f €

Z R For simplicity, we use the whole sequence 925 ([f]a) instead of the subsequence.
PA([f]a) — f weakly in Lr(Q) as A — 0 (2.81)

this shows that the requirement of the Theorem 2.2.11 is satisfied, so the same argument

that proved (2.68) can lead us to the following assertion

lim | Za((f]a)— 7 (7)] =0 (2.82)
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To prove (2.80), we add and subtract _#Z (f) to (2.80) and we get the following inequality

| Z(Za(f1a)) = Aa(AIaN < 12 (Za(f1a) = 2 (DI + 1.7 (F) = Za((f]a))]

Then weak continuity of _¢# implies that /; —0asA — 0.

In step 1 and step 2, we have proved conditions of the Lemma 2.2.6. Thus, 2.28 and
2.31 are satisfied. In order to prove the rest of Theorem 2.1.7, we consider the sequence
{[flae} € ZR. 1tis followed by lemma 2.2.7 that { Z5([f]a)} is uniformly bounded
in L»(Q). Assume f; € L,(Q) is a weak limit point of this sequence. Weak continuity of
7 and 2.31 implies that ¢ (f.) = _#, and f. € .%,. In addition, referring to Theorem
2.2.11 there exists a unique discrete state vector [u([f]a¢)]a corresponding to [f]a¢
whose interpolations, {V, }, converge weakly in W21 (Q) to u, = u(x; fx), a weak solution

to the Neumann problem (2.3), (2.7) in the sense of (2.1.2).0]

Remark 2.3.1. It is an important open problem to extend the methods of this Chapter
to analyze the optimal control problem for elliptic and parabolic PDEs in domains with
non-compact boundaries by employing well-posedness and regularity theory of elliptic

and parabolic PDEs in general unbounded open sets [1, 2, 3, 4, 7].
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Chapter 3

Cancer Detection through Electrical
Impedance Tomography and Optimal
Control of Elliptic PDEs

3.1 Introduction and Problem Description

This chapter of the dissertation analyzes inverse EIT problem of estimating an unknown
conductivity inside the body based on voltage measurements on the surface of the body
when electric currents are applied through a set of contact electrodes. Let Q € R" be an
open and bounded set representing body, and assume A(x) = (aj; ()C))Z.:1 be a matrix
representing the electrical conductivity tensor at the point x € Q. Electrodes, (E;)" ,,

with contact impedances vector Z := (Z;)/"., € R’} are attached to the periphery of the

body, dQ. Electric current vector I := (I;)/"; € R™ is applied to the electrodes. Vector
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1 is called current pattern if it satisfies conservation of charge condition

3.1

oL
=~

Il

(@)

~
—_

The induced constant voltage on electrodes is denoted by U := (U;)]"., € R™. By spec-

ifying ground or zero potential it is assumed that
m
Y U,=0 (3.2)
I=1

EIT problem is to find the electrostatic potential # : Q — R and boundary voltages U on
(E;)]™,. The mathematical model of the EIT problem is described through the following

boundary value problem for the second order elliptic partial differential equation:

n

— .Zl (aij(¥)uz;) , =0, X€Q (3.3)
i
%uﬁ) =0, x€d0~ z@l E, (3.4)
u(x)+z,%’f/(;) =U, x€E,l=1,m (3.5)
£, a;/(ﬁ)ds =1, I=T,m 3.6)
where
dul(x)

1

be a co-normal derivative at x, and v = (v', ..., v") is the outward normal at a point x to

dQ. Electrical conductivity matrix A = (a;;) is positive definite with

Y ()& > nY & VE R 1>0. S
i=1

i,j=1
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The following is the EIT Problem: Given electrical conductivity tensor A, electrode
contact impedance vector Z, and electrode current pattern I it is required to find elec-

trostatic potential u and electrode voltages U satisfying (3.2)—(3.6):
(A,Z,I) — (M,U)

The goal of this chapter is to analyze inverse EIT problem of determining conductivity
tensor A from the measurements of the boundary voltages U*. Inverse EIT Problem:
Given electrode contact impedance vector Z, electrode current pattern I and boundary
electrode measurement U*, it is required to find electrostatic potential u and electrical
conductivity tensor A satisfying (3.2)—(3.6) with U = U™,

We refer to Chapter 1 for literature review on inverse EIT problem.

3.2 Optimal Control Problem

We formulate Inverse EIT Problem as the following PDE constrained optimal control

problem. Consider the minimization of the cost functional

m

Jm=Y

=1

U — 2
/Z—u(x)ds—h’ +BlU—U*? (3.8)
E Z

on the control set

Ve={v=(AU)€ (Lm(Q;M"X") ﬂHS(Q;M"X")) x Rm‘ Y U, =0,
=1

IAl|L. + [ Alle + U < R, ETAE > u|& P, VE €R", p >0}
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where 8 > 0, and u = u(-;v) € H'(Q) is a solution of the elliptic problem (3.3)—(3.5).
This optimal control problem will be called Problem _#. The first term in the cost
functional _# (v) characterizes the mismatch of the condition (3.6) in light of the Robin
condition (3.5).

Note that the variational formulation of the EIT Problem is a particular case of the
Problem ¢, when the conductivity tensor A is known, and therefore is removed from

the control set by setting R = +o0 and 8 = 0:

U; — u(x)

7(U) :g‘i‘/El o ds—Il‘z

— inf (3.9

in a control set

W:{UeRm‘iUI:O} (3.10)
=1

where u = u(-;v) € H'(Q) is a solution of the elliptic problem (3.3)—(3.5). This optimal
control problem will be called Problem .#. It is a convex PDE constrained optimal
control problem (Remark 3.4.3, Section 2.3).

Inverse EIT problem on the identification of the electrical conductivity tensor A with
m input data (1;)" , is highly ill-posed. Next, we formulate an optimal control problem
which is adapted to the situation when the size of input data can be increased through
additional measurements while keeping the size of the unknown parameters fixed. Let

U! = U,I' = I and consider m — 1 new permutations of boundary voltages
U/ = Uy, Up, Uty oy Uj), j=2,.0m (3.11)

applied to electrodes E1,E,, ..., E,, respectively. Assume that the “voltage—to—current”

measurement allows us to measure associated currents I/ = (ff,---,I},). By setting
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m

U! = U* and having a new set of m? input data (1/) 1> We now consider optimal control

problem on the minimization of the new cost functional

H(v) = L Zas—I| +BlU-U* (3.12)
m=L|[ " /[ +w-v]

on a control set Vg, where each function u/ (AU J ),j =1,...,m, solves elliptic PDE
problem (3.3)—(3.5) with U replaced by U/. This optimal control problem will be called
Problem .. Note that the number of input currents in the Problem . has increased
from m to m?. However, the size of unknown control vector is unchanged, and in partic-
ular there are only m unknown voltages Uy, - - - ,U,,. The price we pay for this gain is the
increase of the number of PDE constrains, which has increased from 1 to m. It should
be noted that similar approach can be pursued to increase the size of input data up to m!
by adding possible permutations of U in (3.11).

We effectively use Problem .# to generate model examples of the inverse EIT prob-
lem which adequately represents the diagnosis of the breast cancer in reality. Computa-
tional analysis based on the Fréchet differentiability result and gradient method in Besov

spaces for the Problems _# and ¢ is pursued in realistic model examples.

3.3 Main Results

Let bilinear form B : H'(Q) x H'(Q) — R be defined as

n m 1
Blu,n] :/Q Y aijuxjnx[dx‘f‘l_zlz/ElundS, (3.13)

=1

Definition 3.3.1. For a given v € Vg, u = u(-;v) € H'(Q) is called a solution of the
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problem (3.3)—(3.5) if

m 1
Blu,n]=Y = [ nuds, vneH'(Q). 3.14
[, ] ;ZZ/EITI 1as neH (Q) (3.14)

For a given control vector v € Vg and corresponding u(-;v) € H;(Q), consider the

adjoined problem:

Y (aijws)x, =0, x€Q0 (3.15)

i

WV xeaQ—Lij (3.16)

N ’ et ! :
81// o u—"U o

Ytz =2 = ds+2I, xcE,l=Tm (3.17)

Definition 3.3.2. w € H'(Q) is called a solution of the adjoined problem (3.15)-(3.17)
if

. ﬂ M—Ul 1
B[w,n]—;/E]Zl [2/El 7 ds-+21|ds, ¥n € H'(Q). (3.18)

In Lemma 3.4.1, Section 2.3 it is demonstrated that for a given v € Vg, both elliptic

problems are uniquely solvable.

Definition 3.3.3. Let V be a convex and closed subset of the Banach space H. We say
that the functional ¢ :V — R is differentiable in the sense of Fréchet at the point v € V

if there exists an element _¢'(v) € H' of the dual space such that

FvAh) = Fv)= (I (v),h)y+o(h,v), (3.19)

where v+h € VN{u: ||u|| <y} for some y> 0; (-,-)y is a pairing between H and its
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dual H’, and
o(h,v)

—= —0, asl|hl|—0.
1]

The expression d_# (v) = (_#'(v),-)y is called a Fréchet differential of # atv eV,

and the element _#'(v) € H' is called Fréchet derivative or gradient of # atv e V.
Note that if Fréchet gradient #'(v) exists at v € V, then the Fréchet differential
d_# (v) is uniquely defined on a convex cone ([5, 6, 10, 12, 13, 11, 9])

H,={weH:w=Au—v),A €[0,4o),ucV}.

The following are the main theoretical results of this chapter:

Theorem 3.3.4. (Existence of an Optimal Control). Problem ¢ has a solution, i.e.

Vo= {r=(AV) € Vi £ (1) = .= inf 7 (1)} 0 (3.20)

Theorem 3.3.5. (Fréchet Differentiability): The functional # (v) is differentiable on
Vi in the sense of Fréchet; the Fréchet differential d_# (v) and the gradient #'(A,U) €
L' xR™ are

</'(V)’6V>H:_/Q i ule[/xlﬁaijdx

ij=1

ey (Y2 [ A as—n) [ S ou-wto)ds+2BWU—Up)U G2

J(40) = (Fia0), 7H(A.U))
= <_(‘l’x;”x/')z_i=1’(22[/ Ulz_uds_ll}/ Zl(‘s”‘_Wk(s))deB(U"_U;))z:l)

E; £}

(3.22)

58



where u=u(-;v), ¥ = y(-;v); whk= % =u(A,er), k=1,2,..,mis asolution of (3.3)—
(3.5) withv = (A, e;), ex € R is a unit ort vector in xi-direction; Oy is a Kronecker delta;
6v=(6A,0U) = ((6aij)} ;_,,(8Ur)y,) is a variation of the control vector v € Vg such

that v+ &v € Vg.

Corollary 3.3.6. (Optimality Condition) If v € Vi is an optimal control in Problem ¢,

then the following variational inequality is satisfied:

(J'(v),y =), >0, WE V. (3.23)

Corollary 3.3.7. (Fréchet Differentiability): The functional ¢ (v) is differentiable on

Vi in the sense of Fréchet and the Fréchet gradient ¥ (c,U) € ' x R™ is

H'0) = (HAV), HGAD)) =
Y " C —uj , i
(~(B v, (£ ] ) | 2
+2B(Uk—U,j))km:1> (3.24)

where W/ (-), j = 1,...,m, be a solution of the adjoined PDE problem (3.15)—(3.17) with

u(-),U and I replaced with u/(-),U/, I respectively, and

6 =

m+k—j+1, if j > k.
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3.3.1 Gradient Method in Banach Space

Fréchet differentiability result of Theorem 3.3.5 and the formula (3.22) for the Fréchet
derivative suggest the following algorithm based on the projective gradient method in

Banach space H for the Problem #.
Step 1. Set N = 0 and choose initial vector function (A?,U®) € Vi where

m
AY = (@), U0 = (U),....Up), Y U =0
1=0

Step 2. Solve the PDE problem (3.3)~(3.5) to find u" = u(-;AN,UV) and _# (AN,UY).
Step 3. If N =0, move to Step 4. Otherwise, check the following criteria:

_ _ -1 _
JAYUY)— g @V ON A AN N g
F(AN-T T [4VT] "]

(3.25)
where € is the required accuracy. If the criteria are satisfied, then terminate the

iteration. Otherwise, move to Step 4.
Step 4. Solve the PDE problem (3.3)~(3.5) to find w = u(-;AN,e),k=1,...,m,
Step 5. Solve the adjoined PDE problem (3.15)—~(3.17) to find wy = w(-;AN, UV u™).

Step 6. Choose stepsize parameter oy > 0 and compute a new control vector compo-

nents ANt = (df.\]’-+1 ()7 =1, ONF € R™ as follows:

ay ! (x) = aj(x) + angu;Vj, ij=1,..,n, (3.26)
N n UN —uN(s 1
U;rivﬂ :U/?]—OCN[ZZ"2</EI—I Z ( )ds—h) /EIZ(&k_WI]y(S))ds
=1
+2ﬁ(U,§V—U,j)],k: 1. (3.27)
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Step 7. Replace (AN, V1) with (AN, UN*1) € Vg as follows

K, if aytl(x) <u,
Ayt ()=qat(x), ifp<alt () <R, (3.28)
\R, if d%“(x) >R
U1€V+1:Uliv+l_%]iﬁliv+lv k=1...m (3.29)

Then replace N with N + 1 and move to Step 2.

