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ABSTRACT
Title:

DISCRETE MOMENT PROBLEMS WITH
LOGCONCAVE AND LOGCONVEX DISTRIBUTIONS
AUTHOR:

TALAL ALHARBI
MAJOR ADVISOR:

MUNEVVER MINE SuBASI, PH.D.

We introduce new shape constraints, logconcavity and logconvexity, to discrete
moment problems for bounding the k-out-of-n type probabilities and expectations
of higher order convex functions of discrete random variables with non-negative
and finite support. The bounds are obtained as the optimum values of non-convex
and convex nonlinear optimization problems, where the non-convex problem is re-
formulated as a bilinear optimization problem. We present numerical experiments
to show the improvement in the tightness of the bounds when the shape of underly-
ing unknown probability distribution is prescribed into discrete moment problems.
We apply our optimization based bounding methodology in an insurance problem
to estimate the expected stop-loss of aggregated insurance claims within a fixed
period. The proposed bounding methodology is expected to expand the scope of

applications for both discrete moment problems and logconcavity and logconvexity.
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Chapter 1

Introduction

Discrete Moment Problem (DMP) was formulated by Prékopa (1988) [1] as a linear
programming problem to approximate linear functions on the unknown discrete
probability distributions with finite support, where some of the power or binomial
moments are known or given. Depending on the type of moments used, the problem
is called a discrete power moment problem (PMP) or discrete binomial moment
problem (BMP).

The discrete moment problems came to prominence by the discovery that the
classical probability bounds and expectations of higher order convex functions
of discrete random variables with finite support can be obtained based on the
knowledge of some of the binomial moments or power moments. In particular,
Prékopa (1988, 1990) [1-3] had shown in his earlier work that sharp bounds for
the probability of the union and the probability that at least k or exactly k-out-of-n

events occur can be formulated as DMPs.



Let X be a random variable with finite support Q = {z, 21, ..., 2, }. Assume

that the probability distribution {x;} defined as

is unknown, but the first m power moments,
i =EX7), j=1,.,m,

where m < n, are assumed to known and po = 1.

Let us consider a given function f and introduce the notations

fi=f(z), i=0,1,...n.

Then the discrete power moment problem (PMP) is given by

min(max) Z fizi

subject to

Zzzj‘ri::u’j? j:()?l’"‘?m (11>



Similarly, if we assume that the probability distribution {z;} is unknown but

the first m binomial moments,

S;=E ,

are known, then we can formulate the discrete binomial moment problem (BMP)

as follows

min(max)

n
Z fﬂ/‘z‘
i=k

subject to

i=0,1,..

(1.2)

where Sy = 1. Problems (1.1) and (1.2) can be transformed into each other by the

use of the Stirling numbers of the first and second kind (Prékopa, 1995 [4]).

We remark that the coefficient matrix of problem (1.1) is a Vandermonde matrix

and the coefficient matrix of problem (1.2) is a Pascal matrix, both of which can

be badly ill-conditioned when n is large (see, for example, Pan, 2016 [5], Alonso

et al., 2013 [6] and the references therein). Prékopa (1988) [1] developed a linear

programming based methodology to solve the discrete moment problems (1.1) and

(1.2) for the following three cases.



e Case 1. The function f has positive divided differences of order m + 1 on
the support set 2. In this case the optimum values of problems (1.1) and
(1.2) provide us with sharp lower and upper bounds for E[f(X)], that is, the
expected value of higher order convex function of random variable X, based

on the knowledge of first m power and binomial moments, respectively.

e Case 2. fr =1, fi =0,i # k for some 0 < k < n. Then the optimum values of
problems (1.1) and (1.2) give sharp lower and upper bounds for P(X = z),

based on the knowledge of first m power and binomial moments, respectively.

e Case 3. f;=0,1=1,....k—1and f, =...f, = 1 for some 1 < k < n. In this
case, the optimum values of problems (1.1) and (1.2) are the sharp lower and
upper bounds for P(X > z;), based on the knowledge of first m power and

binomial moments, respectively.

Let us assume that

and the random variable X denotes the number of events A, ..., A,,, associated
with the probability space €2, occur. Then Case 2 provides us with sharp bounds
for the probability that exactly k-out-of-n events occur for some 0 < k < n.
Similarly, Case 3 can be used to obtain sharp bounds for the probability that at
least k-out-of-n events occur for some 1 < k < n.

Prékopa extensively studied problems (1.1) and (1.2) for Cases 1-3 (Prékopa,
1988 [1], Boros and Prékopa, 1989 [7], Prékopa, 1989 [8] Prékopa, 1990 [2], Prékopa,
1990 [3], Prékopa, 1998, 2001 [9,10], Gao and Prékopa, 2002 [11], Prékopa and Gao,
2005 [11]). The central results in this respect include the characterization of dual

feasible basis in problems (1.1) and (1.2) and obtaining closed form bounds for the

4



expectation E[f(X)] and probability of the union of events and probabilities that
exactly k or at least k-out-of-n events occur, that is, P(X > 1), P(X = k) for
some 0 < k <n, and P(X > k) for some 1 < k < n, respectively.

Discrete moment problems were used in wide range of applications including
maximum satisfiability problem (Boros and Prékopa, 1989 [12]), communication
network reliability (Prékopa, Boros, and Lih, 1991 [13]), stochastic transportation
network (Boros and Prékopa, 1991 [14]), telecommunication networks (Gao and
Prékopa, 2001 [15]), PERT (Prékopa, Long, and Szantai, 2004 [16], Subasi, Subasi,
Prékopa, 2009 [17]), reliability (Subasi, 2007 [18], Prékopa, Subasi, Subasi, 2008
[19]), and finance (Subasi, 2007 [18]). Since the problem is of practical importance,
the theory of discrete moment problems continues to expand its purview and a
wider range of investigations and arguments is developed. For more recent results
the reader is referred to Prékopa, Ninh, and Alexe (2016) [20], Prékopa and Yoda
(2016) [21].

While several attractive applications and theoretical investigations involving
the discrete moment problems are presented in literature, little has been done to
take into account the shape of the underlying probability distribution. Prékopa,
Subasi, Subasi (2008) [19] and Subasi, Subasi, Prékopa (2009) [17] are the first
to reformulate the discrete moment problems, where the underlying distribution
is assumed to be increasing, decreasing, or unimodal with known or given mode.
The problem is then used to obtain bounds for the probability of the union of
events based on the knowledge of the first two binomial moments and for the
expectations of higher order convex functions of discrete random variables based

on the knowledge of the first two power moments.



