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ABSTRACT

Title:

Discrete Moment Problems with

Logconcave and Logconvex Distributions

Author:

Talal Alharbi

Major Advisor:

Munevver Mine Subasi, Ph.D.

We introduce new shape constraints, logconcavity and logconvexity, to discrete

moment problems for bounding the k-out-of-n type probabilities and expectations

of higher order convex functions of discrete random variables with non-negative

and finite support. The bounds are obtained as the optimum values of non-convex

and convex nonlinear optimization problems, where the non-convex problem is re-

formulated as a bilinear optimization problem. We present numerical experiments

to show the improvement in the tightness of the bounds when the shape of underly-

ing unknown probability distribution is prescribed into discrete moment problems.

We apply our optimization based bounding methodology in an insurance problem

to estimate the expected stop-loss of aggregated insurance claims within a fixed

period. The proposed bounding methodology is expected to expand the scope of

applications for both discrete moment problems and logconcavity and logconvexity.
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Chapter 1

Introduction

Discrete Moment Problem (DMP) was formulated by Prékopa (1988) [1] as a linear

programming problem to approximate linear functions on the unknown discrete

probability distributions with finite support, where some of the power or binomial

moments are known or given. Depending on the type of moments used, the problem

is called a discrete power moment problem (PMP) or discrete binomial moment

problem (BMP).

The discrete moment problems came to prominence by the discovery that the

classical probability bounds and expectations of higher order convex functions

of discrete random variables with finite support can be obtained based on the

knowledge of some of the binomial moments or power moments. In particular,

Prékopa (1988, 1990) [1–3] had shown in his earlier work that sharp bounds for

the probability of the union and the probability that at least k or exactly k-out-of-n

events occur can be formulated as DMPs.
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Let X be a random variable with finite support Ω = {z0, z1, ..., zn}. Assume

that the probability distribution {xi} defined as

xi = P (X = zi), i = 0, 1, ..., n

is unknown, but the first m power moments,

µj = E(Xj), j = 1, ...,m,

where m < n, are assumed to known and µ0 = 1.

Let us consider a given function f and introduce the notations

fi = f(zi), i = 0, 1, ..., n.

Then the discrete power moment problem (PMP) is given by

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

zji xi = µj, j = 0, 1, ...,m (1.1)

xi ≥ 0, i = 0, 1, ..., n.

2



Similarly, if we assume that the probability distribution {xi} is unknown but

the first m binomial moments,

Sj = E

⎡⎢⎣
⎛⎜⎝ X

j

⎞⎟⎠
⎤⎥⎦ , j = 1, ...,m,

are known, then we can formulate the discrete binomial moment problem (BMP)

as follows

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

(
zi
j

)
xi = Sj, j = 0, 1, ...,m (1.2)

xi ≥ 0, i = 0, 1, ..., n,

where S0 = 1. Problems (1.1) and (1.2) can be transformed into each other by the

use of the Stirling numbers of the first and second kind (Prékopa, 1995 [4]).

We remark that the coefficient matrix of problem (1.1) is a Vandermonde matrix

and the coefficient matrix of problem (1.2) is a Pascal matrix, both of which can

be badly ill-conditioned when n is large (see, for example, Pan, 2016 [5], Alonso

et al., 2013 [6] and the references therein). Prékopa (1988) [1] developed a linear

programming based methodology to solve the discrete moment problems (1.1) and

(1.2) for the following three cases.

3



• Case 1. The function f has positive divided differences of order m + 1 on

the support set Ω. In this case the optimum values of problems (1.1) and

(1.2) provide us with sharp lower and upper bounds for E[f(X)], that is, the

expected value of higher order convex function of random variable X, based

on the knowledge of first m power and binomial moments, respectively.

• Case 2. fk = 1, fi = 0, i ̸= k for some 0 ≤ k ≤ n. Then the optimum values of

problems (1.1) and (1.2) give sharp lower and upper bounds for P (X = zk),

based on the knowledge of first m power and binomial moments, respectively.

• Case 3. fi = 0, i = 1, ..., k− 1 and fk = ...fn = 1 for some 1 ≤ k ≤ n. In this

case, the optimum values of problems (1.1) and (1.2) are the sharp lower and

upper bounds for P (X ≥ zk), based on the knowledge of first m power and

binomial moments, respectively.

Let us assume that

zi = i, i = 0, 1, ..., n

and the random variable X denotes the number of events A1, ..., An, associated

with the probability space Ω, occur. Then Case 2 provides us with sharp bounds

for the probability that exactly k-out-of-n events occur for some 0 ≤ k ≤ n.

Similarly, Case 3 can be used to obtain sharp bounds for the probability that at

least k-out-of-n events occur for some 1 ≤ k ≤ n.

Prékopa extensively studied problems (1.1) and (1.2) for Cases 1-3 (Prékopa,

1988 [1], Boros and Prékopa, 1989 [7], Prékopa, 1989 [8] Prékopa, 1990 [2], Prékopa,

1990 [3], Prékopa, 1998, 2001 [9,10], Gao and Prékopa, 2002 [11], Prékopa and Gao,

2005 [11]). The central results in this respect include the characterization of dual

feasible basis in problems (1.1) and (1.2) and obtaining closed form bounds for the

4



expectation E[f(X)] and probability of the union of events and probabilities that

exactly k or at least k-out-of-n events occur, that is, P (X ≥ 1), P (X = k) for

some 0 ≤ k ≤ n, and P (X ≥ k) for some 1 ≤ k ≤ n, respectively.

Discrete moment problems were used in wide range of applications including

maximum satisfiability problem (Boros and Prékopa, 1989 [12]), communication

network reliability (Prékopa, Boros, and Lih, 1991 [13]), stochastic transportation

network (Boros and Prékopa, 1991 [14]), telecommunication networks (Gao and

Prékopa, 2001 [15]), PERT (Prékopa, Long, and Szántai, 2004 [16], Subasi, Subasi,

Prékopa, 2009 [17]), reliability (Subasi, 2007 [18], Prékopa, Subasi, Subasi, 2008

[19]), and finance (Subasi, 2007 [18]). Since the problem is of practical importance,

the theory of discrete moment problems continues to expand its purview and a

wider range of investigations and arguments is developed. For more recent results

the reader is referred to Prékopa, Ninh, and Alexe (2016) [20], Prékopa and Yoda

(2016) [21].

While several attractive applications and theoretical investigations involving

the discrete moment problems are presented in literature, little has been done to

take into account the shape of the underlying probability distribution. Prékopa,

Subasi, Subasi (2008) [19] and Subasi, Subasi, Prékopa (2009) [17] are the first

to reformulate the discrete moment problems, where the underlying distribution

is assumed to be increasing, decreasing, or unimodal with known or given mode.

The problem is then used to obtain bounds for the probability of the union of

events based on the knowledge of the first two binomial moments and for the

expectations of higher order convex functions of discrete random variables based

on the knowledge of the first two power moments.