Based on formula (3.24) similar algorithm is implemented for solving Problem % .

Remark 3.3.8. Differentiability result and optimality condition similar to Theorem 3.3.5
and Corollary 3.3.6 are true for the Problem .# and the gradient .#/, coincides with _#,
from (3.22). Similar algorithm for the gradient method in R applies to the Problem .#

in which case only iteration of the parameter U is pursued.

3.4 Proofs of the Main Results

Well-posedness of the elliptic problems (3.3)—(3.5) and (3.15)—(3.17) follow from the

Lax-Milgram theorem ([42]).

Lemma 3.4.1. For Vv € Vg there exists a unique solution u = u(-,v) € H'(Q) to the

problem (3.3)—(3.5) which satisfy the energy estimate

m
lull7 gy < CY. Z72UF (3.30)
=1
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Proof: Step 1. Introduction of the equivalent norm in H'(Q). Let

1
m 2
[ul|[1 () = {/ |Vu|2dx—|—2/ uza’s} , (3.31)
0 =1"Ei

and prove that this is equivalent to the standard norm of H'(Q), i.e. there is ¢ > 1 such

that Vu € H'(Q)

CilHu”Hl(Q) < [lullla1(g) < cllullmg) (3.32)

The second inequality immediately follows due to bounded embedding H'(Q) < L*(2Q)

([42]). To prove the first inequality assume on the contrary that
Vk>0, JueH'(Q) suchthat [lullgig) > k|l | (o).
Without loss of generality we can assume that ||uy|| = 1, and therefore
IVetrll,0— O, llutllyy— O, ask oo, 1=1,2,...m. (3.33)

Since {u;} is a bounded sequence in H'(Q), it is weakly precompact in H'(Q) and
strongly precompact in both L,(Q) and L,(dQ) ([87, 29, 30]). Therefore, there exists
a subsequence {uy } and u € H 1(Q) such that ug, converges to u weakly in H 1(Q)
and strongly in L(Q) and L,(dQ). Without loss of generality we can assume that the
whole sequence {u;} converges to u. From the first relation of (3.33) it follows that Vi
converges to zero strongly, and therefore also weakly in L?(Q). Due to uniqueness of
the limit Vu = 0, and therefore u = const a.e. in Q, and on the dQ in the sense of traces.
According to the second relation in (3.33), and since |E;| > 0, it follows that const = 0.

This fact contradicts with ||uy|| = 1, and therefore the second inequality is proved.
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Step 2. Application of the Lax-Milgram theorem. Since v € Vg, by using Cauchy-
Bunyakowski-Schwartz (CBS) inequality, bounded trace embedding H'(Q) < L?(2Q)

and (3.32) we have the following estimations for the bilinear form B:

[Blu, ]| < allully1 (o) Inllm1 gy Blitsu) = Blullz o) (3.34)

where o, B > 0 are independent of u, 1. Note that the component U of the control vector
v defines a bounded linear functional U : H'(Q) — R according to the right-hand side
of (3.14):

n 2 U
Umn):=Y = | nds. (3.35)
(1) zzizl A

Indeed, by using CBS inequality and bounded trace embedding H!(Q) < L*>(3Q) we

have

N 1,3 1
) <101 (X Z7°U7) * M lyo0) < Clnlla o) (3.36)
=1

From (3.34),(3.36) and Lax-Milgram theorem ([42]) it follows that there exists a unique
solution of the problem (3.3)—(3.5) in the sense of Definition 3.14.
Step 3. Energy estimate. By choosing 1 as a weak solution u in (3.14), using (3.7)

and Cauchy’s inequality with € we derive

m c m _ m
| Vullz, o) “0,21 el e < 5 121 Z;*Uf +e|aQ|lZ1 ( / | |u|2ds) (3.37)

where 79 = 1r<r}1<n Zl_l. By choosing € = (2|0Q|)~'zo from (3.37) it follows that

m
et 11 gy < CIZIZ;ZUE. (3.38)

From (3.32) and (3.38), energy estimate (3.30) follows. Lemma is proved.ll
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Corollary 3.4.2. For /v € Vg there exists a unique solution Wy = y(-,v) € H'(Q) of the

adjoined problem (3.15)—(3.17) which satisfy the energy estimate

U —u
Z

n 2
vz o) SCZZZZ[/ ds—Il] (3.39)
=1 E

where u = u(-;v) € H'(Q) is a solution of the problem (3.3)~(3.5) .

Proof of Theorem 3.3.4. Let {v;} = {(A*,U*)} C Vi be a minimizing sequence

lim 7 (v) = 7.

k—roo

Since {A*} is a bounded sequence in HE (Q; M), it is weakly precompact in H€(Q; M™*")
and strongly precompact in L (Q; M"™*") ([87, 29, 30]). Therefore, there exists a subse-
quence {A*?} which converges weakly in H(Q;M"*") and strongly in L,(Q; M"™") to
some element A € H®(Q;M"*"). Since any strong convergent sequence in Ly (Q;M"*")
has a subsequence which converges a.e. in Q, without loss of generality one can assume
that the subsequence A*» converges to A a.e. in Q, which implies that A € L.,(Q; M) N
HE(Q; M™ ") N Vg. Since U* is a bounded sequence in R™ it has a subsequence which
converges to some U € R™ |U| < R. Without loss of generality we cam assume that the
whole minimizing sequence vy = (A, UX) converges v = (A,U) € Vi in the indicated
way.

Let uy = u(x;vy), u = u(x;v) € H'(Q) are weak solutions of (3.3)—(3.5) correspond-
ing to v, and v respectively. By Lemma 3.4.1 u; satisfy the energy estimate (3.30)
with U¥ on the right hand side, and therefore it is uniformly bounded in H 1(Q). By
the Rellich-Kondrachov compact embedding theorem there exists a subsequence {uy, }

which converges weakly in H'(Q) and strongly in both L,(Q) and L, (9 Q) to some func-
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tionii € H' (Q)(187, 29, 30]). Without loss of generality assume that the whole sequence
uy converges to ii weakly in H'(Q) and strongly both in L,(Q) and L,(dQ). For any

fixed n € C'(Q) weak solution uy satisfies the following integral identity

n moq mo
k k
/ E aljukleyxldx+lzl l/luknds lzl ]/ZT’UI ds (3 0)

i,j=1

Due to weak convergence of Vi to Vii in L, (Q;R"), strong convergence of u to i in
L,(dQ), strong convergence of afj to a;j in L,(Q) and convergence of U* to U, passing

to the limit as k — oo, from (3.40) it follows

a;jliy My, dx + —/ inds = —/ Uyds. 3.41)
/QZ i, M Z_lel @ I—Zizl U

ij=1

Due to density of C!(Q) in H'(Q) ([87, 29, 30]) the integral identity (3.41) is true for
arbitrary n € H l(Q). Hence, i is a weak solution of the problem (3.3)—(3.5) corre-
sponding to the control vector v = (A,U) € Vg. Due to uniqueness of the weak solution
it follows that i = u, and the sequence u; converges to the weak solution u = u(x;v)
weakly in H'(Q), and strongly both in L, (Q) and L, (dQ). The latter easily implies that

A )= lim 7 (v,) = 7.

n—soo

Therefore, v € V, is an optimal control and (3.20) is proved. B
Proof of Theorem 3.3.5. Letv=(A,U) € Vg is fixed and dv = (0A, 6U) is an incre-
ment such that v = v+ 8v € Vg and u = u(-;v), i = u(-;v+ 6v) € H'(Q) are respective

weak solutions of the problem (3.3)—(3.5). Since u(-;A,U) is a linear function of U it
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easily follows that

d
W= D i) €HQ) k=12,

is a solution of (3.3)—(3.5) with v = (A, e;), ey € R™ is a unit ort vector in x-direction.

Straightforward calculation imply that

8Uk 1:212[/

where 8y is a Kronecker delta.

1
ds—Il}/ — (S —wNYds +2B(U —U}), k=1,...,m.
E Z

In order to prove the Fréchet differentiability with respect to A, assume that 6U = 0

and transform the increment of / as follows

o _ v L u—"U
0 7 = 7 (v+dv) /(V)_ZZIZZ/Elz([E, Z ds+Il>5uds+R1, (3.42)
2 m

R = Zz,—Z(/E 5uds) < Y |E1Z2[[18ulllF o) (3.43)
=1 l

=1

where u = it — u. By subtracting integral identities (3.14) for & and u, and by choosing

test function 7 = y(+;v) as a solution of the adjoined problem (3.15)—(3.17) we have

| JE;

/QZ (Saijuxj +a;j(6u)y; + 5a,~j(3u)xj) Wy, dx + Z Zl youds = 0. (3.44)
iy I=1

By choosing 17 = du in the integral identity (3.18) for the weak solution y of the ad-

joined problem we have

ds +20 — l//} ds=0 (3.45)

/ Z“Zl‘l’%‘s”‘x,dx‘”z/
l
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Adding (3.44) and (3.45) we derive

=1 l

From (3.42) and (3.46) it follows that

5/ :—/QZule/fxiSa,-jdquRl—kRz
ij

where

Ry, = —/ Z5a,-j(5u)le//xl.dx.
Q7

To complete the proof it remains to prove that

R1 +R2 = O(HSA”LOQ(Q;M”X")) as ||5A”LOO(Q;M”X”) — 0.

m 1/ (/ u—"U ) /
7z 2 dS(x)+1; ) duds = — ) _Oajjuy; i — 0a;;(Ou)y. ;) dx.
ZZZ E, E Z () +1, Q( %« ji; V- %« j(Ou); ;)

(3.46)

(3.47)

(3.48)

(3.49)

By subtracting integral identities (3.14) for i and u again, and by choosing test function

N = du we have

/Zdij(5u)xj(5u)xidx+zzl/ (5u)2ds:—/ZSa,—juxj@u)xidx. (3.50)
Q% =141 JE; Q7

By using positive definiteness of A € Vi and by applying Cauchy inequality with € > 0

to the right hand side, from (3.50) it follows that

o1 c
2 2 2 217,12
[.L/ |Véul dx—l—lE1 l/l(5u) ds<8/ |VSul dx—I—g/ | Eij 0a;j|*|Vul®. (3.51)

By choosing € = /2 and by applying the energy estimate (3.30) from (3.51) we derive
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118ull71 () < CISAITL (o) (3.52)

From (3.48) it follows that

[Ra| < C[SA]| 1 onamen [VOull L, o) VWL 0)- (3.53)

From (3.30), (3.32), (3.39), (3.43), (3.52) and (3.53), desired estimation (3.49) follows.

Theorem is proved.ll

Remark 3.4.3. Functional (3.9) in the optimal control Problem .# is convex due to the

following formula
UL 2
FU'+(1-a)U?) =af(U") +(1-a)f(U?) —a(l — ) 22;2]/ (U} —UP —u' +u?)ds
=1 2

where U',U? ¢ W,a € [0,1];u' = u(-;U"),i = 1,2 is a solution of (3.3)—(3.5) with U =
U'. Therefore, unique solution of the EIT problem would be a unique global minimizer

of the Problem .#.

Results of this Chapter are contained in a recent preprint [8].
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Chapter 4

Discretization and Convergence of the

EIT Optimal Control Problem in 2D

Domains

4.1 Introduction and Problem Description

In this chapter, we consider the following EIT problem for Q € R?:

div(o(x)Vu) =0,

du(x)
an

=0,

4.1)

4.2)

4.3)

4.4)



where

du(x) _ 2 i
5 —;ux,v

and v = (v!,v?) is the outward normal at a point x to S, electrical conductivity o is a

positive function. The difference of this problem with one in Chapter 3 is that we remove
the assumption on anisotropy for electrical conductivity tensor A(x), i.e. A(x) = o (x)I,

where [ is a 2 X 2 unit matrix.

4.1.1 Optimal Control Problem

Consider the optimal control problem on the minimization of the cost functional

U — u(x)

/(v):ﬁ‘i‘/Eles—Il‘z-l-BW—U*F (4.5)

on the control set

FR = {v: (0,U) € (Lu(Q)H'(Q)) % ]R’"‘ Y U =0,|o]f+|UP<R* 4.6)
=1

O<60§G(x)§R,Vx€Q}

where 8 > 0, and u = u(-;v) € H'(Q) is a solution of the elliptic problem (4.1)—(4.3).

The following is the definition of the weak solution of problem (4.1)—(4.3):

Definition 4.1.1. For a given v € .Z %, u = u(-;v) € H'(Q) is called the weak solution

of the problem (4.1)—(4.3) if

U | UL |
Vi Vndx -+ —/ ds = —/ Uds. VneH'Y(0) 47
/Q u ”XZZIZIEZ”"S ,lezEz"’S n (0) (4.7)

This optimal control problem will be called Problem &. The first term in the cost
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functional _# (v) characterizes the mismatch of the condition (4.4) in light of the Robin

condition (4.3).

