Florida Institute of Technology

Scholarship Repository @ Florida Tech

Theses and Dissertations

12-2020

A Finite State Automata-Based Description of Device States for
Function Modeling of Multi-State Technical Devices

Ahmed Mohammed Sobhan Chowdhury

Follow this and additional works at: https://repository.fit.edu/etd

Cf Part of the Mechanical Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=repository.fit.edu%2Fetd%2F1002&utm_medium=PDF&utm_campaign=PDFCoverPages

A Finite State Automata-Based Description of Device States for Function
Modeling of Multi-State Technical Devices

by

Ahmed Mohammed Sobhan Chowdhury

A thesis submitted to the College of Engineering and Science
Florida Institute of Technology
in partial fulfillment of the requirements
for the degree of

Masters of Science
in
Mechanical Engineering

Melbourne, Florida
December, 2020

We the undersigned committee hereby approve the attached thesis, “A Finite State
Automata-Based description of Device States for Function Modeling of Multi-State
Technical Devices,” by Ahmed Mohammed Sobhan Chowdhury

Dr. Chiradeep Sen
Assistant Professor, Mechanical and Civil Engineering
Committee Chair

Dr. Hector Gutierrez
Professor, Mechanical and Civil Engineering

Dr. Siddhartha Bhattacharyya
Assistant Professor, Computer and Engineering Sciences

Dr. Ashok Pandit
Professor and Department Head, Mechanical and Civil
Engineering

Abstract

Title: “A Finite State Automata-Based description of Device States for Function Modeling

of Multi-State Technical Devices ”
Author: Ahmed Mohammed Sobhan Chowdhury

Advisor: Dr. Chiradeep Sen

Many modern and innovative design problems require multi-modal, reconfigurable
solutions. Function modeling (FM) is a common tool used to explore solutions in early
stages of mechanical engineering design. Currently, function structure representations do
not abet the modeling of formally-defined reconfigurable function models as graph-based
function models used in early-stage systems design usually represent only one operational
mode of the system. Currently there is a need, but no rigorous formalism to model multiple
possible modes in the model and logically predict the behavior of the system as it
transitions between the modes. Additionally, function modeling representations will benefit
from dynamically capturing the effects of state change of a flow property on the operating

mode of the system.

This thesis presents a formal representation (1) of operational modes and states of technical
devices and systems based on automata theory for both discrete and continuous state
transitions and a formal representation (2) to capture the duality of specific functions
through four verbs that shift from one mode of operation to its logical and topological
opposite, based on the existence of, or the value of a signal from, an input flow. It then
presents formal definitions of three signal-processing verbs that actuate or regulate energy
flows: Actuate E, Regulate E Discrete, and Regulate E Continuous. Additionally, three
conjugate verbs: CEnergize M, CStore E, CDistribute M, CTypeChange E are also

presented alongside an approach to extend these functions to function features using the

111

example of conjugate features: CHandover E and CConvergize EM in order to support
physics-based reasoning on the interactions between flows. The graphical templates,

definitions, and application of each verb in modeling is illustrated.

Lastly, FSAs are integrated with an existing software for concept modeling and system-
level models are used to illustrate the verbs’ modeling and reasoning ability, in terms of
cause-and-effect propagation. Finally, the representation is shown to the demonstrate the
ability to support reasoning on operating modes of systems, provide quantitative reasoning

on the efficiency of those modes, and offer modeling efficacy to the designers.

v

Table of Contents

ADSITACE oottt sttt st a ettt nb et il
Table Of CONENLSc.eiiiiiiieeiee ettt e v
LISt OF FIGUIES ..ottt ettt et e e e areeenseeenaee e viii
LSt OF TaDIES.eeueeiietieie ettt ettt X
List Of ADDIeVIationsS........cecuevuieriiiiiiiiesieeie ettt xii
ACKNOWIEAZEMENLS ..ottt ettt xiil
DEAICATION ..ttt ettt et sttt e ettt st esae e e bt e sneeeneens Xiv
Chapter 1 INtrodUCHIONcveeiieeiieiiecie ettt ebeeseaeereesnee e 1
1.1 Overview of Function Modelingc.cccceeviieniiieiienieeiienieeieenen. 1
1.2 Need for Capturing Device States in Function Modeling.................. 3
1.3 Need for Demonstrating Conjugate Behavior.........c.ccccccvvevenicnnenne. 4
1.4 Research Questions, Hypothesis and Tasksccccceevveeriieeenneenne. 6
1.5 SolUtion OVEIVIEWccuiiiuiiiiiiiiieiieeite ettt 8
Chapter 2 Literature REVIEWcocueiiiiiiiiiiiiiinieieeeeeeeee st 10
2.1 Function Representations and Vocabulariescccccoceeveriinennnens 10
2.2 Function-Based Reasoning...........ccccceeeviieinciieeniienniieeniee e 13
2.3 Representation of States and Modes.........ccccceveeciieeriiiieniiieiniieciene 13
Chapter 3 Frame of Referencecoceoeiiiiiiiiniiniiiicececccece e 16
3.1 Structure of ConMod Language of Function Modeling.................... 16
3.2 Vocabulary of Functions of the ConMod Language......................... 19

3.3 Finite State Automata-Based Descriptions in Function

IMOAEIING. ..ottt e e 21

Chapter 4 Scope 0f RESCAIChcooviiiiiiiieiieeiice e 25

4.1 Scope of Representation for Signal-Processing Verbs..................... 25
4.2 Scope of Representation for Conjugacy in Function Modeling 26
4.3 Scope of Reasoning for the Formalismcccccceevviiiiiieicieeenen. 28
Chapter 5 Representation: Formal Definitions of Signal Processing Verbs............ 30
5.1 Actuate E oo e 31
5.2 Regulate E DISCTELEveeeiuiiieiiieeiieeiieeeie et 35
5.3 Regulate E ContinuouSccceeoeriiriiniiniinieienieneeeeeeee e 38
Chapter 6 Representation: Formal Definitions of Conjugate Verbs............ccc.c....... 41
0.1 CENEIZIZE Moottt 41
6.2 CSOTe B 44
6.3 CDIStribute M.....ccooiiiiiiiiiiiiiiiecceceeeee e 46
6.4 CTypeChange E........cccocoiiiiiiiiiiiiiiieciceeee e 48
Chapter 7 Representation: Extension of Conjugacy to Function Features 51
7.1 CHandover Ecccccooiiiiiiiiiiee e 52
7.2 CConvergize EMccccooiiiiiiiiiiieiiee et 55
Chapter 8 Reasoning: Implementation of FSA based reasoning to ConMod........... 58
8.1 Implementation of Actuate E........ccccooiivriiiiniiiiiiieee e 58
8.2 Implementation of CEnergize M........ccccociniiiiniiniiininicnicnennn 59
8.3 Implementation of FSAs for Function Modelingcc.ccocceeueneee. 60
8.4 Algorithms to Determine the End State of a Function
Receiving Control Signals.........cccveevciieeriiieeniiieeiie e 62
8.4.1 Algorithm for Checking FSA Validityccccoecvenirennnen. 62
8.4.2 Algorithm for Finding the Function’s End State................... 65

8.5 Algorithm for Propagating the Effect of a Control Signal
Through the Model...........coooiiiiiiiiiiee 67

8.5.1 Algorithm for Propagating the Downstream Causal

EATRCT oot 67

8.5.2 Algorithm for Propagating the Upstream Causal Effect....... 69

8.5.3 Demonstration of Causal Propagation.............cccccecvvereuvennne. 71

Chapter 9 Reasoning: FSA-Based Reasoning Supported by the Formalism........... 73

Chapter 10 Reasoning: Conjugacy-Based Reasoning Supported by the

FOrmaliSm.......cccuviiiiiiiiiiecce e e 77

Chapter 11 CONCIUSIONSccviiiiiieeeiieeriee et e et e seeeetteeeeeeeebeeesreeesaseeessseeenseeens 82
11.1 Summary of CONtributionsccceevveeieerienieenienie e eee e 82

11.2 Answers to Research QUEStionsSccceeevvieeiiiiiciee e 85

11.3 Impact on the State of Atcoceeviiiiiiiiee e 88

11.4 FUture WOTK.....cccuveeeiiieeiieeeiie ettt e aae e 88
RETEIENCES ...t 90
Appendix A Multi-Mode Function Modelscccoeoieriienieniieniecieceeeeeeveeee, 99
Appendix B Header files for ConMod 2.0cccoooiiiiiniiniiiiniiineneceeieeeee 102
Appendix C Source files for ConMod 2.0coceeviiiiiniiniiiiniieeeceeeeeeee 123
Appendix D Resource files for ConMod 2.0oovviieiiiiiniiiiiieeieecee e 232

vil

List of Figures

Figure 1: A sample function model, representing the normal operating mode

OF @ NAITATYCT ..o e e 2
Figure 2: Examples of functional conjugacycccccueeevuiieeiiiiciiieeeiie e 5
Figure 3: The ConMod language hierarchycccccoceeviriieniininiinieneeeneeeee 17
Figure 4: Entity Relation Attribute model for the vocabulary in ConMod

Lang@uagecc..veeiiieeeiie e 18
Figure 5: A continuous control device and its state diagram as FSA 23
Figure 6: Formal graphical representation of Actuate E........ccccocovviiviiiiniincenen. 32
Figure 7: Graphical representation of Regulate E Discreteccocceveevievvenieennens 36
Figure 8: Graphical template ofc Regulate E Continuousccccceeeviervenennnens 39
Figure 9: Templates and FSA of CEnergize M........cccccovvviiniininiiniinininiceees 42
Figure 10: Templates and FSA of CStore Eccoooiiiiiiiiiiiiieeeeceee 45
Figure 11: Possible inlet and outlet flow directions through a junction 47
Figure 12: Templates and FSA of CDistribute M........ccccoceviininiiiniineiniinieneeens 47
Figure 13: Templates and FSA of CTypeChange E........ccccocoviiiiniiininnincneenns 49
Figure 14: Templates for CHandover E..........cooooiiiiiiiiiiecceee, 53
Figure 14: Expanded representation of CConvergize EMccccooiiiiiniinnennn. 57
Figure 15: Contracted Representation of CConvergize EMccccoeviiniincnnnene 57
Figure 16: ConMod user interface showing Actuate E object and dialogs............. 59
Figure 17: Implementation of CEnergize M onto ConMod...........ccccerveiniennennne. 60
Figure 18: Algorithm for checking FSA validity.........ccoceiiiiniiiiiiniiiieee, 64
Figure 19: An error message prompted in response to incorrect FSA input............ 65
Figure 20: Algorithm for finding end state of the function............ccccevervenincnnns 66
Figure 21: Effect of state change of the Actuate E function............ccccecevveveveenneen. 67

viil

Figure 22: Algorithm to perform causal reasoning on flow actuation and

SEOPPINE «evvieiieetieeiieeiteeite et e eteeeteeseaeesteeesaeeseeeaseesseeenseenseesnseensneenseensees 69
Figure 23: Algorithm to cease upstream flowsccceeevieevciiieiiieeniieeee e, 70
Figure 24: Algorithm to cease upstream functionscceeeeeeecieeerieeeecieeesiee e, 71
Figure 25: Pump-turbine system modeled in ConMod...........ccceevvieriieriienieeneennen. 72
Figure 26: System-level model of a hairdryer in its normal operating mode 74

Figure 27: Resulting state of the model of Figure 26 after receiving signal

el OSSR 76
Figure 28: Schematic of a geothermal heat pump..........ccccoevveeciieiieniiiiieeieeeeee, 77
Figure 29: Function model of a GHP in heating mode.............ccceecvevivevienireneenen. 78
Figure 30: Function model of a GHP in cooling mode........c..cccceevuieiinennicniinennens 80

X

List of Tables

Table 1: Research questions, hypothesis, and tasks...........ccccoeeveevieniiiirieniecie, 6

Table 2: The Functional Basis function set (only primary and secondary levels

] 11010 1) RSP USRS 12
Table 3: Vocabulary of Primary FUNCtions............ccceeeveevieiiiienieecieniecieeeee e 19
Table 4: Some discrete control devices and their state diagrams as FSAs 23
Table 5: Modeling scenarios required to be supported..........cccceeeeeenieiiieniieieennen. 30
Table 6: Formal definition of Actuate Eccccooiiiiiiiiiiiieee, 33
Table 7: Modeling with Actuate E.........cccooviiiiiiiiiiiiieieceeeeeee e 35
Table 8: Formal definition of Regulate E Discrete........ccocvvevieeviienieeciieniecneeen. 37
Table 9: Modeling with Regulate E Discrete.........cooceeviiiiiienieeiiiiecieeeeeee, 38
Table 10: Formal definition of Regulate E Continuous...........cccccoeevveriineenuennnene 39
Table 11: Modeling with Regulate E Continuous.............cccoeeveeeiienieinieenieeneeneen. 40
Table 12: Examples illustrating need for CEnergize M.........cccceveviviniieinieeinnenns 41
Table 13: Formal Definition of CEnergize M.........ccccooiriiniiiiniiniiniiicecicnne 43
Table 14: Examples illustrating the need for CStore E.........cccociniiiiiiiniinennne. 44
Table 15: Formal Definition of CStore E.........ccccoooiiiieiiiiniiiieeeecee e 46
Table 16: Formal Definition of CDistribute M.........ccccvvvviiiiniiiiieeiiecee e, 48
Table 17: Formal Definition of CTypeChange E..........ccccooiiiniiniinininiicnne 50
Table 18 Examples of Function Features in Current Language.............ccceeceeenenneee. 51
Table 19: Formal definition of CHandover Ecccccooiviiiiiiiiiniiiecee e, 54
Table 20: Devices represented by Convergize EM.......cccccoviviiiiiniiiiinciiiiniieeiee 55
Table 21: Formal Definition of CConvergize EMcccccocoivviiiiiiniiiiiieiiieeeen, 57
Table 22: Pseudocode for the FSA Class.......coceviriiniiiniiniienieeecccece e 61
Table 23: FSA representation of a light SWitCh..........cccocvivviiiiiiiiiniieecee e 62

Table 24: List of Error Messages..

Table 25: Correct and incorrect FSA for a switch ballpoint penc.ccceeeeneeee.

Table 26: Summary of vocabulary

X1

List of Abbreviations

EE Electrical Energy
ME Mechanical Energy
ThE Thermal Energy
PE Potential Energy
FM Function Modeling
FSA Finite-State-Automata

xii

Acknowledgements

First and foremost, I would like to thank my research advisor Dr. Chiradeep Sen for
believing in me and my research capabilities. This thesis would not have been possible
without his resolute support and forthright directions. Additionally, I would like to express
my gratitude towards my committee members Drs. Hector Gutierrez and Siddhartha

Bhattacharyya who have agreed to review this thesis.

I would also I like to thank my lab mates Lakshmi Narasimhon, Xiaoyang Mao, Jicmat Ali,
Arnold Tsoka and Amaninder Gill who have helped me tremendously throughout my

graduate studies.

Lastly but not leastly, I want to express my gratitude to my family and the family of friends
that I have made here at Florida Tech. I would not have been able to persevere through my
graduate degree, had it not been for the undying support and patience of my parents, Safia
Perera and Monsur Ahmed, and my sister, Zubaidah Anjuman Chowdhury. My friends
Alishan Premani, Joy Onyullo, Tricia Muhebwa, Daniel Hochiemy, Devanshi Shah, and
Drushti Rane have all provided me with a sense of comfort and home that supported me

throughout my stay at Florida Tech.

xiil

Dedication

To all the educators who have sowed and nourished my learning

“This tree has two million and seventy-five
thousand leaves. Perhaps I missed a leaf or two
but I do feel triumphant at having persisted in
counting by hand branch by branch and marked
down on paper with pencil each total. Adding
them up was a pleasure I could understand; I did
something on my own that was not dependent on
others, and to count leaves is not less meaningful
than to count the stars, as astronomers are always
doing. They want the facts to be sure they have
them all. It would help them to know whether the
world is finite. I discovered one tree that is finite.
I must try counting the hairs on my head, and you
too. We could swap information.”

Information, David Ignatov

Xiv

Chapter 1
Introduction

1.1 Overview of Function Modeling

Function modeling is a well-accepted technique for exploring the solution space and
generating concepts in the early stages of product design [1,2]. It is also a common tool for
recording the knowledge of existing products discovered through reverse engineering [3,4].
Yet, a limitation of this representation lies in its inability to formally capture the different
operational modes of a device within the same model and support reasoning using that
information. When a function model is constructed in current practice, only one mode of
the device—usually the default or dominant one—is modeled. An example is the hairdryer
function model shown in Figure 1, which shows an operational mode where all the
subsystems are running to produce a stream of hot air. This model was obtained from the
Oregon State University Design Repository [5], although models of this type are found
throughout design literature [6-9].

EE Import

iE.{

EE — Electrical Energy
HE —Human Energy

ME — Mechanical Energy CS — Control Signal

Pn. E — Pneumatic Energy

EE, | Transfer |EE. | Actuate |FE_ [Regulate [EE. [Distribute|EE, | Transfer [EE. | Convert
EE EE EE EE EE EE EE to Th.E
."—“T}f“" i [Th E
Convert e + Hot Hot
. EE Import | A | Guide [A Export |Al
HE to CS intensity Gas Gas Gas
HE b
n i
Import | H Guide |H Export |H
HI . HI ™ HE > Y
Transfer EE__ Convert ME,, Transfer ME, | Convert
Th. E — Thermal Energy EE EE to ME ME ME to Pn.E

Figure 1: A sample function model, representing the normal operating mode of a hairdryer

This research is limited to the graph-based function structures shown in Figure 1. The

arrows (edges) represent flows of type: Material (shown in thick solid lines, e.g. air),

energy (shown in thin solid lines, e.g. EE) and Signals (shown in thin dotted lines, e.g.

intensity). Functions (vertices) are shown in blocks and they refer to an action performed

by the system. Based on this discussion, a few key concepts pertinent to this research are

defined below:

Flow: A flow is defined as an occurrence of a material, energy or a signal that is either

used or produced by an action performed by the system.

Function: A function is an occurrence of a transformative action that transforms an input

set of flows into a different set of flows by changing the attributes of the input flow.

Function Model: A function model is a representation describing the functionality of an

artifact based on the tail-node and head-node relations between flows and function blocks.

Function models typically capture the actions performed by a system on the flows in a

single mode as functions are limited to performing a single transformative action on a flow.

However, most complex devices execute multiple functions based on its mode and there

exists a need for those devices to be represented in function modeling.

1.2 Need for Capturing Device States in Function Modeling

Despite its popularity, one limitation of the graph-based function models lies in their
inability to capture multiple states and operational modes of a device in the same model or
to use such information for computer-based reasoning [10]. Many devices are, in fact,
designed to operate in multiple modes, and their functions may vary significantly between
these modes [11]. A study on reconfigurable devices estimated that engineered artifacts
such as consumer electronics, appliances, toys, and weapons constituted 34% of
reconfigurable devices [12]. For ease of reference, we review the concepts of modes and

states from [10], below.

Operational mode: The process that a system executes over time, represented by a subset of

functions (subgraph of the function model) that are executed at the time, and which could
change if the mode changed. For example, a car could be in any one of several modes at a
time during a ride, such as idling, forward acceleration, forward braking, reverse

acceleration, etc. [10].

Physical state: The physical configuration of a device at a given time, given by a single or
combination of variables describing the system. For example, the shifter in a four-speed
manual gearbox of a car must be in one of the following discrete states: {P, N, 1, 2, 3, 4,
R}, and never outside these options [10]. The gas pedal, likewise, can assume a position
within a range between the two extremes at a time — a continuous range in this case. Any

combination of these two variables gives a state of the car.

As seen in the example above, it is the state of the device that decides its mode. Usually,
the device’s function model changes with modes, and the transition between the modes is
triggered by a signal flow: either a control signal from the outside or a status signal that is
an attribute of a flow. An example of the first kind (transition by control signal) is
reversible leaf blowers that exist in two modes. In the blower mode, they drive air forward
(subfunctions: suck air from outside, add kinetic energy, and discharge through the nozzle),

while in the vacuum mode they drive air backward (subfunctions: suck air and leaves,

3

separate leaves, bag leaves, filter air, discharge through the vents). The mode transition
happens because of a control signal from the user flipping a switch. An example of the
second kind (status signal) are rechargeable batteries, which, in their charging mode
convert electrical to chemical energy and store the latter, while in the discharging mode
convert chemical to electrical energy and supply the latter. The transition in this case
occurs because of the voltage difference in the connected circuit, which is an attribute of
the flows. The mode of a device is therefore determined by a control or a status signal

input to the functions and they are defined below.

Control Signal: The definition of a control signal is adapted from [6] to be an operational
command that is used to convey information regarding the structural state of a device. In
the example of the light switch, the command “up” or “down” that is used to flip the state

of the switch is a control signal.

Status Signal: Status signals carry information regarding the state of a flow or a flow
attribute. Information regarding the temperature, velocity, pressure, viscosity, electric

charge, etc., are regarded as status signals.

Device states and modes have been discussed in function literature previously [11,13—-17].
For the graph-based function models, recent research presents a formalism of modeling
states using finite-state automata (FSAs) and use them to perform predictive causal
reasoning [10] and proposes the idea of functional conjugacy to represent multiple

operating modes of devices [18].

1.3 Need for Demonstrating Conjugate Behavior

By studying multi-modal systems, we recognize that devices can exist in dual modes at a
component-, subsystem-, or a system-level. For example, heat transfer between a hot metal
plate and the surrounding cooler air or heat transfer between a cool metal plate and hotter
air are examples of dual mode at a functional level (addition or removal of thermal energy

(ThE) from air by the plate) based on a status signal (temperature of the air). Similarly, a

4

heat pump cooling or heating the indoor space depending on the state of the thermostat
setting is a system level application of reverse operation based on a control signal input
from the user. Systems that exist in modes that are topological opposites of each other and
accomplish opposite purpose are said to demonstrate functional conjugacy, as defined

below.

Functional conjugacy: The appearance of operational modes in a component, device,

system, or a pair of function verbs that are topological opposites of each other on the
function model. Examples include DC motors that function as generators and pumps that
function as turbines depending on the direction of energy conversion. Figure 2 (a) and (b)
show that their topologies are mutually opposite. By extension, combining these two
devices will form a small system that displays conjugacy at a system level, as shown in
Figure 2 (c): (1) using electricity to raise water (DC motor + pump) and (2) using falling

water to produce electricity (turbine + generator).

! f

Water 1 Energize_M | waterz Water1 | Energize_M | Water2

(Pump) (Turbine)
ME3 ME4

EE1 TypeChange_E| ME1 EE2 TypeChange_E ME2
(DC Motor) Generator

(a) DC motor and generator

(b) Pump and turbine
EE1 TypeChange_E ME1 EE2 TypeChange_E| = ME4
—*| "(DC Motor) ﬁ <— "(Generator) ‘ﬁ
Water 1 Energize_M | water2 Water 1 Energize_M | Water 2
(Pump) - (Turbine)
ME2 ME3

(c) motor-pump assembly and turbine-generator assembly

Figure 2: Examples of functional conjugacy

Conjugacy is also seen in the verbs of function vocabularies. In the Functional Basis [19],
verbs such as store and supply, actuate and stop, mix and separate, and couple and
distribute are essentially topological opposites. In this paper, we call these verbs Conjugate
Verbs. Examples include piping junctions that may couple or distribute flows based on the

pressure gradients (status signals), capacitors that can store or supply electrical energy

5

based on the direction of current (status signals), pressure regulators can add or remove
thermal potential energy to/from its constituents based on the state of the valve (control
signal), and electrochemical cells can convert chemical energy to electrical or vice-versa
based on the presence or absence of an electrical current. Thus, conjugate behavior is
ubiquitous. The gaps in representing device states and capturing conjugacy in function

modeling establishes the research questions in the following section.

1.4 Research Questions, Hypothesis and Tasks

This section outlines the two main research questions answered in this thesis in Table 1.
Each research question is supported with a hypothesis and research tasks that are used in
answering each question. Research questions are numbered using the abbreviation “RQ”
and research hypothesis are numbered as “RH”. The sections associated with each research

task is listed in parenthesis for ease of reference.

Table 1 Research questions, hypothesis, and tasks

Main RQ-1. How can device-states be represented in function modeling?

Research

Question and RH-1. Integration of FSAs that capture device state into the

. formal definitions of functions will ensure that the resulting
Hypothesis

function model is reflective of the device state.

Sub-questions | RQ-1.1. How can the formal language capture effect of state-change of

and tasks a device on the function model?

Task 1. Integrate logical statements into the formal definitions
of functions to determine a valid output flow from a set of
multiple possible flows based on its associated FSA (Chapter
5).

RQ-1.2. Is the proposed formalism computable?

Task 2. Implement FSAs and reasoning algorithms to
determine the final state of an FSA based on a signal flow
input onto ConMod. Ensure that the FSA is valid (pre-requisite
for reasoning) and capture the effect of state transition on the

output flow (Chapter 8).

RQ-1.3. Does the formalism support causal dependencies of functions

on each other?

Task 3. Develop algorithm to propagate the effect of a flow
attribute change throughout the function model (Chapter 8.5).

Main
Research
Question and

Hypothesis

RQ-2. How can function models accommodate multiple operating

modes of a system?

RH-2. Development of a thorough vocabulary of conjugate
functions and features allow for functions to capture more than

one mode of operation of a device (Chapter 6).

RQ-2.1. How many conjugate verbs can be found in the ConMod

language?

Task 4. Establish a list of conjugate functions from a
comprehensive list of the current ConMod vocabulary (Chapter

4.).

RQ2.2. Is the idea of conjugacy extendable to functional features?

Task 5. Demonstrate the idea of conjugacy in functional

features and formally define conjugate features (Chapter 7).

RQ2.3: Can conjugacy be used to reason on the operating mode of a

system?

Task 6. Demonstrate the application of conjugate verbs in a
system level model to study the effect of state change on the
operating mode of the system (Chapter 10).

Question and | RQ-3. What reasoning tasks are necessary to support causal and modal

Hypothesis reasoning on a system-level function model.

RH-3. Identification of the state of the function, state of the
flow, and propagating the effect of a change in the state of a
flow through the function model based on headnode relations

will achieve the above reasoning tasks (Chapter 8).

1.5 Solution Overview

Current function modeling practice does not provide a consistent means to model
conjugate behaviors or perform computational reasoning on device states, which are the
research gaps addressed here. We posit that addressing this gap could improve both
modeling efficacy and model-based reasoning of predicting system response, and enable
causal and modal reasoning on function models. In order to address this gap a finite state
automata-based approach is introduced to the formal language of function modeling
language of ConMod to represent device states and function states to allow multi-modal
representation of a system. This is achieved through (1) the introduction of three signal
processing verbs to the existing ConMod vocabulary: Actuate E, Regulate E Continuous,
and Regulate E Discrete in Chapter 5, (2) introducing a vocabulary of formally defined
conjugate verbs that capture the topological reversals of select functions: CEnergize M,
CStore_E, CDistribute M, and CTypeChange E in Chapter 6, (3) and presenting an
approach to formally define conjugate features based on signal inputs alongside two

formally defined conjugate features: CHandover E and CConvergize EM in Chapter 7.
8

All the three approaches use a signal flow input to determine the state of the

device/function through the finite state automata associated with the verb.

