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ABSTRACT

Title:

Parametric Methods for Analysis of Survival Times with Applications

to Organ Transplantation

Author:

Farag Hamad

Major Advisor:

Nezamoddin Nezamoddini-Kachouie, Ph.D.

In this dissertation, we have two main objectives. First, we introduce a hybrid

method to model hazard function. Different approaches have been used for mod-

eling survival times including parametric, semi-parametric, and non-parametric

models. Non-parametric and semi-parametric models are commonly used for sur-

vival time analysis due to their flexibility. However, the parametric models are in

high demand because of their predictive power. A challenging task is to extend

semi-parametric methods and design full parametric models for analysis of survival

times by estimating a set of unknown parameters. In the proposed method, the

nonparametric estimate of the survival function by Kaplan Meier and the para-

metric estimate of the logistic function in the Cox proportional hazard by partial

likelihood method are combined to estimate a parametric baseline hazard func-

tion. We compare the estimated baseline hazard using the proposed method and

the Cox model. The performance of each method is measured based on the es-

timated parameters of the baseline distribution as well as the goodness of fit of

the model. The focus of the second goal is to study graft failure in solid organ

transplantation. We have studied the impact of donor’s and receiver’s factors

such as age, gender, and ethnicity on organ survival. Six different organ types
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including kidney, liver, heart, lung, pancreas, and intestine are investigated in this

study. The dataset includes transplanted organs in the US between 1987 and 2010.
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Chapter 1

Introduction

The survival analysis has been recently emerging by finding many new applications

in several fields such as biology, demography, economics, engineering, and sociology

[1]. Survival time refers to time until an event occurs, such as the time until onset

of a disease, the time until patient recovery after taking the treatment, the time

that a transplanted organ may fail [2], the time until an equipment failure, and

the time until the stock market crashes [1].

The survival analysis is a suite of statistical models, techniques, and algorithms

used for describing and quantifying the survival time and predict the time to fail-

ure [3]. The goal of survival analysis is to fit a model for explaining the relationship

between an event’s time and some independent factors that might affect the sur-

vival time [4]. In this way, survival analysis can be employed to estimate the

distribution of survival times, compare the survival times for different cohorts, and

identify the factors that may impact the survival [5].

Different approaches that have been used for modeling survival times include:

(1) Parametric models (e.g. Linear model); (2) Semi-Parametric models (e.g. Cox
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Proportional hazard model); and (3) Non-parametric models (e.g. Kaplan Meier).

Non-parametric and semi-parametric are commonly used to analyze the survival

times due to their flexibility [6]. However, the parametric models are in high

demand because of their predictive power. A challenging task is to extend semi-

parametric methods and design full parametric models of the survival and hazard

by estimating a set of unknown parameters [7–9]

There are several nonparametric methods for modeling the survival times.

Among them Kaplan Meier curve (KM) has been widely used to describe and

summarize the survival probability at each time interval [10]. The Kaplan Meier

method does not make any assumption to analyze the survival data [2] and has

been commonly used in the medical filed in order to compare the survival times of

two groups of patients [11].

The Cox proportional hazard model is the most popular model for survival

analysis. This semi-parametric model makes some assumptions about a baseline

function to facilitate the estimation of regression coefficients for the factors that

may affect the survival time [2]. It is a challenging task to use maximum likelihood

method to estimate the parameters of a full parametric model of baseline and

regression at once [12]. Hence, to simplify the model, no particular distribution is

assumed to model the baseline survival model using the Cox model.

In a semi-parametric model like Cox proportional hazard, the baseline hazard

is an arbitrary function. An arbitrary baseline survival is often inappropriate, as

the baseline survival is potentially a parametric function of some factors that can

assume different values for different cohorts. For example, in clinical research such

as cancer research, it is crucial to customize the baseline survival for patients at

different stages of cancer or receiving different treatments. As a result, designing a
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fully parametric model is imperative to customize the baseline survival for different

cohorts.

In this dissertation we introduce a fully parametric survival model. In the pro-

posed hybrid survival model, we combine a non-parametric and a semi-parametric

model to estimate the parameters of the proposed fully parametric model. The

advantages of using a fully parametric model are: (1) we can estimate the distri-

bution of the survival time; (2) we can apply full maximum likelihood to estimate

parameters of the survival time distribution; and (3) the differences between the

observed survival time and the estimated values of survival time can be represented

as residuals and can be used to estimate the standard error of estimate.

At the beginning of the last century, organs transplantation became a routine

treatment for patients with organ failure [13,14]. Organ transplantation is replac-

ing the organs that have failed and do not function. It is the preferred treatment

for chronic organ failure. The lives of many patients including children have been

saved and prolonged by successful organ transplantation [13]. The organ trans-

plantation is performed to save patients, hence it is essential to study and analyze

the survival time of the transplanted organs and the factors that may affect the

organ survival [15]. To this end, an important application of survival analysis is

to estimate the failure time of transplanted solid organs.