5



Subasi et al. (2017) [22] and Subasi et al. (2018) [23] further expanded their in-

vestigations to binomial moment problem, where the first m binomial moments are

known and the underlying probability distribution {xi} is assumed to be unimodal

with a known mode M , i.e., the following conditions are satisfied:

x0 ≤ x1 ≤ ... ≤ xM and xM ≥ xM+1 ≥ ... ≥ xn (1.3)

The starting point of the Subasi et al.’s investigation is the following linear program

(Subasi, Subasi, Prékopa, 2017 [22]):

min(max)
n∑

i=k

xi

subject to
n∑

i=0

(
i

j

)
xi = Sj, j = 0, 1, ...,m

x0 ≤ x1 ≤ ... ≤ xM (1.4)

xM ≥ xM+1 ≥ ... ≥ xn

xi ≥ 0, i = 0, 1, ..., n,

where S0 = 1 andM is the mode of the distribution. Note that the optimum values

of problem (1.4) give the sharp bounds for the probability that at least k-out-of-n

events occur, P (X ≥ k), k = 1, ..., n, where the underlying distribution is assumed

to be unimodal with mode M .
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Similarly, sharp bounds for the probability that exactly k-out-of-n events occur,

P (X = k), k = 0, ..., n, where the underlying distribution is unimodal with mode

M can be formulated as follows (Subasi, Subasi, Prékopa, 2018 [23]):

min(max) xk

subject to
n∑

i=0

(
i

j

)
xi = Sj, j = 0, 1, ...,m

x0 ≤ x1 ≤ ... ≤ xM (1.5)

xM ≥ xM+1 ≥ ... ≥ xn

xi ≥ 0, i = 0, 1, ..., n,

where S0 = 1.

Subasi et al. (2017, 2018) [22, 23] fully characterized the dual feasible basis

structures in binomial moment problems (1.4) and (1.5) and presented closed form

bounds for the probabilities that at least k or exactly k-out-ofn events occur based

on the knowledge of the first two binomial moments. The authors also presented

a dual type algorithm to obtain the customized algorithmic solutions of the linear

programs (1.4) and (1.5).
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Numerical investigations of Prékopa, Subasi, Subasi (2008) [19], Subasi, Subasi,

Prékopa (2009) [17], and Subasi et al. (2017, 2018) [22, 23] suggest that, with the

knowledge of the shape of the distribution, discrete moment problems renders

significantly better lower and upper bounds for the expectations of the higher

order convex functions of discrete random variables and probabilities that at least

k or exactly k-out-of-n events occur. Inclusion of the unimodality constraint into

binomial moment problems (1.4) and (1.5) has drawn attention in the literature.

We refer the readers to Kumaran and Swarnalatha (2017) [24] and Swarnalatha

and Kumaran (2017) [25].

Motivated by the results of Prékopa, Subasi, Subasi (2008) [19], Subasi, Subasi,

Prékopa (2009) [17], and Subasi et al. (2017, 2018) [22,23], this dissertation’s goal

is to introduce two new shape constraints, logconvexity and logconcavity, into the

discrete moment problems. We remark that a typical assumption for the discrete

moment problem with unimodality constraint is that the location of the mode

is known or given. This restriction is no longer required under logconvexity and

logconcavity constraints.

The organization of the dissertation is as follows. In Chapter 2, we reformulate

discrete moment problems, where the underlying distribution is assumed to be

logconcave and present numerical examples to investigate the contribution of the

logconcavity of the distribution on the bounds for the probability that at least k-

out-of-n events occur, based on the knowledge of first two and first three binomial

moments.
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In Chapter 3, we prescribe the logconvexity constraint into the power and

binomial discrete moment problems and give numerical examples to demonstrate

the contribution of the logconvexity of the distribution on the bounds for the

probability that at least k-out-of-n events occur, based on the knowledge of first

two and first three binomial moments.

Chapter 4 presents an application of the discrete moment problem with log-

concavity constraint. Finally, Chapter 5 concludes the dissertation with future

directions.
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Chapter 2

Discrete Moment Problems with

Logconcave Distributions

2.1 Logconcavity Constraints

Logconcavity lies at the very heart of optimization theory and is a desired prop-

erty in many fields such as economics, supply chain management, statistics, and

stochastic optimization (see, e.g., Prékopa, 1995 [4], Johnson and Goldschmidt,

2006 [26], Ninh and Prékopa, 2013 [27], Alharbi, Subasi, Subasi, 2018 [28], and the

references therein). In particular, Ninh and Prékopa (2013) studied the logconcav-

ity property for compound distributions that are widely used to model intermittent

demands (Axsäter, 2015 [29]).

Despite the considerable attention given to the logconcavity of continuous dis-

tributions, the theory of logconcavity of discrete distributions is still limited. The

classical results in this respect is the notion of r-times positive sequence introduced

by Fekete (1912) [30].
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The sequence of nonnegative elements . . . , a−2, a−1, a0, a1, a2, . . . is said to be

r-times positive if the matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . .

. . . a0 a1 a2

. . . a−1 a0 a1
. . .

a−2 a−1 a0
. . .

. . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

has no negative minor of order smaller than or equal to r. Further, if ak = 0 for

k < 0 and A has no negative minor of order smaller than or equal to r, then the

concept of r-times positive students is known as PFr sequence (Karlin, 1968 [31]).

The twice-positive sequences satisfy the following property

⏐⏐⏐⏐⏐⏐⏐
ai aj

ai−t aj−t

⏐⏐⏐⏐⏐⏐⏐ = aiaj−t − ajai−t ≥ 0 (2.1)

for every i < j and t ≥ 1. This holds if and only if

a2i ≥ ai−1ai+1 (2.2)

Fekete (1912) [30] also proved that the convolution of two r -times positive

sequences is r -times positive. Twice-positive sequences are also called logconcave

sequences. Hence, Fekete’s theorem states that the convolution of two logconcave

sequences is logconcave. A discrete probability distribution, defined on the real

line, is said to be logconcave if the corresponding probability mass function is

logconcave.
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Note that a logconcave sequence should have no internal zero. Otherwise, basic

convolution theorem of logconcave sequences will be violated (Ninh and Prékopa,

2013 [27]). In other words, there are no indices 0 ≤ i < j < r ≤ n such that

ai ̸= 0, aj = 0, ar ̸= 0. Further, if the preceding inequality is reversed, then the

sequence is called logconvex.

Finally, a sequence {ai}∞i=0 is said to be concave if

2ai+1 ≥ ai + ai+2, i = 0, 1, 2, . . .

If this sequence is strictly positive, then it is logconcave if and only if {ln ai}∞i=0 is

a concave sequence. Clearly, a logconcave sequence of positive terms is unimodal

(Dharmadhikari and oag-Dev, 1988 [32], Stanley, 1989 [33]). Most recent result

in this direction is due to Alharbi, Subasi, Subasi (2018) [28], where sufficient

conditions for the logconcavity of multivariate discrete distributions are presented.

Incorporating shape constraints into discrete moment problems has shown that,

with the knowledge of the shape of the distribution, the bounds for the probabilities

and expectations can be significantly improved (Prékopa, Subasi, Subasi, 2008 [19],

Subasi, Subasi, Prékopa, 2009 [17], and Subasi et al., 2017, 2018 [22,23]).

Below we formulate discrete moment problems by prescribing the logconcavity

constraint and discuss its solution approach.