Subasi et al. (2017) [22] and Subasi et al. (2018) [23] further expanded their in-
vestigations to binomial moment problem, where the first m binomial moments are
known and the underlying probability distribution {z;} is assumed to be unimodal

with a known mode M, i.e., the following conditions are satisfied:
ro<z <..<mpy and xpy > TH > > T, (1.3)

The starting point of the Subasi et al.’s investigation is the following linear program

(Subasi, Subasi, Prékopa, 2017 [22]):

min(max) Z T

i=k
subject to
" (i
<)xz:S]7 j_0717 , T
=0 J
o<1 < ...< TN (1.4)

T 2 TM41 = - = Ty

z; >0, i=0,1,..,n,

where Sy = 1 and M is the mode of the distribution. Note that the optimum values
of problem (1.4) give the sharp bounds for the probability that at least k-out-of-n
events occur, P(X > k), k = 1,...,n, where the underlying distribution is assumed

to be unimodal with mode M.



Similarly, sharp bounds for the probability that exactly k-out-of-n events occur,
P(X =k), k=0,...,n, where the underlying distribution is unimodal with mode

M can be formulated as follows (Subasi, Subasi, Prékopa, 2018 [23]):

min(max) T,
subject to
" (i
(.)xi—sja ]_0715 , TN
=0 J

Ty 2 Tyl = e 2 Ty

IZZO, i:O,l,...,n,

where Sy = 1.

Subasi et al. (2017, 2018) [22, 23] fully characterized the dual feasible basis
structures in binomial moment problems (1.4) and (1.5) and presented closed form
bounds for the probabilities that at least k or exactly k-out-ofn events occur based
on the knowledge of the first two binomial moments. The authors also presented

a dual type algorithm to obtain the customized algorithmic solutions of the linear

programs (1.4) and (1.5).



Numerical investigations of Prékopa, Subasi, Subasi (2008) [19], Subasi, Subasi,
Prékopa (2009) [17], and Subasi et al. (2017, 2018) [22,23] suggest that, with the
knowledge of the shape of the distribution, discrete moment problems renders
significantly better lower and upper bounds for the expectations of the higher
order convex functions of discrete random variables and probabilities that at least
k or exactly k-out-of-n events occur. Inclusion of the unimodality constraint into
binomial moment problems (1.4) and (1.5) has drawn attention in the literature.
We refer the readers to Kumaran and Swarnalatha (2017) [24] and Swarnalatha
and Kumaran (2017) [25].

Motivated by the results of Prékopa, Subasi, Subasi (2008) [19], Subasi, Subasi,
Prékopa (2009) [17], and Subasi et al. (2017, 2018) [22,23], this dissertation’s goal
is to introduce two new shape constraints, logconvexity and logconcavity, into the
discrete moment problems. We remark that a typical assumption for the discrete
moment problem with unimodality constraint is that the location of the mode
is known or given. This restriction is no longer required under logconvexity and
logconcavity constraints.

The organization of the dissertation is as follows. In Chapter 2, we reformulate
discrete moment problems, where the underlying distribution is assumed to be
logconcave and present numerical examples to investigate the contribution of the
logconcavity of the distribution on the bounds for the probability that at least k-
out-of-n events occur, based on the knowledge of first two and first three binomial

moments.



In Chapter 3, we prescribe the logconvexity constraint into the power and
binomial discrete moment problems and give numerical examples to demonstrate
the contribution of the logconvexity of the distribution on the bounds for the
probability that at least k-out-of-n events occur, based on the knowledge of first
two and first three binomial moments.

Chapter 4 presents an application of the discrete moment problem with log-
concavity constraint. Finally, Chapter 5 concludes the dissertation with future

directions.



Chapter 2

Discrete Moment Problems with

Logconcave Distributions

2.1 Logconcavity Constraints

Logconcavity lies at the very heart of optimization theory and is a desired prop-
erty in many fields such as economics, supply chain management, statistics, and
stochastic optimization (see, e.g., Prékopa, 1995 [4], Johnson and Goldschmidt,
2006 [26], Ninh and Prékopa, 2013 [27], Alharbi, Subasi, Subasi, 2018 [28], and the
references therein). In particular, Ninh and Prékopa (2013) studied the logconcav-
ity property for compound distributions that are widely used to model intermittent
demands (Axséter, 2015 [29]).

Despite the considerable attention given to the logconcavity of continuous dis-
tributions, the theory of logconcavity of discrete distributions is still limited. The
classical results in this respect is the notion of r-times positive sequence introduced

by Fekete (1912) [30].

10



The sequence of nonnegative elements ..., a_s,a_1,ag,ay,as,... is said to be

r-times positive if the matrix

Qo ay a2

a_9 a_1 Qo

has no negative minor of order smaller than or equal to r. Further, if a = 0 for

k < 0 and A has no negative minor of order smaller than or equal to r, then the

concept of r-times positive students is known as PF, sequence (Karlin, 1968 [31]).
The twice-positive sequences satisfy the following property

a; a;

= Q;Qj—¢ — A;A—y¢ Z 0 (21)
Qi—t Aj—t

for every ¢ < j and t > 1. This holds if and only if

(ll2 2 Q1541 (22)

Fekete (1912) [30] also proved that the convolution of two r-times positive
sequences is r-times positive. Twice-positive sequences are also called logconcave
sequences. Hence, Fekete’s theorem states that the convolution of two logconcave
sequences is logconcave. A discrete probability distribution, defined on the real
line, is said to be logconcave if the corresponding probability mass function is

logconcave.

11



Note that a logconcave sequence should have no internal zero. Otherwise, basic
convolution theorem of logconcave sequences will be violated (Ninh and Prékopa,
2013 [27]). In other words, there are no indices 0 < i < j < r < n such that
a; # 0,a; = 0,a, # 0. Further, if the preceding inequality is reversed, then the
sequence is called logconvex.

Finally, a sequence {a;}3°, is said to be concave if

20i01 2 a; + a2, 1=0,1,2,...

If this sequence is strictly positive, then it is logconcave if and only if {Ina;}3°, is
a concave sequence. Clearly, a logconcave sequence of positive terms is unimodal
(Dharmadhikari and oag-Dev, 1988 [32], Stanley, 1989 [33]). Most recent result
in this direction is due to Alharbi, Subasi, Subasi (2018) [28], where sufficient
conditions for the logconcavity of multivariate discrete distributions are presented.

Incorporating shape constraints into discrete moment problems has shown that,
with the knowledge of the shape of the distribution, the bounds for the probabilities
and expectations can be significantly improved (Prékopa, Subasi, Subasi, 2008 [19],
Subasi, Subasi, Prékopa, 2009 [17], and Subasi et al., 2017, 2018 [22,23]).

Below we formulate discrete moment problems by prescribing the logconcavity
constraint and discuss its solution approach.

A typical example involving logconcave discrete distributions is inventory man-
agement, where most demand distributions are assumed to be binomial, negative

binomial, or compound Poisson distribution.

