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Abstract 

Title: Dynamic Modeling of a Three Degree of Freedom Reaction Sphere 

Author: Joshua Michael Byron 

Advisor: Hector Gutierrez, Ph.D. 

This thesis presents a method to simulate the dynamics of a three degree of freedom, 

electromagnetically suspended Northrop Grumman Corporation Reaction Sphere (NGCRS) 

in MATLAB Simulink® by computing the magnetic force and torque relations offline, using 

COMSOL® Multiphysics. The goal of the thesis is firstly to demonstrate through Finite 

Element Magnetic Modeling (FEM) that magnetic field interactions between a stator 

levitation electromagnet (EM) and the rotor permanent magnets (PM) are limited to a single 

EM-PM pair and that all other PMs can be considered decoupled from the EM.  Secondly, 

this thesis aims to demonstrate that a set of generalized magnetic force and torque relations 

can be derived for single EM-PM pair using a COMSOL Multiphysics®. 

The NGCRS geometry was selected for analysis due to its relative simplicity and 

design maturity. The NGCRS consists of a stator which houses eight EMs and a rotor with 

12 PMs. The NGCRS stator was modified to include six additional EMs to levitate the rotor 

within the stator and reject external disturbances. The levitation EMs were designed to 

ensure magnetic field interactions were restricted to a single EM-PM pair for any given rotor 

orientation and for varying excitation currents.  The rotor was modified to be made of iron 

material and copper inserts were added to decouple the PM fields from the iron, allowing the 

principle of superposition to be utilized. 

The geometric and kinematic relations of the NGCRS were derived and then 

implemented in a COMSOL Multiphysics® model.  Simulations were performed to predict 

the forces and torques between a single levitation EM, rotor PM, and the iron rotor for 

varying coil excitation currents of 0.5 to 5.0 amperes in 0.5 amp increments and for angular 

distances of 0 degrees to 31.717 degrees in one-degree increments. Regression analysis is 

utilized to obtain relations for the forces and torques. Then a series of coordinate 
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transformations are applied to obtain the forces and torques for any orientation of the 

levitation EM-PM pair. These relations and coordinate transformations are programmed into 

a dynamic model developed in MATLAB Simulink®. 
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1 

 Introduction and Motivation 
 

Attitude control of spacecraft is usually performed by Momentum Exchange 

Devices (MED), such as Reaction Wheels (RW) or a Control Moment Gyros (CMG). 

Reaction wheels impart momentum to the spacecraft during a pointing maneuver by adding 

or removing energy from a flywheel, while also providing attitude stability by maintaining 

a constant momentum and rejecting external disturbances (Markley, et al., 2014). In contrast, 

a CMG contains a gimbaled fly-wheel with a constant angular momentum.  The momentum 

can be vectored by gimballing the flywheel to provide the desired torque. A single RW or a 

single CMG (with a single gimbal) can only rotate and stabilize a spacecraft on a single axis, 

thus a minimum of three devices are required for full attitude control and stability. Both 

types of MEDs are mature technologies, but are susceptible to a phenomenon known as 

gimbal lock, which occurs when two of the three MEDs rotational speeds become saturated, 

which prevents the spacecraft from rotating to the desired orientation. Typically, four to five 

devices are implemented to provide redundancy (Sidi, 2000).  Recovery from a saturation 

condition requires maneuvering using the on-board propulsion system to re-orient the 

spacecraft, which is undesirable due to the limited fuel on-board the spacecraft (Markley, et 

al., 2014). Prevention of gimbal lock is typically achieved through steering logic or by the 

inclusion of a fourth device with the CMGs arranged into a pyramid, or a combination of the 

two solutions.  Successful implementation of RS technology could reduce the number MED 

devices from four to two, thus providing a significant weight savings.  Figure 1 provides an 

illustration of the benefit of RS technology and that three one-degree of freedom reaction 

wheels can be replaced by a single RS. 
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Figure 1:  Reaction Wheel Arrangement vs. a Single Reaction Sphere (Kim, et al., 2014) 

Recently, significant research has been devoted to development of Reaction Sphere 

(RS) technologies. If three reaction wheels are superimposed on top of one another, then it 

becomes clear the optimal solution is a RS capable of rotating in any direction. One of the 

earliest embodiments of the RS was contrived by Walter Haeussermann, a NASA engineer 

working under the famed Verner Von Braun.  The design was filed for patent in October 

1960 under United States Patent US 3,017,777 and was granted patent in 1962. 

Haeussermann developed the reaction sphere as a solution to the issue of reaction wheel 

coupling effects.  Haeussermann proposed suspending the spherical rotor by either 

pneumatic or electromagnetic means as shown in Figure 2. 

 

Figure 2: Space Vehicle Attitude Control System (Haeussermann, 1962) 
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Over 60 years have passed since the inception of the RS, but none have been successfully 

used in commercial or military satellites, based on the available public data searched while 

researching this thesis. This is due primarily to the complication of suspending the spherical 

rotor within the stator in a reliable manner. Various solutions to the suspension problem have 

been proposed such as, mechanical, pneumatic, liquid, magnetic, and electromagnetic, but 

none have been able to meet the service life, reliability, and power consumption 

requirements. The engineering challenge that a reaction sphere designer must overcome, is 

how to suspend the rotor within the stator reliably. 
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 Prior Art 
 

A brief overview of the technologies currently utilized within reaction spheres and 

spherical motors will be discussed in the subsequent sections.  Discussion points will include 

operating principles, architecture, and performance. The merits and demerits of each 

technology are discussed in Section 2.6. 

 Alternating Current Induction Reaction Sphere 

2.1.1 Design Overview 

An alternating current (AC) induction RS functions by creating a rotating magnetic 

field around a conductive sphere, which induces an electric current (e.g. an eddy current) on 

the surface of the sphere (Kim, et al., 2014).  The induced current then interacts with the 

rotating magnetic field which results in a Lorentz force on the sphere’s surface causing the 

rotational torque to spin the spherical rotor (Iwakura, et al., 2008). Figure 3 depicts the 

operating principle of an AC induction RS.   

 

Figure 3: Operating Principle of an AC Induction Reaction Sphere (Kim, et al., 2014)  

2.1.2 Architecture 

The architecture of a typical AC Induction RS includes a stator assembly, a rotor 

assembly, power supply, and a control system. The rotor assembly is comprised of a hollow 

spherical shell with two or more layers (Kim, et al., 2014, Yuan, et al., 2014). The outer layer 

of the rotor is typically made of copper because it provides a higher level of conductivity 

than iron. Higher conductivity reduces the losses associated with the formation of eddy 

currents, leading to higher torque levels than if a single iron layer were used (Kim, et al., 
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2014).  The second, or innermost layer of the rotor, is made of iron and is needed to provide 

a complete the magnetic circuit with the stator poles (Yuan, et al., 2019). A hollow rotor is 

also desirable because it provides a larger moment of inertia than a solid sphere for a given 

mass (Yuan, et al., 2019). A typical two-layered rotor is depicted in Figure 4.  

 

Figure 4: AC Induction RS Rotor Design (Kim, et al., 2014) 

The stator assembly includes the stator housing, position sensing components, and 

the electromagnets that generate magnetic flux needed for rotor levitation and rotor torque 

transmission.  The stator housing is wholly or partially made of a magnetic material with 

curved stator and levitation cores around the periphery of the rotor.  In the model developed 

by Yuan, et al., 2019, four levitation cores were used to reduce the field interactions between 

levitation and drive electromagnets. The stator core geometry developed by Yuan, et al., 

2019, uses a curved pole geometry with three orthogonal circles of poles arranged with a 

symmetric structure. Each circle is composed of 4 curved segments that allows sphere to 

rotate about axis orthogonal to the circle. Torque can be applied around an arbitrary axis by 

combining the torques generated by the three circles. The drive coils are arranged in three-

phase windings to enable self-starting of the actuator (Yuan, et al., 2019).  This architecture 

is depicted in Figure 5.  

The reaction spheres developed by Kim, et al., 2014 and Iwakura, et al., 2008 only 

allowed rotation in one axis, which was achieved using a 2-phase, 2-pole (per phase) 

configuration with the excitation signals 90 degrees out of phase, and a single levitation 

electromagnet positioned above the rotor to counteract gravity. The architecture developed 

by Kim, et al., is shown in Figure 6. 
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Figure 5: AC Induction RS Stator Construction (Yuan, et al., 2019) 

 

Figure 6:  Architecture used in feasibility Study of AC Induction Sphere (Kim, et al., 2014) 

The desired rotational speeds and direction is achieved by controlling the velocity, 

magnitude, and direction of the magnetic fields generated by the levitation and drive cores 

(Kim, et al., 2014). The angular velocity of the rotor can be modulated by varying the 

frequency of the rotating magnetic field or its intensity similar to that of conventional 

induction motors (Iwakura, et al., 2008). 

Curved Drive 

Levitation Core 
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2.1.3 Measurement and Control 

A laser tachometer, in conjunction with a laser reflector attached to the rotor, 

measured the angular velocity of the rotor in the experiments performed by the Iwakura, et 

al., (2008) and by Kim et al., (2014). The resolution of the measurement device was one 

pulse per revolution in both experiments. Position control (e.g. levitation) of the rotor was 

achieved through a PID control loop with position feedback provided by an LED and photo-

diode positioned near the side of the rotor.  Speed was measured in a similar manner by 

Yuan, et. al., but position was measured by eddy current displacement sensors placed at the 

center of each levitation coil. The position of the rotor was controlled by PID control 

algorithms in the experiments performed by Kim, et al., 2014.  Iwakura, et al., 2008, while 

Yuan, et al., used a PD controller for levitation. 

Kim et al., 2014 considered the magnetic fields generated by the levitation 

electromagnet to be decoupled from the driving electromagnets during development of the 

analytical models and control loops, however Iwakura, et al., 2008 did not. The research 

performed by Yuan et al., 2019 did not directly discuss the potential interactions between 

the levitation and stator electromagnets. A block diagram of the control algorithm for the 

developed by Kim et al., (2014) is shown in Figure 7 and the experimental setups for the 

reaction spheres are shown in Figure 8 and Figure 9. 

 

Figure 7:  AC RS Velocity and Levitation Control Algorithm (Kim, et al., 2014) 
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Figure 8:  Experimental setup for feasibility Study of AC Induction RS (Kim, et al., 2014) 

 

Figure 9:  Experimental setup for Design Study of AC Induction RS (Yuan et al., 2019) 

2.1.4 Performance 

If a variable frequency power supply is used, then the maximum rotational speed 

occurs when the torque generated by the magnetic field is equal to the air resistance drag 

torque. The maximum speed achievable with a fixed frequency power supply is the 

synchronous speed.  In satellite applications, the reaction sphere could be housed in a 
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vacuum, which would allow for rotational speeds limited by the power supply frequency, 

structural strength, and the manufacturing precision of the reaction sphere rotor and stator. 

The maximum speeds achieved by Yuan, et al., 2019 was approximately 800 RPM 

for the 4-pole stator design and roughly 400 RPM for the 6-pole stator design, which are 

both well below the synchronous speed of 1800 RPM for a 60Hz excitation signal.  

According, to Yuan, et al., 2019 the speed limitation was attributed to manufacturing quality 

of the prototypes, which causes the rotor to become unstable and strike the stator housing.  

The maximum speed achieved by the experiments performed by Kim, et al., 2014 was 13,500 

RPM, and the maximum torque was 0.7 Nm. The experiments performed by Iwakura, et al., 

2008 achieved a maximum speed of approximately 1000 RPM.  However, these speeds were 

only achieved for a uni-axial rotation of the rotor.   

 ELSA Reaction Sphere 

The European Levitated Spherical Actuator (ELSA) is a European Union funded 

research and development project aimed toward maturation of reaction sphere technology 

for utilization in space craft attitude control systems (CORDIS, 2014).  

2.2.1 Design Overview 

The ELSA is a Permanent Magnet (PM) synchronous spherical actuator that is 

designed to allow rotation about any axis. Torque and levitation (magnetic bearing) forces 

are produced by the attraction and repulsion of the magnetic fields formed by twenty (20) 

air-core stator electromagnets (EMs) and eight (8) rotor permanent magnets (PM). A control 

algorithm constructs the position and orientation of the rotor assembly using magnetic flux 

sensors and laser optical sensors.  The control algorithm generates a vector of currents to the 

stator EMs to develop the levitation and rotational fields simultaneously (Rossini, 2014).   

2.2.2 Architecture 

The ELSA is comprised by a stator assembly, rotor assembly, and a control system.  

The rotor assembly is composed of eight (8) PMs arranged into a cubic polyhedron. The PMs 

are mounted to a hollow iron sphere, and are arranged such that the opposing spherical faces 

of the rotor have opposite polarity as shown in Figure 10.  The stator assembly consists of 
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two hemispherical shells of non-magnetic material, with a total of 20 air-core electromagnets 

which serve to levitate and rotate the rotor assembly.  The stator also includes the magnetic 

flux sensors and optical sensors that detect the position and angular velocity of the rotor, as 

well as hard stops to prevent the rotor from striking and damaging the EMs.  The general 

architectures of the rotor and stator assemblies are shown in Figure 10.  

 

Figure 10:  Architecture of ELSA Reaction Sphere (Rossini, 2014) 

The permanent magnet rotor was conceived as an ideal rotor with fundamental octupole 

spherical harmonic (spherically shaped PMs).  However, manufacturing curved permanent 

magnets would be cost prohibitive, so an approximate rotor was developed, which used a 

mosaic of 728 cylindrically shaped, Neodymium Iron Boron (NdFeB) permanent magnets 
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with a remanence of 1.4 Tesla (Rossini, 2014).  The PMs were adhered to the hollow iron 

sphere using a pattern of pre-machined supports composed of non-magnetic ABS plastic 

material.  The rotor was then surrounded by a non-magnetic cover to protect the PMs and to 

obtain a smooth spherical surface, which is necessary to measure the position of the rotor 

inside the stator. This configuration is shown in Figure 11.   

 

Figure 11:  Prototype ELSA Rotor Assembly (Rossini, 2014) 

A more recent rotor configuration includes truncated, spherically shaped permanent magnets 

to better approximate the magnetic field of a magnetic octupole.  Additionally, balancing 

mechanisms were integrated into the rotor in order to improve the stability of the rotor at 

higher rotational speeds. This architecture is shown in Figure 12. 

 

Figure 12:  Elegant breadboard Rotor Assembly (Rossini, et al., 2017) 

The stator assembly contains 20 rigidly mounted, air-core electromagnets located at 

the vertices of a dodecahedron, as shown in Figure 13.   
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Figure 13:  ELSA Electromagnet Positions at Vertices of a Dodecahedron 

The spherical shell of the stator was initially manufactured using a magnetic material (iron) 

to benefit from a higher magnetic flux density in the airgap and to provide  shielding from 

outside magnetic fields, however, this configuration resulted in a tendency of the rotor to 

contact the stator due to strong reluctant forces that occur when the rotor is eccentric to the 

stator (Rossini, 2014). For this reason, the stator shells were manufactured out of a non-

magnetic ABS plastic, but at the expense of lower torque output.  A section view of the stator 

is shown in Figure 14. 

 

Figure 14: ELSA Stator Assembly (Rossini, 2014) 
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2.2.3 Position Sensing and Control 

Levitation and rotation of the rotor assembly are achieved by two independent 

closed-loop control laws. The levitation, or magnetic bearing, control loop positions the rotor 

inside the stator, and is a state-feedback controller with integral control (Rossini, 2014). 

Rotor position feedback is provided by three optical linear displacement sensors positioned 

around the sphere in a tetrahedral arrangement (Rossini, 2014).  The angular velocity control 

loop is a simple proportional controller with an angular velocity estimator. The angular 

velocity of the rotor is estimated using an array of fifteen (15) magnetic flux sensors, 

optimally positioned around a number of the stator electromagnets (Rossini, et. al., 2015). 

The fields generated by the levitation force fields and the torque fields were considered 

decoupled in the control algorithm, but coupling will occur when the rotor is not centered 

within the stator, but the strength of the coupling was not analyzed (Rossini, 2014). The 

angular velocity is estimated by the spherical harmonic coefficients, which are calculated 

from the magnetic flux density sensor measurements (Rossini, 2014). The levitation 

controller develops a vector of currents based on the desired force output, and the velocity 

controller develops a vector of currents based on the desired torque.  The simplified control 

scheme is provided in Figure 15. 

 

Figure 15:  ELSA Levitation and Rotation Control Algorithms  
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2.2.4 Performance 

Experimental bench tests of the “Elegant Breadboard” ELSA design was able to 

achieve rotation about any axis at rotation velocities of 300 RPM (CORDIS, 2014).  

However, in order to achieve the desired angular momentum, the sphere is required to rotate 

at an angular velocity of 3190 rpm.  

 Hysteresis Reaction Sphere 

2.3.1 Design Overview 

A hysteresis motor, also referred to as an asynchronous/synchronous AC motor, 

generates torque by utilizing the magnetic hysteresis of a ferro-magnetic rotor and eddy 

currents (Zhou, 2014). The stator generates a rotating magnetic field with an angular velocity 

𝜔, which passes passes through the airgap into the rotor, and due to the hysteresis of the 

rotor material, induces a spatial lag between the rotor and stator fields. This lag causes the 

rotor magnetic field to interact with the stator field within the airgap and create a torque 

(Zhou, 2014). During transient startup and acceleration states, torque is also induced by eddy 

currents in a manner similar to the AC induction RS. Once the synchronous speed is reached, 

torque production is only attributable to hysteresis (Zhou, 2014).  The strength of the 

hysteresis torque correlates to both the magnetic field strength 𝐻 and the lag angle 𝛿. (Zhou, 

2014).  The operating principle is shown in Figure 16.  

 

Figure 16: Operating Principle of Hysteresis Motor (Zhou, 2014) 
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2.3.2 Architecture 

`The architecture of the Hysteresis RS is fairly simple. The hysteresis RS developed 

by Zhou, et al., 2017, consists of a stator, rotor, levitation electromagnet, power supply and 

amplifiers, position and speed sensors, and controller. The rotor is a solid sphere made of a 

material with a large magnetic hysteresis loop such as iron.  The stator consists of a laminated 

core and windings.  The stator windings are arranged into 4-pole windings for rotation and 

2-pole windings to provide lateral bearing. Three-phase excitation signals are supplied to the 

4-pole windings to achieve rotation.  Additionally, a single bipolar, iron core electromagnetic 

with an integral permanent magnet is used to provide vertical suspension of the rotor.  The 

permanent magnet provides flux to the magnetic circuit in addition to the electromagnet, 

which reduces the power demands on the power supply.  The architecture of the reaction 

sphere studied by Zhou, et al., 2017 is shown in Figure 17. 

 

Figure 17:  Hysteresis Reaction Sphere Architecture (Zhou, et al., 2017) 

2.3.3 Position Sensing and Control 

The vertical position of the sphere is controlled by a single iron-core, permanent 

magnet biased, electromagnet positioned directly above the rotor.  Position control is 

achieved by a lead-lag PID controller with position feedback provided by inductive 

proximity sensors. The transfer function of the vertical suspension system is inherently 
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unstable and thus requires position feedback.  Control of the lateral position of the rotor in 

both the 𝑥 and 𝑦 directions was accomplished by two independent lead-lag PID controllers 

with position feedback provided by inductive proximity sensors (Zhou, 2014).  

Rotor speed was sensed using an optical tachometer with binary markings applied 

to the rotor (Zhou, 2014). Speed control was achieved using a PD controller with parameters 

developed around the hunting dynamics. When speed hunting is detected the control 

algorithm will switch to a lead filter to suppress the speed hunting (Zhou, 2014). Speed 

hunting is a phenomenon associated with hysteresis motors, wherein the motor speed will 

fluctuate above and below the commanded speed when the motor is operating at the 

synchronous speed (Zhou, 2014).   

2.3.4 Performance 

High rotational speeds on the order of 12,000 RPM were achieved in the experiments 

performed by Zhou, et al., 2017. At higher synchronous speeds the hysteresis RS suffered 

from the phenomenon referred to as “speed hunting” which induces sporadic oscillations 

around reference speed, which would lead to undesirable vibrations within the spacecraft.  

However, Zhou, et al., 2017 mitigated the issue through careful design of the speed control 

loop. Zhou et al., 2017 compared the performance of the 1-D Hysteresis RS to the 

specification of an MW200 reaction wheel manufactured by Microsat Systems® Canada.  

The torque and angular momentum capacity of the MW200 is 30 mNm and 0.18 Nm-sec 

respectively, while the 1D Hysteresis RS provided a torque capacity of 8.15 mNm and an 

angular momentum capacity of 0.23 Nm-sec at 9,000 RPM. 

 Ultrasonic and Friction Drive Reaction Spheres 

Ultrasonic motors have been successfully implemented in numerous commercial 

and industrial applications, specifically those that require high torque in a small form factor. 

Within the last 20-30 years researchers, such as Toyama, et al., 1991, have developed and 

tested multi-degree of freedom ultrasonic motors for use in robotic manipulators.  And more 

recently, Paku, H., et al., 2016, proposed the use of ultrasonic motors within reaction spheres.  
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2.4.1 Design Overview 

Ultrasonic motors generate linear or rotary motion through piezoelectric resonant 

vibrations.  The vibrations are typically categorized as one of two waveforms: stationary 

(standing) wave or traveling (propagating) wave (Toyama, et al., 1991). The standing wave 

method is not studied in multi-degree of freedom motors / actuators due to the inability to 

reverse the direction of motion (Toyama, et al., 1991). The propagating-wave method of 

operation combines two standing waves with a 90-degree phase difference in both time and 

space (Uchino, 1997, Toyama et al., 1991).  Propagating waves are generated by applying 

alternating voltages 90° out of phase to two pieces of piezoelectric strips attached to an 

elastic body. A surface particle of the elastic body draws an elliptical locus due to the 

coupling of longitudinal and transverse waves (Uchino, 1997, Toyama et al., 1991). The 

operating principle is illustrated in Figure 18. 

 

Figure 18:  Principle of Propagating Wave Ultrasonic Motor (Toyama, et al., 1991). 

Paku, et al., 2016 developed two types of reactions spheres that utilize friction to 

actuate the spherical rotor.  In one design, piezo-electric actuators impart momentum to the 

rotor while simultaneously providing support to the rotor. The second design also uses 

friction to drive the rotor, but uses small uni-axial motors to impart momentum. The 

actuation methods are shown in Figure 19 and Figure 20. 
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Figure 19: Piezo-electric Actuated RS (Paku, et al., 2016) 

 

Figure 20: Motor Actuated RS (Paku, et al., 2016) 

2.4.2 Architecture 

Spherical ultrasonic motors, and similarly ultrasonic reaction spheres, typically 

consist of a spherical rotor and a minimum of three stators. The rotor is made of aluminum, 

steel, or an engineering plastic and may be laminated with a friction material.  Ceramics are 

typically used as the Piezo-electric material (stator) as they have high conversion efficiency 

and long life. An example spherical ultrasonic motor architecture developed by Toyama, et 

al., is shown in Figure 21. 
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Figure 21: Construction of a Spherical Ultrasonic Motor (Toyama, et al., 1991) 

The architecture of the two types of piezo-electric reaction spheres developed by 

Paku, et al., 2016 are depicted in Figure 22 and Figure 23. 

 

Figure 22: Piezo-electric Driven Reaction Sphere (Paku, et al., 2016) 
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Figure 23: Motor Driven Reaction Sphere (Paku, et al., 2016) 

2.4.3 Position Sensing and Control 

Lateral position sensing of the rotor is not required because it is in physical contact 

with the actuators.  Paku et. al., 2016 measured the velocity of the sphere using three optical 

sensors that acquire sequential images of the surface of the rotor and can detect changes in 

position by that identifying surface roughness patterns on the rotor. The velocity of the rotor 

was controlled by a Sliding Mode Control (SMC) algorithm with high-speed switched 

feedback.  Sliding mode control (SMC) is a robust, nonlinear control technique that drives 

the state variables of the system to a surface in the state space, and once reached the controller 

maintains plant state trajectory on or near the surface.  SMC control allows for control of 

nonlinear systems with large model uncertainties as well as large external disturbances. 

2.4.4 Performance 

The ultrasonic motor tested by Toyama, et al., 1991, was able to achieve speeds up 

to approximately 100 RPM, which is well below the rates of 3,000 – 10,000 RPM typically 

required to produce angular momentum on par with that produced by a micro-satellite 

reaction wheel.  Similarly, the two types of reaction spheres developed by Paku et. al., 2016 

were operated at low speeds.  The motor driven system was tested to a rotational speed for 

5.66 rad/s with controller saturation at 54%. 
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 Northrop Grumman Corporation Reaction Sphere 

2.5.1 Design Overview 

The Northrop Grumman Corporation Reaction Sphere (NGCRS) can be described 

as a multi-degree of freedom, “free-flying” stepper motor (Stagmer, 2016). In this 

arrangement, short duration pulses of current are delivered to electromagnets in order to 

accelerate the rotor and thus the stator assembly in order to orient the spacecraft into the 

desired position.  The electromagnets are energized by an Electronic Control Module (ECM) 

when the corresponding sensor pod detects the rotor permanent magnet is in the correct 

control wedge to achieve the desired rotation.  Further details of the control algorithm are 

discussed in Section 2.5.3. 

2.5.2 Architecture 

The spherical motor system is comprised of a spherical rotor, a spherical stator, and 

a control system. The spherical rotor contains 12 permanent magnets (PM) arranged into 

anti-podal pairs which are evenly distributed around the circumference of a non-ferrous 

sphere, with each PM oriented with a common polarity (Stagmer, 2016). Any arrangement 

of PMs can be realized, but each PM must have another PM on the opposite side, or anti-

podal to it. Two thin hemispherical shells surround the rotor and PMs to provide a smooth 

bearing surface for the mechanical bearings. The stator assembly includes a non-magnetic, 

non-conductive structural housing with the six evenly spaced mechanical bearings to support 

the rotor during rotation.  Eight electromagnets (EM) are arranged into anti-podal pairs and 

are positioned around the circumference of the rotor to form two equilateral tetrahedrons. 

The vertices of the two tetrahedrons inscribes a cube, whose vertices are inscribed by a 

sphere. The vertices of one tetrahedron represents the location of the EMs in the upper 

hemisphere and the vertices of the other tetrahedron represents the location of the EMs in 

the lower hemisphere. (Stagmer, 2016).  This arrangement is shown in Figure 24. 
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Figure 24:  Tetrahedral Arrangement of EMs in the Outer Sphere 

The rotational position of the rotor is detected by magnetic sensors arranged around the 

periphery of the EM and is referred to as a “sensor pod” (Stagmer, 2016).  The vertex 

positions of the EMs also describe the location of the sensor pods.  A minimum of four sensor 

pods is required to achieve control with one sensor pod surrounding one of the EMs in each 

anti-podal arrangement. Any number of EMs and sensor pod arrangements can be realized, 

with the restriction that the sensor pod is arranged such that only a single sensor pod can 

detect the presence of a single rotor PM for a given rotor / stator orientation. However, more 

than one sensor array can detect the presence of a rotor PM at one time (Stagmer, 2016).  An 

NGC proprietary control algorithm controls the timing and duration of the excitation current 

to the electromagnets that transmit angular momentum to the rotor, which reacts with the 

stator assembly, allowing the satellite to positioned in the desired attitude.  An illustration of 

the overall NGCRS architecture is provided in Figure 25. 
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Figure 25: Northrop Grumman Corporation Reaction Sphere System (Stagmer, 2016) 

2.5.3 Position Sensing and Control 

The control algorithm determines the current rotational axis and speed, as well as 

the desired rotational direction and speed, referred to as the control axis henceforth. This is 

achieved via sensor pods mounted to the stator of the reaction sphere.  Each sensor pod 

contains six (6) magnetic sensors arranged around the periphery of the drive EM, so that the 

field of view (FOV) of each sensor overlaps one another.  The sensor field of view is then 

formulated into control “wedges”, as the primary means for command and control of the 

satellite attitude. The sensor implementation is depicted in Figure 26. The lateral position of 

the sphere is not measured in the architecture presented herein.  However, this could be 

achieved using a one of sensing methods presented in the foregoing RS architectures.  
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Figure 26:Sensor Architecture: (a) Sensor Pod (b) Sensor FOV (c) Control Wedges 

(Stagmer, 2016) 

Implementation of the control wedges into the control algorithm is achieved by 

firstly defining basis vectors in terms of a coordinate system in which the x-y plane is tangent 

to the sphere at each vertex of the tetrahedron containing a sensor pod. The 𝑖 and 𝑗 basis 

vectors of each tangent plane are aligned with the 𝑥 and 𝑦 axes of the RS coordinate system, 

and these basis vectors form a total of four orthonormal bases, where one basis is located at 

each vertex vector (Stagmer, 2016). The desired rotational direction at each sensor vertex is 

then determined from the control quaternion which defines the desired rotational direction 

and speed.  The rotational direction is specified as the control axis, which is projected onto 

the tangent planes of the sensor pods. The control axis is therefore expressed in terms of the 

two-dimensional rings of sensors, as shown in Figure 26.  

Rotation of the rotor occurs on the plane perpendicular to the vector representing the 

control axis. The cross product of the rotation vector and the vertex position vector is another 

vector perpendicular to the plane containing the vertex and rotation vectors.  The resulting 

vector represents the desired spin direction in terms of the sensor plane tangent to the sphere 

(Stagmer, 2016). The directional vectors are translated from the sphere coordinate space to 

the two-dimensional coordinate space of the tangent plane at each sensor vertex so the 

directional vector is coplanar with the basis vectors of the tangent plane. The necessary 

translation matrices are derived from the basis vectors at each vertex (Stagmer, 2016). 



 

25 

The current axis of rotation of is determined from the inverse of the operations used 

to determine the control axis in terms of the sensor vertices and the corresponding wedges 

(Stagmer, 2016). As the rotor rotates no sensor pods will be active and at other times all four 

could be active. However, in order to determine the current rotation axis, a minimum of two 

sensor pods must be actively detecting the presence of a rotor PM. The resulting rotation 

axis will be within conical tolerance zone of ± 15 degrees which is a constraint of the sensor 

pod resolution. The control algorithm determines the amount of angular momentum to 

transfer to the sphere based on the rotational velocity specified by the control axis, and by 

projecting the instantaneous angular velocity of the rotor onto the tangent planes of each 

sensor pod.  The controller will activate the EM, if the magnet is in a wedge that can pull the 

rotor in the desired direction of rotation. The wedge aft (𝜋 radians away) of the directional 

wedge is “active” in order to “react” and rotate the spacecraft in the desired direction. 

2.5.4 Performance 

No published performance data exists for the NGCRS. Any performance data in 

existence is NGC proprietary and will not discussed herein. 

 Concluding Remarks 

The AC induction RS has several attractive features, including simple architecture, 

small form factor, high reliability, and high operational speeds. The major drawbacks 

associated with this design, are the complexity of the pole design, strong propensity for 

levitation and rotational field coupling, and lower efficiencies in comparison to DC motors.  

For these reasons, AC induction architectures were not considered for this thesis. 

The most notable merits of a hysteresis RS are its simple structure, potential for low 

vibration operation at high speeds, and the ability to self-start. Some disadvantages of the 

hysteresis RS include low torque generation, which is only 30% the torque of a similarly 

sized reaction wheel, non-linearity of the torque production, speed hunting behavior, and 

added weight due to the solid sphere requirement.  The hysteresis RS was not selected for 

study because of the complexities related to the magnetic pole design as well as the non-

linear torque generation which complicates the modeling and control algorithm, and no three 

degree of freedom hysteresis motor configurations have been developed (Zhou, et al., 2017). 
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The ELSA RS has high torque density and high efficiency and appears to be one of 

the most mature reaction sphere architectures in existence. However, its architecture is 

highly complex and costly.  The rotor assembly contains custom manufactured, rare-earth 

permanent magnets and also requires balancing mechanisms to maintain stability. During 

prototype testing Rossini et al., were able to achieve rotational velocities of approximately 

300 RPM, but a rotational speed of 3,190 RPM was required to reach the required angular 

momentum output. The complexity of the ELSA design was the primary reason for not 

selecting this architecture for study herein.  

Ultrasonic motor performance can be characterized as low-speed, high-torque 

allowing for direct drive systems with fast response times and high torque densities within a 

compact envelope (Uchino, 1997). However, ultrasonic motors also exhibit several 

disadvantages, including operational life limitations due to mechanical wear, high heat 

generation due to friction, high levels of vibrations, variations in frictional coefficient over 

life, low rotational speeds, and lower efficiencies and lower reliabilities with respect to 

traditional DC motors (Uchino, 1997, Toyama et al., 1991).  For these reasons, this operating 

method was not selected for this thesis. 

The NGCRS was selected as the basis for this thesis over the other designs for 

several reasons. Firstly, it is capable of operating at high speeds (> 5,000 RPM), but with 

higher efficiencies than the AC induction, hysteresis, and ultrasonic / frictional RS designs. 

Secondly, its architecture is simpler and more cost-effective than the ELSA design. And 

thirdly, its operating principle and architecture allows integration of levitation coils without 

significant modifications to the existing architecture.  

The majority of the RS prototypes studied herein demonstrated the ability to 

generate angular momentum equivalent to similarly sized reaction wheel, but ultimately, all 

the designs suffer from the complication of suspending the rotor within the stator in a reliable 

and stable manner. Mechanical, electromagnetic, and fluidic suspensions have been 

attempted. To date, none have been successfully suspended a three degree of freedom rotor 

while still meeting the desired performance and life requirements. 
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 Proposed Approach 
 

 Modeling Approach 

This thesis presents a method to simulate the dynamics of a three degree of freedom 

(3-DOF), Northrop Grumman Corporation Reaction Sphere (NGCRS) in MATLAB 

Simulink®, using force and torque relations derived from a Finite Element Magnetic (FEM) 

model.  Development of a model using the strategies presented herein, allows for high 

fidelity plant modeling, rapid iteration of design configurations, and a relatively simple 

implementation into the Simulink® model.  