Chapter 8 shows the computability of the proposed formalism through the implementation
of Actuate E onto ConMod 2.0. Lastly, FSA-based causal reasoning capabilities of the
proposed representation is discussed in Chapter 9, and conjugacy-based modal reasoning
capabilities are discussed in Chapter 10. In summary, the state and mode-based
representation of electromechanical products is supported through the extended vocabulary

and reasoning capabilities proposed by this formalism in the following chapters.

Chapter 2
Literature Review

Functional reasoning schemes offer theories and techniques to explain and derive the
functions of artifacts. While function based reasoning exist in several fields ranging from
biology to sociology [13], this literature review is limited to function-based reasoning in
engineering design as it is considered a crucial step in conceptualizing design solutions.
More specifically, we focus only on the graph-based function models that describe devices
as transformative action on material, energy, and signal flows, based on the models

proposed in design texts [1-3].

2.1 Function Representations and Vocabularies

Several approaches have been proposed to represent functions in artifacts: some focus on
functions as form independent such as the Functional Basis approach [20], while others
consider functions to be form dependent such as the FBS [21] or the Chakrabarti and Bligh
approach [22]. These various approaches lead to multiple definitions of the term function
itself. Pahl, et. al., for example, consider functions as transitional operations performed
between input and output flows [1]. Gero’s Function Behavior Structure model describe
functions as intermediates between the user’s goals and the system’s behavior [21], while
Deng’s Function-Environment-Behavior-Structure model defines functions by specifying
the set of physical structures required to achieve them [23]. This paper employs the
definition used by Pahl, et. al. [1], which is also found across various functional reasoning
schemes such as the Functional Basis [24], the product design methodology by Ulrich, et.
al. [4], and the mechanical design process suggested by Ullman [2] and Otto & Wood [25].
Some of these approaches have also been implemented in software programs. The FBS
modeler, for example, enables conceptual design [26], SOFAST describes and stores
functional decomposition trees in a knowledge repository [27], KRITIK and IDEAL

support concept generation from a repository of FBS models [28], Schemebuilder

10

decomposes functions into sub-functions [29], and ConMod supports qualitative and

quantitative reasoning on graph based function models [30].

Per Pahl, et. al., functions performed by a system are defined as operations on energy,
material, and signal flows and are represented using a graph-based representation of the
product where its edges represent the flows through the system and nodes represent the
operations performed on the flows by the system [1,2]. In forward engineering, they can
be used to search for solutions by mapping each function block to known working
principles [1]. Additional applications include identifying design faults and their
propagation paths [31-33], exploring design analogies by analyzing functional
similarity[34,35] and using function-based patent-knowledge retrieval tools [36],
estimating market value and assembly time based on functional complexity [37,38], and in
performing physics-based causal reasoning [39]. Function modeling is also used in reverse
engineering where the product’s sub-functions are discovered via disassembly and its
functionality is analyzed to obtain different physical principles under which concept
variants could operate [25]. Finally, a recent study also suggests that function modeling
could be used for educational purposes to improve students’ understanding of complex

systems [40].

The function modeling methodology established by design texts [1,2] and function
researchers [41—44] have produced methods to decompose a functional black box model
into detailed function models. These models were unable of “producing repeatable function
models of a particular product”, and the variability within function models produced by
different designers posed a question on the accuracy and consistency of the modeling
language and representation [45—47]. To address this gap, efforts were made into
formalizing the language for function modeling. Kirschman et. al. presented an elementary
mechanical design taxonomy that aimed at providing a “common language for designers to
discuss functions” to address the issue of semantic inconsistencies by dividing products
into four groups: motion, control, power, and enclose [48]. Later, the Functional Basis [24]

was developed where the verb-object vocabulary was standardized to form a list of broadly

11

applicable flows and functions. The flows were divided into material, energy, and signal,
and each class had a taxonomy of sub-classes. Through vast empirical studies, functions
were also categorized into primary, secondary and tertiary tiers, with each term worded by
human modelers called them in their studies [24]. The Functional Basis was later
reconciled to a set of 42 flows and 53 functions that was compiled to be used as a
foundation for design repositories and to support new design methods and design teaching
[20]. The primary and secondary class of verbs within the Functional Basis are represented

in Table 2.

Table 2: The Functional Basis function set (only primary and secondary levels shown)

Primary level branch channel connect | control magnitude
separate | import couple | actuate
distribute | export mix regulate
Secondary level
transfer change
guide stop
Primary level convert | provision | signal support
store sense stabilize
Secondary level supply indicate | secure

process | position

12

2.2 Function-Based Reasoning

The Design Repository [5] is a research tool and a database of design information of
technical products that supports concept generation and other design tasks, and serves as an
archive of existing design knowledge [49-51]. The Functional Basis has been used to
model over 250 products to date, which are stored within the Design Repository, and the
application of information metrics on function models from the Design Repository has
shown that formalizing the grammar for the Functional Basis greatly reduced the
ambiguity and variations in the models [52]. The Functional Basis’s vocabulary only
defines the verbs in a textual manner, however, formal definitions controlling the topology
of the model has shown to increase the expressiveness of the vocabulary [53,54], which
makes it more suitable for computer-based reasoning applications [55]. Approaches to
function-based reasoning applications include failure analysis [32], causal reasoning
[39,41], design concept generation [49,56], concept generation from black box models
[57], identifying functional similarities between products [58], and in automated synthesis
of functions using genetic algorithms [59] and through datamining of the design repository
[60]. Additionally, reasoning capabilities will aid in applications of Al on function
modelling. Progressions on more Al based approaches such as problem decomposition
[21,61], analogical reasoning [26], qualitative and semantic reasoning[62], and causal
analysis [41] will be possible as Al algorithms will be more compatible with a more
expressive language [63]. Efforts were also made in developing a graph grammar for
function modelling which was followed by a human study to demonstrate consistency in

function modelling when the grammar was applied [46,47].

2.3 Representation of States and Modes

Chandrasekaran identified the concept of “mode of deployment” which captured the
relationship between structural configuration of the device and the functional effect
produced by the system [14]. The need for capturing device states into function modeling
has been recognized in other function representations. The Function-Behavior-State (FBS)

model [64] describes functions based on the state of the device, the Structure-Behavior-
13

Function model recognizes the function of a device to be a product of its structural state
[28], and the purpose-function-working space-structure-behavior framework describes the
physical state of the device through its behavior [65]. These approaches, however, are
incompatible with the graph-based representation of functions on which we focus in this
paper. The need for state representation was also explored in other modeling
methodologies. For example, Gupta, et. al., proposed an interaction state (akin to
functional modes) based modeling framework to aid in conceptual design of mechatronic
devices using state-transitions [66]. In applications of bond graph theory, a concept of
switched power junctions [67] and a hybrid bond graph modelling technique using finite
state automata have been introduced to model multi-modal systems [68], applications of
which can be seen in domain-specific multimodal systems such as automotive powertrains
[69,70]. The System State Flow Diagram (SSFD) uses a conditional fork node to support
modeling of multi-modal products [16]. Lastly, the Integrated Function Modeling
framework captures multiple process views to characterize different states of a system by

integrating multiple modeling frameworks onto a single one [71].

In graph based function modeling literature, Chakrabarti introduced the need to represent
multi-modal products after logically examining function-structure relationships in
engineered devices [15]. Buur proposed a theoretical approach to capture multiple
operating modes in function modeling through a hierarchical function model where a
function branch may or may not be executed based on the output of a branch on a higher
level than itself [72]. The Function Design Framework captures multiple event-level
function models that capture different working modes in a higher level system model [73].
More recently, a reconfigurable function design methodology proposed a method to
capture multiple working modes using a logic gate controlled by a state-transition diagram
[74].

This paper proposes a finite-state-automata based approach to formally capture different
operating modes of devices in in the graph-based function models, which was heretofore

unrealizable. To achieve this goal, this paper will utilize an existing formal function-

14

modeling language that is demonstrably consistent with the laws of classical physics while
constructing graph-based function models [75]. This language provides an extendible
architecture of progressively more complex languages, each layer of which is founded on
the proven soundness of the lower layers [76]. The first layer defines the basic concepts of
function modeling such as function, flow, and environment in a manner that guarantees
that the models are consistent with the balance laws of mass and energy and the principle
of irreversibility [30,75]. The second layer extends this ability to define a physics-based
vocabulary of functions [77]. The third layer proposes the concept of functional features,
i.e., features available on the tool set of a function modeling software that designers could
reuse in modeling and obtain more advanced reasoning ability [76,78,79]. The current
paper builds upon some of these concepts, especially the definitions of certain features

described in [76].

15

Chapter 3
Frame of Reference

In this chapter, we briefly review the past work on which this paper is directly built. The
representation of conjugacy presented here builds on the recent formalization of modes and
states within graph-based function models [10], as mentioned earlier. That ability, in turn,
depends on a formal language of function modeling [75] and the introduction of feature-

based modeling of functions [78,80,81], as reviewed below.

3.1 Structure of ConMod Language of Function Modeling

The Concept Modeler, or ConMod, is a hierarchy of formal languages, language
extensions, and their computer implementation for constructing graph-based function
models on the computer and using them in model-based reasoning. The language hierarchy

is shown in Figure 3.

Layer 1 provides a vocabulary of terms such as function, flow, material, energy, signal,
environment, and relations such as head node, tail node, and carrier flows, which permit
constructing function graphs using plain-text function and flow names [75].A set of 33
grammar rules ensure that the models are consistent with the first and second laws of
thermodynamics and enable reasoning such as checking physics-wise correctness and
feasibility of modeled concepts and calculating system efficiency [30]. Layer 2 provides
physics-wise consistent, formal definitions of eight verbs and two balance nodes, which
extend the previous ability to keyword-based function and flow names [82]. Layer 3
extends this ability to the idea of features—encapsulations of repeatedly used functional
subgraphs or snippets that are formalized into modeling entities that can be directly added
to models and support feature-level reasoning [80]. This layer presents an extended
vocabulary of seven verb features specifically designed for function modeling and analysis

of thermal-fluid systems [78,81].

16

Layer 5:
Representation and reasoning
with states and modes

Layer 5:
Evolutionary algorithms for
functional decomposition

Layer 4:
Semantic and qualitative physics-based
functional decomposition

Layer 3:
Feature-based modeling and reasoning
Features vocabulary for thermal systems

Layer 2:
Physics-based vocabulary of functions (10 verbs)

Layer 1:
Basic entities, relations, and grammar (33 rules)
Reasoning against the laws of thermodynamics

Figure 3: The ConMod language hierarchy

The function structure construction using the ConMod language is regulated by the
grammar rules and the Entity Relation Attribute diagram in Figure 4 shows the all the valid
relationships between the nodes and nouns. The rectangles are entities, the relations are
shown in diamonds and the ellipses constitute attributes associated with each entity. Entity-
Relations can have a one to one (1-1), one to many (1-n), or many to many (m-n)
relationship. Every entity type, relation type (except is_a) and attribute in the ERA diagram
is instantiable in the ConMod software. The vocabulary established in layers 2 and 3 are
implemented in this software and this research will utilize ConMod to validate the concept

of FSA implementation (Layer 5).

17

@ 1
e
1

¢ ¢ e

1
Environ
ment

]

AMaterial l Energy l\ l Signal
A 7 \

m n

11 L
? & &

Figure 4: Entity Relation Attribute model for the vocabulary in ConMod Language

Layer 4 and Layer 5 are two extensions that enable automatic functional decompositions
from given black box models. Layer 4 uses semantic reasoning and qualitative physics to
determine modeling intent from the plain-English flow and function terms and computes
the physical processes needed to decompose the black box [62]. Layer 5 uses evolutionary
algorithms to generate fittest decompositions [59]. Finally, Layer 5 presents a formal
representation of device states and modes using finite-state automata (FSAs), including a
new vocabulary of three new terms: Actuate E, Regulate E Discrete, and
Regulate E Continuous and a vocabulary of conjugate functions. The vocabulary and
grammar of each layer are formally defined in first-order logic and pseudocode,
implemented as object-oriented classes within the ConMod program, and their reasoning
efficacy is shown using ConMod in the references cited above. The last layer forms the

discussions in this thesis.

18

3.2 Vocabulary of Functions of the ConMod Language

The current ConMod language comprises of a vocabulary of functions and function
features under the verb class. In this context, function verbs are atomic functions that can
be used in modeling, and they are formally defined to capture the semantics of their
respective actions using their topology and grammar rules [74]. Table 3 lists all the

vocabulary of function verbs that currently exist within this language.

Table 3: Vocabulary of Primary Functions

Function Textual definition Graphical Construct

To change the subtype of an ener
TypeChange E s P & —E 7| YPCho_E
flow [82] -

E_out

To change the location of an energy
Transfer E _ . —g 7~ Transfer_E
flow in geometric space [82] -

E—
E_out

To change the quantitative parameters

Change E of an energy flow without changing its —E 7| Change_E

type [82]

f—
E_out

To store an energy flow in a material

medium where the medium behaves like
Store E ——»| Store_E

a sink that can receive an infinite

amount of the energy type [82]

To obtain energy from a material

medium, where the medium behaves
Supply E Supply_E

E_out
like a source that can release an infinite -

amount of the energy type [82]

19

Energize M

To add an energy flow to a material

flow [82]

M_in

M_out

E_out
E_in
To remove an energy flow from a -~ M_out
DeEnergize M ' M_in DeEn_M
material flow [82]
E_out
To resolve a material flow that is a &
. . . L
physical mixture of other material flows =
Separate M W Seperate_ M jmaMOUt2mle-
B to its components (thereby causing a Vouts
Eloss
change of composition or type) [83]
|
El
To combine several material flows into Mind ¥
Mix M a single material flow (thereby causing | =M = MX_M f—
Min3
a change of composition or type) [83] Eliss
\
To distribute material flow into multiple ¥
Moutl
Distribute M | flows without changing its type or =—mrmr—>| Distribute_ M jmMoutZmep-
Mout3
composition [83] Eloss
, , e
To bring together several material flows i Y
Couple M such that the members are still m=VinZae-| COUPIE_M
Min3

distinguishable from each other [83]

Eloss

20

3.3 Finite State Automata-Based Descriptions in Function
Modeling

In automata theory and formal linguistics [84], finite-state automata (FSAs) are an
abstraction of artifacts that can exist in one of many states so that commands received by
the machine could push it from one state to another. The possible number of states for a
machine can be large but always finite. For example, a 1 kB computer memory has 1024 x
8 bits. Since each bit could be in one of two states {0, 1}, the chip, as a whole, has 2(1024*®
possible states — large but still finite. An FSA is defined as a quintuple (%, S, sg, F, 8)

where:

1. X is a finite set of input symbols (the alphabet of the FSA). The edges in state

transition diagram are labelled using the input symbol to the state.

2. Sis a finite set of states, they are represented in bubbles in the state transition

diagram.

3. s is the initial state of the FSA, s € S. The initial state is represented using a

single arrow with no tail-node.

4. Fis aset of final or accepting state, F € S, and they are usually represented in a
bubble bordered with a concentric circle (All states are valid final states for the

examples discussed in this research).

5. 6:§ X X — Sis a state transition. In the state transition diagram, each edge where

the tail- and head-nodes are states correspond to a state transition.

The definition of an FSA is adapted to suit the ConMod language for its software
implementation (Chapter 8). FSAs will be used in this research as an input to functions
upon their instantiation if the mode of operation of the function is dependent on the

device’s structural state. Contrarily, if functions have multiple topologies based on logical

21

conditions placed on flow properties, FSAs will be embedded into the formal definition of

the function.

We propose to describe the states and state-transitions of mechanical devices as FSAs.
Table 4 shows the state models for three different devices. In each case, the circular
bubbles describe states and the arrows describe the commands that takes the device from
one state to another. For example, in the first figure, the bubbles indicate that the light
switch can exist in either the ON or the OFF state. The labels on the arrows describe the
commands received by this device: in this case, upward push or downward push. When the
device is in the OFF state, a downward push keeps it in the OFF state but an upward push
transitions the device to the ON state. While in the ON state, the opposite is true. Note that
the ballpoint pen receives only one type of command, a press, and toggles between the two
possible states in response to the same command, depending on the current state. The fuse
remains intact if the temperature 7 is less than a critical value (7¢). If T > T¢, then the fuse
transitions to the blown state and remains there forever: no value of temperature, however
low, is able to restore the intact state. Thus, these three examples illustrate that different
types of logical behavior of state-transitions can be captured by FSAs. In this research, the
state-transition behavior of the devices is included as an integral part of the formal

definition of the signal-processing verbs.

22

Table 4: Some discrete control devices and their state diagrams as FSAs

down. down
RONBOL
Light switch "
press
% Ballpoint pen switch @

press

T>T
@ T<Te T<Te T>Te
Electric fuse

By extension of this representation, continuous devices can also be modeled, as shown in

—
E)

i
55

L
P

Figure 5. Here the bubbles show the terminal states such as the rheostat’s control pushed to
the extreme left or right, and the arrows L and R show the signal the device can accept at
any state (slide left, slide right). Any interim state between the extremes can be shown as a
function of the range. Applications of both the continuous and discrete state diagrams are

shown in the next sections.

ik
[—l l_] Rheostat
LR, i
i State i

|
| |
@ + @ State diagram
L Range |
r ¢

Figure 5: A continuous control device and its state diagram as FSA

Like devices, functions can also be represented using an FSA if the function performs more
than one operation. Each operation performed by the function would correspond to a state
of the FSA and the logical conditions determining the mode of operation will be the
alphabet of the associated FSA. In the example of heat transfer to/from a thermal reservoir,
the function executed by the system is to either store or supply thermal energy. The logical

condition here will check if the temperature of a material flow entering the system has a

23

temperature less/greater than that of the reservoir to determine if the system will
supply/store thermal energy. Therefore, the FSA associated with the function Supply/Store
will have two states: Supply and Store, and in each instance, it will have a different
graphical construct and different flow topology. The alphabet of this FSA will include the
two logical conditions: T<T'reservoir and T>Treservoir. The initial state of the FSA will be the
initial modeling construct instantiated by the modeler and the final state would be
determined by the state transitions governed by the logical conditions when the status
signal (temperature) changes. This idea finds the basis of the formal definitions of the

conjugate functions established in Chapter 6.

24

Chapter 4
Scope of Research

This chapter outlines the scope of the proposed formalism in addressing the research gaps
outlined in Chapter 1. Section 4.1 discusses the scope of the signal processing verbs
represented in the vocabulary of the extended ConMod language and section 4.2 details the

scope of the vocabulary of conjugate verbs supported by the extension.

4.1 Scope of Representation for Signal-Processing Verbs

The signal-processing verbs in the Functional Basis are of two types: (1) verbs that operate
on material or energy in response to signals such as Actuate and Regulate, and (2) verbs
that receive or emit signals to communicate with the user such as Sense and Indicate. Of
these, Actuate and Regulate are used by technical products significantly more frequently
than Sense and Indicate. In a search through 130 products in the Design Repository,
Actuate and Regulate were found 219 and 163 times, respectively, while Sense and
Indicate occurred 65 and 24 times. Further, Actuate and Regulate initiate actions as a result
of incoming signals, which more precisely aligns with the scope of this research. Thus, the
current scope only includes the formalizing the definitions of Actuate and Regulate. The
functional basis functions that contribute to this definition belong under the primary

function of Control Magnitude and they are as follows:

Actuate: to commence the flow of energy, signal, or material in response to an imported

control signal[20].

Regulate: to adjust the flow of energy, signal, or material in response to a control signal,

such as a characteristic of a flow [20].

Stop: to cease, or prevent, the transfer of a flow (material, energy, signal) [20].

25

Change: to adjust the flow of energy, signal, or material in a predetermined and fixed

manner [20].

Further, the Functional Basis definition of Stop shown in the footnote includes preventing
an energy flow, which is logically opposite to Actuate as long as such prevention happens
in response to an incoming signal. This special case of Stop is included in the present scope

and is modeled as a logical negation of Actuate, as seen later.

As shown in Chapter 5, formalizing Regulate pre-requires formalizing the definition of
“Change” from the Functional Basis. Change, as applied to energy flows, was previously
formalized as Change E [77]. It requires a change in at least one parameter of the energy
flow while disallowing any change of energy type. This definition is used here as a basis of
defining the change of energy flows in response to signals. Thus, to summarize, the present
scope includes (1) Actuate and Regulate applied to energy flows, (2) the special case of
Stop applied to energy flows in response to signals, and (3) the preexisting definition of

Change E.

Further, we note that modeling the actuation and regulation of energy flows is different
from those verbs operating on material flows. Particularly, previous research in physics-
based function modeling shows that any material-processing function needs energy
exchange as a consequence of the second law of thermodynamics [30,39,85,86], which
adds additional complexity to their definitions. Thus, the present scope only includes the
actuation and regulation of energy flows, while such operations on material is saved for the

future.

4.2 Scope of Representation for Conjugacy in Function
Modeling

Conjugate functions will need to switch from one mode of operation to its reverse based on
logical rules applied to attributes of flows. Computational reasoning based on these rules

require the function model to be represented in a formal ontology to allow manipulation of

26

relationships between classes (functions, flows, environments). For this reason, the scope
of conjugate functions and features are restricted to the vocabulary of the ConMod
language recounted in Chapter 3. The logical conditions causing mode reversals are
explored in Chapter 6 alongside four formally defined conjugate verbs that use vocabulary

established in this language.

Of the functions listed in Table 3: Vocabulary of Primary Functions in Chapter 3, eight of
them exist in four pairs of opposite functions: Store E/ Supply E, Energize M/
DeEnergize M, Separate M/ Mix_M, and Distribute M/ Couple M. These pairs of
functions demonstrate conjugate behavior by operating in distinctly opposite modes;
however, this paper will exclude the Separate M/ Mix_M pair as the process of separation
and mixing, unlike distributing and coupling, encompass various physical process which
may or may not be reversible. For example, the physical process of mixing salt in water
(dissolving) is very different from the process of separating salt from water (distillation) —
and should not be represented using a singular composite function. Similarly, any mixture
of two gasses is irreversible and its conjugate operation (separation of the gaseous mixture)
is physically impossible in a single process without requiring additional energy. Therefore,
the functions Separate M and Mix_M will not be represented in a singular conjugate

function.

Of the remaining functions, Transfer E and Change E allow the modeling of opposite
modes as they make quantitative differences to an energy flow. For example, Transfer E
could be used to represent the transfer of ThE from a hot plate to a cold pan or vice-versa
by changing the location of ThE, and Change E could be used to capture both the increase
and the decrease of angular velocity in an electric motor by changing the parameter torque
associated with rotational mechanical energy. Both Transfer E and Change E require the
attributes of a flow to be filliped and will be excluded from the proposed extension due to
the varied nature of circumstances under which that occurs. TypeChange E, a function
used to capture energy conversions from one subtype to another does not support conjugate

behavior and could benefit from a conjugate representation to capture reversible energy

27

transformations. Based on the above discussions, Section 5 formally defines four conjugate
functions: CEnergize M, CStore E, CDistribute M, and CTypeChange E. The addition of
these four conjugate verbs will extend the vocabulary of the physics- and logic-wise
consistent modeling language to support the conjugate behavior of its current vocabulary.
The addition of the letter ‘C’ as a prefix indicates the conjugate behavior exhibited by the

new functions.

4.3 Scope of Reasoning for the Formalism

Formal reasoning “is characterized by rules of logic and mathematics, with fixed and
unchanging premises” [87]. It utilizes a set of rules (grammar) and symbols (vocabulary)
within a representation to draw conclusions about the model that were not user inputs to
the said model. For example, most CAD programs allow the user to create a shape by
inputting geometric co-ordinates on a GUI with respect to a fixed co-ordinate system
through mouse clicks, and the program is capable of producing information such as the
shape’s volume, surface area, geometric center, etc. The logical deductions necessary to
derive the conclusions on the shape’s geometric properties from its description through the
use of algorithmic rules is described as formal reasoning. In this research, the model
description is captured in the form of a function model using the modeling entities
(functions, flows, and environment) and the grammar rules established in Layer 1 of the
ConMod language. This section identifies the reasoning tasks that the representation must
accomplish to support the modeling of multiple modes in a function model based on the

representational requirements stipulated in Section 4.1 and 4.2.

1. Check the validity of the FSA description: Verbs that perform multiple operations
are controlled either by an FSA input to the verb (Actuate E,
Regulate E Discrete, CStore E, CTypeChange E, and CConvergize EM) or
through state transition logic built into the formal definitions of verb
(CEnergize M, CDistribute M, and CHandover E). In the former case, the user
entered FSA must be valid. This is ensured by checking that the input FSA

28

description has a correct initial state, state names, command signals (alphabet), and

is complete. The algorithm to ensure this is described in detail in Section 8.4.1.

2. Determine the state of the function: The verb vocabulary introduced in this
research operates in multiple modes as determined by the state of the function.
ActuateE commences and stops a flow, CStore E stores and supplies an energy
flow, and CEnergize M adds and removes energy from a material flow. This is
achieved through logical statements built into the formal definitions of the
functions as described in Chapter 5 through Chapter 7. The vocabulary consists of
verbs existing in two or more states, logical statements govern the transitions
between the states, and the control signals constitute the alphabet to the FSA. This
is implemented algorithmically into the ConMod software for the Actuate E

function in Section 8.4.2.

3. Determine the operating mode of the function model: Function models constitute
multiple functions connected with flows. As a consequence, when a flow changes
its state, the function that is the headnode of the flow must also be affected by the
change. The functions defined within this representation have multiple possible
flows as an output — of which the active flow is determined by the state of the
function. The active mode is determined by checking the head-node relations of
the flows that are an output from these functions. This is done algorithmically in

Section 8.5 employing the idea of hidden and active flows.

The above reasoning tasks are obtained from the definitions of signal processing verbs
and conjugate verbs outlined in Section 4.1 and 4.2 and the reasoning tasks are

implememented in Chapter 8 and demonstrated in Chapter 9 and Chapter 10.

29

Chapter 5
Representation: Formal Definitions of Signal
Processing Verbs

Recent research on Signal flows propose that Actuate is “to discretely toggle a flow” and
an actuator is “a discrete control device used to turn another flow on or oft” [88]. It also
says that Regulate is to “adjust a flow quantity in an analog manner” [88]. While these
definitions provide for both toggling and controlling flow quantities, they do not include
the situation where flow quantities are adjusted discretely, without turning them off.
Consequently, a survey of the Design Repository revealed the need for supporting four
distinct modeling scenarios related to the actuation and regulation of energy (Table 5).
Note that the second scenario is hypothetical because an example for it was not readily

found but such a device is conceivable. The requirement on the language is that it support

the other three, non-hypothetical scenarios. Consequently, three verbs are identified in the

last column of this table. These verbs are formally defined in the next section.