4.1.2 Discrete Optimal Control Problem

To discretize optimal control problems & we pursue finite difference method which is
outlined in Chapter 2. In addition to discrete sets, O}, QZ+, Qz(i), and S}, that we defined

in Chapter 2, we introduce the following notation as well:

En={x0€08: CINE #0}, I=1,---,m

which is a collection of grid pints which are natural corners of Cy containing boundary
curve Ej, and

Ejqu=C¢NE, I=1,--,m

is a portion of the boundary curve which is contained in CY. I'j¢ = |Ejg|, [ = 1,--- ,m s
(n— 1) dimensional Lebesgue measure of Ej,. We are going to assume that any control
vector o is extended to a larger set Q + B;(0) as bounded measurable functions with
preservation of conditions in the control set (4.6). We introduce discrete grid function by
discretizing o through Steklov average (2.15). For a given discretization A, we employ
the notation [0]x = {0y}, @ € &/ (Q}) where 64 € R. Then We define the discrete

A1 (Q3) norm as

2
"[G]A“iﬁl(gz): Z thé—l—Z Z hzcgtxi+ Z hzagtx]xz
(o)

7 (0%) =1 ()
(o3 *) = Imax O
llo)alle ;) =, max 0
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We use standard notation for finite differences of grid function uy, 0y :

_ Uqgte; — U _ Ug — Ug—e; — 12
Ugx; = h y Uax; = h y =1,

Og+e; — Oa Og+e, — Oa
Oax, = 5 Oox, = -

and

o G((X+€2)X1 — Ooux, o Og+er+e; — Oa+e; — Oa+e + Oq
G(Xxlxz - h - h2

For fixed R > 0, define the discrete control sets .%# f as

. 2 2 2
7R = {M wU)] zul 0, l[o1alP 1 gy + U < R

0<60§oa§R,Vae,e%(QZ)} (4.8)
and the interpolating map , as
Pr | JFR - UFR, Pa(la) = (Za([0]a),U) = (6%,U)
R R

where 62 in each cell CY is a multilinear interpolation which assigns the value o to
each grid point of C¥, and it is a peicewise linear with respect to each variable x; when

the other variable is fixed.

GA(X) = Oq + Oqx, (x1 — k]h) + Oox, (XQ — kzh) + Caxixo (X1 — klh) (X2 — kzh), Vx € CK
4.9)
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Also, we define the discretizing map 2, as
QAZUﬁR%U§§, QA<V):(°@A(G),U):([G]A,U)
R

where [0]s = {0q} Where 0y is given by (2.15) for each @ € &7 (Q7).
Using the newly introduced notations we can define a solution of the discrete elliptic

problem (4.1)—(4.3)

Definition 4.1.2. Given [v]a, the discrete valued function

(Va)la = {ua €R: a € ./(0p)}

is called a discrete state vector of problem & if it satisfies

U
h? Z Zuax,nax,+z Z CiquaNe +Ja(ta, Na) :ZZ Z I'iaNa
a(Qy) =l = PTN =1

o (Ein o (Epn)
(4.10)
for arbitrary collection of values {1y}, o € o7(Q}), where
Jo(ttor;Na) = I Z Z Opttarx Nacx (4.11)

A

1ifae (0" \05")

0 otherwise

6 =

The necessity of adding J4 to (4.10) is that some ugqy, and 7y, values on Sy are not

present in the term h? Z Nax;Uax; Of (4.10). These values are added to (4.10) through
A (Q)")

2
h? Z Z Ogtax, Nox; Of Jo. For stability of our discrete scheme, it is essential to add
o (S5)i=1
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this term to the discrete integral identity (4.10).
In Section 4.3, it will be proved that for a given [0 € .ZX there exists a unique discrete

state vector of problem E. Consider minimization of the discrete cost functional

Ul_u(x

2 2
—11) YBIU U = inf  (4.12)

on a control set .Z X, where ug’s are components of the discrete state vector [u([v]a)]a of
the Problem &. The formulated discrete optimal control problem will be called Problem

Ep.

4.2 Main Result

The following is the main result on the convergence of the sequence of finite-dimensional
discrete optimal control problems to EIT optimal control problem both with respect to

functional and control.

Theorem 4.2.1. The sequence of discrete optimal control problems &x approximates the

optimal control problem & with respect to functional, i.e.

lim gy = 7., (4.13)
where
A, = g}g/A([V]A)a (4.14)

Furthermore, let {€x} be a sequence of positive real numbers with iirr%) ea=0. If the
%
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sequence [Va e € FR is chosen so that

In. < Ia(Vag) < _Za. + €, (4.15)
then we have
lim 7 (Zs([ae)) = 5. (4.16)

Also, the sequence { P5([0]ae)} is uniformly bounded in H'(Q) and all of its H'(Q)-
weak limits points lie in %,. Moreover, the multilinear interpolations of the discrete

state vectors [u([v)a)]n converge weakly in H'(Q) to u = u(x;v.), a weak solution to

the (4.1)-(4.3).

4.3 Preliminary Results

Following the frame of the interpolations in Chapter 2, we have three interpolations
Ua, U} and Uy which are defined in Chapter 2. As in Chapter 2, we have the following

estimations for U} and %U ik

/ UlPdx < Y 1 max [ug-[> <2* Y Klug|*. (4.17)
o ox; A - . @xi ’

(")
The following lemma is a discrete analogy of the norm equivalency result in space

H'(Q) proved in Step 1 of Lemma 3.4.1.
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Lemma 4.3.1. For any [ulp = {uq : o € o/(Q})}, we have an estimation

1 ]all e gy < clll [ulalll e oy

where C is independent of [u]x and

8]

m
EallZer gy Z U, + Y, Y, Tialtg

i=1 (Qz(i)) =1 g7 (E)

Proof: To prove this inequality assume on the contrary that

k>0, 3[uls € 2 (QA): kI X Il oq) < Il Tk e g

where [u]X = {u¥ }. Without loss of generality we can assume that

1Al e o) = 1

and therefore

1
I [”]ZH’Jﬂ(QZ) <7, Vk>0

b

which means

L

1 i 1
|uax,|2 < %7 and Z Z Fla|ulfx‘2 < %, Vk >0
l:lW(Ela)

and consequently

m
8 1
ik|2 k|2
Z/ Uk? < and ;/EI|UA| < k>0
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where U X‘ and ﬁﬁ are piece-wise constant interpolations of u’&xl, and uX. These two

inequalities imply that
10X Na005) = 0, i=1,2, [[Ukllrye) =0, 1=1,2,..m, ask—oo (4.24)

On the other hand, [u]X is a bounded sequence in #'(Q}), by relations (4.17) and
(4.18), it follows that corresponding multilinear interpolations {U i‘/} is weakly precom-
pactin H'(Q) and strongly precompact in both L,(Q) and L,(S) [87, 29, 30]. Therefore,
there exists a subsequence of {U f} and u € H'(Q) such that the subsequence converges
weakly to u in H'(Q) and strongly in L,(Q) and L,(S). Without loss of generality we
can take the whole sequence {U g/} instead of the subsequence and summarize the useful

results of the last paragraph into the following:

UK = u, in L*(Q), (4.25)
oUu¥ 9
8)3 - a—)l:i, weakly in LZ(Q), i=1,2, (4.26)
UX = u, in L*(S), (4.27)

From the first claim of (4.24), it follows that

Uk —~0, weakly on L*(Q), i=1,2, (4.28)

o K
In [14] (Theorem 14, parts (e) and (f)), it is proved that the sequences U K‘ and aali A are
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equivalent in a weak topology of L*>(Q). Therefore, from (4.28) and (4.26) it follows

that
u

— =0
8)6,‘

and hence u = ¢ a.e. in Q. By the second relation (4.24), and the fact that |E;| > 0, it
follows that u = 0 almost everywhere. This fact contradicts with ||[u] || 1 (gy =1, and

therefore the inequality is proved.

Lemma 4.3.2 (Discrete Energy Estimate). Let [u([v]a)|a be the discrete state vector,

then it satisfies the following energy estimate:

1

0l allr oy < M(X (1))’ @29)

Proof: The proof follows the method developed in [71]. We set 1 = ug in (4.10)

which implies

m
U,
»Y o ZulerZ Y Tiqug+Ja(ua,ua) Z? Y. Do (4.30)
@(0y) il EEPTEN =1 ()

recalling the definition of J, and the norm |||[u([v]a)]all |f%01(QZ) and the fact that 0 <

oy < 0y we have

= U
pll(MaalllZer i) 23 Z it (4.31)
Eip)

where = min{l,Go,mlin (Zil)} Using Cauchy—Schwarz inequality we can estimate
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the right hand side as following

(!aQ\ Y ¥ qua)

I=1a7 (Ep)

(008 7Y (£ ¥ redere ¥ i)

I=1 W(EZA) = w0

= (el% (2 ) () lall Lo

=1

using this estimate, the inequality (4.31) turns into

el lall Lo (|9Q\ > ) (432)

By Lemma 4.3.1, it follows that

lblaallrgp <~ '001 (£ ()" O @33

=1

In particular, energy estimate implies the existence and uniqueness of the discrete state

vector of the problem &.

Corollary 4.3.3. For a fixed A and any R > 0, there exists a unique discrete state vector

[u([V]a)]a in a problem & for each [v]s € FX.
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This corollary can be proved as the Corollary 2.2.5

Lemma 4.3.4. For each A, let {{V|a} € FE be a sequence of discrete control vectors
for some R > 0, and [u([v]a)]a be the corresponding state variable. Then the following
statements hold:

(a) The sequences {U,} and {Up} are uniformly bounded in L (Q%).

(b) For eachi € {1,2}, the sequences {U}}, {%} are uniformly bounded in L, (Q}).

(c) the sequence {Ux — Uy} converges strongly to 0 in L,(Q) as h — 0.

(d) For eachi € {1,2}, the sequences {% — UL} converges weakly to zero in L, (Q)
as h — 0.

(e) the sequence {Ux — Uy} converges strongly to 0 in Ly(S) as h — 0.

The proof of this theorem is similar to the proof in Theorem 14 of [14] by using
(4.29).
Next, we recall the suitable version of the necessary and sufficient condition for the
convergence of the discrete optimal control problems to the continuous optimal control

problem formulated in the context of the optimal control problem &'.

Lemma 4.3.5. [95] The sequence of discrete optimal control problems &x approximates
the continuous optimal control problem & with respect to the functional if and only if

the following conditions are satisfied:

1. For arbitrary sufficiently small € > O there exists A; = A1(€) such that ZA(v) €
FR for all v € FZR=E) qnd A < Ai; Moreover, for any fixed € > 0 and for all

ve ZRE) e following inequality is satisfied:

limsup (_Za(2a(v)) — 7 (v)) <0.

A—0
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2. For arbitrary sufficiently small € > O there exists Ay = Ay (€) such that PA([v]a) €
ﬁ(RJ“?)for all [v]p € ﬁf and A < Ay; moreover, for all [v]s € ﬁf, the following

inequality is satisfied:

lim sup (7 (Z([Va)) — Za(Ia)) <O.

A—0

3. For arbitrary sufficiently small € > 0, the following inequalities are satisfied:

limsup Z.(¢) > Z,, lim imi) PACTIEGS
£

e—0

where g.(£€) = inf 7 (v).

FRte
Now, our goal is to show &, and 2, satisfy the conditions of Lemma 4.3.5. The
following lemma plays a key role to prove this claim. The proof is similar to the proof

of Proposition in [14].