In the United States, organ transplantation becomes a major public health

issue due to its attributable death rate and to its excessive cost. The number of

organs which are offered for transplantation is limited and there is a waiting list for

receiving an organ [16]. For example, during the last decade in the United States,

the available kidneys for transplantation were 11,000 per year, while the waiting

list for kidney transplantation has exceeded 100,000 candidates [17,18]. In spite of
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the improvement in organ procurement, the number of available organ transplants

continues to lag far behind the need, and waiting lists are still growing. As a result

of this waiting period, many patients may wait more than 5 years for an organ,

and many never receive the transplant that they need [19]. Moreover, when an

organ becomes available, there may be several choices to be made regarding the

acceptance of the transplant or a continuation of waiting for the next available

organ [17,20].

There are several factors that might have an effect on the survival of a trans-

planted organ and the graft failure time (GFT) including donor’s age, gender, eth-

nicity, location, cause of death, history of cancer, and history of smoking [18, 19].

Multiple studies have determined that the donor’s age is a major reason for organ

discard [19, 21]. Some studies investigated the relation between the donor’s gen-

der and the rejection risk [22,23], while donor’s race has been determined by some

clinical studies to be one of the factors that impacts the graft survival time [24,25].

Even though, there has been some improvements in the medical field and in

surgical techniques, still the shortage of organs for transplantation is a challenging

problem. This shortage is due to the low number of the donors, the discard rate

of the organs, and lack of improvement in the organ’s survival time [26]. For the

shortage in numbers of people who agree to be donors, the US Congress passed the

National Organ Transplant Act (NOTA) in 1984. The act set up the Organ Pro-

curement and Transplantation Network (OPTN) to maintain a national registry

for organ donors [27].

In order to reduce the organ discard rate, the factors that might affect the

discard rate must be studied. For example, a donated organ that travels shorter

distances for transplantation could be less likely to be discarded [28] . The distance
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is related to how long the organ is traveling before transplantation [29] .

In this dissertation, we comprehensively study the impact of donor’s factors

on the survival time of six major solid organs including kidney, liver, heart, lung,

pancreas, and intestine. Using statistical survival analysis, we investigate survival

times of transplanted organs that transplanted between 1987 and 2010 in the US.

Seven donor’s factors including donor’s age, gender, ethnicity, history of cancer,

smoking history, blood type, and travel time of the donated organs as well as their

interactions were studied. The results show that each of these factors may affect

the survival time of the transplanted organ in one way or another. For example,

the donor’s age is an important factor for all organ types but intestine. It means

transplanted organs from younger donors have longer survival times, while those

from older donors have shorter survival.

1.1 Data description

The Department of Health & Human Services(HHS) and OPTN set up a frame-

work to collect, store, analyze, and publish data pertaining to the patient waiting

list, organ matching, and transplants in 1987. Under the federal act, the United

Network for Organ Sharing (UNOS) turned into the principal non-profit associa-

tion for gathering clinical information about organ donors, transplant candidates,

and transplant recipients [30].

The dataset that is used in this work has been provided by the UNOS includes

the clinical and demographic information about 256,833 organs. The data is col-

lected from deceased donors from 1987 to 2010. The dataset provides the graft

failure time and some other factors that are associated with donors of the six major

solid organs including 128,992 kidney transplants, 72,794 liver transplants, 32,392
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heart transplants, 16,118 lung transplants, 4,949 pancreas transplants, and 1,588

intestine transplants.

1.2 Predictor Variables of Graft Failure

We considered several factors that are associated with donors and recipients in-

cluding:

• The organ location (Distance)

• Organ ischemic time

• Age

• Gender

• Ethnicity

• Smoking cigarette history

• Cancer history

• Blood type
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Chapter 2

Survival Analysis - Background

The purpose of performing survival analysis is estimating the distribution of the

survival times, calculating the probability of the survival, and estimating the haz-

ard. Survival time or time to failure refers to the time until an event occurs [2,31].

The event could be onset of disease, onset of recovery, or the time that an organ

fails its function. Survival analysis has many applications in biology, economy,

medical sciences, and engineering. Some examples are, the patient age until the

disease occurs, the time that it takes for a transplanted organ to fail after trans-

plantation, and the time until recovery since patient takes the treatment. Survival

time may also indicate occurrence of more than one event such as repeated lung

infections with Pseudonymous in children with cystic fibrosis [1, 2].
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2.1 Time to Failure Probability Distributions

Survival function

Let survival time T be a non-negative continuous random variable, the probability

that the survival time exceeds the time t can be calculated using complementary

cumulative distribution:

S(t) = 1− F (t) = p(T > t) =

∫ ∞

t

dF (u), t ⩾ 0 (2.1)

where F (t) is cumulative distribution function (CDF) of survival time T [32]. That

is, the probability of failing before time t and is given by:

F (t) = p(T ≤ t) =

∫ t

0

f(u)du

where f(t) is the time to failure density function [33,34]. Mean time to failure can

be obtained by:

µ =

∫ ∞

0

tdF (t) (2.2)

Hazard function

Hazard function h(t) is instantaneous failure rate right after the time t given that

the subject has survived up to time t. The hazard function can be obtained by:

h(t) = lim
∆t→0

p(t ≤ T < t+∆t|T > t)

∆t
(2.3)

= lim
∆t→0

p(t ≤ T < t+∆t, T > t)

p(T > t)∆t
= lim

∆t→0

p(t ≤ T < t+∆t, T > t)

∆t

1

p(T > t)
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= lim
∆t→0

F (t+∆t)− F (t)

∆t

1

p(T > t)

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
(2.4)

The cumulative hazard can be obtained by taking integral with respect to t:

H(t) =

∫ t

0

h(u)d(u) (2.5)

and survival can be explained by the cumulative hazard:

∫ t

0

h(u)d(u) = − ln(S(t)) ⇒ S(t) = e−
∫ t
0 h(u)d(u)

Some common time to failure distributions and their associated survival functions

will be discussed next.