Table 5: Modeling scenarios required to be supported

Device type Example device Verb Needed

Devices that actuate (on) or

stop (off) energy in discrete

o Actuate E
steps but do not regulate it in

between the extreme states . .
Light switch

) Hypothetical case included to ensure coverage.
Devices that regulate energy . .))
) Survey in the Design Repository did not find any
but do not actuate or stop it
clear example.

30

Device type

Example device

Verb Needed

Devices that actuate (on) or
stop (off) energy in discrete
steps and regulate it in

between in discrete steps

Rotary switch with
multiple positions

including zero

Regulate E Discrete

Devices that actuate (on) or
stop (off) energy in discrete
steps and regulate it in

between continuously

Rheostat with the
ability to
connect/disconnect

EE

Regulate E Continuous

illustrate their reasoning capability.

5.1 Actuate E

definition of this verb, respectively.

31

The three verbs identified above are defined in this section. Each subsection below presents
a verb’s formal definition, graphical template, and modeling examples using devices from

Table 5. In sections 5.1 — 5.3, these verbs are used to construct system-level models and to

Actuate E is a verb that commences or stops an energy flow in response to an incoming
control signal. In doing so, it combines the effects of Actuate and Stop within the

Functional Basis. Figure 3 and Table 4 show the graphical representation and formal

-=

Carrier_in Sig'nal_in

—E_in_primary—{ Actuate E —E_out_primary-»

Carrier_out

Figure 6: Formal graphical representation of Actuate E

These formal definitions are written and are best understood in the context of prior research
in formalizing function verbs [73]. For example, the first line in Table 6 states that
Actuate E is derived from the class Verb defined in [73] and therefore inherits all its
properties. Therefore, statements within the class Verb are not repeated here; only the
statements specific to Actuate E are presented. In summary, the verb has three input and
two output flows. E_in_primary is the energy flow being actuated or stopped, and

E out primary is its manifestation on the output side. Signal in is a signal flow carried by
Carrier_in_primary, which can be a material or an energy and leaves the device as
Carrier_out_primary. Signal in controls the verb’s action based on the state transition
grammar mentioned in the last section of Table 6, which says that there are only two
possible states (State 1, State 2) and multiple possible values of the input signal. The last
sentence of Table 6 says that if the state of the device is State 1, then E_out_primary has
the same type as E_in_primary, which means that the incoming energy flow is present at
the output. Otherwise, the E_out primary’s type is set to null, which means that the flow

ceases to exist, thus simulating Stop.

32

Table 6: Formal definition of Actuate E

Class Actuate E : Verb // Inherited from Verb
{
// Flow counts in input and output
In List = {E_in primary, Carrier in primary, Signal in};

Out List = {E out primary, Carrier out primary};

// Flow types in input and output
E in primary € E;
Carrier in primary € (M U E);
Signal in € Control Signal;

E out primary € E;

Carrier out primary € (M U E);

// Flow constraints
Carrier out primary.Subtype = Carrier in primary.Subtype;

Signal in.Carrier = Carrier in primary;

// State transition grammar
States = { State 1, State 2 };

Signal in.Values = { a, b, ¢, .. };

E out primary.Subtype =
{
if (state == State_ 1)
then (E_in primary.Subtype)
else (¢); // ¢ = null
bi
}

Note that the state transition grammar allows exactly two states but unlimited signal values

and does not enforce any state change rule within the definition. This design is in

recognition of the fact that different two-state devices can have quite different grammars,

as illustrated in Table 4, yet we want the definition to be widely applicable to two-state

devices. Accordingly, the designer must declare the state transition rules using an FSA for

the specific device. Table 7 shows the modeling declarations required to emulate the FSAs

of Table 4. Note that each FSA in this table represents not just a device but a class of

33

devices. For example, what the light switch does to EE is the same as what a mechanical
clutch does to ME, namely, actuating or stopping the flow. So, the light switch model
could be used for a clutch. Likewise, the ballpoint pen represents all two-state toggle
operations, while the fuse describes all irreversible processes. In this manner, the formal
definitions produce the ability to model the change in the device’s states under various
commands by formalizing the state transition grammar and including that in the definition

of the verb.

34

Table 7: Modeling with Actuate_E

Device class

Model declarations

State 1

ON;
State 2 = OFF;

down down signal in.values = {up, down};
u|
p @' ON.up ON;

up

ON.down
Light switch

= OFF;
OFF.up = ON;

OFF.down = OFF;

State 1 ON;
pres State 2 OFF';
@ signal in.values {press};
press
. . ON.press = OFF;
Ballpoint pen switch
OFF.press = ON;
Stateil INTACT;
State 2 = BLOWN;
T>T signal in.values {<, >};
T<Te T<Te, T>Te
INTACT.< = INTACT;
: INTACT.> = BLOWN;
Electric fuse ¢ ©
BLOWN.< = BLOWN;
BLOWN. > BLOWN;

5.2 Regulate E Discrete

Regulate E Discrete represents devices similar to the rotary switch in Table 5, i.e., this

verb must support all actions of Actuate E from the previous section, plus the regulation of

35

the primary flow in a discrete manner. Therefore, the definition is inherited from
Actuate E, while it is distinct from Actuate E in the state transition grammar, which is
overridden in Table 8. Regulate E Discrete has the same graphical template as that of
Actuate E (Figure 7). Further, regulating the energy flow necessarily implies that at least
one parameter of the output primary flow changes at output. This behavior is already
captured by a pre-existing verb, Change E [77]. Thus, Regulate E Discrete is also
inherited from Change E.

-=a

. . 1
Carrier_in| Signal_in

Regulate_E_

—E_in_primary— Discrete

—E_out_primary-»

Carrier_out

Figure 7: Graphical representation of Regulate_E_Discrete

This definition differs from Actuate E in three ways, which can be verified in Table 8: (1)
the device has a total n+1 states, (2) the output flow vanishes in State 0 and exists in all
other states, and (3) there is a parameter of the primary energy flow that changes value

between the input and output.

36

Table 8: Formal definition of Regulate_E_Discrete

Class Regulate E Discrete : Actuate E, Change E
// Inherited from Actuate E and Change E

// Override - State transition grammar
States = { State 0, State 1, .., State n };

Signal in.Values = {a, b, c, ..};

E out primary.Subtype =
{

if (state == State 0)
E out primary.Subtype = ¢;
else
E out primary.Subtype = E in primary.Subtype);

}i

3 parameter > E in primary.parameter.value #

E_out primary.parameter.value;

}

Table 9 shows a modeling application of this verb for the rotary switch introduced earlier.
As before, the flexibility of the verb’s definition allows the modeler to represent the FSA-
like behavior of the device during modeling, by assigning values to the states SO through
S3, the commands for clockwise (CW) or counterclockwise (CCW) rotation of the knob,

and the eight state transition rules shown in Table 9.

37

Table 9: Modeling with Regulate E_Discrete

Device class

Model declarations

cw CCw CcCw Ccw

Rotary switch

signal in.

S0;

S1;

S2;
S3
values = {CW, CCW};

// state transition rules

S1;

S2;

S3;
S0;

S3;

S0;
S1;
S2;

5.3 Regulate E Continuous

The objective of this verb is to describe devices that regulate the incoming energy flow in a
continuous manner, such as the rheostat shown in Figure 5, while all other actions of the
verb are similar to the previous verb, Regulate E Discrete. Thus, this verb too is inherited
from Actuate E and Change E, with the state transition grammar overridden for its

specific purpose. Figure 8 shows the graphical template for this verb, while Table 10

shows the formal definition.

-=a

Carrier_in sig'nal_in

Regulate_E_
Continuous

Carrier_out

—E_in_primary—- —E_out_primary-»-

Figure 8: Graphical template ofc Regulate E_Continuous

Table 10: Formal definition of Regulate E_Continuous

Class Regulate E Continuous : Actuate E, Change E

// Inherited from Actuate E and Change E

// Override - State transition grammar
dstate 0, state 1;
range = (state 1 - state 0);

Jdstate > state 0 < state < state 1;

Signal_in.value; // command

state = state + Signal in.Value;

state ratio = ((state - state 0) / range);

E_out primary.Subtype =
{
if (state == State 0)
then (¢)
else (E_in primary.Subtype);
}i

3 parameter = E out primary.parameter.value = f (state_ratio) *

E in primary.parameter.value;

}

In order to support continuous variation of states, this definition includes two terminal
states: state_0 and state 1. The current state can be any value within this range. The

commands carried by the signal are numeric values that can be added to the current state to

39

produce the new state. State ratio captures the proportion of the current state over the
range. When the current state is the left terminal (state 0), the output flow ceases to exist
(subtype = ¢). In all other cases, the flow exists in the same type as the input flow, and
there is at least one parameter that is computed as a function of the input parameter and the
state ratio. For rheostats, this flow parameter is the current, which depends on the device’s
state (distance of the slider from the left end). For rotary flow control valves in water lines,
this flow parameter is the discharge rate, and it depends on the device’s state (angle of

rotation of the wheel).

Table 11 shows an application of this definition for a linear rheostat that varies between 10
Q and 100 Q. The terminal states assume these two values. Once a signal is received, the
new state is computed, and the parameter of concern is computed from the state ratio as a
linear function of the range. Variations of this linear controller can be obtained by
assigning different functions to the variable “£”, which captures the mathematical relation

between the input and output parameters.

Table 11: Modeling with Regulate E_Continuous

Device class Model declarations

State 0=10 Q;

HJ;W State 1 =100 Q;

L R
<4+——>

State

O—=®
k—Range | signal_in.value =+5 Q;

E in primary.parameter = current;

Linear rheostat

f = “linear”;

40

Chapter 6
Representation: Formal Definitions of Conjugate Verbs

6.1 CEnergize M

CEnergize M is a new verb that combines Energize M (adding energy to a material flow)
and DeEnergize M (removing energy from a material flow) defined in [82], with an ability
to toggle between the two based on some threshold parameters. Table 12 illustrates a few
devices that combine these conjugate actions. In the heat exchanger, the temperature
difference between the fluids in the drum and the tube determines which fluid will be
energized and which one deenergized. In the pump-turbine, the water is energized in the
pump mode when the impeller adds mechanical energy to it and is deenergized in the
turbine mode when it transfers energy to the impeller. The transition between these modes
can be caused by several parameters attached to the energy flows, i.e., status signals, some

of which are listed in the table.

Table 12: Examples illustrating need for CEnergize M

Device Energy type Threshold parameter

Temperature difference

ThE between the fluids

Drum & tube heat exchanger

Direction of water flow,
pressure gradient or head

ME difference between inlet and

discharge, or direction of

Pump-turbine

torsional deflection of shaft

41

Figure 9 (a) and (b) show the graphical templates of Energize M and DeEnergize M in
[82], from which the template of CEnergize M is derived in Figure 9 (c). Figure 9 (d)
shows the FSA of that conjugate verb. Table 13 shows the formal definition of

CEnergize M in pseudocode form.

E4 E1l }
| Energize_M — :: CEnergize_ M _?

M1 M2
lgs A
E3 AR =
(@) (©)
+ = i SS 2 Threshold
f¥ SS 2 Threshold
m— DeEnergize_M ?
E2 88 < Threshold
SS < Threshold
(b) (@)

Figure 9: Templates and FSA of CEnergize M

42

Table 13: Formal Definition of CEnergize M

Class CEnergize M : Verb, Energize M, DeEnergize M
// inheriting from higher-level classes

{

// Obtain parameter value from material flow

Status Signal = Min.Energy.Parameter.Value;

// Determine state and mode
if (Status_Signal 2 Threshold)
{
Verb.State = DeEnergize M;
El.type € E;
E2.type = El.type;
E3.type = ¢;
Ed.type = ¢;

else

Verb.State = Energize M;
El.type = ¢;
E2.type = ¢;
E3.type € E;

E4.type = E3.type;

}
Per [82], Energize M receives an energy flow and a material flow at the input and adds the

former as a carried flow of the latter at output. DeEnergize M does the opposite: it receives
a material flow carrying an energy flow and outputs the two flows separately. In addition,
Layer 1 of ConMod describes the base class Verb, from which all verbs are inherited. The
formal definition of CEnergize M (Table 13) therefore inherits from these higher-level
definitions, so that their internal details need not be repeated in Table 13. The new
information in CEnergize M is the rules of mode transition. To this end, the FSA in Figure
9(d) shows that any time the status signal value is higher than a threshold, the mode of the

function is DeEnergize M, otherwise Energize M. The formal definition captures these

43

rules by switching the types of the incoming and outgoing energies between null (¢) and

the user-defined energy type (see Table 13).

6.2 CStore E

CStore_E combines the conjugate verbs Store E and Supply E defined in [82]. They
operate only on energy flows, per definition. Examples of devices using this conjugacy are
shown in Table 14 to justify its inclusion. The last column of this table lists the control
signal parameter that drives the mode of the function. A spring, for example, will store or
supply energy based on presence of an external load, and an engine flywheel will do so
based on the crank angle (Store ME during power stroke, supply ME during other strokes).

In each case, a material or an energy flow carries the control signal that determines the

mode.
Table 14: Examples illustrating the need for CStore E
Device Energy type Control Signal Type
e Force Vector, carried by an external material
%Wy, PE
¢ Uy flow
Spring
Crank Shaft Angle, carried by the rotational
ME mechanical energy transferred from the
crankshaft
Direction of Current, carried by the electrical
EE energy transferred from a battery source, or
drawn from a load
Capacitor

44

Figure 10, which is formatted similar to Figure 9, shows the templates of Store E and
Supply E from [82], and the template and FSA of the conjugate verb. Table 15 shows the
formal definition of CStore E. In this table, as with the previous case, the conjugate verb is
inherited from previously defined abstract classes. d is the FSA transition function that
determines the resulting state upon receiving a signal. Based on this function, either the
incoming energy is turned on and the outgoing energy is turned off (in the Store mode), or

vice-versa (in the Supply mode).

cs T -‘Carrierin
¥

———»| Store_E — | CStore E
El El1
Carrier_out
(a) J R
(©
+ = l cs1
cs1
Ez cs2
cs2
(b)
(d)

Figure 10: Templates and FSA of CStore_E

45

Table 15: Formal Definition of CStore_E

Class CStore E : Verb, Store E, Supply E
// inheriting from higher-level classes
{
// Input and output flow types

In List = {El, Carrier in, CS};

Out List = {E2, Carrier out};

El € E; E2 € E;

Carrier in € (M U E);

Carrier out € (M U E);

// Grammar rules on Carrier Flow
CS.Carrier = Carrier in;

Carrier out.Type = Carrier in.Type;

// Determine state and mode
States List = {Store E, Supply E};
Signal in List = {CS1, CS2};

if (&(State, CS) == Store E)
Verb.State = Store E;
E2 = ¢;
else
Verb.State = Supply E;
El = ¢;

6.3 CDistribute M

CDistribute_ M combines the conjugate verbs Distribute M and Couple M defined in [83]
and allows logical switching between these modes based on the number of material flow
inputs. As defined, Distribute_M receives one material flow and breaks it into multiple
identical flows, while Couple M does the opposite. Figure 11 shows a pipe junction that
could either couple or distribute the flows based on pressure gradients between the joint

and the other end of each pipe.

46

Figure 11: Possible inlet and outlet flow directions through a junction

As before, Figure 12 shows the templates of Distribute M and Couple M from [83], and
the formal definition and FSA for CDistribute M. Table 16 shows the formal definition of
CDistribute_ M. The modes can switch due to a status signal such as pressure differences or
a control signal such as user commands. To keep these options open, the trigger is modeled
based on the number of input material flows, n. When n = 1, the function’s mode is
Distribute M and the number of output flows, m > 1. When n > 1, the mode is Couple M,

and m = 1. In all other cases, the function is not in either of these modes, and an error is

returned.
| Ein | Ein
AJ M3 > M1 Y M3 b
M1 ﬁ
e | Distribute_ M CDistribute_M
? ?
lEout lEout
(a) (©
+ = l Mat In_List.Count>1
|Ein Mat_In_List.Count>1
M1 Y
Couple_M L’
M2 > Mat_In_List.Count=1
lEoul Mat_In_List.Count=1
(b) @

Figure 12: Templates and FSA of CDistribute M

47

Table 16: Formal Definition of CDistribute M

Class CDhistribute M: Verb, Distribute M, Couple M

{

//Flow Counts

n €Z+; // Number of branches
Mat_In_List = {Minl,..,Minn};
Mat_Out_List = {Moutl, .., Moutm};
En_In List = {Ein};

En Out List = {Eout};

//Determine state and mode
Loop through Mat In List
{

Mode = Distribute M;
Loop through (Mat In List, i > 1)
Mat In i.type = ¢;

m > 1;

else if (n > 1)
Mode = Couple M;
m = 1;
Loop through (Mat Out List, i > 1)

Mat out i.type = ¢;

else ERROR;

6.4 CTypeChange E

CTypeChange E is the conjugate version of TypeChange E described in [82]. Unlike the
previous examples, CTypeChange E does not combine two different verbs but describes a
single function that can assume two opposing modes. Examples include devices such as the
DC motor-generator and the pump-turbine shown in Figure 2 and rechargeable batteries
that change energy types from electrical to chemical, or backward, depending on its mode:

charging or discharging. Figure 13 shows the templates for the original verb

48

(TypeChange E), the conjugate verb (CTypeChange F), and the FSA. Table 17 shows the

formal definition. The mode transition happens due to a user command, shown as

Signal in, following the FSA. The FSA in this example is stay in the pump mode if the

user command is clockwise (CW), and in the turbine mode if it is counterclockwise

(CCW). These keywords can be edited in the FSA template provided in ConMod, if

necessary.

E_in 1
TypeChange_E

E_out 1

(a) TypeChange E

. . .= -=--[QCarrier in
Signal in, J
AJ

E_in_1
CTypeChange_E

E out 1

lCarriel out

(b) CTypeChange E

(c) FSA

Figure 13: Templates and FSA of CTypeChange E

49

Table 17: Formal Definition of CTypeChange E

Class CTypeChange E : Verb, TypeChange E
{
// Flow counts in input and output
In List ={E_in 1, E in 2 Carrier in, Signal in};

Out List ={E out 1, E out 2, Carrier out };

// Flow types in input and output
E in 1 € E; E out 1 € E;
E in 2.subtype = E out l.subtype € E;
E out 2.subtype = E in l.subtype € E;
Carrier in.subtype € (M U E);

Signal in € Control Signal;

// Carrier Flow constraints
Carrier out.Subtype = Carrier in.Subtype;

Signal in.Carrier = Carrier in;

// State transition grammar
State List = { State 1, State 2 };

State €State List;

if (State.Signal in == State 1)
{
E in 1 € E; E out 1 € E;

E in 2 = ¢; E_out 2

I
<

}

else

{
E in 1 = ¢; E out 1 = ¢;

E in 2 €

=

; E out 2 € E;

50

Chapter 7
Representation: Extension of Conjugacy to Function
Features

Function features are modeling entities that encapsulate multiple atomic functions to
represent a complex concept. Due to the repeated use of certain clusters of basic functions
within multiple models, function features were introduced to save modeling time and effort
by combining the grammars of its constituent functions [81]. Recent research in this area
have established a comprehensive feature set based on the physics- and logic- wise
consistent language mentioned earlier for modeling thermal-fluid systems. A few of those

function features are shown in Table 18.

Table 18 Examples of Function Features in Current Language

Expanded Version Contracted Version

E1
E2
|

Handover E [81]

E1

M1

—
M3 Handover_E M4
- ——

- —

L TypeChange_E E2 E1
— , M2
A V2 Convergize_EM
—- Energize_M p— M1
E3

Convergize EM [81]

51

Chapter 6 took the vocabulary from this language to demonstrate that they either already
support the modeling of conjugate behavior or could be combined/ altered to support
modeling conjugate behavior. The idea of conjugacy could therefore be extended onto
function features listed in Table 18 to support feature level conjugate behavior. Take the
feature Change M for example. Change M is composed of three primary functions:
DeEnergize M, TypeChange E, and Energize M. It is used to model scenarios such as the
flow of steam through a nozzle, free fall, and work done by a pump in raising a fluid
against gravity, where the energy carried by a material flow changes its type. In the
example of a fluid flow through a nozzle the thermal energy of the fluid (stored as
enthalpy) gets converted into kinetic energy or vice versa based on the direction of fluid
flow. Therefore, by modeling the Change M feature with the conjugate versions of the
functions that constitute Change M, the function will be able to represent both modes and

allow for system-level changes to the mode based on a control signal input.

Since features are combinations of two or more primary functions, this paper will not
divulge into a comprehensive list of conjugate features. Instead, an approach to developing
conjugate features is presented in sections 7.1 and 7.2 through the example of two
conjugate features: CHandover E and CConvergize EM. CHandover_ E utilizes a status
signal to determine the mode of the feature and CConvergize EM does so based on a

control signal input.

7.1 CHandover E

The Handover FE feature is pre-defined as a combination of two primitives DeEnergize M
and Energize M. The feature represents energy transfer between two flows where one flow
is de-energized, and the other flow is energized using the energy from the first flow.
Previous research has already established the topological grammar rules for Handover E
and discussed its application in energy transfer devices such as heat exchangers [81].
However, its physics-wise consistency was not rigorously defined as Handover E’s current
formal definition can be erroneously used in modeling to allow energy transfer from low

energy potentials to higher energy potentials. For example, a fluid at a lower temperature
52

can be presently modeled to be de-energized and energize a fluid of a higher temperature.
The second law of thermodynamics prohibits the transfer of energy against the temperature
gradient without the addition of work. Since the feature is used to model energy transfer
along a positive energy transfer gradient (the grammar restricts “work” input), the energy
transfer should be automatically reversed based on the flow attributes. Thus, both the
material flows into the feature should be allowed to either be energized or de-energized
depending on the parameter values of equivalent energy types — which enter the function as
status signals. CHandover E could be defined in terms of CEnergize M conjugate pair to
(1) Allow physics-wise consistent modeling of energy transfer, and (2) represent energy

transfer between the two material flows as a result of a change in operating mode.

Energize M and DeEnergize_M constrain the input and output energies to be of the same
subtypes, thereby constraining CHandover E(read: Conjugate Handover Energy) to
contain one energy type. Each energy type will have a parameter list which will have
values and units associated with them. Handover E will have to scan the values associated
with energy attributes for both input material flows and de-energize the material flow with
higher values of energy attributes and energize the material flow with lower values of

energy attributes. Using this understanding, CHandover E is formally defined in Table 19.

E3

o CEnergize M ? E3
e Li¥ara s
S51 551 g
E5
s _ v csp .- > CHandover_E
-i—-p CEnergize M M2 M
M2 - T M4 - e
E6
(a) Subgraph view (b) collapsed view

Figure 14: Templates for CHandover_E

53

Table 19: Formal definition of CHandover E

Class CHandover E: CEnergize M;
//Determine Status Signals
SS1 = Ml.Energy.Parameter.value;

SS2 = M2.Energy.Parameter.value;

//Determine state and mode
if (Ml.Energy.Parameter.value > M2.Energy.Parameter.value)
{

Ml.HeadNode = Energize M;

M2 .HeadNode = DeEnergize M;

El = E2 = E4 = ¢;

else
{
Ml.HeadNode = DeEnergize M;
M2 .HeadNode = Energize M;
E3 = E5 = E6 = ¢;
}
E3
M1 .
CEnergize_M |os—-
M3 E3
""" M1
ss1 M3
E5 SS1. Ty
L5 y CHandover E
; ss2." - ™ -
iy | CEnergize_M -
W2 9ize_ a M2 M
E6
E6
(a) Subgraph view (b) collapsed view

Figure 14 shows the expanded model for the CHandover E with two operating modes
alongside its graphical template. The active mode is shown in black and the inactive mode,

its topological opposite, is shown in gray.

54

7.2 CConvergize EM

The Convergize EM (read Conjugate Convergize Energy Material) feature is defined
using the primary functions TypeChange E and Energize M and it is used to model
scenarios where an energy flow is converted from one type to another and then added onto
a material flow. Example devices that represent this are shown in Table 20. Since
Convergize EM uses functions that cannot represent dual modal systems, all the examples
in Table 20 can only be modeled in a single mode when they can operate in two distinctly
opposite modes. A thermoelectric cooler can be used to generate electricity if a temperature
difference (ThE) is an input to the system, a pump can be used to generate electricity
(turbine mode) if the direction of angular rotation is reversed and electrochemical cells can
produce electricity when they are used as batteries. Therefore, by introducing the conjugate
function CConvergize EM, the current language can be extended to support modeling and
reasoning on dual mode systems. It should be noted that CConvergize EM is not meant to
replace Convergize EM as there are devices that operate in a strictly singular mode and are
physically impossible to be reversed. In a disc brake, for example, the rotational
mechanical energy is converted into thermal energy (heat dissipated due to friction), and
this process is irreversible. Therefore, the function CConvergize EM should not be used to

model this scenario as it is physically impossible to reverse heat dissipation caused by

friction.
Table 20 Devices represented by Convergize EM
From E .
Type To E Type | Addto M Device/ Process

EE ThE Air iy &

Thefmoelectric Cooler

55

EE ME Water

Pump

EE ChE Electrolyte

Electrochemical Cells

CConvergize EM will follow the template of Convergize EM where TypeChange E is
followed by Energize M, except their constituent functions will be replaced by their
conjugate counterparts. It is important to recognize that this definition will not use the
status signal input to CEnergize M, instead the control signal input to CTypeChange E
will be used to determine the mode of the function. Control signals are more meaningful
when modeling systems that CConvergize EM represents as the change in mode of the
feature is a result of the user physically altering the structure of the device. The information
carried by the material flow (status signal input to CEnergize M) is a result of the change
in the structural state of the device. CConvergize EM can therefore only exist in two
distinct states: Change the type of an energy flow and add that energy to a material flow
(State 1), or extract an energy flow from a material flow and then change its type (State 1).
If CTypeChange E is in State 1, then the initial modeling construct is instantiated. The
grammar for this construct is similar to that of Convergize EM and it ensures that the
output flow from CTypeChange E is the input energy flow into Energize M (active mode
in Figure 16). If the state variable equals State 2 in CTypeChange E, then the output
energy flow from the DeEnergize M is the input to the CTypeChange E function (greyed,
inactive, mode in Figure 16). The graphical template for this feature is given in Figure 16

along with the decomposed version in Figure 15.

56

Table 21 Formal Definition of CConvergize EM

Class CConvergize EM: CTypeChange E, Energize M,

DeEnergize M.

if (CTypeChange E. State = State 1)
E2.HeadNode.State = Energize M;
E4 = E5 = E6 = ¢;

else
E4.HeadNode.State = DeEnergize M;
El = E2 = E3 = ¢;

E3
Carri't-er- in T* CEnergize_M —
Cs:
E1l E2
’ CTypeChange_E
Carrier_out

Figure 15: Expanded representation of CConvergize EM

Carrier_in
[T
Y

]B
- CConvergize EM M2
‘Carrier out

Figure 16: Contracted Representation of CConvergize EM

57

Chapter 8
Reasoning: Implementation of FSA based reasoning to
ConMod

In this section, the three new function verbs and the FSA-based capturing of states are
implemented in software, and they are used to validate the representation’s ability to model
multi-state and multi-mode devices and reason with that additional information — which
was the research gap mentioned in Chapter 1. For this purpose, the Actuate E verb is
implemented onto ConMod, the concept modeling software for the language discussed in
Chapter 3. Implementing this new verb on an existing platform demonstrates the
computational realization of the verbs and the FSAs and shows the extendibility of the

platform.