12



In this section, we assume that the discrete random variable X has a logconcave

probability distribution {z;}, i.e., the following conditions are satisfied
SL’? ZLUZ',12Q+1, 1= 1,,71-1 (23)
Then the power moment problem (1.1) with logconcavity constraints is given by

n
min(max) Z fiz;
i—k

subject to

n

szxz =u;, J=0,1,....m
i=0
(2.4)

2 N
€; Z.Cl;z‘,l.l’prl, Z—l,...,n—l

13



Similarly, incorporating the logconcavity constraints (2.3) into the binomial

moment problem (1.2), we obtain

n
min(max) Z fiz;
i—k

subject to
1=

2
T; 2 XTim1Tiy1,

%20,

(Z)x =S, j=0,1,..,m
—0 J

(2.5)

We remark that problems (2.4) and (2.5) fail to model the subtlety in the

definition of a logconcave sequence. Recall that a probability sequence {z;} is

called logconcave if it has no internal zeros.

This feature is satisfied by most

discrete probability distributions in both theory and practice. In other words, any

points in the support set should have a positive probability.

Let us introduce new decision variables

Yo, Y1, -+, Yn-1 Z 07

where

1 = Yoxo, ---y Tp = Yn—-1Tp—1-

Note that variables y;,2 = 0,...,n — 1 are the ratios between consecutive proba-

bilities of the underlying random variable.
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Substituting variables y;,7 = 0,...,n — 1, we obtain an improved formulation

of problems (2.4) and (2.5) as follows

n
min(max) Z fiz;
i—k

subject to

Ty = Ti-1Yi—1, 1= 1, Lo, n (26)

Yi 2> Yi-1, 1=1,...,n

and

n
min(max) Z fix;
i=k

subject to

(Zz)xl = Sj, j = O, 1, .., m
o \J

1=

Ty = Ti—1Yi—1, 1= 17...,77, (27)
yizyi—b 7::1,...771
2; >0 i=0,1,...n.



Note that problems (2.6) and (2.7) are nonconvex nonlinear programs due to
the logconcavity constraints. These problems belong to a class of optimization
problems called bilinear programs that have numerous applications in location
theory, economics, risk management, etc. (see, e.g., Sherali and Alameddine, 1990
[34]). Solution methods to these type problems can be found in Konno (1976)
[35], Liberti and Pantelides (2006) [36], Migladas and Pardalos (2013) [37]. To
date, the Spatial Branch-and-Bound algorithms remain one of the most effective
methods available for the global solution of nonconvex nonlinear programs (Tuy
and Ghannadan, 1998 [38]).

Below we present numerical examples to investigate the contribution of the use

of logconcavity constraints in discrete moment problems.
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2.2 Numerical Examples: Logconcavity Constraints

Since problems (1.1) and (1.2) can be obtained from each other, we shall consider
the following special case of binomial moment problem (1.2), where we assume

that the underlying distribution is logconcave, that is,

n
min(max) Z x;
i=k

subject to

Ty = Ti—1Yi—1, 1= 1,...,7’L (28)
yizyifla izlv"'an
2; >0 i=0,1,....,n

Note that the optimum values of problem (2.8) provide us with lower and upper
bounds for the probability that at least k-out-of-n events occur, P(X > k) for
some 1 < k < n, where the underlying distribution is logconcave and the first m
binomial moments are known.

Let Ay, ---, A, be arbitrary events in an arbitrary probability space €2 and
let X denote the number of those events that occur. The well-known Jordan’s

formulas (Jordan, 1927) [39] are available to compute the probabilities that at

17



least k& (1 < k < n) out of n events occur:

Pz i =050 ])s) 29)

where S; is the jth binomial moment of the random variable X defined by

Si= Y. PA,n--N4), j=1..n (2.10)

1<ip<-<ij<n

and Sy = 1, by definition. However, if n is large, it may not be possible to find
the exact values of the probabilities in (2.9) because the total number of terms in
(2.10) becomes an exponential function of n. On the other hand, it may be possible
to compute a few of the binomial moments from the historical data and give lower
and upper bounds for the probability P(X > k). The goal of the traditional
probability bounding approaches is to obtain the best possible approximation of
P(X > k) based on the knowledge of the first m moments, Sy, -, S, (m < n),
or any finite collection of binomial moments.

The typical examples of probability P(X > k) is the reliability evaluations
of k-out-of-n systems such as multistate networks, including oil and gas supply
systems, communication networks, power generation and transmission systems,
and fault tolerant systems, including multidisplay system in a cockpit, multiengine
system in an airplane, and multipump system in a hydraulic control system (see,
e.g., Subasi et al., 2017 [22] and the references therein).

The probability bounding problem has been extensively studied throughout the
history of probability theory. Boole (1854) [40] was the first who discovered a basic
inequality and a general approximation scheme for the probability of the union of

events. The next well-known bounds were presented by Bonferroni (1937) [41].
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However, Boole and Bonferroni bounds are weak in general. Hailperin (1965)
[42] proved that Boole’s method was equivalent to Fourier-Motzkin elimination.
Fréchet (1940) [43] obtained the first bounds based on the knowledge of the first
binomial moment. His results were followed by Dawson and Sankoff (1967) [44]
where the sharp Bonferroni bounds based on the first two binomial moments were
presented. Kwerel (1975) [45] reproduced and extended Dawson-Sankoff results to
present lower and upper bounds for the probability that exactly k-out-of-n occurs,
using the first three binomial moments. Prékopa (1988-1991) [1,8,46] discovered
that the sharp bounds for the k-out-of-n type probabilities and expectations of
higher order convex functions of discrete random variables can be obtained as
the optimum values of discrete moment problems. Boros and Prékopa (1989)
[7] used a linear programming approach to produce the closed form Bonferroni
bounds and bounds for the probabilities that at least k& and exactly k-out-of-n
events occur, based on the knowledge of first four binomial moments. Samuels and
Studden (1989) [47] independently discovered the sharp Bonferroni inequalities
and moment problems, however, their method is applicable only to small size
problems. Other closed form probability bounds were presented by Sathe et al.
(1980) [48], Galambos et al. (1980, 1996) [49,50], Méri and Székely (1985) [51],
Prékopa and Gao (2001) [15], Gao and Prékopa (2002) [11], Dohmen and Tittmann
(2007) [52], Petrov (2007) [53], Hoppe and Nediak (2008) [54], and Radwan et al.
(2011) [55]. Probability bounds based on the probabilities of the individual events
and their intersections and graph structures were presented by Hunter (1976) [56],
Bukszéar and Prékopa (2001) [57], Bukszéar (2003) [58], Bukszar, Mési-Nagy, and
Szantai (2012) [59], and Veneziani (2008) [60]. The other linear programming based

bounding methodologies include Veneziani (2009) [60], Boros, Scozzari, Tardella,

19



and Veneziani (2014) [61], Prékopa, Ninh, and Alexe (2016) [20] and Yoda and
Prékopa [21].
In order to utilize the contribution of the shape of the underlying distribution

we proceed as follows:

(1) Given an n, randomly generate a logconcave distribution {z;} satisfying

n
° E T, =1

1=0
° (L'Zz Z Ti—1Ti+1, 1= 1, ey N — 1
e 1; >0, 71=0,1,...,n

(2) Given an m, compute the first m binomial moments, Si, ..., S, by the use

of

i(;>xzzsj, j:].,,m

=0

(3) Assume that the distribution {z;} is unknown and solve problem

n
min(max) Z T
i—k

subject to

(?)xizsj, j=0,1,..m (2.11)
< \j

to obtain lower and upper bounds for P(X > k) for some 1 < k < n,
where the shape of the distribution is not used and the binomial moments,

S1, ..., Sm, are those obtained in Step (2).
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(4) Next, solve problem (2.8), where the shape of the underlying distribution is

used and the binomial moments, S, ..., S;,,, are those obtained in Step (2).
(5) Compute the optimum values of the optimization problems involved and let

e LB and UB denote the lower and upper bounds for P(X > k) obtained
in Step 3, respectively
o Let LBiogconcavity and U Biogeoncavity denote the lower and upper bounds

for P(X > k) obtained in Step (4), respectively.
(6) Compare the lower and upper bounds reported in Step (5).
2.2.1 Example 1. Bounds for the probability that at least k-out-of-10
events occur under the logconcavity assumption

We take n = 10 and generate a probability distribution as described in Section
2.2. In this example, bounds for the probability that k-out-of-10 events occur are

obtained for
e £=1,3,58,9,
e based on the first two binomial moments S, .55,
e based on the first three binomial moments Sy, .Ss, S5.

Table 2.1 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1,3,5,8,9 and based on the knowledge
of the first two binomial moments Sy,.S,, where LB and UB are the lower and
upper bounds obtained from problem (2.11), respectively and LBigconcavity and

U Biogeoncavity are the lower and upper bounds obtained from problem (2.8).
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Recall that that problem (2.8) uses the shape (logconcavity constraints) of
the underlying probability distribution, whereas problem (2.11) does not take into
account the shape of the distribution. We observe that the bounds obtained by
(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure
2.1.

Table 2.2 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for k = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S7, S, S3, where LB and UB are the lower and upper bounds
obtained from problem (2.11), respectively and LBi,geoncavity a0d U Biogeoncavity are
the lower and upper bounds obtained from problem (2.8).

As can be seen from Figure 2.2, the bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1,3,5,8,9 and based on the knowledge
of the first three binomial moments Sy, Sy, S3, obtained by problem (2.8) are much
tighter than those obtained by problem (2.11). We also remark that the bounds
become tighter if we use the first three binomial moments (Figure 2.2) instead of

the first two binomial moments (Figure 2.1).
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2.2.2 Example 2. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity assumption

We generate another probability distribution, where the size of the support set is
n = 10. The distribution is generated as described in Section 2.2. As in Example

1, the bounds for the probability that k-out-of-10 events occur are obtained for
e £k=1,3,58,9,
e based on the first two binomial moments Sy, .55,
e based on the first three binomial moments Sy, .S, S53.

Table 2.3 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1, 3,5, 8,9 and based on the knowledge
of the first two binomial moments Sy,.S,, where LB and UB are the lower and
upper bounds obtained from problem (2.11), respectively and LBi,geoncavity and
U Biogeoncavity are the lower and upper bounds obtained from problem (2.8).

Recall that that problem (2.8) uses the shape (logconcavity contraints) of the
underlying probability distribution, whereas problem (2.11) does not take into
account the shape of the distribution. We observe that the bounds obtained by
(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure
2.3.

Table 2.4 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for £ = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S7, S, S3, where LB and UB are the lower and upper bounds
obtained from problem (2.11), respectively and LBjogconcavity a0d U Biogeoncavity are

the lower and upper bounds obtained from problem (2.8).
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As can be seen from Figure 2.4, the bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first three binomial moments S, Ss, S5, obtained by problem (2.8) are much
tighter than those obtained by problem (2.11). Note that the bounds become
tighter if we use the first three binomial moments (Figure 2.4) instead of the first

two binomial moments (Figure 2.3).
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2.2.3 Example 3. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity assumption

As in Examples 1 and 2, the distribution with n = 10 is generated as described in
Section 2.2 and the bounds for the probability that k-out-of-10 events occur are

obtained for
e £k=1,3,58,9,
e based on the first two binomial moments Sy, .55,
e based on the first three binomial moments Sy, .S, S53.

Table 2.5 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1, 3,5, 8,9 and based on the knowledge
of the first two binomial moments Sy,.S,, where LB and UB are the lower and
upper bounds obtained from problem (2.11), respectively and LBi,geoncavity and
U Biogeoncavity are the lower and upper bounds obtained from problem (2.8).

Recall that that problem (2.8) uses the shape (logconcavity contraints) of the
underlying probability distribution, whereas problem (2.11) does not take into
account the shape of the distribution. We observe that the bounds obtained by
(2.8) are much tighter than those obtained by problem (2.11) as shown in Figure
2.5.

Table 2.6 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for £ = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S7, S, S3, where LB and UB are the lower and upper bounds
obtained from problem (2.11), respectively and LBjogconcavity a0d U Biogeoncavity are

the lower and upper bounds obtained from problem (2.8).
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As can be seen from Figure 2.6, the bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first three binomial moments S, Ss, S5, obtained by problem (2.8) are much
tighter than those obtained by problem (2.11). Here again we observe that the
bounds become much tighter if we use the first three binomial moments (Figure

2.6) instead of the first two binomial moments (Figure 2.5).
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2.3 Numerical Examples: Logconcavity vs. Unimodality

Recall that any logconcave discrete distribution is also unimodal (Fekete, 1912 [30],
Prékopa, 1995 [4]). The goal of this section is to we make use of this information
to compare the bounds for the probability that at least k-out-of-n events occur for

the following three cases:

e the shape of the underlying probability distribution is not taken into account,

i.e, the bounds are obtained as the optimum values of problem (2.11),

e unimodality constraints are prescribed into the problem, i.e., the bounds are

obtained as the optimum values of problem (1.4),

e logconcavity constraints are used, i.e., the bounds are the optimum values of

problem (2.8).

In order to provide numerical examples, where we compare the contribution of

the unimodality constraints (1.3) and (2.3), we follow the steps given below.