2.2 Exponential Distribution

Exponential distribution is commonly used to describe the time to failure t [4]:

f(t, λ) =

⎧⎪⎨⎪⎩ λe−λt, t > 0

0, otherwise
(2.6)

where parameter λ > 0 is the rate factor. The mean and variance of an exponential

random variable are µ = 1
λ
and σ2 = 1

λ2 . Exponential time to failure density

function for different values of λ is demonstrated in Fig. 2.1.
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Figure 2.1: Exponential density function with λ = 0.2 and 0.6.

Survival function

The corresponding survival probability function of the random variable T with

exponential distribution is:

S(t) =

∫ ∞

t

f(u)du =

∫ ∞

t

λe−λudu = e−λt (2.7)

The survival function for different values of λ is demonstrated in the Fig. 2.2.
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Figure 2.2: Exponential survival function with λ = 0.2 and 0.6.

Hazard function

The hazard function is the ratio of the probability density function to the survival

function and it is constant if the failure times are exponentially distributed:

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
=

λe−λt

e−λt
= λ (2.8)

The hazard for different values of λ is shown in Fig. 2.3.
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Figure 2.3: Exponential hazard function with λ = 0.2 and 0.6.

Cumulative hazard

The cumulative hazard (integrated hazard) function is an increasing function with

regard to the time variable. The cumulative hazard is computed by:

H(t) =

∫ t

0

h(u)du =

∫ t

0

λdu = λt (2.9)

Figure 2.4 shows the cumulative hazard for different values of λ.
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Figure 2.4: Exponential cumulative hazard with λ = 0.2 and 0.6.

2.2.1 Parameter estimation

Maximum likelihood estimation (MLE) is used to estimate the parameter λ of

the exponential distribution. The likelihood function of the independent random

variables t1, t2, ...tn is given by:

Ln(ti, λ) =
n∏

i=1

f(ti, λ) =
n∏

i=1

λe−λti = λne−λ
∑n

i=1 ti

The log of the likelihood function is taken first. The first derivative of the log-

likelihood with regard to the unknown parameter λ is then taken and set equal to

13



zero. The MLE estimate of λ is:

∂log(Ln)

∂λ
=

n

λ
−

n∑
i=1

ti ⇒

λ̂ =
n∑n
i=1 ti

=
1

µ̂

Figure 2.5: Log-likelihood function.
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Figure 2.6: Global maximum of log-likelihood function.

2.3 Weibull distribution

The Weibull distribution was first introduced by the Swedish scientist Walodi

Weibull [35, 36] and is widely used in survival analysis [37, 38]. Weibull density

function is given by:

f(t, α, β) =
α

βα
tα−1e−( t

β
)α α, β, t > 0 (2.10)

where α and β are shape and scale parameters respectively. For 0 < β < 1, the

Weibull distribution has a decreasing hazard and with β > 1 it has an increasing

hazard function. For α = 1 the Weibull distribution reduces to exponential and
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with β ≥ 3.4 it will be approximately normal [39]. Mean survival time is:

µ =

∫ ∞

0

tf(t, α, β)dt = β · Γ(1 + 1/α)

and the variance is:

σ2 = β2 · Γ(1 + 2/α)− (β · Γ(1 + 1/α))2

The density function of the Weibull distribution for different values of shape pa-

rameters is depicted in Fig. 2.7.

Figure 2.7: Weibull density function (pdf).
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Cumulative distribution function

The cumulative distribution function for Weibull survival times is given by:

F (t, α, β) = 1− e−( t
β
)α (2.11)

Figure 2.8: Weibull cumulative distribution function (cdf).

Survival function

The survival probability function is given by:

S(t, α, β) = 1− F (t, α, β) = e−( t
β
)α (2.12)

where F (t, α, β) is the CDF [40].
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Fig. 2.9 shows the survival function for different values of the shape parameter.

Figure 2.9: Survival function S(t).

A Weibull regression model can be defined by taking the natural log of the survival

function twice:

log(−log(S(t))) = −αlog(β) + αlog(t)

Fig. 2.10 shows the Weibull regression model for different values of the shape

parameter.
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Figure 2.10: Weibull Log-log of survival probability S(t).

Hazard function

The hazard function is obtained by [38]:

h(t, α, β) =
α

β

(
t

β

)α−1

(2.13)

The hazard function for different values of the shape parameter is shown in Fig.

2.11.
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Figure 2.11: Hazard function h(t).

The log-hazard of the Weibull distribution is a linear model:

log(h(t)) = log(α)− αlog(β) + (α− 1)log(t)

This linear model can be used to estimate parameters of the Weibull distribution.