A typical example involving logconcave discrete distributions is inventory man-

agement, where most demand distributions are assumed to be binomial, negative

binomial, or compound Poisson distribution.
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In this section, we assume that the discrete random variable X has a logconcave

probability distribution {xi}, i.e., the following conditions are satisfied

x2
i ≥ xi−1xi+1, i = 1, ..., n− 1. (2.3)

Then the power moment problem (1.1) with logconcavity constraints is given by

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

zji xi = µj, j = 0, 1, ...,m

(2.4)

x2
i ≥ xi−1xi+1, i = 1, . . . , n− 1

xi ≥ 0, i = 0, 1, ..., n.
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Similarly, incorporating the logconcavity constraints (2.3) into the binomial

moment problem (1.2), we obtain

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

(
zi
j

)
xi = Sj, j = 0, 1, ...,m

(2.5)

x2
i ≥ xi−1xi+1, i = 1, . . . , n− 1

xi ≥ 0, i = 0, 1, ..., n.

We remark that problems (2.4) and (2.5) fail to model the subtlety in the

definition of a logconcave sequence. Recall that a probability sequence {xi} is

called logconcave if it has no internal zeros. This feature is satisfied by most

discrete probability distributions in both theory and practice. In other words, any

points in the support set should have a positive probability.

Let us introduce new decision variables

y0, y1, . . . , yn−1 ≥ 0,

where

x1 = y0x0, . . . , xn = yn−1xn−1.

Note that variables yi, i = 0, . . . , n − 1 are the ratios between consecutive proba-

bilities of the underlying random variable.
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Substituting variables yi, i = 0, . . . , n − 1, we obtain an improved formulation

of problems (2.4) and (2.5) as follows

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

zki xi = µj, j = 0, ...,m

xi = xi−1yi−1, i = 1, . . . , n (2.6)

yi ≥ yi−1, i = 1, . . . , n

xi ≥ 0 i = 0, 1, . . . , n

and

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

(
zi
j

)
xi = Sj, j = 0, 1, ...,m

xi = xi−1yi−1, i = 1, . . . , n (2.7)

yi ≥ yi−1, i = 1, . . . , n

xi ≥ 0 i = 0, 1, . . . , n.
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Note that problems (2.6) and (2.7) are nonconvex nonlinear programs due to

the logconcavity constraints. These problems belong to a class of optimization

problems called bilinear programs that have numerous applications in location

theory, economics, risk management, etc. (see, e.g., Sherali and Alameddine, 1990

[34]). Solution methods to these type problems can be found in Konno (1976)

[35], Liberti and Pantelides (2006) [36], Migladas and Pardalos (2013) [37]. To

date, the Spatial Branch-and-Bound algorithms remain one of the most effective

methods available for the global solution of nonconvex nonlinear programs (Tuy

and Ghannadan, 1998 [38]).

Below we present numerical examples to investigate the contribution of the use

of logconcavity constraints in discrete moment problems.
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2.2 Numerical Examples: Logconcavity Constraints

Since problems (1.1) and (1.2) can be obtained from each other, we shall consider

the following special case of binomial moment problem (1.2), where we assume

that the underlying distribution is logconcave, that is,

min(max)
n∑

i=k

xi

subject to
n∑

i=0

(
i

j

)
xi = Sj, j = 0, 1, ...,m

xi = xi−1yi−1, i = 1, . . . , n (2.8)

yi ≥ yi−1, i = 1, . . . , n

xi ≥ 0 i = 0, 1, . . . , n.

Note that the optimum values of problem (2.8) provide us with lower and upper

bounds for the probability that at least k-out-of-n events occur, P (X ≥ k) for

some 1 ≤ k ≤ n, where the underlying distribution is logconcave and the first m

binomial moments are known.

Let A1, · · · , An be arbitrary events in an arbitrary probability space Ω and

let X denote the number of those events that occur. The well-known Jordan’s

formulas (Jordan, 1927) [39] are available to compute the probabilities that at
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least k (1 ≤ k ≤ n) out of n events occur:

P (X ≥ k) =
n∑

j=k

(−1)j−k

(
k − 1

j − 1

)
Sj (2.9)

where Sj is the jth binomial moment of the random variable X defined by

Sj =
∑

1≤i1<···<ij≤n

P (Ai1 ∩ · · · ∩ Aij), j = 1, ..., n (2.10)

and S0 = 1, by definition. However, if n is large, it may not be possible to find

the exact values of the probabilities in (2.9) because the total number of terms in

(2.10) becomes an exponential function of n. On the other hand, it may be possible

to compute a few of the binomial moments from the historical data and give lower

and upper bounds for the probability P (X ≥ k). The goal of the traditional

probability bounding approaches is to obtain the best possible approximation of

P (X ≥ k) based on the knowledge of the first m moments, S0, · · · , Sm, (m < n),

or any finite collection of binomial moments.

The typical examples of probability P (X ≥ k) is the reliability evaluations

of k-out-of-n systems such as multistate networks, including oil and gas supply

systems, communication networks, power generation and transmission systems,

and fault tolerant systems, including multidisplay system in a cockpit, multiengine

system in an airplane, and multipump system in a hydraulic control system (see,

e.g., Subasi et al., 2017 [22] and the references therein).

The probability bounding problem has been extensively studied throughout the

history of probability theory. Boole (1854) [40] was the first who discovered a basic

inequality and a general approximation scheme for the probability of the union of

events. The next well-known bounds were presented by Bonferroni (1937) [41].
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However, Boole and Bonferroni bounds are weak in general. Hailperin (1965)

[42] proved that Boole’s method was equivalent to Fourier-Motzkin elimination.

Fréchet (1940) [43] obtained the first bounds based on the knowledge of the first

binomial moment. His results were followed by Dawson and Sankoff (1967) [44]

where the sharp Bonferroni bounds based on the first two binomial moments were

presented. Kwerel (1975) [45] reproduced and extended Dawson-Sankoff results to

present lower and upper bounds for the probability that exactly k-out-of-n occurs,

using the first three binomial moments. Prékopa (1988-1991) [1, 8, 46] discovered

that the sharp bounds for the k-out-of-n type probabilities and expectations of

higher order convex functions of discrete random variables can be obtained as

the optimum values of discrete moment problems. Boros and Prékopa (1989)

[7] used a linear programming approach to produce the closed form Bonferroni

bounds and bounds for the probabilities that at least k and exactly k-out-of-n

events occur, based on the knowledge of first four binomial moments. Samuels and

Studden (1989) [47] independently discovered the sharp Bonferroni inequalities

and moment problems, however, their method is applicable only to small size

problems. Other closed form probability bounds were presented by Sathe et al.

(1980) [48], Galambos et al. (1980, 1996) [49, 50], Móri and Székely (1985) [51],

Prékopa and Gao (2001) [15], Gao and Prékopa (2002) [11], Dohmen and Tittmann

(2007) [52], Petrov (2007) [53], Hoppe and Nediak (2008) [54], and Radwan et al.

(2011) [55]. Probability bounds based on the probabilities of the individual events

and their intersections and graph structures were presented by Hunter (1976) [56],

Bukszár and Prékopa (2001) [57], Bukszár (2003) [58], Bukszár, Mási-Nagy, and

Szántai (2012) [59], and Veneziani (2008) [60]. The other linear programming based

bounding methodologies include Veneziani (2009) [60], Boros, Scozzari, Tardella,
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and Veneziani (2014) [61], Prékopa, Ninh, and Alexe (2016) [20] and Yoda and

Prékopa [21].