Lemma 4.3.6. For € > 0, there exists & > 0 such that

%o |2
L FlowsP <+ 5]
le(QZ+) 1 2 Z(QA)
whenever h < 6.
Proof: For each h > 0, define the function 6}}2 as
~ 12 _ x4
Gh -_— Gaxle, v(x 6 %(QA ) (4.34)

&

where

- Ga+ez+e1 - Ga—l—ez - GOH—el + Oq
GOCxlxz - h2
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In the following we will prove that

2
8x1 8x2

612 —

strongly in Ly(Q) ash — 0 (4.35)

As an element of A'(Q), almost all restrictions of ¢ to lines parallel to the x; and x,
direction are absolutely continuous, moreover, restrictions of oy, to lines parallel to the
xp direction are absolutely continuous and restrictions of oy, to lines parallel to the x;
direction are absolutely continuous. Hence if we let z = (z1,22) and x = (x1,x2), then

for almost every z € Q we have

w+h rzut+h QG A dvd
/ / 8x18x2 y’ ) yat

=0(z1+h,zo+h)—0(z1+h,22) —0(z1,22+h) +0(z1,22)

= 0(z+he, +he)) —o(z+hey) —o(z+hey) + 0(2) (4.36)

In this lemma, for simplicity, instead of Z we use Z . Using the definition of
acd (QyF) =4
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Steklov average (2.15) and Cauchy-Schwartz inequality, we get

826

d’c
axlaxz 2/‘ e 8x18x2(

O
b o 8x2

2
x| dx

Ly QA

_Z/’hzl / dz— / dz— / dz+/dz<7(z) —%(X)lzdx

06+€1+€2 Ol+el a+62 Cg

ok 2
;/‘ / 0(z+hey +hey) —o(z+hey) — o(z+hey) +0(z)|dz— 8x1§;cz (x)‘ dx

@t path_d’e %o B2
_Z[‘h4// / axlaxz 5% )dydt]dz—m(x)ﬁ’ dx
2+h rz1+h 32 326 i )
Zhg{‘[ / / 3x18x2 y’ )dydt_axlaxz(x)h ]dZ‘ dx

2+h rz1+h 82 826 )
_Zhgl‘[/ / Ix10x, t)_m<x)dydt]dz‘ dx

zp+h z1+h 82 82

(o) 2
y,1) — d dt) dzd
21 8x18x2 dx19x, (x)dy wax

<L /1L

crey

2+h pzi+h 82 820' )
_Zh“// /22 / 3xl<9xz t)_m(x)‘ dydt]dzdx 4.37)

Assume mgq = (m1,my) be the natural corner of C{. Now, we employ Fubini theorem
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to switch the order of integration with respect to y and z;. Hence we observe

;,%/ (”7””7}’ / Zﬁh/ " ailzgxz Ou) = ajlzgxz ®) 2dydt]d“d@>dx
i (LT U Lston - gt s
L) ( AT R e
S (] T ool 5o s o
i (] L monerenl i 25 o o
S YW AT e A
[ B VA SR A T T

We utilize Fubini theorem again to switch the order of integration with respect to ¢ and
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z2. Hence we observe

my+hmi+h th

/ / / / 3x18x2< )=
my+hmi+2h oth

+Z/’l3/ / / /2 8x18x2( ’t)_

a my  my+h

m2+hm1+h
/(//)LaMm

d’c »
8x18x2 Y

1 m2+2h I’I1|+h m2+h
T/l [ L

0‘ my+h my

‘%M

m2+hm1 +2h
2 /(/ RIS

my  mi+h
( m2+2hm1 +2h

[

my+h mi+h

L/

X

m2+hm|+h
L/ ([ [ emlstson

1 m2+2hm1+h
— h—t h‘ Vo) —
;3/(/ [ im0

% Nmp+h m

@ my  my+h

my+2hm+2h
vy
h3
o CY “mpth my+h

d’c ot
8)618)62 Y

m2+hm1+2h
L[ ( [ [ emlsisen

/ / m2+h_t+h ‘3)C18XQ

85

d%c 2
Py (x)) dt} dydzz> dx

d’c 2
m()() ’ dt:| ddez) dx

d’c 2
" xon (x)‘ dzz] dydt) dx

%o

2
- m (X) ‘ dZZ] dya’t) dx

%o

2
— W(X) ‘ dZ2:| dydt) dx

%o

2
" 905 (x)) dzz} dydt) dx

d%c 2
" 9xon (x)‘ a’ydt) dx

J’c 2
Tx1m (x)‘ dzzdt> dx

d%c 2
" 9xon (x)’ dydt) dx

0%c 2
- (x)‘ dzzdt) dx



‘ lX

+1/
L

06

i |

06

my mj

I’VI2+2h m +h

my+h mp

‘%M

< m2+hm1 +2h

my  mi+h

Q\M
Nl -

(X

my+h mi+h

without loss of generality, we replace (y,#) with (z1,z2) and we get

2% |12
612 / / d
b 9x10x Lz(QA) ‘
a+el+32
2o 2
+ / dz+ / dz-l—/dz‘a o5 (z1,22) — 8x18x2( )‘ >dx
CZ+61 CZHez A

For fixed &€ > 0, we pick a g € C>(Q + B1(0)) such that

|o _g|’12f11(Q+B,(o)) <c(e)

Now, we add and subtract gjl (gz) and o é(’ *) to the integrands of (4.40)

2

<hLh+hL+5h

o~ 520
L (03)

G J—
h 8x1 (9)C2

86

] my+hmi+h

ﬁ ( / / ‘ 8x1 8x2 ! 8x18x2 dydt) dx

/ / ) 8x1 8x2 ! 8x1 a)C2 dydt) dx
/ / ) 8x1 aX2 ! 8x1 8)62 dydt) dx
my+2hmy+2h

/ ( / / ‘ 8x1 8x2 »! 8x18x2 dydt) dx

(4.39)

(4.40)

(4.41)

(4.42)



where

nLpf(J aer [ e [ o [fFE- T )

o+heq+hey o+heq o+hey
A C CA

_v3 8(z 8(x) |2
12_§h2/< [ e [ | dz+/d’3x18x2 8x19x2‘)dx

o+heq+hey o+heq o+hey
A CA CA

v 3 8(x () |2
13_§h2/< / dZ—|— / dZ+ / dZ+/d ‘8x18x2 8x18x2) )dx

o O+hey+he o-+he o+he
Cx Ca e cy e

Since g € C>(Q + B1(0)), it follows that pror 9’  is uniformly continuous on O+ B1(0).

Therefore, there exists § = §(g, &) > 0 such that

9%g(z)  9%g(x)
‘8x18x2 Bxlaxg‘ < ce) (4.43)

whenever |z — x| < 8. Let hg > 0 satisfy

V8he < & (4.44)

Then it follows that for each & < h¢, any & € ./ , and any x,z € C‘Hhe'”'e2 UCy ther

a—+hey o

%g(z)  9%*¢(x)
|(9x18x2 8x18x2| < c(e). (4.45)
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Therefore,

Il:%é’hz( / dzt / dz+ / dz+/d‘8x18xz 8x18(x)2‘2>

Coc +hey+hey COC +heq CZ +hey
G Z
< <
12 / dx1dx; 8x18x2‘ dz < 12||jo - g”Hl (Q+B1(0))
0+B1(0

12§§%/< / dz+ / dz+ / dz+/dzc )dx<120() (Qa)

CX‘ CZHrhel +hey ClAX+hel CZJrhez Ca
I’g(x) 9o
L=12 ‘ dx < 12||o —
3 QZ axl&xz 8x18xz ” g”Hl
If we take c(€) = Wm@z), these calculations imply that

L+bh+hL<e, Yh<hg (4.46)

This proves the strong convergence of Gh2 to a a in L,(Q7% ), and strong convergence

implies the claim of the lemma. Lemma is proved. [J

Proposition 4.3.7. For arbitrary sufficiently small € > O there exists he such that

2\(v) e ZR forall ve F®E and h<h, (4.47)

Pa(V)a) € FEE) forall [ae FE and h<he (4.48)
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Proof. Let 0 < € << R and A arbitrary. First let ¢ € .Z(

). Then we note

2
125(0) P o) = - L o

+Z ) hzﬁaxl.—f— ) h26§X1X2=Q1+Q2+Q3
o (Q%F

= IM(QA )
where

Qi =h ), op=h 3 (i/
Jj(Q* C(X

ocdxP< Y [otar< [ otax
N Q) K 7(Q}) e 0+51(0)

for O, and Q3, referring to the Proposition 11 in [14] and Lemma 4.3.6 respectively, we
deduce that for any 0 < €] < (

)" — 1 there exists a positive § such that for h < § we
have

2
=h Z Gy < 1+81)HGHL (9%

(4.49)
7 (Q})

i 2 2
h”o,

o < (1+€)Do[Z, 0
(")

=Y h’o? Oy < (1+81)

+
(Q4")

2

H 8x18x2 Ly (Q%)

Then, for small enough €, > 0 we have

IIQA(G)H;;I(QZ) < (1+&1)lollZ,0) + (1 + &) D7) + (1 + &) 0w ll7,

<(1+&)(R—¢€)* <R

In addition, max

|6« | < R is automatically correct since ¢ € .7 (R—¢),
acg/ (03)
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Now let [0]s € ZR which implies

max{ max |og|+ Y, no, +Z ) hzcaxl,—k ) hzcéxm}gR (4.50)
e /(Q3) =1 (03" Iy

we claim that 62 := 25([c]a) € FR. where

62 (x) = Og + O, (X1 — k1) + Gy (X2 — koh) + Gopayxy (X1 — k1) (x2 — koh), Vx € C$
4.51)

In order to prove this claim we first prove
1610y <R+e (4.52)
and then we need to prove

162112, (3) + 1P0*1Z, g5) + 1000 12,03

Y [ [0+ (0802 + (P W + ()R, Jdvde < (R+ 453

A is multilinear and it takes its

The proof of (4.52) is obvious, since the interpolation &
maximum on one of the corners of the cell; therefore, considering the fact that [o]a €
F f, claim (4.52) is proved .

We prove (4.53) directly by evaluating the L, norm of ¢, Do and GxAl x, Over a fixed

cell CY, a € (Q}).

k1+1 k2+1 kl+1 k2+1

2.2
/ / xlxzdxldxz / / |Gocx1x2| dxydx; = h”o O xy (4.54)
kih koh kih koh
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(ki+D)h (kp+1)h (ki+Dh (kp+1)h

/ / 2 dad, = / / |Gy + gy (X2 — ko) Pdadxy

kih  koh Kih o koh
(ki+1)h (kr+1)h
= [ [ 10w O ko) P+ 12000 Oy (2 — ko)
kih koh
2 h4 3
=h Gaxl + — 3 Gax1x2+h Oax; Ooux v (4.55)
(ki+D)h (kp+1)h
2 h4 2 3
/ / Podisdxy = I 0%, + = Oy + 0w, Os (456)
kih koh
(ki+1D)h (kp+1)h
2 2.2 h4 2 h4 2 h6 2 3
)dxydx; = h"cg + ?Gaxl + ?Gaxz + 3Gax1x2 +h’0¢0ay,
kih kyh
n* n* w w

+h3GOCG(XX2 + ?G(ZGQXUCQ + ?G(Xxl GOCXQ + ?O'axl O-aX1X2 + ?G(ZXZG(XXIXZ (457)

except the first terms of each evaluation, the rest of the terms are higher order terms,

since [O]a € Z, f. we show this fact for all the terms in the last integral:

h
|1 6600, | < 2(h2 oy +h ozcxl)

h4 ) h2 s > h2
|§Gax,|:§(h o

ax —3
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K W o h
|EGGX1XQ| = g(h G(Xxle) S KR

h4 2 2

h h
|?Ga6axlx2‘ S Z(h263+h26(%{X]X2) S ?Rz

5 3 2

h h
|?G(XXQG(XX1)C2| S g(hzcéxz +h20-gtx1x2) S ?Rz

So, we have

|2a((010) s gz) = 101 o) < N[G1alR 1 )+ O)

which proves that 2, ([v]s) € .7 ®+€) O

4.4 Approximation Theorem

Theorem 4.4.1. Let {[v|a} = {([0]a,U)} be a sequence of discrete control vectors such
that there exists R > 0 for which [v]p € .F f for each A, and such that the sequence of in-
terpolations { 2([6]a)} converges weakly to some & in H'(Q) (strongly in L,(Q) and
L>(S)). Then the sequence of interpolations {U}} of associated discrete state vectors
converges weakly in H'(Q) to u = u(x;v) € H'(Q), with u the unique weak solution to

the (4.1)—(4.3).

Proof. Proof follows the method of the similar result proved in [14]. From (a) and
(b) of Lemma 4.3.4, it follows that {U, } is uniformly bounded in H'(Q). Consequently,
{U} has a weak limit point in H'(Q). Let u € H'(Q) be any weak limit point of {U}}

in H'(Q). By the Rellich-Kondrachev Theorem, it is known that a subsequence of {U}}
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converges strongly to u in L(Q). In addition, {U,} converges to u on the boundary S
in L»(S) norm. Now, we proceed to show that u satisfies the integral identity (4.1.1).
For simplicity of notation we write the subsequence of {U,} that converges weakly to
uin H'(Q) as the whole sequence A. Let n € €' (Q), where Q C O and €' (0) be a
space of all continuously differentiable functions on Q. We also assume that 4 > 0 is
small enough that Q) C 0. Then the collection of values {Na}, @ € o is an admissible
test collection for the summation identity (4.10). We claim that the limit function ,u,
satisfies the integral identity (4.7). Let call the discrete integral identity (4.10) as Ix and

the continuous integral identity (4.7) as /.

Iy="1 Z Zuax,nocx,“‘zz Z LiquaMNa+Jo(ta, Na) 27 Z LigNa
@(y) = =1 () =1

noq noq
IZ:/GVM-V dx + —/ unds — —/ Uids
0 1 I_ZiZl E, L I;Zz Ezn :

We define the interpolations for 1y and Mgy, for each a € o7 (Q}") as following

A co Mo Vo € o/ (0))

A

= Nowx;» Va e ’Q{(QZJF)

=
Na
Cy

Using these interpolations and the ones described in the interpolation Section 4.3 and
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definition steklov average in 2.15.