Weibull regression model for different values of the shape factor is demonstrated

in Fig. 2.12.
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Figure 2.12: Weibull log-hazard h(t).

Cumulative hazard function

The cumulative hazard is given by:

H(t, α, β) =
1

βα
tα (2.14)

Cumulative hazard function for different values of the shape parameter is shown

in Fig. 2.13.
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Figure 2.13: Cumulative hazard H(t).

The log-cumulative hazard gives a straight linear relationship with the intercept

−αlog(β) and the slope α. The log-cumulative hazard of the Weibull distribution

with shape parameter α and scale parameter β is given by:

log(H(t)) = −αlog(β) + αlog(t)

Fig. 2.14 shows the log-cumulative hazard of the Weibull distribution for different

values of the shape parameter.
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Figure 2.14: Weibull log-cumulative hazard H(t).

2.3.1 Parameter estimation

Several methods have been developed for estimating parameters of the Weibull

distribution such as graphical method, maximum likelihood method, method of

moments, least square method, the rank of median, and quartiles method [41]. We

will briefly discuss three methods including maximum likelihood estimation method

(MLE), method of moments, and quartiles method estimation (QME) [36].
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Maximum likelihood estimation (MLE)

MLE is commonly used for estimation of the Weibull parameters [42, 43]. For a

sample of size n from a Weibull distribution the ML function is

Ln(ti, α, β) =
n∏

i=1

f(ti) =
n∏

i=1

α

βα
tα−1e−( t

β
)α (2.15)

The log-likelihood function is:

log(Ln(ti, α, β)) = nlog(α)− nα log(β) + (α− 1)
n∑

i=1

log(ti)−
∑n

i=1 t
α
i

βα
(2.16)

The partial derivative with respect to α and β is:

∂LogLn(ti, α, β)

∂α
=

n

α
− nlog(β) +

n∑
i=1

log(ti)−
∑n

i=1 t
α
i log(ti)− log(β)

∑n
i=1 t

α
i

βα

(2.17)

∂LogLn(ti, α, β)

∂β
= −nα

β
+

α
∑n

i=1 t
α
i

βα+1
(2.18)

These equations will be used to solve the nonlinear problem:

maximize
α,β

log(Ln(ti, α, β))

subject to
∂log(Ln(ti, α, β))

∂α
= 0,

∂log(Ln(ti, α, λ))

∂β
= 0,

α > 0, β > 0

(2.19)

Several methods are developed for solving (2.19) to estimate α and β such as the

Newton-Raphson, bisection, and secant method [44,45]. These methods provide a
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numerical solution for MLE function and rely on an initial guess, and hence they

may not converge [43]. Solutions to (2.19) are discussed in details in Appendix A.

Solving the nonlinear system (2.19) requires two initial guesses for the unknown

parameters of the Weibull distribution α and β or trial computation of the es-

timated parameters [46]. We can use the elimination method to reduce the two

equations 2.17 and 2.18. Therefore, from equation 2.18 the estimated β is

β̂ =

(∑n
i=1 t

α̂
i

n

)1/α̂

(2.20)

Substituting (2.20) in (2.18), then get

g(α) =

∑n
i=1 t

α
i log(ti)∑n

i=1 t
α
i

− 1

n

n∑
i=1

log(ti)−
1

α
= 0 (2.21)

As we can see, solving the above equation using Newton-Raphson method requires

only an initial guess for α [37]. More details are in Appendix A. Once the solution

of the equation has been accomplished using Newton Raphson for α, we can have

the estimate of β using equation (2.20).

Method of moments (MM)

The first and second moments are obtained to estimate α and β for the Weibull

distribution [47,48]. The kth moment of the Weibull distribution is given by

Mk =

∫ ∞

0

tki f(ti, α, β)dt , k = 1, 2, ... (2.22)
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The first and second moments are:

M1 =
1

n

n∑
i=1

ti = µ = βΓ(1 +
1

α
) (2.23)

M2 =
1

n

n∑
i=1

t2i = β2Γ(1 +
2

α
)

and the variance can be obtained by:

σ2 = M2 −M2
1 = β2Γ(1 +

2

α
)− β2Γ2(1 +

1

α
) (2.24)

by solving (2.23) and (2.24) together, we get

σ2

µ2
=

Γ(1 + 2
α
)

Γ2(1 + 1
α
)
− 1

Γ(1 + 2
α
)

Γ2(1 + 1
α
)
−
(
σ

µ

)2

− 1 = 0

Γ(1 + 2
α
)

Γ2(1 + 1
α
)
− CV 2 − 1 = 0 (2.25)

where CV is coefficient of variation. It does not have an analytic solution. It can

be solved numerically for example by the Newton Raphson method. An approxi-

mation solution is also given in [41].

Quartiles method (QM)

Order statistics can be used to divide the data into four equal parts called quartiles.

For a given sample with size n, we can compute three quartiles Q1 (first quartile)

, Q2 (second quartile), and Q3 (third quartile). Shape and scale parameters of the
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Weibull distribution can be estimated using QME [39]. The relationship between

the three quartiles and the Weibull distribution parameters are given by:

Q1 = β(log(
4

3
))

1
α & Q2 = β(log(2))

1
α & Q3 = β(log(4))

1
α (2.26)

where

• Q1 is the first quartile and P25%.