In order to utilize the contribution of the shape of the underlying distribution

we proceed as follows:

(1) Given an n, randomly generate a logconcave distribution {xi} satisfying

•
n∑

i=0

xi = 1

• x2
i ≥ xi−1xi+1, i = 1, ..., n− 1

• xi ≥ 0, i = 0, 1, ..., n

(2) Given an m, compute the first m binomial moments, S1, ..., Sm, by the use

of
n∑

i=0

(
i

j

)
xi = Sj, j = 1, ...,m.

(3) Assume that the distribution {xi} is unknown and solve problem

min(max)
n∑

i=k

xi

subject to
n∑

i=0

(
i

j

)
xi = Sj, j = 0, 1, ...,m (2.11)

xi ≥ 0 i = 0, 1, . . . , n

to obtain lower and upper bounds for P (X ≥ k) for some 1 ≤ k ≤ n,

where the shape of the distribution is not used and the binomial moments,

S1, ..., Sm, are those obtained in Step (2).
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(4) Next, solve problem (2.8), where the shape of the underlying distribution is

used and the binomial moments, S1, ..., Sm, are those obtained in Step (2).

(5) Compute the optimum values of the optimization problems involved and let

• LB and UB denote the lower and upper bounds for P (X ≥ k) obtained

in Step 3, respectively

• Let LBlogconcavity and UBlogconcavity denote the lower and upper bounds

for P (X ≥ k) obtained in Step (4), respectively.

(6) Compare the lower and upper bounds reported in Step (5).

2.2.1 Example 1. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity assumption

We take n = 10 and generate a probability distribution as described in Section

2.2. In this example, bounds for the probability that k-out-of-10 events occur are

obtained for

• k = 1, 3, 5, 8, 9,

• based on the first two binomial moments S1, S2,

• based on the first three binomial moments S1, S2, S3.

Table 2.1 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2, where LB and UB are the lower and

upper bounds obtained from problem (2.11), respectively and LBlogconcavity and

UBlogconcavity are the lower and upper bounds obtained from problem (2.8).
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Recall that that problem (2.8) uses the shape (logconcavity constraints) of

the underlying probability distribution, whereas problem (2.11) does not take into

account the shape of the distribution. We observe that the bounds obtained by

(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure

2.1.

Table 2.2 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3, where LB and UB are the lower and upper bounds

obtained from problem (2.11), respectively and LBlogconcavity and UBlogconcavity are

the lower and upper bounds obtained from problem (2.8).

As can be seen from Figure 2.2, the bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first three binomial moments S1, S2, S3, obtained by problem (2.8) are much

tighter than those obtained by problem (2.11). We also remark that the bounds

become tighter if we use the first three binomial moments (Figure 2.2) instead of

the first two binomial moments (Figure 2.1).

22



T
ab

le
2.
1:

E
x
am

p
le

1.
B
ou

n
d
s
fo
r
P
(X

≥
k
)
w
it
h
L
og
co
n
ca
v
it
y
:
n
=

10
ev
en
ts
,
m

=
2
m
om

en
ts

B
ou

n
d
s
b
as
ed

on
S
1
,S

2
L
B

U
B

L
B

lo
g
co
n
ca

v
it
y

U
B

lo
g
co
n
ca

v
it
y

k
=

1
0.
73
75

1
0.
89
09

1

k
=

3
0.
33
16

0.
93
19

0.
58
35

0.
66
96

k
=

5
0.
05
79

0.
65
09

0.
27
23

0.
37
14

k
=

8
0

0.
17
11

3.
82
E
-0
7

0.
06
17

k
=

9
0

0.
12
22

0
0.
02
59

23



F
ig
u
re

2.
1:

E
x
am

p
le

1.
Im

p
ro
ve
m
en
t
on

B
ou

n
d
s
fo
r
P
(X

≥
k
)
w
it
h
L
og
co
n
ca
v
it
y
:
n
=

10
ev
en
ts
,
m

=
2
m
om

en
ts

24



T
ab

le
2.
2:

E
x
am

p
le

1.
B
ou

n
d
s
fo
r
P
(X

≥
k
)
w
it
h
L
og
co
n
ca
v
it
y
:
n
=

10
ev
en
ts
,
m

=
3
m
om

en
ts

B
ou

n
d
s
b
as
ed

on

S
1
,S

2
,S

3

L
B

U
B

L
B

lo
g
co
n
ca

v
it
y

U
B

lo
g
co
n
ca

v
it
y

k
=

1
0.
82
75

1
0.
92
99

0.
99
62

k
=

3
0.
36
36

0.
87
29

0.
59
14

0.
66
92

k
=

5
0.
06
75

0.
50
98

0.
27
44

0.
31
37

k
=

8
0

0.
11
94

0.
03
29

0.
05
1

k
=

9
0

0.
07
07

0
0.
02
02

25



F
ig
u
re

2.
2:

E
x
am

p
le

1.
Im

p
ro
ve
m
en
t
on

B
ou

n
d
s
fo
r
P
(X

≥
k
)
w
it
h
L
og
co
n
ca
v
it
y
:
n
=

10
ev
en
ts
,
m

=
3
m
om

en
ts

26



2.2.2 Example 2. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity assumption

We generate another probability distribution, where the size of the support set is

n = 10. The distribution is generated as described in Section 2.2. As in Example

1, the bounds for the probability that k-out-of-10 events occur are obtained for

• k = 1, 3, 5, 8, 9,

• based on the first two binomial moments S1, S2,

• based on the first three binomial moments S1, S2, S3.

Table 2.3 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2, where LB and UB are the lower and

upper bounds obtained from problem (2.11), respectively and LBlogconcavity and

UBlogconcavity are the lower and upper bounds obtained from problem (2.8).

Recall that that problem (2.8) uses the shape (logconcavity contraints) of the

underlying probability distribution, whereas problem (2.11) does not take into

account the shape of the distribution. We observe that the bounds obtained by

(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure

2.3.

Table 2.4 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3, where LB and UB are the lower and upper bounds

obtained from problem (2.11), respectively and LBlogconcavity and UBlogconcavity are

the lower and upper bounds obtained from problem (2.8).
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As can be seen from Figure 2.4, the bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first three binomial moments S1, S2, S3, obtained by problem (2.8) are much

tighter than those obtained by problem (2.11). Note that the bounds become

tighter if we use the first three binomial moments (Figure 2.4) instead of the first

two binomial moments (Figure 2.3).
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2.2.3 Example 3. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity assumption

As in Examples 1 and 2, the distribution with n = 10 is generated as described in

Section 2.2 and the bounds for the probability that k-out-of-10 events occur are

obtained for

• k = 1, 3, 5, 8, 9,

• based on the first two binomial moments S1, S2,

• based on the first three binomial moments S1, S2, S3.

Table 2.5 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2, where LB and UB are the lower and

upper bounds obtained from problem (2.11), respectively and LBlogconcavity and

UBlogconcavity are the lower and upper bounds obtained from problem (2.8).

Recall that that problem (2.8) uses the shape (logconcavity contraints) of the

underlying probability distribution, whereas problem (2.11) does not take into

account the shape of the distribution. We observe that the bounds obtained by

(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure

2.5.