The RS architecture and modeling approach presented herein ensures that the 

magnetic fields between the levitation EMs and adjacent PMs are decoupled (e.g. only one 

EM-PM pair are interacting at one time). Moreover, one of the pitfalls of other reaction 

sphere designs is that the levitation EMs are sized to levitate the rotor in a gravity 

environment. This increases the propensity for the levitation and driving magnetic fields to 

couple and increase the disturbances on the rotor leading to instabilities.  The approach taken 

herein, is to use low output EMs as a starting point for future controller designs. The EM 

coil design can be modified until a satisfactory level of disturbance rejection is achieved. 

 Contribution to State of the Art 

The NGCRS is an innovative design that has potential to become the first 

commercially adopted RS in spacecraft applications.  However, suspending the rotor in the 

stator has been a significant engineering challenge. Development of a 3-DOF NGC RS 

model with integrated levitation EMs is a first step in assessing the feasibility of magnetic 

levitation as a means to suspend the rotor and reject external disturbances (also a starting 

point for a 6-DOF model).  The dynamic model presented in 5.7 and 5.8 can be implemented 

in a control algorithm to evaluate the disturbances the levitation electromagnets have on the 

spacecraft attitude controller. The state-space formulation is a convenient way to represent 

a multi-input, multi-output (MIMO) system, such as the NGC RS. 

The characteristics of the reaction sphere dynamics are coupled and non-linear for 

the condition of a non-homogenous sphere. In that case, it may be possible to linearize the 
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system around an operating point where the system behaves linearly.  One such possibility 

is considering the stator and rotor to be in equilibrium. Other constraints, such as the 

rotational axes may be necessary.  

However, as shown in Section 5.7, the inertia tensor can be diagonalized and the 

principal inertias considered equal.  The state-space equations for this case are given below, 

where 𝑥 is the state vector of the system, 𝑢 is the input vector, and 𝑦 is the output vector. 

The state matrix 𝐴 relates the states to the state derivatives, the input matrix 𝐵 relates the 

inputs to the derivatives of the states, the output matrix 𝐶 relates the states to the outputs, 

and the feedthrough matrix 𝐷 relates the input to the output. The rotational motion of the 3-

DOF RS is completely described by the body-fixed angular velocity components and the 

angular position of the sphere in terms of the Euler angle kinematic relations (Section 5.4.2). 

Therefore, there are six state variables for the 3-DOF system and are given in equation (2). 

𝑥̇(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵𝑢(𝑡) (1) 

[
 
 
 
 
 
 
𝜔̇𝑥

𝜔̇𝑦

𝜔̇𝑧

𝜓̇

𝜃̇
𝜙̇ ]

 
 
 
 
 
 

=

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 𝑠𝑒𝑐𝜃𝑠𝑖𝑛𝜙 𝑠𝑒𝑐𝜃𝑐𝑜𝑠𝜙 0 0 0
0 𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0 0 0
1 𝑡𝑎𝑛𝜃𝑠𝑖𝑛𝜙 𝑡𝑎𝑛𝜃𝑐𝑜𝑠𝜙 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝜔𝑥

𝜔𝑦

𝜔𝑧

𝜓
𝜃
𝜙 ]

 
 
 
 
 

+

[
 
 
 
 
 
 
𝐼𝑥

−1 0 0

0 𝐼𝑦
−1 0

0 0 𝐼𝑧
−1

0 0 0
0 0 0
0 0 0 ]

 
 
 
 
 
 

[

𝜏𝑥

𝜏𝑦

𝜏𝑧

] (2) 

 

The output equation is given below, where the outputs of the system are the body angular 

velocity components and the orientation of the sphere in terms of the Euler angles. 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (3) 

 

[
 
 
 
 
 
𝜔𝑥

𝜔𝑦

𝜔𝑧

𝜓
𝜃
𝜙 ]

 
 
 
 
 

=

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

[
 
 
 
 
 
𝜔𝑥

𝜔𝑦

𝜔𝑧

𝜓
𝜃
𝜙 ]

 
 
 
 
 

+

[
 
 
 
 
 
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0]

 
 
 
 
 

[

𝜏𝑥

𝜏𝑦

𝜏𝑧

] (4) 
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The RS system has three inputs and six outputs. The transfer functions relating the each input 

to the each output of the system can be derived.  

In addition to supporting controller development, the FEM model also provides the inverse 

force and torque relations, derived in Section 5.6, which allow the controller to output the 

appropriate current to develop the desired force and torque. 
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 Objectives 
 

The objectives of this thesis are fivefold: 

1. Design and integrate levitation EMs into the NGCRS. The EMs should have fast 

response times, negligible field interactions with adjacent EMs, and field 

interactions decoupled from all but one Permanent Magnet (PM)  

2. Demonstrate through FEM modeling that the EM and PM field interactions are 

limited to a single EM-PM pair.  

3. Derive a generalized set of force and torque relations from the FEM model data, 

that can describe the force and torque for any arbitrary orientation of the 

rotor/stator, and for any EM-PM pair.  

4. Develop an algorithm which determines the appropriate force and torque 

relations to use for the instantaneous rotor / stator orientation, levitation coil 

current. 

5. Develop a three-degree of freedom (3-DOF) rotational dynamic model of the 

RS using the force and torque relations derived from the FEM model 

The work performed to achieve these objectives is detailed in the sections that follow. 
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 Methods and Work Performed 
 

After selecting the NGCRS architecture as the basis for this thesis, a trade study was 

performed to evaluate the suitability of iron-core and air-core electromagnets (EM) for rotor 

levitation (magnetic bearing). Ultimately, an air-core EM was down-selected as a result of 

the trade study for reasons detailed in the sections 5.1. 

The RS dynamic model was developed using both traditional and novel design 

methodologies. Firstly, the coordinates of the rotor permanent magnets (PM) and stator 

electromagnets (EM) were derived using geometric and trigonometric relations. Then, the 

kinematic relations between each rotor PM and each stator EM was established using 

principles of linear algebra.   

From there, the ground rules and assumptions were established for the modeling of 

the magnetic forces and torques between the rotor PMs and stator EMs.  The principle of 

superposition was utilized in this analysis because development of a physical RS prototype 

was beyond the scope and budget of the thesis project.  The lack of any hardware testing 

required conservatism in the modeling approach.  Superposition models were developed 

alongside “integrated” models, which include the PM and iron in the same FEM model.  

Decoupling inserts were introduced into the integrated model and the insert geometry was 

altered until the superposition and integrated models were in close agreement.  Additionally, 

a comparative study of linear and non-linear FEM models was also performed in order assess 

the need to include material non-linearities.  After a complete set of data was gathered from 

the FEM models, regression analysis was performed to establish the force relations as a 

function of current and angular distance from the EM / PM pair. The results of these studies 

are detailed in Section 0. 

An algorithm that computes the forces and torques acting on the rotor due to the six 

electromagnets was implemented in MATLAB Simulink®.  The forces are computed from 

curve and surface plots obtained from regression analysis of the forces computed by the 

generalized FEM model.  A coordinate transformation is applied to the generalized forces to 

transform them into the RS stator coordinates, and then the applicable torques are calculated.  
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Finally, the equations of motion of the 3-DOF RS were implemented in a MATLAB 

Simulink® model, which is discussed in detail in Section 5.8. 

 Levitation Electromagnet Trade Study 

5.1.1 Iron Core Electromagnet 

A bi-polar, iron-core EM configuration was studied due to its higher power density 

relative to single pole design with the same magneto-motive force (MMF) (Roters, 1941).  

The EM was designed to fit within the dimensions of the existing NGCRS stator cage, and 

are positioned in the stator assembly as well as the dimensions of the EM are shown in Figure 

27.  The core material was modeled as low carbon steel – soft iron material. The BH curve 

data for the material was extracted from the COMSOL® material library, and the normal DC 

magnetization curve of the material is plotted in Figure 57. The coil has 300 turns of 34 

AWG magnet wire, and was sized to provide an MMF sufficient to drive the core material 

into saturation level of approximately 1.2 Tesla for airgaps ranging from 20 to 40 mils (1 mil 

= 0.001 inch). 

 

Figure 27:  Dimensions (inches) of Bi-Polar Levitation Electromagnet 

The curvature of the spherical rotor was ignored and instead was considered as a flat 

plate with one translational degree of freedom in order to simplify the analysis. The analysis 

also assumed the following: 
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• Magnetic fringing and leakage flux effects are negligible 

• Inductance is a function only of rotor position 

• Core permeability follows the 𝐵 = 𝜇𝐻 relation (e.g. 𝜇 is not a function of 𝐵) 

• Joule heating of the coil is negligible  

An abstraction of the magnetic circuit of the iron-core electromagnet is depicted in Figure 

28. The electrical circuit is analyzed first, followed by the magnetic circuit. The equations 

derived from the electrical and magnetic circuit analyses were implemented in a Simulink® 

model.  The magnetic forces predicted by the magnetic circuit analysis were then compared 

to a FEM model. 

 

Figure 28: Iron-core Electromagnet with Optimal Geometry 

The relation describing the current in the coil is derived by considering it as an RL circuit 

with a ferrous core surrounding the coil. An abstraction of the circuit is shown in Figure 29. 

 

Figure 29:  Electrical Circuit of the Iron-core Levitation Electromagnet 
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Applying the Kirchhoff Voltage Law to the circuit yields a first order differential equation, 

where 𝑣(𝑡) is the voltage in the coil, 𝑅 is the resistance of the coil, 𝑁 is the number of turns 

in the coil, 𝑥 is the displacement of the core from the designated null position, or in this case 

the displacement of the flat rotor, and 𝜙 is the flux in the ferrous core (Roters, 1941). 

 
𝑣(𝑡) = 𝑅𝑖 + 𝑁

𝑑𝜙(𝑖, 𝑥)

𝑑𝑡
 (5) 

Insertion of the flux linkage relation 𝜆 yields: 

 𝜆(𝑖, 𝑥) = 𝑁𝜙(𝑖, 𝑥) = 𝐿(𝑥)𝑖 (6) 

And the relation for magnetic flux: 

 
𝜙(𝑖, 𝑥) =

𝐿(𝑥)𝑖

𝑁
 (7) 

Inserting equation (6) into equation (5) and applying the chain and product rules of 

differentiation yields: 

 
𝑣(𝑡) = 𝑅𝑖 + 𝐿(𝑥)

𝑑𝑖

𝑑𝑡
+ 𝑖

𝑑𝐿(𝑥)

𝑑𝑥

𝑑𝑥

𝑑𝑡
 

(8) 

The terms (from left to right) in equation (8) represent the resistive voltage, inductive voltage 

due to changing current, and the back-emf caused by movement of the rotor. The self-

inductance 𝐿 of an iron-core EM is determined by the material and geometry of the core and 

is given by the equation (9), where 𝐴𝑐 is the cross sectional area of the coil, 𝜇 is the relative 

permeability of the core material, 𝑙 is the mean length of the magnetic circuit path. This 

relation shows that the inductance can be written in terms of magnetic reluctance, as will be 

shown in the magnetic circuit analysis that follows. 

 

𝐿 =
𝑁𝜙(𝑖, 𝑥)

𝑖
=

𝑁(𝑁𝑖𝜇𝐴𝑐)

𝑖𝑙
= 𝑁2

𝜇𝐴𝑐

𝑙
 (9) 

The performance of the EM can be analyzed by treating it as a series of magnetic 

circuit elements.  A magnetic circuit is analogous to an electrical circuit, where the magneto-

motive force (MMF) is analogous to electrical voltage 𝑣, reluctance ℛ is analogous to the 
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electrical resistance 𝑅, and magnetic flux 𝜙 is analogous to electrical current 𝑖 (Sen, 1996).  

The magnetic circuit for the bipolar electromagnet is shown in Figure 30. 

=  

Figure 30:  Magnetic Circuit of Iron-core Electromagnet 

The MMF is the driving force in the magnetic circuit and is equal to the number of turns in 

the coil 𝑁 multiplied by the current 𝑖 in the coil. The total MMF in the circuit is given below 

where 𝑙𝑐 is the mean length of the path of a magnetic line through the core material, 𝑙𝑟 is the 

length of the magnetic path within the flat rotor, 𝑙𝑔 is the length of the airgap, and 𝑥 is the 

displacement of the rotor, and 𝐻𝑐, 𝐻𝑟, and 𝐻𝑔 are the magnetic field intensities within the 

core, rotor, and the airgap respectively. 

 𝑁𝑖 = 𝑙𝑐𝐻𝑐 + 𝑙𝑟𝐻𝑟 + 2(𝑙𝑔 − 𝑥)𝐻𝑔 (10) 

The BH relationship can be used to express equation (10) in terms of flux density (Sen, 

1996): 

 𝐵 = 𝜇𝐻 = 𝜇𝑟𝜇0𝐻 (11) 

 
𝑁𝑖 = 𝑙𝑐

𝐵𝑐

𝜇𝑟𝜇0
+ 𝑙𝑟

𝐵𝑟

𝜇𝑟𝜇0
+ 2(𝑙𝑔 − 𝑥)

𝐵𝑔

𝜇0
 (12) 

Equation (12) can also be expressed in terms of magnetic flux: 

 
𝑁𝑖 = 𝜙 (

𝑙𝑐
𝜇𝑟𝜇0𝐴𝑐

+
𝑙𝑟

𝜇𝑟𝜇0𝐴𝑟
+

2(𝑙𝑔 − 𝑥)

𝜇0𝐴𝑔
) (13) 

The reluctance of a magnetic circuit is given by equation (14). 
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ℛ =

𝑙

𝜇𝐴
 (14) 

Equation (13) can be expressed in terms of series reluctances using equation (14). The 

resulting relation is again analogous to an electrical circuit with series resistances: 

 𝑁𝑖 = 𝜙(𝑖, 𝑥) (ℛ𝑐 + ℛ𝑟 + 2ℛ𝑔(𝑥)) (15) 

An expression for the inductance of the inductance of the electromagnet can be obtained by 

inserting the flux linkage relation given in equation (6) into equation (15): 

 
𝑁𝑖 =

𝐿(𝑥)𝑖

𝑁
(ℛ𝑐 + ℛ𝑟 + 2ℛ𝑔(𝑥)) (16) 

Solving for the inductance and simplifying terms yields: 

 

𝐿(𝑥) =
𝑁2

ℛ𝑡𝑜𝑡𝑎𝑙
=

𝑁2

ℛ𝑐 + ℛ𝑟 + 2ℛ𝑔(𝑥)
=

𝑁2

𝑙𝑐
𝜇𝑟𝜇0𝐴𝑐

+
𝑙𝑟

𝜇𝑟𝜇0𝐴𝑟
+

2(𝑙𝑔 − 𝑥)
𝜇0𝐴𝑔

 (17) 

 𝐿(𝑥) =
𝑁2𝜇𝑟𝜇0𝐴𝑐𝐴𝑟𝐴𝑔

𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)]
 (18) 

The derivative of inductance with respect to the rotor displacement 𝑥 is: 

 𝑑𝐿(𝑥)

𝑑𝑥
= −

𝑁2𝜇𝑟𝜇0𝐴𝑐𝐴𝑟𝐴𝑔

𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)]
∙
2𝜇𝑟𝐴𝑐𝐴𝑟

1
 (19) 

 

𝑑𝐿(𝑥)

𝑑𝑥
= −

2𝜇0𝐴𝑔(𝑁𝜇𝑟𝐴𝑐𝐴𝑟)
2

(𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)])
2 (20) 

The magnetic force between the core and flat rotor can be approximated by assuming the 

majority of the field energy 𝑊𝑓 is stored within the airgaps of the magnet, and that the flux 

linkage - current (𝜆-𝑖) relation is linear as given in equation (6) (Sen, 1996).  With this 
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simplifying assumption, the field energy relation given in equation (21) can be used to derive 

the magnetic force of the EM in terms of coil current and differential inductance (Sen, 1996). 

 
𝑊𝑓 = ∫ 𝑖 𝑑𝜆

𝜆

0

= ∫
𝜆

𝐿(𝑥)
 𝑑𝜆

𝜆

0

=
𝜆2

2𝐿(𝑥)
 (21) 

Substituting for flux linkage 𝜆 using equation (6) gives a relation for the magnetic force:  

 
𝐹𝑒𝑚(𝑖, 𝑥) =

1

2

𝑑𝐿(𝑥)

𝑑𝑥
𝑖2 (22) 

The force equation then becomes: 

 
𝐹𝑒𝑚(𝑖, 𝑥) = −𝑖2

𝜇0𝐴𝑔(𝑁𝜇𝑟𝐴𝑐𝐴𝑟)
2

(𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)])
2 

(23) 

The EM system (considering a single EM) will have three state variables: the coil current 𝑖, 

the rotor velocity 𝑥̇, and the rotor displacement 𝑥. The three non-linear state equations of the 

electromagnet are given below.  Note that the term multiplied by rotor velocity in equation 

(24) represents the back emf generated by the rotor movement. 

 

𝑑𝑖

𝑑𝑡
=

(𝑣(𝑡) − 𝑅𝑖 + 𝑖
2𝜇0𝐴𝑔(𝑁𝜇𝑟𝐴𝑐𝐴𝑟)

2

(𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)])
2 𝑥̇)

(
𝑁2𝜇𝐴𝑐𝐴𝑟𝐴𝑔

𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)]
)

 (24) 

𝑑𝑥

𝑑𝑡
= 𝑥̇ (25) 

𝑑2𝑥

𝑑𝑡2
= −

𝐹𝑒𝑚(𝑖, 𝑥)

𝑚𝑟
= −

𝑖2

𝑚𝑟

𝜇0𝐴𝑔(𝑁𝜇𝑟𝐴𝑐𝐴𝑟)
2

(𝐴𝑔(𝐴𝑟𝑙𝑐 + 𝐴𝑐𝑙𝑟) + 2[𝜇𝑟𝐴𝑐𝐴𝑟(𝑙𝑔 − 𝑥)])
2 (26) 

The airgap reluctance is linear, but the reluctance of the magnetic core is non-linear. 

Consequently, the load-line graphical method was used to approximate the permeability of 

the iron core.  Recalling equation (10), except the airgap relation is expressed in the form of 

equation (12), and re-arranging in terms airgap density 𝐵𝑔 gives equation (28).  
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 𝑁𝑖 = 𝑙𝑐𝐻𝑐 + 𝑙𝑟𝐻𝑟 + 2(𝑙𝑔 − 𝑥)
𝐵𝑔

𝜇0
→ 𝐵𝑔 =

𝑁𝑖𝜇0

2(𝑙𝑔 − 𝑥)
−

𝜇0(𝑙𝑐𝐻𝑐 + 𝑙𝑟𝐻𝑟)

2(𝑙𝑔 − 𝑥)
 (27) 

Equation (28) is the load-line, which is a straight line of the form 𝑦 = 𝑚𝑧 + 𝑐 where 𝑦 

represent flux density 𝐵 and 𝑧 represents the field intensity 𝐻 (Sen, 1996).  The y-intercept 

of the load-line is computed by assuming all of the field energy acts on the airgap (𝐻𝑐 and 

𝐻𝑟 = 0) (Sen, 1996).  Note that the airgap length is multiplied by two in equation (28) 

because there are two airgaps in a bi-polar EM.  

 
𝑐 = 𝐵𝑔 =

𝑁𝑖𝜇0

2(𝑙𝑔 − 𝑥)
 (28) 

The x-intercept is calculated based on the assumption that all the MMF acts on the iron and 

that the flux density in the airgap is zero.  Considering the airgap as zero, the iron of the EM 

can be treated as one piece of iron. 

 
𝑥𝑖𝑛𝑡 = 𝐻𝑖𝑟𝑜𝑛 = −

𝑁𝑖

𝑙𝑐 + 𝑙𝑟
 (29) 

The slope of the load-line can be determined from equations (28) and (29): 

 𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1
=

𝑦2 − 0

𝑥2 − 0
=

𝑦𝑖𝑛𝑡

𝑥𝑖𝑛𝑡
= −

𝑁𝑖𝜇0

2𝑙𝑔
(

𝑁𝑖

𝑙𝑐 + 𝑙𝑟
)
−1

= −𝜇0

𝑙𝑐 + 𝑙𝑟
2𝑙𝑔

 (30) 

The load-line intersects the BH curve at the operating point of the magnetic circuit, which 

gives approximate values for the flux density and field intensity in the core of the material, 

which in turn allows the permeability to be approximated using the 𝐵 = 𝜇𝐻 relation. The 

load-line method was implemented in the Simulink® model as a MATLAB® Level-2 S-

function. At every time step, the S-function constructs the BH curve as a series of line 

segments and checks each line segment for intersection with the load line. The resulting H 

and B values at the point of intersection are then used to determine the permeability of the 

iron in the circuit.  An example plot is shown in Figure 31. 



 

39 

 

Figure 31:  Load-Line Intersection with BH Curve 

The Simulink® model was evaluated against a FEM model of the EM using David 

Meeker’s Finite Element Method Magnetics software (FEMM 4.2). The model was 

implemented as an axisymmetric, magnetostatic problem using a non-linear BH curve for 

low carbon steel – soft iron material.  This material BH curve was used in both the Simulink® 

and the FEMM model and was obtained from the COMSOL® material library. The excitation 

current was fixed at 1.5 amperes, and airgaps ranging from 1 mil to 40 mils were simulated 

in 1 mil increments.  The simulations were programmed into FEMM 4.2 using a Lua script 

to automatically solve for magnetic force over the specified range of airgaps. The forces 

predicted by the Simulink® and FEMM models are plotted in Figure 32. The Simulink® 

model is shown in Figure 33 and the FEMM model (with mesh) is shown in Figure 34.  
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Figure 32:  Iron-Core EM Force Comparison – FEMM vs. Simulink® Models 

 

 

Figure 33:  Simulink® Model of Iron-Core EM 
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Figure 34: Axisymmetric FEMM Model of Iron-Core EM 

The discrepancy between the forces predicted by the Simulink® and FEMM models is caused 

by several factors. Firstly, the magnetic circuit analysis calculates an average flux density 

for the iron core and the permeability for the iron portion of magnetic circuit using the load-

line method, which is an approximation.  The behavior of the force vs. stroke curve of the 

Simulink® model for airgap ranges of 5 to 10 mils is due to the load-line intersecting the BH 

curve in the non-linear region, or “knee” of the BH curve.  This effect is not observed in the 

FEMM model because FEMM 4.2 computes the permeability at every node using the 

relation in equation (31), where the permeability is a function of 𝐵 (Meeker, 2018): 
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𝜇 =

𝐵

𝐻(𝐵)
 

(31) 

Secondly, the FEMM model predicted differing levels of induction for the inner and outer 

poles, while the magnetic circuit analysis assumed an average flux density for both poles.  

At larger airgaps, the average flux density of each pole was nearly equal to the value 

computed in the magnetic circuit analysis, however, at smaller gaps, the values diverged. 

Figure 35 shows two plots of the flux density within the airgap of the electromagnet poles 

for gaps of 20 mils and 10 mils respectively.  The FEMM model predicted an average airgap 

flux density of 0.545T for a 20-mil airgap, which is close to the 0.55T value predicted by the 

magnetic circuit analysis.  However, FEMM predicts an average value of 0.91T for an airgap 

of 10 mils, which is 17% less than the flux density predicted by the magnetic circuit analysis. 

 

Figure 35:  Flux Density Plot in Airgap of Inner and Output Poles of Electromagnet 
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Lastly, the magnetic circuit analysis does not account for magnetic fringing or leakage flux, 

which is illustrated by a flux density plot of the FEMM model shown in Figure 36.  Magnetic 

fringing is a phenomenon observed in magnetic circuits with airgaps, and is caused by 

variations in reluctance (Roters, 1941).  Leakage flux bypasses the airgap altogether and 

does not contribute to work done and fringing flux contributes little to no work to the system 

and in some cases can actually decrease the amount of work done (Roters, 1941). 

 

Figure 36:  Flux Density Plot – FEMM Model of Iron-Core Electromagnet 

Based on the results of the comparison, FEM modeling should be utilized to perform 

further investigation of the iron-core EM. Nevertheless, the magnetic circuit analysis does 

provide greater confidence in the forces predicted by the FEM model.  Dr. Hector Gutierrez 

and a number of Florida Institute of Technology students performed additional research 

using this model, and modeled the iron-core EM in COMSOL®. They concluded that the 

iron-core EM has several drawbacks, one of which is slow response times, large disturbance 

forces when the rotor is eccentric to the stator, and disturbances due to the attraction of the 

PM to the iron core even if the EM is de-energized. (Gutierrez, 2020).   

Consider a rotor with adjacent PMs separated by an angular distance of 1.10715 

radians (63.435 degrees) and an angular velocity of 5,000 RPM (523.6 rad/sec). This 

condition gives less than 2.114 milliseconds for the EM to de-energize to avoid interacting 
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with the PM. As shown in Figure 37, the rise and fall times of the iron-core EM are 

approximately 15 milliseconds, which is too slow to fully de-energize prior interacting with 

a passing rotor PM.  

 

Figure 37:  Iron-core EM Coil Current Rise / Fall Time - 15 Volt Step, Fixed 5 mil airgap 

5.1.2 Air Core Electromagnet 

The air-core EM could not be modeled using the magnetic circuit approach due to 

the inability to precisely estimate the mean flux path between the rotor and the 

electromagnet.  The inductance of the coil and its response time were estimated in Simulink® 

and compared to the iron-core electromagnet. The inductance of an air-core electromagnet 

can be approximated by equation (32), where, 𝑁 is the number of turns in the coil, 𝜇0 is the 

absolute permeability of medium surrounding the core, 𝑙𝑐  is the length of solenoid, and 𝐴𝑐 

is the cross-sectional area of the coil with 𝑟𝑖 𝑎𝑛𝑑 𝑟𝑜 being the inner and outer radius of the 

solenoid respectively. 

 
𝐿 =

𝑁2𝜇𝑜𝐴𝑐

𝑙𝑐
=

𝑁2𝜇𝑜𝜋(𝑟𝑜
2 − 𝑟𝑖

2)

𝑙𝑐
 (32) 
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However, equation (32) is only accurate for long, slender solenoids. A more accurate 

empirical formula, derived by Wheeler, 1928 for a multi-layer, air-core solenoid is given by 

equation (33), where 𝑟𝑚 is the mean radius of the coil in meters winding and 𝐿 is given in 

micro-Henries (Wheeler, 1928).   

 𝐿 = 31.6 ∙
𝑁2𝑟𝑚

2

6𝑟𝑚 + 9𝑙𝑐 + 10(𝑟𝑜 − 𝑟𝑖)
 (33) 

This formula predicts an inductance of 0.526 mH using the values provided in Table 3, and 

is in close agreement with the COMSOL® prediction of 0.51 mH.  The EM was modeled in 

Simulink® using the relations given in equations (34) and  (35). 

 
𝑣(𝑡) = 𝐿

𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑅𝑖(𝑡) 

(34) 

Expressing in normalized form gives: 

 𝑑𝑖(𝑡)

𝑑𝑡
=

1

𝐿
[𝑉 − 𝑅𝑖(𝑡)] (35) 

The time constant of an LR circuit is given by equation (36).  

 
𝜏𝑐 =

𝐿

𝑅
=

0.526 mH

4.271 Ohms
= 1.232 ∙ 10−4𝑠𝑒𝑐 (36) 

And the steady-state current is reached in five time constants, and the complete response of 

the air-core EM to a 15 volt step input is plotted in Figure 38. 

 5𝜏𝑐 = 5(1.232 ∙ 10−4) = 6.158 ∙ 10−4𝑠𝑒𝑐 (37) 

The air-core EM exhibits response times more than an order of magnitude faster that the 

iron-core EM, which is expected due to the increased inductance associated with iron-core 

EMs.  Based on the results of the EM trade study, the air-core EM configuration was selected 

for the levitation.  
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Figure 38:  Air-core EM Response (Coil Current vs. Time) – 15 Volt Step Input 

 NGCRS Design Modifications 

The Reaction Sphere (RS) geometry studied herein is essentially that of the NGCRS 

architecture, described in Section 2.5.2, but with modifications to the stator and rotor as 

described below in Sections 5.2.1 and 5.2.2. 

5.2.1 Stator Modifications 

The NGCRS stator is modified to include six levitation electromagnets (EM).  The 

EMs are positioned as antipodal pairs and are located such that they are equally spaced 

between the sensor pods and drive EMs. The drive EMs are located at the center of the sensor 

pods that detect the presence of the PMs.  The position of the levitation EMs relative to the 

sensor pods is depicted in Figure 39. The characteristics of the levitation EMs, including the 

geometry, are discussed in Section 5.8.1. 
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Figure 39:  Stator Modifications with Levitation EMs 

5.2.2 Rotor Modifications 

The proposed rotor is a solid sphere made of a ferrous material and encompasses 12 

N52 grade Neodymium PMs of 0.25-inch diameter and 0.50-inch length. The rotor includes 

features to accommodate decoupling inserts made of a non-magnetic material.  The diameter 

of the sphere is 2.5 inches. This value was selected to prevent the holes that accommodate 

the decoupling inserts from interfering.  The geometry of the rotor is discussed in detail in 

Section 5.3 and an image of the proposed rotor assembly is shown in Figure 41. The 

dimensions of the decoupling inserts are shown in Figure 58. 

 Reaction Sphere Geometry  

This section discusses the rotor and stator geometries and derives the coordinates of 

the rotor PMs and levitation EMs in terms of position vectors. The kinematic relations 

between the levitation EM position vectors the rotor PM position vectors are then derived 

and expressed in terms of Euler Angles. 

The Reaction Sphere (RS) geometry is treated in a manner similar to the original 

NGCRS, where the RS comprises two geometric regions: the inner sphere (rotor) and outer 

sphere (stator).  An illustration of the RS configuration is shown in Figure 40 with the stator 

structural elements, stator drive coils, position sensors, and control circuitry omitted. 
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Figure 40:  Reaction Sphere Geometry 

5.3.1 Geometry of the Inner Sphere 

The inner sphere, or rotor assembly, consists of a solid ferrous metal sphere, copper 

inserts to decouple the PM field from the iron sphere, and 12 permanent magnets (PM) as 

depicted in Figure 41. 

 

Figure 41:  Reaction Sphere Rotor Assembly 

The locations of the PMs are arranged along the vertex vectors of an icosahedron, which is 

a regular polyhedron comprised of 30 edges, 20 equilateral triangular faces, and 12 vertices.  

Inner Sphere Outer Sphere 

Permanent Magnet 

(PM) 

Iron Rotor 

Decoupling Insert 
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The vertices are equi-spaced around the sphere and coincident with the surface of spherical 

rotor and the surface of each PM.  From Leonard Euler’s famed Polyhedral Formula, it can 

be shown that the arrangement of the PMs forms a convex, or regular, polyhedron where V 

is the number of vertices, F is the number of faces, and E represents the number of edges. 

 𝑉 + 𝐹 − 𝐸 = 2 → 12 + 20 − 30 = 2 (38) 

Since the vertices are equally distributed around the rotors circumference, the magnets can 

be paired into six antipodal pairs of PMs with six (6) in the upper hemisphere of the sphere 

designated by subscripts: 𝑀𝑈𝑛 and the corresponding six (6) antipodal magnets in the lower 

hemisphere designated as 𝑀𝐿𝑛, where n represents magnets 1 through 6, where the upper 

and lower hemispheres are bisected by the XY plane. The spatial coordinates of each PM are 

described in terms of a position vector relative to a fixed coordinate frame located at the 

center of both the inner and outer spheres. The position vectors are derived by analyzing the 

geometry of an icosahedron circumscribed by a sphere of radius r, as shown in Figure 42. 

  

Figure 42:  Inner Sphere Geometry with Inscribed Icosahedron 

Considering the surface area of a sphere with a radius equal to unity: 

 𝐴𝑠 = 4𝜋𝑟2 =  4𝜋  (39) 

Now dividing the surface area of the sphere by the number of faces gives the area of each 

triangular face in the elliptical plane.  
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𝐴𝑓 =

𝐴𝑠

𝑁𝑓
=

4𝜋

20
=  

𝜋

5
 𝑠𝑡𝑒𝑟𝑎𝑑𝑖𝑎𝑛𝑠  (40) 

The area of a polygon in the elliptical plane is equal to the spherical excess Es of its angle 

sum over the angle sum of the polygon in the Euclidean plane (Coxeter, 1961). The spherical 

excess is computed using the Girard spherical excess formula, where A, B, and C are the 

angles of the spherical triangle in the elliptic plane and a, b, and c are the angles of the 

triangle in the Euclidean plane (Coxeter, 1961).  The spherical excess is given by equation 

(41) and the geometry of a single face is illustrated in Figure 43. 

 𝐸𝑠 = 𝐴𝑓 = (𝐴 + 𝐵 + 𝐶) − (𝑎 + 𝑏 + 𝑐) (41) 

The triangles are all equilateral and so 𝐴 = 𝐵 = 𝐶, and for an equilateral triangle in the 

Euclidean plane 𝑎 + 𝑏 + 𝑐 = 𝜋.  

Simplifying yields: 

 𝐸𝑠 =
𝜋

5
= 3𝐴 − 𝜋 (42) 

Solving for 𝐴 gives the angle of each triangular face: 

 
𝐴 = 𝐵 = 𝐶 =

𝜋

15
+

𝜋

3
=

2𝜋

5
 (43) 

 

Figure 43:  Geometry of an Equilateral Spherical Triangle 
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The angle subtended by each side is determined from the Second Spherical Law of Cosines. 