• Q2 is the second quartile (median) and P50% .

• Q3 is the third quartile and P75%.

By simplifying the equations in (2.26), we can obtain the QME estimators of

Weibull parameters α and β.

α̂ =
1.573

log(Q3
Q1

)
& β̂ =

Q2

(log(2))1/α̂
(2.27)

2.4 Simulation studies

In order to compare the estimated Weibull parameters using the aforementioned

methods, we use Monte Carlo simulation with different sample sizes including

n=25, 50, and 100. Samples are randomly generated fromWeibull distribution with

the shape parameter of 2 and the scale parameter of 3 and then corrupted by adding

Gaussian noise. The simulation is performed for 1000 trials and the parameters are

estimated using the Monte Carlo average. We compared the estimated parameters

using Root Mean Square Error (RMSE) and the estimated probability density
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functions. The RMSE is defined by:

RMSE =

√ 1

N

N∑
i=1

[(α̂i − α)2 + (β̂i − β)2] (2.28)

Table 2.1: Weibull parameters estimation n = 25, N = 1000, σ = 0.1.

Method α̂ Sα̂ 95% CI of α β̂ Sβ̂ 95% CI of β RMSE

MLE1 2.112 0.089 (1.93,2.29) 3.172 0.130 (2.91,3.43) 0.251

MLE2 2.667 0.057 (2.55,2.78) 3.184 0.025 (3.13,3.23) 0.693

MME 2.112 0.039 (2.03,2.19) 3.043 0.023 (3.00,3.09) 0.122

QME 2.019 0.124 (1.77,2.27) 3.337 0.119 (3.10,3.58) 0.362

The estimated parameters using MLE, MME, and QME for n = 25 are reported

in Tab. 2.1. MLE is solved using Newton-Raphson method once by 2.21 to estimate

a single parameter (MLE1). Newton-Raphson was also used to estimate both

parameters by 2.19 (MLE2).

As we can observe in the table, MME performs better than the other methods

with regard to absolute error of the estimate, RMSE, and standard error of the

estimate. MLE1 provides better estimates than MLE2 with regard to absolute

error of the estimate and RMSE. However, MLE2 performes better with regard to

standard error of the estimate.
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Figure 2.15: Log likelihood values at each iteration.

The Fig. 2.15 shows the illustration of the convergence analysis for estimated

parameters (shape and scale) and likelihood function.

Table 2.2: Weibull parameters estimation n = 50, N = 1000, σ = 0.1.

Method α̂ Sα̂ 95% CI of α β̂ Sβ̂ 95% CI of β RMSE

MLE1 1.789 0.051 (1.67,1.89) 3.102 0.029 (3.04,3.16) 0.138

MLE2 2.209 0.100 (2.01,2.41) 3.256 0.039 (3.18,3.33) 0.337

MME 1.842 0.030 (1.78,1.90) 3.119 0.025 (3.07,3.17) 0.200

QME 2.031 0.105 (1.82,2.24) 2.959 0.073 (2.81,3.11) 0.119

Table 2.2 shows the estimated Weibull parameters using MLE (solved by New-

ton Raphson method), method of moments, and quartiles method for n = 50.

As we can observe in the table, MME performs better than the other methods

with regard to standard error of the estimate, but QME has a better performance
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with regard to absolute error of the estimate and RMSE. MLE1 provides better

estimates than MLE2 with regard to standard error of the estimate and RMSE.

Table 2.3: Weibull parameters estimation n = 100, N = 1000, σ = 0.1.

Method α̂ Sα̂ 95% CI of α β̂ Sβ̂ 95% CI of β RMSE

MLE1 1.810 0.017 (1.78,1.84) 2.938 0.012 (2.91,2.96) 0.199

MLE2 2.410 0.045 (2.32,2.50) 3.175 0.019 (3.13,3.21) 0.448

MME 1.778 0.015 (1.75,1.81) 2.923 0.011 (2.89,2.94) 0.235

QME 1.791 0.065 (1.66,1.92) 2.827 0.049 (2.73,2.96) 0.280

The estimated Weibull parameters for n = 100 is depicted in Tab. 2.3. It

can be observed that MME performs better than the other methods with regard

to standard error of the estimate, however MLE1 performs better with regard to

RMSE. The estimated values of the shape and scale parameter by MLE1 are 1.81

and 2.938 respectively.

Figure 2.16: Estimated Weibull pdf for n = 25
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Figure 2.17: Estimated Weibull pdf for n = 50.

Figure 2.18: Estimated Weibull pdf for n = 100.

The estimated Weibull distribution using MLE, MME, and QME for n = 25,

n = 50, and n = 100 are shown in Figs. 2.17, 2.18, and 2.19 respectively. It can be
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observed that MME and MLE1 have comparable estimates of Weibull distribution,

while MLE2 does not perform as well.
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Chapter 3

Survival Time Modeling and

Analysis

The purpose of modeling the survival data is to fit a model that illustrates the

relationship between the time to event and some independent factors that might

affect the survival time. There are several approaches that we can use for modeling

survival data such as parametric, nonparametric, and semi-parametric models [4].