Table 2.6 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3, where LB and UB are the lower and upper bounds

obtained from problem (2.11), respectively and LBlogconcavity and UBlogconcavity are

the lower and upper bounds obtained from problem (2.8).
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As can be seen from Figure 2.6, the bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first three binomial moments S1, S2, S3, obtained by problem (2.8) are much

tighter than those obtained by problem (2.11). Here again we observe that the

bounds become much tighter if we use the first three binomial moments (Figure

2.6) instead of the first two binomial moments (Figure 2.5).
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2.3 Numerical Examples: Logconcavity vs. Unimodality

Recall that any logconcave discrete distribution is also unimodal (Fekete, 1912 [30],

Prékopa, 1995 [4]). The goal of this section is to we make use of this information

to compare the bounds for the probability that at least k-out-of-n events occur for

the following three cases:

• the shape of the underlying probability distribution is not taken into account,

i.e, the bounds are obtained as the optimum values of problem (2.11),

• unimodality constraints are prescribed into the problem, i.e., the bounds are

obtained as the optimum values of problem (1.4),

• logconcavity constraints are used, i.e., the bounds are the optimum values of

problem (2.8).

In order to provide numerical examples, where we compare the contribution of

the unimodality constraints (1.3) and (2.3), we follow the steps given below.

(1) Given an n, randomly generate a logconcave distribution {xi} satisfying

•
n∑

i=0

xi = 1

• x2
i ≥ xi−1xi+1, i = 1, ..., n− 1

• xi ≥ 0, i = 0, 1, ..., n

(2) Given an m, compute the first m binomial moments, S1, ..., Sm, by the use

of
n∑

i=0

(
i

j

)
xi = Sj, j = 1, ...,m.
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(3) Assume that the distribution {xi} is unknown and solve problem (2.11) to

obtain lower and upper bounds for P (X ≥ k) for some 1 ≤ k ≤ n, where the

shape of the distribution is not used and the binomial moments, S1, ..., Sm,

are those obtained in Step (2).

(4) Solve problem (2.8), where the logconcavity of the underlying distribution is

assumed and binomial moments, S1, ..., Sm, are those obtained in Step (2).

(5) Next, find mode M of the distribution generated in Step (1) and solve

problem (1.4) that uses the unimodality constraints and binomial moments,

S1, ..., Sm found in Step (2).

(6) Compute the optimum values of the optimization problems involved and let

• LB and UB denote the lower and upper bounds for P (X ≥ k) obtained

in Step (3), respectively

• Let LBlogconcavity and UBlogconcavity denote the lower and upper bounds

for P (X ≥ k) obtained in Step (4), respectively

• Let LBunimodality and UBunimodality denote the lower and upper bounds

for P (X ≥ k) obtained in Step (5), respectively.

(7) Compare the lower and upper bounds reported in Step (6).
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2.3.1 Example 1. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

We observe that the logconcave distribution in Example 1 in Section 2.2.1 is uni-

modal with mode M = 2. In this example, we apply the procedure described in

Section 2.3 to find bounds for the probability that k-out-of-10 events occur, where

• k = 1, 3, 5, 8, 9,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.7 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2, where

• LB and UB are the lower and upper bounds obtained from problem (2.11),

respectively,

• LBlogconcavity and UBlogconcavity are the lower and upper bounds obtained from

problem (2.8), respectively,

• LBunimodality and UBunimodality are the lower and upper bounds obtained from

problem (1.4), respectively,

• ∆lc = UBlogconcavity − LBlogconcavity,

• ∆u = UBunimodal − LBunimodal.
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Recall that that problem (2.8) uses the logconcavity constraints and problem

(1.4) uses the unimodality constraints as the shape of the underlying probability

distribution, whereas problem (2.11) does not take into account the shape of the

distribution. As can be observed in Figure 2.7, the bounds obtained by (2.8) are

much tighter than those obtained by problems (1.4) and (2.11).

Table 2.8 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3.

Similar to the two moment case, we can see from Figure 2.8 that the bounds for

the probability that at least k-out-of-10 events occur, for the case of k = 1, 3, 5, 8, 9

and based on the knowledge of the first three binomial moments S1, S2, S3, obtained

by problem (2.8) are much tighter than those obtained by problems (1.4) and

(2.11). We also remark that the bounds become tighter if we use the first three

binomial moments (Figure 2.8) instead of the first two binomial moments (Figure

2.7).
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2.3.2 Example 2. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

We consider the logconcave distribution in Example 2 in Section 2.2.2. This dis-

tribution is unimodal with mode M = 4. In this example, we apply the procedure

described in Section 2.3 to find bounds for the probability that k-out-of-10 events

occur, where

• k = 1, 3, 5, 8, 9,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.9 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2.

As can be seen in Figure 2.9, the bounds obtained by (2.8) are much tighter

than those obtained by problems (1.4) and (2.11).

Table 2.10 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3.

Similar to the two moment case, Figure 2.10 shows that the bounds for the

probability that at least k-out-of-10 events occur, for the case of k = 1, 3, 5, 8, 9 and

based on the knowledge of the first three binomial moments S1, S2, S3, obtained

by problem (2.8) are much tighter than those obtained by problems (1.4) and

(2.11). Note also that the bounds become tighter if we use the first three binomial

moments (Figure 2.10) instead of the first two binomial moments (Figure 2.9).
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2.3.3 Example 3. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

Next, we consider the logconcave distribution in Example 3 in Section 2.2.3. This

distribution is unimodal with mode M = 6. In this example, we apply the proce-

dure described in Section 2.3 to find bounds for the probability that k-out-of-10

events occur, where

• k = 1, 3, 5, 8, 9,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.11 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2.

As can be seen in Figure 2.11, the bounds obtained by (2.8) are much tighter

than those obtained by problems (1.4) and (2.11).

Table 2.12 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3.

Similar to the two moment case, Figure 2.12 shows that the bounds for the

probability that at least k-out-of-10 events occur, for the case of k = 1, 3, 5, 8, 9 and

based on the knowledge of the first three binomial moments S1, S2, S3, obtained by

problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).

Figures 2.11 and 2.12 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.4 Example 4. Bounds for the probability that at least k-out-of-20

events occur under the logconcavity and unimodality assumption

In this example we take n = 20 and apply the procedure described in Section

2.3 to generate a new logconcave probability distribution. We observe that this

distribution is unimodal with mode M = 3. We then obtain bounds for the

probability that k-out-of-20 events occur, where

• k = 1, 3, 5, 8, 9, 15, 18, 19,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.13 gives the lower and upper bounds for the probability that at least

k-out-of-20 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19 and based on the

knowledge of the first two binomial moments S1, S2.

Figure 2.13 shows that the bounds obtained by (2.8) are much tighter than

those obtained by problems (1.4) and (2.11).

Table 2.14 gives the lower and upper bounds for the probability that at least

k-out-of-20 events for k = 1, 3, 5, 8, 9, 15, 18, 19, based on the knowledge of the first

three binomial moments S1, S2, S3.