Recalling that the lower-case letters represent the angles between the edges of the triangle in 

the Euclidean plane and the upper case denotes the elliptic plane:  

 cos(𝐶) = −cos(𝐴) cos(𝐵) + sin(𝐴) sin(𝐵) cos(𝑐) (44) 

Rearranging equation (44) in terms of 𝑐𝑜𝑠(𝑐): 

 
cos(𝑐) =

cos(𝐶) + cos(𝐴) cos(𝐵)

sin(𝐴) sin(𝐵)
 (45) 

And since: 

 
cos(𝐴) = cos(𝐵) = cos(𝐶) = cos (

2𝜋

5
) =

−1 + √5

4
 (46) 

 

 

sin(𝐴) = sin(𝐵) = sin(𝐶) = sin (
2𝜋

5
) = √

5 + √5

8
 (47) 

Substituting equations (46) and (47) into the equation (45) yields: 

 

𝑐𝑜𝑠(𝑐) = 𝑐𝑜𝑠 (𝜙) =

−1 + √5
4 + (

−1 + √5
4 )

2

(√5 + √5
8 )

2 =
1

√5
 (48) 

The arc length of the side of the spherical triangle is equal to the angle subtended by the 

edge of the Euclidean triangle: 

 𝑐𝑜𝑠(𝑐) = 𝑐𝑜𝑠 (𝜙) (49) 

Which leads to: 

 
𝜙 = cos−1 (

1

√5
)  ≈ 1.1071487177940905030170654601 𝑟𝑎𝑑𝑖𝑎𝑛𝑠 (50) 
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As shown in Figure 42, the icosahedron is oriented with two vertices coincident with the Z 

axis. The other five vertices in the upper hemisphere are each offset from the Z-axis by angle 

𝜙 and are equally spaced around the circumference by the angle 𝜃 = 72 degrees =

 
2𝜋

5
 radians. Note that the golden ratio could also have been utilized to derive the coordinates 

of the position vectors. The position vectors of the PMs in the upper hemisphere can now be 

expressed in spherical coordinates as column vectors [𝑟 𝜃 𝜙]𝑇.  Henceforth, vectors are 

denoted with an arrow symbol 𝑃⃗  and unit vectors are denoted with the hat symbol 𝑃̂. 

 𝑃⃗ 𝑀𝑢1
= [𝑟𝑠 0 0]𝑇 (51) 

 𝑃⃗ 𝑀𝑢2
= [𝑟𝑠 0 cos−1 (

1

√5
)]

𝑇

 (52) 

 𝑃⃗ 𝑀𝑢3
= [𝑟𝑠

2𝜋

5
cos−1 (

1

√5
)]

𝑇

 (53) 

 𝑃⃗ 𝑀𝑢4
= [𝑟𝑠

4𝜋

5
cos−1 (

1

√5
)]

𝑇

 (54) 

 𝑃⃗ 𝑀𝑢5
= [𝑟𝑠

6𝜋

5
cos−1 (

1

√5
)]

𝑇

 (55) 

 𝑃⃗ 𝑀𝑢6
= [𝑟𝑠

8𝜋

5
cos−1 (

1

√5
)]

𝑇

 (56) 

The PM position vectors in the lower hemisphere are offset from the upper hemisphere 

position vectors by an angle 𝜋 radians due to the antipodal arrangement (i.e. 𝑃̂𝑀𝐿1
 is antipodal 

to 𝑃̂𝑀𝑢1
). 

 𝑃⃗ 𝑀𝐿1
= [𝑟𝑠 0 𝜋]𝑇 (57) 

 𝑃⃗ 𝑀𝐿2
= [𝑟𝑠 𝜋 𝜋 − cos−1 (

1

√5
)]

𝑇

 (58) 
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 𝑃⃗ 𝑀𝐿3
= [𝑟𝑠

7𝜋

5
𝜋 − cos−1 (

1

√5
)]

𝑇

 (59) 

 𝑃⃗ 𝑀𝐿4
= [𝑟𝑠

9𝜋

5
𝜋 − cos−1 (

1

√5
)]

𝑇

 (60) 

 𝑃⃗ 𝑀𝐿5
= [𝑟𝑠

11𝜋

5
𝜋 − cos−1 (

1

√5
)]

𝑇

 (61) 

 𝑃⃗ 𝑀𝐿6
= [𝑟𝑠

13𝜋

5
𝜋 − cos−1 (

1

√5
)]

𝑇

 (62) 

The PM position vectors are now converted to from spherical coordinates into cartesian 

coordinates to facilitate kinematic analysis and to take advantage of vector operations such 

as addition, the scalar product, and the cross product.  The converted coordinates are shown 

below using the well-known conversion factors: 𝑥 = 𝑟 sin(𝜙) cos(𝜃), 𝑦 = 𝑟 sin(𝜙) sin(𝜃), 

and 𝑧 = 𝑟 cos(𝜙). 

 𝑃⃗ 𝑀𝑢𝑐1
= 𝑟𝑠[0 0 1]𝑇 (63) 

 𝑃⃗ 𝑀𝑢𝑐2
= 𝑟𝑠 [

2

√5
0

1

√5
]
𝑇

 (64) 

 𝑃⃗ 𝑀𝑢𝑐3
= 𝑟𝑠 [5 − √5

10
√5 + √5

10

1

√5
]

𝑇

 (65) 

 𝑃⃗ 𝑀𝑢𝑐4
= 𝑟𝑠 [−5 − √5

10
√5 − √5

10

1

√5
]

𝑇

 (66) 

 𝑃⃗ 𝑀𝑢𝑐5
= 𝑟𝑠 [−5 − √5

10
−√5 − √5

10

1

√5
]

𝑇

 (67) 
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 𝑃⃗ 𝑀𝑢𝑐6
= 𝑟𝑠 [5 − √5

10
−√5 + √5

10

1

√5
]

𝑇

 (68) 

Again, due to the anti-podal arrangement, the position vectors of the lower hemisphere PMs 

are simply the negative of the upper hemisphere coordinates: 

 𝑃⃗ 𝑀𝐿𝑐1
= 𝑟𝑠[0 0 −1]𝑇 (69) 

 𝑃⃗ 𝑀𝐿𝑐2
= 𝑟𝑠 [−

2

√5
0 −

1

√5
]
𝑇

 (70) 

 𝑃⃗ 𝑀𝐿𝑐3
= 𝑟𝑠 [−5 + √5

10
−√5 + √5

10
−

1

√5
]

𝑇

 (71) 

 𝑃⃗ 𝑀𝐿𝑐4
= 𝑟𝑠 [5 + √5

10
−√

5 − √5

10
−

1

√5
]

𝑇

 (72) 

 𝑃⃗ 𝑀𝐿𝑐5
= 𝑟𝑠 [5 + √5

10
√

5 − √5

10
−

1

√5
]

𝑇

 (73) 

 𝑃⃗ 𝑀𝐿𝑐6
= 𝑟𝑠 [−5 + √5

10
√5 + √5

10
−

1

√5
]

𝑇

 (74) 

All twelve position vectors can be expressed in a single matrix, where the rows equal the 

𝑥, 𝑦, 𝑧 components of each vector, in descending order, and columns one through six 

represent the PMs in upper hemisphere and columns seven through twelve represent the PMs 

in the lower hemisphere. The vectors are given as unit vectors and can be scaled to coincide 

with the surface of a sphere of an arbitrary radius 𝑟𝑠. 
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𝑃⃗ 𝑀 = 𝑟𝑠

[
 
 
 
 
 0

2

√5

5−√5

10

−5−√5

10

−5−√5

10

5−√5

10
0 −

2

√5

−5+√5

10

5+√5

10

5+√5

10

−5+√5

10

0 0 √5+√5

10
√5−√5

10
−√5−√5

10
−√5+√5

10
0 0 −√5+√5

10
−√5−√5

10
√5−√5

10
√5+√5

10

1
1

√5

1

√5

1

√5

1

√5

1

√5
−1 −

1

√5
−

1

√5
−

1

√5
−

1

√5
−

1

√5 ]
 
 
 
 
 

  

5.3.2 Outer Sphere Geometry 

Six (6) air-core electromagnets (EM) are utilized to provide the forces necessary 

reject external disturbances acting on the sphere and thus stabilize the rotor position with the 

stator housing during satellite positioning.  The EMs are positioned to form two equilateral, 

triangular tetrahedrons arranged such that the three (3) EMs in the upper hemisphere are 

antipodal to the three (3) EMs in the lower hemisphere.  The upper and lower hemispheres 

are separated by the XY plane. The EMs are also geometrically constrained due to the 

position sensors and drive EMs, and consequently, are offset from the Z-axis by an angle 

𝜑 = cos−1 (
1

√3
) radians.  The EMs are equally spaced by an angle 𝜃 =

2𝜋

3
 radians round the 

sphere with one EM in the upper and lower hemispheres coincident on the ZY plane.  This 

geometry forms two triangular tetrahedrons with the apexes located at the origin of the fixed 

global coordinate system as shown in Figure 44.  

 

Figure 44:  Geometry of the Outer Sphere 
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The position vectors of the EMs are given in spherical coordinates below: 

 
𝑃⃗ 𝐸𝑀𝑢1

= [𝑟𝐸𝑀

𝜋

2
cos−1 (

1

√3
)]

𝑇

 (75) 

 
𝑃⃗ 𝐸𝑀𝑢2

= [𝑟𝐸𝑀

7𝜋

6
cos−1 (

1

√3
)]

𝑇

 (76) 

 
𝑃⃗ 𝐸𝑀𝑢3

= [𝑟𝐸𝑀

11𝜋

6
cos−1 (

1

√3
)]

𝑇

 (77) 

 
𝑃⃗ 𝐸𝑀𝐿1

= [𝑟𝐸𝑀

3𝜋

2
𝜋 − cos−1 (

1

√3
)]

𝑇

 (78) 

 
𝑃⃗ 𝐸𝑀𝐿2

= [𝑟𝐸𝑀

𝜋

6
𝜋 − cos−1 (

1

√3
)]

𝑇

 (79) 

 
𝑃⃗ 𝐸𝑀𝐿3

= [𝑟𝐸𝑀

5𝜋

6
𝜋 − cos−1 (

1

√3
)]

𝑇

 (80) 

The EM position vectors converted to cartesian coordinates and are given below: 

 
𝑃⃗ 𝐸𝑀𝑢1

= 𝑟𝐸𝑀 [0
√2

√3

1

√3
]

𝑇

 (81) 

 
𝑃⃗ 𝐸𝑀𝑢𝑐2

= 𝑟𝐸𝑀 [−
√2

2
−

√2

2√3

1

√3
]

𝑇

 (82) 

 
𝑃⃗ 𝐸𝑀𝑢𝑐3

= 𝑟𝐸𝑀 [
√2

2
−

√2

2√3

1

√3
]

𝑇

 (83) 

 
𝑃⃗ 𝐸𝑀𝐿𝑐1

= 𝑟𝐸𝑀 [0 −
√2

√3
−

1

√3
]

𝑇

 (84) 
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𝑃⃗ 𝐸𝑀𝐿𝑐2

= 𝑟𝐸𝑀 [
√2

2

√2

2√3
−

1

√3
]

𝑇

 (85) 

 
𝑃⃗ 𝐸𝑀𝐿𝑐3

= 𝑟𝐸𝑀 [−
√2

2

√2

2√3
−

1

√3
]

𝑇

 (86) 

The position vectors can be expressed as a single matrix where the rows represent the 

𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 components of each EM position vector, in descending order. The matrix is 

arranged such that columns one, two, and three represent the upper hemisphere EM position 

vectors and columns four, five, and six represent the lower hemisphere position vectors with 

the column one in the left most column of the matrix order.  The vectors are given as unit 

vectors and can be scaled to coincide with the surface of an outer sphere of an arbitrary radius 

𝑟𝐸𝑀. 

 𝑃⃗ 𝐸𝑀 = 𝑟𝐸𝑀

[
 
 
 
 
 
 0 −

√2

2

√2

2
0

√2

2
−

√2

2

√2

√3
−

√2

2√3
−

√2

2√3
−

√2

√3

√2

2√3

√2

2√3
1

√3

1

√3

1

√3
−

1

√3
−

1

√3
−

1

√3]
 
 
 
 
 
 

 (87) 

The coordinates of the eight drive EMs, 𝑃⃗ 𝐷𝑀, are provided below as column vectors for 

reference, but are not included in the dynamic model simulation.  These position vectors 

were derived by Stagmer in the NGCRS patent (U.S. Patent No. 9,475,592 B2). 

 

𝑃⃗ 𝐷𝑀 = 𝑟𝐷𝑀

[
 
 
 
 
 
 0 0 −

√2

√3

√2

√3
0 0

√2

√3
−

√2

√3

0
2√2

3
−

√2

3
−

√2

3
0 −

2√2

3

√2

3

√2

3

1
1

3
−

1

3
−

1

3
−1

1

3

1

3

1

3 ]
 
 
 
 
 
 

 
(88) 
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 Kinematics of Reaction Sphere 

The RS dynamic model described herein is a 3-DOF with the spherical rotor free to 

rotate about the 𝑋, 𝑌, and 𝑍 axes, but it is fixed translationally in the axial directions.  Thus, 

the orientation, or attitude, of each PM attached to the spherical rotor can be described by as 

a position vector in terms of the basis vectors located at the origin of the fixed outer sphere 

(Stator) coordinate system.  

5.4.1 Euler Angles and Rotation Matrices 

The Euler Angle rotations are applied to the rotor PMs following the Z-Y-X attitude 

sequence which is commonplace in aerospace applications. All rotations follow the right-

hand rule, where the thumb points in the directions of the positive axis and the fingers curl 

around the axis in the positive angular direction (Greenwood, 2003).  The rotation sequence 

is depicted in Figure 45. 

1. Rotation angle 𝜓 about the original (principal) Z-Axis (Yaw Rotation) 

2. Rotation angle 𝜃 about the intermediate Y-Axis (Pitch Rotation) 

3. Rotation angle 𝜙 about the intermediate X-Axis (Roll Rotation) 

 

Figure 45: Euler Angle Rotation Sequence (Greenwood, 2003) 
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The reference frame and associated basis vectors of the stator 𝐹𝑆 is denoted by 𝑍, 𝑌, 𝑋 in 

Figure 45. The successive body rotations of the rotor are expressed symbolically by 

following the convention above, and considering the basis vectors where 𝑍, 𝑌, 𝑋 represents 

the initial un-rotated reference frame 𝐹1 of the rotor, and 𝑧′, 𝑦′, 𝑧′ and 𝑧′′, 𝑦′′, 𝑧′′ represent 

intermediate rotations of the rotor, and 𝑥, 𝑦, 𝑧 represents the final rotated position of the rotor 

denoted below by 𝐹2. 

 

 𝐹′1 = [𝑅𝜓] 𝐹1 (89) 

 
𝐹′′1 = [𝑅𝜃] 𝐹′1 (90) 

 

𝐹2 = [𝑅𝜙]𝐹′′1 (91) 

 

[𝑅𝜓] [

𝑋1

𝑌1

𝑍1

] =  [
𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛𝜓 0

−𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜓 0
0 0 1

] [

𝑋1

𝑌1

𝑍1

] = [

𝑥′1
𝑦′1
𝑧′1

] (92) 

 

[𝑅𝜃] [

𝑥′1
𝑦′1
𝑧′1

] =  [
𝑐𝑜𝑠 𝜃 0 − 𝑠𝑖𝑛 𝜃

0 1 0
𝑠𝑖𝑛 𝜃 0 𝑐𝑜𝑠 𝜃

] [

𝑥′1
𝑦′1
𝑧′1

] = [

𝑥′′1
𝑦′′1
𝑧′′1

] (93) 

 

[𝑅𝜙] [

𝑥′′1
𝑦′′1
𝑧′′1

] =  [
1 0 0
0 𝑐𝑜𝑠 𝜙 sin𝜙
0 − sin𝜙 𝑐𝑜𝑠 𝜙

] [

𝑥′′1
𝑦′′1
𝑧′′1

] = [

𝑥2

𝑦2

𝑧2

] (94) 

Pre-multiplying the column position vectors by the three Euler Angle rotation matrices, 

following the order in which the rotations were applied, will produce a matrix for the 

complete rotation of reference frame 𝐹1 to reference frame 𝐹2 with respect to the fixed stator 

reference frame. The final rotation matrix is shown below. The multiplication and 

simplification steps are not shown. 

 [𝑅𝑀] = [𝑅𝜙][𝑅𝜃][𝑅𝜓] (95) 

[𝑅𝑀] = [−

𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜃 − 𝑠𝑖𝑛 𝜃
𝑠𝑖𝑛 𝜓 𝑐𝑜𝑠 𝜙 + 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜓 𝑐𝑜𝑠 𝜙 + 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙
𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜙 + 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 − 𝑐𝑜𝑠 𝜓 𝑠𝑖𝑛 𝜙 + 𝑠𝑖𝑛 𝜓 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜙 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜙

] 
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Pre-multiplying the column PM position vectors by the transpose of the Euler rotation matrix 

𝑅𝑀 will yield the rotated position vector in terms of the basis vectors at the stator coordinate 

system. The rotation matrix is transposed to output the coordinates of the PM position vectors 

as a column vector. 

 𝑃⃗ 𝑅𝑜𝑡 = [𝑅𝑀]𝑇𝑃⃗ 𝑀 (96) 

5.4.2 Euler Angle Rates 

The absolute angular velocity of rotor, in terms of the x, y, z body-axis frame is given 

by noting that the vectors 𝜓̇ and 𝜙̇ are not orthogonal (Greenwood, 2003). 

 𝜔 = 𝜓̇ + 𝜃̇ + 𝜙̇ (97) 

The velocity can also be expressed in terms of the body-axis components and is given below, 

where 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧 represent the respective roll, pitch, and yaw rates (Greenwood, 2003).  

 𝜔 = 𝜔𝑥𝑖̂ + 𝜔𝑦𝑗̂ + 𝜔𝑧𝑘̂ (98) 

The body-axis components of the angular velocity in terms of the absolute Euler Angle rates 

are given below (Greenwood, 2003). 

 𝜔𝑥 = 𝜙̇ − 𝑠𝑖𝑛 𝜃 (99) 

 𝜔𝑦 = 𝜓̇ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜙 + 𝜃̇ 𝑐𝑜𝑠 𝜙 (100) 

 𝜔𝑧 = 𝜓̇ 𝑐𝑜𝑠 𝜃 cos𝜙 − 𝜃̇ 𝑠𝑖𝑛𝜙 (101) 

𝜔 = (𝜙̇ − 𝑠𝑖𝑛 𝜃)𝒊̂ + (𝜓̇ 𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜙 + 𝜃̇ 𝑐𝑜𝑠 𝜙)𝒋̂ + (𝜓̇ 𝑐𝑜𝑠 𝜃 cos𝜙 − 𝜃̇ 𝑠𝑖𝑛 𝜙)𝒌̂ (102) 

And the absolute Euler Angle rates expressed in terms of the body-axis components of the 

angular velocity are given below (Greenwood, 2003). 

 𝜓̇ = sec𝜃(𝜔𝑦 𝑠𝑖𝑛 𝜙 + 𝜔𝑧 cos𝜙) (103) 

       𝜃̇ = 𝜔𝑦 cos𝜙 − 𝜔𝑧 𝑠𝑖𝑛 𝜙 (104) 
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 𝜙̇ = 𝜔𝑥 + 𝜓̇ sin𝜃 = 𝜔𝑥 + 𝜔𝑦 𝑡𝑎𝑛𝜃𝑠𝑖𝑛 𝜙 + 𝜔𝑧𝑡𝑎𝑛𝜃 cos𝜙 (105) 

 

 Finite Element Magnetic Modeling 

One of the objectives of the FEM modeling effort is determine if a generalized FEM 

model of the NGCRS could be developed to model the forces and torques acting on the rotor 

assembly with reasonable accuracy when compared to a fully integrated model with all 

twelve PMs and all six levitation EMs.  The advantage of using a generalized model is that 

a single set of relations can be derived for the forces and torques acting on the rotor iron and 

rotor PM.  The generalized relation can then be used to determine the forces and torques 

acting on the rotor / stator for any EM-PM pair and for any arbitrary orientation.  

Additionally, changes to the design can be rapidly developed and simulated.  The generalized 

model of the NGCRS is shown in Figure 46.  The feasibility of a generalized model was 

investigated by the following modeling approach: 

1. Evaluate the need to include non-linearities in the model  

2. Apply the principle of superposition to evaluate the extent of magnetic field 

coupling between the EM and PM through the rotor iron 

3. Demonstrate that the generalized model of a single EM-PM pair accurately 

models the magnetic forces and torques relative to a complete model with all 12 

rotor PMs 

4. Verify the coordinate transformations applied to the forces, predicted by the 

generalized model, are correct for any arbitrary orientation of the rotor and stator 
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Figure 46:  Generalized model of the NGCRS 

The influence of material non-linearities was evaluated by developing models that used 

linear and non-linear constitutive relations for the magnetic fields.  The results of this study 

are detailed in Section 5.5.8.  The extent of the magnetic field coupling was evaluated by 

developing superposition models of the generalized NGCRS as well as an integrated model, 

which contained the rotor iron, EM, PM, and decoupling insert as shown in Figure 46.  The 

superposition modeling approach is detailed in Section 5.5.1. The setup of the FEM model 

is discussed in Sections 5.5.2 and the modeling approach for the reaction sphere components 

are described in Sections 5.5.3, 5.5.4, 5.5.5, and 5.5.6. Each section includes discussion of 

the applicable constitutive relations.  The FEM model mesh and the results of a convergence 

study are presented in Section 5.5.11. 

Finite Element Magnetic (FEM) modeling of the reaction sphere was performed using 

COMSOL version 5.6.  A three-dimensional FEM model was required due to the asymmetry 

of the reaction sphere geometry. The magnetic forces obtained from the superposition 

models were used to derive the generalized force and torque relations which were 

programmed into the Simulink® dynamic model.  Implementation of the force and torque 

relations in Simulink® dynamic model are discussed in Section 5.6. Simulations were 

performed with coil excitation levels of 0.2, 0.3, 0.4 amperes and from 0.5 to 5.0 amperes in 
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0.5 ampere increments and angular distances between the EM and PM centerlines ranging 

from 0 to 31.7175 in 1-degree increments, with the exception of the final increment. Note 

that the angular distance of 31.7175 degrees represents half the distance between adjacent 

PMs in the rotor assembly. All combinations of coil excitation levels and angular distances 

were simulated. The radial airgap between the rotor and the EMs was fixed to 30 mils 

(7.62×10-4 meter) for all simulations. 

5.5.1 Principle of Superposition 

The scope of this thesis project did not include development of a physical prototype 

to verify the forces and torques predicted by the FEM model. Consequently, a conservative 

FEM modeling approach was implemented that relied on the principle of superposition to 

increase confidence in the predicted forces and torques.  

In order to apply the principle of superposition, non-linearities must be removed 

from the system. In this system, the PM will tend to drive the rotor iron into the non-linear 

region of the magnetization curve when it is in close proximity to the rotor iron. Decoupling 

was achieved by introducing a high reluctance path between the PM and the iron sphere. The 

gap between the PM and the sphere was filled by an insert made of copper, which has a 

permeability close to that of a vacuum (𝜇𝑟 ≈ 1), but in practice, the insert could be made of 

any non-magnetic material. Simulations were performed with decoupling inserts with 

varying thicknesses until sufficient decoupling could be achieved.  The results of this study 

are detailed in section 5.5.7. 

The superposition model consists of two separate FEM models.  The magnetic forces 

predicted by each model are then summed together to obtain the overall force acting on the 

stator EM.  The two superposition models of the generalized NGCRS model are described 

below and illustrated in Figure 47. Note that the model of the iron rotor includes the recess 

to house the copper insert. 

1. A model of a single EM and a single PM with the iron rotor omitted 

2. A model of a single EM and the iron rotor with the PM omitted 

The forces predicted by the superposition models are summed to obtain the total force. 
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𝐹 𝑡𝑜𝑡𝑎𝑙 = 𝐹 𝑃𝑀 + 𝐹 𝐼𝑟𝑜𝑛 

(106) 

 

Figure 47:  Superposition FEM Models of Generalized RS 

5.5.2 Problem Setup and Pre-Processing 

The reaction sphere was simulated using the COMSOL® Multiphysics AC/DC 

Module version 5.6, and was defined as a three-dimensional problem due to the asymmetric 

geometry.  The magnetic fields interface was used to define the problem, which is the 

recommended interface for solving physics problems with magnetic fields, induced current 

distributions in and around coils, conductors and magnets (COMSOL, 2019).  The reaction 

sphere components and component boundaries are stationary, and as such, the problem was 

implemented as a magnetostatic problem which uses the stationary solver.  The COMSOL® 

interface solves the Maxwell’s equations for the defined boundary condition and the selected 

constitutive relations (COMSOL, 2019). 

Ampère’s Law nodes were added for each material domain in the simulation.  The 

Ampère’s Law node adds the equation for the magnetic vector potential and provides an 

interface to define the constitutive relations associated with the magnetic and electric 

properties (COMSOL, 2019).  Magnetostatics problems are solved by COMSOL® using a 
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magnetostatic equation derived from the Ampère’s Law, where 𝐽 is the total volume current 

density, 𝐻 is the magnetic field intensity, and 𝜇0 is the magnetic permeability of a vacuum. 

 ∇ × 𝐻 = 𝐽 (107) 

The total volume current density 𝐽 is defined by equation (113)(113), where, 𝑣 is the velocity 

in the conductor, 𝜎 is the electrical conductivity, 𝐵 is the magnetic flux density, 𝑉is the 

electric scalar potential, and 𝐽𝑒 is an externally generated current density (COMSOL, 2019).   

 𝐽 = 𝜎𝑣 × 𝐵 − 𝜎∇𝑉 + 𝐽𝑒 (108) 

Using the definitions for magnetic vector potential 𝐴 given by equation (109) and the 

constitutive relation for the magnetic field given by equation (110), and substituting into 

equation (107), the magnetostatics equation is obtained in the form of equation (111) 

(COMSOL, 2019).  

 𝐵 = ∇ × A (109) 

 𝐵 = 𝜇0(𝐻 + 𝑀) (110) 

 ∇ × (𝜇0
−1∇ × A − M) − 𝜎𝑣 × (∇ × A) = 𝐽𝑒 (111) 

The constitutive relations used within the FEM models of the reaction sphere are described 

in the subsequent sections. 

5.5.3 Electromagnet Modeling 

The electromagnet was modeled as a homogenous multi-turn, circular coil with 360 

turns of 32 AWG copper magnet wire.  An image of the EM geometry is shown in Figure 48 

with applicable dimensions. The surface of the EM nearest the rotor is curved to maintain a 

constant radial airgap of 0.030 inches (7.62 x 10-4 m). The coil model uses current excitation 

with currents ranging from 0.2, 0.3, 0.4, and from 0.5 to 5.0 amperes in 0.5 ampere 

increments. The default values for length and area were overridden, because the edges 

selected to represent coil axis is taken to be the average coil length in the domain 

(COMSOL®, 2019).  The average coil circumference was approximated from the coil 

geometry, and is given below.  
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 𝐿𝑒𝑑𝑔𝑒𝑠 = 2𝜋𝑟𝑚 = 0.0228 m (112) 

The coil cross-sectional area of coil was measured from the Solidworks® CAD model 

geometry.  The computed value is provided below:  

 𝐴𝑑𝑜𝑚𝑎𝑖𝑛 = 1.824 × 10−5 𝑚2 (113) 

 

 

Figure 48: Electromagnet Geometry (Dimensions in Inches) 

The relative permeability constitutive relation was used to model the magnetic field of the 

coil because copper has a relative permeability 𝜇𝑟 ≈ 1.  The relation is given below, where 

B is the magnetic flux density, H is the magnetic field intensity, 𝜇𝑟 is the relative 

permeability given by the COMSOL® material library for copper material, and 𝜇0 is the 

permeability of vacuum (4𝜋 ∙ 10−7𝑁 ∙ 𝐴−2) (COMSOL®, 2019). 

 𝐵 = 𝜇0𝜇𝑟𝐻 (114) 
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COMSOL® calculates the current density of the coil 𝐽𝑒 using the following equation, where 

𝑁 is the number of turns in the coil, 𝐼𝑐𝑜𝑖𝑙, is the coil current, A is the sectional area of the 

coil, and 𝑒𝑐𝑜𝑖𝑙 is a vector field representing the local direction of the current flow in the wires 

(COMSOL®, 2019). 

 
𝐽𝑒 =

𝑁𝐼𝑐𝑜𝑖𝑙

𝐴
𝑒𝑐𝑜𝑖𝑙 

(115) 

The model of the EM was the same for both the linear and non-linear FEM models. 

5.5.4 Permanent Magnet Modeling 

COMSOL Multiphysics® provides the several constitutive relations for modeling the 

behavior of permanent magnets. These relations include magnetization, remnant flux 

density, BH non-linear permanent magnet, and the Jiles-Atherton hysteresis model.  The 

Jiles-Atherton hysteresis model is used to model circuits where permanent magnets are 

subjected to alternating magnetic fields, which is not the case for this reaction sphere model 

because it has magnetic fields of constant polarity. The BH non-linear permanent magnet 

relation is essentially a mix of the magnetization and material BH curve relations (COMSOL, 

2019).  This constitutive relation was used in reaction sphere simulations for two purposes.  

The first was to evaluate the need to include PM non-linearities and the second was to 

evaluate the effect of introducing a decoupling insert into the reaction sphere. The 

magnetization relation was not used in the FEM model because remnant flux density relation 

is a generalized form of the magnetization relation and is better suited to modeling magnets 

in the second quadrant of the magnetization curve (Tozzo, 2018).  The remnant flux density 

relation is often used in place of the magnetization relation because the recoil permeabilities, 

remnant flux density, and coercivity are more readily available from manufacturers than 

magnetization data (Tozzo, 2018). The constitutive relation for remnant flux density is given 

by equation (116). 

 𝐵 = 𝜇0𝜇𝑟𝐻 + 𝐵𝑟 (116) 

The remnant flux density was specified as 1.45T and the relative permeability was specified 

as 1.05 for all simulations. This information was extracted from the Arnold Magnetic 

Technologies® data sheet for an N52 sintered neodymium iron boron (NdFeB) magnet data 
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sheet. The remnant flux density relation is used in the generalized reaction sphere model, 

and is justified by examination of the open circuit operating point of the PM, and by the 

results of a COMSOL® simulations.  

The remnant flux density 𝐵𝑟 is the residual permanent magnetism in the material 

when the externally applied magnetizing field is reduced to zero after saturating the material 

(MMPA, 1998) and is the consequence of hysteresis (or memory) of the PM material. If the 

magnet is placed in a circuit with an airgap or a demagnetizing field is applied, then the PM 

will operate somewhere in the second quadrant of the demagnetization curve (Meeker, 

2007).  A special case is when a PM is in an open circuit condition, where it is surrounded 

by air with no external magnetic field present. In this scenario the PM forms free poles and 

a self-demagnetizing field potential 𝐻𝑑 forms (MMPA, 1998). This self-demagnetization 

field can be expressed as a demagnetizing flux density 𝐵𝑑 and is related to related to 𝐵𝑟 by 

the PM geometry by a demagnetization factor 𝑁.  Meeker proposed 𝑁 based on a numeric 

computation of the ratio of PM energy to PM coenergy.  Meeker’s method determines a 

value of 𝑁 over the entire volume of the PM and is similar to the magnetometric factor, and 

Meeker defined 𝑁 in terms of a reluctance coefficient 𝑐 which is a function of the PM 

geometry (Meeker, 2007).  Meeker also proposed energy methods (e.g. Magnetic field 

energy and co-energy) to calculate the open circuit operating point of a PM using his 

previously derived magnetization factor 𝑁 (Meeker, 2007). Following the method developed 

by Meeker, the operating point of the N52 PM was calculated and then plotted against the 

demagnetization curve from the Arnold Magnetics N52 data sheet, as shown in Figure 49. 

The operating point of the magnet was calculated to be approximately 1.34 𝑇𝑒𝑠𝑙𝑎, which 

agrees with the COMSOL output for the same N52 magnet, which is plotted in Figure 52 

and Figure 53.  Note: this is the BH curve using in COMSOL to model the N52 PM.  
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Figure 49:  Open Circuit Operating Point of N52 Permanent Magnet 

The remnant flux density relation was selected to model the PM because the PM 

operates in only the 2nd quadrant of the demagnetization curve, which is substantiated by 

the simulations results. Figure 53 depicts the normalized magnetic flux density on the outside 

of the PM, adjacent to an EM excited by 5 amperes, and Figure 52 shows a line plot of the 

normalized magnetic flux density over the length of the PM and along the centerline. The 

maximum and minimum flux densities are 1.35 Tesla and 0.71 Tesla respectively, both of 

which are located on the linear region of the N52 demagnetization curve, which is presented 

in Figure 53.  Also observe that the EM is polarized so that its magnetic field does not tend 

to demagnetize the PM.  
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Figure 50:  Magnetic Flux Density Norm for N52 PM, EM current at 5.0 Amp  

 

Figure 51: Magnetic Flux Density Norm along center of PM, EM current at 5.0 Ampere 

In three dimensional simulations 𝐵𝑟 must be expressed in terms of x, y, and z 

components, which for the generalized model is simply: 𝐵𝑟  = 𝐵𝑟𝑧 and 𝐵𝑟𝑦 = 𝐵𝑟𝑥 = 0.  

However, in the case of the validation model that contained all twelve PMs, the components 

were expressed by multiplying 𝐵𝑟 value by the components of the unit position vector of 

each PM.  All PMs were all assigned dimensions of 0.5 inches in length and 0.25 inch in 
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diameter for all simulations as shown in Figure 52, and all PMs were oriented with the north 

pole normal to the surface of the rotor. 

 

Figure 52: Permanent Magnet Geometry 

The permanent magnet is modeled after an Arnold Magnetic Technologies® N52 sintered 

NdFeB magnet.  The material properties and magnetization curve data were extracted from 

the manufacturer data sheet and input into COMSOL®. The magnetization curve data was 

extracted from the data sheet data using the Automeris Web Plot Digitizer software.  The 

demagnetization curve of the PM is plotted in Figure 53.  