8.1 Implementation of Actuate E

ConMod is developed on the C++ language and already has a class hierarchy that includes
base classes such as Verb, from which Actuate E was derived (see Table 6). It also has the
capability to construct function models with blocks, material, energy, and signal flows
defined with plain-English names (top pallet in the figure) or functional features such as
Convert_E and Energize M (right pallet). These lower-level classes and features are
described in prior research [89]. ConMod supports function modeling with physics- and
logic-wise consistent reasoning, in both qualitative and quantitative manners (left panel of
the figure) [30]. The implementation of Actuate E on ConMod involves writing a class
including associated dialog functions and graphic objects that embody the pseudocode of
Table 6. Figure 17 shows the dialogs and an instance of Actuate E on the modeling space
of ConMod. The file selection dialog is used to select a plain-text description of the FSA
(see Section 8.3), the other dialog is used to declare the type of carrier flow for the
incoming signal, and the graphics in the modeling space shows the instantiation of the

Actuate E class in the model. The icon for Actuate E is seen in the bottom-right corner of

58

the figure. The remainder of this section illustrates the reasoning needed to perform causal

deductions on flow actuation and stoppage on single function blocks and system-level

models.

&

File Edit View Window Reasoning Help

[} [Material] [Energy } [Sign:

DEH » B 8@
" Conceptl x -
Qualitative e l:l_w MER
Conservation
Irreversiaility ConvartE
@ Open
’ ML) [ee—+Fee+]
4 || « ConMod2 > ConMod2 v o T
Efficiency »
Power Required Organise v New folder ® Conduct E
- Dat pe
Quick access |_E3[E] — pFT [Actuate By Ed[E] g EE+[::|:EE3
Debug et B
Deskioy
= " Release EE—
& Downloads Distribute E
%) Documents 64 M2 [M]
ConMod2 ballpointpen_wronges et i
DME hairdryesfuse.oat Energize M
Food =) hairdryerfus omrectnolines. bt
hairdryerswitch.bct -t]
hairdryerswitch_wronginitialstate txt 57
o Creative Cloud Fil hairdryerswitch_ wrongstantstate.ot DeEnergize M
ReadMe.txt
@ OneDrive - MECS
Dialog FE E—
O This PC ¥ = M
File nome: | ETEREEES] [Text Fites cxt) oI Pl Selécton, A
O Material Carrier
() Energy Carrier
Cance

Output
Ready

v ax

CAP NUM SCRL

Figure 17: ConMod user interface showing Actuate_E object and dialogs

8.2 Implementation of CEnergize M

Figure 18 shows the implementation of the formal definition of CEnergize M, discussed in

Chapter 6.1, onto the ConMod modeling platform. ConMod supports function modeling

using basic entities such as blocks and arrows through the tools shown in the right pallet of

the software. It also offers qualitative and quantitative reasoning on function models

through the reasoning toolbar on the right. CEnergize M was added to the left toolbar of

function features (second from the bottom). Implementing CEnergize M to ConMod

involves writing a function feature class alongside dialog functions to input the signal

flows and the threshold parameter, and drawing the graphical template that reflects the

59

state of the function (Energize M or DeEnergize M). Figure 12 shows the dialog box
asking for the threshold parameter input and the graphical template for the CEnergize M
function in an active Energize M mode. The mode of the function is determined through
the grammar in Table 13 which compares the status signal to the threshold parameter. In
Section 8.5.3, we demonstrate the reasoning efficacy of this modeling language, where the
model of a pump-turbine system can simulate the repercussions of changing a status signal
value in the form of the system shifting from the turbine and generator mode to the motor

and pump mode, which are conjugates of each other.

File Edit View Window Reasoning Help
el FMES: 1 5 ¥ oEs s @ Qualitative
TQE 7 conceptt x| - 1| Conservation
Convert E Irreversibility
e EE—r [Quantitative,
ThE Efficiency
Conduct E Power Required
— [F—™
—EE—»[:]:
EE—b| Function
Distribute_E
waterd [M]
|
-M:I ;M-b —
FE
Energize M s
rgize | 0. Energy
"_ —b
L M| @ FE1[E] k1 [CEnergizeM] ME4 [E]
EMg |_,J
DeEnergize. M WEZ [E]
M
CSEH water2 [M]
M
Actuate_E Dizlog x
Snewiz il o
MKCS
E—*
M
CTypeChngE Ready _ CAPMNUMSCRL ;

Figure 18 Implementation of CEnergize M onto ConMod

8.3 Implementation of FSAs for Function Modeling

For enabling the modeler to declare the FSA rules during modeling, ConMod 2.0 is
augmented with two capabilities: (1) FSAs are described as a class that can be instantiated
into a model (pseudo code shown in Table 22), and (2) a user-friendly plain-text protocol
for entering the data for the FSAs (example shown in Table 23). The first line of Table 22

says that FSAs are a quintuple containing a set of states, control signals, an initial state, a

60

set of final states, and a transition matrix. The subsequent lines are explained by the

comments within the table.

Table 22: Pseudocode for the FSA class

FSA = {S,C, state;, {state;}, T} // an FSA is defined with states, control
signals,
an initial state, a set of possible final states, and a

transition matrix

S = {state,, ..., state,} // n is the total number of states (S) in the FSA
C = {CS,,..,CS,,,} // m is the number of control signals (CS)

T = {line,, line,, .. line]-, .. liney} // k is the total number of lines in the transition
matrix, T

line; = {state,, command,, state,} // each line in the matrix must have a start state, an

end state, and a command that transition the system

from the start state to the end state

state; € S // the initial state of the FSA must be a valid state
statey C S // the final states are a subset of the total available
states

state, € S // in each line of the matrix, the start state must be a

valid state
state, €S // in each line of the matrix, the end state must be a
valid state
Cs,.eC // in each line of the matrix, the command

must be valid

Table 23 (left) shows the plain-text data for declaring FSAs, using the light switch example
(right). The first two lines declares the sets of valid states and commands. The third line
declares the initial state at which the FSA is instantiated into the model by default. The
subsequent lines constitute the state transition matrix and are formatted as line 5 of Table
22. For example, line 4 of Table 23 says that starting at state0, an “up” command takes the

device to statel, etc. Since FSAs represent not just devices but device classes, the same
61

text file can be used for an entire class that shares a behavior, with keywords such as up
and state0 replaced with more meaningful terms, if necessary, without changing the data
format. Designers can create libraries of these text files to represent different device
classes. During modeling, the program ask the user to select a text file for each function

that needs an FSA (such as Actuate E in this example).

Table 23: FSA representation of a light switch

S = {state(0, statel};
C = {up, down};
stateO;

state0, up, statel;

state0, down, state0;

statel, up, statel;

statel, down, state0;

8.4 Algorithms to Determine the End State of a Function
Receiving Control Signals

This section presents the algorithms that use the FSAs to determine the end state of a
function and its outgoing in response to control signals. With FSAs now described

formally, this reasoning can be accomplished in two steps, as described below.

8.4.1 Algorithm for Checking FSA Validity

Since the FSA text files are subject to manual editing, the program must check for data
validity before using them for modeling or reasoning. This section presents the conditions
and algorithm for this purpose. Collectively, these checks ensure that the FSA has the
necessary and sufficient information for determining final states and that the model never

enters an invalid state.

Initial state condition: The initial state declared in line 3 of the text file must belong to the

list of states, S, declared in line 1.
62

State name check: The start and end state names in each line of the state-transition matrix
(element 1 and 3 in line 4 onward in the text file) must belong to the list S declared in line

1.

Command name check: The command name in each line of the matrix (second element of

the line) must belong to the list C declared in line 2.

Completeness check: For each combination of a state state), and control signal CSj, there
must be exactly one line in the matrix whose first element is state,, and the second
element is €S, whereas the last element (destination state) can be any member within §.

This check ensures that there is a transition rule available for processing any command
starting at any state. It also has a consequence that the number of lines in the matrix (k) is
the product of the number of states (1) and control signals (m). For the FSA in Table 23,
n=2m= 2,thusk = 4.

Figure 19 shows the algorithm for implementing the above checks. The steps listed above
are highlighted in the chart for ease of reference. Table 24 shows the error messages

produced by this algorithm.

63

Read in FSA Yes _ | Read line

1 * Step 2

Read first
E 2z
<"

Step 4
Si == firs|
element
&&

Cj == Second

Yes
Collect the line Sl No
into list 3
Read third
? element, q
\
Select k‘*‘vlme kb |
from matrix, T

the end of matrix |-
i

Yes

Step 3
t , g

- Read second
&+ element, r

Select " item
from C, C;

Select ith item
from S, §;

Figure 19: Algorithm for checking FSA validity

Table 24: List of Error Messages

Error message 1 | The initial state is not a member of the set of valid states.

A start state in one of the transitions is not a member of the set of
Error message 2)
valid states.

A end state in one of the transitions is not a member of the set of
Error message 3 _
valid states.

The control signal in one of the transitions is not a member of the
Error message 4 . _
set of valid control signals.

64

The above algorithm was implemented onto ConMod 2.0. Figure 20 shows an error
message issued by the program because of an incorrect FSA file input. The FSA represents
a ball-point pen switch, which has only one control signal resulting in two lines of state
transitions, as shown in Table 25 (left). The incorrect file on the right includes a control
signal “unpress” that does not belong in the list C of line 2, which prompts error message 4

from Table 24.

Table 25: Correct and incorrect FSA for a switch ballpoint pen

Correct File Incorrect File
S = {state0, statel }; S = {state0, statel };
C = {press}; C = {press};
statel; statel;
statel, press, state(; statel, press, state(;
state0, press, statel; state0, unpress, statel;
ConMod2 >

The control signal in one of the transitions is not a member
I of the set of valid control signals

Figure 20: An error message prompted in response to incorrect FSA input

8.4.2 Algorithm for Finding the Function’s End State

This section presents the algorithms implemented on ConMod to determine the final state
of a function and its output flows in response to a user-supplied control signal (Figure 21).
This algorithm is executed only if the FSA validity checks pass. Upon receiving a control
signal from the user, the program checks the current state of the function and looks for a
line in the state transition matrix that has the current state in the first element and the

received signal in the second element. Such a line is guaranteed to be available due to the

65

completeness check mentioned above. Once the line is found, the third element of the line

gives the new current state (i.e., end state) of the transition.

Read initial
State,Sq Sten
._-—-—"-_-—

User input
via GUI
Y Y
Set current . |Read control _ | i=4through the
state S =S, "~ | signal input,C 7| end of matrix
A
Y

Read line i
from matrix T

Has the
signal flow
changed?

first element
==Sc &&

second element

o=

Current State =
Third element Yes

Figure 21: Algorithm for finding end state of the function

These resulting states lead to consequences on the output flows. For example, in a light
switch, if the signal is “up”, the resulting current state S¢ = statel according to Figure 21,
and the output energy flow exists in the same form as the input energy, according to the
definition of the verb Actuate E in Table 6. Otherwise, Sc = state0, therefore

E out primary.subtype = ¢ in Table 6, and the flow ceases to exist (the function
acts as the Stop verb in the Functional Basis). Figure 22 shows these two states of
Actuate E produced by ConMod, operating under the FSA of the light switch shown in
Table 23. Their difference is that the received input signal is “up” for the left figure, thus
the outgoing EE2 flow is actuated (shown in black), while on the right figure the signal is
“down”, which causes EE2 to cease (shown in light gray). Thus, it is now demonstrated
that the FSA-based modeling of states can control a function’s behavior or operational

mode. In the next section, this same effect is extended on the whole model.

66

|

Hand1 [M] Hand1 [M]
,”’/1 -:?-.«rl
o—FE1 [E] gt [Actuate B FEF2 [E] p o EE1[E] ot 1 [Actuate E! EE2 [E]
Hand2 [M] Hand2 (W]
(a) signal = “up” actuates EE2 (b) signal = “down” stops EE2

Figure 22: Effect of state change of the Actuate_E function

8.5 Algorithm for Propagating the Effect of a Control Signal
Through the Model

8.5.1 Algorithm for Propagating the Downstream Causal
Effect

As the output flows of signal-processing functions such as Actuate E are actuated or
ceased according to the algorithm of Figure 21, the downstream functions that receive
those flows are impacted accordingly, which in turn impacts the outputs of those functions.
A causal propagation thus trickles down the remainder of the model based on its topology.

This section presents the algorithm for computing that propagation (Figure 23).

On the graphics side of ConMod, the cessation of a flow is shown by turning it light grey.
Internally, this transition is controlled by a Boolean variable “isHidden” attached to the
functions and flows. When this variable is set to TRUE, the colors are light grey, and the

objects are assumed to have ceased.

The propagation is triggered whenever the value of a control signal in the model is
changed, which changes the state (actuated/ceased) of flows from one or more signal-
processing functions such as Actuate E. Note that a model can contain multiple signal-

processing functions. Starting here, the program looks for the function block located at the

67

head of each flow that was originally added by the modeler but is currently in the ceased
state and turns those blocks to the ceased state. This portion of the algorithm is shown in
Figure 23(a). Once the head nodes of all ceased flows are ceased, the control moves to
computing the output flows of those ceased functions and turns them into the ceased state,
as shown in Figure 23(b). Subsequently, the program switches between these two
algorithms, until no output flow from a ceased function and no ceased flow with a head

node is found.

When a reversal in the control signal to a signal-processing function causes a flow to
resume, the opposite causal effect is propagated through the model, and some of the
previously hidden blocks and arrows could return to existence. The difference between
these two opposite operations is that a function block will cease if even one of its input
flows is ceased, but it will need all its input flows to resume in order to resume itself. In the
next section, we present a system-level function model created on ConMod using two
Actuate E functions and validate that these algorithms indeed create the desired effects

explained here.

Select
flow f;

A

Select
function F;

F;.isHidden
=TRUE

Switch to
Function
Check

(a) Ceased flows causing their head node functions to cease

68

Select
function F;

A

| Select flow

is flow list
exhausted?

fiisHidden
=TRUE

Switch to function i
Flow --—Ye 13 UI?C ;otn cIIS -+——Yes
Check exhauste

(b) Ceased functions causing their output flows to cease

Figure 23: Algorithm to perform causal reasoning on flow actuation and stopping

8.5.2 Algorithm for Propagating the Upstream Causal Effect

When a signal flow causes the mode of a conjugate function to switch, the upstream and
downstream functions affected by the switch in flows ceasing or actuating must be
captured. If the input energy flow to a CEnergize M instance, which is currently in
DeEnergize M mode, is ceased, then all the upstream functions from CEnergize M must
be ceased. Consecutively, if the output flow from CEnergize M in the Energize M mode
is ceased, then all the downstream functions from CEnergize M must be ceased. Since the
conjugate function can be used at any point within the model, allowances must be made for
both upstream and downstream causal propagation. This section looks at the upstream

causal effects through the example of CEnergize M.

When CEnergize M is in DeEnergize M mode, all the upstream functions and flows must
be ceased, and they would be actuated when the function is in the Energize M mode. The

algorithms for ceasing upstream flows and functions are shown in Figure 24 and Figure 25

69

respectively. If a changed signal belongs to CEnergize M template, and the mode of the
said template is Energize M, the program loops through the list of flows and checks for
hidden flows. If the flow is hidden, the program loops through the list of functions and
checks if the hidden flow has a tailnode relation with a function — if it does, the function
also ceases. This process is repeated till both the function and flow lists are exhausted and
the program switches to check for ceased functions. The algorithm for ceased functions
(Figure 25) loops through the function list to look for hidden functions, if a function is
hidden, then it loops through the flow list to obtain all flows that have a headnode
relationship with that function and ceases them. Once both the function and flow lists are
exhausted, the algorithm switches back to flow check. Subsequently, these two checks are
repeated until no input flow from a ceased function and no ceased flow with a tailnode is

found.

Select
flow f;

A

Select

i=1 >)
! function F; 1

Switch to
Function
Check

Fj.isHidden
=TRUE

exhausted

Figure 24 Algorithm to cease upstream flows

70

Select
function F

A

_ | Select flow

Switch to
Flow
Check

is flow list
exhausted?

Is function lis
exhausted

fi.isHidden
=TRUE

Figure 25 Algorithm to cease upstream functions

In the Energize M mode, the algorithm will actuate the ceased flows by changing the
isHidden variable to false to create an opposite causal effect on the function model by
resurfacing the hidden functions and flows. Additionally, the program runs the algorithm
for the downstream propagation of causal effects that is presented in section 8.5.1. The
difference between the two algorithms is that the program looks for headnode relations in

the flow check and the tailnode relations in the function check.

8.5.3 Demonstration of Causal Propagation

To demonstrate the efficacy of the algorithms, a pump-turbine system discussed in Figure
2 is modeled using CEnergize M function — shown in Figure 26. In this case, the threshold
parameter is set to 50. When the value of the signal is greater than 50, the system is in the
turbine-generator mode and in DeEnergize M mode where all the upstream functions are
ceased and the downstream functions are actuated (Figure 26a). When the value of the
signal is less than the threshold, and model simulates that the system switches to the motor-
pump mode, where the downstream functions are ceased and the upstream functions are
actuated (Figure 26b). Thus, the causal propagation ensures that in each scenario only one

mode is active as dictated by the logical rules prescribed in the formal definitions of the

71

function. Chapter 9 further exemplifies the downstream causal propagation through the

example of a hairdryer.

water! [M]
EE1 [E]

MEZ [E]
100, -,

F2[Conv_E] ME1[E] F1[CEnergizely] ME4 [E] e

i
MEZ [E]

]
water2 [M]

(a) Turbine Mode

water1 [M]
EE1 [E]

F2 [Conv_E]§__ME1 [E] g1 [CEnergizel] ME4 [E]

WEZ [E]

water2 [M]

(b) Pump Mode

F3 [Conv_E]

EE2 [E]

F3 [Conv_E]

EE2 [F]

Figure 26 Pump-turbine system modeled in ConMod

72

Chapter 9
Reasoning: FSA-Based Reasoning Supported by the
Formalism

The research gap identified in the beginning of this paper was the inability to capture
multiple states and modes of a device in the same function model and to perform reasoning
to determine the state and mode resulting in response to control signals. This section

illustrates the ability of the new verbs and the FSA approach to address this gap.

We use a hairdryer product for this illustration, because it has the essential characters of a
complex system in a relatively simple structure: it involves multiple energy types
(electrical, thermal, kinetic, and others as losses), a material flow (air), and signal-
processing components such as fuses and switches, connected in a reasonably complex

topology (Figure 27).

This model is constructed on ConMod using the formal language of function modeling
proposed earlier and uses verbs such as Convert E and Energize M defined in that
research [77]. It also uses two instances of Actuate E defined in the current paper. The
Convert_E objects describe conversion of energy types by the motor (block F2 in model)
and heater (F10). Energize M is used to show the addition of energy flows to material
flows and is used to describe the fan rotor (F3) and the heater (F4), which add mechanical
and thermal energy to the air, respectively. The hexagons represent Environment objects
and in effect define the system boundary. Up to this point, the model is based on the prior
modeling practice of [77].

The two Actuate E verbs represent a binary switch (on/off) and a fuse, respectively. For
the switch (F1), the human hand (material) carries in a control signal of value “up” to the
function, which allows the electrical energy flow EE2 to the motor. The fuse (F9) senses

the temperature of Air3 exiting the heater (F4) and is designed to shut off EE4 supplied to

73

the heater (F10) when it exceeds a critical value Tc. For clarity, note that both F10 and F4
are functions executed by the same heater, for producing heat and for adding it to the air,
respectively. At present, T < Tc, as shown by the “<” symbol on the signal entering F9.
Thus, EE4 is actuated and the heater is on. Hence, this model describes the system’s
normal operating mode, where the fan is propelling the air and the heater is heating it. If
the modeler wrote correct logical behaviors in the FSAs of these two Actuate E functions,

this model will be able to support various causal and logical reasoning, as shown next.

Hand1 [M]

= i
@EE1 [E] —puuE [Acluate_? EE2 [F] ME1 [E]

Hand2 [M]

ThE [E] Aird M]

F10 [Conv_E] g EE4 [E] Ta [Actuate_ELogEE3 [E]

Aird [M]

Figure 27: System-level model of a hairdryer in its normal operating mode

Assume that the modeler wants to analyze the effects of Air3 being overheated above Tc.
The cause of this event is outside the scope of this reasoning, and could include events
such as the incoming Airl being already too hot or the flow rate of the air being reduced by
an obstruction, thus reducing the heat removal rate from the heater, etc. In our case, the
designer enters a value of T > Tc¢ in the flow properties dialog of Air3, thus initiating the
causal propagation. If the FSA of the fuse is declared correctly, once Air3 carries the
information T > Tc¢ to the fuse, the FSA should use the line in the transformation matrix
that says “statel, T>Tc, state0” to push the function F9 to state0, where it shuts off EE4 by

setting EE4 . IsHidden = true. As a result, by propagation, the Convert E function of

74

the heater (F10), which is the recipient of EE4, should cease next. Further, ThE1 should be
setto ThE1l.IsHidden = true. Propagating this effect further down ThEI, the
Energize M function of the heater (F4) should next cease, which should finally prevent the
heat ThE2 from being added to Air3. In effect, overheating of Air3 should shut off only the
heating subsystems, without impacting the motor and fan subsystems. The device should
thus switch from the normal mode to the cold-shot mode. The above hypothetical exercise

sets the expected behavior of the program if T > Tc was entered as a signal.

Figure 28 shows the resulting state of the model of Figure 27 upon entering T > Tc. This
reasoning is implemented in ConMod. As seen in this figure, the functions and flows
comprising the heating subsystem in the bottom-right corner of the figure are ceased in this
model, shown by their light grey color — exactly replicating the hypothetical scenario

above. It is therefore validated here that the formal definitions of the signal-processing

verbs and the FSA-based declaration of state transitions of those verb, as presented in this
paper, are able to describe multi-state and multi-mode systems in the single function model

and use that information to reason the propagation of the effects of control signals.

75

Hand1 [M]

:-P"i
@EH [E] _pE! [Acluatef? EE2 [E] NIEI [El
0

Hand2

L A2 M g F4 [En_Mat]

THEZ [E}

ThEA [E] Air3 [M]

’,

F10 [Conv_E] EE4 [E] F9 [Actuate_ElgEE3 [E]

Aird [M]

&

Figure 28: Resulting state of the model of Figure 27 after receiving signal T > Tc

Such as capability can be quite useful in design, especially for checking what-if scenarios
and evaluating design alternatives. For example, consider how the system would behave
differently if the fuse were replaced by a thermostat that resumed the EE2 flow when the
temperature returned below Tc. Such a thermostat could still be described by Actuate E,
although with a different FSA that resembles the light switch of Table 4—the only
difference being that the signal values are “C = {>, <}” instead of the “C = {up, down}”. In
this case, the model would be able to additionally predict that when the temperature of
Air3 returned below Tc, the greyed-out subgraph of Figure 28 would be turned back on. By
extension, it could indicate to the designer that if nothing were altered, the system would
keep toggling between the normal mode and the cold-shot mode, automatically and
indefinitely. Such predictions of causal behavior based on physics and formal logical
definitions of flows and functions was not supported in graph-based function models

previously and the illustration above addresses that gap.

76

Chapter 10
Reasoning: Conjugacy-Based Reasoning Supported by
the Formalism

This section illustrates the reasoning and modeling abilities of the proposed conjugate
functions and features using the example of a direct expansion geothermal heat-pump
(GHP). We chose this system as it presents multiple conjugate functions and, at the system
level, switched between opposite modes: heating and cooling. Figure 29 shows the
schematic of the GHP. Figure 30 and Figure 31 shows its function model drawn using the
conjugate verbs of Chapter 3. Note that in both the heating and the cooling modes, the
system runs a vapor compression refrigeration cycle, only the direction of net heat transfer

changes.

Expansion Compressor

Valve

l T Ground

-

Figure 29: Schematic of a geothermal heat pump

77

ThE2

]

v CEnergize_M Ref7
(Underground Ducts) [@4

(Threshold = 8°C) : Ref3
1A |
[1
Ref5 ThEl T=3°C
! CStore_E
_
() ‘ Ref 6 (Ground) ' Ref8
A !
1
'TTS ThES
Ref4 Air3
| ME2 ThES ‘ PE1
: CHandover E
N Convergize_EM - Change_M
(Compressor) Refl - (Ecvlnpd(i:f;r; Ref2 - (Expansion Valve) A
L=
T=66°C A
EE2 !
o ME3
T=14°C
ME1

W

FSA Associated with CStore_E

Convergize EM|_ Y T<TG
AL (Fan) Air2 l
T>TG

T<TG
T>TG

Figure 30: Function model of a GHP in heating mode

In the heating mode, the system transfers heat from a colder ground to a warmer room

against the temperature gradient and, therefore, consumes work at the compressor

according to the second law of thermodynamics. The processes are as follows:

Evaporator: First, the refrigerant absorbs heat from the ground while passing through the
underground evaporator ducts and comes to a boil. This effect is captured by two
functions: (1) CStore E, where the ground supplies heat as a source in the Supply E mode,

and (2) CEnergize M, where that heat energizes the refrigerant in the Energize M mode.

78

Compressor: Next, the vapor enters the compressor, shown by the Convergize EM block,
where a motor first converts electrical energy (EE2) to mechanical work (ME2) using
TypeChange E, and ME2 is then added to the vapor by the compressor using Energize M.

Convergize M was introduced in [81].

Condenser: Next, the vapor, now hotter than the room air upon compression, enters the
condenser where it “hands over” its heat to the room air using the CHandover E block
operating in the so-called “fluid-to-room” mode. The room air is driven by an electric fan,

which uses another Convergize EM block that operates like the compressor.

Expander: Finally, the refrigerant, now in a supercooled state after rejecting heat, enters the
expansion valve, which changes its thermodynamic state without net energy or work

transfer, shown by the Change M block.

In the cooling mode, the system transfers heat from a colder room to a hotter ground, once

again against the temperature gradient, and thus consumes work. This situation can be
modeled by simply flipping the three conjugate functions of the ground (CStore E),
underground ducts (CEnergize M), and the condenser (CHandover E) in the model. The
arrow direction of the refrigerant flows will reverse, while the air flow directions will
remain intact. In this case, the ground becomes a heat sink running in the Store E mode
(instead of a source), the coils submerged in the ground becomes the condenser running in
the DeEnergize M mode (instead of the evaporator) so that the hotter refrigerant can reject
heat to it, and the coil in the path of the room air becomes the evaporator running in the
Energize M mode (instead of the condenser), so that it absorbs heat while evaporating.
Since the refrigerant flow directions are flipped, the system still follows the evaporator-
compressor-condenser-expander order that is needed for the vapor compression cycle. This

resulting model is shown in Figure 31.