As can be seen from Figure 2.14, the bounds for the probability that at least

k-out-of-20 events occur, for the case of k = 1, 3, 5, 8, 9, 15, 18, 19 and based on

the knowledge of the first three binomial moments S1, S2, S3, obtained by problem

(2.8) are much tighter than those obtained by problems (1.4) and (2.11). Figures

2.13 and 2.14 show that the probability bounds become tighter if we use the first

three binomial moments instead of the first two binomial moments.
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2.3.5 Example 5. Bounds for the probability that at least k-out-of-20

events occur under the logconcavity and unimodality assumption

In this example we take n = 20 and apply the procedure described in Section 2.3

to generate another logconcave probability distribution. This new distribution is

unimodal with mode M = 9. As in Example 4 in Section 2.3.4, we obtain the

bounds for the probability that k-out-of-20 events occur, where

• k = 1, 3, 5, 8, 9, 15, 18, 19,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.15 shows the lower and upper bounds for the probability that at least

k-out-of-20 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19 and based on the

knowledge of the first two binomial moments S1, S2.

Figure 2.15 gives the bounds obtained by (2.8) are much tighter than those

obtained by problems (1.4) and (2.11).

Lower and upper bounds for the probability that at least k-out-of-20 events

for k = 1, 3, 5, 8, 9, 15, 18, 19, based on the knowledge of the first three binomial

moments S1, S2, S3 are presented in Table 2.16.

We observe from Figure 2.16 that the bounds for the probability that at least

k-out-of-20 events occur, for the case of k = 1, 3, 5, 8, 9, 15, 18, 19 and based on

the knowledge of the first three binomial moments S1, S2, S3, obtained by problem

(2.8) are much tighter than those obtained by problems (1.4) and (2.11). As in

previous examples, the probability bounds become tighter if we use the first three

binomial moments instead of the first two binomial moments.
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2.3.6 Example 6. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

In this example we take n = 30 and apply the procedure described in Section

2.3 to generate a new logconcave probability distribution. We observe that this

distribution is unimodal with mode M = 8. We obtain bounds for the probability

that k-out-of-20 events occur, where

• k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.17 gives the lower and upper bounds for the probability that at least k-

out-of-20 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and based

on the knowledge of the first two binomial moments S1, S2.

Figure 2.17 shows that the bounds obtained by (2.8) are much tighter than

those obtained by problems (1.4) and (2.11).

Table 2.18 gives the lower and upper bounds for the probability that at least

k-out-of-20 events for k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27, based on the knowledge

of the first three binomial moments S1, S2, S3.

As can be seen from Figure 2.18, the bounds for the probability that at least

k-out-of-20 events occur, for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and

based on the knowledge of the first three binomial moments S1, S2, S3, obtained by

problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).

Figures 2.17 and 2.18 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.7 Example 7. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

We apply the procedure described in Section 2.3 to generate another logconcave

probability distribution with n = 30. This distribution is unimodal with mode

M = 14. We obtain bounds for the probability that k-out-of-20 events occur,

where

• k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.19 gives the lower and upper bounds for the probability that at least k-

out-of-20 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and based

on the knowledge of the first two binomial moments S1, S2.

Figure 2.19 gives that the bounds obtained by (2.8) are much tighter than those

obtained by problems (1.4) and (2.11).

Table 2.20 presents the lower and upper bounds for the probability that at least

k-out-of-20 events for k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27, based on the knowledge

of the first three binomial moments S1, S2, S3.

As can be observed from Figure 2.20, the bounds for the probability that at least

k-out-of-20 events occur, for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and

based on the knowledge of the first three binomial moments S1, S2, S3, obtained by

problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).

Figures 2.19 and 2.20 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.8 Example 8. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

We apply the procedure described in Section 2.3 to generate another logconcave

probability distribution with n = 30. This distribution is unimodal with mode

M = 21. We obtain bounds for the probability that k-out-of-20 events occur,

where

• k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27,

• m = 2, i.e., the first two binomial moments S1, S2 are used,

• m = 3, i.e., the first three binomial moments S1, S2, S3 are used.

Table 2.21 gives the lower and upper bounds for the probability that at least k-

out-of-20 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and based

on the knowledge of the first two binomial moments S1, S2.

Figure 2.21 gives that the bounds obtained by (2.8) are much tighter than those

obtained by problems (1.4) and (2.11).

Table 2.22 presents the lower and upper bounds for the probability that at least

k-out-of-20 events for k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27, based on the knowledge

of the first three binomial moments S1, S2, S3.

As can be observed from Figure 2.22, the bounds for the probability that at least

k-out-of-20 events occur, for the case of k = 1, 3, 5, 8, 9, 15, 18, 19, 22, 25, 27 and

based on the knowledge of the first three binomial moments S1, S2, S3, obtained by

problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).

Figures 2.21 and 2.22 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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Chapter 3

Discrete Moment Problems with

Logconvexity Constraints

3.1 Introduction

Though less popular than its counterpart, logconvexity is still very important in

many application areas (Prékopa, 1995 [4], Lu, Simchi-Levi, 2013 [62]).

Recall that a probability distribution {xi} defined on a finite support set

Ω = {z0, z1, ..., zn}

is logconcave if conditions (2.3) are satisfied. Therefore, a probability distribution

{xi} is said to be logconvex if

x2
i ≤ xi−1xi+1, i = 1, ..., n− 1. (3.1)
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Under the assumption that the distribution {xi} is logconvex, the power mo-

ment problem can be formulated as follows:

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

zji xi = µj, j = 0, 1, ...,m

(3.2)

x2
i ≤ xi−1xi+1, i = 1, . . . , n− 1

xi ≥ 0, i = 0, 1, ..., n.

Similarly, incorporating the logconvexity constraints (3.1) into the binomial

moment problem (1.2), we obtain

min(max)
n∑

i=k

fixi

subject to
n∑

i=0

(
zi
j

)
xi = Sj, j = 0, 1, ...,m

(3.3)

x2
i ≤ xi−1xi+1, i = 1, . . . , n− 1

xi ≥ 0, i = 0, 1, ..., n.
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Note that the optimum values of problems (3.2) and (3.3) respectively provide

us with sharp lower and upper bounds for

n∑
i=k

fixi,

where fi = f(zi), based on the first m power and first m binomial moments of the

logconvex probability distribution {xi} defined on Ω.

We remark that with logconvexity constraints being prescribed into problems

(3.2) and (3.3), the convexity of the feasibility region is still preserved, and hence,

both problems are convex nonlinear optimization optimization problems (Boyd

and Vandenberghe, 2004 [63], Nesterov, 2013 [64]). In particular, x2
i ≤ xi−1xi+1

is a second-order cone (see, e.g., Alizadeh, Goldfarb, 2003 [65]), and hence, both

problems (3.2) and (3.3) can be solved efficiently by primal-dual interior point

methods.
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3.2 Numerical Examples: Logconvexity Constraint

As discussed in Chapter 1, problems (3.2) and (3.3) can be obtained from each

other. For the sake of simplicity, we shall consider the following special case of

binomial moment problem (3.3), where we assume that the underlying distribution

is logconvex, that is,

min(max)
n∑

i=k

xi

subject to
n∑

i=0

(
i

j

)
xi = Sj, j = 0, 1, ...,m

x2
i ≤ xi−1xi+1, i = 1, . . . , n− 1 (3.4)

xi ≥ 0 i = 0, 1, . . . , n.