The intrinsic magnetization curve was not considered in the COMSOL® modeling 

of the permanent magnet.  This is because the intrinsic curve is used to understand the effect 

of an external field on the magnetization within the PM, whereas the normal magnetization 

curve is used primarily to determine the amount of flux density and energy the magnet is 

capable of producing outside the magnet volume – the latter is of interest in this model 

(MMPA, 1998). 
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Figure 53:  N52 PM Normal Demagnetization Curve (Arnold Magnetic Technologies®) 

5.5.5 Iron Sphere Modeling 

The iron sphere was simulated in COMSOL® using two constitutive relations. The 

first was the non-linear BH curve and the second relation was the relative permeability 

relation which treats the BH relation as a linear relationship.  The rotor material was modeled 

using low carbon steel – soft iron, which has a comprehensive set of properties defined in 

the COMSOL® material library, including the normal magnetization curve. The geometry of 

the iron sphere is shown in Figure 54 and remained unchanged for all models studied herein. 

Note that the iron sphere model includes a pocket to accommodate a decoupling insert of the 

dimensions shown in Figure 58. The diameter of the iron sphere is 2.5 inches (0.0635 meter).   
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Figure 54: Generalized Model of the NGCRS Iron Rotor 

The constitutive relation computed by COMSOL® for the non-linear BH curve is given by 

equation (117), where ‖𝐻‖ is the magnetic field norm and 𝑓(‖𝐻‖) is a function relating the 

flux density to the magnetic field of the material as a function of the magnetic field norm. 

The BH curve for the low carbon steel – soft iron material is plotted in Figure 57. 

 
𝐵 = 𝑓(‖𝐻‖)

𝐻

‖𝐻‖
 (117) 

Several simulations were performed using the non-linear BH relation in order to assess the 

need to include the material non-linearities. The first series of simulations considered only 

the interactions between an electromagnet and the iron sphere for varying levels of current 

excitation and EM positions.  The maximum flux density induced in the sphere with an EM 

excited with 5.0 amperes of electrical current, which is the highest level of excitation 

considered herein, was approximately 0.35 Tesla.  The flux density plot for this condition is 

shown in Figure 55.  



 

74 

 

Figure 55: Magnetic Induction in iron rotor due to the EM 

Additional simulations were performed with a PM included in the model.  The maximum 

level of induction within the iron due to the PM field was limited to approximately 0.2 Tesla.  

The low level of induction is attributable to the large reluctance that the walls of the 

decoupling insert introduce into the magnetic circuit of the PM and rotor iron. Figure 56 

shows the magnetic flux density in the iron due to the PM, which is less than that of the EM.  
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Figure 56:  Magnetic Induction in Iron Rotor due to the PM 

The relative permeability relation for the magnetic field of the iron sphere is given 

below, where 𝐵 is the flux density, or induction, 𝐻 is the magnetic field strength, 𝜇0 is the 

permeability of air, and 𝜇𝑟 represents the relative permeability of the iron sphere. 

 𝐵 = 𝜇0𝜇𝑟𝐻 (118) 

COMSOL® requires the user to input a relative permeability when a library material is 

assigned to the problem domain.  A relative permeability of 3,720 was selected based on the 

flux density plots in Figure 55 and Figure 56, which were generated from the non-linear 

constitutive relations. The relative permeability was obtained by taking the average 

permeability of three points along the linear region of the BH curve using the following 

relation: 

 
𝜇𝑟 =

𝐵

𝐻𝜇0
 (119) 
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The data points used to approximate the relative permeability 𝜇𝑟 are provided in Table 1. 

The corresponding portion of the material BH curve is shown in red in Figure 57. 

Table 1:  Derivation of Relative Permeability for Iron Sphere 

H B 𝝁𝒓 

47.02 0.22 3758.13 

92.85 0.43 3727.48 

136.30 0.63 3674.61 

Average 𝜇𝑟~ 3720 

 

 

Figure 57: BH Curve for COMSOL® Low Carbon Steel – Soft Iron 

The magnetic forces predicted by COMSOL® for the non-linear BH and relative 

permeability models have a negligible difference, the details of which are presented in 

section 5.5.8.   
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5.5.6 Decoupling Insert Modeling 

A decoupling insert was introduced into the model to decouple the magnetic field of 

the PM from rotor iron such that the magnetic induction in the rotor iron was restricted to 

the linear region of the material magnetization curve as shown in Figure 57. This allowed 

the superposition principle to be applied with minimal error, and allowed the sphere to be 

modeled using the relative permeability constitutive relation without introducing significant 

inaccuracies and reducing the computation times of the simulations. 

The decoupling effect is attributable to the walls of the insert, which introduce a 

large reluctance into the magnetic circuit of the rotor iron and PM which causes a significant 

reduction of magnetic flux within the rotor. Ideally, the insert would be made of a lightweight 

non-magnetic and non-conducting material. However, copper was used in the model because 

its relative permeability is close to one and material properties are available in the 

COMSOL® material library. The insert was modeled in COMSOL® as a region of constant 

permeability (𝜇𝑟 = 1). The decoupling insert geometry shown in Figure 58. 

 

Figure 58:  Decoupling Insert Geometry 

The insert dimensions needed to adequately decouple the magnetic fields were 

determined by performing a plurality of simulations with increasing wall thickness.  Insert 

wall thicknesses of 1/64 inch, 1/32 inch, 1/16inch, 1/8 inch, and 3/16 inch were studied using 

the non-linear BH relation with the PM modeled using the Remnant Flux Density 

constitutive relations.  The details of this study are detailed in Section 5.5.7. 
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5.5.7 Comparison of Superposition and Integrated Models 

The Lorentz forces obtained from the individual superposition models are summed 

to obtain the total force acting on the EM. These forces are compared to the forces obtained 

from an integrated model with varying decoupling insert thicknesses.  The results of the 

study are shown in Figure 59.  The plots show that wall thicknesses below 3/16 inch do not 

provide sufficient decoupling between the PM and rotor iron, but the plot with for the 3/16-

inch insert shows good agreement between the superposition and coupled model.  However, 

the coupled model predicts a drop in magnetic force between angular distances of 12 and 22 

degrees with the maximum drop occurring at approximately 16 degrees. These angular 

distances encompass the area where the EM overlaps with the high reluctance gap between 

the PM and rotor, and the maximum drop occurs when the centerline of the EM is located at 

the sharp edge of the rotor iron as shown in the flux density plots in Figure 63.  It is apparent 

that the magnetic field is not fully decoupled in this region.   

Additional plots of the magnitude of the Lorentz forces for the 3/16-inch decoupling 

insert with increasing current levels are provided in Figure 60, Figure 61, and Figure 62.  At 

0.5 ampere coil excitation the drop in forces is not apparent, however once the current is 

increased to 1 ampere the drop in force appears and the effect increases in severity up to the 

maximum of 5 amperes.  This behavior will not be accounted for in the dynamic model 

discussed herein, and will be rejected as a disturbance by the ensuring controller 

implementation.  Refer to Section 5.6.1 for detailed discussion of the implementation of the 

forces in the dynamic model.  



 

79 

 

Figure 59: Comparison of Magnetic Force for Varying Gap Width – Integrated & 

Superposition Models 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
re

n
tz

 F
o

rc
e

 (
N

)

Angular Distance between PM and EM (degrees)

Magnitude of Lorentz Force: 1/64 inch Gap between PM and Rotor 
(5 Amp Excitation)

Fmag_Coupled_1/64

Fmag_Super_1 /64

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
re

n
tz

 F
o

rc
e

 (
N

)

Angular Distance between PM and EM (degrees)

Magnitude of Lorentz Force: 1/32 Inch Gap between PM and Rotor  
(5 Amp Excitation)

Fmag_Coupled_1/32

Fmag_Super_1 /32

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
re

nt
z 

Fo
rc

e 
(N

)

Angular Distance between PM and EM (degrees)

Magnitude of Lorentz Force: 1/16 Inch Gap between PM and Rotor  
(5 Amp Excitation)

Fmag_Coupled_1/16

Fmag_Super_1 /16

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
re

n
tz

 F
o

rc
e

 (
N

)

Angular Distance between PM and EM (degrees)

Magnitude of Lorentz Force: 1/8 Inch Gap between PM and Rotor  
(5 Amp Excitation)

Fmag_Coupled_1/8

Fmag_Super_1 /8

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Lo
re

n
tz

 F
o

rc
e

 (
N

)

Angular Distance between PM and EM (degrees)

Magnitude of Lorentz Force: 3/16 Inch Gap between PM and Rotor  
(5 Amp Excitation)

Fmag_Coupled_3/16

Fmag_Super_3 /16



 

80 

 

Figure 60:  Magnitude of Lorentz Force: Integrated vs. Superposition Model (0.5 amp) 

 

Figure 61:  Magnitude of Lorentz Force: Integrated vs. Superposition Model (1 amp) 
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Figure 62:  Magnitude of Lorentz Force: Integrated vs. Superposition Model (5 amps) 
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Figure 63:  Flux Density Plots of Superposition and Integrated Models (16 Deg Angle)  
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5.5.8 Comparison of Linear and Non-Linear FEM Models 

This section presents comparative results of the models listed below which were 

simulated using both linear and non-linear constitutive relations.  Typically, only the cases 

with an EM excited by 5.0 amperes of electrical current are examined since this results in 

the highest magnetic field intensities and exhibit the non-linear behavior. 

1. The generalized superposition model of the EM and Sphere 

2. The generalized superposition model of the EM and PM 

3. The generalized integrated model of the RS (EM, PM, and Sphere) 

The magnetic forces predicted by COMSOL® for the linear and non-linear relations 

of the generalized superposition model of the EM and Sphere are plotted in Figure 64. The 

results show that the linear model predicts forces very close to that of the non-linear model.  

The closeness of the results is due to the fact that the non-linear BH curve relation in 

COMSOL® behaves as the relative permeability relation if the magnetic fields are small 

(Tozzo, 2018). The largest percent difference in the magnitude of the force was 0.005%, 

while the average percent difference between the computed forces was less than 0.001%.  

Based on these results, the inclusion of material non-linearities is not warranted. 

 

Figure 64:  Magnitude of Lorentz Force: Relative Permeability vs. BH Curve of Sphere 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15 20 25 30 35

Lo
re

n
tz

 F
o

rc
e 

(N
)

Angular Distance (deg)

Magnitude of Lorentz Force: Relative Permeability vs. Non-Linear BH Model of Sphere 
(5.0 Ampere Coil Excitation) 

Fmag_Linear

Fmag_NonLinear



 

84 

The y and z components of the Lorentz forces predicted by COMSOL® for the PM 

superposition model using the remnant flux density (linear) and non-linear (BH, non-linear 

PM) relations of are plotted in Figure 65, and the magnitude of the Lorentz force is shown 

in Figure 66.  The results show that the remnant flux density model predicts forces close to 

that of the non-linear PM model. The largest percent difference in the magnitude of the force 

was 1.58%, while the average percent difference between the computed forces was less than 

1%. Based on these results, the inclusion of material non-linearities is not warranted. 

 

Figure 65:  Y, Z Components of Lorentz Force: Remnant Flux vs. Non-linear PM 
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Figure 66:  Magnitude of Lorentz Force: Remnant Flux vs. Non-linear PM 

The generalized, integrated model with the 3/16-inch insert (see Figure 46) was also 

simulated using linear and non-linear relations to ensure the linear relations could be used 

without inducing significant errors. A comparison of the magnetic forces generated by these 

two models is presented in Figure 67.  The results show the linear model is in close agreement 

with the non-linear model, and justifies using linear continuative relations in COMSOL®. 

The largest percent difference in the magnitude of the force was 1.94%, while the average 

percent difference between the forces was less than 0.66%.  The results again show that the 

non-linear constitutive relations do not provide any significant improvement in accuracy 

over the linear relations. 
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Figure 67:  Magnitude of Lorentz Force: Linear vs. Nonlinear Integrated Model 

5.5.9 Comparison of Generalized Model to Complete Model 

Simulations were performed for a rotor model complete with all twelve PMs and all 

twelve decoupling inserts.  The forces predicted by this model were compared against the 

forces predicted by the generalized superposition model and the generalized integrated 

model.  Two conditions were simulated using the complete model and are listed below, and 

illustrated in Figure 68. 

1. The EM is rotated through a trajectory with one PM adjacent to the path 

2. The EM is rotated through a trajectory with two PMs adjacent to the path  
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Figure 68:  EM Rotation: (a) One Adjacent PM and (b) Two Adjacent PMs 

The forces predicted by COMSOL® for the complete model of the rotor assembly are 

compared to the forces for the generalized integrated model and the superposition models in 

Figure 69. This plot is for the condition of one adjacent PM (shown in Figure 68) with a coil 

excitation of 0.5 ampere.  The plot shows close agreement between all the models.  Similarly, 

the plot in Figure 70 compares the forces predicted by the three models, but for a coil 

excitation current of 5.0 amperes. The complete rotor model and generalized (integrated) 

model show close agreement, but the superposition model does not account for the coupling 

between the EM and PM in the region near the decoupling insert as discussed previously in 

Section 5.5.7. 

The plots for the condition with two adjacent PMs are provided in Figure 71 and 

Figure 72.  Again, the plots show close agreement amongst the models. However, in contrast 

to the condition with one adjacent PM, the force is approximately equal to the force the EM 

exerts on the iron only because the magnetic fields of the two PMs largely cancel one another 

and the force between the iron and EM dominates. The force plot for any arbitrary trajectory 

would be between these two extremes. 
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Figure 69: Forces for Generalized vs. Complete Rotor Assembly 1 Adjacent PM (0.5 Amp) 

 

Figure 70: Forces for Generalized vs. Complete Rotor Assembly 1 Adjacent PM (5 Amps) 
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Figure 71: Forces for Generalized vs. Complete Rotor Assembly 2 Adjacent PM (0.5 Amp) 

 

Figure 72: Forces for Generalized vs. Complete Rotor Assembly 2 Adjacent PMs (5 Amp) 
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5.5.10   Computation of Force and Torque 

The magnetic forces are computed by COMSOL® using the Lorentz Force. The 

constitutive relation of which is given by equation (120), where 𝐽 is the current density in the 

electromagnet volume and 𝐵 is the magnetic field.   

 𝐹 𝐿 = 𝐽 × 𝐵̂ (120) 

The advantage of using the Lorentz force calculate the magnetic forces, rather than the 

Maxwell Stress-Tensor, is because it is produces highly accurate results for current carrying, 

non-magnetic domains, and is less sensitive to surface mesh density than the Maxwell Stress 

Tensor method (COMSOL, 2019).  The force computed by COMSOL® represents the net 

force acting on the EM.  The force acting on the EM is equal and opposite to the force acting 

on the sphere in accordance with Newtons third law. Consequently, the forces predicated by 

COMSOL® must be reversed in the dynamic model in order to represent the forces acting on 

the spherical rotor.  

The torques are computed by COMSOL® using equation (123), where 𝑟𝑂 is a point on the 

origin of the axis of rotation (specified at the origin of the coordinate system for all 

simulations), 𝑟 is the distance to the point of action, 𝑛1 is the normal vector pointing outward 

from the domain containing material 1, and 𝑇2 is the stress tensor in material 2.  In this case 

material 1 is the copper coil and material 2 is the air surrounding the coil. The torque is 

calculated as a boundary integral of the stress tensor on the outside of the coil (COMSOL, 

2019).  

 𝑀𝑂 = ∮(𝑟 − 𝑟𝑂) × (𝑛1𝑇2)

 

𝜕Ω1

𝑑𝑆 (121) 

For air, the stress tensor is calculated by COMSOL® using equation (122), where 𝑝 is the 

air pressure, 𝐼 is the identity 3-by-3 matrix, and 𝐸 and 𝐵 are 3-by-1 vectors representing the 

electric field and magnetic field respectively. Treating air as a vacuum (𝑝 = 0) the 

expression becomes the Maxwell stress tensor (COMSOL, 2019). 
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 𝑇2 = −𝑝𝐼 − (
𝜖0

2
𝐸 ∙ 𝐸 +

1

2𝜇0
𝐵 ∙ 𝐵) 𝐼 + 𝜖0𝐸𝐸𝑇 +

1

𝜇0
𝐵𝐵𝑇 (122) 

Note that none of the methods described above can used to compute or visualize the force 

distribution inside a domain. The relations only compute the total force and total torque in 

situations where the device is surrounded by a nonsolid medium (COMSOL, 2019). 

5.5.11   Meshing and Convergence  

The model mesh was controlled by the physics module and biased toward evaluation 

of the magnetic field.  The fineness of the mesh was selected based on the results of a 

convergence study that compared the Lorentz forces output by COMSOL for each of the 

built-in physics-based refinements. The Lorentz forces were scaled against the coarsest 

physics-based mesh available in COMSOL®, which is called “coarser”.  The results are 

tabulated and plotted in Figure 73.  The results show that in all cases the forces predicted by 

the “ultra-fine” mesh differed from the “coarser” mesh by less than four percent.  The “ultra-

fine” mesh was used for all simulations because sufficient computational resources were 

available to solve the models using the finest mesh in a reasonable amount of time. 
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Figure 73:  Convergence: Normalized Force vs Varying Current & Mesh Refinement 

An Infinite Element Domain (IED) was incorporated into the mesh in order to model 

the system as an unbounded domain.  The IED applies a real-valued coordinate scaling to a 

layer of virtual domains surrounding the physical region of interest (COMSOL®, 2015), and 

is advantageous because it removes the ambiguity associated with sizing the physical domain 

in the problem, such that the external boundaries do not interfere with the fields in or on the 

model domains.  Additionally, the IED eliminates the need to specify a boundary condition 

for the problem (Frei, 2016).  The end effect of the IED is that the domain behaves as if it 

were of infinite extent.  The meshes of the two generalized models are depicted in Figure 74 

and Figure 75. The IED is not shown in the PM model for clarity.  
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Figure 74: Mesh of the Generalized EM and Sphere Model 

 

Figure 75: Mesh of the Generalized EM and PM Model 
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 Relations for Forces and Torques 

The forces and torques acting on the rotor assembly are computed off-line from the 

Simulink® dynamic model, using simulation data obtained from the generalized 

superposition FEM model of the NGCRS, as presented in Section 0. The applicable data is 

provided in Appendix A. 

Based on the results of the FEM simulations, the magnetic forces between the EMs 

and the rotor iron and rotor PMs were divided into two distinct regions. In the first region, 

henceforth referred to as the “Iron” region, the force between the EM and the rotor iron is 

dominant and the PM field interactions with the EM are neglected. And the second region, 

henceforth referred to as the “Iron +PM” region is where the magnetic field interactions 

between the EM and PM cannot be neglected. The threshold for these two regions is 

determined from the scalar distance between the EM and PM, where the forces predicted by 

the Iron region and Iron + PM region are equal.  An illustration of the two regions is provided 

in Figure 78 for a coil excitation of 5 amperes. The threshold distance is dependent only on 

the coil excitation current. This of course would not be true for a 6-DOF model, in which 

case the force would be dependent upon the EM current and the magnetic airgap.  

A fit equation was derived to relate the EM current to the threshold distance.  The 

equation was obtained by calculating the magnitude of the magnetic forces predicted by the 

generalized superposition model for each coil excitation simulated, and converting the 

angular distances to scalar distances using equation (123). From there, a curve was fit to each 

force vs distance data set using the MATLAB® curve fitting toolbox. The equations for each 

curve fit were input into a MATLAB script as an equality set equal to force the EM exerts 

on the iron rotor (e.g. force in the Iron region) for the applicable current level. The equality 

was solved numerically to determine the point of intersection, thus obtaining the threshold 

distance. This process was repeated for every coil excitation simulated. The resulting curve 

fit for the current vs threshold distance data is shown in Figure 77, and Figure 76 illustrates 

the procedure and threshold distance for a coil excitation of 5 amperes.  The data, fit curves, 

and scripts used to derive the threshold distance relation are provided in Appendix B.  
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Figure 76:  Distance where Regions of Force are Equal (5 Amps) 

 

Figure 77:  Threshold Distance of Regions of Force as a Function of Current 
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Figure 78:  Threshold Distance for Iron Only and Iron + PM Forces 

 



 

97 

An algorithm was implemented in MATLAB Simulink® to calculate the net force 

and torque acting on the rotor assembly for any arbitrary orientation. A functional description 

of the algorithm is provided in the Section 5.6.1. 

The COMSOL® simulation data is output in terms of the angular distance between 

the EM and PM. The angles were converted to scalar distances using the law of cosines given 

by equation (123), where 𝑟 is the radius of the sphere, and 𝜃 is the angular distance between 

the centerlines of the EM and PM. The conversion was performed outside the algorithm to 

reduce the computation time.  All fit curves in Appendix B were fit to the linear distance 𝑑. 

 
𝑑 = √𝑟𝐸𝑀

2 + 𝑟𝑠
2 − 2 𝑟𝐸𝑀 𝑟𝑠cos (𝜃) (123) 

 

Figure 79:  Conversion of Angular Distance to Linear Distance 

5.6.1 Force and Torque Computation Algorithm 

The force and torque algorithm is applicable to a 3-DOF problem with the rotor fixed 

translationally at the origin (e.g. fixed radial airgap). However, this algorithm could be 

extended to a 6-DOF model with modification.  A high-level logic flow diagram of the 

algorithm is depicted Figure 80.  Note that the logic is applied to each EM relative to every 

rotor PM. 
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Figure 80: Logic Flow Diagram for Calculation of Forces and Torques 

The first step of the algorithm is to apply the ZYX Euler Angle rotations to each PM 

position vector and calculate the rotated PM position vector coordinates in terms of the basis 

vectors (𝑖̂, 𝑗̂, 𝑘̂) in the (fixed) stator coordinate system. Next, the scalar distance between 

each fixed EM position vector and each instantaneous (rotated) PM position vector is 

calculated, yielding a total of 72 distances (6 EMs x 12 PMs). The scalar distance 𝑑 is simply 

the formula for the magnitude of the distance between two points. 

𝑑(𝐸⃗ 𝑀, 𝑃⃗ 𝑀) = ‖𝐸⃗ 𝑀 − 𝑃⃗ 𝑀‖ = √(𝐸𝑀𝑥 − 𝑃𝑀𝑥)
2𝑖̂ + (𝐸𝑀𝑦 − 𝑃𝑀𝑦)

2
𝑗̂ + (𝐸𝑀𝑧 − 𝑃𝑀𝑧)

2𝑘̂ (124) 
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The resulting distance is always positive, and therefore it is obvious which PM and EM are 

interacting because the RS inner and outer geometries preclude more than one PM from 

interacting with an EM for any orientation. Figure 81 provides an illustration of the scalar 

distance between an EM and PM. 

 

Figure 81:  Euclidean Distance between a Single EM and PM 

Subsequent to this, the algorithm identifies the PM in closest proximity to each EM which 

in turn permits identification of the specific EM-PM pairs.  The minimum distances for the 

EM-PM pairs are then compared to threshold distances calculated from the equation of the 

fit curve shown in Figure 76 using the instantaneous EM current. From there, the relations 

describing the force in each region are used to calculate the net force and torque acting on 

the rotor assembly.  The relations describing the magnetic force in the Iron region and the 

Iron + PM region are discussed in detail in Sections 5.5.2 and 5.5.4.  Note that if the EM is 

equi-distant to more than one PM, then the force is considered to be in iron region as can be 

discerned from Figure 78. 

5.6.2 Forces in the Iron Region 

In this region, the EM is a sufficient distance from the PM so that the field interaction 

between the EM and the rotor iron is dominant, and the effect of the PM field is neglected 

Distance d 

𝑋 𝑌 

 𝑍 
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as was illustrated in Figure 78.  Moreover, the magnetic force acts on the rotor through its 

center of mass and tends to attract rotor toward the EM along the central axis of the EM as 

illustrated in the free body diagram (FBD) in Figure 82, where 𝐹𝑖𝑟𝑜𝑛 is the attractive force 

between the stator housing and the rotor iron, and 𝐹𝑚𝑟 and 𝐹𝑚𝑠 are the inertia forces of the 

rotor and stator masses respectively.  The complete FBD of the rotor is shown in Figure 83 

 

Figure 82:  FBD of Forces Acting on a Single EM and Rotor 

𝐹 𝐸𝑀(𝑖) = 𝐹𝑖𝑟𝑜𝑛(𝑖)
𝑃⃗ 𝐸𝑀

𝑟
= 𝐹𝑖𝑟𝑜𝑛(𝑖) (

𝑃𝑥

𝑟
𝑖̂ +

𝑃𝑦

𝑟
𝑗̂ +

𝑃𝑧

𝑟
𝑘̂) = 𝐹𝑥 𝑖̂ + 𝐹𝑦𝑗̂ + 𝐹𝑧𝑘̂ (125) 

The COMSOL® simulation outputs the magnetic forces in 𝑥, 𝑦, 𝑧 components, and from there 

the magnitude of the force is calculated off-line from the algorithm, permitting 

implementation of a single fit curve into the algorithm rather than a fit curve for each force 

component.  The magnitude of the force is resolved in terms of 𝑥, 𝑦, 𝑧 force components for 

each stator EM, simply by multiplying the magnitude of the force 𝐹𝑖𝑟𝑜𝑛(𝑖) by the EM unit 

position vector 
𝑃⃗ 𝐸𝑀

𝑟
 as shown in equation (125). This result was verified by COMSOL® 

simulation and is discussed in Chapter 6   

The forces acting on the rotor are treated as a linear combination of forces and thus 

may be summed to obtain the net force as given by equation (126), where n represents EMs 

one through six, 𝑖 represents the instantaneous coil current, 𝑚𝑟 is the mass of the rotor, and 

a represents rotor acceleration. 

𝐹 𝐸𝑀(𝑖) 

𝐹𝑚𝑠 𝐹𝑖𝑟𝑜𝑛(𝑖) 

𝐹𝑚𝑟 
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∑ 𝐹 𝐸𝑀𝑛

6

𝑛=1

(𝑖𝑛) = ∑ 𝐹𝑥𝑛(𝑖𝑛)𝑖̂ + ∑ 𝐹𝑦𝑛

6

𝑛=1

(𝑖𝑛)𝑗̂ + ∑ 𝐹𝑧𝑛

6

𝑛=1

(𝑖𝑛)𝑘̂ =

6

𝑛=1

𝑚𝑟(𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧𝑘̂) (126) 

Since the rotor and stator are fixed translationally, the resultant accelerations are zero. 

 𝑚𝑟(𝑎𝑥𝑖̂ + 𝑎𝑦𝑗̂ + 𝑎𝑧𝑘̂) = 0 (127) 

 

Figure 83:  FBD of Magnetic Forces acting on Rotor in Iron Region 

The magnitude of the magnetic force in this region is estimated by a second order 

polynomial fit equation which is given below and the quality of the fit and values of the 

coefficients 𝑎 and 𝑏 are shown in Figure 84.  The data points in the fit curves represent the 

magnitude of the magnetic force the EM exerts on the iron rotor or a given current level, 

with the influence of the PM magnetic field excluded from the model. 

 𝐹𝑚𝑎𝑔(𝑖) = 𝐹𝑖𝑟𝑜𝑛(𝑖) = a𝑖𝑏 = 0.04082 𝑖2 (128) 
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Figure 84:  Fit Curve of Magnitude of Iron Only Force vs. Current 

The inverse model is also evaluated so the ensuing controller can determine the appropriate 

current to develop the desired force.  The inverse model fit curve is provided in Figure 85: 

 𝑖(𝐹𝑚𝑎𝑔) = a𝐹𝑏 = 4.949 𝐹𝑚𝑎𝑔
1 2⁄

 (129) 

 

Figure 85:  Fit Curve of Inverse Model: Current vs. Magnitude of Iron Only Force 
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5.6.3 Torque in the Iron Region 

Torque in the Iron Region is equal to zero because the line of action of the resultant 

magnetic force induced by each EM acts through the rotor center of mass. The EM position 

vector and resultant force vectors are collinear as shown in Figure 86.  

 

Figure 86:  Evaluation of Torques in the Iron Region 

This can be verified by evaluating the cross product as shown below, where 𝑟̂𝑛 is the EM 

unit position vector, and 𝐹𝐸𝑀𝑛 is the force exerted on the rotor by the EM, thus the sum of 

the torques in the iron region are zero.  

 ∑ 𝜏 𝑛

6

𝑛=1

= ∑ 𝑟̂𝑛 × 𝐹 𝐸𝑀𝑛

6

𝑛=1

= 0 (130) 

This result is true only for a translationally fixed 3-DOF model. If the rotor is free to translate 

in the x, y, z axis this would cause the rotor center of mass to be eccentric to the line of action 

of the EM forces. 
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5.6.4 Calculation of Force in Iron + PM Region 

Calculation of force in this region is more difficult because the force vector does not 

act through the center of mass unless the centerline of the EM and PM are coincident.  Simply 

multiplying the magnitude of the force by the EM unit position vector by will not yield the 

correct resultant force. The individual force components output by the generalized 

(superposition) FEM model must be transformed into the correct force components for each 

EM. The necessary transformation is achieved by a series of coordinate frame rotations and 

is discussed in the subsequent paragraphs. The example and illustrations that follow consider 

𝑃𝐸𝑀𝑈2 as an example (EM position 2 in upper hemisphere of the stator), and all rotations 

follow the right-hand rule. 

The magnetic force data was generated by rotating a single EM about the X-Axis, 

relative to a fixed PM, by a positive angle starting from 0 degrees (centerlines of PM and 

EM coincident on the Z-axis) up to 31.7175 degrees (half the distance between adjacent PM).  

Figure 87 shows that the axis of the EM and PM are located on the ZY Plane, and 

consequently, COMSOL outputs only z and y force components.  However, in the RS, the 

EMs are fixed and the PMs rotate and can be in any position relative to the EM.  Therefore, 

the first rotation transforms the COMSOL force vector to represent a fixed EM and a rotating 

PM.  Rotation is about the x-axis by the angle 𝜙1 which is determined from the scalar 

distance between the EM and PM. The end result is the EM is coincident with the Z axis as 

illustrated in Figure 87. 

 𝜙1 = 2𝜋 − cos−1 (−
𝑑2 − 𝑟𝐸𝑀

2 − 𝑟𝑠
2

2𝑟𝐸𝑀𝑟𝑠
) =2𝜋 − cos−1 (

𝑟𝐸𝑀
2 + 𝑟𝑠

2 − 𝑑2

2𝑟𝐸𝑀𝑟𝑠
) (131) 

The rotation matrix is: 

 [𝑅𝑥1] [

𝑥1

𝑦1

𝑧1

] =  [

1 0 0
0 𝑐𝑜𝑠(𝜙1) −𝑠𝑖𝑛(𝜙1)

0 𝑠𝑖𝑛(𝜙1) 𝑐𝑜𝑠(𝜙1)
] [

𝑥1

𝑦1

𝑧1

] = [

𝑥′1
𝑦′1
𝑧′1

] (132) 
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And the transformed force vector 𝐹 𝑡𝑟 is given by the equation below, where 𝐹 𝑠𝑖𝑚 is the force 

vector given by COMSOL and expressed as a column vector.  The effect of the rotation is 

illustrated in Figure 87 for an arbitrary angle 𝜙1. 

 𝐹 𝑡𝑟 = [𝑅𝑥1]𝐹 𝑠𝑖𝑚 = [0 𝐹𝑦 𝐹𝑧]𝑇 (133) 

 

Figure 87:  Transformation from Moving EM to Fixed EM with Moving PM 

Next, the EM / PM pair is rotated into the stator EM coordinates.  These rotations are specific 

to the coordinates of each EM and are fixed values. The values are given in Table 2. 

Table 2:  EM Rotation Angles 

EM  

Position 

Rotation about Z-axis  

(radians) 

Rotation about X-axis 

(radians) 

𝐸𝑀𝑈1 𝜓1 = 0 𝜙2 = −cos−1 (
1

√3
) 

𝐸𝑀𝑈2 𝜓1 = 5𝜋
3⁄  𝜙2 = cos−1 (

1

√3
) 

𝐸𝑀𝑈3 𝜓1 = 𝜋
3⁄  𝜙2 = cos−1 (

1

√3
) 

𝐸𝑀𝐿1 𝜓1 = 0 𝜙2 = 𝜋 − cos−1 (
1

√3
) 

𝐸𝑀𝐿2 𝜓1 = 2𝜋
3⁄  𝜙2 = 𝜋 − cos−1 (

1

√3
) 

𝐸𝑀𝐿3 𝜓1 = 4𝜋
3⁄  𝜙2 = 𝜋 − cos−1 (

1

√3
) 

Rotate EM/PM about X-

axis by 𝜙1 in positive 

direction 
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The rotation matrix for the Z-axis rotation is: 

 [𝑅𝑧1] [

𝑥1

𝑦1

𝑧1

] = [
𝑐𝑜𝑠(𝜓1) − 𝑠𝑖𝑛(𝜓1) 0

𝑠𝑖𝑛(𝜓1)     𝑐𝑜𝑠(𝜓1) 0
0 0 1

] [

𝑥1

𝑦1

𝑧1

] = [

𝑥′1
𝑦′1
𝑧′1

] (134) 

And the rotation matrix for the subsequent X-axis rotation is: 

 [𝑅𝑥2] [

𝑥′1
𝑦′1
𝑧′1

] =  [

1 0 0
0 𝑐𝑜𝑠(𝜙2) −𝑠𝑖𝑛(𝜙2)

0 𝑠𝑖𝑛(𝜙2) 𝑐𝑜𝑠(𝜙2)
] [

𝑥′1
𝑦′1
𝑧′1

] = [

𝑥′′1
𝑦′′1
𝑧′′1

] (135) 

The resulting orientation of the EM and PM is shown in Figure 88.  The rotated PM position 

vector still does not align with the instantaneous PM position vector.  Another rotation must 

be applied to align the PM position vectors.  

 

Figure 88:  Rotation from COMSOL Coordinates to Stator Coordinates (𝐸𝑀𝑈2) 

The necessary rotation angle 𝜓2 is obtained by pre-multiplying the instantaneous PM 

position vector by the inverse matrix, which for a rotation matrix is simply the transpose.  