2 .
-y / AV 0 ]dx+): /UAnAdS-f‘Ja(Ma,rla 7 / Mads
e l

2 m
i 1 -
A i =i _
—[ |e*Y 0O }dx+§—/U ds+ Jo (i, 2 ds
QZ[ ~ ATIA “ Z Jg, ATA o(tta, Na) — Zl E; n

Adding and subtracting some terms to /5, we obtain the following identity :

5
IN=1+Y R
where

A 2 7l =1
Rim [ [0 Oind]as (459
: QZ\Q[ ,Z{ . A]
Ry =Jo(ua,Na) =h* Y, Ze U Naux; (4.60)

o (Sy)i=1
B [ [o* Y 0 -no)]e+ 32 1 [ Outns—mas— 32 % [ (g —myas
’ 0 i=1 AR =141 JE A =121 JE :
(4.61)
2 ~
Ry = / (62— ) Y Uin,dx (4.62)
0 i=1

R5_/ GZ Ol — )10, a’x+2 / (T — u)nds (4.63)

We claim that by passing to the limit when A — 0, Iy — T and R; -0 fori=1,...,5.

Using Cauchy Schwartz inequality and extending the region of integration for function
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U from (Q} \ Q) to O} we obtain the following estimate for R;:

2
Rl <C1 Y 10illsiop 173 aos10)
i=1

Lemma 4.3.4 (b), and Proposition 4.3.7 implies that

2
Ri| <G} 1MallL, 0500
i=1

interpolation 7 A converges uniformly on Q to the function 1,, as A — 0 and since 1] €

¢1(Q) and |0} \ Q| — 0 and we have
IRi| —0, as A—0

Now we try to show that R, is small.

2
|R2| = |h2 Z Z GfxuaxinaxJ

o(8y)i=1
2 1 2 . 1
<(Y Y r?6ug,) (Z Y n*oing,.)?
@7( * i=1 * =1
2
<(). hzuax, )2[Inller ( Z Y ) 2
i= ]%(QZ ) i= 1Q{S*
2
<(} W)l v2( Y 1?2
ZZIM(QZ ) 7 (S3)
2
<(), hug,.)? 2Nl V2R (2]S])2 — 0
=)

Sum with respect to all grid points of S} is bounded by the Lebesgue measure of S}.

Since S is Lipschitz, the latter converges to Lebesgue measure of S as 4 — 0; This imply
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that for sufficiently small h, it will be bounded by 2|S|. The same argument that we used
for R implies that Ry — 0 as A — 0.
Using Cauchy Schwartz inequality and Lemma (4.3.4) (a) and (b) we get the following

estimation for Rj3:

2 U,
IRslz‘/ Z G dx+Z /UA ds—Zle/E(nA—n)ds
i=1 — l

p
<N [loallz=(g) Y. I10allLy0y) 1114 = Nlla0)
i—1

1 - & !/ !/
#Ne | =l (10 = Uil + 10 ~ s
ul ., -
+N3 1r£1a§Xm Z‘ 1A —Nl1o(s)

It can be easily proved that interpolations 1 and 1) i converge uniformly on Q to the
functions 1 and 7n,; on Q and S as A — 0, so R3 — 0. Using Cauchy Schwartz inequal-
ity and Lemma (4.3.4) (a) and (b) and the fact that n € €' (Q) we get the following

estimation for Ry4:

2
<HY ||0X[lLy05) 6% = Gl 0) < Hill6® =0l 0)
i=1

2
Rel = | | ("~ 0) ¥ Oimeds
i=1

R4 goes to zero because of the theorem assumption

By adding and subtracting Uy and 2 a , we calculate the following estimate:

2 m
o 1 .
R5:/ [GZ(UA_”xl')nx,']dx"‘ZE/ (Upr —u)nds = Rs; + Rsp
ot 0 =141 JE;
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2, . JUj dU,
R51—/Q[G;(UA_a_)ci)nxi_'_(a_)ci_uxi)nxi]dx

Rs; converges to zero since {% -U i} converges weakly to zero (Lemma (4.3.4)(d))

and {U,} converges weakly to u in H'(Q).

Ral=| X5, [, [@—vin + @i ~wnlas

< Ki||Us — UyllLy(s) + K2 l[Ux — ull s

Lemma (4.3.4) (e) implies that R5 — 0.

Finally, since ¢’ (Q) is dense in set of admissible test functions for integral identity (4.7)
we have that u is a weak solution to the Problem (4.1)—(4.3) in the sense of Definition
4.1.1. Therefore, we have proved that if u is a weak limit point of {U}} then it must be
a weak solution to the Problem (4.1)—(4.3). Due to uniqueness of the weak solution it
follows that {U, } has one and only one weak limit point, which shows that the whole

sequence {Uy } converges weakly to u in H'(Q). This ends the proof of the theorem.[]

4.5 Convergence of the Discrete Optimal Control Prob-
lem

Existence of the optimal control in Problem & is proved in Theorem 3.3.4. In particular,
from the proof of Theorem 3.3.4 it follows that the functional _¢# is weakly continuous.
Proof of Theorem 4.2.1. To prove 4.13 and 4.16, it is enough to show that conditions (1)

and (2) of Lemma 4.3.5 are satisfied.
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Step 1. In this step we show that for any v € .7 (R—¢),

lim | ZA(25() — 7 (V)] =0 (4.64)

From the Proposition 4.3.7 it follows that 2x(c) = [o]a € FX. Applying Proposi-

tion 4.3.7 again, we deduce that 2, ([c]a) belong to .7 (R+%) and hence,
1Za([o]a) g1 o) <R+

Therefore, there exists a 6y € H'(Q) and a subsequence of &5 ([0]5) converging weakly
to op in H'(Q). Without loss of generality we can assume that the whole sequence
Pa([o]a) is weakly convergent to op in H'(Q). By using compact embedding theo-

rems, we therefore have

PA([o]a) — 0p, weakly in A’ (Q)
PA([o]a) — 0p, strongly in L2(Q)

Pa([o]a) — 0p, strongly in LZ(S) (4.65)

On the other side, we know that the piecewise constant interpolation of [G]a converges
strongly to 0. From Lemma 4.3.4 part (c), it follows that 0 = 0y almost everywhere on
Q. Therefore, we have

P([o]s) — o, in H(Q)

By applying approximation Theorem 4.4.1 it follows that the interpolations {U, } of the
discrete state vectors [u([v]s)]a converge weakly in H'(Q), and strongly in L,(Q) and

L,(S) to the unique weak solution u = u(x;v) of the PDE problem with control v.
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We transform the first term in the discrete cost functional (4.12) as folllows:

Z( ) FlozUZ —11>2:Z</ UIZ dS_Il)

(16527 E]A) l E !

</ —Up+U;— Ui—l—u—uds_ll)Z
Z

Ul -0 UL U- 2
zz</ S P ”ds—1,>
T NJE 4 Z Z

I T 17! —
:?(/El UAZIUAdS>2+(/E; u ZlUAds>2—|— </E UIZI uds—]l>2

1

U.—-U — U,
+2(/ A Ads)(/” d)
E; Z E  Z
U.—-0U U, —
+2(/ A Ads) (/ ’ “ds—11>
E Z E Z
- U U —
—1—2(/ ! Ads) (/ d uds—l;)
E 2 E 2

Since {U,} converge strongly in L*(S) to u = u(x : v), we have

1
U U }
/” Adsg|5|(/(—” A)st) 50, asA—0
E  Z s Z

By part (e) of Lemma 4.3.4, it follows that

~ ~ 1
U, -0 U, -0 2
/ A Ads§|S\(/(A—A)2ds> 0, asA—0
E Z s Z

By (4.67) and (4.68), it follows that

lim (7a(24(v)) = 7 (¥)) =0.
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which completes the proof of the Step 1.

Step 2. In this step we show that for any sequence {[v]a} such that [v]x € .ZX, we have

lim |7 (Z5(17a) = Za(bla)| =0 (4.69)

Proposition 4.3.7 implies that the sequence 24([v]5) is uniformly bounded in A'(Q).
Hence, it has a a subsequence converging weakly in H'(Q) and strongly in L,(Q) and
Ly(S) to some v = (6,U) € .#R. Without loss of generality we can assume that the
whole sequence

P([v]a) — 7 weakly in H'(Q) as A — 0. (4.70)

By applying Theorem 4.4.1 as in the proof of (4.64) in Step 1, it follows that

lim | _Za([vla) = 7 (¥)[ =0 (4.71)

A—0

To prove (4.69), we add and subtract _Z (V) to (4.69) and we get the following inequality

|7 (Za(V]a)) = Aa(Wa)] < |7 (Pa(Va) = Z 0+ 17 (7) = Fa(lV]a))]

=h+1h

Weak continuity of _¢# implies that /; — 0 as A — 0. We proved I, — 0 in (4.71), and
hence (4.69) follows.

Thus Step 1 and Step 2 of the proof implies that the conditions of the Lemma 4.3.5 are
satisfied. Therefore, assertiona (4.13) and (4.16) of Theorem 4.2.1 are proved. In order
to prove the rest of Theorem 4.2.1, we consider the sequence {[v]a ¢} € ZX. From the

Proposition 4.3.7 it follows that { Z5([v]a¢)} is uniformly bounded in A'(Q). Assume
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v, € H'(Q) is a weak limit point of this sequence. Weak continuity of # and (4.16)

implies that

lim 7 (Za([Vlae)) = F (vi) = 2

A—0

and v, € .Z,. In addition, referring to Theorem 4.4.1 there exists a unique discrete state
vector [u([v]a¢)]a corresponding to [v]s  whose interpolations, {U} }, converge weakly
in Hl(Q) to u, = u(x;vy), a weak solution to the (4.1)-(4.3). To complete the proof, it

remains to demonstrate that

lim 7. (e) = ¢ = lim 7.(~¢) 4.72)

£e—0

where 7, (+e) = inf _Z(v). The proof of (4.72) coincides with the proof of similar
FRxe

fact in [6]. Theorem is proved. B
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Chapter 5

Discretization and Convergence of the
EIT Optimal Control Problem in 3D

Domains

5.1 EIT Optimal Control in 3D Domains

In this chapter, we consider the EIT problem in Q C R? with electrical conductivity

tensor A(x) = o(x)I, where I is a 3 x 3 unit matrix:

diV(G(x)Vu) =0, xeQ (5.1)
du(x) "

5 =0, xeS—lL:_JlEl (5.2)
du(x) S
u(x)+Zo(x) e U, xX€E,l=1m (5.3)
/ (x)au(x)d —1 I=T,m (5.4)

E d
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where

du(x) _ : i
5 —;ux,»v

and v = (v!,v2 v3) is the outward normal at a point x to S, electrical conductivity &

is a positive function. Consider the optimal control problem on the minimization of the

cost functional

m

Jm=Y

=1

U — 2
/ ’—”(x)ds—n’ +B|U —U*|? (5.5)
E; Zl
on the control set
m
TR = {v = (0,U) € (L-(Q)(A"(Q)) x R" ‘ Y U=0, 0|2 +|UP <R (56)
=1
0<op<ox) SR,VxGQ}

where B > 0, and u = u(-;v) € H'(Q) is a solution of the elliptic problem (5.1)—(5.3).

The following is the definition of the weak solution of problem (5.1)—(5.3):

Definition 5.1.1. For a given v € .# R, u = u(-;v) € H'(Q) is called the weak solution

of the problem (5.1)—(5.3) if

m m
V- Vdx+ —/ unds = —/ Uds, WneH'(Q). 5.7
/Q n I;Zz T ;Zz U neH (Q) (5.7)

This optimal control problem will be called Problem &”. The first term in the cost
functional _# (v) characterizes the mismatch of the condition (5.4) in light of the Robin

condition (5.3).
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5.1.1 Discrete EIT Optimal Control Problem

To discretize optimal control problems &’ we pursue finite difference method which is
explained in Chapter 2. In addition to discrete sets, O}, QZ+, Qz(i),SZ, and £, that we

defined in Section 4.1.2 we introduce the following set as well:
0 = {xy € Ok i xg+eite; €0}, ij=1,23 (5.8)

For a given discretization A, we employ the notation [0]x = {0y}, @ € &7(Q}) wWhere

Oq € R. Then We define the discrete /7' (Q%) norm as

3
l(01al1 5, = -r Poi+Y Y Kol + Z Y W0,

+ Z h3 ey (5.9)

We use standard notation for finite differences of grid function u, 64 and

_ O(ates)xix, ~ Oaxixy _ O(atester)r; ~ O(ates)r — (O(a+e)x; — Oany)
Gaxlxzxg - I’l - h2

= (G(OH—eg—i-ez—i-el) - G(OH—6'3+€2) - 6(a+eg+e1) - G(Ot+ez+el) + G(a+e3)

1O0(0+ey) T O(ater) — Ga)/h3

We define discrete control set .%, f as in (4.1.2) with the discrete .77 (Q3) - norm defined
as in (5.9). Discretizing map 2 and interpolating map &2 are defined as in Chapter 4.
Interpolating map £, assigns multilinear interpolation to discrete control vector, which

is defined as follows in 3D case:
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3 3
0% (x) = Ou+ Y Oax(xi —kih) + Y Opuwa; (i — ki) (x;

i=1 i,j=1
i<j

+Gax1x2x3 H (xi - kih), Vx € CX

1<i<3

Definition 5.1.2. Given [v]a, the discrete valued function

(Va)la ={ua €R: a € /(Q4)}

is called a discrete state vector of problem &” if it satisfies

n Z Azuax,n(xx,—FZZ Z CiguoNe +Jo(Ua, Na)
(05 =l =17 o7 (Eyy)

for arbitrary collection of values {1y}, o € 27 (Q}), where

3 .
Jo (g, Net) = Z Z%uaxmaxn

(8)i=1

1 if o e (057 05

0 otherwise

6 =

—kjh)

(5.10)

- U
Z? Z LigNa
< (Ein)

(5.11)

(5.12)

Discrete optimal control problem on the minimization of the cost functional _#Zx([v]a)

(defined as in (4.12)) on a control set .ZX, with discrete state vector [u([v]s)]a being

defined according to Definition 5.1.2, will be called Problem gA’.