(1) Given an n, randomly generate a logconcave distribution {z;} satisfying

® ixl: 1
1=0

° J]ZQ Z Li—1Ti+1, 1= 1, ey N — 1
e 1; >0, +=0,1,...,n

(2) Given an m, compute the first m binomial moments, Si, ..., Sy, by the use

of

Zn:(;>$lzsj, jzl,,m

i=0
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(3) Assume that the distribution {z;} is unknown and solve problem (2.11) to
obtain lower and upper bounds for P(X > k) for some 1 < k < n, where the
shape of the distribution is not used and the binomial moments, Sy, ..., S,

are those obtained in Step (2).

(4) Solve problem (2.8), where the logconcavity of the underlying distribution is

assumed and binomial moments, Si, ..., S,,, are those obtained in Step (2).

(5) Next, find mode M of the distribution generated in Step (1) and solve
problem (1.4) that uses the unimodality constraints and binomial moments,

S1, ..., Sm found in Step (2).
(6) Compute the optimum values of the optimization problems involved and let

e LB and UB denote the lower and upper bounds for P(X > k) obtained

in Step (3), respectively

o Let LBjogconcavity and U Biogeoncavity denote the lower and upper bounds

for P(X > k) obtained in Step (4), respectively

o Let LBynimodaiity a0d U Bynimodality denote the lower and upper bounds

for P(X > k) obtained in Step (5), respectively.

(7) Compare the lower and upper bounds reported in Step (6).
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2.3.1 Example 1. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

We observe that the logconcave distribution in Example 1 in Section 2.2.1 is uni-
modal with mode M = 2. In this example, we apply the procedure described in

Section 2.3 to find bounds for the probability that k-out-of-10 events occur, where
e £=1,3,5,8,9,
e m = 2, i.e., the first two binomial moments Sy, S5 are used,
e m = 3, i.e., the first three binomial moments 57, Sy, S3 are used.

Table 2.7 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1, 3,5, 8,9 and based on the knowledge

of the first two binomial moments S7, S5, where

e LB and UB are the lower and upper bounds obtained from problem (2.11),

respectively,

® L Bijogconcavity ad U Biogeoncavity are the lower and upper bounds obtained from

problem (2.8), respectively,

® L Bunimodatity a0d U Bypnimoedatity are the lower and upper bounds obtained from

problem (1.4), respectively,
L4 Alc - UBlogconccwity - LBlogconcavitya

[ J Au — UBunzmodal - LBummodal
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Recall that that problem (2.8) uses the logconcavity constraints and problem
(1.4) uses the unimodality constraints as the shape of the underlying probability
distribution, whereas problem (2.11) does not take into account the shape of the
distribution. As can be observed in Figure 2.7, the bounds obtained by (2.8) are
much tighter than those obtained by problems (1.4) and (2.11).

Table 2.8 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for k = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S, Ss, S3.

Similar to the two moment case, we can see from Figure 2.8 that the bounds for
the probability that at least k-out-of-10 events occur, for the case of k = 1,3,5,8,9
and based on the knowledge of the first three binomial moments Sy, S5, S3, obtained
by problem (2.8) are much tighter than those obtained by problems (1.4) and
(2.11). We also remark that the bounds become tighter if we use the first three
binomial moments (Figure 2.8) instead of the first two binomial moments (Figure

2.7).
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2.3.2 Example 2. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

We consider the logconcave distribution in Example 2 in Section 2.2.2. This dis-
tribution is unimodal with mode M = 4. In this example, we apply the procedure
described in Section 2.3 to find bounds for the probability that k-out-of-10 events

occur, where
e £k=1,3,58,9,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments S, S5, S3 are used.

Table 2.9 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first two binomial moments Sy, Ss.

As can be seen in Figure 2.9, the bounds obtained by (2.8) are much tighter
than those obtained by problems (1.4) and (2.11).

Table 2.10 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for k = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S, .Ss, S;3.

Similar to the two moment case, Figure 2.10 shows that the bounds for the
probability that at least k-out-of-10 events occur, for the case of k = 1,3,5,8,9 and
based on the knowledge of the first three binomial moments Si, Sy, S3, obtained
by problem (2.8) are much tighter than those obtained by problems (1.4) and
(2.11). Note also that the bounds become tighter if we use the first three binomial

moments (Figure 2.10) instead of the first two binomial moments (Figure 2.9).
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2.3.3 Example 3. Bounds for the probability that at least k-out-of-10

events occur under the logconcavity and unimodality assumption

Next, we consider the logconcave distribution in Example 3 in Section 2.2.3. This
distribution is unimodal with mode M = 6. In this example, we apply the proce-
dure described in Section 2.3 to find bounds for the probability that k-out-of-10

events occur, where
e £k=1,3,58,9,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments Sy, S5, S3 are used.

Table 2.11 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first two binomial moments Sy, Ss.

As can be seen in Figure 2.11, the bounds obtained by (2.8) are much tighter
than those obtained by problems (1.4) and (2.11).

Table 2.12 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for k = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S, .Ss, S;3.

Similar to the two moment case, Figure 2.12 shows that the bounds for the
probability that at least k-out-of-10 events occur, for the case of k = 1,3,5,8,9 and
based on the knowledge of the first three binomial moments Sy, Ss, S3, obtained by
problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).
Figures 2.11 and 2.12 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.4 Example 4. Bounds for the probability that at least k-out-of-20

events occur under the logconcavity and unimodality assumption

In this example we take n = 20 and apply the procedure described in Section
2.3 to generate a new logconcave probability distribution. We observe that this
distribution is unimodal with mode M = 3. We then obtain bounds for the

probability that k-out-of-20 events occur, where
e £=1,3,5,8915 18,19,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments S, S5, S3 are used.

Table 2.13 gives the lower and upper bounds for the probability that at least
k-out-of-20 events occur for the case of k =1,3,5,8,9,15,18,19 and based on the
knowledge of the first two binomial moments S, Ss.

Figure 2.13 shows that the bounds obtained by (2.8) are much tighter than
those obtained by problems (1.4) and (2.11).

Table 2.14 gives the lower and upper bounds for the probability that at least
k-out-of-20 events for k = 1,3,5,8,9,15, 18, 19, based on the knowledge of the first
three binomial moments Sy, S5, Ss.

As can be seen from Figure 2.14, the bounds for the probability that at least
k-out-of-20 events occur, for the case of £k = 1,3,5,8,9,15,18,19 and based on
the knowledge of the first three binomial moments Sy, Ss, S3, obtained by problem
(2.8) are much tighter than those obtained by problems (1.4) and (2.11). Figures
2.13 and 2.14 show that the probability bounds become tighter if we use the first

three binomial moments instead of the first two binomial moments.
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2.3.5 Example 5. Bounds for the probability that at least k-out-of-20

events occur under the logconcavity and unimodality assumption

In this example we take n = 20 and apply the procedure described in Section 2.3
to generate another logconcave probability distribution. This new distribution is
unimodal with mode M = 9. As in Example 4 in Section 2.3.4, we obtain the

bounds for the probability that k-out-of-20 events occur, where
e £=1,3,5,89,15 18,19,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments Sy, S5, S3 are used.