These approaches and related models are illustrated in Fig. 3.1. The parametric

models are commonly employed in the survival analysis field even though they

are required more assumption about the survival time distribution [5]. For non-

parametric models only the Kaplan Meier model does not require any assumptions

about the distribution of the survival time which makes it widely used for describ-

ing and modeling of the survival data in the medical research.

Another method that has been widely used for analyzing and modeling the

survival data is the Cox regression analysis. The Cox proportional hazard model

is the most popular model that leaves the baseline hazard function unspecified [5].
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Figure 6.5: Transplanted organs based on recipient’s history of cancer.

Blood type

About 80% of transplanted organs between 1987 and 2018 in the US, were trans-

planted to patients with A or O blood types. Descriptive statistics for transplanted

organs with regard to the recipient’s blood type is reported in Table 6.1. From the

Table 6.1, we can see that only 5% of recipients of the transplanted organs had

blood type AB. The survival times of the transplants among all organ types are

comparable across different blood types. However, slightly longer survival times

of transplanted kidneys, hearts, livers, and lungs are associated with patients with

blood type A, while longer survivals are associated with blood type AB in pancreas

and intestine recipients.
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In general, Cox model does not identify recipient’s blood type as a significant

factor to predict the survival time of the transplanted organs. It can only explain

the survival time of heart and intestine recipients with blood type O.

Cox PH reveals that blood type is a significant factor for lung and intestine

recipients, while it does not seem to have a significant impact on the survival times

of other transplanted organs. For example, while the blood type is not a significant

factor for kidney recipients, the risk ratio increases by 18% for blood type AB in

comparison with the recipients with blood type A.
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Figure 6.6: Transplanted organs based on recipient’s blood type.
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Chapter 7

Conclusion

The survival analysis has recently emerged by finding many new applications in

several fields such as biology, demography, economics, engineering, and sociology.

The goal of survival analysis is to fit a model to identify the relationships between

the time of an event and independent variables and the impact of the factors on

the event’s time. There are several approaches for modeling survival data includ-

ing parametric (such as linear regression), nonparametric (such as Kaplan Meier

model), and semi-parametric models (such as Cox proportional hazard model).

Cox proportional hazard model assumes an arbitrary baseline hazard, however

there are numerous applications in medical research, public health, environmental

research, and engineering in which it is practical to have a parametric baseline

survival and estimate the parameters for different groups in the study. For example,

patients receiving different treatments, coming from different ethnicity groups, or

being in different stages of disease. Another example from environmental research

is glaciers in different climate locations such as elevation, air temperature, and

precipitation. Therefore, a fully parametric survival model is essential to customize
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the survival model for different groups/cohorts where an arbitrary baseline survival

is insufficient.

In this work, we have introduced a survival model and we have investigated

a related medical application. Main objectives of this research are summarized

below.

• First, designing a generic full parametric hazard model.

• Second, study and investigate the impact of donor’s and recipient’s factors on

the survival of the transplanted solid organs including transplanted kidneys,

livers, hearts, lungs, pancreases, and intestines between 1987 and 2018 in the

US.

• Third, we studied the impact of OPTN strategic plan started in 2003 on the

failure rate of the transplanted organs between 2003 and 2010 in comparison

with previous time intervals.

We proposed a hybrid method to estimate the parameters of a full parametric

survival method consisting of two components, a parametric baseline as well as a

factor-specific hazard. We showed that Cox proportional hazard is a special case

of the proposed method with arbitrary baseline and a logistic regression for the

factor-specific hazard term. Monte Carlo simulations were carried out in order to

evaluate the performance of the proposed method. We have also used real organ

transplantation data for transplanted hearts between 1987 and 2010 to compare

the performance of the proposed method and the Cox model.

In order to compare the estimated parameters of the baseline hazard using

the Breslow method and the proposed method, we used four criteria including

AIC, BIC, R2, and residual standard error σ̂. Three different baselines were
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investigated for three different sample sizes. In the first set of simulations, an

exponential baseline was simulated. in the second set of simulations, a Weibull

baseline was considered while in the third set of simulations, Gompertz baseline

was considered. The study showed that for different sample sizes and different

baseline survival functions, overall, the baseline hazard parameters were estimated

more accurately using the proposed method. The estimated goodness of fit reveals

that the proposed method provides a better fit. For an exponential baseline hazard,

the results show that the estimate of the baseline hazard using the hybrid and

Breslow methods are comparable. Moreover, the presented results showed that the

estimated parameter λ using the hybrid method had a smaller bias in comparison

with the estimated λ using the Breslow method. AIC, BIC, and R2 showed that

the hybrid model provides a better fit than that of Breslow model. Furthermore,

the estimated residual mean standard error by the hybrid method was lower than

that of Breslow. The non-normality of the residuals was observed in the scatter

plots of residuals vs. the survival times. However, approximately normal residuals

were obtained when the residuals were plotted vs. the independent variable.