Note that the optimum values of problem (3.4) provide us with lower and upper

bounds for the probability that at least k-out-of-n events occur, P (X ≥ k) for

some 1 ≤ k ≤ n, where the underlying distribution is logconvex and the first m

binomial moments are known.

In order to illustrate the contribution of the logconvexity information of the

underlying distribution we proceed as follows:
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(1) Given an n, randomly generate a logconvex distribution {xi} satisfying

•
n∑

i=0

xi = 1

• x2
i ≤ xi−1xi+1, i = 1, ..., n− 1

• xi ≥ 0, i = 0, 1, ..., n

(2) Given an m, compute the first m binomial moments, S1, ..., Sm, by the use

of
n∑

i=0

(
i

j

)
xi = Sj, j = 1, ...,m.

(3) Assume that the distribution {xi} is unknown and solve problem (2.11) to

obtain lower and upper bounds for P (X ≥ k) for some 1 ≤ k ≤ n, where the

shape of the distribution is not used and the binomial moments, S1, ..., Sm,

are those obtained in Step (2).

(4) Next, solve problem (3.4), where the shape of the underlying distribution is

used and the binomial moments, S1, ..., Sm, are those obtained in Step (2).

(5) Compute the optimum values of the optimization problems involved and let

• LB and UB denote the lower and upper bounds for P (X ≥ k) obtained

in Step 3, respectively

• Let LBlogconvexity and UBlogconvexity denote the lower and upper bounds

for P (X ≥ k) obtained in Step (4), respectively.

(6) Compare the lower and upper bounds reported in Step (5).
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3.2.1 Example 1. Bounds for the probability that at least k-out-of-10

events occur under the logconvexity assumption

We take n = 10 and generate a probability distribution as described in Section

3.2. In this example, bounds for the probability that k-out-of-10 events occur are

obtained for

• k = 1, 3, 5, 8, 9,

• based on the first two binomial moments S1, S2,

• based on the first three binomial moments S1, S2, S3.

Table 3.1 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first two binomial moments S1, S2, where LB and UB are the lower and

upper bounds obtained from problem (2.11) and LBlogconvexity and UBlogconvexity

are the lower and upper bounds obtained from problem (3.4), respectively.

Recall that that problem (3.4) uses the shape (logconvexity constraints) of

the underlying probability distribution, whereas problem (2.11) does not take into

account the shape of the distribution. We observe that the bounds obtained by

(3.4) are much tighter than those obtained by problem (2.11) as shown in Figure

3.1.

Table 3.2 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3, where LB and UB are the lower and upper bounds

obtained from problem (2.11) and LBlogconvexity and UBlogconvex are the lower and

upper bounds obtained from problem (3.4), respectively.
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As can be seen from Figure 3.2, the bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first three binomial moments S1, S2, S3, obtained by problem (3.4) are much

tighter than those obtained by problem (2.11). We also remark that the bounds

become tighter if we use the first three binomial moments (Figure 3.2) instead of

the first two binomial moments (Figure 3.1).
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3.2.2 Example 2. Bounds for the probability that at least k-out-of-20

events occur under the logconvexity assumption

In this example we generate a new probability distribution with n = 10. The

distribution is generated as described in Section 3.2. The bounds for the probability

that k-out-of-20 events occur are obtained for

• k = 1, 3, 5, 8, 9, 15, 18, 19,

• based on the first two binomial moments S1, S2,

• based on the first three binomial moments S1, S2, S3.

Table 3.3 gives the lower and upper bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9, 15, 18, 19 and based on the

knowledge of the first two binomial moments S1, S2, where LB and UB are the

lower and upper bounds obtained from problem (2.11), respectively and LBlogconvexity

and UBlogconvexity are the lower and upper bounds obtained from problem (3.4).

Recall that that problem (3.4) uses the shape (logconvexity contraints) of the

underlying probability distribution, whereas problem (2.11) does not take into

account the shape of the distribution. We observe that the bounds obtained by

(3.4) are much tighter than those obtained by problem (2.11) as shown in Figure

3.3.

Table 3.4 gives the lower and upper bounds for the probability that at least

k-out-of-10 events for k = 1, 3, 5, 8, 9, based on the knowledge of the first three

binomial moments S1, S2, S3, where LB and UB are the lower and upper bounds

obtained from problem (2.11), respectively and LBlogconvexity and UBlogconvexity are

the lower and upper bounds obtained from problem (3.4).
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As can be seen from Figure 3.4, the bounds for the probability that at least

k-out-of-10 events occur for the case of k = 1, 3, 5, 8, 9 and based on the knowledge

of the first three binomial moments S1, S2, S3, obtained by problem (3.4) are much

tighter than those obtained by problem (2.11). Note that the bounds become

tighter if we use the first three binomial moments (Figure 3.4) instead of the first

two binomial moments (Figure 3.3).
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Chapter 4

Application

In this chapter we present an application of discrete moment problems in insurance

problem to estimate the expected stop loss, where the underlying distribution

is logconcave and the first three moments are known or can be obtained from

historical data.

We consider the total claim amount in a fixed period in a portfolio of insurance

contracts. Let Xi, i = 1, 2, ... denote the amount of the the ith claim arising from

the policies in a given time period. Then the convolution (random sum)

X = X1 +X2 + ...+XN

represents the aggregated claims generated by the portfolio for the period under

consideration, where the number of claims, N , payable by the insurer is a random

variable and is associated with the frequency of claims.

The individual claim amounts,X1, X2, ..., are independent identically distributed

random variables and measure the severity of claims. Number of claims N and the
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individual claims, X1, X2, ..., are assumed to be independent random variables.

Let us consider the discrete expected stop loss defined as

E[(X − q)+], (4.1)

where q is a given constant in the support set of random variable X interpreted

as aggregated loss from insurance claims. Then (X − q)+ is then considered as

the excess of loss over the retention level q. Expected stop loss given in (4.1) is a

risk measure that is widely used in finance and insurance (see, e.g., Courtois and

Denuit, 2009 [66]).

In this context, if, for example, we assume that N has Poisson distribution with

the probability function

pn = P (N = n) =
λne−λ

n!
, n = 0, 1, ...,

where λ > 0 is the expected number of claims, then total claim X has a com-

pound Poisson distribution. We can utilize compound distributions in our appli-

cation since their logconcavity property can be conveniently characterized (Ninh

and Prékopa, 2013 [27]).

In particular, under the assumption that the individual claim amount Xi’s has

a Bernoulli distribution with parameter 0 < p < 1, the logconcavity, logconvexity,

or unimodality of X depends on the logconcavity, logconvexity, or unimodality N .
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In order to investigate the impact of the shape constraints, logconcavity, log-

convexity, and unimodality, to the quality of the lower and upper bounds for the

expected stop loss (4.1), we proceed as follows:

(1) Let the support set of number of claim, N , be on {1, . . . , 10}.

(2) Assume that the probability mass function of N is chosen to be logconcave

to render the logconcavity for the aggregated claim X.

(3) Compute the first three power moment ofX and its modeM before assuming

that the full distribution is unknown.

(4) Given n (real value of N), solve the following problem:

min(max) E[(X − q)+]

subject to

x0 + x1 + · · ·+ xn = 1

x0z0 + · · ·+ xnzn = µ1 (4.2)

x0z
2
0 + · · ·+ xnz

2
n = µ2

x0z
3
0 + · · ·+ xnz

3
n = µ3

x0, . . . , xn ≥ 0.