79

The signal flows that control the transitions between the above two modes are shown in the

EE1

! L4

1

! CEnergize_M Ref? O

> (Underground Ducts) -t Ref3
ThE3 '
Refs —o-== ll
! T>TG v "ThE4
! CStore E
Q’ R > (Ground) Ref8
Ref4 ME2 Air3
—| PE1
4 Convergize_EM - C?sogddg;isz | Change_M
(Compressar) Refl Evaporator) 1 Ref2 (Expansion Valve)
1
- Thes | A b 1=7C) ME3
1
T=21°C I The?
ME1
Ii FSA Associated with CStore_E
Convergize_EM [Y l T<Te
Airl (Fan) Air2 TG

Figure 31: Function model of a GHP in cooling mode

function model. CEnergize M of the underground coils needs a status signal of the

refrigerant’s temperature to determine the direction of heat transfer based on a user-defined
threshold. Similarly, CHandover E senses the temperatures of the refrigerant and the room

air to determine the direction of heat transfer based on the temperature gradient. CStore E

needs a FSA input, which can come from the user. Thus, we have demonstrated that

incorporating conjugate verbs and features in function models can enable the model to

predict and simulate the reversal of a system’s functional mode in response to a user-given

signal or a change in the temperature gradient between the room and the ground, using

function models.

80

Further, when properly extended, this approach could assess the difference in efficiency of
multiple modes. Most devices operating in dual modes tend to be more efficient in one
mode than in the other. The current ConMod language supports assigning quantitative
details to flows, especially it uses the product of and effort term (Fi, and Foy) and a rate
term (Ri» and Roy) associated with energy flows to capture their power, similar to Bond
Graphs [77]:

n= FourRour 100%

FinRin

Since the quantitative information needed to calculate the status signals such as
temperature differences must already be present in these model in order for the conjugate
behavior to manifest, it follows that by adding the effort and rate terms to the flows, the

whole system’s efficiency in each mode, and their difference, could be computed.

In summary, it is demonstrated that conjugate functions can convey more information than
single-mode functions. Such a representation captures multi-modal subsystems such as
heat exchangers and thermal reservoirs in a single graphical unit while offering logic-based
simulation of their mode transition, which could be implemented on the computer.
Additionally, feature-level implementation of conjugacy makes models more meaningful
and the language more powerful since the features encapsulate complex conjugate behavior
in easy-to-model units. Thus, the extension of the ConMod formal language shown in this
paper—including conjugate functions, conjugate features, FSAs, and the use of signals to

trigger mode transitions—collectively augments the efficacy of function modeling.

81

Chapter 11
Conclusions

This chapter outlines the summary of contributions of this research, answers to the research

questions, and the impact on the state of the art and future work.

11.1 Summary of Contributions

This thesis makes several novel contributions to the state of function-based design:

1. It introduces a rigorous formalism of modeling device states and state transitions
within the function modeling context based on finite state automata (FSAs)
described in formal language and automata theory. While the need for modeling
device states has been previously recognized, such an approach was not presented

for the graph-based function models.

2. It presents a formal and computationally rigorous definitions of three function
verbs that actuate or regulate energy flows in response to signals: Actuate E,
Regulate E Discrete, and Regulate E Continuous (summarized in Table 26). The
verbs collectively cover devices that were conventionally described by Actuate and
Regulate within earlier vocabularies such as the Functional Basis. The vocabulary
and grammar included in the new formal definitions are built upon a previously
validated physics-based language of function representation, and thus enlarges the

scope of formal, physics-consistent function modeling.

3. It institutes four rigorously defined conjugate verbs (summarized in Table 26) that
change their operating modes by performing logical reasoning on the incoming
signal flows. By doing so, they augment the current function modeling formalism

by enabling the modeling of multi-mode systems.

82

4. It presents an approach to integrate conjugate functions into conjugate features and
illustrates that by formalizing two conjugate features: CHandover E and

CConvergize EM (summarized in Table 26).

5. It validates that the formal definitions of the signal-processing verbs and the FSA-
based declaration of state transitions of those verb are able to describe multi-state
and multi-mode systems in the single function model and use that information to
reason the propagation of the effects of control signals. The main contribution of

this validation is the extension to the current ConMod software.

6. It demonstrates the reasoning efficacy of the conjugate function representation
using a system level model that is built using the conjugate verbs defined in this
paper. by demonstrating the idea of conjugate functions at a function-level,

feature-level, and in the system-level, the scalability of this approach is

demonstrated.
Table 26 Summary of vocabulary
Verb Textual Definition Graphical Template
Commence or stop an energy .
Carrier_in Siglnal_in
flow based on a control signal
Actuate_E inpu t —E_in_primary—»| Actuate_E |—E_out_primary-»
I
Carrier_out
Change the quantity of an -
Carrier_in Siglnaliin
Regulate E energy flow in discrete steps
- . . —Ei . Reg_ulate_E_ | .
Discrete based on a control signal input. NPIMAYH piscrete [E-oul-prman
Carrier_out

83

Regulate E

Continuous

Change the quantity of an

energy flow continuously based

on a control signal input.

F==»

- '
Carrier_in| Signal_in

Y

Regulate_E_

—E_in_primary Continuous

Carrier_out

—E_out_primary-»

CEnergize M

Add or remove energy to/from
a material flow based on a
status signal and a threshold

parameter.

M1

E1
CEnergize_M |je—

M2

CStore E Store or supply an energy flow l
- cs T Carrier_in
based on a control signal input. v
- CStore_E
‘Carrier_out
CDistribute M Distribute or Couple a material VEi"
M3
flow based on the number of —

active inputs to the function.

CDistribute_M

lEOLﬂ

CTypeChange E

Change the subtype of an
energy flow and reverse the
change based on a control

signal input.

. . .~ ---WCarrier_in
Signal in ,

E in 1 E ol
> CTypeChange_E

‘C arrier_out

ut 1

- >

CHandover E

Transfer energy from one
material flow to another or
vice-versa based on a positive

energy-transfer gradient.

CHandover_E

E6

M3

84

CConvergize EM | Change the subtype of an
energy flow and add it to a oS "Camﬂ "
material flow or remove an - Ceonvergize. £ 3;»
energy flow from a material —_
flow and change its type, based ‘“‘*”‘e’ out
on a control signal input.

11.2 Answers to Research Questions

In this section, the research questions identified in Chapter 1 are answered. The research

tasks are addressed first and then the status of each research hypothesis are discussed

below:
RQ-1.1 How can the formal language capture effect of state-change of a device on
the function model?
Task 1 Formally define functions that capture the state-changes of a device

Answer The functions defined in Chapter 5, Chapter 6, and Chapter 7 have at-least
two modes of operation and they can be used to catpture the effect of state-

change of a device.

RQ-1.2 Is the proposed formalism computable?

Task 2 Implement FSA based function modeling to ConMod

Answer The function Actuate E was implemented onto ConMod. Algorithms to
reason on FSA inputs (Section 8.4.1 and 8.4.2) and to determine function

state ensure that the proposed formalism is computable.

85

RQ-1.3

Task 3

Answer

RH-1

Status

RQ-2.1

Task 4

Answer

RQ-2.2

Task 5

Does the formalism support causal dependencies of functions on each

other?

Demonstrate causal reasoning on function models

The algorithm in Section 8.5 propagates the effect of a change in the state
of the flow on the system-level model. Causal-dependencies of changing
flow attributes on a function model is then demonstrated in Chapter 9

through the example of a hairdryer.

Integration of FSAs that capture device state into the formal definitions of
functions will ensure that the resulting function model is reflective of the

device state.
TRUE.

System-level models constructed using the verbs developed in Chapter 5 in
Chapter 9 demonstrate how the proposed vocabulary can be used to capture

the device state.

How many conjugate verbs can be found in the ConMod language?

Discover Conjugate functions from the vocabulary of the ConMod

language

Chapter 4.2 narrows the scope of this formalism for conjugate verbs. In
doing so, it examines the vocabulary of the current ConMod language to

determine all possible conjugate functions.
Is the idea of conjugacy extendable to functional features?

Develop conjugate features

86

Answer

RQ-2.3

Task 6

Answer

RH-2

Status

RH-3

Status

Chapter 7 shows how the idea of conjugacy can be extended to higher level
verbs by introducing two conjugate features CHandover E and

CConvergize EM.

Can conjugacy be used to reason on the operating mode of a system?

Demonstrate mode-based reasoning on function models

Chapter 10 demonstrates how mode-based reasoning can be applied to

system-level models through the example of a geothermal heat-pump.

Development of a thorough vocabulary of conjugate functions and features

allow for functions to capture more than one mode of operation of a device

TRUE.

System-level models constructed using the verbs developed in Chapter 7
and Chapter 8 in Chapter 10 demonstrate how the proposed vocabulary can

be used to capture multiple operating modes in a single function model.

Identification of the state of the function, state of the flow, and propagating
the effect of a change in the state of a flow through the function model

based on headnode relations will achieve the above reasoning tasks.

TRUE.

Algorithms in Chapter 8 ensures that all the reasoning tasks are completed.

87

11.3 Impact on the State of Art

The formalism proposed in this thesis widens the function modeling perspective by
introducing multi-state functions and a method to incorporate FSA-based descriptions of
devices into function models. Additionally, the idea of multi-state functions is also
extrapolated into function features that exist in a higher level. By doing so, the scope of
function modeling is extended to include multiple operating modes of a system in a single
model. The alternative being using more than one function model to represent each
operating mode without having a mean to capture the effect of how the system transitions
between the said modes. This ensures that complex systems including control units can be
meaningfully represented using function models. Additionally, the proposed formalism is
capable of determining how the functions would change its operating mode based on the
state of a flow (active or hidden) and propagate that effect on a system-level model. This
increases the modeling efficacy of function modeling and provides more useful qualitative
and quantitative information regarding each operating mode as illustrated in Chapter 9 and
Chapter 10. Lastly, it extends the current ConMod vocabulary with additional functional
and feature-level verbs that are summarized in Table 26, which allows for logic based
modeling of systems that require signal-flows as an input — hitherto unsupported by most

function modleing representations.

11.4 Future Work

Going forward, this research can be extended in three main directions: Implementation of
the research onto ConMod, Validation of the research through human-subject studies and
its employment in education. Each of these approaches are described in further detail

below.

1. Implementation: The entire vocabulary proposed by this formalism (Table 26) can
be implemented in the ConMod software. Additional reasoning algorithms, such as
reasoning on failure propagation paths, quantitative reasoning on modes, and

reasoning on complexity of system-level models based on the number of operating

88

modes facilitated could be implemented onto the software program to provide
more meaningful user interactions. A pre-requistite to this is a comprehensive set

of flow attributes for each flow type.

2. Validation: Once the software program is fully capable of supporting modal
reasoning, human subject studies could be conducted to test the modeling efficacy
of the proposed formalism. Pertinent questions such as: Does the inclusion of
multi-state functions prompt users to generate more complex solutions to design
problems? Does the inclusion of FSA-based function representations make

function models more appropriate for use in industry?

3. Education: ConMod software could be used in teaching students enrolled in design
courses about generating adaptive solutions to design problems. It can also be
employed in education of complex systems to graphically teach the causal

relationships between flows, functions and the operating mode of the system.

This thesis presents a formal method to incorporate finite-state-automata into function
modeling in anticipation that doing so will better the representation of complex systems in
function models. It is expected that this research, in conjugation with the ConMod
software, will be extended to further support multi-modal representation of systems in
function modeling to provide automated support in the conceptual design phase of the

engineering design process.

89

[1]

[2]

[4]
[5]

[8]

[9]

[10]

References

Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H., 2007, Engineering Design: A
Systematic Approach, Springer-Verlag London.

Ullman, D. G., 1992, The Mechanical Design Process, McGraw-Hill.

Otto, K., and Wood, K., 2001, Product Design : Techiniques in Reverse
Engineering and New Product Development, Prentice-Hall, Upper Saddle River,
NIJ.

Ulrich, K., and Eppinger, S., 2007, Product Design and Development.

Bohm, M. R, Stone, R. B., Simpson, T. W., and Steva, E. D., 2008, “Introduction
of A Data Schema to Support A Design Repository,” Computer Aided Design,
40(7), pp. 801-811.

Nagel, R. L., Vucovich, J. P, Stone, R. B., and McAdams, D. a., 2007, “Signal
Flow Grammar From the Functional Basis,” Guidelines for a Decision Support
Method Adapted to NPD Processes.

Sen, C., Caldwell, B. W., Summers, J. D., and Mocko, G. M., 2010, “Evaluation of
the Functional Basis Using an Information Theoretic Approach,” Artificial
Intelligence for Engineering Design Analysis and Manufacturing, AIEDAM, 24(1),
pp. 87-105.

Stone, R. B., Tumer, . Y., and Van Wie, M., 2005, “The Function-Failure Design
Method,” Journal of Mechanical Design, 127(3), pp. 397-407.

Nagel, R. L., Perry, K., Stone, R. B., and McAdams, D. A., 2009, “Functioncad: A
Functional Modeling Application Based on the Function Design Framework,”
ASME 2009 IDETC/ CIE, San Diego, California, August 30—September 2, 2009,
DETC2009-87010, pp. 591-600.

Chowdhury, A., Mao, X., Sen, C., and Venkatanarasimhan, L. N. A., 2019, “Finite-
State Automata-Based Representation of Device States for Function Modeling and
Formal Definitions of Signal-Processing Functions,” ASME 2019 IDETC/ CIE,
Anaheim, California, August 18-21, 2019 , DETC2019-98248, p. VO01T02A016.

Liu, C., Hildre, H. P., Zhang, H., and Relvag, T., 2016, “Product Architecture
Design of Multi-Modal Products,” Research in Engineering Design, 27, pp. 331—
346.

90

[12]

[13]

[17]

[18]

[19]

[20]

Weaver, J. M., Wood, K. L., and Jensen, D., 2008, “Transformation Facilitators: A
Quantitative Analysis of Reconfigurable Products and Their Characteristics,”

Proceedings of the ASME Design Engineering Technical Conference, Brooklyn,
New York, August 3—6, 2008, DETC2008-49891, pp. 351-366.

Far, B. H., and Elamy, A. H., 2006, “Functional Reasoning Theories: Problems and
Perspectives,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, 19(2), pp. 75-88.

Chandrasekaran, B., and Josephson, J. R., 2000, “Function in Device
Representation,” Engineering with Computers, 16(3—4), pp. 162—-177.

Chakrabarti, A., 2001, “Sharing in Design-Categories, Importance, and Issues.,”
International Conference on Engineering Design (ICED), 1, pp. 21-23.

Yildirim, U., Campean, F., and Williams, H., 2017, “Function Modeling Using the
System State Flow Diagram,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing: AIEDAM, 31(4), pp. 413-435.

Xu, C., Yao, Z., Gupta, S. K., Gruninger, M., and Sriram, R., 2005, “Towards
Computer-Aided Conceptual Design of Mechatronic Devices with Multiple
Interaction-States,” Proceedings of the ASME International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference
- DETC2005, American Society of Mechanical Engineers Digital Collection, pp.
455-467.

Chowdhury, A., and Venkatanarasimhan, L. N., 2020, “A Formal Representation of
Conjugate Verbs in Function Modeling,” Proceedings of the ASME 2020
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference , Virtual, Online.

Stone, R. B., and Wood, K. L., 2000, “Development of a Functional Basis for
Design,” Journal of Mechanical Design, 122(4), pp. 359-370.

Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., and Wood, K. L., 2002, “A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts,” Research in Engineering Design - Theory, Applications, and Concurrent
Engineering, 13(2), pp. 65-82.

Gero, J. S., and Kannengiesser, U., 2004, “The Situated Function-Behaviour-
Structure Framework,” Design Studies, 25(4), pp. 373-391.

91

[22]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Van Eck, D., McAdams, D. A., and Vermaas, P. E., 2008, “Functional
Decomposition in Engineering: A Survey,” 2007 Proceedings of the ASME
International Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, DETC2007, American Society of
Mechanical Engineers Digital Collection, pp. 227-236.

Deng, Y. M., Britton, G. A., and Tor, S. B., 2000, “Constraint-Based Functional
Design Verification for Conceptual Design,” CAD Computer Aided Design, 32(14),
pp. 889—-899.

Stone, R. B., and Wood, K. L., 2000, “Development of a Functional Basis for
Design,” Journal of Mechanical Design, 122(4), pp. 359-370.

Otto, K. N., and Wood, K. L., 1996, “A Reverse Engineering and Redesign
Methodology for Product Evolution,” Proceedings of the 1996 ASME Design
Theory and Methodology Conference, 96.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., 1996,
“Supporting Conceptual Design Based on the Function-Behavior-State Modeler,”
Artificial Intelligence for Engineering, Design, Analysis and Manufacturing,
10(04), pp. 275-288.

Kitamura, Y., and Mizoguchi, R., 2004, “Ontology-Based Systematization of
Functional Knowledge,” Journal of Engineering Design, 15(4), pp. 327-351.

Goel, A. K., and Bhatta, S. R., 2004, “Use of Design Patterns in Analogy-Based
Design,” Advanced Engineering Informatics, 18(2), pp. 85-94.

Bracewell, R. H., and Sharpe, J. E. E., 1996, “Functional Descriptions Used in
Computer Support for Qualitative Scheme Generation—‘Schemebuilder,’”
Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 10(4),
pp. 333-345.

Sen, C., Summers, J. D., and Mocko, G. M., 2013, “Physics-Based Reasoning in
Conceptual Design Using a Formal Representation of Function Structure Graphs,”
Journal of Computing and Information Science in Engineering, 13(1), pp. 011008—
12.

Kurtoglu, T., and Tumer, 1. Y., 2008, “A Graph-Based Fault Identification and
Propagation Framework for Functional Design of Complex Systems,” ASME
Journal of Mechanical Design (JMD), 130(5), pp. 51401-51408.

Stone, R. B., Irem, A. E., Ae, Y. T., and Stock, M. E., “Linking Product
Functionality to Historic Failures to Improve Failure Analysis in Design.”

92

[33]

[34]

[35]

[36]

[37]

[39]

[40]

[41]

O’Halloran, B. M., Papakonstantinou, N., Giammarco, K., and Van Bossuyt, D. L.,
2017, “A Graph Theory Approach to Functional Failure Propagation in Early
Complex Cyber-Physical Systems (CCPSs),” INCOSE International Symposium,
27(1), pp. 1734-1748.

Mcadams, D. A., and Wood, K. L., 2002, “A Quantitative Similarity Metric for
Design-by-Analogy,” ASME Journal of Mechanical Design (JMD), 124(2), pp.
173-182.

Agyemang, M., Linsey, J., and Turner, C. J., 2017, “Transforming Functional
Models to Critical Chain Models via Expert Knowledge and Automatic Parsing
Rules for Design Analogy Identification,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing: AIEDAM, 31(4), pp. 501-511.

Liu, L., Li, Y., Xiong, Y., and Cavallucci, D., 2020, “A New Function-Based Patent
Knowledge Retrieval Tool for Conceptual Design of Innovative Products,”
Computers in Industry, 115, p. 103154.

Mathieson, J. L., Shanthakumar, A., Sen, C., Arlitt, R., Summers, J. D., and Stone,
R., 2011, “Complexity as a Surrogate Mapping between Function Models and
Market Value,” Proceedings of the ASME Design Engineering Technical
Conference, American Society of Mechanical Engineers Digital Collection, pp. 55—
64.

Gill, A. S., Summers, J. D., and Turner, C. J., 2017, “Comparing Function
Structures and Pruned Function Structures for Market Price Prediction: An
Approach to Benchmarking Representation Inferencing Value,” Artificial
Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 31(4),
pp. 550-566.

Mokhtarian, H., Coatanéa, E., and Paris, H., 2017, “Function Modeling Combined
with Physics-Based Reasoning for Assessing Design Options and Supporting
Innovative Ideation,” Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AIEDAM, 31(4), pp. 476-500.

Murphy, A. R., Banks, H. D., Nagel, R. L., and Linsey, J. S., 2019, “Graduate
Students’ Mental Models: An Investigation into the Role of Function in Systems
Understanding,” Proceedings of the ASME Design Engineering Technical
Conference, American Society of Mechanical Engineers (ASME).

Iwasaki, Y., Vescovi, M., Fikes, R., and Chandrasekaran, B., 1995, “Causal
Functional Representation Language with Behavior-Based Semantics,” Applied
Artificial Intelligence an International Journal, 9(1), pp. 5-31.

93

[42]

[43]

[44]

[47]

[49]

[50]

[51]

[52]

Lai, K., and Wilson, W. R. D., 1989, “FDL—A Language for Function Description
and Rationalization in Mechanical Design,” Journal of Mechanisms Transmissions
and Automation in Design, 111(1), pp. 117-123.

Hundal, M. ., 1990, “A Systematic Method for Developing Function Structures,
Solutions and Concept Variants,” Mechanism and Machine Theory, 25(3), pp. 243—
256.

Murdock, J. W., Szykman, S., and Sriram, R. D., 1997, “An Information Modeling
Framework to Support Design Databases and Repositories,” 1997 ASME Design
Engineering Technical Conferences, 97, pp. 14—17.

Kurfman, M. A., Stone, R. B., Rajan, J. R., and Wood, K. L., 2001, “Functional
Modeling Experimental Studies,” Proceedings of DETC2001, DETC2001/DTM-
21709, Pittsburgh, PA.

Sridharan, P., and Campbell, M. 1., 2004, “A Grammar for Function Structures,”
Proc. of the ASME 2004 Intl. Design Engineering Technical Conf. and Computers
and Information in Engineering Conf., IDETC/CIE 04, pp. 41-55.

Sridharan, P., and Campbell, M. 1., 2005, “A Study on the Grammatical
Construction of Function Structures,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing: AIEDAM, 19(3), pp. 139-160.

Kirschman, C. F., Fadel, G. M., and Jara-Almonte, C. C., 1998, “Classifying
Functions for Mechanical Design,” Journal of Mechanical Design, 120(3), pp. 475—
482.

Bohm, M. R., Vucovich, J. P., and Stone, R. B., 2008, “Using a Design Repository
to Drive Concept Generation,” Journal of Computing and Information Science in
Engineering, 8(1).

Bohm, M. R., and Stone, R. B., 2004, “Product Design Support: Exploring a Design
Repository System,” ASME 2004 International Mechanical Engineering Congress
and Exposition, ASME, pp. 55-65.

Bohm, M. R., Vucovich, J. P., and Stone, R. B., 2005, “Capturing Creativity: Using
a Design Repository to Drive Concept Innovation,” ASME 2005 IDETC/CIE,
ASME, Long Beach, California, September 24-28, 2005, DETC2005-85105, pp.
331-342.

Caldwell, B. W., Thomas, J. E., Sen, C., Mocko, G. M., and Summers, J. D., 2012,
“The Effects of Language and Pruning on Function Structure Interpretability,”
Journal of Mechanical Design, Transactions of the ASME, 134(6).

94

[53]

[54]

[60]

[61]

[62]

Caldwell, B. W., Sen, C., Mocko, G. M., and Summers, J. D., 2011, “An Empirical
Study of the Expressiveness of the Functional Basis,” Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 25(03), pp. 273-287.

Sen, C., Caldwell, B. W., Summers, J. D., and Mocko, G. M., 2010, “Topological
Information Content and Expressiveness of Function Models in Mechancial
Design,” Journal of Computing and Information Science in Engineering, 10(3), pp.
381-394.

Volker, J., 2009, Learning Expressive Ontologies, 10S Press.

Kurtoglu, T., Swantner, A., and Campbell, M. L., 2010, “Automating the
Conceptual Design Process: ‘From Black Box to Component Selection,”” Artificial
Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 24(1),
pp. 49-62.

Mao, X., and Sen, C., 2018, “Physics-Based Semantic Reasoning for Function
Model Decomposition,” ASME International.

McAdams, D. A., Stone, R. B., and Wood, K. L., 1999, “Functional
Interdependence and Product Similarity Based on Customer Needs,” Research in
Engineering Design - Theory, Applications, and Concurrent Engineering, 11(1), pp.
1-19.

Gill, A. S., and Sen, C., 2020, “Evolutionary Approach to Function Model
Synthesis: Development of Parameterization and Synthesis Rules,” Proceedings of
the ASME 2020 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference IDETC/CIE2020, Virtual,
Online.

Mikes, A., Edmonds, K., Stone, R. B., and Dupont, B., 2020, “Optimizing an
Algorithm for Data Mining a Design Repository to Automate Functional
Modeling,” Proceedings of the ASME 2020 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference
IDETC/CIE2020 , Virtual, Online.

Gero, J. S., and Kannengiesser, U., 2000, “Towards a Situated Function-Behaviour-
Structure Framework as the Basis of a Theory of Designing,” Workshop on
Development and Application of Design Theories in Al in Design Research, Sixth
International Conference on Artificial Intelligence in Design, Worcester, MA.

Mao, X., and Sen, C., 2019, “Semantic and Qualitative Physics-Based Reasoning
on Plain-English Flow Terms for Generating Function Model Alternatives,” Journal
of Computing and Information Science in Engineering, 20(4), p. 041006.

95

[63]

[64]

[66]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Sen, C., Summers, J. D., and Mocko, G. M., 2011, “Exploring Potentials for
Conservational Reasoning Using Topologic Rules of Function Structure Graphs,”
Proceedings of the 18th International Conference on Engineering Design (ICED
11), Impacting Society through Engineering Design, 9, pp. 377-388.

Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., and Tomiyama, T., 1996,
“Supporting Conceptual Design Based on the Function-Behavior-State Modeler,”
Artificial Intelligence for Engineering, Design, Analysis and Manufacturing,
10(04), pp. 275-288.

Chen, Y., Zhang, Z., Huang, J., and Xie, Y., 2013, “Toward a Scientific Ontology
Based Concept of Function,” Artificial Intelligence for Engineering Design,
Analysis and Manufacturing: AIEDAM, 27(3), pp. 241-248.

Xu, C., Gupta, S. K., Yao, Z., Gruninger, M., and Sriram, R. D., 2005, “Toward
Computer-Aided Conceptual Design of Mechatronic Devices with Multiple
Interaction-States,” ASME 2005 IDETC/CIE, Long Beach, CA, September 24-28,
2005, DETC2005-85410, pp. 455—-467.

Umarikar, A. C., and Umanand, L., 2005, “Modelling of Switching Systems in
Bond Graphs Using the Concept of Switched Power Junctions,” Journal of the
Franklin Institute, 342(2), pp. 131-147.

Mosterman, P. J., and Biswas, G., 1994, Behavior Generation Using Model
Switching A Hybrid Bond Graph Modeling Technique.

Hrovat, D., and Tobler, W. E., 1991, “Bond Graph Modeling of Automotive Power
Trains,” Journal of the Franklin Institute, 328(5—6), pp. 623—662.

Deur, J., Ivanovi¢, V., Assadian, F., Kuang, M., Tseng, E. H., and Hrovat, D., Bond
Graph Modeling of Automotive Transmissions and Drivelines.