For a Weibull baseline hazard, the results of the estimated parameters us-

ing different sample sizes showed that the hybrid method performs better than

the Breslow method. The estimated shape and scale parameters by the proposed

method have smaller bias than those of Breslow. The estimated values of AIC and

BIC using both hybrid and Breslow model showed that the hybrid model had a

better goodness of fit. Moreover, the proposed method had the higher R2 in com-

parison with Breslow method. In addition, the hybrid model had a lower estimated

residual mean standard error. Using the transplantation data where survival time

is the transplanted heart survival time and the independent variable is the donors
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age, the estimated baseline hazard using hybrid method was comparable with that

of the Breslow method. We observed that the estimated exponential baseline pa-

rameter λ using the hybrid method is similar to the estimated λ using the Breslow

method. From the estimated values of the AIC, BIC, R2, and σ̂, we showed that

the hybrid method provides a better fit. In addition, assuming Weibull baseline

for the transplanted heart survival times, we estimated the baseline parameters

using the proposed hybrid method as well as Breslow. The estimated parameters

by two methods were equivalent. Even though the estimated baseline parameters

using hybrid method and Breslow method were the same, the estimated values of

the AIC and BIC showed that the fitted model by the hybrid method provided a

better estimate.

We studied the survival time of 256,833 transplanted organs including 128,992

transplanted kidneys, 72,794 transplanted livers, 32,392 transplanted hearts, 16,118

transplanted lungs, 4,949 transplanted pancreas, and 1,588 transplanted intestines.

The analysis of the survival times of the transplanted organs based on the donor’s

age and recipient’s age shows that the mean survival time decreases for the or-

gans coming from donors older than 20. Also, the analysis shows that the mean

survival time decreases for those recipients whose age is older than 40 years old.

At the same time, the relative risk increases for the organs coming from donors

older than 20 and for those recipient older than 40 years. That is, increase in the

donors age and recipients age would negatively impact the survival time of the

transplanted organ.

The analysis of the survival times of transplanted organs based on the gender

shows that the gender was an important factor for transplanted kidneys, hearts,

and livers. The mean survival time of transplanted organs with male donors is
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higher than the mean survival time of organs coming from female donors for all

transplanted organs except intestines. Moreover, transplanted organs coming from

the male donors would consistently survive longer than those coming from female

donors. However, the analysis of the survival times of the transplanted organs

based on the recipients gender shows that the organs survive longer when the

recipients were female in comparison with the male recipients. We also observed

that, donor’s ethnicity is a significant factor for transplanted kidneys. However,

it was not significant with regard to survival times of other organs. That is,

for different organ types including heart, liver, lung, pancreas, and intestine, we

didn’t observe significant difference between survival times of transplanted organs

coming from Hispanic donors in comparison with those coming from non-Hispanic

ones. Based on the recipients ethnicity, we can observe that the ethnicity is

a significant factor for transplanted kidneys, hearts, and livers but it was not a

significant factor for transplanted lungs, pancreases, and intestines.

The analysis of the survival times of the transplanted organs based on the his-

tory of cigarette smoking shows that the smoking history for donors or recipi-

ents has a negative effect on the survival time of transplanted organs. Furthermore,

the hazard ratio increases by 24% for transplanted organs coming from smoking

donors in comparison with those coming from non-smoking donors. The hazard

ratio also increases by 42% for smoking recipients in comparison with non-smoking

recipients. The donor history of cancer is a significant factor for transplanted

kidneys, hearts, and livers, while it does not have a significant effect on the sur-

vival time of transplanted lungs, pancreases, and intestines. On the other hand,

the recipient history of cancer is a significant factor for all transplanted organs.

That is the longer survival times of transplanted organs is associated with patients
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who have no history of cancer. The hazard ratio increased by 19% for transplanted

organs coming from donors with cancer history and it increased more than 25%

for transplanted organs to patients with a history of cancer. The analysis of the

survival time based on blood type of the donors or recipients shows that blood

type has no impact on the mean survival time of transplanted organs.

Moreover, we investigated the impact of OPTN strategic plan in 2003. Despite

increased number of transplants for all organs except heart, we have observed a

decrease in failed proportion of transplanted organs between 2003 and 2010 in

comparison with previous time intervals which could be associated with OPTN

strategic plan in 2003. The results show that the increased number of kidney

transplants between 2003 and 2010 is associated with the OPTN strategic plan.

However, it does not seem that the increased number in transplanted organs for

other organs between 2003 and 2010 is associated with the OPTN strategic plan.

Our future work will be focused on the combined effects of both donor and recipient

factors on survival time of transplanted organs.
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Appendix A

Background

A.1 Estimating the Weibull parameters

Assume t has Weibull density function with shape parameter α and scale parameter

β, the pdf of Weibull distribution f(t, α, β) is given by:

f(t, α, β) =
α

βα
tα−1e−(t/β)α , α, β, ti > 0 (A.1)

The likelihood function of the observed ti can be obtained by:

Ln(ti, α, β) =
n∏

i=1

f(ti) =
n∏

i=1

α

βα
tα−1e−( t

β
)α (A.2)

The log likelihood function is:

log(Ln(ti, α, β)) = nlog(α)− nα log(β) + (α− 1)
n∑

i=1

log(ti)−
∑n

i=1 t
α
i

βα
(A.3)

129



The partial derivatives with respect to α and β will be:

∂LogLn(ti, α, β)

∂α
=

n

α
−nlog(β)+

n∑
i=1

log(ti)−
βα
∑n

i=1 t
α
i log(ti)− βαlog(β)