 ([𝑅𝑍1][𝑅𝑥2])
−1 𝑃⃗ 𝑃𝑀 = ([𝑅𝑍1][𝑅𝑥2])

𝑇 𝑃⃗ 𝑃𝑀 (136) 

 

Rotate EM/PM +
5𝜋

3
 

radians around Z-axis 

EM/PM in fixed 

Stator Position 

Rotate EM/PM by 

𝜙
2
 around X’-axis 

Instantaneous 

PM Position 
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Note that 𝑅𝑍1 and 𝑅𝑥2 are proper rotation matrices and therefore have a determinant equal 

to one, and is verified by computing the determinants of the rotation matrices for the angles 

listed in Table 2. And because the determinants of  𝑅𝑍1 and 𝑅𝑥2 are non-zero, both matrices 

are invertible (Strang, 1980). 

This transforms the instantaneous PM position vector into the COMSOL® simulation 

coordinate frame. From there, the rotation angle 𝜓2 is determined from the arctangent of the 

𝑥, 𝑦 components of the simulation PM position denoted by subscript 𝑠, and the instantaneous 

PM position denoted by subscript 𝑖 rotated into original coordinate system.  The angles are 

measured from the positive X-axis as shown in Figure 89. The MATLAB® code utilizes the 

atan2 function to calculate the angle for two reasons. Firstly, it has the capability to identify 

the quadrant for the inverse tangent, and secondly it increases the computation efficiency. 

 𝜓𝑠 = 𝑎𝑡𝑎𝑛2(𝑦𝑠, 𝑥𝑠) (137) 

 
𝜓𝑖 = 𝑎𝑡𝑎𝑛2(𝑦𝑖 , 𝑥𝑖) 

(138) 

 
𝜓2 = 𝜓𝑠 − 𝜓𝑖 (139) 

 

Figure 89: Determination of Final Transformation Rotation Angle 
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The final rotation matrix is given below:   

 [𝑅𝑧2] [

𝑥′′1
𝑦′′1
𝑧′′1

] = [
𝑐𝑜𝑠(𝜓2) − 𝑠𝑖𝑛(𝜓2) 0

𝑠𝑖𝑛(𝜓2)     𝑐𝑜𝑠(𝜓2) 0
0 0 1

] [

𝑥′′1
𝑦′′1
𝑧′′1

] = [
𝑥
𝑦
𝑧
] (140) 

Finally, the transformed force components for any arbitrary orientation of the PM relative to 

each EM can be determined by pre-multiplying the force vector 𝐹 𝑡𝑟 by the rotation matrices 

in the order in which the rotations were applied, as shown in the equation below. The 

resulting force vector 𝐹 𝐸𝑀 is expressed as a column vector for each EM with a PM within 

the threshold distance. 

 𝐹 𝐸𝑀 = [𝑅𝑍1][𝑅𝑥2][𝑅𝑍2] 𝐹 𝑡𝑟 (141) 

The transformations presented in this section were validated for each EM position by 

performing COMSOL® simulations, the results of which are discussed in Section 6.2.  

The 𝑦 and 𝑧 components of the magnetic forces in the Iron + PM region are functions 

of both current and the distance between the EM and PM.  The forces are estimated by a fifth 

order polynomial in the distance dependent variable and a second order polynomial in the 

current dependent variable and are of the form given by equation (130).  A high-quality fit 

could not be achieved over the full range of distance, so two plots were created by dividing 

the distance in half.  The y-components of force plotted in Figure 90 and Figure 91, and the 

z-components are plotted in Figure 92 and Figure 93.  

𝐹 𝑦,𝑧(𝑑, 𝑖) = 𝑝0 + 𝑝1𝑑 + 𝑝2𝑖 + 𝑝3𝑑
2 + 𝑝4𝑑𝑖 + 𝑝5𝑦

2 + 𝑝6𝑥
3 + 𝑝7𝑑

2𝑖 + 𝑝8𝑑𝑖2 +

                      𝑝9𝑑
4 + 𝑝10𝑑

3𝑖 + 𝑝11𝑑
2𝑖2 + 𝑝12𝑑

5 + 𝑝13𝑑
4𝑖 + 𝑝14𝑑

3𝑖2  
(142) 
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Figure 90:  Y Component of Lorentz Force vs Current vs Distance: Iron + PM Region 

 

Figure 91:  Y Component of Lorentz Force vs Current vs Distance: Iron + PM Region 
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Figure 92:  Z Component of Lorentz Force vs Current vs Distance: Iron + PM Region 

 

Figure 93:  Z Component of Lorentz Force vs Current vs Distance: Iron + PM Region 

The inverse models are also evaluated so the ensuing controller can determine the 

appropriate current level to develop the desired force for a given distance. The inverse 

relations were determined by symbolically solving equation (130) in terms of the current. 

The symbolic solver output two possible solutions. The correct solution is identified by 

inputting validation data into both equations and comparing against the current value 



 

111 

associated with the distance and force input into the equation. The raw data, residuals plots, 

and the equations of the surfaces are provided in Appendix B. 

5.6.5 Torque in the Iron + PM Region 

Torque in the Iron + PM region is not zero because the line of action of the magnetic 

forces do not act through the rotor center of mass. The total external torques acting on the 

rotor, due to the magnetic forces, is given below in terms of basis vectors of the body-fixed 

stator coordinate system, where 𝑟  is the position vector of the PM. 

 

∑ 𝜏 𝑛

6

𝑛=1

= ∑(𝑟 𝑛 × 𝐹 𝑛)

6

𝑛=1

= [

𝒊̂ 𝒋̂ 𝒌̂
𝑟𝑥𝑛 𝑟𝑦𝑛 𝑟𝑧𝑛
𝐹𝑥𝑛 𝐹𝑦𝑛 𝐹𝑧𝑛

] (143) 

∑ 𝜏 𝑛

6

𝑛=1

= ∑(𝑟𝑦𝑛𝐹𝑧𝑛 − 𝑟𝑧𝑛𝐹𝑦𝑛)

6

𝑛=1

𝒊̂ − ∑(𝑟𝑥𝑛𝐹𝑧𝑛 − 𝑟𝑧𝑛𝐹𝑥𝑛)

6

𝑛=1

𝒋̂ + ∑(𝑟𝑥𝑛𝐹𝑦𝑛 − 𝑟𝑦𝑛𝐹𝑥𝑛)

6

𝑛=1

𝒌̂ (144) 

The torques are only summed for the EM-PM pairs that are within the Iron + PM region as 

defined in Section 5.6.4. If the EM-PM pair is within the Iron region, then the torque is equal 

to zero for the reasons discussed in Section 5.6.3.  Note that as discussed in section 5.5.10, 

the forces calculated by COMSOL® represent the total force acting on a domain, and a 

singular value of 𝑟, representing perpendicular distance to the line of action for the total 

force, cannot be obtained from the model. As a consequence of this, the point of action of 

the total force is considered to coincide with the PM position vector, and the moment arm 𝑟  

is the position vector of the PM.  

 Equations of Motion 

5.7.1 Mass Moment of Inertia 

The inertial properties of a rigid body can be characterized by an inertia tensor of 

the rotor moment and products of inertia as shown below (Hibbeler, 2007).  

 𝐼𝑟𝑜𝑡𝑜𝑟 = [

    𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥    𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑦 −𝐼𝑧𝑦    𝐼𝑧𝑧

] (145) 
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And, in the case of a homogenous sphere with its center of mass located at the origin of the 

reference frame axes, the y-z, x-z, and x-y planes are all planes of symmetry. Therefore, all 

of the products of inertia are zero (𝐼𝑥𝑦 = 𝐼𝑦𝑥 = 𝐼𝑥𝑧 = 𝐼𝑧𝑥 = 𝐼𝑦𝑧 = 𝐼𝑧𝑦 = 0) (Hibbeler, 2007) 

and the inertia tensor is reduced to the principal moments of inertia, where 𝐼𝑥𝑥 = 𝐼𝑥 , 𝐼𝑦𝑦 =

𝐼𝑦, 𝐼𝑧𝑧 = 𝐼𝑧. 

 𝐼𝑟𝑜𝑡𝑜𝑟 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] (146) 

The principal moments of inertia are all equal for a homogeneous sphere (𝐼𝑥 = 𝐼𝑦 = 𝐼𝑧), and 

are calculated below for an iron sphere of a radius equal to 0.03175m, or 1.25 inches.   

 
𝐼𝑠 =

2

5
𝑚𝑠𝑟𝑠

2 =
2

5
(1.0551022 𝑘𝑔) ∙ (0.03175𝑚)2

= 4.2544 ∙ 10−4 𝑘𝑔 ∙ 𝑚2 

(147) 

The NGCRS rotor assembly is a composite body comprising an iron rotor, copper (or 

polymer) inserts, and PMs, and so is not perfectly symmetrical or homogenous. However, 

its principle moments of inertia are closely approximated by that of the homogenous sphere. 

This is verified by computing the inertia tensor using Solidworks® version 2015, in terms 

of the coordinate system used to derive the PM position vectors. 

 𝐼𝑟𝑜𝑡𝑜𝑟 = [
4.3945 ∙ 10−4 −1.0542 ∙ 10−13 −5.3007 ∙ 10−12

−1.0542 ∙ 10−13 4.3945 ∙ 10−4 2.5688 ∙ 10−13

−5.3007 ∙ 10−12 2.5688 ∙ 10−13 4.3945 ∙ 10−4

] 𝑘𝑔 ∙ 𝑚2 (148) 

The principal moments of inertia of the rotor assembly calculated using Solidworks® version 

2015 are provided below. Comparison of the results homogeneous sphere and the NGCRS 

rotor assembly are in close agreement (≈ 3.2% difference). The Simulink® dynamic model 

use the values calculated by Solidworks®. 

 𝐼𝑟𝑜𝑡𝑜𝑟 = [

𝐼𝑥 0 0
0 𝐼𝑦 0

0 0 𝐼𝑧

] = [
4.3945 ∙ 10−4 0 0

0 4.3945 ∙ 10−4 0
0 0 4.3945 ∙ 10−4

] 𝑘𝑔 ∙ 𝑚2 (149) 
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The inertia tensor above assumes a uniform density throughout the sphere.  If the density is 

not uniform, then the inertias along the principal axes are not equal.   

5.7.2 Euler Equations of Motion 

The motion of the rotor assembly is considered as rigid body motion. A body-fixed 

reference frame (𝑋, 𝑌, 𝑍) is defined with its origin located at the center of mass of the RS. 

The orientation is as described in Section 5.4.  The motion of the rotor is considered using 

fixed body axes, with the 𝑥𝑦𝑧 axes oriented along the principal axes of the rotor.  Using this 

arrangement, the products of inertia will be zero (Greenwood, 2003). The equations of 

motion for the body-fixed frame are given below, and are known as the Euler equations of 

motion because they were first formulated by the mathematician Leonhard Euler in the 18th 

century. These equations are a set of three first-order, non-linear, coupled set of differential 

equations. Note, however, that if the inertias along the principal axis are equal, the second 

term on the right-hand side of each equation vanishes, and the equations reduce to a set of 

second order ordinary differential equations.  If the principal moments of inertia are not 

equal, then the non-linear set of equations would need to be analyzed carefully to study the 

existence of solutions. 

 𝜏𝑥 = 𝐼𝑥𝜔̇𝑥 + (𝐼𝑧 − 𝐼𝑦)𝜔𝑦𝜔𝑧 (150) 

 𝜏𝑦 = 𝐼𝑦𝜔̇𝑦 + (𝐼𝑥 − 𝐼𝑧)𝜔𝑧𝜔𝑥 (151) 

 𝜏𝑧 = 𝐼𝑧𝜔̇𝑧 + (𝐼𝑦 − 𝐼𝑥)𝜔𝑥𝜔𝑦 (152) 

The body-axes components of the externally applied moments 𝜏𝑥, 𝜏𝑦, 𝜏𝑧 are 

calculated using the force and torque relations presented in Section 5.6.  The angular velocity 

components (𝜔) are obtained by integrating the differential equations with respect to time, 

the Euler angle rates are then obtained from the angular velocity components using the 

kinematic relations defined in Section 5.4.2, and the Euler angles (orientation) of the rotor is 

obtained by integrating the Euler angle rates with respect to time.  These calculations are 

performed in the Simulink® model. 
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 Simulink Model 

The dynamics of the reactions sphere are implemented in a MATLAB Simulink® 

model using the relations and methods presented herein.  

5.8.1 Electromagnet Model 

Each levitation electromagnet is modeled in Simulink® using the relations presented 

in Section 5.1.2, and both the inductance and resistance values are considered constant in 

this model.  The EM parameters are listed in Table 3, and the Simulink model of the EM is 

shown in Figure 94.  The resistance listed in the table was approximated using the relation 

below, where 𝑅𝑖 is the nominal ohmic resistance per inch of 32 AWG copper wire (ANSI 

NEMA 1000-2011, 2011), 𝑁 is the number of turns, and 𝑑𝑚 is the mean diameter of the coil.  

 𝑅 = 𝑅𝑖𝑁𝜋𝑑𝑚 =
0.013675 𝑜ℎ𝑚

𝑖𝑛
360 ∙ 𝜋 ∙ 0.2858𝑖𝑛 = 4.419 ohms (153) 

The approximated coil resistance is in close agreement with the value of 4.276 ohms 

predicted by COMSOL®. The values predicted by COMSOL® are used in the Simulink® 

model.  The EM is modeled using equation (33). The applicable modeling parameters are 

listed in Table 3. 

Table 3:  Solenoid Modeling Parameters 

Parameter Value Units 

L 5.271 ∙ 10−4 Henries 

N 360 turns 

𝑙𝑐 4.318 ∙ 10−3 m 

𝑟𝑚 3.630 ∙ 10−3 m 

𝑟𝑜 5.715 ∙ 10−3 m 

𝑟𝑖 1.524 ∙ 10−3 m 

𝑅 4.276 Ohms 

The input into the EM is voltage and the output is current.  The model presented herein uses 

a step function for the voltage, but in future implementations the controller algorithm will 

provide the excitation signals. 
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Figure 94:  Simulink Electromagnet Model 

5.8.2 Reaction Sphere Model 

The instantaneous EM currents and the instantaneous Euler angles are inputs into 

the reaction sphere model. The forces and torques acting on the reaction sphere are computed 

using the force and torque relations described in Section 5.6 and the motion of the rotor is 

modeled using the equations of motion presented in Section 5.7. The force and torque 

relations are integrated in a MATLAB® Level 2 S-function. The source code for the S-

function is provided in Appendix D. 

 

Figure 95: 3 DOF Simulink Reaction Sphere Model 
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Plots of the force and torque outputs are provided in the figures below. Figure 96 shows the 

force and torque output by the model with one EM active within the iron-only region.  As 

expected, the force is constant and no torque is applied to the rotor and no rotation occurs. 

Figure 97 shows a plot of the model output for 1 EM located in the excited with 5 amperes 

Force, Torque and Angular Velocity for 1 EM initially positioned in the Iron-Only region 

and 1 EM initially positioned in the iron + PM Region. As expected, the force is constant 

when the active EM-PM pairs are in the iron region and force changes with the distance 

between the EM-PM pairs in the iron + PM region and torque is applied.  

And Figure 98 shows the system response to all 6 EMs energized and de-energized at random 

times and varying levels of current. The plots illustrate the complex behavior of the system. 
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Figure 96: Model Force, Torque and Angular Velocities for 1 EM in Iron-Only Region 
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Figure 97: Force, Torque and Angular Velocity for 1 EM in Iron-Only and 1 EM in Iron + 

PM Region 
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Figure 98: Model Output for all 6 EMs Activated and De-energized Randomly 
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 Testing and Model Validation 
 

 Validation of Magnetic Forces 

The scope of thesis project precluded the fabrication of a prototype for model 

verification. In lieu of this, the forces predicted by COMSOL® FEM model were compared 

against the forces predicted by an analytical model which treated the EM and PM as a 

magnetic dipole pair. The analytical approach is described in the subsequent paragraphs and 

includes comparisons of magnetic forces predicted by the FEM models. 

6.1.1 Magnetic Dipoles 

The magnetic forces predicted by the FEM model were compared against forces 

computed from an analytic model of the PM and EM treated as magnetic dipoles. The 

formula for the force between two closed circuits is given by equation (154) where 𝜇0 is the 

magnetic constant, equal to 4𝜋10−7 𝑁 𝐴−2⁄ , 𝐼𝐸 the current of circuit E, 𝐼𝑃 the current of 

circuit P, 𝑑 𝐸 the path increment vector along the circuit representing the EM, 𝑑 𝑃 the path 

increment vector along the circuit representing the PM, and 𝑅⃗  is the vector from circuit path 

element 𝑑 𝑃 to circuit path element 𝑑 𝐸 (Lorrain, et al., 1988).  

 𝐹 𝑃𝐸 =
𝜇0

4𝜋
𝐼𝑃𝐼𝐸 ∮ ∮

𝑑 𝐸 × (𝑑 𝑃 × 𝑅⃗ )

𝑅3

 

𝐸

 

𝑃

 (154) 

Yung et. al, 1998, derived the expression for the force 𝐹 𝑃𝐸 of a magnetic dipole pair given 

by equation (155), where 𝑟 is the magnitude of the separation distance, 𝑟̂ is the unit separation 

vector, 𝑚⃗⃗ 𝐸 and 𝑚⃗⃗ 𝑃 are the magnetic dipole moment vectors of the EM and PM, respectively. 

Note that equation (155) provides the force of the PM acting on the EM, however it can be 

re-arranged to provide the force the EM exerts on the PM.  The first term of the equation (on 

the left side of the minus sign) represents the component of force parallel to each dipole 

moment vector, while the second term (on right hand side of minus sign) represents the 

component of force projected on the separation vector 𝑟̂ (Yung, et al., 1998). 
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𝐹 𝑃𝐸 =
3𝜇0

4𝜋𝑟4
((𝑟̂ × 𝑚⃗⃗ 𝑃) × 𝑚⃗⃗ 𝐸 + (𝑟̂ × 𝑚⃗⃗ 𝐸) × 𝑚⃗⃗ 𝑃 − 2𝑟̂(𝑚⃗⃗ 𝑃 ∙ 𝑚⃗⃗ 𝐸) + 5𝑟̂((𝑟̂ × 𝑚⃗⃗ 𝑃) ∙ (𝑟̂ × 𝑚⃗⃗ 𝐸))) (155) 

The magnetic dipoles are considered as circular circuits with planar surface area, where the 

dipole moment vector 𝑚⃗⃗  is normal to the surface area. The geometry of a generic magnetic 

dipole is shown in Figure 99.  

 

Figure 99:  Geometry of a Magnetic Dipole Moment Circuit (Yung, 1998) 

The expression for an electrical circuit represented as a magnetic dipole is given by equation 

(156), where 𝑚 is the magnitude of the magnetic moment, 𝑚̂ is the unit vector in the direction 

of the dipole, 𝜌̂ is the directional unit vector from origin to position of 𝑑̂ the path increment 

unit vector which is tangent to the circle, 𝐼𝑒 is the electrical current in the circuit, and 𝑁 is 

the number of turns. The cross product of these two vectors results in a magnetic moment 

vector normal to the planar circuit and located at its center (Young, et al., 1998).  Note that 

in this analysis, the EM dipole vector is rotated about the x-axis in the same manner as the 

FEM model. 

𝑚⃗⃗ 𝐸 = 𝑚𝐸𝑚̂𝐸 = (𝑁𝐼𝐸𝜋𝜌2)(𝜌̂ × 𝑑̂) 

𝑚⃗⃗ 𝐸 = 𝑁𝐼𝐸𝜋(𝑟𝑜
2 − 𝑟𝑖

2)[0 𝑠𝑖𝑛(2𝜋 − 𝜃) 𝑐𝑜𝑠(2𝜋 − 𝜃)] 
(156) 

The expression for the magnetic dipole of a PM is given by equation (157), where 𝑀 is the 

magnetization of the PM, 𝑉 is the volume of the cylindrical PM, 𝐴𝑝 is the sectional area of 

the PM and 𝐿𝑝 is the length of the PM.  The position of the PM is fixed along the z-axis so 

its magnetic moment unit vector is simply one in the z-coordinate.   
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 𝑚⃗⃗ 𝑃 = 𝑚𝑃𝑚̂𝑃 = (𝑀𝑉)(𝜌̂ × 𝑑̂) = (𝑀𝐴𝑝𝐿𝑝)[0 0 1] (157) 

The magnetization of the PM was determined from the remnant flux density and 

magnetization relations given in equation (158). The external field due to the EM is small 

relative to the magnetization of the PM and is therefore neglected to simplify the analysis. 

The magnetization of the PM is obtained from the Arnold Magnetics® data sheet for an N52 

PM, and is set equal to the intrinsic coercivity value of 875,000 A/m.  The dipole moments 

are located on the plane that bisects the lengths of the PM and EM as shown in Figure 100. 

 

Figure 100:  Location of EM Dipole Moment 

Therefore, the scalar distance between the dipole centers can be obtained by equation (158). 

 𝑟 = ‖𝑃⃗ 𝐸 − 𝑃⃗ 𝑃‖ = √(𝑃𝐸𝑥 − 𝑃𝑀𝑥)
2 + (𝑃𝐸𝑦 − 𝑃𝑀𝑦)

2
+ (𝑃𝐸𝑧 − 𝑃𝑀𝑧)

2 (158) 

The directional vector 𝑟  from the EM and PM dipole centers is obtained from vector 

subtraction: 

 𝑟 = 𝑃⃗ 𝐸 − 𝑃⃗ 𝑃 (159) 

 



 

123 

The unit vector 𝑟̂ is the unit vector along 𝑟  is obtained by: 

 𝑟̂ =
𝑟 

𝑟
=

𝑃⃗ 𝐸 − 𝑃⃗ 𝑃

‖𝑃⃗ 𝐸 − 𝑃⃗ 𝑃‖
 (160) 

The generalized RS modeled as two magnetic dipole moments is shown in Figure 101.  The 

foregoing relations were input into MATLAB® and the magnetic forces computed for 

varying current levels and angular distances (θ).  The forces were compared against the 

forces predicted by COMSOL® and showed close agreement. 

 

Figure 101:  Magnetic Dipole Moment Model of Generalized RS 

Figure 102 compares the magnitude of magnetic forces as a function of angular distance for 

the COMSOL and Magnetic Dipole analytic model. Similarly, Figure 103 compares the y 

and z components of force.  The plots show that the forces predicted by the magnetic dipole 

analysis trend with the COMSOL values fairly closely, but the dipole method overpredicted 

the forces. The MATLAB script used to calculate the forces between the two magnetic 

dipoles is provided in Appendix E. 
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Figure 102: Magnitude of Magnetic Force: COMSOL vs. Dipole Moment (0.5 Amp) 

 

Figure 103:  Y, Z Comp. of Magnetic Force: COMSOL vs. Dipole Moment (0.5 Amp) 
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Additional simulations were performed using COMSOL® and FEMM 4.2 to further assess 

the magnetic dipole analysis.  Simulations were performed for the 0.5-inch-long PM in the 

RS coordinates (no shift) and for distances between the EM and PM of 0.25-inch to a 1-inch 

in 0.25-inch increments. The centerline of the EM and PM were coincident and the angle 

between them was not changed.  The angle could not be altered because FEMM 4.2 is only 

capable of solving axisymmetric problems in 3-dimensions. The problem setup is illustrated 

in Figure 104. 

 

Figure 104:  Configuration of EM / PM for Magnetic Dipole Simulations 

The forces predicted by each model are presented in Figure 105 and are scaled against the 

forces predicted by COMSOL®.  The COMSOL® and FEMM 4.2 models showed close and 

consistent agreement for the different configurations, however, the dipole calculation 

increased in error as the distance increased.   

An article by Y. Zhang, et.al, 2020 assessed the accuracy of magnetic force 

calculations between PMs with various geometries using magnetic charge, magnetizing 

current, and magnetic dipole methods. They found that the magnetic dipole method was the 

least accurate for the distances they tested, with the exception of the spherical PMs, which 

agreed closely with measurements. Future work should investigate the methods discussed 

by Zhang, et al., or derive an analytical model using the Lorentz Force Law.   
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Figure 105:  Comparison of Forces Predicted by COMSOL, FEMM, and Dipole Model 

 Validation of Coordinate Transformations 

The coordinate transformations defined in Section 5.6.4 were validated by 

performing additional COMSOL simulations of the generalized EM / PM superposition 

model. The coordinate transformations were verified for each of the six levitation EMs 

positioned in their respective stator coordinates.   

6.2.1 Validation of Transformation of Forces 

The PM was offset from the EM centerline by a fixed value of 10 degrees and for 

four positions around the EM, with each position incremented by 90 degrees, as illustrated 

by Figure 106.  All simulations were performed with a fixed coil excitation of 0.5 ampere.  

The transformed forces and torques agreed with the COMSOL® simulation for every case. 

The validation data is tabulated in Appendix C.   
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Figure 106:  Validation of Magnetic Force Coordinate Transformations 

 Validation of Euler Angle Calculations 

The Euler Angle calculations were verified by using the MATLAB® Simulink® 

robotics system design and analysis toolbox which includes a utility to perform various 

coordinate transformations conversion, such as conversion from a set of Euler Angles a to a 

rotation matrix and vice versa.  The rotation matrix for an arbitrary set of Euler angles, 

following the ZYX sequence laid out in in Section 5.4.1, was calculated in the MATLAB 

workspace and then applied to the permanent magnet coordinates. The computed values for 

rotation matrix and the rotated PM coordinates were compared against values computed 

using the Coordinate Transformation Conversion (CTC) utility. Note that the CTC tool 

outputs the rotation matrices as a column vector, which requires transposing the workspace 

rotation matrix in order to make a proper comparison. A sample comparison is provided in 

Figure 107 and shows the same rotation matrix and rotated coordinates are obtained. 
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Figure 107:  Euler Angle Validation using Simulink® 
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 Results 
 

 Conclusions 

In summary, this thesis demonstrates that the methods presented herein, provide a 

means to model the dynamics of a 3-DOF model of a reaction sphere by computing the 

magnetic force relations from FEM models, off-line from the Simulink® dynamic model. 

Moreover, the objectives of this thesis, outlined in Chapter 4 , were met as follows: 

1. Levitation EMs with sufficiently fast response times can be integrated into the 

NGCRS  

2. The FEM modeling demonstrated that the EM and PM field interactions are limited 

to a single EM-PM pair 

3. A generalized set of force and relations can be derived from the FEM models, 

allowing the force and torque for any arbitrary orientation of the rotor/stator, and for 

any EM-PM pair.  

4. An algorithm was implemented in MATLAB to determine the appropriate force and 

torque relations to use for any instantaneous rotor / stator orientation and levitation 

coil current 

5. A 3-DOF rotational dynamic model was developed using the methodologies 

presented herein 

 Recommendations and Future Work 

7.2.1 Model Fidelity 

The fidelity of the reaction sphere model should be increased to include the 

translational degrees of freedom so that all six degrees of freedom are modeled. The 3-DOF 

model considers the rotor to be fixed translationally. Therefore, the forces within the “iron 

only” region act along the center of mass of the rotor, and thus will not induce a torque.  

However, if the rotor is free to move translationally, then the foregoing statement is false, 

and an additional disturbance torque will be applied to the rotor assembly. Additional 

simulations must be performed to account for translation of the rotor within the stator, which 
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alters the airgap, and consequently the magnetic forces and torques. The effect of the rotor 

being eccentric to the stator EMs must also be considered. The methodologies presented 

herein could be used as a starting point, namely, dividing the regions of force into the Iron 

only and Iron + PM. The region would be determined based on current and the magnetic 

airgap, and possibly the rotor eccentricity. The degree of coupling between the EM and PM 

could again be evaluated using the integrated and superposition models. 

The model should also be updated to include the eight (8) electromagnetics that 

apply torque to the reaction sphere. As a starting point, the force and torque relations 

describing the levitation EMs could be used until a more representative model of the drive 

EMs is available.  The position vectors of the drive EMs are given in Section 5.3.2, equation 

(88) which is expressed in terms of the fixed RS stator coordinate system. 

The dynamic model herein does not account for the disturbance forces and torques 

that would be induced by eddy-currents that form in the rotor iron as it rotates past an active 

electromagnet. Furthermore, the electromagnet model does not account for the back emf that 

would be generated as the PM rotates past the EM.  Taking into account these factors will 

further improve the fidelity of the reaction sphere model. 

7.2.2 Validation of the FEM Model 

The results of the FEM model should be validated with experimental results.  A test 

bench model should be developed to verify the magnetic forces and torques predicted by the 

FEM model. However, the earths gravitational acceleration presents a significant challenge 

to completely validating the model because the levitation and drive coils are sized to operate 

in a zero gravity or near zero gravity environment. The only feasible solution would be to 

test a prototype on NASA’s Reduced Gravity Aircraft, commonly referred to as the “Vomit 

Comet”. The aircraft performs parabolic maneuvers which provides approximately 25 

seconds of weightlessness. This of course would not be done until development of a complete 

6-DOF model, and levitation and spacecraft attitude control algorithms are integrated. 
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7.2.3 Electromagnet Optimization Study 

The characteristic parameters of the electromagnet, namely the number of turns, 

overall conductor length, and the geometric aspect ratios should be further investigated and 

optimized to provide the maximum force output for a given power level. Numerous 

electromagnet optimization studies have been published, such as (Haignere, et al., 1976) who 

studied optimal shapes and sizes of electromagnets to optimize the magnetic field at a 

constant power level, and another by (Yuan, et al., 2014) who researched optimization of 

electromagnetic efficiency by considering the geometric factors and thermal condition of the 

coil as coupled.  
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Appendix A 
 

COMSOL Simulation Data – Magnetic Forces 
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Table 4: Magnitude of Magnetic Force for Varying Distance and Current (0-0.5 Amp) 

 Coil Current 

Angle  

(deg) 
Distance (m) 0 0.2 0.3 0.4 0.5 

0.000 7.62000E-04 0.0E+00 1.79054E-01 2.68600E-01 3.58164E-01 4.63185E-01 

1.000 9.46086E-04 0.0E+00 1.77325E-01 2.66007E-01 3.54705E-01 4.58709E-01 

2.000 1.35584E-03 0.0E+00 1.72169E-01 2.58276E-01 3.44398E-01 4.45383E-01 

3.000 1.84661E-03 0.0E+00 1.63734E-01 2.45615E-01 3.27507E-01 4.23529E-01 

4.000 2.36848E-03 0.0E+00 1.52421E-01 2.28645E-01 3.04872E-01 3.94244E-01 

5.000 2.90461E-03 0.0E+00 1.39123E-01 2.08677E-01 2.78233E-01 3.59783E-01 

6.000 3.44823E-03 0.0E+00 1.24826E-01 1.87223E-01 2.49607E-01 3.22739E-01 

7.000 3.99615E-03 0.0E+00 1.10252E-01 1.65342E-01 2.20414E-01 2.84970E-01 

8.000 4.54668E-03 0.0E+00 9.58802E-02 1.43761E-01 1.91609E-01 2.47701E-01 

9.000 5.09884E-03 0.0E+00 8.21149E-02 1.23092E-01 1.64006E-01 2.11967E-01 

10.000 5.65201E-03 0.0E+00 6.93429E-02 1.03892E-01 1.38363E-01 1.78748E-01 

11.000 6.20577E-03 0.0E+00 5.78147E-02 8.65503E-02 1.15174E-01 1.48700E-01 

12.000 6.75982E-03 0.0E+00 4.76244E-02 7.12018E-02 9.46309E-02 1.22049E-01 

13.000 7.31396E-03 0.0E+00 3.87849E-02 5.78673E-02 7.67574E-02 9.88404E-02 

14.000 7.86800E-03 0.0E+00 3.12793E-02 4.65315E-02 6.15461E-02 7.90727E-02 

15.000 8.42183E-03 0.0E+00 2.51183E-02 3.72191E-02 4.90437E-02 6.28232E-02 

16.000 8.97532E-03 0.0E+00 2.02783E-02 2.99007E-02 3.92216E-02 5.00659E-02 

17.000 9.52838E-03 0.0E+00 1.65495E-02 2.42637E-02 3.16602E-02 4.02554E-02 

18.000 1.00809E-02 0.0E+00 1.36537E-02 1.98831E-02 2.57849E-02 3.26394E-02 

19.000 1.06329E-02 0.0E+00 1.13688E-02 1.64215E-02 2.11425E-02 2.66247E-02 

20.000 1.11842E-02 0.0E+00 9.53746E-03 1.36424E-02 1.74095E-02 2.17896E-02 

21.000 1.17348E-02 0.0E+00 8.04840E-03 1.13757E-02 1.43626E-02 1.78456E-02 

22.000 1.22846E-02 0.0E+00 6.82250E-03 9.50475E-03 1.18440E-02 1.45939E-02 

23.000 1.28335E-02 0.0E+00 5.80262E-03 7.94442E-03 9.74638E-03 1.18992E-02 

24.000 1.33816E-02 0.0E+00 4.94630E-03 6.63270E-03 7.98953E-03 9.66765E-03 

25.000 1.39287E-02 0.0E+00 4.22228E-03 5.52354E-03 6.51663E-03 7.83372E-03 

26.000 1.44749E-02 0.0E+00 3.60534E-03 4.57975E-03 5.28116E-03 6.35000E-03 

27.000 1.50200E-02 0.0E+00 3.07571E-03 3.77194E-03 4.25025E-03 5.18868E-03 

28.000 1.55640E-02 0.0E+00 2.61764E-03 3.07709E-03 3.40297E-03 4.34109E-03 

29.000 1.61068E-02 0.0E+00 2.21948E-03 2.47862E-03 2.73266E-03 3.80523E-03 

30.000 1.66485E-02 0.0E+00 1.87108E-03 1.96408E-03 2.24580E-03 3.56603E-03 

31.000 1.71890E-02 0.0E+00 1.56469E-03 1.52589E-03 1.95444E-03 3.57130E-03 

31.7175 1.75760E-02 0.0E+00 1.36718E-03 1.25820E-03 1.86765E-03 3.68591E-03 
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Table 5: Magnitude of Magnetic Force for Varying Distance and Current (1-2.5 amp) 