Eisenbart, B., Gericke, K., and Blessing, L., 2013, “Adapting the IFM Framework
to Functional Approaches across Disciplines,” Proceedings of the International
Conference on Engineering Design, ICED, pp. 163—172.

Buur, J., Andreasen, and Myrup, M., 1990, 4 Theoretical Approach to
Mechatronics Design, Technical University of Denmark, Lyngby, Denmark.

Nagel, R. L., Stone, R. B., Hutcheson, R. S., McAdams, D. A., and Donndelinger, J.
A., 2008, “Function Design Framework (FDF): Integrated Process and Function
Modeling for Complex Systems,” ASME 2008 IDETC/CIE, pp. 273-286.

Liu, C., Hildre, H. P., Zhang, H., and Relvag, T., 2015, “Conceptual Design of
Multi-Modal Products,” Research in Engineering Design, 26(3), pp. 219-234.
96

[75]

[76]

[77]

[78]

[81]

[82]

Sen, C., Summers, J. D., and Mocko, G. M., 2012, “A Formal Representation of
Function Structure Graphs for Computer-Directed Modeling and Conservation-
Based Reasoning,” ASME Journal of Computing and Information Science in
Engineering, JCISE, 13(2), p. 21001.

Sen, C., 2016, “Feature-Based Computer Modeling and Reasoning on Mechanical
Functions,” Proceedings of the IDETC/CIE, Charlotte, North Carolina, August 21-
24,2016, ASME Paper No. DETC2016-60353, p. VO1BT02A008.

Sen, C., 2011, A Formal Representation of Mechanical Functions to Support
Physics-Based Computational Reasoning in Early Mechanical Design, Clemson
University.

A Venkatanarasimhan, L. N., and Chowdhury, A., 2020, “A Vocabulary of
Function Features for Computer Aided Modeling of Thermal-Fluid Systems,”
Proceedings of the ASME 2020 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference
IDETC/CIE2020, Virtual, Online.

Venkatanarasimhan, L. N. A., Mao, X., Chowdhury, A., and Sen, C., 2019,
“Physics-Based Function Features for a Set of Material-Processing Verbs,”
Proceedings of the ASME Design Engineering Technical Conference, American
Society of Mechanical Engineers (ASME).

Sen, C., 2016, “Feature-Based Computer Modeling and Reasoning on Mechanical
Functions,” Proceedings of the ASME Design Engineering Technical Conference,
American Society of Mechanical Engineers (ASME), Charlotte, North Carolina,
August 21-24, 2016, DETC2016-60353, p. VOIBT02A008.

Venkatanarasimhan, L. N. A., Mao, X., Chowdhury, A., and Sen, C., 2019,
“Physics-Based Function Features for a Set of Material-Processing Verbs,” ASME
2019 IDETC/ CIE, Anaheim, California, August 18-21, 2019, DETC2019-98343,
p. VOO1T02A031.

Sen, C., Summers, J. D., and Mao, X., 2019, “A Physics-Based Formal Vocabulary
of Energy Verbs for Function Modeling,” ASME 2019 IDETC/ CIE, Anaheim,
California, August 18-21, 2019 , DETC2019-98502, p. VOO1T02A069.

Mao, X., 2019, “Semantic and Qualitative Physics-Based Formal Reasoning for
Functional Decomposition in Mechanical Design,” Florida Institute of Technology.

Hopcroft, J., Motwani, R., and Ullman, J., 2008, Introduction to Automata Theory,
Languages, and Computation, Pearson Education India, New York, NY, USA.

97

[87]

[88]

Sen, C., Summers, J., and Mocko, G., 2011, 4 Protocol to Formalise Function
Verbs to Support Conservation-Based Model Checking.

Summers, J. D., and Mocko, G. M., 2013, “Of Function Structure Graphs for
Physics-Based Reasoning,” 13(June), pp. 1-13.

Teig, N., and Scherer, R., 2016, “Bringing Formal and Informal Reasoning
Together-a New Era of Assessment?,” Frontiers in Psychology, 7(JUL), p. 1097.

Nagel, R. L., Vucovich, J. P., Stone, R. B., and Mcadams, D. A., 2008, “A Signal
Grammar to Guide Functional Modeling of Electromechanical Products,” Journal of
Mechanical Design, 130(5).

Sen, C., Summers, J. D., and Mocko, G. M., 2011, “A Protocol to Formalise

Function Verbs to Support Conservation-Based Model Checking,” Journal of
Engineering Design, 22(11-12), pp. 765-788.

98

Appendix A
Multi-Mode Function Models

(anpep Buisianay)

W arenmoy

(anen Buisianay)
W aInquisign

Zney

(anren Buisianay)

W aremoy

€3y

€3N

% (aneA uoisuedya)

(punois)
3 3101SD

W abueyn i

63auL

e

h_wum_mwhnmw 1oy (ossaxdwiod) 5jaY {swona punoiBiapun) | o
I sanopueHD | W3 szibianuod [T wezbieuzo [
) T :
Z34L e}
o3uL sauL Zan z33 S
L]
£y ey

4

@

apoj Bunean

Geothermal Heatpump in Both Heating and Cooling Mode

99

& @

Iy A
E i mk-_(.
633 (10susg
winodep,

ayaiosia
3 aenbay

- Mmojy) [*—g33—
3 aenpy

vmwmﬁ_u

W sieiedss L pueH
Y rent
L)
moden==l - ik -0 £3uL Ly
W aziBiauzaq)| Y W azifusug _ 5
W aols gsewon NmEL
El
_ ginodep,
T gan-w ezibisuzag] W ezibisuz Zay 1

ey (10suas

— IEE] (100q)
_ a 9 pueH ‘ JmsIon) [+53 3 aenoy

-1 JEN] i1
] 1 3 smenoy
wiew)

w o
; _ (uonsaasapon)
LS80 E T3 3 ebueynadiL 133 20sia l|_ .
3 srnbay - {uysnd}
23N
AN Zsayon a b a
{mo}! 5puen
w azifiaug Tmim\mmcmzu

S80I

W areiadas

£ pUEH

Function Model of a Clothes Dryer
100

Amm_\ {ua)
. - Iy 1
WIS W alois 2 pueH Sy
0133 i 633 (s0suas
* ¥Sayol0 3 ebueyoadiy [«——— WS <+ mop) +—s33—
pinodh 1 3" aenbay I aEmoy
’)
K . {mo] L pueH
H 13uL o {A>A} @
LT
| Nl (- Ls13
. ==
L
N any| _
W ezblauzaq = pazibiauz S iy 3 abueydadAl
i L -
W alois 2 Seag! Szaw - B
L] R L @
; 3N bl | -t 5r3))
Eanodep
Twun .p._..klE\mbma:mmD.lll W azbsaug .ll._qlf—\ 1 pueH
eny
/ - (iosuas
) y a3
e e OF amsom [esz 400 Leys 31 (60 rem) _Aﬂw@
Y 1 LI 3 aenpy el

933
. I (uonoajasapop) 1 ' w *
Al @ (D~—130— T ebueyoadhl [+—33— awpsig fousw) L _|EpueH di Jroven

: 3 aenbay o fm:&
wan Lﬁuﬁ_u “n L
{mo}, spuen

—€3n-|3 abueyo +—

W azifiaug

@I—,ﬁﬁa z

101

Function Model of Clothes Dryer When Drying is Complete

Appendix B
Header files for ConMod 2.0

#pragma once

#include "Template.h"
#include <fstream>
#include <iostream>
#include <iomanip>
#include <vector>
#include <string>
#include <algorithm>
#include <iterator>
#include <sstream>

// ActuateE_Template dialog
class ActuateE_Template : public CDialogEx, public CTemplate

{

DECLARE_DYNAMIC(ActuateE_Template)

public:
ActuateE_Template(CWnd* pParent = NULL,
CPoint InsertionPoint = (500, 500),
CString* pCounterString_F = NULL,
CString* pCounterString_InE = NULL,
CString* pCounterString_OutE = NULL,
CString* pCounterString_InS = NULL,
CString* pCounterString_InCarrier = NULL,
CString* pCounterString OutCarrier = NULL, int ReasOpt = 0);
standard constructor
virtual ~ActuateE_Template();

// Dialog Data
#ifdef AFX_DESIGN_TIME

enum { IDD = IDD_ACTUATE_E_TEMPLATE };
#endif

protected:

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_InE;
CEnergy* pEnergy_OutE;
CSignal* pSignal_InS;
CEnergy* pEnergy_In_Carrierk;
CEnergy* pEnergy_Out_Carrierk;
CMaterial* pMaterial_In_CarrierM;
CMaterial* pMaterial_Out_CarrierM;
int ReasoningOption;
bool CarrierIsMaterial = false;
bool CarrierIsEnergy = false;
CString InitialState;

//

102

CString CurrentState = NULL;

CString CurrentCs;

int Mode;

enum { Actuate, DeActuate };

int Row, Coloumn;

// individual name and value elements
HWND hWnd;

//void open_file(HWND hWnd);

//bool StateRecognized = false, CSRecognized = false;
//void OnFileOpen(CString CSinput, CString State@);
bool EisActuated = false;

CString* EInID = new CString;

CString* EOutID = new CString;

void ModeIsActuate();

void ModeIsDeActuate();

CPoint EInHP, EInTP, EOutHP, EOutTP;

DECLARE_MESSAGE_MAP ()

afx_msg void OnBnClickedCarrierM();
afx_msg void OnBnClickedCarrierk();
afx_msg void OnBnClickedOk();

1

#pragma once
#include "Template.h"

// Conduct_E_Template dialog
class CConduct_E_Template : public CDialog, public CTemplate

{
DECLARE_DYNAMIC(CConduct_E_Template)

public:
CConduct_E_Template(ChWnd* pParent = NULL, CPoint InsertionPoint = (500, 500),
CString* pCounterString_F = NULL, CString* pCounterString_InE = NULL,
CString* pCounterString OutE = NULL, CString* pCounterString OutE_Res =
NULL, int ReasOpt = @);

virtual ~CConduct_E_Template();
// Dialog Data
enum { IDD = IDD_CONDUCT E_TEMPLATE };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_ InE;
CEnergy* pEnergy OutE;
CEnergy* pEnergy OutE_Res;
int ReasoningOption;

1

103

#include "Function.h"

#include "Env.h"

#include "Edge.h"

#include "Material.h”

#include "Energy.h"

#include "Signal.h"

#include "Convert_E_Template.h"
#include "Conduct_E_Template.h"
#include "Energize_M_Template.h"
#include "Distribute_E_Template.h"
#include "DeEn_M_Template.h"
#include "ActuateE_Template.h"
#pragma once

class CConMod2Doc : public CDocument

protected: // create from serialization only
CConMod2Doc();
DECLARE_DYNCREATE (CConMod2Doc)

public:

CList<CElement*, CElement*> CElementList; // list of all elements
of all types - reconstructed everytime OnDraw is called

CList<CNode*, CNode*> CNodeList; // List of Function blocks - appended upon
ADD_FUNCTION, removed upon DELETE

CList<CEdge*, CEdge*> CEdgelist; // List of flow arrows
(edges) of all kinds - appended upon ADD_EDGE, removed upon DELETE

CList<CElement*, CElement*> PreselectionList;

CList<CFunction*, CFunction*> CFunctionList;
CList<CEnv*, CEnv*> CEnvList;

CList<CMaterial*, CMaterial*> CMateriallist;
CList<CMaterial*, CMaterial*> CMateriallist_IN_TEMP;
CList<CMaterial*, CMaterial*> CMateriallist_OUT_TEMP;
CList<CEnergy*, CEnergy*> CEnergylist;
CList<CEnergy*, CEnergy*> CEnergylList_IN_TEMP;
CList<CEnergy*, CEnergy*> CEnergylList OUT_TEMP;
CList<CSignal*, CSignal*> CSignallist;
CList<CSignal*, CSignal*> CSignallist_IN_TEMP;
CList<CSignal*, CSignal*> CSignallist_OUT_TEMP;

CList<CTemplate*, CTemplate*> CTemplatelist;
// List of all templates of Layer 2

// The main purpose of this list is to store the "template"
instances, while the individual

// elements in the templates, such as functions and flows, are
stored in the CElementList.

// By storing the templates in this separate list, it will be
easier to delete them

// during application exit (Destructor of the View class).

CList<CFunction*, CFunction*> CConvert_E_Function_List;
CList<CConvert E_Template*, CConvert E Template*> CConvert_E_Template_List;

104

CList<CFunction*, CFunction*> CConduct_E_Function_List;
CList<CConduct_E_Template*, CConduct_E_Template*> CConduct_E_Template_List;

CList<CFunction*, CFunction*> CEnergize_M_Function_List;
CList<CEnergize M Template*, CEnergize M Template*> CEnergize_M_Template_List;

CList<CFunction*, CFunction*> CDistribute_E_Function_List;
CList<CDistribute_E_Template*, CDistribute_E_Template*>
CDistribute_E_Template_List;

CList<CFunction*, CFunction*> CDeEn_M_Function_List;
CList<CDeEn_M Template*, CDeEn_M_Template*> CDeEn_M_Template_List;

CList<CFunction*, CFunction*> ActuateE_Function_List;
CList<ActuateE_Template*, ActuateE_Template*> ActuateE_Template_List;
CList<ActuateE_Template*, ActuateE_Template*> CurrState_List;

// Attributes
public:

// Operations
public:

// Overrides
public:
virtual BOOL OnNewDocument();
virtual void Serialize(CArchive& ar);
#ifdef SHARED_HANDLERS
virtual void InitializeSearchContent();
virtual void OnDrawThumbnail (CDC& dc, LPRECT lprcBounds);
#endif // SHARED_HANDLERS

// Implementation
public:
virtual ~CConMod2Doc();
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#tendif

protected:

// Generated message map functions
protected:
DECLARE_MESSAGE_MAP ()

#ifdef SHARED_HANDLERS
// Helper function that sets search content for a Search Handler
void SetSearchContent(const CString& value);

#endif // SHARED_HANDLERS

3

#pragma once
#include "afxmt.h"
#include "geometry.h"

105

#define SELECTION_RADIUS 20
class CConMod2View : public CView, public CGeometry

{

protected: // create from serialization only

public:

public:

public:

CConMod2View();
DECLARE_DYNCREATE (CConMod2View)

// Attributes
CConMod2Doc* GetDocument() const;

// Operations

// Overrides

virtual void OnDraw(CDC* pDC); // overridden to draw this view
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

protected:

public:

virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

// Implementation

virtual ~CConMod2View();

#ifdef _DEBUG

virtual void AssertValid() const;

virtual void Dump(CDumpContext& dc) const;

#endif
protected:
public:
int ReasoningOption;
enum {
QUALITATIVE_CONSERVATION,
QUALITATIVE_IRREVERSIBILITY,
QUANTITATIVE_EFFICIENCY,
QUANTITATIVE_POWERREQUIRED
¥
//==
// SELECTION OF MESSAGE HANDLER FUNCTIONS THROUGH ENUMERATED WHAT-TO-DO LIST
//==
public:

int WhatToDo;

106

public:

public:

public:

public:

public:

en

af
af
af
af

um

ESCAPE,

ADD_FUNCTION,

ADD_MATERIAL,

ADD_ENERGY,

ADD_SIGNAL,

ADD_ENV,

ADD_CONVERT_E_TEMPLATE,

ADD_CONDUCT_E_TEMPLATE, // Add more todo items here
ADD_ENERGIZE_M_TEMPLATE, // Add more todo items here
ADD_DISTRIBUTE_E_TEMPLATE, // Add more todo items here
ADD_DEEN_M TEMPLATE, // Add more todo items here
ADD_ACTUATEE_TEMPLATE // Add more todo items here

x_msg void OnQualitativeConservation();
x_msg void OnQualitativeIrreversibility();
x_msg void OnQuantitativeEfficiency();
x_msg void OnQuantitativePowerRequired();

id Handler_SaveFile(void);

id Handler_AddFunction(void);
id Handler_AddMaterial(void);
id Handler_AddEnergy(void);
id Handler_AddSignal(void);
id Handler_AddEnv(void);

id Handler_EditCut(void);

id Handler_AddConvert_E_Template(void);

id Handler_AddConduct_E_Template(void);

id Handler_AddEnergize_M_Template(void);
id Handler_AddDistribute_E_Template(void);
id Handler_AddDeEn_M_Template(void);

id Handler_AddActuateE_Template(void);

107

void Handler_Qualitative(void);
void Handler_Quantitative(void);
void Handler_Causal(void);

public:
int Counter_F;
int Counter_Env;
int Counter_M;
int Counter_E;
int Counter_S;
CString CounterString;

public:
void
void
void
void
void
void

AddFunction(void);
AddMaterial(void);
AddEdge_Dynamic(void);
AddEnergy(void);
AddSignal(void);
AddEnv(void);

public:
void
void
void
void
void
void

AddConvert_E_Template(void);
AddConduct_E_Template(void);
AddEnergize_M_Template(void);
AddDistribute_E_Template(void);
AddDeEn_M_Template(void);
AddActuateE_Template(void);

// The following four members are used during construction of the dynamic
// instance of edges, and to pass their values to the final instance.

CElement* pTailElemDynamic;
CElement* pHeadElemDynamic;
bool TailNodeSelected;

public:

void
mouse hover

void

void
preselection

void
presel list

void ScrollThroughPreselection();
preselected elements

POSITION ScrollPosition;
PreselectionList that is selected

enum { NONE, TAIL, CENTER, HEAD };

CElement* pElementToBeDeleted;

CElement* pSelectedElement;
currently selected element

Preselect(CPoint* pMouseTip);

Highlight(CElement* pElement);
UnHighlight(CElement* pElement);

SelectElement(CElement* pElement);

// Preselection of elements by

// Change color when preselected
// Reset color when released from

// Finally select one element from the
// Scrolling through

// Current position within
// Grab handle locations

// Pointer to store the

108

bool ElementIsNode(CElement* pElement);

// TRUE if pSelectedElement is a member of CNodelList
bool ElementIsFunction(CElement* pElement);

// TRUE if pSelectedElement is a member of CFunctionList
bool ElementIsEnv(CElement* pElement);

// TRUE if pSelectedElement is a member of CEnvList
bool ElementIsEdge(CElement* pElement);

// TRUE if pSelectedElement is a member of CEdgelList
bool ElementIsMaterial(CElement* pElement);

// TRUE if pSelectedElement is a member of CEdgelist
bool ElementIsEnergy(CElement* pElement);

// TRUE if pSelectedElement is a member of CEdgelList
bool ElementIsSignal(CElement* pElement);

// TRUE if pSelectedElement is a member of CEdgelList

POSITION NodeIndexInNodelList;

// Gets set by SelectedElementIsNode so that it could be removed
POSITION FunctionIndexInFunctionList;

// Gets set by SelectedElementIsFunction so that it could be removed
POSITION EnvIndexInEnvList;

// Gets set by SelectedElementIsEnv so that it could be removed
POSITION EdgeIndexInEdgelList;

// Gets set by SelectedElementIskEdge so that it could be removed
POSITION MaterialIndexInMateriallist;

// Gets set by SelectedElementIskEdge so that it could be removed
POSITION EnergyIndexInEnergylist;

// Gets set by SelectedElementIskdge so that it could be removed
POSITION SignalIndexInSignallList;

// Gets set by SelectedElementIsEdge so that it could be removed

bool ElementIsConvert_E_Function(CElement* pElement);
bool ElementIsConvert_E_Template(CElement* pElement);

bool ElementIsConduct_E_Function(CElement* pElement);
bool ElementIsConduct_E_Template(CElement* pElement);

bool ElementIsEnergize_M_Function(CElement* pElement);
bool ElementIsEnergize_M_Template(CElement* pElement);

bool ElementIsDistribute_E_Function(CElement* pElement);
bool ElementIsDistribute_E_Template(CElement* pElement);

bool ElementIsDeEn_M_Function(CElement* pElement);
bool ElementIsDeEn_M_Template(CElement* pElement);

bool ElementIsActuateE_Function(CElement* pElement);
bool ElementIsActuateE_Template(CElement* pElement);

POSITION Convert_E_Function_IndexInConvert_E_Function_List;
POSITION Convert_E_Template_IndexInConvert_E_Template_List;

POSITION Conduct_E_Function_IndexInConduct_E_Function_List;

109

public:

public:

public:

POSITION Conduct_E_Template_IndexInConduct_E_Template_List;

POSITION Energize_M Function_IndexInEnergize_M_Function_List;
POSITION Energize M Template_IndexInEnergize_M_Template_List;

POSITION Distribute_E_Function_IndexInDistribute_E_Function_List;
POSITION Distribute_ E_Template_IndexInDistribute_ E_Template_List;

POSITION DeEn_M_Function_IndexInDeEn_M_Function_List;
POSITION DeEn_M Template IndexInDeEn_M Template List;

POSITION ActuateE_Function_IndexInDeActuateE_Function_List;
POSITION ActuateE_Template_IndexInActuateE_Template_ List;

void EmptyAllTempLists();

void MoveConnectDynamic();

void MoveConnect();

void DetachEdgesFromElement(CElement* pElement);

void DeleteElement(CElement* pElement);

// The following four members stores the topology of a flow terminal

// (head or tail) that is moved by the MoveConnectDynamic function to a temp
// storage, so that the point can be reassigned in the case the operation
// was illegal. The storage code is in the MoveConnectDynamic function.
// The reassignment code is in OnDraw (during gramamr chekcs).

CElement* pRememberHeadElement;

CPoint RememberHeadPoint;

CElement* pRememberTailElement;

CPoint RememberTailPoint;

// Parameters

CPoint MouselDownPoint;
CPoint MouselLUpPoint;
CPoint MouseRDownPoint;
CPoint MouseRUpPoint;
CPoint MouseMovePoint;

// Flags
bool LButtonIsDown;
bool RButtonIsDown;

// Mouse Button and Move Functions
afx_msg void OnLButtonDown(UINT nFlags, CPoint point);
afx_msg void OnLButtonUp(UINT nFlags, CPoint point);
afx_msg void OnRButtonDown(UINT nFlags, CPoint point);
afx_msg void OnRButtonUp(UINT nFlags, CPoint point);

110

public:

afx_msg void OnMouseMove(UINT nFlags, CPoint point);
afx_msg void OnMButtonUp(UINT nFlags, CPoint point);

afx_msg BOOL OnEraseBkgnd(CDC* pDC); // Flicker elimination
afx_msg void OnLButtonDblClk(UINT nFlags, CPoint point);

// CONSERVATION CHECKING FUNCTIONS - TOPOLOGICAL CONSERVATION (WITHOUT VOCAB)
// REFERE TO: ICED-2011 PAPER

bool GrammarCheckRequired;

CString Msg_OrphanFlow;

CString Msg_BarrenFlow;

CString Msg_OneInManyOut_M;

CString Msg_OneInManyOut_E;

CString Msg_ManyInOneOut_M;

CString Msg_ManyInOneOut_E;

CString Msg_ManyInManyOut;

CString Msg_MissingResidualEnergy;
CString Msg_MaterialChangeWithoutEnergy;
CString StartState = NULL;

CString StartingState;

bool SignallsChanged = false;

void Set_OrphanFlowMsg();

void Set_BarrenFlowMsg();

void Set_OneInManyOutMsg M();

void Set_OneInManyOutMsg E();

void Set_ManyInOneOutMsg M();

void Set_ManyInOneOutMsg E();

void Set_ManyInManyOutMsg();

void Set_MissingResidualEnergyMsg();
void Set_MaterialChangeWithoutEnergyMsg();
void ComposeQualitativeMessage();

void VerifyPositivePowerOfFlows();

void VerifyEnergyBalanceOfFunctions();

void ComputeEfficiency();

void ComposeQuantitativeMessage();

bool ContinueReasoning;

void ComposeCausalMessage();

//int DetermineState(CString CSinput);

int DetermineState(CString CSinput, ActuateE_Template* actuatedfunc);
void CausalReasoning(ActuateE_Template* actuatedfunc);
int Mode;

enum { Actuate, DeActuate };

bool EisActuated = false;

// Generated message map functions

protected:

afx_msg void OnFilePrintPreview();
afx_msg void OnContextMenu(CWnd* pWnd, CPoint point);

111

DECLARE_MESSAGE_MAP ()

3

#pragma once
#include "Template.h"

// Convert_E_Template dialog
class CConvert_E_Template : public CDialog, public CTemplate

{

DECLARE_DYNAMIC(CConvert_E_Template)

public:
CConvert_E_Template(CWnd* pParent = NULL, CPoint InsertionPoint = (500, 500),
CString* pCounterString F = NULL, CString* pCounterString_InE = NULL,
CString* pCounterString_OutE = NULL, CString* pCounterString_OutE_Res =
NULL, int ReasOpt = @);

virtual ~CConvert_E_Template();

// Dialog Data
enum { IDD = IDD_CONVERT_E_TEMPLATE };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_InE;
CEnergy* pEnergy_OutE;
CEnergy* pEnergy_OutE_Res;
int ReasoningOption;

1

#pragma once
#include "Template.h"

// DeEn_M_Template dialog
class CDekn_M_Template : public CDialog, public CTemplate

{
DECLARE_DYNAMIC(CDeEn_M_Template)
public:
CDeEn_M_Template(CWnd* pParent = NULL,
CPoint InsertionPoint = (500, 500),
CString* pCounterString_F = NULL,
CString* pCounterString_InM = NULL,
CString* pCounterString_OutM = NULL,
CString* pCounterString_InE = NULL,
CString* pCounterString OutE = NULL, int ReasOpt = 0); // standard
constructor

112

virtual ~CDeEn_M_Template();

// Dialog Data
enum { IDD = IDD_DEEN_M_TEMPLATE };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_InE;
CEnergy* pEnergy_OutE;
CMaterial* pMaterial_InM;
CMaterial* pMaterial_OutM;
int ReasoningOption;

1

#pragma once
#include "Template.h"

// Distribute_E_Template dialog
class CDistribute_E_Template : public CDialog, public CTemplate

{
DECLARE_DYNAMIC(CDistribute_E_Template)
public:
public:
CDistribute_E_Template(CWnd* pParent = NULL,
CPoint InsertionPoint = (500, 500),
CString* pCounterString_F = NULL,
CString* pCounterString InE = NULL,
CString* pCounterString OutEl = NULL,
CString* pCounterString OutE2 = NULL, int ReasOpt = 0); // standard
constructor

virtual ~CDistribute_E_Template();

// Dialog Data
enum { IDD = IDD_DISTRIBUTE_E_TEMPLATE };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_ InE;
CEnergy* pEnergy OutEl;
CEnergy* pEnergy OutE2;
int ReasoningOption;

1

113

#pragma once
#include "element.h"
//#include "math.h"
#include "node.h"

#define EDGE_HEAD_SIZE 20
#define EDGE_HEAD_HALF_ANGLE ©.25 // Radians
class CEdge : public CElement

{

public:
CEdge(void);
CEdge(CPoint TailClick, CPoint HeadClick);
~CEdge(void);