105



5.2 Main Result

Theorem 5.2.1. The sequence of discrete optimal control problems & approximates the

optimal control problem &' with respect to functional, i.e.

lim 7y = 7., (5.13)
where
S =inf Za(la), (5.14)

Furthermore, let {€x} be a sequence of positive real numbers with iin%) exr = 0. If the
ﬁ

sequence [v]a e € FX is chosen so that

In. < Ia(Vae) < Fa, +é€a, (5.15)
then we have
lim 7 (Za([ae)) = 5. (5.16)

Also, the sequence { P([G)ae)} is uniformly bounded in H'(Q) and all of its H'(Q)-
weak limits points lie in %,.. Moreover, the multilinear interpolations of the discrete

state vectors [u([v)a ¢)|n converge weakly in H'(Q) to u = u(x;v.), a weak solution to

the (5.1)-(5.3).
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5.3 Proof of the Main Result

We pursue three interpolations Ua, U and U} as in in Chapter 2. The following estima-

tions for U, and %U | are proved as in Chapter 2:

/ UplPdx< Y h2;{nax ua-><2° Y Plugl?, (5.17)
gy %) 4(03)

aU
ox; A

Jo

Lemma 4.3.1, Lemma 4.3.2 and Corollary 4.3.3 apply to 3D case without any change.

A

Z hug,, (5.18)
7 (0)")

The new discrete norm ||| - ||| 1 (gy) introduced in Lemma 4.3.1 modified as follows:
3 m ,
I gy = L7 E ot Y ¥ T 519
i=1 (QZ(’)) =10/ (Ep)

Index set is updated to i € {1,2,3} for the part (b) and (d) of Lemma 4.3.4.
Lemma 5.3.1. For € > 0, there exists 6 > 0 such that

03 2

Z h3’6(xxxx| < 1_|_8H—G
15253 aX18XQaX3 Ly (Q3)
o (Q)F)
whenever h < 8.
Proof: For each h > 0, define the function 6,1123 as
6, o = Oanuy, V€ o (Q%F) (5.20)

A
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where

G(Xxl Xpx3 —

(G(‘X+63+€2+6’1) — O(ates+ez) — Olates+er) — Ola+erter) T O(ates)

tTO0(0tey) T Oater) — oa)/W

In the following we will prove that

03
615 - 7o strongly in Ly(Q) as h — 0 (5.21)
&Xl aXQX3

As an element of H 1(Q), almost all restrictions of ¢ to lines parallel to the x;,x; and
x3 direction are absolutely continuous; Moreover, restrictions of Oy, to lines parallel
to the x3 direction, Oy, ,, to lines parallel to the x, direction, Oy,y, to lines parallel to the
x1 direction are absolutely continuous; Also, restrictions of oy, to lines parallel to the
xpand x3, Oy, to lines parallel to the xjand x3 and oy, to lines parallel to the x;and x;
directions are absolutely continuous. Hence if we let z = (z1,22,23) and x = (x1,x2,x3),

then for almost every z € Q we have

it gt ot w) hes +hey + h hes+h
t =0 -0
/ / / dx10x,0x3 v (z+he3 +hey +hey) — 0(z+ he3 + hey)
—0(z+hes+he) —o(z+hey+hey) + 0(z+hes)+0(z+hey) + 6(z+ hey) — o(z)

(5.22)

In this lemma, for simplicity, instead of Z we write Z . Using the definition of
acd (Q4) 4
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Steklov average (2.15) and Cauchy-Schwartz inequality, we get

3
ot - e

:;:C/
Tl [ e [ e [ [

O+hey+hey+he O+he+he 0+hey+he Oo+he+he
C 1 2 3 C 1 2 C 3 2 CA 1 3

+ / dz+ / dz+ / a’z—/dzo (x) ’2dx
8x18x26?X3

OH—hel OH—hez a+he3

=123 9o (x) ‘zd

2
L(Q*):/ ©
2
A Q*

h 8x1 8x2(9x3
A

- _ do(v) ’2
o103 8x1 aX2QX3

_Z/’hs/ (z+hes +hey + hey) — 6(z+ he3 +hey) — 6 (z -+ hes + hey)

236 (x) ‘2
8)613)628)63

z3+h  rz+h pzit+h 83 y,l,W) 836()6) ]’l6 2
2/’h6 // / / axl&xZa)Q d dldW]dZ— 8x18x28x3ﬁ‘ dx
wth roth ru+h @3 y,t,W) d*c(x) 317,/
_z"hl2 [ ‘ [/ / / 0x10x20x3 dydtdw = 3X13X29x3h ]dz‘ “
ath @t Polynw)  33o() 2
_Zhﬂ[‘[/ / / dx19x20x3 &x18x2ax3dydtdw]dz‘ &

3+h  pz+h rzit+h 3
o(yt,w) d°o ’
dydtdw|dzd
—Zh6/// / / 8x18x28x3 8x18x28x3 4 W] wax
cxeR

—0(z+hey+hey)+0(z+hez)+0(z+hey) + 6 (z+hey) — o(z)]dz— dx

Assume mgq = (my,my,m3) be the natural corner of C{. Now, we employ Fubini the-

orem three times to first switch the order of integration with respect to y and z, then ¢
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and z», and finally w and z3 . Hence we observe the

IA

‘6123_ dc 2
h 8x18x28x3 Ly(Q3)

( m3+hmy+hm;+h

y7t7w

///’ o(yt,w)

8x1&x28x3
1

+Zﬁ/(

of g

my  my+h

/ / / 8x1 8x2 a)g

m3+hmy+hm +2h
| m3+hmy+2hmy+h
7/<

/ / /’ o(yt,w)
; 8x18x28x3

QM

m3  mp+h m
1
_3

a

( m3+2hm2+hm1+h

/ / / ‘ o (y,t,w)
0x10x20x3

m3+h my m

m3+hmy+2hmy+2h

y 1 / / / / d’a(y,,w)
o7 h3 8x18x28x3
CX m3  mp+h my+h
+2hmy+2hmy+h
by (7Y
o /’l3 8x18x28x3
CY “mz+h mpth m
s+2hmy+hmy +2h
i (L] T e
= h3 0x10x20x3

CY “mz+h my mi+h

m3+2hmy+2hm;+2h 3
G y? t? W

[ ] ]

CY “ma+h my+h mi+h

8)61 8x2 3)63
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g 8x3‘ dydtdw | dx
83
R 8x3’ dydidw | dx+
83
~Seae ax3) dydidw | dx+
(93
é?xl e 8x3) dydtdw | dx+
o) 2, dx+
ax18x28x3 Y v
_ PO Py \det
8x18x28x3 Y v
o) |2, dx+
0x10x70x3 yaraw Jax
83
S a)@‘ dydidw | dx



without loss of generality, we replace (y,#,w) with (z1,22,z3) and we get

d%c 2
=123
(6} _— < d
h 8)618)628)63 Ly(Q3) Z/’l3 / ( / ¢
CO‘ C(x+hel +hey+hes
+ / dz+ / dz+ / dz+ / dz+ / dz+ / dz
oH—hel +hey Ot+he3 +hey O£+he1 +hes Ot+he1 Ot+he2 (X+he3
ON
d30(z1,22,23) d3o(x) |2
dz ) 22, ‘ d 5.23
* / 8x1 8x2(9x3 axl &x28x3 x ( )

For fixed & > 0, we pick a g € C*(Q + B1(0)) such that

lo — 817108, (0)) < €(€) (5.24)

3 3
Now, we add and subtract 8;? £ (jg% and ax‘? £ (zxa)n to the integrands of (5.23)

H <123 2

<h+bL+Hh (5.25)

0x10x20x3 a)629963 Ly(Q})

where

i f( ) e [ [ [

Ca O+he+hey+hes 05+he1 +hey a+he3 +hey O+he| +hes
cy cy :
3g(z) |2
/dz+/dz+/dz+/d‘ 8(2) ‘ dx
oxy &xz (9X3  0x10x20x3
a+he1 tx+he2 a+he3
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h:%%/( / dz+ / dz+ / dz+ / dz

c% O+he|+hey+hes lx+hel +hey (X+h63+h62 (x+he1 +hey
A Cy
gz)  glx) P2
+ dz+ dz+ dz+ [ dz dx
8x1 axZaX3 8x1 8x28x3
CZCJrhel CZthez CZﬁLheg

@:%%/( / dz+ / dz+ / dz+ / dz

C‘AX C(X+he1 +hey+hey O(+hel +hey (X+he3 +hey Ot+hel +hes
Do) |2
+/dz+/dz+/dz+/d‘ = ‘ dx
8)618)628)63 8)618)628)63
Oc+hel lx+h62 (X+he3

Since g € C*(Q+B1(0)), it follows that #;fa& is uniformly continuous on Q + B (0).
Therefore, there exists § = §(g, &) > 0 such that

9°8(2) 9’g(x)

2
|8x18x28x3 8x18x28x3| <c(g) (5.26)

whenever |z —x| < 8. Let he > 0 satisfy

V12he < 8 (5.27)

Then it follows that for each h < he, any @ € &/ , and any x,z € Ca+he‘+hez+heg U

a—+hei+he; Q-+he3+hey a+hei+hes a-+hes a+he; o-+hes a
o5 ucs uce UCYThes ycotherycothe e,

g(2) Pgx)
|8x18x28x3 0x10x20x3 < c(e). (5.28)
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Therefore,

I1=%§h3< / dz+ / dz+ / dz+ /

COH»hel +h62 +he3 (x+hel +hez Oc+he3+h62 Ochhel +he3
A

glz) |2

+ / ot ot ot 8x18x28x3 8x18x28x3

Ca+hel C(x+h62 C(Ax+he3 CO‘
O' Z
<24 ‘ dz < 24||c —
/ 8x18x2 8x18x2 ¢ | gHH] (Q+B1(0))
Q+B1(0

IQSZ%/( / dz+ / dz+ / dz+ /

CO‘ Ca+hq +hey+hes lx+hel +hey a+he3 +hey Ot+hel +hes
+ / dz+ / dz+ / dz+/dzc )dx<24c( Yym(QX)
oc+he1 (AX+h62 Cz+he3 cg
d3g(x) 3o (
=24 ) dx < 24|l —
37 QZ 8x1 8x28x3 8x1 axzaX3 x H gHHl
B e ..
If we take ¢(€) = z554m077 (AL these calculations imply that

L+bh+hL<e, VYh<hg (5.29)

Hence (5.21) is proved. Assertion of the lemma follows from (5.21). Lemma is proved.
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Proposition 5.3.2. For arbitrary sufficiently small € > O there exists he such that

Da(v) e ZR forall ve FEE and h<he (5.30)

Pa(V]a) € ZEE) forall Vae FF and h<he (5.31)

Proof. First side of proposition can be proved similar to Proposition 4.3.7 by using
Lemma 5.3.1. Now let [6]s € ZR. we claim that 62 := P, ([6]a) € Z®+€). In order

to prove our claim, we need to show

lolZ, o) = M(ZQ*)/CZX [(6%)2+ (02 (0))z, + (0°(x0))3, + (%)), + (02 (1) 3,y

(0%(x)) 3,0, + (04(2))3 1y | dx1dX2 < (R+€)? (5.32)

We prove (5.32) directly by evaluating the L, norm of every term in it over a fixed cell

CY,a € Q).

(ki+1)h (ky+1)h (ks+1)h

/ / / (GA (x)))zc] rydXx1dxodx;
Kh o keh  ksh
(ki+1)h (ko+1)h (k3+1)h

2
Kh o koh ksh

=0y sy (5.33)
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(ki+1D)h (kp4+1)h (k3+1)h

/ / / xledxldXZd)@

kih kh  ksh
(k1+1D)h (kp+1)h (k3+1)h
2
/ / / |G(XX1XQ + GOCX]XQXg( 3 - k3h)‘ dxldXde3
kih koh  ksh
5 4
_ o2 h h

ocxlxz + Gaxpcpg ? + G(Xxpcz Gax1x2x3 ?

where
n h
3 2 3.2
|?GOCX1X2 Gax1x2x3 | S 4 (h Otxlx2 + h’o, OCX[sz;) and
(ki+1)h (kp4+1)h (k3+1)h
/ / / xle d)C1dX2d)C3
kih koh k3h
k1+l k2+1 k';+1
2
/ / / |O-OCX1X3 + GaxleX3( X2 — kzh)| dxldxzdx3
kih kah kzh
3 hS h4
=h’c, Coxixs + Ooxy xox3 ? + Ooxyx3 Oax xaxs ?
where

h* hh3 )

3
| 2 G(XX1X3 Gaxlxzm | 4 ( ax]xg + h’c and

OCX[XQX3 )
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(ki+1D)h (kp4+1)h (k3+1)h
/ / / x2x3dxld)C2dX3
kih koh kzh
(k1+1D)h (kp+1)h (k3+1)h
2
/ / / |G(XX2)C3 + GOCX]XQXg( X1 — klh)‘ dxldxzdx3
kih kaoh kzh
5 4
g2 h h

OC)CQ)C3 + GO!X]XQX'j ? + G(szx3 Gax1x2x3 ?

where

h* hh3 )

| ? GOCXQX3 G(XX1X2X3 | S 4 ( lezxs

+hc?