 Coil Current 

Angle 

(deg) 
Distance (m) 1.0 1.5 2.0 2.5 

0.000 7.62000E-04 9.26808E-01 1.39086E+00 1.85535E+00 2.32031E+00 

1.000 9.46086E-04 9.17846E-01 1.37744E+00 1.83740E+00 2.29782E+00 

2.000 1.35584E-03 8.91131E-01 1.33730E+00 1.78381E+00 2.23065E+00 

3.000 1.84661E-03 8.47353E-01 1.27142E+00 1.69583E+00 2.12060E+00 

4.000 2.36848E-03 7.88633E-01 1.18315E+00 1.57788E+00 1.97278E+00 

5.000 2.90461E-03 7.19534E-01 1.07924E+00 1.43889E+00 1.79854E+00 

6.000 3.44823E-03 6.45209E-01 9.67409E-01 1.28935E+00 1.61106E+00 

7.000 3.99615E-03 5.69377E-01 8.53257E-01 1.13664E+00 1.41954E+00 

8.000 4.54668E-03 4.94510E-01 7.40489E-01 9.85713E-01 1.23026E+00 

9.000 5.09884E-03 4.22622E-01 6.32094E-01 8.40531E-01 1.04806E+00 

10.000 5.65201E-03 3.55651E-01 5.30948E-01 7.04913E-01 8.77804E-01 

11.000 6.20577E-03 2.94844E-01 4.38916E-01 5.81414E-01 7.22855E-01 

12.000 6.75982E-03 2.40707E-01 3.56821E-01 4.71290E-01 5.85024E-01 

13.000 7.31396E-03 1.93392E-01 2.85046E-01 3.75324E-01 4.65802E-01 

14.000 7.86800E-03 1.53017E-01 2.24058E-01 2.94653E-01 3.67368E-01 

15.000 8.42183E-03 1.19963E-01 1.74846E-01 2.31306E-01 2.93208E-01 

16.000 8.97532E-03 9.43372E-02 1.37874E-01 1.86257E-01 2.44618E-01 

17.000 9.52838E-03 7.50056E-02 1.11340E-01 1.56623E-01 2.16449E-01 

18.000 1.00809E-02 6.03534E-02 9.25357E-02 1.37856E-01 2.01220E-01 

19.000 1.06329E-02 4.91135E-02 7.92952E-02 1.26213E-01 1.93263E-01 

20.000 1.11842E-02 4.04379E-02 7.01600E-02 1.19283E-01 1.89457E-01 

21.000 1.17348E-02 3.37851E-02 6.41562E-02 1.15546E-01 1.88191E-01 

22.000 1.22846E-02 2.88590E-02 6.06628E-02 1.14197E-01 1.88854E-01 

23.000 1.28335E-02 2.54748E-02 5.91483E-02 1.14615E-01 1.91001E-01 

24.000 1.33816E-02 2.34414E-02 5.90640E-02 1.16221E-01 1.94106E-01 

25.000 1.39287E-02 2.25175E-02 5.99309E-02 1.18548E-01 1.97768E-01 

26.000 1.44749E-02 2.23802E-02 6.12956E-02 1.21126E-01 2.01487E-01 

27.000 1.50200E-02 2.27723E-02 6.29339E-02 1.23818E-01 2.05182E-01 

28.000 1.55640E-02 2.34740E-02 6.46666E-02 1.26455E-01 2.08706E-01 

29.000 1.61068E-02 2.43362E-02 6.63929E-02 1.28979E-01 2.11994E-01 

30.000 1.66485E-02 2.52702E-02 6.80724E-02 1.31350E-01 2.15064E-01 

31.000 1.71890E-02 2.62161E-02 6.96654E-02 1.33569E-01 2.17900E-01 

31.7175 1.75760E-02 2.68878E-02 7.07582E-02 1.35071E-01 2.19812E-01 

 

  



 

140 

Table 6: Magnitude of Magnetic Force for Varying Distance and Current (3-5 amp) 

 Coil Current 

Angle 

(deg) 
Distance (m) 3 3.5 4 4.5 5 

0.000 7.62000E-04 2.78564E+00 3.25144E+00 3.71771E+00 4.18445E+00 4.65156E+00 

1.000 9.46086E-04 2.75859E+00 3.21982E+00 3.68151E+00 4.14356E+00 4.60606E+00 

2.000 1.35584E-03 2.67791E+00 3.12559E+00 3.57360E+00 4.02194E+00 4.47078E+00 

3.000 1.84661E-03 2.54554E+00 2.97083E+00 3.39637E+00 3.82228E+00 4.24848E+00 

4.000 2.36848E-03 2.36780E+00 2.76300E+00 3.15832E+00 3.55391E+00 3.94960E+00 

5.000 2.90461E-03 2.15825E+00 2.51783E+00 2.87752E+00 3.23710E+00 3.59670E+00 

6.000 3.44823E-03 1.93256E+00 2.25375E+00 2.57478E+00 2.89567E+00 3.21629E+00 

7.000 3.99615E-03 1.70199E+00 1.98408E+00 2.26569E+00 2.54695E+00 2.82787E+00 

8.000 4.54668E-03 1.47409E+00 1.71746E+00 1.96018E+00 2.20255E+00 2.44453E+00 

9.000 5.09884E-03 1.25478E+00 1.46090E+00 1.66646E+00 1.87170E+00 2.07674E+00 

10.000 5.65201E-03 1.04986E+00 1.22145E+00 1.39285E+00 1.56424E+00 1.73589E+00 

11.000 6.20577E-03 8.63743E-01 1.00461E+00 1.14596E+00 1.28842E+00 1.43241E+00 

12.000 6.75982E-03 6.98963E-01 8.14057E-01 9.31267E-01 1.05153E+00 1.17565E+00 

13.000 7.31396E-03 5.58074E-01 6.53739E-01 7.54312E-01 8.61236E-01 9.75809E-01 

14.000 7.86800E-03 4.44738E-01 5.29127E-01 6.22622E-01 7.26957E-01 8.43512E-01 

15.000 8.42183E-03 3.64069E-01 4.46731E-01 5.43271E-01 6.55121E-01 7.83154E-01 

16.000 8.97532E-03 3.16783E-01 4.05202E-01 5.11174E-01 6.35365E-01 7.78057E-01 

17.000 9.52838E-03 2.93929E-01 3.90405E-01 5.06367E-01 6.41902E-01 7.97024E-01 

18.000 1.00809E-02 2.84417E-01 3.87840E-01 5.11514E-01 6.55330E-01 8.19235E-01 

19.000 1.06329E-02 2.81025E-01 3.89422E-01 5.18305E-01 6.67539E-01 8.37063E-01 

20.000 1.11842E-02 2.80563E-01 3.92331E-01 5.24622E-01 6.77314E-01 8.50359E-01 

21.000 1.17348E-02 2.81682E-01 3.95760E-01 5.30295E-01 6.85224E-01 8.60491E-01 

22.000 1.22846E-02 2.84206E-01 4.00055E-01 5.36306E-01 6.92923E-01 8.69855E-01 

23.000 1.28335E-02 2.87959E-01 4.05343E-01 5.43117E-01 7.01222E-01 8.79654E-01 

24.000 1.33816E-02 2.92480E-01 4.11258E-01 5.50410E-01 7.09915E-01 8.89755E-01 

25.000 1.39287E-02 2.97444E-01 4.17520E-01 5.57974E-01 7.18793E-01 8.99962E-01 

26.000 1.44749E-02 3.02281E-01 4.23469E-01 5.65036E-01 7.26992E-01 9.09303E-01 

27.000 1.50200E-02 3.06975E-01 4.29159E-01 5.71745E-01 7.34721E-01 9.18080E-01 

28.000 1.55640E-02 3.11368E-01 4.34449E-01 5.77926E-01 7.41805E-01 9.26070E-01 

29.000 1.61068E-02 3.15444E-01 4.39289E-01 5.83550E-01 7.48219E-01 9.33285E-01 

30.000 1.66485E-02 3.19197E-01 4.43745E-01 5.88703E-01 7.54071E-01 9.39851E-01 

31.000 1.71890E-02 3.22639E-01 4.47801E-01 5.93383E-01 7.59375E-01 9.45779E-01 

31.7175 1.75760E-02 3.24974E-01 4.50548E-01 5.96538E-01 7.62958E-01 9.49783E-01 
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Table 7: Z-Comp. of Magnetic Force for Varying Scalar Distance and Current (0-0.5 Amp) 

 Fz Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 0 0.2 0.3 0.4 0.5 

7.620E-04 0.0000E+00 1.7905E-01 2.6860E-01 3.5816E-01 4.6318E-01 

9.461E-04 0.0000E+00 1.7581E-01 2.6374E-01 3.5169E-01 4.5481E-01 

1.356E-03 0.0000E+00 1.6627E-01 2.4943E-01 3.3261E-01 4.3015E-01 

1.847E-03 0.0000E+00 1.5102E-01 2.2656E-01 3.0212E-01 3.9073E-01 

2.368E-03 0.0000E+00 1.3134E-01 1.9705E-01 2.6278E-01 3.3986E-01 

2.905E-03 0.0000E+00 1.0917E-01 1.6380E-01 2.1847E-01 2.8259E-01 

3.448E-03 0.0000E+00 8.6380E-02 1.2966E-01 1.7299E-01 2.2381E-01 

3.996E-03 0.0000E+00 6.4339E-02 9.6646E-02 1.2905E-01 1.6706E-01 

4.547E-03 0.0000E+00 4.4072E-02 6.6322E-02 8.8714E-02 1.1503E-01 

5.099E-03 0.0000E+00 2.6457E-02 4.0002E-02 5.3756E-02 6.9966E-02 

5.652E-03 0.0000E+00 1.2100E-02 1.8588E-02 2.5367E-02 3.3429E-02 

6.206E-03 0.0000E+00 1.1946E-03 2.3645E-03 3.9160E-03 5.8863E-03 

6.760E-03 0.0000E+00 -6.3662E-03 -8.8398E-03 -1.0840E-02 -1.2997E-02 

7.314E-03 0.0000E+00 -1.0896E-02 -1.5508E-02 -1.9562E-02 -2.4095E-02 

7.868E-03 0.0000E+00 -1.2897E-02 -1.8400E-02 -2.3275E-02 -2.8742E-02 

8.422E-03 0.0000E+00 -1.3068E-02 -1.8574E-02 -2.3393E-02 -2.8770E-02 

8.975E-03 0.0000E+00 -1.2259E-02 -1.7297E-02 -2.1608E-02 -2.6373E-02 

9.528E-03 0.0000E+00 -1.1115E-02 -1.5544E-02 -1.9220E-02 -2.3231E-02 

1.008E-02 0.0000E+00 -9.9281E-03 -1.3746E-02 -1.6799E-02 -2.0077E-02 

1.063E-02 0.0000E+00 -8.8011E-03 -1.2052E-02 -1.4537E-02 -1.7148E-02 

1.118E-02 0.0000E+00 -7.7678E-03 -1.0508E-02 -1.2484E-02 -1.4499E-02 

1.173E-02 0.0000E+00 -6.8351E-03 -9.1158E-03 -1.0640E-02 -1.2125E-02 

1.228E-02 0.0000E+00 -5.9980E-03 -7.8687E-03 -8.9872E-03 -1.0001E-02 

1.283E-02 0.0000E+00 -5.2497E-03 -6.7538E-03 -7.5106E-03 -8.1016E-03 

1.338E-02 0.0000E+00 -4.5819E-03 -5.7591E-03 -6.1935E-03 -6.4093E-03 

1.393E-02 0.0000E+00 -3.9873E-03 -4.8743E-03 -5.0236E-03 -4.9058E-03 

1.447E-02 0.0000E+00 -3.4584E-03 -4.0889E-03 -3.9871E-03 -3.5777E-03 

1.502E-02 0.0000E+00 -2.9874E-03 -3.3910E-03 -3.0679E-03 -2.4007E-03 

1.556E-02 0.0000E+00 -2.5674E-03 -2.7703E-03 -2.2525E-03 -1.3600E-03 

1.611E-02 0.0000E+00 -2.1930E-03 -2.2184E-03 -1.5296E-03 -4.3920E-04 

1.665E-02 0.0000E+00 -1.8586E-03 -1.7271E-03 -8.8820E-04 3.7550E-04 

1.719E-02 0.0000E+00 -1.5598E-03 -1.2895E-03 -3.1920E-04 1.0959E-03 

1.758E-02 0.0000E+00 -1.3651E-03 -1.0053E-03 4.9300E-05 1.5613E-03 
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Table 8: Z-Comp. of Magnetic Force for Varying Scalar Distance and Current (1-3  Amp) 

 Fz Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 1 1.5 2 2.5 3 

7.620E-04 9.2681E-01 1.3909E+00 1.8554E+00 2.3203E+00 2.7856E+00 

9.461E-04 9.1007E-01 1.3658E+00 1.8219E+00 2.2785E+00 2.7355E+00 

1.356E-03 8.6076E-01 1.2919E+00 1.7234E+00 2.1554E+00 2.5879E+00 

1.847E-03 7.8199E-01 1.1737E+00 1.5661E+00 1.9590E+00 2.3523E+00 

2.368E-03 6.8036E-01 1.0215E+00 1.3633E+00 1.7058E+00 2.0489E+00 

2.905E-03 5.6610E-01 8.5050E-01 1.1358E+00 1.4220E+00 1.7092E+00 

3.448E-03 4.4904E-01 6.7567E-01 9.0372E-01 1.1332E+00 1.3641E+00 

3.996E-03 3.3640E-01 5.0802E-01 6.8192E-01 8.5809E-01 1.0365E+00 

4.547E-03 2.3361E-01 3.5575E-01 4.8145E-01 6.1073E-01 7.4355E-01 

5.099E-03 1.4519E-01 2.2567E-01 3.1140E-01 4.0239E-01 4.9864E-01 

5.652E-03 7.4147E-02 1.2215E-01 1.7745E-01 2.4003E-01 3.0990E-01 

6.206E-03 2.1315E-02 4.6285E-02 8.0799E-02 1.2485E-01 1.7846E-01 

6.760E-03 -1.4169E-02 -3.5120E-03 1.8972E-02 5.3283E-02 9.9420E-02 

7.314E-03 -3.4255E-02 -3.0480E-02 -1.2770E-02 1.8880E-02 6.4460E-02 

7.868E-03 -4.1752E-02 -3.9033E-02 -2.0580E-02 1.3610E-02 6.3520E-02 

8.422E-03 -4.0384E-02 -3.4842E-02 -1.2140E-02 2.7710E-02 8.4720E-02 

8.975E-03 -3.4558E-02 -2.4559E-02 3.6300E-03 5.0010E-02 1.1458E-01 

9.528E-03 -2.7644E-02 -1.3239E-02 1.9990E-02 7.2020E-02 1.4288E-01 

1.008E-02 -2.1046E-02 -2.9090E-03 3.4330E-02 9.0680E-02 1.6614E-01 

1.063E-02 -1.5139E-02 6.0240E-03 4.6340E-02 1.0582E-01 1.8444E-01 

1.118E-02 -9.9210E-03 1.3732E-02 5.6460E-02 1.1826E-01 1.9915E-01 

1.173E-02 -5.3110E-03 2.0443E-02 6.5136E-02 1.2877E-01 2.1135E-01 

1.228E-02 -1.2000E-03 2.6402E-02 7.2809E-02 1.3801E-01 2.2202E-01 

1.283E-02 2.4750E-03 3.1732E-02 7.9666E-02 1.4628E-01 2.3158E-01 

1.338E-02 5.7450E-03 3.6460E-02 8.5740E-02 1.5358E-01 2.3998E-01 

1.393E-02 8.6330E-03 4.0617E-02 9.1048E-02 1.5992E-01 2.4724E-01 

1.447E-02 1.1156E-02 4.4201E-02 9.5553E-02 1.6522E-01 2.5320E-01 

1.502E-02 1.3366E-02 4.7302E-02 9.9404E-02 1.6967E-01 2.5812E-01 

1.556E-02 1.5295E-02 4.9964E-02 1.0264E-01 1.7335E-01 2.6205E-01 

1.611E-02 1.6975E-02 5.2239E-02 1.0536E-01 1.7632E-01 2.6515E-01 

1.665E-02 1.8432E-02 5.4170E-02 1.0758E-01 1.7869E-01 2.6747E-01 

1.719E-02 1.9694E-02 5.5795E-02 1.0940E-01 1.8051E-01 2.6911E-01 

1.758E-02 2.0494E-02 5.6798E-02 1.1047E-01 1.8152E-01 2.6994E-01 
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Table 9: Z-Comp. of Iron + PM Force for Varying Scalar Distance and Current (3.5-5 

Amp) 

 Fz Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 3.5 4 4.5 5 

7.620E-04 3.2514E+00 3.7177E+00 4.1845E+00 4.6516E+00 

9.461E-04 3.1930E+00 3.6509E+00 4.1093E+00 4.5681E+00 

1.356E-03 3.0209E+00 3.4544E+00 3.8882E+00 4.3227E+00 

1.847E-03 2.7462E+00 3.1406E+00 3.5356E+00 3.9311E+00 

2.368E-03 2.3927E+00 2.7371E+00 3.0823E+00 3.4279E+00 

2.905E-03 1.9972E+00 2.2862E+00 2.5761E+00 2.8669E+00 

3.448E-03 1.5963E+00 1.8300E+00 2.0652E+00 2.3017E+00 

3.996E-03 1.2173E+00 1.4003E+00 1.5856E+00 1.7732E+00 

4.547E-03 8.7994E-01 1.0199E+00 1.1634E+00 1.3105E+00 

5.099E-03 6.0015E-01 7.0690E-01 8.1892E-01 9.3620E-01 

5.652E-03 3.8706E-01 4.7151E-01 5.6325E-01 6.6227E-01 

6.206E-03 2.4159E-01 3.1427E-01 3.9650E-01 4.8826E-01 

6.760E-03 1.5738E-01 2.2718E-01 3.0880E-01 4.0225E-01 

7.314E-03 1.2398E-01 1.9742E-01 2.8481E-01 3.8614E-01 

7.868E-03 1.2916E-01 2.1054E-01 3.0765E-01 4.2049E-01 

8.422E-03 1.5890E-01 2.5022E-01 3.5871E-01 4.8434E-01 

8.975E-03 1.9735E-01 2.9830E-01 4.1743E-01 5.5475E-01 

9.528E-03 2.3256E-01 3.4106E-01 4.6837E-01 6.1450E-01 

1.008E-02 2.6070E-01 3.7437E-01 5.0714E-01 6.5902E-01 

1.063E-02 2.8223E-01 3.9917E-01 5.3526E-01 6.9051E-01 

1.118E-02 2.9910E-01 4.1814E-01 5.5624E-01 7.1343E-01 

1.173E-02 3.1286E-01 4.3331E-01 5.7271E-01 7.3104E-01 

1.228E-02 3.2483E-01 4.4644E-01 5.8686E-01 7.4607E-01 

1.283E-02 3.3555E-01 4.5821E-01 5.9954E-01 7.5955E-01 

1.338E-02 3.4494E-01 4.6847E-01 6.1057E-01 7.7123E-01 

1.393E-02 3.5300E-01 4.7721E-01 6.1987E-01 7.8096E-01 

1.447E-02 3.5949E-01 4.8408E-01 6.2700E-01 7.8821E-01 

1.502E-02 3.6472E-01 4.8950E-01 6.3245E-01 7.9356E-01 

1.556E-02 3.6879E-01 4.9353E-01 6.3629E-01 7.9705E-01 

1.611E-02 3.7182E-01 4.9635E-01 6.3873E-01 7.9895E-01 

1.665E-02 3.7393E-01 4.9808E-01 6.3990E-01 7.9940E-01 

1.719E-02 3.7522E-01 4.9883E-01 6.3994E-01 7.9856E-01 

1.758E-02 3.7573E-01 4.9888E-01 6.3942E-01 7.9732E-01 
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Table 10: Y-Comp. of Magnetic Force for Varying Distance & Current (0 - 0.5 amp) 

 Fy Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 0 0.2 0.3 0.4 0.5 

7.620E-04 0.0000E+00 2.5297E-06 3.8452E-06 5.1944E-06 6.6477E-06 

9.461E-04 0.0000E+00 -2.3095E-02 -3.4634E-02 -4.6168E-02 -5.9687E-02 

1.356E-03 0.0000E+00 -4.4692E-02 -6.7019E-02 -8.9335E-02 -1.1549E-01 

1.847E-03 0.0000E+00 -6.3251E-02 -9.4846E-02 -1.2642E-01 -1.6343E-01 

2.368E-03 0.0000E+00 -7.7351E-02 -1.1597E-01 -1.5457E-01 -1.9981E-01 

2.905E-03 0.0000E+00 -8.6241E-02 -1.2929E-01 -1.7229E-01 -2.2268E-01 

3.448E-03 0.0000E+00 -9.0111E-02 -1.3506E-01 -1.7994E-01 -2.3253E-01 

3.996E-03 0.0000E+00 -8.9532E-02 -1.3416E-01 -1.7869E-01 -2.3086E-01 

4.547E-03 0.0000E+00 -8.5151E-02 -1.2755E-01 -1.6983E-01 -2.1937E-01 

5.099E-03 0.0000E+00 -7.7736E-02 -1.1641E-01 -1.5495E-01 -2.0009E-01 

5.652E-03 0.0000E+00 -6.8279E-02 -1.0222E-01 -1.3602E-01 -1.7559E-01 

6.206E-03 0.0000E+00 -5.7802E-02 -8.6518E-02 -1.1511E-01 -1.4858E-01 

6.760E-03 0.0000E+00 -4.7197E-02 -7.0651E-02 -9.4008E-02 -1.2135E-01 

7.314E-03 0.0000E+00 -3.7223E-02 -5.5751E-02 -7.4223E-02 -9.5859E-02 

7.868E-03 0.0000E+00 -2.8497E-02 -4.2739E-02 -5.6975E-02 -7.3664E-02 

8.422E-03 0.0000E+00 -2.1451E-02 -3.2253E-02 -4.3105E-02 -5.5848E-02 

8.975E-03 0.0000E+00 -1.6153E-02 -2.4390E-02 -3.2733E-02 -4.2557E-02 

9.528E-03 0.0000E+00 -1.2261E-02 -1.8631E-02 -2.5159E-02 -3.2876E-02 

1.008E-02 0.0000E+00 -9.3732E-03 -1.4366E-02 -1.9561E-02 -2.5734E-02 

1.063E-02 0.0000E+00 -7.1965E-03 -1.1154E-02 -1.5352E-02 -2.0367E-02 

1.118E-02 0.0000E+00 -5.5339E-03 -8.7010E-03 -1.2135E-02 -1.6266E-02 

1.173E-02 0.0000E+00 -4.2495E-03 -6.8050E-03 -9.6475E-03 -1.3094E-02 

1.228E-02 0.0000E+00 -3.2512E-03 -5.3314E-03 -7.7143E-03 -1.0628E-02 

1.283E-02 0.0000E+00 -2.4721E-03 -4.1833E-03 -6.2115E-03 -8.7152E-03 

1.338E-02 0.0000E+00 -1.8634E-03 -3.2902E-03 -5.0471E-03 -7.2377E-03 

1.393E-02 0.0000E+00 -1.3889E-03 -2.5982E-03 -4.1509E-03 -6.1074E-03 

1.447E-02 0.0000E+00 -1.0188E-03 -2.0628E-03 -3.4632E-03 -5.2462E-03 

1.502E-02 0.0000E+00 -7.3175E-04 -1.6519E-03 -2.9415E-03 -4.5999E-03 

1.556E-02 0.0000E+00 -5.1041E-04 -1.3394E-03 -2.5508E-03 -4.1226E-03 

1.611E-02 0.0000E+00 -3.4182E-04 -1.1056E-03 -2.2645E-03 -3.7798E-03 

1.665E-02 0.0000E+00 -2.1573E-04 -9.3528E-04 -2.0627E-03 -3.5462E-03 

1.719E-02 0.0000E+00 -1.2361E-04 -8.1580E-04 -1.9282E-03 -3.3990E-03 

1.758E-02 0.0000E+00 -7.5320E-05 -7.5660E-04 -1.8670E-03 -3.3389E-03 
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Table 11: Y-Comp. of Iron + PM Force for Varying Distance and Current (1 - 3 amps) 

 Fy Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 1 1.5 2 2.5 3 

7.620E-04 1.4063E-05 2.2772E-05 3.1912E-05 4.1827E-05 5.2518E-05 

9.461E-04 -1.1923E-01 -1.7863E-01 -2.3789E-01 -2.9700E-01 -3.5598E-01 

1.356E-03 -2.3068E-01 -3.4557E-01 -4.6014E-01 -5.7441E-01 -6.8838E-01 

1.847E-03 -3.2635E-01 -4.8875E-01 -6.5063E-01 -8.1201E-01 -9.7287E-01 

2.368E-03 -3.9881E-01 -5.9700E-01 -7.9439E-01 -9.9099E-01 -1.1867E+00 

2.905E-03 -4.4414E-01 -6.6439E-01 -8.8341E-01 -1.1012E+00 -1.3178E+00 

3.448E-03 -4.6331E-01 -6.9235E-01 -9.1963E-01 -1.1452E+00 -1.3690E+00 

3.996E-03 -4.5937E-01 -6.8554E-01 -9.0936E-01 -1.1308E+00 -1.3499E+00 

4.547E-03 -4.3585E-01 -6.4944E-01 -8.6014E-01 -1.0680E+00 -1.2728E+00 

5.099E-03 -3.9690E-01 -5.9044E-01 -7.8072E-01 -9.6774E-01 -1.1515E+00 

5.652E-03 -3.4784E-01 -5.1671E-01 -6.8221E-01 -8.4435E-01 -1.0031E+00 

6.206E-03 -2.9407E-01 -4.3647E-01 -5.7577E-01 -7.1199E-01 -8.4511E-01 

6.760E-03 -2.4029E-01 -3.5680E-01 -4.7091E-01 -5.8259E-01 -6.9186E-01 

7.314E-03 -1.9033E-01 -2.8341E-01 -3.7511E-01 -4.6542E-01 -5.5434E-01 

7.868E-03 -1.4721E-01 -2.2063E-01 -2.9393E-01 -3.6712E-01 -4.4018E-01 

8.422E-03 -1.1296E-01 -1.7134E-01 -2.3099E-01 -2.9190E-01 -3.5408E-01 

8.975E-03 -8.7780E-02 -1.3567E-01 -1.8622E-01 -2.3945E-01 -2.9534E-01 

9.528E-03 -6.9726E-02 -1.1055E-01 -1.5534E-01 -2.0412E-01 -2.5687E-01 

1.008E-02 -5.6565E-02 -9.2490E-02 -1.3351E-01 -1.7963E-01 -2.3085E-01 

1.063E-02 -4.6722E-02 -7.9066E-02 -1.1740E-01 -1.6172E-01 -2.1203E-01 

1.118E-02 -3.9202E-02 -6.8803E-02 -1.0508E-01 -1.4802E-01 -1.9762E-01 

1.173E-02 -3.3365E-02 -6.0812E-02 -9.5437E-02 -1.3724E-01 -1.8622E-01 

1.228E-02 -2.8834E-02 -5.4616E-02 -8.7976E-02 -1.2891E-01 -1.7743E-01 

1.283E-02 -2.5354E-02 -4.9916E-02 -8.2401E-02 -1.2281E-01 -1.7115E-01 

1.338E-02 -2.2727E-02 -4.6467E-02 -7.8460E-02 -1.1870E-01 -1.6719E-01 

1.393E-02 -2.0797E-02 -4.4068E-02 -7.5920E-02 -1.1636E-01 -1.6537E-01 

1.447E-02 -1.9402E-02 -4.2467E-02 -7.4439E-02 -1.1532E-01 -1.6512E-01 

1.502E-02 -1.8437E-02 -4.1511E-02 -7.3823E-02 -1.1537E-01 -1.6616E-01 

1.556E-02 -1.7807E-02 -4.1053E-02 -7.3861E-02 -1.1623E-01 -1.6816E-01 

1.611E-02 -1.7438E-02 -4.0977E-02 -7.4396E-02 -1.1769E-01 -1.7088E-01 

1.665E-02 -1.7287E-02 -4.1225E-02 -7.5356E-02 -1.1968E-01 -1.7420E-01 

1.719E-02 -1.7304E-02 -4.1716E-02 -7.6632E-02 -1.2206E-01 -1.7798E-01 

1.758E-02 -1.7406E-02 -4.2199E-02 -7.7720E-02 -1.2397E-01 -1.8094E-01 
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Table 12:  Y-Comp. of Magnetic Force for Varying Distance and Current (3.5 - 5 Amp) 

 Fy Component for Varying Coil Current (Amp) and Distance (m) 

Distance (m) 3.5 4 4.5 5 

7.620E-04 6.3985E-05 7.6227E-05 8.9247E-05 1.0304E-04 

9.461E-04 -4.1481E-01 -4.7349E-01 -5.3203E-01 -5.9042E-01 

1.356E-03 -8.0204E-01 -9.1540E-01 -1.0285E+00 -1.1412E+00 

1.847E-03 -1.1332E+00 -1.2930E+00 -1.4523E+00 -1.6112E+00 

2.368E-03 -1.3817E+00 -1.5758E+00 -1.7692E+00 -1.9618E+00 

2.905E-03 -1.5332E+00 -1.7474E+00 -1.9602E+00 -2.1720E+00 

3.448E-03 -1.5910E+00 -1.8112E+00 -2.0298E+00 -2.2465E+00 

3.996E-03 -1.5668E+00 -1.7811E+00 -1.9932E+00 -2.2029E+00 

4.547E-03 -1.4749E+00 -1.6740E+00 -1.8703E+00 -2.0636E+00 

5.099E-03 -1.3319E+00 -1.5091E+00 -1.6830E+00 -1.8538E+00 

5.652E-03 -1.1585E+00 -1.3106E+00 -1.4593E+00 -1.6046E+00 

6.206E-03 -9.7513E-01 -1.1020E+00 -1.2259E+00 -1.3466E+00 

6.760E-03 -7.9870E-01 -9.0313E-01 -1.0052E+00 -1.1047E+00 

7.314E-03 -6.4188E-01 -7.2802E-01 -8.1278E-01 -8.9616E-01 

7.868E-03 -5.1312E-01 -5.8594E-01 -6.5865E-01 -7.3123E-01 

8.422E-03 -4.1752E-01 -4.8222E-01 -5.4819E-01 -6.1542E-01 

8.975E-03 -3.5390E-01 -4.1511E-01 -4.7900E-01 -5.4555E-01 

9.528E-03 -3.1358E-01 -3.7428E-01 -4.3894E-01 -5.0758E-01 

1.008E-02 -2.8715E-01 -3.4856E-01 -4.1505E-01 -4.8666E-01 

1.063E-02 -2.6832E-01 -3.3061E-01 -3.9888E-01 -4.7315E-01 

1.118E-02 -2.5390E-01 -3.1684E-01 -3.8646E-01 -4.6274E-01 

1.173E-02 -2.4237E-01 -3.0571E-01 -3.7621E-01 -4.5390E-01 

1.228E-02 -2.3352E-01 -2.9718E-01 -3.6843E-01 -4.4724E-01 

1.283E-02 -2.2740E-01 -2.9158E-01 -3.6368E-01 -4.4371E-01 

1.338E-02 -2.2394E-01 -2.8894E-01 -3.6219E-01 -4.4370E-01 

1.393E-02 -2.2297E-01 -2.8915E-01 -3.6390E-01 -4.4725E-01 

1.447E-02 -2.2382E-01 -2.9143E-01 -3.6795E-01 -4.5338E-01 

1.502E-02 -2.2617E-01 -2.9543E-01 -3.7393E-01 -4.6166E-01 

1.556E-02 -2.2965E-01 -3.0071E-01 -3.8133E-01 -4.7150E-01 

1.611E-02 -2.3393E-01 -3.0687E-01 -3.8969E-01 -4.8239E-01 

1.665E-02 -2.3892E-01 -3.1383E-01 -3.9893E-01 -4.9424E-01 

1.719E-02 -2.4442E-01 -3.2136E-01 -4.0881E-01 -5.0676E-01 

1.758E-02 -2.4864E-01 -3.2707E-01 -4.1624E-01 -5.1611E-01 
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Appendix B 
 

Curve and Surface Fit Plots and Threshold Distances 
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Figure 108:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.2 Amp 

Coil Excitation  

 

Figure 109:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.2 

Amp Coil Excitation  
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Figure 110: Threshold Distance where Iron and Iron + PM Forces are Equal (0.2 Amp) 



 

150 

MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 0.2 Ampere Coil Excitation 

 
%% ==============  Fmag for 0.2 Amp of Current ================ %% 
syms c x 
%Coefficients (with 95% confidence bounds), where x is normalized 

by mean 
% 0.008989 and std 0.005265 
    m1 = 0.008989; 
    std1 = 0.005265; 
F_sphere_02 = 0.00163283400972794;   % COMSOL prediction of EM 

force on rotor 
   c1 =  0.002356;  %(-0.001, 0.005713) 
   c2 =  0.004173;  %(-0.0009313, 0.009278) 
   c3 = -0.05227;   %(-0.06375, -0.0408) 
   c4 =  0.08666;   %(0.06103, 0.1123) 
   c5 = -0.03184;   %(-0.05519, -0.008489) 
   c6 =  0.05801;   %(0.04315, 0.07288) 
   c7 =  3.58;      %(3.419, 3.741) 
   c8 =  5.831;     %(5.344, 6.318) 
   c9 =  4.156;     %(3.443, 4.868) 
  c10 =  2.868;     %(2.135, 3.601) 
f02(x) = (c1*((x-m1)/std1)^5 + c2*((x-m1)/std1)^4 + c3*((x-

m1)/std1)^3 + c4*((x-m1)/std1)^2 + c5*((x-m1)/std1) + c6)/(((x-

m1)/std1)^4 + c7*((x-m1)/std1)^3 + c8*((x-m1)/std1)^2 + c9*((x-

m1)/std1) + c10); 
eqn = (c1*c^5 + c2*c^4 + c3*c^3 + c4*c^2 + c5*c + c6)/(c^4 + c7*c^3 