// Head construction data

CPoint HeadLeftVertex, HeadRightVertex;
double HeadSize, HalfHeadAngle;

CPoint HeadVertexArray[3];

// Topological information
void ComputeAnchorPoints();
void AttachEdgeToNearestAnchor();
void ResetGeometricCenter(); // Makes sure that the GeometricCenter is reset
between the
// Tail and
Head points, when an arrow is moved by grabbing
// Those
terminal points
bool ThisFlowIsIncomingBaggage;
bool ThisFlowIsOutgoingBaggage;

// Drawing data

int StemThickness;

int StemLineFont;

enum { NONE, THIN, MEDIUM, THICK };
int FontSize;

void DrawOnDC(CDC* pDC);

1

#pragma once
#include "geometry.h"

#define GENERIC_PEN_R @
#define GENERIC_PEN_G @
#define GENERIC_PEN_B @

#define GENERIC_BRUSH_R ©
#define GENERIC_BRUSH_G ©
#define GENERIC_BRUSH_B ©

#define DANGLING_BRUSH_R 255
#define DANGLING_BRUSH_G ©
#define DANGLING_BRUSH_B ©

#define PRESELECTION_PEN_R 200
#define PRESELECTION_PEN_G ©
#define PRESELECTION_PEN_B 200

114

#define
#define
#define

#define
#define
#define

#define
#define
#define

#define
#define

HIDDEN_PEN_R 220
HIDDEN_PEN_G 220
HIDDEN_PEN_B 220

SELECTION_PEN_R @
SELECTION_PEN_G 200
SELECTION_PEN_B ©

RESIDUAL_PEN_R 255
RESIDUAL_PEN_G ©
RESIDUAL_PEN_B ©

GENERIC_FONT_SIZE 16
BAGGAGE_FONT_SIZE 12

class CElement :

{
public:

public CGeometry/*, public CDialog*/

CElement(void);
virtual ~CElement(void); // Must be virtual, so that individual desctrutors of
// the derived classes

are called when CConModView's

// destructor tries to

close the session

IN BOTH

// PARAMETERS OVERRIDEN
CNode AND CEdge CLASSES
bool IsHighlighted;
bool IsSelected;
bool IsResidual;
bool IsHidden;

CPoint GeometricCenter;
CPoint Anchors[16];
CPoint AnchorsForBaggageFlows[16];

//CString GivenName; // Unnecessary - the individual classes need

their own

grabbed

// GivenName attribute, because the dilaog constructor
// needs a GivenName that is not inherited.

int PenR, PenG, PenB;

int BrushR, BrushG, BrushB;

int GrabHandle; // Stores where (Head, Tail, Center) an element is
by the mouse

virtual void DrawOnDC(CDC* pDC);

//int ReasoningOption;

enum {
QUALITATIVE_CONSERVATION,
QUALITATIVE_IRREVERSIBILITY,
QUANTITATIVE_EFFICIENCY,
QUANTITATIVE_POWERREQUIRED
};

115

// PARAMETERS OVERRIDEN IN CEDGE: TOPOLOGY DATA
CPoint TailPoint, HeadPoint;

int HeadBrushR, HeadBrushG, HeadBrushB;

int TailBrushR, TailBrushG, TailBrushB;
CElement* pHeadElem;

CElement* pTailElem;

1

#pragma once
#include "Template.h"

// Energize M Template dialog
class CEnergize M Template : public CDialog, public CTemplate

{
DECLARE_DYNAMIC(CEnergize M Template)

public:
CEnergize_M_Template(CWnd* pParent = NULL,
CPoint InsertionPoint = (500, 500),
CString* pCounterString_F = NULL,
CString* pCounterString_InM = NULL,
CString* pCounterString_OutM = NULL,
CString* pCounterString_InE = NULL,
CString* pCounterString_OutE = NULL, int ReasOpt = 0);
virtual ~CEnergize M_Template();

// Dialog Data
enum { IDD = IDD_ENERGIZE_M TEMPLATE };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public: // Instances that comprise the Convert_E template
CFunction* pFunctionBlock;
CEnergy* pEnergy_InE;
CEnergy* pEnergy_OutE;
CMaterial* pMaterial_InM;
CMaterial* pMaterial_OutM;
int ReasoningOption;

1

#pragma once
#include "afxcmn.h"
#include "afxwin.h"
#include "edge.h"

// CEnergy dialog

class CEnergy :
public CEdge, public CDialog

{
DECLARE_DYNAMIC(CEnergy)

116

public:
CEnergy(CWnd* pParent = NULL,
CPoint TailClick = (@, @, 0),
CPoint HeadClick = (1@, 100, ©),
CString* pCounterString = NULL,
int ReasOpt = QUALITATIVE_CONSERVATION);

virtual ~CEnergy();

// Dialog Data
enum { IDD = IDD_ENERGY };

protected:
virtual void DoDataExchange(CDataExchange* pDX);

DECLARE_MESSAGE_MAP ()
public:

CList<CEnergy*, CEnergy*> ChildList;
CList<CEnergy*, CEnergy*> ParentlList;
CString GivenName;

void DrawOnDC(CDC*pDC);

int UI_IsResidual;

BOOL OnInitDialog();

void OnOK();

CTreeCtrl* pEnergyTaxonomy;

HTREEITEM hEnergyType;

CString EnergyTypeName;

// Quantitative data members
double Power;

double UI_ForceTerm, UI_RateTerm;
int ReasoningOption;

afx_msg void OnBnClickedCheck1();
¥

// standard constructor

// DDX/DDV support

#pragma once
#include "node.h"

#define ENV_SIZE 25

#define ENV_BRUSH_R 255
#define ENV_BRUSH_G 220
#define ENV_BRUSH_B 210

// CEnv dialog
class CEnv :

public CNode, public CDialog
{

DECLARE_DYNAMIC(CEnv)
public:

CEnv(CWnd* pParent = NULL, CPoint InsertionPoint
pCounterString = NULL); // standard constructor

= (500, 500, @), CString*

117

virtual ~CEnv();

// Dialog Data
enum { IDD = IDD_ENV };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public:
// Environment name within block
CString GivenName;

// Drawing functions

void ComputeBlockCoordinates();
void DrawOnDC(CDC* pDC);
afx_msg void OnEnChangeEditi1();

1

#pragma once
#include "node.h"

#define BLOCK_LENGTH 8@
#define BLOCK_HEIGHT 40

#define FUNCTION_BRUSH_R 150
#define FUNCTION_BRUSH_G 175
#define FUNCTION_BRUSH_B 200

// CFunction dialog

class CFunction :
public CNode, public CRect, public CDialog
{

DECLARE_DYNAMIC(CFunction)

public:

CFunction(CWnd* pParent = NULL, CPoint InsertionPoint = (500, 500, @), CString*
pCounterString = NULL); // standard constructor

virtual ~CFunction();

// Dialog Data
enum { IDD = IDD_FUNCTION };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()
public:

// Function name within block
CString GivenName;

// Drawing functions

void ComputeBlockCoordinates();
void DrawOnDC(CDC* pDC);

bool ElementIsHidden = false;

118

// Quantitative data
double Efficiency;

3

#pragma once
#include "math.h"

class CGeometry

{
public:

CGeometry(void);

~CGeometry(void);

// Member Functions

int RoundToInteger(long n, int t);

CPoint SnapToGrid(CPoint p);

long distance(CPoint pl1, CPoint p2);

CPoint* InterpolatePoints(CPoint pl, CPoint p2, double ratio);
s

// MainFrm.h : interface of the CMainFrame class
//

#pragma once

#include "FileView.h"
#include "ClassView.h"
#include "OutputWnd.h"
#include "PropertiesWnd.h"

class CMainFrame : public CMDIFrameWndEx
{

DECLARE_DYNAMIC(CMainFrame)
public:

CMainFrame();

// Attributes
public:

// Operations
public:

// Overrides
public:

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

virtual BOOL LoadFrame(UINT nIDResource, DWORD dwDefaultStyle =
WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE, CWnd* pParentWnd = NULL, CCreateContext* pContext =
NULL);

// Implementation
public:
virtual ~CMainFrame();
#ifdef _DEBUG
virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;
#endif

119

protected: // control bar embedded members

CMFCMenuBar m_wndMenuBar;
CMFCToolBar m_wndToolBar;
CMFCStatusBar m_wndStatusBar;
CMFCToolBarImages m_UserImages;
CFileView m_wndFileView;
CClassView m_wndClassView;
COutputWnd m_wndOutput;
CPropertiesind m_wndProperties;
protected:

CMFCToolBar m_primitivesToolBar;
CMFCToolBar m_reasoningToolBar;
CMFCToolBar m_featuresToolBar;

// Generated message map functions
protected:
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
afx_msg void OnWindowManager();
afx_msg void OnViewCustomize();
afx_msg LRESULT OnToolbarCreateNew(WPARAM wp, LPARAM 1p);
afx_msg void OnApplicationLook (UINT id);
afx_msg void OnUpdateApplicationLook(CCmdUI* pCmdUI);
afx_msg void OnSettingChange(UINT uFlags, LPCTSTR lpszSection);
DECLARE_MESSAGE_MAP ()

BOOL CreateDockingWindows();
void SetDockingWindowIcons(BOOL bHiColorIcons);

s

#pragma once
#include "edge.h"

// CMaterial dialog
class CMaterial :
public CEdge, public CDialog

{
DECLARE_DYNAMIC(CMaterial)
public:
CMaterial(CWnd* pParent = NULL,
CPoint TailClick = (@, @, 0),
CPoint HeadClick = (1@, 100,),
CString* pCounterString = NULL,
int ReasOpt = QUALITATIVE_CONSERVATION); // standard constructor
virtual ~CMaterial();
// Dialog Data
enum { IDD = IDD_MATERIAL };
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
DECLARE_MESSAGE_MAP ()
public:

CList<CMaterial*, CMaterial*> ChildList;
CList<CMaterial*, CMaterial*> Parentlist;

120

CString GivenName;

void DrawOnDC(CDC*pDC);

int UI_IsResidual;

BOOL OnInitDialog();

void OnOK();

CTreeCtrl* pMaterialTaxonomy;
HTREEITEM hMaterialType;
CString MaterialTypeName;

int ReasoningOption;

1

#pragma once
#include "element.h"
class CNode :

public CElement
{

public:
CNode(void);
virtual ~CNode(void); // Must be virtual, so that individual desctrutors of
// the derived classes are
called when CConModView's
// destructor tries to close
the session

// Parameters to check for
dangling functions and env instances
bool NoInputAttached;
bool NoOutputAttached;

void ComputeBlockCoordinates();

3

#pragma once
#include "edge.h"

// CSignal dialog

class CSignal :
public CEdge, public CDialog
{

DECLARE_DYNAMIC(CSignal)
public:

CSignal(CWnd* pParent = NULL, CPoint TailClick = (@, @, @), CPoint HeadClick =
(100, 100, 0), CString* pCounterString = NULL); // standard constructor

virtual ~CSignal();

// Dialog Data
enum { IDD = IDD_SIGNAL };

protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

DECLARE_MESSAGE_MAP ()

public:

121

//CList<CSignal*, CSignal*> ChildList;
//CList<CSignal*, CSignal*> ParentList;
CString GivenName;
void DrawOnDC(CDC*pDC);

s

#pragma once

#include "Element.h"
#include "Function.h"
#include "Env.h"
#include "Material.h"
#include "Energy.h"
#include "Signal.h"

#define TEMPLATE_FLOW_LENGTH 120

// Template
class CTemplate : public CElement

{
// DECLARE_DYNAMIC(CTemplate)
public:

CTemplate();

virtual ~CTemplate();
protected:

//DECLARE_MESSAGE_MAP ()
¥
/*

This is a high-level abstract class for all templates of the second layer.

The purpose is to provide one identity so that instances all Layer-2 versb, such as
Covnert_E and Energize_M, can be stored in a single list called CTemplatelist,
declared in the Doc class as usual. The template instances are not used in the
model in their own identity, they are only required to instnatiate the elements
such as functions and flows WITHIN the templates using one instance call in

View, such as in functions AddCovnert_E. After that, the elements are used, while
the template instance must be deleted. To facilitate this delete, the templates
are stored in this CTemplateList, which is emptied during application exit (View class
desctrictor).

*/

122

Appendix C
Source files for ConMod 2.0

// ActuateE_Template.cpp : implementation file
//

#include "stdafx.h"

#include "ConMod2.h"

#include "ActuateE_Template.h"
#include "afxdialogex.h"

// ActuateE_Template dialog
IMPLEMENT_DYNAMIC(ActuateE_Template, CDialogEx)

ActuateE_Template::ActuateE_Template(CWnd* pParent /*= NULL*/,
CPoint InsertionPoint /*= (500, 500)*/,
CString* pCounterString_F /*= NULL*/,
CString* pCounterString_InE /*= NULL*/,
CString* pCounterString_OutE /*= NULL*/,
CString* pCounterString_InS /*= NULL*/,
CString* pCounterString_InCarrier/*= NULL*/,
CString* pCounterString_OutCarrier /*= NULL*/, int ReasOpt)
: CDialogEx(IDD_ACTUATE_E_TEMPLATE, pParent), ReasoningOption(ReasOpt)

// Pointer to Function class calls for a new function block
pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString F);

// Calculations for head and tail node locations on the graphics window

CPoint TailOfInE(InsertionPoint.x - 1.5*TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint TailOfInCarrierE(InsertionPoint.x, InsertionPoint.y -
1.5*TEMPLATE_FLOW_LENGTH);

CPoint TailOfInCarrierM(InsertionPoint.x, InsertionPoint.y -
1.5*TEMPLATE_FLOW_LENGTH);

CPoint HeadOfOutCarrierE(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

CPoint HeadOfOutCarrierM(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

// Pointers to InE, OutE, InS, InM_carrier, OutM_carrier, InE_carrier, and out E
carrier for flows entering/leaving function

pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, pCounterString_InE,
this->ReasoningOption);

pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString OutE, this->ReasoningOption);

pSignal_InS = new CSignal(NULL, InsertionPoint, InsertionPoint,
pCounterString_InS);

pMaterial_In_CarrierM = new CMaterial(NULL, TailOfInCarrierM, InsertionPoint,
pCounterString InCarrier, this->ReasoningOption);

pMaterial Out_CarrierM = new CMaterial(NULL, InsertionPoint, HeadOfOutCarrierM,
pCounterString OutCarrier, this->ReasoningOption);

pEnergy_In_CarrierkE = new CEnergy(NULL, TailOfInCarrierE, InsertionPoint,
pCounterString InCarrier, this->ReasoningOption);

123

pEnergy_Out_CarrierE = new CEnergy(NULL, InsertionPoint, HeadOfOutCarrierk,

pCounterString InCarrier, this->ReasoningOption);

// calls for dialog box
DoModal();

// head node of the signal flow goes to function block
pSignal_InS->pHeadElem = pFunctionBlock;
pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_OutE->pTailElem = pFunctionBlock;

if (EisActuated == false)

{
pEnergy_OutE->IsHidden = true;
ModeIsDeActuate();
}
else
{
ModeIsActuate();
}
}
ActuateE_Template::~ActuateE_Template()
{
}
void ActuateE_Template::ModeIsActuate()
{
//if (EisActuated == true)
{
EisActuated = true;
pEnergy_OutE->IsHidden = false;
}
}
void ActuateE_Template::ModeIsDeActuate()
{
//if (EisActuated == false)
{
EisActuated = false;
pEnergy_OutE->IsHidden = true;
}
}

BEGIN_MESSAGE_MAP (ActuateE_Template, CDialogEx)

ON_BN_CLICKED(IDC_CARRIER_M, &ActuateE_Template::0nBnClickedCarrierM)
ON_BN_CLICKED(IDC_CARRIER_E, &ActuateE_Template::0nBnClickedCarrierE)

ON_BN_CLICKED(IDOK, &ActuateE_Template::0nBnClickedOk)
END_MESSAGE_MAP ()

// ActuateE_Template message handlers

void ActuateE_Template::0OnBnClickedCarrierM()
{
CarrierIsMaterial = true;
CarrierIsEnergy = false;
// Head- and tail-node relationships are established
pMaterial_In_CarrierM->pHeadElem = pFunctionBlock;

124

pSignal_InS->pTailElem = pMaterial_In_CarrierM;
pMaterial_Out_CarrierM->pTailElem = pFunctionBlock;

¥

void ActuateE_Template::0OnBnClickedCarrierE()

{
CarrierIsEnergy = true;
CarrierIsMaterial = false;
// Head- and tail-node relationships are established
pEnergy_In_CarrierE->pHeadElem = pFunctionBlock;
pSignal_InS->pTailElem = pEnergy_In_CarrierE;
pEnergy_Out_CarrierE->pTailElem = pFunctionBlock;

¥

void ActuateE_Template::0nBnClickedOk()
{

X

// TODO: Add your control notification handler code here

#include "stdafx.h"
#include "MainFrm.h"
#include "ClassView.h"
#include "Resource.h"
#include "ConMod2.h"

class CClassViewMenuButton : public CMFCToolBarMenuButton

{

friend class CClassView;

DECLARE_SERIAL(CClassViewMenuButton)
public:

CClassViewMenuButton(HMENU hMenu = NULL) : CMFCToolBarMenuButton((UINT)-1,
hMenu, -1)

{

¥

virtual void OnDraw(CDC* pDC, const CRect& rect, CMFCToolBarImages* pImages,
BOOL bHorz = TRUE,
BOOL bCustomizeMode = FALSE, BOOL bHighlight = FALSE, BOOL bDrawBorder =
TRUE, BOOL bGrayDisabledButtons = TRUE)
{

pImages = CMFCToolBar::GetImages();

CAfxDrawState ds;
pImages->PrepareDrawImage(ds);

CMFCToolBarMenuButton: :OnDraw(pDC, rect, pImages, bHorz, bCustomizeMode,
bHighlight, bDrawBorder, bGrayDisabledButtons);

pImages->EndDrawImage(ds);
¥

IMPLEMENT_SERIAL(CClassViewMenuButton, CMFCToolBarMenuButton, 1)

125

[IITTTTTTT207 771777077771 77777777177777777177777771777777777771117177

// Construction/Destruction

IIITTTTTTT207 71777777771 7777777717777777717777777117717777771177117777

CClassView::CClassView()

{
m_nCurrSort = ID_SORTING_GROUPBYTYPE;
}
CClassView: :~CClassView()
{
}

BEGIN_MESSAGE_MAP(CClassView, CDockablePane)
ON_WM_CREATE()
ON_WM_SIZE()
ON_WM_CONTEXTMENU()
ON_COMMAND (ID_CLASS_ADD_MEMBER_FUNCTION, OnClassAddMemberFunction)
ON_COMMAND (ID_CLASS_ADD_MEMBER_VARIABLE, OnClassAddMemberVariable)
ON_COMMAND (ID_CLASS_DEFINITION, OnClassDefinition)
ON_COMMAND (ID_CLASS_PROPERTIES, OnClassProperties)
ON_COMMAND (ID_NEW_FOLDER, OnNewFolder)
ON_WM_PAINT()
ON_WM_SETFOCUS()
ON_COMMAND_RANGE (ID_SORTING_GROUPBYTYPE, ID_SORTING_SORTBYACCESS, OnSort)
ON_UPDATE_COMMAND_UI_RANGE (ID_SORTING_GROUPBYTYPE, ID_SORTING_SORTBYACCESS,
OnUpdateSort)
END_MESSAGE_MAP ()

LIITTTTITT007 771770707777 77777777777777771777777771777771777177117777111117777

// CClassView message handlers

int CClassView::0nCreate(LPCREATESTRUCT lpCreateStruct)

{
if (CDockablePane::0OnCreate(lpCreateStruct) == -1)

return -1;

CRect rectDummy;
rectDummy.SetRectEmpty();

// Create views:

const DWORD dwViewStyle = WS_CHILD | WS_VISIBLE | TVS_HASLINES | TVS_LINESATROOT

| TVS_HASBUTTONS | WS_CLIPSIBLINGS | WS_CLIPCHILDREN;

if (!m_wndClassView.Create(dwViewStyle, rectDummy, this, 2))

{
TRACEO("Failed to create Class View\n");

return -1; // fail to create

}

// Load images:

m_wndToolBar.Create(this, AFX_DEFAULT_TOOLBAR_STYLE, IDR_SORT);
m_wndToolBar.LoadToolBar(IDR_SORT, ©, ©, TRUE /* Is locked */);
OnChangeVisualStyle();

m_wndToolBar.SetPaneStyle(m_wndToolBar.GetPaneStyle() | CBRS_TOOLTIPS |
CBRS_FLYBY);

126

m_wndToolBar.SetPaneStyle(m_wndToolBar.GetPaneStyle() & ~(CBRS_GRIPPER |
CBRS_SIZE_DYNAMIC | CBRS_BORDER_TOP | CBRS_BORDER_BOTTOM | CBRS_BORDER_LEFT |
CBRS_BORDER_RIGHT));

m_wndToolBar.SetOwner(this);

// All commands will be routed via this control , not via the parent frame:
m_wndToolBar.SetRouteCommandsViaFrame(FALSE);

CMenu menuSort;
menuSort. LoadMenu (IDR_POPUP_SORT);

m_wndToolBar.ReplaceButton(ID_SORT_MENU,
CClassViewMenuButton(menuSort.GetSubMenu(@)->GetSafeHmenu()));

CClassViewMenuButton* pButton = DYNAMIC_DOWNCAST(CClassViewMenuButton,
m_wndToolBar.GetButton(0));

if (pButton != NULL)

{
pButton->m_bText = FALSE;
pButton->m_bImage = TRUE;
pButton->SetImage(GetCmdMgr()->GetCmdImage(m_nCurrSort));
pButton->SetMessageWnd(this);
}
// Fill in some static tree view data (dummy code, nothing magic here)
FillClassView();
return 0;
}
void CClassView::0nSize(UINT nType, int cx, int cy)
{
CDockablePane::0nSize(nType, cx, cy);
AdjustLayout();
}
void CClassView::FillClassView()
{

HTREEITEM hRoot = m_wndClassView.InsertItem(_T("FakeApp classes"), 0, 0);
m_wndClassView.SetItemState(hRoot, TVIS_BOLD, TVIS_BOLD);

HTREEITEM hClass = m_wndClassView.InsertItem(_T("CFakeAboutDlg"), 1, 1, hRoot);
m_wndClassView.InsertItem(_T("CFakeAboutDlg()"), 3, 3, hClass);

m_wndClassView.Expand(hRoot, TVE_EXPAND);

hClass = m_wndClassView.InsertItem(_T("CFakeApp"), 1, 1, hRoot);
m_wndClassView.InsertItem(_T("CFakeApp()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("InitInstance()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("OnAppAbout()"), 3, 3, hClass);

hClass = m_wndClassView.InsertItem(_T("CFakeAppDoc"), 1, 1, hRoot);
m_wndClassView.InsertItem(_T("CFakeAppDoc()"), 4, 4, hClass);
m_wndClassView.InsertItem(_T("~CFakeAppDoc()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("OnNewDocument()"), 3, 3, hClass);

hClass = m_wndClassView.InsertItem(_T("CFakeAppView"), 1, 1, hRoot);

127

}

m_wndClassView.InsertItem(_T("CFakeAppView()"), 4, 4, hClass);
m_wndClassView.InsertItem(_T("~CFakeAppView()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("GetDocument()"), 3, 3, hClass);
m_wndClassView.Expand(hClass, TVE_EXPAND);

hClass = m_wndClassView.InsertItem(_T("CFakeAppFrame"), 1, 1, hRoot);
m_wndClassView.InsertItem(_T("CFakeAppFrame()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("~CFakeAppFrame()"), 3, 3, hClass);
m_wndClassView.InsertItem(_T("m _wndMenuBar"), 6, 6, hClass);
m_wndClassView.InsertItem(_T("m _wndToolBar"), 6, 6, hClass);
m_wndClassView.InsertItem(_T("m_wndStatusBar"), 6, 6, hClass);

hClass = m_wndClassView.InsertItem(_T("Globals"), 2, 2, hRoot);
m_wndClassView.InsertItem(_T("theFakeApp"), 5, 5, hClass);
m_wndClassView.Expand(hClass, TVE_EXPAND);

void CClassView::0nContextMenu(CWnd* pWnd, CPoint point)

{

CTreeCtrl* pWndTree = (CTreeCtrl*)&m_wndClassView;
ASSERT_VALID(pWndTree);

if (pWnd != pWndTree)

{
CDhockablePane: :0OnContextMenu(pWnd, point);
return;
}
if (point != CPoint(-1, -1))
{
// Select clicked item:
CPoint ptTree = point;
pWndTree->ScreenToClient(&ptTree);
UINT flags = ©0;
HTREEITEM hTreeItem = pWndTree->HitTest(ptTree, &flags);
if (hTreeItem != NULL)
{
pWndTree->SelectItem(hTreeltem);
}
}

pWndTree->SetFocus();
CMenu menu;
menu. LoadMenu(IDR_POPUP_SORT);

CMenu* pSumMenu = menu.GetSubMenu(0);
if (AfxGetMainWnd()->IsKindOf(RUNTIME_CLASS(CMDIFramelWndEx)))
{

CMFCPopupMenu* pPopupMenu = new CMFCPopupMenu;

if (!pPopupMenu->Create(this, point.x, point.y, (HMENU)pSumMenu-

>m_hMenu, FALSE, TRUE))

return;

((CMDIFrameWndEx*)AfxGetMainWnd())->0nShowPopupMenu(pPopupMenu);
UpdateDialogControls(this, FALSE);

128

}

void CClassView::AdjustLayout()

{
if (GetSafeHwnd() == NULL)
{
return;
}

CRect rectClient;
GetClientRect(rectClient);

int cyTlb = m_wndToolBar.CalcFixedLayout(FALSE, TRUE).cy;

m_wndToolBar.SetWindowPos(NULL, rectClient.left, rectClient.top,
rectClient.Width(), cyTlb, SWP_NOACTIVATE | SWP_NOZORDER);

m_wndClassView.SetWindowPos(NULL, rectClient.left + 1, rectClient.top + cyTlb +
1, rectClient.Width() - 2, rectClient.Height() - cyTlb - 2, SWP_NOACTIVATE |
SWP_NOZORDER);

}
BOOL CClassView::PreTranslateMessage(MSG* pMsg)
{

return CDockablePane::PreTranslateMessage(pMsg);
}
void CClassView::0nSort(UINT id)
{

if (m_nCurrSort == id)

{

return;
}

m_nCurrSort = id;

CClassViewMenuButton* pButton = DYNAMIC_DOWNCAST(CClassViewMenuButton,
m_wndToolBar.GetButton(9));

if (pButton != NULL)

{
pButton->SetImage(GetCmdMgr()->GetCmdImage(id));
m_wndToolBar.Invalidate();
m_wndToolBar.UpdateWindow();

}

}
void CClassView::0nUpdateSort(CCmdUI* pCmdUT)
{
pCmdUI->SetCheck(pCmdUI->m_nID == m_nCurrSort);
}
void CClassView::0nClassAddMemberFunction()
{
AfxMessageBox(_T("Add member function..."));
}
void CClassView::0nClassAddMemberVariable()
{