Table 2.15 shows the lower and upper bounds for the probability that at least
k-out-of-20 events occur for the case of k =1,3,5,8,9,15, 18,19 and based on the
knowledge of the first two binomial moments S, Ss.

Figure 2.15 gives the bounds obtained by (2.8) are much tighter than those
obtained by problems (1.4) and (2.11).

Lower and upper bounds for the probability that at least k-out-of-20 events
for k = 1,3,5,8,9,15,18,19, based on the knowledge of the first three binomial
moments S7, Sy, S3 are presented in Table 2.16.

We observe from Figure 2.16 that the bounds for the probability that at least
k-out-of-20 events occur, for the case of £k = 1,3,5,8,9,15,18,19 and based on
the knowledge of the first three binomial moments Sy, Ss, S3, obtained by problem
(2.8) are much tighter than those obtained by problems (1.4) and (2.11). As in
previous examples, the probability bounds become tighter if we use the first three

binomial moments instead of the first two binomial moments.
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2.3.6 Example 6. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

In this example we take n = 30 and apply the procedure described in Section
2.3 to generate a new logconcave probability distribution. We observe that this
distribution is unimodal with mode M = 8. We obtain bounds for the probability

that k-out-of-20 events occur, where
o k=1,3,58091518,19,22 25 27,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments S;, S5, S3 are used.

Table 2.17 gives the lower and upper bounds for the probability that at least k-
out-of-20 events occur for the case of k = 1,3,5,8,9,15, 18,19, 22, 25, 27 and based
on the knowledge of the first two binomial moments Sy, .Ss.

Figure 2.17 shows that the bounds obtained by (2.8) are much tighter than
those obtained by problems (1.4) and (2.11).

Table 2.18 gives the lower and upper bounds for the probability that at least
k-out-of-20 events for k = 1,3,5,8,9,15,18, 19,22, 25, 27, based on the knowledge
of the first three binomial moments S, Ss, Ss.

As can be seen from Figure 2.18, the bounds for the probability that at least
k-out-of-20 events occur, for the case of k = 1,3,5,8,9,15,18,19, 22, 25,27 and
based on the knowledge of the first three binomial moments Sy, Ss, S3, obtained by
problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).
Figures 2.17 and 2.18 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.7 Example 7. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

We apply the procedure described in Section 2.3 to generate another logconcave
probability distribution with n = 30. This distribution is unimodal with mode
M = 14. We obtain bounds for the probability that k-out-of-20 events occur,

where
o k=1,3,58,9 15, 18,19,22,25, 27,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments Sy, S5, S3 are used.

Table 2.19 gives the lower and upper bounds for the probability that at least k-
out-of-20 events occur for the case of k = 1,3,5,8,9,15, 18,19, 22, 25, 27 and based
on the knowledge of the first two binomial moments Sy, .Ss.

Figure 2.19 gives that the bounds obtained by (2.8) are much tighter than those
obtained by problems (1.4) and (2.11).

Table 2.20 presents the lower and upper bounds for the probability that at least
k-out-of-20 events for k = 1,3,5,8,9,15,18, 19,22, 25, 27, based on the knowledge
of the first three binomial moments S, Ss, Ss.

As can be observed from Figure 2.20, the bounds for the probability that at least
k-out-of-20 events occur, for the case of k = 1,3,5,8,9,15,18,19, 22, 25,27 and
based on the knowledge of the first three binomial moments Sy, Ss, S3, obtained by
problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).
Figures 2.19 and 2.20 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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2.3.8 Example 8. Bounds for the probability that at least k-out-of-30

events occur under the logconcavity and unimodality assumption

We apply the procedure described in Section 2.3 to generate another logconcave
probability distribution with n = 30. This distribution is unimodal with mode
M = 21. We obtain bounds for the probability that k-out-of-20 events occur,

where
o k=1,3,58,9 15, 18,19,22,25, 27,
e m = 2, i.e., the first two binomial moments S7, S5 are used,
e m = 3, i.e., the first three binomial moments Sy, S5, S3 are used.

Table 2.21 gives the lower and upper bounds for the probability that at least k-
out-of-20 events occur for the case of k = 1,3,5,8,9,15, 18,19, 22, 25, 27 and based
on the knowledge of the first two binomial moments Sy, .Ss.

Figure 2.21 gives that the bounds obtained by (2.8) are much tighter than those
obtained by problems (1.4) and (2.11).

Table 2.22 presents the lower and upper bounds for the probability that at least
k-out-of-20 events for k = 1,3,5,8,9,15,18, 19,22, 25, 27, based on the knowledge
of the first three binomial moments S, Ss, Ss.

As can be observed from Figure 2.22, the bounds for the probability that at least
k-out-of-20 events occur, for the case of k = 1,3,5,8,9,15,18,19, 22, 25,27 and
based on the knowledge of the first three binomial moments Sy, Ss, S3, obtained by
problem (2.8) are much tighter than those obtained by problems (1.4) and (2.11).
Figures 2.21 and 2.22 show that the probability bounds become tighter if we use

the first three binomial moments instead of the first two binomial moments.
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Chapter 3

Discrete Moment Problems with

Logconvexity Constraints

3.1 Introduction

Though less popular than its counterpart, logconvexity is still very important in
many application areas (Prékopa, 1995 [4], Lu, Simchi-Levi, 2013 [62]).

Recall that a probability distribution {x;} defined on a finite support set
Q={z0,21,.,2n}

is logconcave if conditions (2.3) are satisfied. Therefore, a probability distribution

{z;} is said to be logconvex if

(L’? S Li—1Ti+1, 1= 1, e, — 1. (31)
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Under the assumption that the distribution {x;} is logconvex, the power mo-

ment problem can be formulated as follows:

n
min(max) Z fiz;
i—k

subject to

(3.2)

2 N
X; Sﬂfl‘,ll’prl, 2—1,...,7’1,—1

>0, i=0,1,..,n.

Similarly, incorporating the logconvexity constraints (3.1) into the binomial

moment problem (1.2), we obtain

n
min(max) Z fix;
i=k

subject to

(3.3)
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Note that the optimum values of problems (3.2) and (3.3) respectively provide

us with sharp lower and upper bounds for

n
Z fixia
i=k

where f; = f(z;), based on the first m power and first m binomial moments of the
logconvex probability distribution {z;} defined on €.