+ c8*c^2 + c9*c + c10) == F_sphere_02; 
S = solve(eqn,c); 
S1 = [vpa(S(1)); vpa(S(2)); vpa(S(3)); vpa(S(4)); vpa(S(5));]; 
S2 = std1*S1+m1;  %Point at which Iron+PM Force Intersects Iron 

Only  
Int_02 = S2(3); 

  
fplot (f02) 
hold on 
fplot(F_sphere_02) 
hold  on 
plot(Int_02, F_sphere_02, 'r.') 
xlim([0 0.018]) 
ylim([0 0.2]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (0.2 Amp) ') 
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Figure 111:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.3 Amp 

Coil Excitation 

 

Figure 112:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.3 

Amp Coil Excitation 
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Figure 113: Threshold Distance where Iron and Iron + PM Forces are Equal (0.3Amp) 
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 0.3 Ampere Coil Excitation 

 
%% 3  Fmag for 0.3 Amp of Current ================ %% 
syms d x 
%Coefficients (with 95% confidence bounds), where x is normalized 

by mean 
% 0.008989 and std 0.005265 
    m1 = 0.008989; 
    std1 = 0.005265; 
F_sphere_03 = 0.00367395347096692;   % COMSOL prediction of EM 

force on rotor 
   d1 =  0.004281;   %(-0.0004551, 0.009016) 
   d2 =  0.006689;   %(-0.0004012, 0.01378) 
   d3 = -0.08689;    %(-0.1029, -0.07084) 
   d4 =  0.1282;     %(0.09278, 0.1637) 
   d5 = -0.04892;    %(-0.0809, -0.01695) 
   d6 =  0.07838;    %(0.05906, 0.09769) 
   d7 =  3.515;      %(3.364, 3.666) 
   d8 =  5.595;      %(5.148, 6.041) 
   d9 =  3.753;      %(3.111, 4.396) 
  d10 =  2.631;      %(1.984, 3.278) 
f03(x) = (d1*((x-m1)/std1)^5 + d2*((x-m1)/std1)^4 + d3*((x-

m1)/std1)^3 + d4*((x-m1)/std1)^2 + d5*((x-m1)/std1) + d6)/(((x-

m1)/std1)^4 + d7*((x-m1)/std1)^3 + d8*((x-m1)/std1)^2 + d9*((x-

m1)/std1) + d10); 
eqn = (d1*d^5 + d2*d^4 + d3*d^3 + d4*d^2 + d5*d + d6)/(d^4 + d7*d^3 

+ d8*d^2 + d9*d + d10) == F_sphere_03; 
S = solve(eqn,d); 
S1 = [vpa(S(1)); vpa(S(2)); vpa(S(3)); vpa(S(4)); vpa(S(5));]; 
S2 = std1*S1+m1;  %Point at which Iron+PM Force Intersects Iron 

Only  
Int_03 = S2(3); 

  
fplot (f03) 
hold on 
fplot(F_sphere_03) 
hold  on 
plot(Int_03, F_sphere_03, 'r.') 
xlim([0 0.018]) 
ylim([0 0.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (0.3 Amp) ') 
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Figure 114:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.4 Amp 

Coil Excitation 

 

Figure 115:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.4 

Amp Coil Excitation 
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Figure 116: Threshold Distance where Iron and Iron + PM Forces are Equal (0.4 Amp) 
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 0.4 Ampere Coil Excitation 
 

%% ==============  Fmag for 0.4 Amp of Current ================ %% 
syms e x 
%Coefficients (with 95% confidence bounds), where x is normalized 

by mean 
% 0.008989 and std 0.005265 
    m1 = 0.008989; 
    std1 = 0.005265; 
F_sphere_04 = 0.00653142112431786;   % COMSOL prediction of EM 

force on rotor 
   e1 =  0.01539;  %(0.009077, 0.0217) 
   e2 =  0.008478; %(-0.0008056, 0.01776) 
   e3 = -0.1511;   %(-0.1709, -0.1312) 
   e4 =  0.2048;   %(0.1595, 0.25) 
   e5 = -0.09168;  %(-0.133, -0.05035) 
   e6 =  0.104;    %(0.07927, 0.1288) 
   e7 =  3.46;     %(3.314, 3.606) 
   e8 =  5.354;    %(4.934, 5.773) 
   e9 =  3.236;    %(2.65, 3.821) 
  e10 =  2.661;    %(2.03, 3.292) 
f04(x) = (e1*((x-m1)/std1)^5 + e2*((x-m1)/std1)^4 + e3*((x-

m1)/std1)^3 + e4*((x-m1)/std1)^2 + e5*((x-m1)/std1) + e6)/(((x-

m1)/std1)^4 + e7*((x-m1)/std1)^3 + e8*((x-m1)/std1)^2 + e9*((x-

m1)/std1) + e10); 
eqn = (e1*e^5 + e2*e^4 + e3*e^3 + e4*e^2 + e5*e + e6)/(e^4 + e7*e^3 

+ e8*e^2 + e9*e + e10) == F_sphere_04; 
S = solve(eqn,e); 
S1 = [vpa(S(1)); vpa(S(2)); vpa(S(3)); vpa(S(4)); vpa(S(5));]; 
S2 = std1*S1+m1;  %Point at which Iron+PM Force Intersects Iron 

Only  
Int_04 = S2(3); 

  
fplot (f04) 
hold on 
fplot(F_sphere_04) 
hold  on 
plot(Int_04, F_sphere_04, 'r.') 
xlim([0 0.018]) 
ylim([0 0.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (0.4 Amp) ') 
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Figure 117:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.5 Amp 

Coil Excitation  

 

Figure 118:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 0.5 

Amp Coil Excitation  
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Figure 119: Threshold Distance where Iron and Iron + PM Forces are Equal (0.5 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 0.5 Ampere Coil Excitation 

 
syms x 
%Coefficients (with 95% confidence bounds), where x is normalized 

by mean 
% 0.008989 and std 0.005265 
    m1 = 0.008989; 
    std1 = 0.005265; 
F_sphere_05 = 0.0102052895057943;   % COMSOL prediction of EM force 

on rotor 
   p1 =  0.02991;  %(0.0216, 0.03822) 
   p2 =  0.01656;  %(0.004984, 0.02814) 
   p3 = -0.2239;   %(-0.2486, -0.1992) 
   p4 =  0.2801;   %(0.2244, 0.3359) 
   p5 = -0.1241;   %(-0.1744, -0.07379) 
   p6 =  0.1245;   %(0.09476, 0.1542) 
   p7 =  3.449;    %(3.301, 3.597) 
   p8 =  5.224;    %(4.808, 5.639) 
   p9 =  2.837;    %(2.275, 3.399) 
  p10 =  2.496;    %(1.902, 3.091) 
f05(x) = (p1*((x-m1)/std1)^5 + p2*((x-m1)/std1)^4 + p3*((x-

m1)/std1)^3 + p4*((x-m1)/std1)^2 + p5*((x-m1)/std1) + p6)/(((x-

m1)/std1)^4 + p7*((x-m1)/std1)^3 + p8*((x-m1)/std1)^2 + p9*((x-

m1)/std1) + p10); 
eqn = (p1*x^5 + p2*x^4 + p3*x^3 + p4*x^2 + p5*x + p6)/(x^4 + p7*x^3 

+ p8*x^2 + p9*x + p10) == F_sphere_05; 
S = solve(eqn,x); 
S1 = [vpa(S(1)); vpa(S(2)); vpa(S(3)); vpa(S(4)); vpa(S(5));]; 
S2 = std1*S1+m1  %Point at which Iron+PM Force Intersects Magnitude 

of Magnetic  
Int_05 = S2(3); 

  
fplot (f05) 
hold on 
fplot(F_sphere_05) 
hold  on 
plot(Int_05, F_sphere_05, 'r.') 
xlim([0 0.018]) 
ylim([0 0.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (0.5 Amp) ') 
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Figure 120:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 1.0 Amp 

Coil Excitation  

 

Figure 121:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 1.0 

Amp Coil Excitation  
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Figure 122: Threshold Distance where Iron and Iron + PM Forces are Equal (1.0 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 1.0 Ampere Coil Excitation 
 

%% ==============  Fmag for 1.0 Amp of Current ================ %% 
syms y x      
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_1 = 0.0408215383560347; 
   q1 =  0.01518;  %(-0.009961, 0.04031) 
   q2 =  0.1488;   %(0.117, 0.1806) 
   q3 = -0.09689;  %(-0.209, 0.01524) 
   q4 =  0.171;    %(-0.01173, 0.3538) 
   q5 = -0.04686;  %(-0.1884, 0.09469) 
   q6 =  0.2336;   %(0.1528, 0.3143) 
   q7 =  3.781;    %(3.534, 4.028) 
   q8 =  6.53;     %(5.74, 7.32) 
   q9 =  5.1;      %(3.851, 6.349) 
  q10 =  2.475;    %(1.622, 3.329) 
eqn1 = (q1*y^5 + q2*y^4 + q3*y^3 + q4*y^2 + q5*y + q6)/(y^4 + 

q7*y^3 + q8*y^2 + q9*y + q10) == F_sphere_1; 
T = solve(eqn1,y); 
T1 = [vpa(T(1)); vpa(T(2)); vpa(T(3)); vpa(T(4)); vpa(T(5));]; 
T2 = std1*T1+m1 
Int_1 = T2(1); 

  
f15(x) = (q1*((x-m1)/std1)^5 +q2*((x-m1)/std1)^4 + q3*((x-

m1)/std1)^3 + q4*((x-m1)/std1)^2 + q5*((x-m1)/std1) + q6)/(((x-

m1)/std1)^4 + q7*((x-m1)/std1)^3 + q8*((x-m1)/std1)^2 + q9*((x-

m1)/std1) + q10) 
fplot (f15) 
hold on 
fplot(F_sphere_1) 
hold on 
plot(Int_1, F_sphere_1, 'r.') 
xlim([0 0.018]) 
ylim([0 1]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (1.0 Amp)') 
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Figure 123:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 1.5 Amps 

Coil Excitation  

 

Figure 124:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 1.5 

Amps Coil Excitation  
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Figure 125:  Threshold Distance where Iron and Iron + PM Forces are Equal (1.5 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 1.5 Ampere Coil Excitation 
 

%% ======  Fmag for 1.5 Amp of Current ======= %% 
syms z x      
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_15 = 0.0918477231825212; 
   r1 = -0.005073;   %(-0.03986, 0.02972) 
   r2 =  0.2104;     %(0.164, 0.2568) 
   r3 =  0.09245;    %(-0.05389, 0.2388) 
   r4 =  0.5963;     %(0.3581, 0.8344) 
   r5 = -0.1695;     %(-0.3343, -0.004736) 
   r6 =  0.3778;     %(0.2894, 0.4663) 
   r7 =  3.62;       %(3.453, 3.787) 
   r8 =  6.045;      %(5.55, 6.539) 
   r9 =  4.774;      %(3.984, 5.563) 
  r10 =  2.742;      %(2.103, 3.381) 
eqn15 = (r1*z^5 + r2*z^4 + r3*z^3 + r4*z^2 + r5*z +r6)/(z^4 + 

r7*z^3 + r8*z^2 + r9*z + r10) == F_sphere_15; 
U = solve(eqn15,z); 
U1 = [vpa(U(1)); vpa(U(2)); vpa(U(3)); vpa(U(4)); vpa(U(5));]; 
U2 = std1*U1+m1 
Int_15 = U2(1); 

  
f15(x) = (r1*((x-m1)/std1)^5 +r2*((x-m1)/std1)^4 + r3*((x-

m1)/std1)^3 + r4*((x-m1)/std1)^2 + r5*((x-m1)/std1) + r6)/(((x-

m1)/std1)^4 + r7*((x-m1)/std1)^3 + r8*((x-m1)/std1)^2 + r9*((x-

m1)/std1) + r10) 
fplot (f15) 
hold on 
fplot(F_sphere_15) 
hold on 
plot(Int_15, F_sphere_15, 'r.') 
xlim([0 0.018]) 
ylim([0 1.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (1.5 Amp)') 
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Figure 126:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 2.0 Amps 

Coil Excitation  

 

Figure 127:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 2.0 

Amps Coil Excitation  
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Figure 128:  Threshold Distance where Iron and Iron + PM Forces are Equal (2.0 Amp) 
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 2.0 Ampere Coil Excitation 
 

%% ======  Fmag for 2.0 Amp of Current ======= %% 
syms a x      
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_20 = 0.16328392631564; 
   s1 =  0.002181;  %(-0.03522, 0.03959) 
   s2 =  0.318;     %(0.2701, 0.3658) 
   s3 =  0.1248;    %(-0.0166, 0.2662) 
   s4 =  1.043;     %(0.8164, 1.27) 
   s5 = -0.05413;   %(-0.1776, 0.0693) 
   s6 =  0.3672;    %(0.2926, 0.4417) 
   s7 =  3.393;     %(3.257, 3.53) 
   s8 =  5.221;     %(4.881, 5.56) 
   s9 =  3.432;     %(2.954, 3.909) 
  s10 =  1.97;      %(1.572, 2.368) 
eqn20 = (s1*a^5 + s2*a^4 + s3*a^3 + s4*a^2 + s5*a + s6)/(a^4 + 

s7*a^3 + s8*a^2 + s9*a +s10) == F_sphere_20; 
V = solve(eqn20,a); 
V1 = [vpa(V(1)); vpa(V(2)); vpa(V(3)); vpa(V(4)); vpa(V(5));]; 
V2 = std1*V1+m1 
Int_2 = V2(1); 

  
f2(x) = (s1*((x-m1)/std1)^5 +s2*((x-m1)/std1)^4 + s3*((x-

m1)/std1)^3 + s4*((x-m1)/std1)^2 + s5*((x-m1)/std1) + s6)/(((x-

m1)/std1)^4 + s7*((x-m1)/std1)^3 + s8*((x-m1)/std1)^2 + s9*((x-

m1)/std1) + s10) 
fplot (f2) 
hold on 
fplot(F_sphere_20) 
hold on 
plot(Int_2, F_sphere_20, 'r.') 
xlim([0 0.018]) 
ylim([0 2]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (2.0 Amp)') 
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Figure 129:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 2.5 Amps 

Coil Excitation  

 

Figure 130:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 2.5 

Amps Coil Excitation  
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Figure 131:  Threshold Distance where Iron and Iron + PM Forces are Equal (2.5 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 2.5 Ampere Coil Excitation 
 

%% ======  Fmag for 2.5 Amp of Current ======= %% 
syms b x     
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_25 = 0.255133551163744; 
   t1 =  0.008308; %(-0.03578, 0.0524) 
   t2 =  0.4654;   %(0.4121, 0.5188) 
   t3 =  0.2362;   %(0.08306, 0.3894) 
   t4 =  1.458;    %(1.214, 1.702) 
   t5 =  0.1473;   %(0.04806, 0.2465) 
   t6 =  0.3671;   %(0.2908, 0.4434) 
   t7 =  3.288;    %(3.145, 3.43) 
   t8 =  4.843;    %(4.521, 5.165) 
   t9 =  2.799;    %(2.408, 3.19) 
  t10 =  1.498;    %(1.188, 1.808) 
eqn25 = (t1*b^5 + t2*b^4 + t3*b^3 + t4*b^2 + t5*b + t6)/(b^4 + 

t7*b^3 + t8*b^2 + t9*b + t10) == F_sphere_25; 
W = solve(eqn25,b); 
W1 = [vpa(W(1)); vpa(W(2)); vpa(W(3)); vpa(W(4)); vpa(W(5));]; 
W2 = std1*W1+m1 
Int_25 = W2(1); 

  
f25(x) = (t1*((x-m1)/std1)^5 +t2*((x-m1)/std1)^4 + t3*((x-

m1)/std1)^3 + t4*((x-m1)/std1)^2 + t5*((x-m1)/std1) + t6)/(((x-

m1)/std1)^4 + t7*((x-m1)/std1)^3 + t8*((x-m1)/std1)^2 + t9*((x-

m1)/std1) + t10) 
fplot (f25) 
hold on 
fplot(F_sphere_25) 
hold on 
plot(Int_25, F_sphere_25, 'r.') 
xlim([0 0.018]) 
ylim([0 2.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (2.5 Amp)') 

  



 

172 

 

Figure 132:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 3.0 Amps 

Coil Excitation  

 

Figure 133:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 3.0 

Amps Coil Excitation  
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Figure 134:  Threshold Distance where Iron and Iron + PM Forces are Equal (3.0 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 3.0 Ampere Coil Excitation 
 

%% ======  Fmag for 3.0 Amp of Current ======= %% 
syms c x     
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_30 = 0.367395346950679; 
   u1 =  0.009551;  %(-0.04107, 0.06017) 
   u2 =  0.6402;    %(0.5818, 0.6987) 
   u3 =  0.4408;    %(0.2759, 0.6057) 
   u4 =  1.901;     %(1.632, 2.17) 
   u5 =  0.3896;    %(0.3025, 0.4767) 
   u6 =  0.3883;    %(0.3059, 0.4707) 
   u7 =  3.225;     %(3.075, 3.376) 
   u8 =  4.639;     %(4.313, 4.965) 
   u9 =  2.485;     %(2.132, 2.838) 
  u10 =  1.223;     %(0.964, 1.481) 
eqn30 = (u1*c^5 + u2*c^4 + u3*c^3 + u4*c^2 + u5*c + u6)/(c^4 + 

u7*c^3 + u8*c^2 + u9*c +u10) == F_sphere_30; 
Y = solve(eqn30,c); 
Y1 = [vpa(Y(1)); vpa(Y(2)); vpa(Y(3)); vpa(Y(4)); vpa(Y(5));]; 
Y2 = std1*Y1+m1        
Int_30 = Y2(1); 

  
f30(x) = (u1*((x-m1)/std1)^5 +u2*((x-m1)/std1)^4 + u3*((x-

m1)/std1)^3 + u4*((x-m1)/std1)^2 + u5*((x-m1)/std1) + u6)/(((x-

m1)/std1)^4 + u7*((x-m1)/std1)^3 + u8*((x-m1)/std1)^2 + u9*((x-

m1)/std1) + u10) 
fplot (f30) 
hold on 
fplot(F_sphere_30) 
hold on 
plot(Int_30, F_sphere_30, 'r.') 
xlim([0 0.018]) 
ylim([0 3.0]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (3.0 Amp)') 
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Figure 135:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 3.5 Amps 

Coil Excitation  

 

Figure 136:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 3.5 

Amps Coil Excitation  
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Figure 137:  Threshold Distance where Iron and Iron + PM Forces are Equal (3.5 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 3.5 Ampere Coil Excitation 
 

%% ======  Fmag for 3.5 Amp of Current ======= %% 
syms d x     
% % Coefficients with 95% confidence bounds, where x is normalized 

by mean 
% 0.008989 and std 0.005265 
F_sphere_35 = 0.500060279779388; 
   v1 = -0.003269;  %(-0.06129, 0.05475) 
   v2 =  0.9367;    %(0.8726, 1.001) 
   v3 =  1.006;     %(0.8378, 1.174) 
   v4 =  2.66;      %(2.338, 2.982) 
   v5 =  0.8973;    %(0.7727, 1.022) 
   v6 =  0.4187;    %(0.3282, 0.5093) 
   v7 =  3.169;     %(2.998, 3.34) 
   v8 =  4.46;      %(4.1, 4.819) 
   v9 =  2.248;     %(1.913, 2.583) 
  v10 =  0.9505;    %(0.7443, 1.157) 
eqn35 = (v1*d^5 + v2*d^4 + v3*d^3 + v4*d^2 + v5*d + v6)/(d^4 + 

v7*d^3 + v8*d^2 + v9*d + v10) == F_sphere_35; 
Z = solve(eqn35,d); 
Z1 = [vpa(Z(1)); vpa(Z(2)); vpa(Z(3)); vpa(Z(4)); vpa(Z(5));]; 
Z2 = std1*Z1+m1     
Int_35 = Z2(1); 

  
f35(x) = (v1*((x-m1)/std1)^5 +v2*((x-m1)/std1)^4 + v3*((x-

m1)/std1)^3 + v4*((x-m1)/std1)^2 + v5*((x-m1)/std1) + v6)/(((x-

m1)/std1)^4 + v7*((x-m1)/std1)^3 + v8*((x-m1)/std1)^2 + v9*((x-

m1)/std1) + v10) 
fplot (f35) 
hold on 
fplot(F_sphere_35) 
hold on 
plot(Int_35, F_sphere_35, 'r.') 
xlim([0 0.018]) 
ylim([0 3.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (3.5 Amp)') 
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Figure 138:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 4.0 Amps 

Coil Excitation  

 

Figure 139:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 4.0 

Amps Coil Excitation  
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Figure 140:  Threshold Distance where Iron and Iron + PM Forces are Equal (4.0 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 4.0 Ampere Coil Excitation 
 

%% ======================  Fmag for 4.0 Amp of Current 

=============== %% 
syms e x     
%  Coefficients with 95% confidence bounds, where x is normalized 

by mean 
%  0.008989 and std 0.005265 
F_sphere_40 = 0.653133603631616; 
   w1 =  0.003814;  %(-0.0579, 0.06553) 
   w2 =  1.045;     %(0.9783, 1.112) 
   w3 =  1.115;     %(0.9301, 1.3) 
   w4 =  2.985;     %(2.641, 3.33) 
   w5 =  0.9904;    %(0.8573, 1.124) 
   w6 =  0.4909;    %(0.388, 0.5938) 
   w7 =  3.166;     %(3.007, 3.325) 
   w8 =  4.449;     %(4.111, 4.787) 
   w9 =  2.244;     %(1.923, 2.565) 
  w10 =  0.9579;    %(0.7567, 1.159) 
eqn40 = (w1*e^5 + w2*e^4 + w3*e^3 + w4*e^2 + w5*e + w6)/(e^4 + 

w7*e^3 + w8*e^2 + w9*e + w10) == F_sphere_40; 
G = solve(eqn40,e); 
G1 = [vpa(G(1)); vpa(G(2)); vpa(G(3)); vpa(G(4)); vpa(G(5));]; 
G2 = std1*G1+m1  
Int_40 = G2(1); 

  
f40(x) = (w1*((x-m1)/std1)^5 +w2*((x-m1)/std1)^4 + w3*((x-

m1)/std1)^3 + w4*((x-m1)/std1)^2 + w5*((x-m1)/std1) + w6)/(((x-

m1)/std1)^4 + w7*((x-m1)/std1)^3 + w8*((x-m1)/std1)^2 + w9*((x-

m1)/std1) + w10) 
fplot (f40) 
hold on 
fplot(F_sphere_40) 
hold on 
plot(Int_40, F_sphere_40, 'r.') 
xlim([0 0.018]) 
ylim([0 4]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (4.0 Amp)') 
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Figure 141:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 4.5 Amps 

Coil Excitation  

 

Figure 142:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 4.5 

Amps Coil Excitation  
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Figure 143:  Threshold Distance where Iron and Iron + PM Forces are Equal (4.5 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 4.5 Ampere Coil Excitation 
 

%% ======  Fmag for 4.5 Amp of Current ======= %% 
syms f x     
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_45 = 0.826632335629862; 
   x1 =  0.001278;  %(-0.06539, 0.06794) 
   x2 =  1.273;     %(1.202, 1.344) 
   x3 =  1.561;     %(1.365, 1.757) 
   x4 =  3.651;     %(3.254, 4.048) 
   x5 =  1.351;     %(1.168, 1.533) 
   x6 =  0.5703;    %(0.4532, 0.6874) 
   x7 =  3.15;      %(2.988, 3.312) 
   x8 =  4.398;     %(4.056, 4.741) 
   x9 =  2.195;     %(1.881, 2.509) 
  x10 =  0.8957;    %(0.711, 1.08) 
eqn45 = (x1*f^5 + x2*f^4 + x3*f^3 + x4*f^2 + x5*f +x6)/(f^4 + 

x7*f^3 + x8*f^2 + x9*f + x10) == F_sphere_45; 
H = solve(eqn45,f); 
H1 = [vpa(H(1)); vpa(H(2)); vpa(H(3)); vpa(H(4)); vpa(H(5));]; 
H2 = std1*H1+m1  
Int_45 = H2(1); 

  
f45(x) = (x1*((x-m1)/std1)^5 +x2*((x-m1)/std1)^4 + x3*((x-

m1)/std1)^3 + x4*((x-m1)/std1)^2 + x5*((x-m1)/std1) + x6)/(((x-

m1)/std1)^4 + x7*((x-m1)/std1)^3 + x8*((x-m1)/std1)^2 + x9*((x-

m1)/std1) + x10) 
fplot (f45) 
hold on 
fplot(F_sphere_45) 
hold on 
plot(Int_45, F_sphere_45, 'r.') 
xlim([0 0.018]) 
ylim([0 4.5]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (4.5 Amp)') 
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Figure 144:  Curve Fit for Magnitude of Magnetic Force (N) vs. Distance (m) – 5.0 Amps 

Coil Excitation  

 

Figure 145:  Residuals Plot for Magnitude of Magnetic Force (N) vs. Distance (m) – 5.0 

Amps Coil Excitation  
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Figure 146:  Threshold Distance where Iron and Iron + PM Forces are Equal (5.0 Amp)  
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MATLAB Source Code: Determination of Intersection Point of Iron Only Force and 

Iron + PM Force for 5.0 Ampere Coil Excitation 

%% ======  Fmag for 5.0 Amp of Current ======= %% 
syms k x     
% Coefficients with 95% confidence bounds, where x is normalized by 

mean 
% 0.008989 and std 0.005265 
F_sphere_50 = 1.02052895057943; 
   y1 = 0.00156;  %(-0.07065, 0.07377) 
   y2 = 1.513;    %(1.438, 1.588) 
   y3 = 2.086;    %(1.875, 2.297) 
   y4 = 4.424;    %(3.958, 4.891) 
   y5 = 1.773;    %(1.528, 2.017) 
   y6 = 0.6743;   %(0.5386, 0.8101) 
   y7 = 3.149;    %(2.984, 3.314) 
   y8 = 4.383;    %(4.033, 4.734) 
   y9 = 2.188;    %(1.874, 2.502) 
  y10 = 0.8648;   %(0.6898, 1.04) 
eqn50 = (y1*k^5 + y2*k^4 + y3*k^3 + y4*k^2 + y5*k + y6)/(k^4 + 

y7*k^3 + y8*k^2 + y9*k + y10) == F_sphere_50; 
J = solve(eqn50,k); 
J1 = [vpa(J(1)); vpa(J(2)); vpa(J(3)); vpa(J(4)); vpa(J(5));]; 
J2 = std1*J1+m1  
Int_50 = J2(1); 

  
f50(x) = (y1*((x-m1)/std1)^5 +y2*((x-m1)/std1)^4 + y3*((x-

m1)/std1)^3 + y4*((x-m1)/std1)^2 + y5*((x-m1)/std1) + y6)/(((x-

m1)/std1)^4 + y7*((x-m1)/std1)^3 + y8*((x-m1)/std1)^2 + y9*((x-

m1)/std1) + y10) 
fplot (f50) 
hold on 
fplot(F_sphere_50) 
hold on 
plot(Int_50, F_sphere_50, 'r.') 
xlim([0 0.018]) 
ylim([0 5.0]) 
grid on 
xlabel('distance (m)') 
ylabel('force (N)') 
title('Magnitude of Magnetic Force vs Distance (5.0 Amp)') 
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Table 13:  Fit Data –Distance where Magnitude of Magnetic Force equals Iron + PM Force 

vs. Coil Excitation 

Intersection Distance and Angle of Iron Only & Iron+PM 

Force vs. Icoil 

Angle (deg) Distance (m) Force (N) Current (A) 

3.07617E+01 1.70603E-02 1.63283E-03 0.2 

2.71089E+01 1.50792E-02 3.67395E-03 0.3 

2.49748E+01 1.39149E-02 6.53142E-03 0.4 

2.37363E+01 1.32371E-02 1.02053E-02 0.5 

1.98854E+01 1.11210E-02 4.08215E-02 1.0 

1.79955E+01 1.00784E-02 9.18477E-02 1.5 

1.67440E+01 9.38687E-03 1.63284E-01 2.0 

1.57742E+01 8.85037E-03 2.55134E-01 2.5 

1.49777E+01 8.40947E-03 3.67395E-01 3.0 

1.43552E+01 8.06477E-03 5.00060E-01 3.5 

1.37202E+01 7.71302E-03 6.53134E-01 4.0 

1.31972E+01 7.42324E-03 8.26632E-01 4.5 

1.27226E+01 7.16025E-03 1.02053E+00 5.0 

 

Table 14:  Fit Data for Magnitude of Iron Only Force (N) vs. Coil Excitation (A) 

Current 

(Amps) 
Force (N) 

0 0 

0.2 1.63283E-03 

0.3 3.67395E-03 

0.4 6.53142E-03 

0.5 1.02053E-02 

1.0 4.08215E-02 

1.5 9.18477E-02 

2.0 1.63284E-01 

2.5 2.55134E-01 

3.0 3.67395E-01 

3.5 5.00060E-01 

4.0 6.53134E-01 

4.5 8.26632E-01 

5.0 1.02053E+00 
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 Figure 147:  Curve Fit for Iron Only / Iron + PM Threshold Distance (m) vs. Coil 

Excitation (Amp)  

 

Figure 148:  Residuals Plot for Iron Only / Iron + PM Threshold Distance (m) vs. Coil 

Excitation (Amp) 
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Figure 149:  Curve Fit for Magnitude of Iron Only Force (N) vs. Coil Excitation (A) 

 

Figure 150:  Residuals Plot for Magnitude of Iron Only Force (N) vs. Coil Excitation (A) 
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Figure 151:  Surface Fit: Magnetic Force Z-comp vs. Coil Excitation (A) vs. Distance (m) 

 

Figure 152:  Residuals Plot: Magnetic Force Z-comp vs. Coil Current (A) vs. Distance (m)  
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Figure 153:  Surface Fit: Magnetic Force Z-comp vs. Coil Current (A) vs. Distance (m) 

 

Figure 154:  Residuals Plot: Magnetic Force Z-comp vs. Coil Current (A) vs. Distance (m)
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Figure 155: Surface Fit: Magnetic Force Y-comp vs. Coil Current (A) vs. Distance (m) 

 

Figure 156: Residuals Plot: Magnetic Force Y-comp vs. Coil Current (A) vs. Distance (m)  
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Figure 157: Surface Fit: Iron+PM Force Y-comp vs. Coil Current (A) vs Distance (m) 

 

Figure 158: Surface Fit: Iron+PM Force Y-comp (N) vs Coil Current (A) vs Distance (m) 
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Appendix C 
 

Validation Data: Transformation of Magnetic Forces and 

Torques 
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Table 15: Validation Data for Coordinate Transformation of Forces 

  EM_1 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Lorentz Force Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 -4.0828E-06 -1.4203E-01 1.0017E-01 1.7380E-01 -3.6500E-06 -1.4204E-01 1.0016E-01 1.7380E-01 

2 -1.6379E-01 -4.7474E-02 -3.3565E-02 1.7380E-01 -1.6378E-01 -4.7480E-02 -3.3569E-02 1.7380E-01 

3 -4.0020E-06 4.7084E-02 -1.6730E-01 1.7380E-01 -3.6500E-06 4.7082E-02 -1.6730E-01 1.7380E-01 

4 1.6379E-01 -4.7480E-02 -3.3569E-02 1.7381E-01 1.6378E-01 -4.7475E-02 -3.3574E-02 1.7380E-01 

                  

  EM_2 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Validation Data Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 1.2301E-01 7.1023E-02 1.0016E-01 1.7380E-01 1.2301E-01 7.1021E-02 1.0016E-01 1.7380E-01 

2 1.2301E-01 -1.1810E-01 -3.3575E-02 1.7380E-01 1.2301E-01 -1.1810E-01 -3.3569E-02 1.7380E-01 

3 -4.0785E-02 -2.3543E-02 -1.6730E-01 1.7380E-01 -4.0772E-02 -2.3544E-02 -1.6730E-01 1.7380E-01 

4 -4.0785E-02 1.6558E-01 -3.3571E-02 1.7380E-01 -4.0776E-02 1.6558E-01 -3.3574E-02 1.7380E-01 

                  

  EM_3 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Validation Data Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 -1.2301E-01 7.1014E-02 1.0017E-01 1.7381E-01 -1.2301E-01 7.1015E-02 1.0016E-01 1.7380E-01 

2 4.0774E-02 1.6558E-01 -3.3569E-02 1.7380E-01 4.0772E-02 1.6558E-01 -3.3568E-02 1.7380E-01 

3 4.0774E-02 -2.3546E-02 -1.6730E-01 1.7380E-01 4.0776E-02 -2.3538E-02 -1.6730E-01 1.7380E-01 

4 -1.2301E-01 -1.1811E-01 -3.3565E-02 1.7380E-01 -1.2301E-01 -1.1810E-01 -3.3575E-02 1.7380E-01 

                  

  EM_4 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Validation Data Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 -3.6553E-06 -4.7092E-02 1.6730E-01 1.7380E-01 -3.6500E-06 -4.7082E-02 1.6730E-01 1.7380E-01 