(XX1XQ)C3 )

We demonstrate the calculation for the term (GA (x))x1 , and omit similar calculations for

the terms (o (x))xz, (GA(x))XS:

(ki+1)h (kp+1)h (k3+1)h (ki+1)h (kp+1)h (ks+1)h
/ [ ] @widnanas= [ [ [ (0w +Ganmle—kh)
kih koh ksh kih kah ksh

2
+Oax; x5 (X3 - k3h) + Ooxixox3 (XQ — kzh) ()C3 — k3h)) dxydx dx;

3 2 hs 2 hs 2 h7
= G(Xxl h + G(XX1X3 ? + o-OCxlxz ? + G(Xxlxz)C3 3

4 4 hS
+2G(xx1 G(xxlxz ? + 2Gax1 GOCX1X3 ? + 2Gax1 GaxleX3 Z
5 h6
+2Gax]x2 G(XX]X3 Z + 2Gax1x2 GOCX1XQX3 g
]’16

+2O-OCX1)C3 O-axlxzyg g
where

h 3 3
|h GOtX] GOCX]Xz’ <z (h G(Xxl h O-chlxz)
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|h4606x16(xx1x;| < h(h3<52 +ho?
3 2 oxy OCX1X3)

h5 /’l

— Oy, O, h G +h G

| axy (Xxlsz:;‘ —= ( 3 Otxl 3 ox|x )
2 1X2X3

hS
|?G(Xx1x2 GOCX1X3 | S h2 (h3 : ‘o,
4 chlxz +h OCX1X3)

h6
‘ 3 GO{X]XQGOCX XX ‘ 3 (h3 3
1X2X3 1 — 0,
6 ax1x2 h Gax1x2x3)

6

h
s n
‘ 3 (XXIX3GODC1)62X3‘ < 6 (h3 th]X3 +h3

(XXIXQX'g )
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(ki+1)h (kp+1)h (k3+1)h

[ e

kih kh  ksh

5 hS h7 ]’17
2 2 2 2

3 G(sz + _GOC)C3 + 3606)61)(2 + o

hS
=0l + = 3

3 GOCxl +
h7 2 ’ 2 4 4 4
3 Gax2x3 + E G(xxlxg)@ +h 0g Oax, +h'oq Oux, +h' oy Oaxs
> 3 > s
+ ? Oq G(Xxlxg + ? Oq G(XX1X3 + ? Oq GOCXQX3 + Z Oq Gax1x2X3
w w h® K
+?GO£X1 GOCXZ + = D) G(Xxl GO(X3 + = 3 G(Xxl G(Xxlxg + ?G(Xxl G(XX1X3
6

9 GOUC1X3

_|_

h7
+— 4 G(Xxl G(sz)@ + g G(Xxl GOCX1X2)C3
h h® h® h® h’
+ ? G(sz GOC)C3 + ? GOsz GOCX[XZ + Z G(sz 6(1)(1)(3 + ? G(sz GOLXQX3 + g GO{)CQ Gaxpcpq
h® h® h® h’
+ Z GOCX3 GOCX[)CZ + ? G(XX3 G(XX1X3 + ? G(XX3 G(XXZX3 + g 606)63 GODCIXZX3
n h h®
+ g G(Xxlxz G(X)C1X3 + g G(Xxlxz G(szx3 + 3 G(Xxlxz G(Xxlxg)@
h’ h® h®
+ g G(xxlxg G(X)Qx:; + 3 GO[XIX3 606)61)62)(3 + 6 G(X)sz:; G(XXIXZX3

After summation and using all these inequalities we deduce that

|2a((018) 110y = 1% 01 g5y < I[01alR 10+ OR)

which easily implies that for some /e > 0, we have P4([v]a) € .F R+ for all h < he.
Lemma is proved. [
Having Lemma 5.3.1 and Proposition 5.3.2, the rest of the proof of Theorem 5.2.1 coin-

cides with the proof of Theorem 4.2.1 given in Chapter 4.
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Chapter 6

Conclusions

Dissertation research is on the analysis of optimal control problems for the systems with
distributed parameters described by general boundary value problems for the second
order linear elliptic PDEs with bounded measurable coefficients in Lipschitz domains.
Chapter 2 analyzes elliptic optimal control problem where control parameter is the den-
sity of sources and the cost functional is the L;-norm difference of the weak solution
of the elliptic Dirichlet or Neumann problem from measurement along the boundary
or subdomain. The optimal control problems are fully discretized using the method of
finite differences. Two types of discretization of the elliptic boundary value problem
depending on Dirichlet or Neumann type boundary condition are introduced. The main

result of the Chapter 2 is the following:

e Convergence of the sequence of finite-dimensional discrete optimal control prob-
lems both with respect to the cost functional and the control is proved. The meth-
ods of the proof are based on energy estimates in discrete Sobolev spaces, Lax-

Milgram theory, weak compactness and convergence of interpolations of solutions
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of discrete elliptic problems, and delicate estimation of the cost functional along
the sequence of interpolations of the minimizers for the discrete optimal control

problems.

The methods of Chapter 2 are developed and applied to biomedical problem on the de-
tection of the cancerous tumor. Chapters 3-5 analyze the inverse EIT problem in a PDE
constrained optimal control framework in Besov space, where the electrical conductiv-
ity tensor and boundary voltages are control parameters, and the cost functional is the
norm difference of the boundary electrode current from the given current pattern and
boundary electrode voltages from the measurements. The state vector is a solution of
the second order elliptic PDE in divergence form with bounded measurable coefficients
under mixed Neumann/Robin type boundary condition. The following are the main

results of Chapters 3-5:

e The novelty of the control theoretic model is its adaptation to clinical situation
when additional "voltage-to-current” measurements can increase the size of the
input data from the number of boundary electrodes m up to m! while keeping the

size of the unknown parameters fixed.

e Existence of the optimal control and Fréchet differentiability in the Besov space
setting is proved. The formula for the Fréchet gradient and optimality condition
is derived. Numerical method based on the projective gradient method in Hilbert-

Besov spaces is developed.

e EIT optimal control problem is fully discretized using the method of finite dif-
ferences. New Sobolev-Hilbert space is introduced, and the convergence of the
sequence of finite-dimensional optimal control problems to EIT coefficient opti-

mal control problem is proved both with respect to functional and control in 2-
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and 3-dimensional domains.

121



Bibliography

[1] UG Abdulla. Wiener’s criterion for the unique solvability of the Dirichlet problem
in arbitrary open sets with non-compact boundaries. Nonlinear Analysis, 67(2):563—

578, 2007.

[2] UG Abdulla. Wiener’s criterion at o for the heat equation. Advances in Differential

Equation, 13(5-6):457-488, 2008.

[3] UG Abdulla. Wiener’s criterion at o for the heat equation and its measure-

theoretical counterpart. Electron. Res. Announc. Math. Sci., 15:44-51, 2008.

[4] UG Abdulla. Regularity of o for elliptic equations with measurable coefficients and

its consequences. Discrete and Continuous Dynamical Systems - Series A (DCDS-

A), 32(10):3379-3397, 2012.

[5] UG Abdulla. On the optimal control of the free boundary problems for the sec-
ond order parabolic equations. I. Well-posedness and convergence of the method of

lines. Inverse Problems and Imaging, 7(2):307-340, 2013.

[6] UG Abdulla. On the optimal control of the free boundary problems for the sec-
ond order parabolic equations. II. Convergence of the method of finite differences.

Inverse Problems and Imaging, 10(4):869-898, 2016.

122



[7] UG Abdulla. Removability of the logarithmic singularity for the elliptic PDEs with
measurable coefficients and its consequences. Calculus of Variations and Partial

Differential Equations, 57:157(6), 2018.

[8] UG Abdulla, V Bukshtynov, and S Seif. Cancer detection through electrical
impedance tomography and optimal control theory: Theoretical and computational

analysis. arXiv:1809.05936, 2018.

[9] UG Abdulla and E Cosgrove. Optimal control of the multiphase free boundary
problems for nonlinear parabolic equations. Applied Mathematics & Optimization,

2020.

[10] UG Abdulla, E Cosgrove, and JM Goldfarb. On the Fréchet differentiability in op-
timal control of coefficients in parabolic free boundary problems. Evolution Equa-

tions and Control Theory, 6(3):319-344, 2017.

[11] UG Abdulla, J Goldfarb, and A Hagverdiyev. Optimal control of coefficients in
parabolic free boundary problems modeling laser ablation. Journal of Computa-

tional and Applied Mathematics, 372, 2020.

[12] UG Abdulla and JM Goldfarb. Fréchet differentiability in Besov spaces in the
optimal control of parabolic free boundary problems. Journal of Inverse and Ill-

posed Problems, 26(2):211-227, 2018.

[13] UG Abdulla and B Poggi. Optimal control of the multiphase Stefan problem.
Applied Mathematics & Optimization, 80(2):479-513, 2019.

[14] UG Abdulla and B Poggi. Optimal Stefan problem. Calculus of Variations and

Fartial Differential Equations, to appear; arXiv:1901.04663, 2020.

123



[15] G Alessandrini. Stable determination of conductivity by boundary measurements.

Applicable Analysis, 27(1-3):153-172, 1988.

[16] G Alessandrini, MV de Hoop, and R Gaburro. Uniqueness for the electrostatic
inverse boundary value problem with piecewise constant anisotropic conductivities.

Inverse Problems, 33(12), 2017.

[17] G Alessandrini and R Gaburro. The local calderon problem and the determination

at the boundary of the conductivity. Comm. PDEs, 34:918-936, 2009.

[18] M Alsaker and JL Mueller. A d-bar algorithm with a priori information for 2-
dimensional electrical impedance tomography. SIAM J. Imaging Science, 9:1619—

1654, 2016.

[19] H Ammari, GS Alberti, B Jin, JK Seo, and W Zhang. The linearized inverse prob-
lem in multifrequency electrical impedance tomography. SIAM J. Imaging Science,

9:1525-1551, 2016.

[20] H Ammari, L Qiu, F Santosa, and W Zhang. Determining anisotropic conductivity
using diffusion tensor imaging data in magneto-acoustic tomography with magnetic

induction. Inverse Problems, 34:201-224, 2017.

[21] M Ammari and H Kang. Reconstruction of Small Inhomogeneities from Boundary

Measurements. Springer, 2004.

[22] T Apel, M Mateos, J Pfefferer, and A Rosch. On the regularity of the solutions of
dirichlet optimal control problems in polygonal domains. SIAM J Control Optim.,

53(6):3620-3641, 2015.

124



[23] K Astala, M Lassas, and L Palvarinta. Calderon’s inverse problem for anisotropic

conductivity in the plane. Comm. PDEs, 30:207-224, 2005.

[24] K Astala and L Palvarinta. Calderon’s inverse conductivity problem in the plane.

Annals of Mathematics, 163(2):265-299, 2006.

[25] W Bangerth and R Rannacher. Adaptive finite element methods for differential

equations. Lectures inMathematics ETH Ziirich. Birkhéduser Verlag, Basel, 2003.

[26] R Becker, H Kapp, and R Rannacher. Adaptive finite element methods for optimal
control of partial differential equations: Basic concept. SIAM Journal on Control

and Optimization, 39(1):113-132, 2000.

[27] MI Belishev. The calderon problem for two-dimensional manifolds by the bc-

method. SIAM J Math. Anal., 35(1):172-182, 2003.

[28] JD Benamou. Décomposition de domaine pour le controle optimal de systemes
gouvernés par des équations aux dérivées partielles elliptiques. Comptes rendus de

I’Académie des sciences. Série 1, Mathématique, 317(2):205-209, 1993.

[29] OV Besov, VP II’in, and SM Nikol’skii. Integral Representations of Functions and

Imbedding Theorems, volume Vol. 1. John Wiley & Sons, 1979.

[30] OV Besov, VP II'in, and SM Nikol’skii. Integral Representations of Functions and

Imbedding Theorems, volume Vol. 2. John Wiley & Sons, 1979.

[31] A Borzi and K Kunisch. A multigrid scheme for elliptic constrained optimal con-

trol problems. Computational Optimization and Applications, 31(3):309-333, 2005.