The above problem serves as the benchmark for the performance of discrete

moment problems with shape constraints (unimodality, logconcavity, or log-

convexity).
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Let

• LB: optimum value of the minimization problem (4.2)

• UB: optimum value of the maximization problem (4.2).

(5) Prescribe the logconcavity constraints into problem (4.2) and solve the power

moment problem given below:

min(max) E[(X − q)+]

subject to

x0 + x1 + · · ·+ xn = 1

x0z0 + · · ·+ xnzn = µ1

x0z
2
0 + · · ·+ xnz

2
n = µ2 (4.3)

x0z
3
0 + · · ·+ xnz

3
n = µ3

x2
i ≥ xi−1xi+1, i = 1, ..., n− 1

x0, . . . , xn ≥ 0.

Let

• LBlc: optimum value of the minimization problem (4.3)

• UBlc: optimum value of the maximization problem (4.3).
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(6) Prescribe the unimodality constraints into problem (4.2) and solve the fol-

lowing power moment problem:

min(max) E[(X − q)+]

subject to

x0 + x1 + · · ·+ xn = 1

x0z0 + · · ·+ xnzn = µ1

x0z
2
0 + · · ·+ xnz

2
n = µ2 (4.4)

x0z
3
0 + · · ·+ xnz

3
n = µ3

x0 ≤ ... ≤ xM

xM ≥ ... ≥ xn

x0, . . . , xn ≥ 0.

Let

• LBu: optimum value of the minimization problem (4.4)

• UBu: optimum value of the maximization problem (4.4).

(7) Calculate

∆/∆∗ = (UB − LB)/(UB∗ − LB∗),

where * represents logconcavity or unimodality.

Below, we present numerical results to compare the contribution of the shape

constraints on the improvement of bounds for the expected stop-loss E[(X − q)+].

All computations are done in MATLAB with BARON to solve discrete moment

problems involved.
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Table 4.1 show the lower abd upper bounds for the expected stop-loss E[(X −

q)+] for the values of q = 2, ..., 9. The bounds LB and UB are obtained from prob-

lem (4.2) that does not take into account the shape of the underlying distribution.

The bounds LBlc and UBlc the optimum values of problem (4.3), where the log-

concavity constraints are prescribed. Finally, the LBu and UBu are the optimum

values of problem (4.4) that uses the information that the underlying probability

distribution is unimodal with mode M = 2. All bounds presented in Table 4.1 are

the bounds for the expected stop-loss E[(X − q)+] based on the knowledge of the

first two binomial moments S1 and S2. Figures 4.1, 4.2, and 4.3 show the com-

parison of, change in and improvement on the bounds for the expected stop-loss

E[(X − q)+] based on S1 and S2, respectively.

Table 4.2 presents the lower and upper bounds for the expected stop-loss

E[(X−q)+] obtained from problems (4.2), (4.3), and (4.4) based on the knowledge

of the first three binomial moments S1, S2, and S3. Similarly, Figures 4.4, 4.5, and

4.6 show the comparison of, change in and improvement on the bounds for the

expected stop-loss E[(X − q)+] based on S1, S2, and S3, respectively.

As in numerical experiments presented in Chapter 2, we observe that the use

of the shape constraints greatly improve the bounds for the expected stop-loss,

where the logconcavity constraints provide tighter bounds than those obtained by

the use of the unimodality constraints. We remark that the bounds are very tight

even for the case of first two binomial moments and as expected they are improved

further when the first three binomial moments are used.
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Chapter 5

Conclusion

In this research, we investigate the contribution of the shape constraints in dis-

crete moment problems that was originally formulated as a linear programming

problem to approximate the linear functions on the unknown discrete probability

distributions non-negative and finite support, where some of the moments of the

underlying distribution are known or obtained from historical data. The moments

can be power, binomial or more general type. These problems came to prominence

by the discovery that the classical probability bounds and expectations of discrete

random variables can be obtained based on the knowledge of some of the binomial

moments or power moments.

We introduce new shape constraints, logconcavity and logconvexity, to discrete

moment problems for bounding the k-out-of-n type probabilities and expectations

of higher order convex functions of discrete random variables with non-negative

and finite support, based on the knowledge of first m power or binomial moments

where m is much smaller than the size of the support set of the underlying prob-

ability distribution. Discrete moment problem with logconcavity constraint is a
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non-convex nonlinear optimization problem. We transform this problem into a

bilinear optimization problem to solve it more efficiently. In case of logconvexity

constraints, while the problem turns into a nonlinear program, the convexity of

the problem is preserved. We perform several computational experiments, where

we demonstrate the utility of the logconcavity and logconvexity property within

the concept of probability bounding methodology. Numerical experiments show

the improvement in the tightness of the bounds when the shape of underlying un-

known probability distribution is prescribed into discrete moment problems even

for the case of first two power or binomial moments. As expected from the theory

of optimization, these results are further improved when the first three power or

binomials are used. What makes it interesting and exciting is the improvement

on the tightness of the bounds both in case of logconcave and logconvex distribu-

tions. We apply our optimization based bounding methodology in an insurance

problem to estimate the expected stop-loss of aggregated insurance claims within

a fixed period, where we assume the underlying claim distribution is normally

distributed and therefore the distribution of the aggregated claims is the convolu-

tion of normally distributed random variables. We expect our proposed bounding

methodology to be extended to various fruitful applications, including reliability,

finance, and stochastic networks, where the underlying probability distribution is

unknown, but the shape and the first two or three moments can be obtained from

the historical data.
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[15] L. Gao and A. Prékopa. On performance prediction of cellular telephone

networks. RUTCOR Research Report RRR, 41, 2001.
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[27] A. Ninh and A. Prékopa. Log-concavity of compound distributions with

applications in stochastic optimization. Discrete Applied Mathematics,

161(18):3017–3027, 2013.

[28] M.G. Alharbi, E. Subasi, and M.M. Subasi. New sufficient conditions for

strong unimodality of multivariate discrete distributions. Discrete Applied

Mathematics, 237:1–25, 2018.
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[51] G.J. Székely T.F. Móri. A note on the background of several Bonferroni-

Galambos-type inequalities. Journal of Applied Probability, 22(4):836–843,

1985.

[52] K. Dohmen and P. Tittmann. Improved Bonferroni inequalities and binomially

bounded functions. Electronic Notes in Discrete Mathematics, 28:91–93, 2007.

[53] V.V. Petrov. A generalization of the Chung-Erdos inequality for the probabil-

ity of a union of events. Journal of Mathematical Sciences, 147(4):6932–6934,

2007.

[54] F.M. Hoppe and M. Nediak. Frechet optimal bounds on the probability

of a union with supplementary information. Statistics & Probability Letters,

78(3):311–319, 2008.

[55] T. Radwan, A. Habib, R. Alseedy, and A. Elsherbeny. Bounds for increasing

multi-state consecutive k-out-of-r-from-n: F system with equal components

probabilities. Applied Mathematical Modelling, 35(5):2366–2373, 2011.

[56] D. Hunter. Bounds for the probability of a union. J. of Applied Probability,

13:597–603, 1976.
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