We remark that with logconvexity constraints being prescribed into problems
(3.2) and (3.3), the convexity of the feasibility region is still preserved, and hence,
both problems are convex nonlinear optimization optimization problems (Boyd
and Vandenberghe, 2004 [63], Nesterov, 2013 [64]). In particular, 2? < z;_ 174
is a second-order cone (see, e.g., Alizadeh, Goldfarb, 2003 [65]), and hence, both
problems (3.2) and (3.3) can be solved efficiently by primal-dual interior point

methods.
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3.2 Numerical Examples: Logconvexity Constraint

As discussed in Chapter 1, problems (3.2) and (3.3) can be obtained from each
other. For the sake of simplicity, we shall consider the following special case of
binomial moment problem (3.3), where we assume that the underlying distribution

is logconvex, that is,

min(max) Z x;

i=k
subject to
— (i
()xzzsja J 0717 y M
1=0 J
ZEZZ Sxi_lxiﬂ, 1= 1,,’/’L—1 (34)
r; >0 i=0,1,....n

Note that the optimum values of problem (3.4) provide us with lower and upper
bounds for the probability that at least k-out-of-n events occur, P(X > k) for
some 1 < k < n, where the underlying distribution is logconvex and the first m
binomial moments are known.

In order to illustrate the contribution of the logconvexity information of the

underlying distribution we proceed as follows:
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(1) Given an n, randomly generate a logconvex distribution {z;} satisfying

n
° E T, =1

i=0
° .’L‘Zz S Ti—1Ti+1, 1= 1, ey N — 1
e 1; >0, 1=0,1,...,n

(2) Given an m, compute the first m binomial moments, Si, ..., Sy, by the use

of

i(;>xZ:Sj, j:].,,m

=0

(3) Assume that the distribution {x;} is unknown and solve problem (2.11) to
obtain lower and upper bounds for P(X > k) for some 1 < k < n, where the
shape of the distribution is not used and the binomial moments, Sy, ..., S,

are those obtained in Step (2).

(4) Next, solve problem (3.4), where the shape of the underlying distribution is

used and the binomial moments, Sy, ..., S,,, are those obtained in Step (2).
(5) Compute the optimum values of the optimization problems involved and let

e LB and UB denote the lower and upper bounds for P(X > k) obtained

in Step 3, respectively

o Let LBjygconvenity and U Biogeonverity denote the lower and upper bounds

for P(X > k) obtained in Step (4), respectively.

(6) Compare the lower and upper bounds reported in Step (5).
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3.2.1 Example 1. Bounds for the probability that at least k-out-of-10

events occur under the logconvexity assumption

We take n = 10 and generate a probability distribution as described in Section
3.2. In this example, bounds for the probability that k-out-of-10 events occur are

obtained for
e £k=1,3,58,9,
e based on the first two binomial moments Sy, .55,
e based on the first three binomial moments Sy, .S, S53.

Table 3.1 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k = 1, 3,5, 8,9 and based on the knowledge
of the first two binomial moments Sy,.S,, where LB and UB are the lower and
upper bounds obtained from problem (2.11) and LBjgconveity a0d U Biogeonveity
are the lower and upper bounds obtained from problem (3.4), respectively.

Recall that that problem (3.4) uses the shape (logconvexity constraints) of
the underlying probability distribution, whereas problem (2.11) does not take into
account the shape of the distribution. We observe that the bounds obtained by
(3.4) are much tighter than those obtained by problem (2.11) as shown in Figure
3.1.

Table 3.2 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for £ = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S7, S, S3, where LB and UB are the lower and upper bounds
obtained from problem (2.11) and LBjogconvexity a0d U Biogeonves are the lower and

upper bounds obtained from problem (3.4), respectively.
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As can be seen from Figure 3.2, the bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first three binomial moments S, Ss, S5, obtained by problem (3.4) are much
tighter than those obtained by problem (2.11). We also remark that the bounds
become tighter if we use the first three binomial moments (Figure 3.2) instead of

the first two binomial moments (Figure 3.1).
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3.2.2 Example 2. Bounds for the probability that at least k-out-of-20

events occur under the logconvexity assumption

In this example we generate a new probability distribution with n = 10. The
distribution is generated as described in Section 3.2. The bounds for the probability

that k-out-of-20 events occur are obtained for
e k=1,3,5,8,9,15,18,19,
e based on the first two binomial moments Sy, .55,
e based on the first three binomial moments Sy, S5, S5.

Table 3.3 gives the lower and upper bounds for the probability that at least
k-out-of-10 events occur for the case of k =1,3,5,8,9,15,18,19 and based on the
knowledge of the first two binomial moments Si, S5, where LB and UB are the
lower and upper bounds obtained from problem (2.11), respectively and L Bjogconveity
and U Bjogeonvesity are the lower and upper bounds obtained from problem (3.4).

Recall that that problem (3.4) uses the shape (logconvexity contraints) of the
underlying probability distribution, whereas problem (2.11) does not take into
account the shape of the distribution. We observe that the bounds obtained by
(3.4) are much tighter than those obtained by problem (2.11) as shown in Figure
3.3.

Table 3.4 gives the lower and upper bounds for the probability that at least
k-out-of-10 events for £ = 1,3,5,8,9, based on the knowledge of the first three
binomial moments S7, S, S3, where LB and UB are the lower and upper bounds
obtained from problem (2.11), respectively and LBj,gconverity a0d U Blogeonvewity are

the lower and upper bounds obtained from problem (3.4).
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As can be seen from Figure 3.4, the bounds for the probability that at least
k-out-of-10 events occur for the case of k =1, 3,5, 8,9 and based on the knowledge
of the first three binomial moments S, Ss, S5, obtained by problem (3.4) are much
tighter than those obtained by problem (2.11). Note that the bounds become
tighter if we use the first three binomial moments (Figure 3.4) instead of the first

two binomial moments (Figure 3.3).
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Chapter 4

Application

In this chapter we present an application of discrete moment problems in insurance
problem to estimate the expected stop loss, where the underlying distribution
is logconcave and the first three moments are known or can be obtained from
historical data.

We consider the total claim amount in a fixed period in a portfolio of insurance
contracts. Let X;,7 = 1,2, ... denote the amount of the the ¢th claim arising from

the policies in a given time period. Then the convolution (random sum)
X:X1+X2+—|—XN

represents the aggregated claims generated by the portfolio for the period under
consideration, where the number of claims, N, payable by the insurer is a random
variable and is associated with the frequency of claims.

The individual claim amounts, X7, Xs, ..., are independent identically distributed

random variables and measure the severity of claims. Number of claims /N and the
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individual claims, Xi, X5, ..., are assumed to be independent random variables.