∑n
i=1 t

α
i

β2α

∂LogLn(ti, α, β)

∂α
=

n

α
− nlog(β) +

n∑
i=1

log(ti)−
∑n

i=1 t
α
i log(ti)− log(β)

∑n
i=1 t

α
i

βα

(A.4)

∂LogLn(ti, α, β)

∂β
= −nα

β
+

α
∑n

i=1 t
α
i

βα+1
(A.5)

Using equation (A.5), we have:

β̂ =

(∑n
i=1 t

α
i

n

)1/α

(A.6)

By substituting (A.6) in (A.4):

g(α) =

∑n
i=1 t

α
i log(ti)∑n

i=1 t
α
i

− 1

n

n∑
i=1

log(ti)−
1

α
= 0 (A.7)

We solve equation (A.7) using Newton method:

g′(α) =
∂g(α)

∂α
=

1

α2
−
∑n

i=1 t
α
i (log(ti))

2
∑n

i=1 t
α
i − (

∑n
i=1 t

α
i log(ti))

2

(
∑n

i=1 t
α
i )

2

g′(α) =
1

α2
−

⎧⎨⎩
n∑

i=1

tαi log
2(ti)

n∑
i=1

tαi −

(
n∑

i=1

tαi log(ti)

)2
⎫⎬⎭
(

n∑
i=1

tαi

)−2

(A.8)
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αi+1 = αi − g(αi)
g′(αi)

This approach employs newton method to optimize the shape parameter α and

estimates the scale parameter β using (A.6).

A.2 Newton Gradient Method for Estimating Weibull pa-

rameters.

∂logLn(ti, α, β)

∂α2
=

−n

α2
−
∑n

i=1 t
α
i log

2(ti)− 2log(β)
∑n

i=1 t
α
i log(ti) + log2(β)

∑n
i=1 t

α
i

βα

∂2logLn(ti, α, β)

∂β2
=

n

β2
− α(α + 1)

βα+2

n∑
i=1

tαi

∂2logLn(ti, α, β)

∂β∂α
=

−n

β
+

α
∑n

i=1 t
α
i log(ti) +

∑n
i=1 t

α
i − αlog(β)

∑n
i=1 t

α
i

βα+1

∂2logLn(ti, α, β)

∂α∂β
=

−n

β
+

α
∑n

i=1 t
α
i log(ti) +

∑n
i=1 t

α
i − αlog(β)

∑n
i=1 t

α
i

βα+1

Using Newton method:

G = gradient =

⎡⎢⎣∂logLn(ti,α,β)
∂α

∂logLn(ti,α,β)
∂β

⎤⎥⎦
=

⎡⎢⎣n
α
− nlog(β) +

∑n
i=1 log(ti)−

∑n
i=1 t

α
i log(ti)−log(β)

∑n
i=1 t

α
i

βα

−nα
β
+

α
∑n

i=1 t
α
i

βα+1

⎤⎥⎦
H = Hessian =

⎡⎢⎣ ∂2logLn(ti,α,β)
∂α2

∂2logLn(ti,α,β)
∂β∂α

∂2Ln(ti,α,β)
∂α∂β

∂Ln(ti,α,β)
∂β2

⎤⎥⎦
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=

⎡⎢⎣ −n
α2 −

∑n
i=1 t

α
i log

2(ti)−2log(β)
∑n

i=1 t
α
i log(ti)+log2(β)

∑n
i=1 t

α
i

βα
−n
β +

α
∑n

i=1 t
α
i log(ti)+

∑n
i=1 t

α
i −αlog(β)

∑n
i=1 t

α
i

βα+1

−n
β +

α
∑n

i=1 t
α
i log(ti)+

∑n
i=1 t

α
i −αlog(β)

∑n
i=1 t

α
i

βα+1
n
β2 − α(α+1)

βα+2

∑n
i=1 t

α
i

⎤⎥⎦
⎡⎢⎣αi+1

βi+1

⎤⎥⎦ =

⎡⎢⎣αi

βi

⎤⎥⎦+∆ ∗H−1G

where i = 0, 1, 2, ..., and ∆ is the step size (here ∆ = 1).

A.3 Supplementary Figures
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Figure A.1: Interaction of recipient’s age and distance and its impact on the sur-
vival time of transplanted organs.

132



2.0

2.5

3.0

3.5

4.0

4.5

5.0

5 10 20 30 40 50 60

N

U

Y

Kidney

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

5.0

5.5

6.0

6.5

7.0

7.5

5 10 20 30 40 50

N

U

Y

Liver

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

5

6

7

8

9

5 10 20 30 40 50

N

U

Y

Heart

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

3.0

3.5

4.0

4.5

5.0

5.5

5 10 20 30 40 50

N

U

Y

Lung

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

3

4

5

6

7

5 10 20 30 40 50 60

N

U

Y

Pancreas

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

1.5

2.0

2.5

3.0

3.5

4.0

5 10 20 30 40 50

N

U

Y

Intestine

Recipient’s age (years)

R
e

c
ip

ie
n

t’s
 C

ig
a

re
tt

e
 H

is
to

ry

Figure A.2: Interaction of recipient’s age and smoking history and its impact on
the survival time of transplanted organs.
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