125



[32] A Borzi, K Kunisch, and DY Kwak. Accuracy and convergence properties of the
finite difference multigrid solution of an optimal control optimality system. SIAM

Journal on Control and Optimization, 41(5):1477-1497, 2002.

[33] A Borzi and V Schulz. Computational optimization of systems governed by partial

differential equations, volume 8. SIAM, 2011.

[34] AP Calderon. On an inverse boundary value problem. In Seminar on Numerical
Analysis and Its Applications to Continuum Physics, pages 65-73. Soc. Brasileira

de Mathematica, Rio de Janeiro, 1980.

[35] E Casas, A Giinther, and M Mateos. A paradox in the approximation of dirichlet
control problems in curved domains. SIAM J Control Optim., 49(5):1998-2007,
2011.

[36] E Casas and JP Raymond. Error estimates for the numerical approximation of
dirich- let boundary control for semilinear elliptic equations. SIAM J Control Op-

tim., 45(5):1586-1611, 2006.

[37] E Casas and J Sokolowski. Approximation of boundary control problems on

curved domains. SIAM J Control Optim., 48(6):3746-3780, 2010.

[38] K Deckelnick, A Giinther, and M Hinze. Finite element approximation of dirichlet
boundary control for elliptic pdes on two-and three-dimensional curved domains.

SIAM Journal on Control and Optimization, 48(4):2798-2819, 2009.

[39] K Deckelnick and M Hinze. Convergence of a finite element approximation to a
state-constrained elliptic control problem. SIAM Journal on Numerical Analysis,

45(5):1937-1953, 2007.

126



[40] M Dodd and J Mueller. A real-time d-bar algorithm for 2d electrical impedance

tomography data. Inverse Problems and Imaging, 8:1013-1031, 2014.

[41] MM Dunlop and AM Stuart. The Bayesian formulation of EIT: analysis and algo-

rithms. Inverse Problems and Imaging, 10(4):1007-1036, 2016.

[42] LC Evans. Partial Differential Equations. Graduate studies in mathematics. Amer-

ican Mathematical Society, 1998.

[43] AV Fursikov. Optimal control of distributed systems. Theory and applications.

American Mathematical Soc., 1999.

[44] R Gaburro and WRB Lionheart. Recovering riemannian metrics in monotone fam-

ilies from boundary data. Inverse Problems, 25(4), 2009.

[45] R Gaburro and E Sinicich. Lipschitz stability for the inverse conductivity problem

for a conformal class of anisotropic conductivities. Inverse Problems, 31, 2015.

[46] D Gilbarg and NS Trudinger. Elliptic partial differential equations of second order.

Springer, 2015.

[47] R Glowinski, JL Lions, and J He. Exact and approximate controllability for dis-
tributed parameter systems: a numerical approach (Encyclopedia of Mathematics

and its Applications). Cambridge University Press, 2008.

[48] SJ Hamilton, M Lassas, and S Siltanen. A direct reconstruction method for

anisotropic electrical impedance tomography. Inverse Problems, 30, 2014.

[49] SJ Hamilton, M Lassas, and S Siltanen. A hybrid segmentation and d-bar method

for electrical impedance tomography. SIAM J. Imaging Science, 9:770-793, 2016.

127



[50] B Harrach. Uniqueness and lipschitz stability in electrical impedance tomography

with finitely many electrodes. Inverse problems, 35(2):19, 2019.

[51] B Harrah and MN Minh. Enhancing residual-based techniques with shape recon-

struction features in electrical impedance tomography. Inverse Problems, 32, 2016.

[52] M Hinze, R Pinnau, M Ulbrich, and S Ulbrich. Optimization with PDE constraints,
volume 23 of Mathematical Modelling: Theory and Applications. Springer Science
& Business Media, 2009.

[53] M Hinze and A Rdsch. Discretization of optimal control problems. In Constrained
optimization and optimal control for partial differential equations, volume 160 of
Internat. Ser. Numer. Math., pages 391-430. Birkhéduser/Springer Basel AG, Basel,
2012.

[54] DS Holder. Electrical impedance tomography: methods, history and applications.
CRC Press, 2004.

[55] N Hyvonen, L Pélvidrinta, and JP Tamminen. Enhancing d-bar reconstructions
for electrical impedance tomography with conformal maps. Inverse Problems and

Imaging, 12:373-400, 2018.

[56] B Jin, T Khan, and P Maass. A reconstruction algorithm for electrical impedance
tomography based on sparsity regularization. Int. J. Numer. Methods, 89:337-353,
2012.

[57] B Jin, Y Xu, and Zou J. A convergent adaptive finite element method for electrical

impedance tomography. IMA J. Numer. Anal., 37:1520-1550, 2017.

128



[58] JP Kaipio, V Kolehmainen, E Somersalo, and M Vauhkonen. Statistical inversion
and Monte Carlo sampling methods in electrical impedance tomography. Inverse

problems, 16(5):1487, 2000.

[59] JP Kaipio, V Kolehmainen, M Vauhkonen, and E Somersalo. Inverse problems

with structural prior information. Inverse problems, 15(3):713, 1999.

[60] JP Kaipio and E Somersalo. Statistical and Computational Inverse Problems,.

Springer, 2005.

[61] C Kenig, J Sjostrand, and G Uhlmann. The Calderon problem with partial data.
Annals of Mathematics, 165:567-591, 2007.

[62] C Kenig, J Sjostrand, and G Uhlmann. The Calderon problem with partial data on
manifolds and aplications. Analysis and PDE, 6:2003-2048, 2013.

[63] MV Klibanov, J Li, and W Zhang. Convexification of electrical impedance to-
mography with restricted dirichlet-to-neumann map data. Inverse Problems, 35:33,

2019.

[64] K Knudsen, M Lassas, JL Mueller, and S Siltanen. D-bar method for electrical
impedance tomography with discontinuous conductivities. SIAM Journal on Ap-

plied Mathematics, 67:893-913, 2007.

[65] K Knudsen, M Lassas, JL Mueller, and S Siltanen. Reconstructions of piecewise
constant conductivities by the d-bar method for electrical impedance tomography.

Journal of Physics: Conference Series, 124, 2008.

[66] K Knudsen, M Lassas, JL. Mueller, and S Siltanen. Regularized d-bar method for

the inverse conductivity problem. Inverse Problems and Imaging, 3:599—624, 2009.

129



[67] RV Kohn and M Vogelius. Determining conductivity by boundary measurements.

Comm. Pure Appl. Math., 37:289-298, 1984.

[68] RV Kohn and M Vogelius. Determining conductivity by boundary measurements.

ii. interior results. Comm. Pure Appl. Math., 38:643—667, 1985.

[69] V Kolehmainen, M Lassas, P Ola, and S Siltanen. Recovering boundary shape and
conductivity in electrical impedance tomography, inverse problems and imaging.

Inverse Problems and Imaging, 7:217-242, 2013.

[70] O Kwon, JK Seo, and JR Yoon. A real-time algorithm for the location search
of discontinuous conductivities with one measurement. Comm. Pure Appl. Math.,

55:1-29, 2002.

[711 OA Ladyzhenskaya. The boundary value problems of mathematical physics.

Springer Science & Business Media, 2013.

[72] OA Ladyzhenskaya and NN Ural’tseva. Linear and quasilinear elliptic equations.

Translated from the Russian by Scripta Technica, Inc., 1968.

[73] S Lasanen, JML Huttunen, and L Roininen. Whittle-matern priors for bayesian
statistical inversion with applications in electrical impedance tomography. Inverse

problems and Imaging, pages 561-586, 2014.

[74] M Lassas, E Saksman, and S Siltanen. Discretization-invariant bayesian inversion

and besov space priors. Inverse Problems and Imaging, pages 87-122, 2009.

[75] M Lassas and G Uhlmann. On determining a riemannian manifold from the

dirichlet-to-neumann map. Ann. Sci. Ecole Norm. Sup., 34:771-787, 2001.

130



[76] M Lassas, G Uhlmann, and M Taylor. The dirichlet-to-neumann map for complete

riemannian manifolds with boundary. Comm. Anal. Geom., 11(2):207-221, 2003.

[77] S Laufer, A Ivorra, VE Reuter, B Rubinsky, and SB Solomon. Electrical impedane
characterization of normal and cancerous human hepatic tissue. Physiological Mea-

surements, 31:995-1009, 2010.

[78] A Lechleiter and A Rieder. Newton regularization for impedance tomography:

convergence by local injectivity. Inverse problems, 24(6):18, 2008.

[79] JM Lee and G Uhlmann. Determining anisotropic real-analytic conductivities by

boundary measurements. Comm. Pure Appl. Math., 42:1097-1112, 1989.

[80] WRB Lionheart. Conformal uniqueness results in anisotropic electrical impedance

imaging. Inverse Problems, 13:125-134, 1997.

[81] JL Lions. Optimal control of systems governed by partial differential equations

problemes aux limites. 1971.

[82] JL Lions. Decomposition methods for variational inequalities. In J.L. Menaldi,
E. Rofman, and A. Sulem, editors, Optimal Control and Partial Differential Equa-
tions: In Honour of Professor Alain Bensoussan’s 60th Birthday, pages 38—46. 10S
Press, 2001.

[83] G Matthias, J Bangti, and X Lu. An analysis of finite element approximation in

electrical impedance tomography. Inverse Problems, 30, 2014.

[84] S May, R Rannacher, and B Vexler. Error analysis for a finite element approx-
imation of elliptic dirichlet boundary control problems. SIAM J Control Optim.,

51(3):2585-2611, 2013.

131



[85] AI Nachman. Reconstructions from boundary measurements. Annals of Mathe-

matics, 128(3):531-576, 1988.

[86] Al Nachman. Global uniqueness for a two-dimensional inverse boundary value

problem. Annals of Mathematics, 143(2):71-96, 1996.

[871 SM Nikol’skii. Approximation of Functions of Several Variables and Imbedding

Theorems. Springer-Verlag, New York-Heidelberg, 1975.

[88] JK Seo, J Lee, SW Kim, H Zribi, and EJ Woo. Frequency-difference electrical
impedance tomography: algorithm development and feasibility study. Phys. Meas.,

29:929-941, 2008.

[89] JK Seo and EJ Woo. Magnetic resonance electrical impedance tomography. SIAM
Review, 53:40-68, 2011.

[90] E Somersalo, M Cheney, and D Isaacson. Existence and uniqueness for electrode
models for electric current computed tomography. SIAM Journal on Applied Math-

ematics, 52(4):1023-1040, 1992.

[91] J Sylvester. An anisotropic inverse boundary value problem. Comm. Pure Appl.

Math., 43(2):201-232, 1990.

[92] J Sylvester and G Uhlmann. A global uniqueness theorem for an inverse boundary

value problem. Annals of Mathematics, pages 153-169, 1987.

[93] AN Tikhonov and FP Vasil’ev. Methods for the solution of ill-posed extremal
problems. In Mathematical models and numerical methods, number 3 in Banach
Center Publications, pages 297-342, Warsaw, 1978. Stefan banach Internat. Math.

Center.

132



[94] F Troltzsch. Optimal control of partial differential equations: theory, methods,

and applications, volume 112. American Mathematical Soc., 2010.

[95] FP Vasil’ev. Methods for solving extremal problems. minimization problems in

function spaces, regularization, approximation. Moscow, Nauka, 1981.

[96] T Widlak and O Scherzer. Hybrid tomography for conductivity imaging. Inverse
Problems, 28, 2012.

133



	Optimal Control of the Second Order Elliptic Equations with Biomedical Applications
	Abstract
	List of Notations
	Acknowledgments
	Dedication
	1 Introduction
	2 Discretization and Convergence of Optimal Control Problems for Second Order Elliptic PDEs
	2.1 Introduction and Main Results
	2.1.1 Optimal Control Problems
	2.1.2 Well-posedness of the Optimal Control Problems
	2.1.3 Discrete Optimal Control Problems
	2.1.4 Main Results

	2.2 Preliminary Results
	2.2.1 Approximation Lemmas

	2.3 Proofs of Main Results
	2.3.1 Proof of Theorem 2.1.6
	2.3.2 Proof of Theorem 2.1.7


	3 Cancer Detection through Electrical Impedance Tomography and Optimal Control of Elliptic PDEs
	3.1 Introduction and Problem Description
	3.2 Optimal Control Problem
	3.3 Main Results
	3.3.1 Gradient Method in Banach Space

	3.4 Proofs of the Main Results 

	4 Discretization and Convergence of the EIT Optimal Control Problem in 2D Domains
	4.1 Introduction and Problem Description
	4.1.1 Optimal Control Problem
	4.1.2 Discrete Optimal Control Problem 

	4.2 Main Result
	4.3 Preliminary Results
	4.4 Approximation Theorem
	4.5 Convergence of the Discrete Optimal Control Problem

	5 Discretization and Convergence of the EIT Optimal Control Problem in 3D Domains
	5.1 EIT Optimal Control in 3D Domains
	5.1.1 Discrete EIT Optimal Control Problem 

	5.2 Main Result
	5.3 Proof of the Main Result

	6 Conclusions
	References