Let us consider the discrete expected stop loss defined as

E[(X = q)4], (4.1)

where ¢ is a given constant in the support set of random variable X interpreted
as aggregated loss from insurance claims. Then (X — ¢), is then considered as
the excess of loss over the retention level gq. Expected stop loss given in (4.1) is a
risk measure that is widely used in finance and insurance (see, e.g., Courtois and
Denuit, 2009 [66]).

In this context, if, for example, we assume that /N has Poisson distribution with

the probability function

where A > 0 is the expected number of claims, then total claim X has a com-
pound Poisson distribution. We can utilize compound distributions in our appli-
cation since their logconcavity property can be conveniently characterized (Ninh
and Prékopa, 2013 [27]).

In particular, under the assumption that the individual claim amount X;’s has
a Bernoulli distribution with parameter 0 < p < 1, the logconcavity, logconvexity,

or unimodality of X depends on the logconcavity, logconvexity, or unimodality N.
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In order to investigate the impact of the shape constraints, logconcavity, log-
convexity, and unimodality, to the quality of the lower and upper bounds for the

expected stop loss (4.1), we proceed as follows:

(1) Let the support set of number of claim, N, be on {1,...,10}.

(2) Assume that the probability mass function of N is chosen to be logconcave

to render the logconcavity for the aggregated claim X.

(3) Compute the first three power moment of X and its mode M before assuming

that the full distribution is unknown.

(4) Given n (real value of N), solve the following problem:

min(max)  B[(X - q);]

subject to

Tozo+  + Ty = 1251 (42)
x028+---+xnzg:u2
xozg’+---+xnz2:u3

Ty - -y Ty = 0.

The above problem serves as the benchmark for the performance of discrete
moment problems with shape constraints (unimodality, logconcavity, or log-

convexity).
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Let

e LB: optimum value of the minimization problem (4.2)
e UB: optimum value of the maximization problem (4.2).

(5) Prescribe the logconcavity constraints into problem (4.2) and solve the power

moment problem given below:

min (max) BI(X — q).]

subject to
To+ x4+ ta, =1
Tozo+ -+ XTpzy = U1
T2l + T2 = (4.3)
Tozs + -+ a2 = s

2 o
x5 > Ti1Tiy1, t=1,..,n—1

o, ..., Ty > 0.

Let

e LB optimum value of the minimization problem (4.3)

e UB.: optimum value of the maximization problem (4.3).
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(6) Prescribe the unimodality constraints into problem (4.2) and solve the fol-

lowing power moment problem:

min(max) E[(X = q)]

subject to

Tozo + 0+ Tp2p = [
Tozd 4 T2l = (4.4)

xozg++$nzf{=/l3

Let

e LB,: optimum value of the minimization problem (4.4)
e UB,: optimum value of the maximization problem (4.4).

(7) Calculate
AJA, = (UB — LB)/(UB, — LB,),

where * represents logconcavity or unimodality.

Below, we present numerical results to compare the contribution of the shape
constraints on the improvement of bounds for the expected stop-loss E[(X — q)].
All computations are done in MATLAB with BARON to solve discrete moment

problems involved.
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Table 4.1 show the lower abd upper bounds for the expected stop-loss E[(X —
q)+] for the values of ¢ = 2,...,9. The bounds LB and U B are obtained from prob-
lem (4.2) that does not take into account the shape of the underlying distribution.
The bounds LB;. and U B, the optimum values of problem (4.3), where the log-
concavity constraints are prescribed. Finally, the LB, and UB, are the optimum
values of problem (4.4) that uses the information that the underlying probability
distribution is unimodal with mode M = 2. All bounds presented in Table 4.1 are
the bounds for the expected stop-loss F[(X — ¢)] based on the knowledge of the
first two binomial moments S; and Sy. Figures 4.1, 4.2, and 4.3 show the com-
parison of, change in and improvement on the bounds for the expected stop-loss
E[(X — q)+] based on S; and S5, respectively.

Table 4.2 presents the lower and upper bounds for the expected stop-loss
E[(X —q)4] obtained from problems (4.2), (4.3), and (4.4) based on the knowledge
of the first three binomial moments Sy, Sy, and S3. Similarly, Figures 4.4, 4.5, and
4.6 show the comparison of, change in and improvement on the bounds for the
expected stop-loss E[(X — ¢)+] based on S, Sy, and S3, respectively.

As in numerical experiments presented in Chapter 2, we observe that the use
of the shape constraints greatly improve the bounds for the expected stop-loss,
where the logconcavity constraints provide tighter bounds than those obtained by
the use of the unimodality constraints. We remark that the bounds are very tight
even for the case of first two binomial moments and as expected they are improved

further when the first three binomial moments are used.
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Chapter 5

Conclusion

In this research, we investigate the contribution of the shape constraints in dis-
crete moment problems that was originally formulated as a linear programming
problem to approximate the linear functions on the unknown discrete probability
distributions non-negative and finite support, where some of the moments of the
underlying distribution are known or obtained from historical data. The moments
can be power, binomial or more general type. These problems came to prominence
by the discovery that the classical probability bounds and expectations of discrete
random variables can be obtained based on the knowledge of some of the binomial
moments or power moments.

We introduce new shape constraints, logconcavity and logconvexity, to discrete
moment problems for bounding the k-out-of-n type probabilities and expectations
of higher order convex functions of discrete random variables with non-negative
and finite support, based on the knowledge of first m power or binomial moments
where m is much smaller than the size of the support set of the underlying prob-

ability distribution. Discrete moment problem with logconcavity constraint is a
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non-convex nonlinear optimization problem. We transform this problem into a
bilinear optimization problem to solve it more efficiently. In case of logconvexity
constraints, while the problem turns into a nonlinear program, the convexity of
the problem is preserved. We perform several computational experiments, where
we demonstrate the utility of the logconcavity and logconvexity property within
the concept of probability bounding methodology. Numerical experiments show
the improvement in the tightness of the bounds when the shape of underlying un-
known probability distribution is prescribed into discrete moment problems even
for the case of first two power or binomial moments. As expected from the theory
of optimization, these results are further improved when the first three power or
binomials are used. What makes it interesting and exciting is the improvement
on the tightness of the bounds both in case of logconcave and logconvex distribu-
tions. We apply our optimization based bounding methodology in an insurance
problem to estimate the expected stop-loss of aggregated insurance claims within
a fixed period, where we assume the underlying claim distribution is normally
distributed and therefore the distribution of the aggregated claims is the convolu-
tion of normally distributed random variables. We expect our proposed bounding
methodology to be extended to various fruitful applications, including reliability,
finance, and stochastic networks, where the underlying probability distribution is
unknown, but the shape and the first two or three moments can be obtained from

the historical data.
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