2 1.6379E-01 4.7476E-02 3.3574E-02 1.7381E-01 1.6378E-01 4.7475E-02 3.3574E-02 1.7380E-01 

3 -4.0577E-06 1.4204E-01 -1.0016E-01 1.7380E-01 3.6500E-06 1.4204E-01 -1.0016E-01 1.7380E-01 

4 -1.6379E-01 4.7470E-02 3.3571E-02 1.7380E-01 -1.6378E-01 4.7480E-02 3.3569E-02 1.7380E-01 
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  EM_5 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Validation Data Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 4.0774E-02 2.3545E-02 1.6730E-01 1.7380E-01 4.0776E-02 2.3538E-02 1.6730E-01 1.7380E-01 

2 -1.2301E-01 1.1811E-01 3.3564E-02 1.7380E-01 -1.2301E-01 1.1810E-01 3.3575E-02 1.7380E-01 

3 -1.2301E-01 -7.1015E-02 -1.0017E-01 1.7381E-01 -1.2301E-01 -7.1015E-02 -1.0016E-01 1.7380E-01 

4 4.0773E-02 -1.6558E-01 3.3568E-02 1.7380E-01 4.0772E-02 -1.6558E-01 3.3568E-02 1.7380E-01 

                  

  EM_6 Force Validation Data - 0.5 Amps of Coil Excitation 

  COMSOL Validation Data Coordinate Transformation Forces 

PM Position Fx Fy Fz Fmag Fx Fy Fz Fmag 

1 -4.0785E-02 2.3543E-02 1.6730E-01 1.7380E-01 -4.0772E-02 2.3544E-02 1.6730E-01 1.7380E-01 

2 -4.0785E-02 -1.6558E-01 3.3571E-02 1.7380E-01 -4.0776E-02 -1.6558E-01 3.3574E-02 1.7380E-01 

3 1.2301E-01 -7.1023E-02 -1.0016E-01 1.7380E-01 1.2301E-01 -7.1021E-02 -1.0016E-01 1.7380E-01 

4 1.2301E-01 1.1811E-01 3.3575E-02 1.7381E-01 1.2301E-01 1.1810E-01 3.3569E-02 1.7380E-01 

Notes:  

• All forces are in Newtons 

• Discrepancies between COMSOL validation data and the transformed simulation data are due to rounding errors. 
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Table 16: Validation Data for Torques from Transformed Magnetic Forces 

  

EM_1 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 5.2329E-03 2.6079E-06 -5.7585E-06 5.3251E-03 -7.6637E-08 1.0838E-07 

2 -1.8222E-05 -3.0212E-03 4.2702E-03 1.1112E-07 -3.0745E-03 4.3480E-03 

3 -5.2204E-03 -6.2930E-06 1.9009E-05 -5.3249E-03 -7.5121E-08 1.0624E-07 

4 -4.7234E-05 3.0693E-03 -4.3293E-03 1.1756E-07 3.0745E-03 -4.3480E-03 

              

  EM_2 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

  COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 -2.59980E-03 4.56860E-03 3.34700E-05 -2.6626E-03 4.6116E-03 -7.2338E-08 

2 2.62780E-03 1.51810E-03 4.28720E-03 2.6625E-03 1.5371E-03 4.3478E-03 

3 2.60660E-03 -4.48930E-03 1.66120E-05 2.6625E-03 -4.6117E-03 -9.7238E-08 

4 -2.57280E-03 -1.55270E-03 -4.23840E-03 -2.6625E-03 -1.5373E-03 -4.3479E-03 

              

  EM_3 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

  COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 -2.5640E-03 -4.4846E-03 -2.3266E-05 -2.6625E-03 -4.6119E-03 -1.3457E-07 

2 -2.6084E-03 1.5118E-03 4.2631E-03 -2.6625E-03 1.5371E-03 4.3478E-03 

3 2.5814E-03 4.4920E-03 1.4395E-05 2.6625E-03 4.6115E-03 -1.1773E-07 

4 2.6328E-03 -1.4889E-03 -4.2721E-03 2.6625E-03 -1.5374E-03 -4.3480E-03 

              

       



 

198 

  EM_4 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

  COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 -5.2374E-03 -2.2749E-05 4.6668E-05 -5.3251E-03 6.8613E-08 -9.7033E-08 

2 1.6354E-05 -3.0183E-03 4.2737E-03 -9.0249E-08 -3.0745E-03 4.3480E-03 

3 5.2609E-03 1.3516E-05 -1.5052E-05 5.3250E-03 7.6166E-08 -1.0772E-07 

4 1.5890E-05 3.0427E-03 -4.3135E-03 -1.2324E-07 3.0745E-03 -4.3480E-03 

        
  EM_5 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

  COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 2.6185E-03 -4.5350E-03 -6.4552E-06 2.6625E-03 -4.6115E-03 9.4744E-08 

2 2.5706E-03 1.4699E-03 4.1865E-03 2.6625E-03 1.5374E-03 4.3480E-03 

3 -2.5992E-03 4.5323E-03 1.5795E-05 -2.6626E-03 4.6119E-03 1.1158E-07 

4 -2.6121E-03 -1.5189E-03 -4.2745E-03 -2.6625E-03 -1.5371E-03 -4.3478E-03 

              

  EM_6 Torque Validation Data - 0.5 Amps of Coil Excitation (N/m) 

  COMSOL Torque (EM) Coord. Transformation Torque (EM) 

PM Position Tx Ty Tz Tx Ty Tz 

1 2.6214E-03 4.4953E-03 -4.4398E-05 2.6625E-03 4.6117E-03 9.7238E-08 

2 -2.5820E-03 1.4878E-03 4.2142E-03 -2.6625E-03 1.5373E-03 4.3479E-03 

3 -2.5841E-03 -4.5027E-03 -1.8639E-05 -2.6626E-03 -4.6116E-03 7.2338E-08 

4 2.6158E-03 -1.5021E-03 -4.2629E-03 2.6627E-03 -1.5371E-03 -4.3480E-03 

Note:  

• All torques are in Newton-meters. Discrepancies between COMSOL validation data and the transformed simulation data 

are due to rounding errors and because the line of action associated with the torque is not provided by COMSOL. 
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Appendix D 
 

MATLAB Code: Force and Torque Computation Algorithm
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%MSFUNTMPL_BASIC A Template for a Level-2 MATLAB S-Function 
% The MATLAB S-function is written as a MATLAB function with the 

same name as the S-function. Replace 'msfuntmpl_basic' with the 

name of your S-function. It should be noted that the MATLAB S-

function is very similar to Level-2 C-Mex S-functions. You should 

be able to get more information for each of the block methods by 

referring to the documentation for C-Mex S-functions. Copyright 

2003-2010 The MathWorks, Inc. 

  
function MagLev_Final(block); 
% J.Byron - Master's Thesis - Dynamic Modeling of a 3-DOF Reaction 

Sphere. This MATLAB Level 2 S-function calculates the scalar 

distance between each EM and PM, and determines which EM / PM pair 

are interacting. Due to the geometry of the PMs on the sphere, only 

one PM can interact with one EM at any given position. The EM 

positions are fixed relative to a global coordinate system located 

at the center of stator. The EM position vectors are integrated 

into this S-function and given in Cartesian coordinates to make use 

of various vector operations. After calculating the distance, the 

instantaneous current each EM is used to calculate the EM/PM 

distance where the Iron Only force equals the Iron+PM force. This 

distance "dt" will then be used as a threshold to logically 

determine which force is dominate. The output of this function are 

the forces and torques acting on rotor (sphere) and the 

corresponding reactions on the stator (EMs).  

  
%========== UNITS =============% 
% Length ==> meters  (m) 
% Force  ==> Newtons (N) 
% Mass   ==> Kilograms (kg) 
% Moment of Inertia ==> kg*m^2 
% Torque ==> Newton-meter (Nm) 
% Curent ==> Amperes (A) 
% Angle  ==> Radians (rad) 

  
setup(block); 
%end function 

  
function setup(block); 
  %% Register number of ports 
  block.NumInputPorts  = 2; 
  block.NumOutputPorts = 2; 

  
  %% Setup port properties to be inherited or dynamic 
  block.SetPreCompInpPortInfoToDynamic; 
  block.SetPreCompOutPortInfoToDynamic; 

  

  %% Setup port properties (datatype id = 0 ==> Double 

  
  % Input Port 1 ==> Array Coil Currents 
  block.InputPort(1).Dimensions   = [1 6]; 
  block.InputPort(1).DataTypeId   = 0;  
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  block.InputPort(1).Complexity   = 'Real';  
  block.InputPort(1).DirectFeedthrough = true; 

   
  % Input Port 2 ==> Euler Angles  
  block.InputPort(2).Dimensions   = [1 3]; 
  block.InputPort(2).DataTypeId   = 0;  
  block.InputPort(2).Complexity   = 'Real';  
  block.InputPort(2).DirectFeedthrough = true; 

   
  % Output Port ==> Forces 
  block.OutputPort(1).Dimensions   = [3 1]; 
  block.OutputPort(1).DataTypeId   = 0;  
  block.OutputPort(1).Complexity   = 'Real'; 

  
  % Output Port ==> Torques 
  block.OutputPort(2).Dimensions   = [3 1]; 
  block.OutputPort(2).DataTypeId   = 0;  
  block.OutputPort(2).Complexity   = 'Real'; 

   
  % Register parameters 
  block.NumDialogPrms = 0; 

   

  % Ccontinuous states for derivatives 
  % block.NumContStates = 6;  

  
  % Register sample times:[0 offset]: Continuous 
  block.SampleTimes = [0 0]; 

   
  % Specify if Accelerator should use TLC or call back to the 

MATLAB file 
  block.SetAccelRunOnTLC(false); 

  
  % Specify the block simStateCompliance:'DefaultSimState', Same 

sim state as a built-in block 
  block.SimStateCompliance = 'DefaultSimState'; 

   
  %% Register methods 
  block.RegBlockMethod('SetInputPortSamplingMode', 

@SetInputPortFrameData); 
  %block.RegBlockMethod('InitializeConditions', 

@InitializeConditions); 
  block.RegBlockMethod('Outputs', @Outputs);     % Required 
  block.RegBlockMethod('Terminate', @Terminate); % Required 
%end function 

  
% NOTE: If more than one instance of this block is used within a 

Simulink 
% model, then a Dwork vector must be defined to prevent the S-

function 
% instances from overwriting one another. 
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function SetInputPortFrameData(block, idx, fd) 

   
  block.InputPort(idx).SamplingMode = fd; 
  block.OutputPort(idx).SamplingMode  = fd; 
 %end function 

   
function Outputs(block) 
%=============== ASSIGN INPUTS AND SIMULATION PARAMETERS 

================%   

      
 i_coil = block.InputPort(1).Data;    % EM_1 current 
    psi = block.InputPort(2).Data(1); % Rotation Angle of Z axis 
  theta = block.InputPort(2).Data(2); % Rotation Angle of Y' axis 
    phi = block.InputPort(2).Data(3); % Rotation Angle of X'' axis 

    
% Mass properties obtained from Solidworks CAD model: 

Rotor_NGC_RS_V2.assy 

  
rs = 0.03175;            % Radius of Sphere (m) ==> 1.25 inch 
rem = 0.032512;          % Radius of inner sphere rs + airgap 
m = 1.092;               % Mass of rotor (sphere, inserts, PMs)  
I = [4.3955e-04 0 0;     % Inertia Tensor of Sphere  
     0 4.3955e-04 0;  
     0 0 4.3955e-04;];  
dh = 0.00842182786076174; % Distance where Iron + PM force function 

changes 

    
% Pre-allocating arrays increases computation speed % 
    ds = zeros(6,12);  % Distance between Rotated PMs and each EM 
    dm = zeros(6,1);   % Distance between EM - PM in closest 

proximity  
    d = zeros(6,2);     % Adjusted distance (dm) for fit surface of 

Force (centered/scaled) for X,Y,Z 
    id_pm = zeros(6,1);  % Identity of PM closest to each EM 
    fgen  = zeros(3,6);  % Force components in predicted by 

generalized model 
    fcan = zeros(3,6);   % Force components in canonical form (EM 

fixed)  
    fcomp = zeros(3,6);  % Force components transformed to EM 

coordinates 
    tcomp = zeros(3,6);  % Torque components of each EM 
    Ptpm  = zeros(3,6);  % Transposed PM coordinates 

  
 %========== POSITION VECTORS OF ELECTROMAGNETS (EMs) ============% 
 % Columns 1-3 are upper hemisphere EM position vectors and columns 
 % 4-6 are lower hemisphere EM position vectors 

  
  Pem = rem.*[0 -sqrt(2)/2 sqrt(2)/2 0 sqrt(2)/2 -sqrt(2)/2; 
       sqrt(2)/sqrt(3) -sqrt(2)/(2*sqrt(3)) -sqrt(2)/(2*sqrt(3)) -

sqrt(2)/sqrt(3) sqrt(2)/(2*sqrt(3)) sqrt(2)/(2*sqrt(3)); 
       1/sqrt(3) 1/sqrt(3) 1/sqrt(3) -1/sqrt(3) -1/sqrt(3) -

1/sqrt(3);];  
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 ru = Pem/rem;  % Convert EM position vectors into unit vectors  

  
%========== POSITION VECTORS OF PERMANENT MAGNETS (PMs) ==========%  
% Columns 1-6 are upper hemisphere PM position vectors and columns 

6-12 are lower hemisphere PM position vectors 

   
 Ppm = rs.*[0 2/sqrt(5) (5-sqrt(5))/10 (-5-sqrt(5))/10 (-5-

sqrt(5))/10 (5-sqrt(5))/10 0 -2/sqrt(5) -(5-sqrt(5))/10 -(-5-

sqrt(5))/10 -(-5-sqrt(5))/10 -(5-sqrt(5))/10; 
        0 0 sqrt((5+sqrt(5))/10) sqrt((5-sqrt(5))/10) -sqrt((5-

sqrt(5))/10) -sqrt((5+sqrt(5))/10) 0 0 -sqrt((5+sqrt(5))/10) -

sqrt((5-sqrt(5))/10) sqrt((5-sqrt(5))/10) sqrt((5+sqrt(5))/10); 
        1 1/sqrt(5) 1/sqrt(5) 1/sqrt(5) 1/sqrt(5) 1/sqrt(5) -1 -

1/sqrt(5) -1/sqrt(5) -1/sqrt(5) -1/sqrt(5) -1/sqrt(5);];     

    
%================ EULER ROTATION MATRIX =====================% 
 Rm = [cos(psi)*cos(theta),  sin(psi)*cos(theta),   -sin(theta); 
     -sin(psi)*cos(phi)+cos(psi)*sin(theta)*sin(phi),  

cos(psi)*cos(phi)+sin(psi)*sin(theta)*sin(phi), 

cos(theta)*sin(phi); 
      sin(psi)*sin(phi)+cos(psi)*sin(theta)*cos(phi), -

cos(psi)*sin(phi)+sin(psi)*sin(theta)*cos(phi), 

cos(theta)*cos(phi)];  

  
 %============ CALCULATE COORDINATES OF ROTATED PMs ===========%  
%Note: since the position vectors of the PMs are given as column 

vectors the rotation matrix must be transposed and pre-multiplies 

the position vectors 

     
    Prpm = transpose(Rm)*Ppm; 

     
%============ CALCULATE FORCE IN IRON ONLY REGION ==============% 
 % Equation calculates the magnitude of magnetic force (Newtons) 

between an EM and the iron rotor as a function of current 

(Calculated for each EM). PM field is neglected in this region. 

  
    p1 =  0.04082;      
    p2 =  2;  

  
    fio = p1.*i_coil.^p2; 

  
 %== COEFFICIENTS OF POLYNOMIAL THAT CALCULATES IRON+PM" FORCE ===% 
 % column_1 is applicable for dh <= 0.00842182786076174 and i = 

0..5 and column_2 is applicable for dh  > 0.00842182786076174 and i 

= 0..5 

  
    dmean = [0.004616  0.01336];  
    dstd  =  [0.002619 0.002672];    
    imean = 2.029; 
    istd  =  1.671; 
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 % Coefficients for Z-Component 
    z00 = [0.4634      0.08881]; 
    z10 = [-0.8752     0.02756]; 
    z01 = [0.4101      0.1993]; 
    z20 = [0.3714     -0.008756]; 
    z11 = [-0.6778     0.01813]; 
    z02 = [0.02375     0.1041]; 
    z30 = [0.101       0.001696]; 
    z21 = [0.3265     -0.008319]; 
    z12 = [0.04269    -0.003584]; 
    z40 = [-0.07107   -0.0007012]; 
    z31 = [0.0869      0.002364]; 
    z22 = [0.01224    -0.001288]; 
    z50 = [0.003575    0.0001135]; 
    z41 = [-0.06044   -0.0007941]; 
    z32 = [-0.005217   0.0004785]; 

     
 % Coefficients for XY-Components 
    a00 =  [-0.8522    -0.08073]; 
    a10 =  [0.3231      0.01608]; 
    a01 =  [-0.6856    -0.1223]; 
    a20 =  [0.2562     -0.0159]; 
    a11 =  [0.2972      0.00165]; 
    a02 =  [0.01634    -0.04594]; 
    a30 =  [-0.1453     0.00465]; 
    a21 =  [0.208      -0.01175]; 
    a12 =  [0.007655   -0.009972]; 
    a40 =  [0.03493    -0.0008355]; 
    a31 =  [-0.1616     0.002786]; 
    a22 =  [-0.009062   0.001637]; 
    a50 =  [-0.01463    0.0001928]; 
    a41 =  [0.02443    -9.901e-05]; 
    a32 =  [-0.00457   -0.0006107]; 

      
 %====== CALCULATE THRESHOLD DISTANCE FOR PM INTERACTION =========% 
 % Equation outputs the the distance "dio" (meters) where the "Iron 

Only" force is equal to the "Iron + PM force" for a given EM 

current 

  
    a1 = -2.29e-05; 
    a2 =  0.0002941;   
    a3 = -0.001755;   
    a4 =  0.01109;  
    a5 =  0.002068;   
    a6 =  0.04727;   

     
    dio = (a1.*i_coil.^4 + a2.*i_coil.^3 + a3.*i_coil.^2 + 

a4.*i_coil + a5)./(i_coil + a6); 

  
 %==== CALCULATE SCALAR DISTANCE BETWEEN EMs AND ROTATED PMs =====%   
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 % This for-loop calculates the distance between all 12 PMs 

relative to each EM for a total of 72 distances. i denotes the 

number of PMs and j denotes number of EMs. For example row 1, 

columns 1-12 correspond to distances of all PMs relative to EM_1. 

Column 1, rows 1-6 are the distances between each EM relative to 

PM_1.   

  
    for k = 1:12 
        for j = 1:6 
            ds(j,k) = norm(Pem(:,j)-Prpm(:,k)); 
        end 
    end  

  
 %=========== DETERMINE MINIMUM DISTANCE BETWEEN EM / PM =========%  
 % This for loop identifies and outputs the PM number (id) and 

distance (dm) 
 % of the closest PM to each EM 

  
    for j = 1:6 
        [dm(j,:), id_pm(j,:)] = min(ds(j,:));   
    end 

  

%========= COORDINATE TRANSFORMATIONS - FORCE VECTORS ===========% 
% The rotation matrices to perform the coordinate transformations 

is:  

   1.) Rotation about x-axis by instantaneous angle between EM/PM 

(phi_in)  

   2.) Rotation about z-axis to the applicable stator position 

(psi_em) 
%   3.) Rotation about x'-axis to EM Stator position 

 
% Note: the instantaneous value in step 1 transforms the rotating 

EM in the generalized model to the dynamic model where where the EM 

is fixed. 

  

% phi_in  ==> rotation matrix moves EM to canonical position in 

generalized model (canonical position is coincident with Z-axis) 
% psi_em  ==> rotation matrix moves EM from canonical position to 

stator coordinates 
% phi2_em ==> rotation matrix moves EM from canonical position to 

stator coordinates 

  
   phi_in = acos(((dm.^2)-rem^2 - rs^2)/(-2*rem*rs)); 
   psi_em = [0 (5*pi/3) (pi/3) 0 (2*pi/3) (4*pi/3)];   
  phi2_em = [-acos(1/sqrt(3)) acos(1/sqrt(3)) acos(1/sqrt(3)) pi-

acos(1/sqrt(3)) pi-acos(1/sqrt(3)) pi-acos(1/sqrt(3))];    

  

    
%============== CALCULATE FORCES AND TORQUES =====================% 
% The "Iron Only" force acts along the axis of the EM position 

vector and acts to pull the sphere toward the electromagnet 
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(direction of minimum reluctance). Therefore, multiplying the 

magnitude of the force by the EM position vector will give the 

force components with the correct direction. (x,y,z) and sign (+/-

). Calculation of this force is performed in the first "if" 

statement. 

 
% The "Iron + PM" force does not act thru the center of mass of the 

rotor. Therefore a moment will be generated. Calculation of the 

forces and  torques in Iron + PM Region are performed in the  

remaining "else if" statements. Note: the functions that calculate 

the fy and fz components in this region are separated into 2 fit 

equations to improve accuracy of the computed force.  
  

% Adjust input for fit curves and surfaces (centered/scaled) 

 

 i = (i_coil-imean)./istd;  

 
    for n = 1:2 
        d(:,n) = (dm-dmean(n))./dstd(n);   
    end 

     
%The logic in this for loop is in accordance with the logic 

discussed in the thesis document, section 5.5 
    for j = 1:6 
         if(ge(dm(j), dio(j))) 
                fcomp(:,j) = fio(j)*ru(:,j);              
                tcomp(:,j) = cross(ru(:,j),fcomp(:,j)); 
         elseif((lt(dm(j), dio(j))) & (le(dm(j), dh))) 
                     fx = 0; 
                     fy = a00(1)+ a10(1)*d(j,1) + a20(2)*d(j,1)^2 + 

a30(1)*d(j,1)^3 + a40(1)*d(j,1)^4 + a50(1)*d(j,1)^5 + a01(1)*i(j) + 

a02(1)*i(j)^2 + a11(1)*d(j,1)*i(:,j) + a21(1)*d(j,1)^2*i(j) + 

a12(1)*d(j,1)*i(j)^2 + a31(1)*d(j,1)^3*i(j) + 

a22(1)*d(j,1)^2*i(j)^2 + a41(1)*d(j,1)^4*i(j) + 

a32(1)*d(j,1)^3*i(j)^2; 
                     fz = z00(1)+ z10(1)*d(j,1) + z20(1)*d(j,1)^2 + 

z30(1)*d(j,1)^3 + z40(1)*d(j,1)^4 + z50(1)*d(j,1)^5 + z01(1)*i(j) + 

z02(1)*i(j)^2 + z11(1)*d(j,1)*i(:,j) + z21(1)*d(j,1)^2*i(j) + 

z12(1)*d(j,1)*i(j)^2 + z31(1)*d(j,1)^3*i(j) + 

z22(1)*d(j,1)^2*i(j)^2 + z41(1)*d(j,1)^4*i(j) + 

z32(1)*d(j,1)^3*i(j)^2; 
              fgen(:,j) = [fx; fy; fz]; % Components from 

Generalized RS model 
                 Rx_gen = [1 0 0;  0 cos(phi_in(j)) -

sin(phi_in(j));  0  sin(phi_in(j))  cos(phi_in(j))]; 
              fcan(:,j) = Rx_gen*fgen(:,j); 
                  Rz_em = [cos(psi_em(j)) -sin(psi_em(j)) 0; 

sin(psi_em(j)) cos(psi_em(j)) 0; 0 0 1]; 
                 Rx2_em = [1 0 0; 0 cos(phi2_em(j)) -

sin(phi2_em(j)); 0 sin(phi2_em(j)) cos(phi2_em(j))]; 
              Ptpm(:,j) = transpose(Rz_em*Rx2_em)*Prpm(:,id_pm(j)); 
                    vpn = [0 abs(sin(phi_in(j))) 

abs(cos(phi_in(j)))]; 
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                     gc = atan2(vpn(2),vpn(1));   
                     gp = atan2(Ptpm(2),Ptpm(1));   
                 psi_tr = gp-gc;  
                 Rz2_em = [cos(psi_tr) -sin(psi_tr) 0; sin(psi_tr) 

cos(psi_tr) 0; 0  0  1];  
             fcomp(:,j) = Rz_em*Rx2_em*Rz2_em*fcan(:,j); 
             tcomp(:,j) = cross(Prpm(:,id_pm(j)),fcomp(:,j));                     
         elseif((lt(dm(j), dio(j))) & (gt(dm(j), dh))) 
                     fx = 0; 
                     fy = a00(2)+ a10(2)*d(j,2) + a20(2)*d(j,2)^2 + 

a30(2)*d(j,2)^3 + a40(2)*d(j,2)^4 + a50(2)*d(j,2)^5 + a01(2)*i(j) + 

a02(2)*i(j)^2 + a11(2)*d(j,2)*i(:,j) + a21(2)*d(j,2)^2*i(j) + 

a12(2)*d(j,2)*i(j)^2 + a31(2)*d(j,2)^3*i(j) + 

a22(2)*d(j,2)^2*i(j)^2 + a41(2)*d(j,2)^4*i(j) + 

a32(2)*d(j,2)^3*i(j)^2; 
                     fz = z00(2)+ z10(2)*d(j,2) + z20(2)*d(j,2)^2 + 

z30(2)*d(j,2)^3 + z40(2)*d(j,2)^4 + z50(2)*d(j,2)^5 + z01(2)*i(j) + 

z02(2)*i(j)^2 + z11(2)*d(j,2)*i(:,j) + z21(2)*d(j,2)^2*i(j) + 

z12(2)*d(j,2)*i(j)^2 + z31(2)*d(j,2)^3*i(j) + 

z22(2)*d(j,2)^2*i(j)^2 + z41(2)*d(j,2)^4*i(j) + 

z32(2)*d(j,2)^3*i(j)^2; 
              fgen(:,j) = [fx; fy; fz]; 
                 Rx_gen = [1 0 0;  0 cos(phi_in(j)) -

sin(phi_in(j));  0  sin(phi_in(j))  cos(phi_in(j))]; 
              fcan(:,j) = Rx_gen*fgen(:,j); 
                  Rz_em = [cos(psi_em(j)) -sin(psi_em(j)) 0; 

sin(psi_em(j)) cos(psi_em(j)) 0; 0 0 1]; 
                 Rx2_em = [1 0 0; 0 cos(phi2_em(j)) -

sin(phi2_em(j)); 0 sin(phi2_em(j)) cos(phi2_em(j))]; 
              Ptpm(:,j) = transpose(Rz_em*Rx2_em)*Prpm(:,id_pm(j)); 
                    vpn = [0 abs(sin(phi_in(j))) 

abs(cos(phi_in(j)))]; 
                     gc = atan2(vpn(2),vpn(1));   
                     gp = atan2(Ptpm(2),Ptpm(1));   
                 psi_tr = gp-gc;     
                 Rz2_em = [cos(psi_tr) -sin(psi_tr) 0; sin(psi_tr) 

cos(psi_tr) 0; 0  0  1]; 
             fcomp(:,j) = Rz_em*Rx2_em*Rz2_em*fcan(:,j); 
             tcomp(:,j) = cross(Prpm(:,id_pm(j)),fcomp(:,j)); 
         else 
              fcomp(:,j) = [0; 0; 0]; 
              tcomp(:,j) = [0; 0; 0]; 
         end 
    end 
    % Net force and torque acting on the rotor assembly 
    fnet = sum(fcomp,2); 
    tnet = sum(tcomp,2); 

     

 % Define outputs as net force and net torque    
 block.OutputPort(1).Data = fnet;  
 block.OutputPort(2).Data = tnet;  

  
 function Terminate(block) 
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Appendix E 
 

MATLAB® Script for Magnetic Dipole Analytical Model 
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% FORCES ACTING ON MAGNETIC DIPOLES % 
cf  = 0.0254;        % conversion factor from inch to meter 
theta = [0:32];      % Angle between dipole vectors (degrees) 
theta(33) = 31.715; 
mu0 = 4*pi*10^-7;    % permeability of free space (N/Amp^2) 
mur = 1.05;          % relative permeability PM 
mu = mu0*mur;        % permeability of PM 
N = 360;             % Number of turns in EM 
Ie = 0.5;            % Current in EM (Ampere) 

  
rs = 1.25*cf;        % Radius of Sphere 
di = 0.12*cf;        % Inner Diameter of EM 
do = 0.45*cf;        % Outer Diameter of EM 
dp = 0.25*cf;        % diameter of PM 
Lp = 0.50*cf;        % Length of the PM 
Lg = 0.03*cf;        % Length of airgap 
Le = 0.17*cf;        % Length from base of EM coil 

 
Ae = (pi/4)*(do^2-di^2);    % Sectional Area of EM (in XY Plane) 
Ap = (pi/4)*dp^2;           % Sectional Area of PM (in XY Plane) 
Vp = Ap*Lp;                 % Volume of PM 

 
rp  = rs - (Lp/2) - (cf*0); % distance of PM dipole moment from 

origin (dipole located at mid-plane of PM) 
re  = rs + Lg + Le/2;       % distance of EM dipole moment from 

origin (dipole located at mid-plane of EM) 

  
Pe  = re.*[zeros(1,33); sind(360-theta); cosd(360-theta)];  % EM 

position vector as a function of theta 
Pp  = rp.*[zeros(1,33); zeros(1,33); ones(1,33)];           % PM 

position vector (fixed) 

  
% =================== N52 Magnetization Curve =================== % 
B = [1.450  1.400   1.379   1.293   1.209   1.125   1.041   0.956   

0.871   0.787   0.663   0.572   0.487   0.404   0.317   0.222   

0.125   0.000];  
H = [0  -37661  -53928  -120801 -185866 -250932 -315997 -381063 -

446354 -511194 -605178 -672954 -734405 -789530 -834714 -860741 -

869958 -875000]; 

  
for k = 1:33 
     r(k) = norm(Pe(:,k)-Pp(:,k));  % scalar distance between EM/PM 
end 

  
ru  = (Pe-Pp)./r;   % unit vector along separation distance vector 

  
me  = N*Ie*Ae;      % Magnitude of Magnetic Dipole moment of EM 
meu = [zeros(1,33); sind(360-theta); cosd(360-theta)]; % unit 

vector along EM dipole 
mev = me.*meu;      % Magnetic Dipole Moment Vector  
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M  = 875000;    % Magnetization of PM 
mp  = M*Ap*Lp;  % Magnitude of Magnetic Dipole moment of PM 
mpu = [zeros(1,33); zeros(1,33); ones(1,33)]; % unit vector along 

PM dipole 
mpv = mp.*mpu;   % Magnetic Dipole Moment Vector of PM (fixed) 

  
% Fpe = force of PM on EM and Fep = force of EM on PM 
Fpe = transpose((3*mu0./(4*pi*r.^4)).*(cross(cross(ru,mpv),mev) + 

cross(cross(ru,mev),mpv)-

2.*ru.*dot(mpv,mev)+5.*ru.*dot(cross(ru,mpv),cross(ru,mev)))); 
% Fep = transpose((3*mu./(4*pi*r.^4)).*(cross(cross(ru,mev),mpv) + 

cross(cross(ru,mpv),mev)-

2.*ru.*dot(mev,mpv)+5.*ru.*dot(cross(ru,mev),cross(ru,mpv)))); 

  
% COMSOL Simulation Data Force on EM for PM only (0.5 Ampere 

Excitation) % 
Fy_COMSOL = [-0.0000064 0.0597670   0.1156600   0.1637100   

0.2002400   0.2233200   0.2334400   0.2320700   0.2208500   

0.2017500   0.1773000   0.1501500   0.1225800   0.0965650   

0.0737340   0.0552230   0.0412290   0.0308930   0.0231900   

0.0173760   0.0129340   0.0095071   0.0068415   0.0047556   

0.0031131   0.0018182   0.0007926   -0.0000173  -0.0006566  -

0.0011587  -0.0015497  -0.0018525  -0.0020230]; 
Fz_COMSOL = [-0.4631000 -0.4547200  -0.4300400  -0.3905800  -

0.3396400  -0.2822300  -0.2231800  -0.1659900  -0.1133000  -

0.0673780  -0.0298160  -0.0011378  0.0188950   0.0310510   

0.0365990   0.0373420   0.0354620   0.0326360   0.0296260   

0.0267220   0.0240330   0.0215920   0.0193990   0.0174380   

0.0156880   0.0141250   0.0127310   0.0114820   0.0103640   

0.0093621   0.0084622   0.0076527   0.0071219]; 
Fmag_COMSOL = [0.4631000    0.4586310   0.4453219   0.4235017   

0.3942732   0.3598966   0.3229606   0.2853229   0.2482169   

0.2127037   0.1797896   0.1501543   0.1240277   0.1014345   

0.0823176   0.0666634   0.0543818   0.0449387   0.0376228   

0.0318746   0.0272924   0.0235924   0.0205701   0.0180748   

0.0159939   0.0142415   0.0127556   0.0114820   0.0103848   

0.0094335   0.0086029   0.0078737   0.0074036]; 

  
Fy_dipole = transpose(Fpe(:,2)); 
Fz_dipole = transpose(Fpe(:,3)); 

  
for i = 1:33 
     Fmag_dipole(i) = norm(Fpe(i,:));  % magnitude of dipole force 
end    

  
figure 
plot (theta,Fy_dipole,'b', theta,Fy_COMSOL,'b--', 

theta,Fz_dipole,'r',  theta,Fz_COMSOL,'r--') 
grid on 
title('Magnetic Force Comparison (Y, Z Components) EM excited with 

0.5 Amperes (COMSOL vs. Dipole)') 
xlabel('Angle (degrees)') 
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ylabel('Force (Newtons)') 
legend('Fy dipole','Fy COMSOL', 'Fz dipole','Fz COMSOL') 

  
figure 
plot (theta,Fmag_dipole, theta, Fmag_COMSOL) 
grid on 
legend('Fmag dipole','Fmag COMSOL') 
title('Magnetic Force Comparison (Magnitude) EM excited with 0.5 

Amperes (COMSOL vs. Dipole)') 
xlabel('Angle (degrees)') 
ylabel('Force (Newtons)') 
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