// TODO: Add your command handler code here

129

}

void CClassView::0nClassDefinition()

{
// TODO: Add your command handler code here
}
void CClassView::0nClassProperties()
{
// TODO: Add your command handler code here
}
void CClassView::0OnNewFolder()
{
AfxMessageBox(_T("New Folder..."));
}
void CClassView::0nPaint()
{

CPaintDC dc(this); // device context for painting

CRect rectTree;
m_wndClassView.GetWindowRect(rectTree);
ScreenToClient(rectTree);

rectTree.InflateRect(1, 1);
dc.Draw3dRect(rectTree, ::GetSysColor(COLOR_3DSHADOW),
: :GetSysColor (COLOR_3DSHADOW)) ;

}

void CClassView::0nSetFocus(CWnd* pOldind)

¢ CDockablePane: :0nSetFocus (pOldind);
m_wndClassView.SetFocus();

}

void CClassView::0nChangeVisualStyle()
{
m_ClassViewImages.DeleteImagelList();
UINT uiBmpId = theApp.m_bHiColorIcons ? IDB_CLASS_VIEW_ 24 : IDB_CLASS_VIEW;

CBitmap bmp;
if (!bmp.LoadBitmap(uiBmpId))

TRACE(_T("Can't load bitmap: %x\n"), uiBmpId);

ASSERT(FALSE);
return;

}

BITMAP bmpObj;
bmp .GetBitmap (&bmpObj);

UINT nFlags = ILC_MASK;
nFlags |= (theApp.m_bHiColorIcons) ? ILC_COLOR24 : ILC_COLOR4;

m_ClassViewImages.Create(16, bmpObj.bmHeight, nFlags, 0, 0);

130

m_ClassViewImages.Add(&bmp, RGB(255, @, 0));
m_wndClassView.SetImagelList(&n_ClassViewImages, TVSIL_NORMAL);

m_wndToolBar.CleanUpLockedImages();
m_wndToolBar.LoadBitmap(theApp.m_bHiColorIcons ? IDB_SORT_24 : IDR_SORT, O, O,
TRUE /* Locked */);
s

// Conduct_E_Template.cpp : implementation file
//

#include "stdafx.h"

#include "ConMod2.h"

#include "Conduct_E_Template.h"
#include "afxdialogex.h"

IMPLEMENT_DYNAMIC(CConduct E_Template,CDialog)

CConduct_E_Template::CConduct_E_Template(CWnd* pParent /*= NULL*/, CPoint InsertionPoint

/*= (5001 50@)*/1
CString* pCounterString F /*= NULL*/, CString* pCounterString_InE /*= NULL*/,
CString* pCounterString OutE /*= NULL*/, CString* pCounterString OutE_Res /*=
NULL*/,
int ReasOpt)
: CDialog(CConduct_E_Template::IDD, pParent)
, ReasoningOption(ReasOpt)

pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString F);

CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, pCounterString_InE,
this->ReasoningOption);

pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString_OutE, this->ReasoningOption);

pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint, HeadOfOutE_Res,
pCounterString_OutE_Res, this->ReasoningOption);

pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_OutE->pTailElem = pFunctionBlock;
pEnergy_OutE_Res->pTailElem = pFunctionBlock;
pEnergy_OutE_Res->UI_IsResidual = true;

if (pEnergy_InE->IsHidden == true)

pEnergy_OutE->IsHidden = true;

}

CConduct_E_Template::~CConduct_E_Template()

{
}

void CConduct_E_Template::DoDataExchange(CDataExchange* pDX)

{

131

Cbhialog: :DoDataExchange(pDX);

BEGIN_MESSAGE_MAP(CConduct_E_Template, CDialog)
END_MESSAGE_MAP ()

// Conduct_E_Template message handlers
// ConMod2Doc.cpp : implementation of the CConMod2Doc class
//

#include "stdafx.h"

// SHARED_HANDLERS can be defined in an ATL project implementing preview, thumbnail
// and search filter handlers and allows sharing of document code with that project.
#ifndef SHARED_HANDLERS

#include "ConMod2.h"

#endif

#include "ConMod2Doc.h"

#include <propkey.h>

#ifdef _DEBUG

#define new DEBUG_NEW

#endif

// CConMod2Doc

IMPLEMENT_DYNCREATE (CConMod2Doc, CDocument)

BEGIN_MESSAGE_MAP (CConMod2Doc, CDocument)
END_MESSAGE_MAP ()

// CConMod2Doc construction/destruction

CConMod2Doc : :CConMod2Doc ()

{
// TODO: add one-time construction code here
¥
CConMod2Doc : :~CConMod2Doc ()
{
¥

BOOL CConMod2Doc: :OnNewDocument ()

if (!CDocument::0OnNewDocument())
return FALSE;

// TODO: add reinitialization code here
// (SDI documents will reuse this document)

return TRUE;
}

// CConMod2Doc serialization

132

void CConMod2Doc: :Serialize(CArchive& ar)

{
if (ar.IsStoring())
{
// TODO: add storing code here
}
else
{
// TODO: add loading code here
}
}

#ifdef SHARED_HANDLERS

// Support for thumbnails
void CConMod2Doc: :OnDrawThumbnail (CDC& dc, LPRECT lprcBounds)
{
// Modify this code to draw the document's data
dc.FillSolidRect(1lprcBounds, RGB(255, 255, 255));

CString strText = _T("TODO: implement thumbnail drawing here");
LOGFONT 1f;

CFont* pDefaultGUIFont = CFont::FromHandle((HFONT)
GetStockObject (DEFAULT_GUI_FONT));

pDefaultGUIFont->GetLogFont(&1f);

1f.1fHeight = 36;

CFont fontDraw;
fontDraw.CreateFontIndirect(&1f);

CFont* pOldFont = dc.SelectObject(&fontDraw);
dc.DrawText(strText, lprcBounds, DT_CENTER | DT_WORDBREAK);
dc.SelectObject(pOldFont);

}

// Support for Search Handlers
void CConMod2Doc::InitializeSearchContent()

{
CString strSearchContent;
// Set search contents from document's data.
// The content parts should be separated by ";"
// For example: strSearchContent = _T("point;rectangle;circle;ole object;");
SetSearchContent(strSearchContent);
}

void CConMod2Doc: :SetSearchContent(const CString& value)

if (value.IsEmpty())
{

}

else

{

RemoveChunk (PKEY_Search_Contents.fmtid, PKEY_Search_Contents.pid);

CMFCFilterChunkValueImpl *pChunk = NULL;
ATLTRY(pChunk = new CMFCFilterChunkValueImpl);
if (pChunk != NULL)

133

pChunk->SetTextValue(PKEY_Search_Contents, value, CHUNK_TEXT);
SetChunkValue(pChunk);

}
#endif // SHARED_HANDLERS
// CConMod2Doc diagnostics

#ifdef _DEBUG
void CConMod2Doc: :AssertValid() const

{
CDocument: :AssertValid();
}
void CConMod2Doc: :Dump(CDumpContext& dc) const
{

CDocument: :Dump(dc);

}
#endif //_DEBUG

// CConMod2Doc commands

#include "stdafx.h"
#include "MemDC.h"
#include "ConMod2.h"
#include "ConMod2Doc.h"
#include "ConMod2View.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CConMod2View
IMPLEMENT_DYNCREATE (CConMod2View, CView)

BEGIN_MESSAGE_MAP(CConMod2View, CView)
// Standard printing commands
ON_COMMAND(ID_FILE_PRINT, &CView::0OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_DIRECT, &CView::OnFilePrint)
ON_COMMAND(ID_FILE_PRINT_PREVIEW, &CConMod2View::0nFilePrintPreview)
ON_WM_CONTEXTMENU ()

// ConMod Main Menu - Reasoning Options Message Handlers
ON_COMMAND (ID_QUALITATIVE_CONSERVATION,
&CConMod2View: :OnQualitativeConservation)
ON_COMMAND(ID_QUALITATIVE_IRREVERSIBILITY,
&CConMod2View: :OnQualitativeIrreversibility)
ON_COMMAND(ID_QUANTITATIVE_EFFICIENCY, &CConMod2View::0nQuantitativeEfficiency)
ON_COMMAND(ID_QUANTITATIVE_POWERREQUIRED,
&CConMod2View: :OnQuantitativePowerRequired)

134

// ConMod PRIMITIVES Toolbar Commands
ON_COMMAND(ID_ADD_FUNCTION, Handler_AddFunction)
ON_COMMAND (ID_ADD_MATERIAL, Handler_AddMaterial)
ON_COMMAND(ID_ADD_ENERGY, Handler_AddEnergy)
ON_COMMAND(ID_ADD_SIGNAL, Handler_AddSignal)
ON_COMMAND(ID_ADD_ENV, Handler_AddEnv)

// ConMod FEATURES Toolbar Commands

ON_COMMAND(ID_CONVERT_E, Handler_AddConvert_E_Template)
ON_COMMAND(ID_CONDUCT E_TEMPLATE, Handler AddConduct_E_Template)
ON_COMMAND (ID_ENERGIZE_M_TEMPLATE, Handler_AddEnergize_M_Template)
ON_COMMAND(ID_DISTRIBUTE_E_TEMPLATE, Handler_ AddDistribute E_Template)
ON_COMMAND(ID_DEEN_M_TEMPLATE, Handler AddDeEn_M_Template)
ON_COMMAND(ID_ACTUATE_E_TEMPLATE, Handler AddActuateE_Template)

// ConMod REASONING Toolbar Commands
ON_COMMAND(ID_QUALITATIVE, Handler_Qualitative)
ON_COMMAND (ID_QUANTITATIVE, Handler_Quantitative)

// ConMod Mouse Event Commands
ON_WM_LBUTTONDOWN ()
ON_WM_LBUTTONUP ()
ON_WM_RBUTTONDOWN ()
ON_WM_RBUTTONUP ()
ON_WM_MOUSEMOVE ()
ON_WM_LBUTTONDBLCLK ()

// Flicker prevention of the screen
ON_WM_ERASEBKGND()

// ConModKeyboard Event Commands
ON_COMMAND(ID_EDIT_CUT, Handler_EditCut)

ON_WM_MBUTTONUP ()

END_MESSAGE_MAP ()

// CConMod2View construction/destruction

CConMod2View: :CConMod2View()

{

ReasoningOption = QUALITATIVE_CONSERVATION;
ContinueReasoning = true;

WhatToDo = ESCAPE;
LButtonIsDown = false;
RButtonIsDown = false;
pTailElemDynamic = NULL;
pHeadElemDynamic = NULL;
TailNodeSelected = false;
pElementToBeDeleted = NULL;

// Conservation Checking Messages
Msg_OrphanFlow = ""
Msg_BarrenFlow =

| e e

Msg_OneInManyOut_M = "";
Msg_OneInManyOut_E = "";
Msg ManyInOneOut M = "";

135

Msg_ManyInOneOut_E = "";
Msg_ManyInManyOut = "";
Msg_MissingResidualEnergy =
Msg_MaterialChangeWithoutEnergy =

Counter_F =
Counter_Env
Counter_M
Counter_E
Counter_S =

8;

9;
9;
9;
9;

GrammarCheckRequired = true;

}

CConMod2View: :~CConMod2View()

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != NULL;)
{

delete pDoc->CElementList.GetAt(pos);

pDoc->CElementList.GetNext(pos);
}
pDoc->CFunctionList.RemoveAll();
pDoc->CEnvList.RemoveAll();
pDoc->CNodeList.RemoveAll();
pDoc->CMateriallList.RemoveAll();
pDoc->CEnergyList.RemoveAll();
pDoc->CSignallList.RemoveAll();
pDoc->CEdgeList.RemoveAll();
pDoc->CElementList.RemoveAll();

}

BOOL CConMod2View::PreCreateWindow(CREATESTRUCT& cs)
{
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs
cs.1lpszClass = AfxRegisterWndClass(CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW,
AfxGetApp()->LoadCursor (IDC_CROSS), (HBRUSH)(COLOR_WINDOW + 1));

return CView::PreCreateWindow(cs);

}

// CConMod2View drawing

void CConMod2View::0nDraw(CDC* dc)
{
MemDC pDC(dc);
CConMod2Doc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
if (!pDoc)
return;

if (pDoc->CNodelList.IsEmpty() == false)

for (POSITION pos = pDoc->CNodelist.GetHeadPosition(); pos != NULL;)

{
pDoc->CNodelList.GetAt(pos)->NoInputAttached = true;

136

pDoc->CNodeList.GetAt(pos)->NoOutputAttached = true;

for (POSITION pos_inner = pDoc->CEdgelList.GetHeadPosition();
pos_inner != NULL;)

{
if (pDoc->CEdgelList.GetAt(pos_inner)->pTailElem == pDoc-
>CNodelList.GetAt(pos))
pDoc->CNodelList.GetAt(pos)->NoOutputAttached =
false;
if (pDoc->CEdgelist.GetAt(pos_inner)->pHeadElem == pDoc-
>CNodelList.GetAt(pos))
pDoc->CNodelList.GetAt(pos)->NoInputAttached =
false;
pDoc->CEdgelList.GetNext(pos_inner);
¥
pDoc->CNodelList.GetNext(pos);
¥
}
/[===
// Check for baggage flows (incoming and outgoing)
/[=======================================s=================================

if (pDoc->CEdgelist.IsEmpty() == false)
{
for (POSITION pos = pDoc->CEdgelList.GetHeadPosition(); pos != NULL;)
{
if (ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pHeadElem) &&
(pDoc->CEdgeList.GetAt(pos)->pHeadElem->pTailElem ==
pDoc->CEdgeList.GetAt(pos)->pTailElem) &&
ElementIsNode(pDoc->CEdgeList.GetAt(pos)->pTailElem))
pDoc->CEdgelList.GetAt(pos)->ThisFlowIsOutgoingBaggage

true;
else pDoc->CEdgelList.GetAt(pos)->ThisFlowIsOutgoingBaggage =
false;

if (ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pTailElem) &&
(pDoc->CEdgelList.GetAt(pos)->pTailElem->pHeadElem ==
pDoc->CEdgeList.GetAt(pos)->pHeadElem) &&
ElementIsNode(pDoc->CEdgelList.GetAt(pos)->pHeadElem))
pDoc->CEdgeList.GetAt(pos)->ThisFlowIsIncomingBaggage

true;
else pDoc->CEdgeList.GetAt(pos)->ThisFlowIsIncomingBaggage =
false;

pDoc->CEdgeList.GetNext(pos);

// Update the ReasoningOption variable in Energy flows, so that dialogs
// show the correct reasoning option check box through ONInitDialog

if (pDoc->CEnergylList.IsEmpty() == false)

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)
{

137

pDoc->CEnergyList.GetAt(pos)->ReasoningOption = this-

>ReasoningOption;
pDoc->CElementList.GetNext(pos);
}
}
//===

// Update the ReasoningOption variable in Material flows, so that dialogs
// show the correct reasoning option check box through ONInitDialog

/[===
if (pDoc->CMateriallList.IsEmpty() == false)
{
for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != NULL;
)
{
pDoc->CMateriallList.GetAt(pos)->ReasoningOption = this-
>ReasoningOption;

pDoc->CMateriallist.GetNext(pos);

if (pDoc->CElementList.IsEmpty() == false)

{
for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != NULL;
{
pDoc->CElementList.GetAt(pos)->DrawOnDC(pDC);
pDoc->CElementList.GetNext(pos);
¥
}

if (pDoc->CFunctionList.IsEmpty() == false)

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != pDoc-
>CFunctionList.GetTailPosition();)

if (pDoc->CFunctionList.GetAt(pos)->GivenName == pDoc-
>CFunctionList.GetTail()->GivenName)

AfxMessageBox(CString("ILLEGAL NAMING :: ABORTING
INSTANCE . \n\n***** ") 4
pDoc->CFunctionList.GetAt(pos)->GivenName +
" oxkEkrk\n\nFunction names must be unique.");
DeleteElement(pDoc->CFunctionList.GetTail());
return;

)

138

pDoc->CFunctionList.GetNext(pos);

if (pDoc->CEnvList.IsEmpty() == false)

{
for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos != pDoc-
>CEnvList.GetTailPosition();)

if (pDoc->CEnvList.GetAt(pos)->GivenName == pDoc-
>CEnvList.GetTail()->GivenName)

AfxMessageBox(CString("ILLEGAL NAMING :: ABORTING
INSTANCE. \n\p¥¥¥*x "y 4
pDoc->CEnvList.GetAt(pos)->GivenName +
" okExkk\n\nEnvironment names must be unique.");
DeleteElement(pDoc->CEnvList.GetTail());

return;
¥
pDoc->CEnvList.GetNext (pos);
}

}
//===
// Check for uniqueness of GivenName of MATERIAL
//===
if (pDoc->CMateriallList.IsEmpty() == false)
{

for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != pDoc-
>CMateriallist.GetTailPosition();)

{
if (pDoc->CMateriallist.GetAt(pos)->GivenName == pDoc-
>CMateriallList.GetTail()->GivenName)

{
AfxMessageBox(CString("ILLEGAL NAMING :: ABORTING

INSTANCE. \n\pk¥#kx "y 4
pDoc->CMateriallist.GetAt(pos)->GivenName +
" okFk*k*k*\n\nMaterial flow names must be

unique.");
DeleteElement(pDoc->CMateriallList.GetTail());
return;
pDoc->CMateriallist.GetNext(pos);
}
}
|/===
// Check for uniqueness of GivenName of ENERGY
|/===

if (pDoc->CEnergylList.IsEmpty() == false)

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != pDoc-
>CEnergylList.GetTailPosition();)

if (pDoc->CEnergylList.GetAt(pos)->GivenName == pDoc-
>CEnergylist.GetTail()->GivenName)

139

AfxMessageBox(CString("ILLEGAL NAMING :: ABORTING
INSTANCE. \n\p*¥#k* "y 4
pDoc->CEnergyList.GetAt(pos)->GivenName +
" owkEkrk\n\nEnergy flow names must be unique.");
DeleteElement(pDoc->CEnergylList.GetTail());

return;
¥
pDoc->CEnergylList.GetNext(pos);
¥

}
//===
// Check for uniqueness of GivenName of NEW SIGNAL
//===
if (pDoc->CSignallList.IsEmpty() == false)
{

for (POSITION pos = pDoc->CSignallist.GetHeadPosition(); pos != pDoc-
>CSignallList.GetTailPosition();)

{
if (pDoc->CSignallList.GetAt(pos)->GivenName == pDoc-
>CSignallList.GetTail()->GivenName)

AfxMessageBox(CString("ILLEGAL NAMING :: ABORTING
INSTANCE. \n\p**#k* "y 4
pDoc->CSignallList.GetAt(pos)->GivenName +
" owkkxk\n\nSignal flow names must be unique.");
DeleteElement(pDoc->CSignallList.GetTail());
return;

}

pDoc->CSignallList.GetNext(pos);

// Check for the Env-Flow-Env construct

// Check for head node = tail node construct

// Check for the Double-Carrier construct

// Check for Wrong Carrier Hierarchy, e.g., E carrying M
// Check for Carried head != Carrier head construct

if (pDoc->CEdgelList.IsEmpty() == false)

for (POSITION pos = pDoc->CEdgelList.GetHeadPosition(); ((pos != NULL) &&
(GrammarCheckRequired));)

if (ElementIsNode(pDoc->CEdgelList.GetAt(pos)->pTailElem) &&
(pDoc->CEdgelList.GetAt(pos)->pTailElem == pDoc-
>CEdgelList.GetAt(pos)->pHeadElem))
{

GrammarCheckRequired = false; // This call is very
important.

// Without it, the same instance is attmepted to delete multiple

140

// times and the system crashes because it does not find the

// instance the second time around.
AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot have the same head and tail node.\n\n(Get real - This ain't
no FunctionCAD)"));

// There are two ways to create the Head = Tail
situation.

// (1) At creation time - by selecting the same node
twice

// (2) by dragging an existing signal end to two Env's
// These three situations are addressed here.

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1
DeleteElement(pDoc->CEdgelList.GetTail());

if (WhatToDo == ESCAPE) // Case 2

{
pDoc->CEdgeList.GetAt(pos)->pHeadElem

pRememberHeadElement;

pDoc->CEdgelList.GetAt(pos)->HeadPoint =
RememberHeadPoint;

pDoc->CEdgelList.GetAt(pos)->pTailElem =
pRememberTailElement;

pDoc->CEdgelList.GetAt(pos)->TailPoint
RememberTailPoint;

}

if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodelList.GetTail());

return;
}
//==========================
// Check for the Env-Flow-Env construct
//==========================

if (ElementIsEnv(pDoc->CEdgelList.GetAt(pos)->pTailElem) &&
ElementIsEnv(pDoc->CEdgeList.GetAt(pos)->pHeadElem))
{

GrammarCheckRequired = false;

AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot connect to Env's."));

// There are three ways to create the Env-flow-Env

construct:

// (1) by adding a flow between two Env instances,

// (2) by dragging an existing flow end to two Env's,
and

// (3) by adding an Env instance to the end of a flow
that

// already has an Env at the other end. These three
situations

// are addressed here.

141

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1
DeleteElement(pDoc->CEdgeList.GetTail());

if (WhatToDo == ESCAPE) // Case 2
{

pDoc->CEdgeList.GetAt(pos)->pHeadElem
pRememberHeadElement;

pDoc->CEdgeList.GetAt(pos)->HeadPoint

RememberHeadPoint;
pDoc->CEdgelList.GetAt(pos)->pTailElem

pRememberTailElement;
pDoc->CEdgeList.GetAt(pos)->TailPoint

RememberTailPoint;

}

if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodelList.GetTail());

return;
}
//==========================
// Check for the Double-Carrier construct
//==========================

if (ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pTailElem) &&
ElementIsEdge(pDoc->CEdgelList.GetAt (pos)->pHeadElem))
{

GrammarCheckRequired = false;
AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA flow cannot have two carriers."));

// There are two ways of creating the double-carrier
construct:

// (1) At the time of adding a flow, two other flows can
be selected

// (2) by connecting the end of a flow to a carrier,
while the

// other end already has a carrier

// Both cases are addressed here.

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1

DeleteElement(pDoc->CEdgeList.GetTail());

if (WhatToDo == ESCAPE) // Case 2
{

pDoc->CEdgeList.GetAt(pos)->pHeadElem
pRememberHeadElement;

pDoc->CEdgeList.GetAt(pos)->HeadPoint
RememberHeadPoint;

pDoc->CEdgeList.GetAt(pos)->pTailElem

pRememberTailElement;
pDoc->CEdgeList.GetAt(pos)->TailPoint

RememberTailPoint;

142

if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodeList.GetTail());

return;
¥
/[==========================
// Check for Wrong Carrier Hierarchy
/[==========================
if (

((ElementIsMaterial(pDoc->CEdgelList.GetAt(pos))) &&

((ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pHeadElem))
|| (ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pTailElem))))

[

((ElementIsEnergy(pDoc->CEdgelList.GetAt(pos))) &&
((ElementIsEnergy(pDoc->CEdgelList.GetAt(pos)-

>pTailElem)) ||

(ElementIsSignal(pDoc->CEdgeList.GetAt(pos)-
>pTailElem)) ||

(ElementIsEnergy(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem)) ||

(ElementIsSignal(pDoc->CEdgeList.GetAt(pos)-
>pHeadElem))))

[
((ElementIsSignal(pDoc->CEdgelList.GetAt(pos))) &&
((ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pHeadElem))

[
((ElementIsNode(pDoc->CEdgeList.GetAt(pos)-
>pTailElem)) || (ElementIsSignal(pDoc->CEdgelist.GetAt(pos)->pTailElem)))))
)
{

GrammarCheckRequired = false;
CString* pCarrierMessage = new CString;

if (ElementIsMaterial(pDoc->CEdgelList.GetAt(pos)))
*pCarrierMessage = "Material cannot be carried
by another flow. No, not even by another Material.";
//if (ElementIsEnergy(pDoc->CEdgelList.GetAt(pos)))
*pCarrierMessage = "Energy can be carried by
Material only. Not by another Energy, not by a Signal.";
if (ElementIsSignal(pDoc->CEdgelList.GetAt(pos)))
*pCarrierMessage = "Signal must be carried by a
M or E. It can go ONLY from its carrier to ONLY a Node.";

AfxMessageBox(_T("ILLEGAL CARRIER HIERACHY :: ABORTING
OPERATION.\n\n") + *pCarrierMessage);

delete pCarrierMessage;

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1
DeleteElement(pDoc->CEdgeList.GetTail());

if (WhatToDo == ESCAPE) // Case 2

{
pDoc->CEdgelList.GetAt(pos)->pHeadElem =
pRememberHeadElement;

143

pDoc->CEdgeList.GetAt(pos)->HeadPoint

RememberHeadPoint;

pDoc->CEdgeList.GetAt(pos)->pTailElem
pRememberTailElement;

pDoc->CEdgeList.GetAt(pos)->TailPoint

RememberTailPoint;

¥
if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodeList.GetTail());

return;

// Check for Carried head != Carrier head construct FOR FLOW-to-
NODE BAGGAGE

//==========================
if (
(ElementIskEdge(pDoc->CEdgelList.GetAt(pos)->pTailElem))
&&
(!'ElementIsSignal(pDoc->CEdgelList.GetAt(pos))) &&
(ElementIsNode(pDoc->CEdgelList.GetAt(pos)->pHeadElem))
&&

(pDoc->CEdgeList.GetAt(pos)->pHeadElem != pDoc-
>CEdgelList.GetAt(pos)->pTailElem->pHeadElem)

{
GrammarCheckRequired = false;
AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA carried Energy flow can be input to ONLY the function \nthat inputs its
carrier."));

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1
DeleteElement(pDoc->CEdgeList.GetTail());

if (WhatToDo == ESCAPE) // Case 2
{

pDoc->CEdgeList.GetAt(pos)->pHeadElem
pRememberHeadElement;

pDoc->CEdgeList.GetAt(pos)->HeadPoint

RememberHeadPoint;
pDoc->CEdgeList.GetAt(pos)->pTailElem

pRememberTailElement;
pDoc->CEdgeList.GetAt(pos)->TailPoint

RememberTailPoint;

}
if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodeList.GetTail());

return;

// Check for Carried head != Carrier head construct for NODE-to-
FLOW BAGGAGE

(ElementIsNode(pDoc->CEdgelList.GetAt(pos)->pTailElem))
&&

(ElementIsEdge(pDoc->CEdgelList.GetAt(pos)->pHeadElem))
&&

(pDoc->CEdgelList.GetAt(pos)->pTailElem != pDoc-
>CEdgelList.GetAt(pos)->pHeadElem->pTailElem)

{
GrammarCheckRequired = false;
AfxMessageBox(_T("ILLEGAL TOPOLOGY :: ABORTING
OPERATION. \n\nA carried Energy flow can be added to a flow ONLY by the function \nthat
outputs its carrier."));

if ((WhatToDo == ADD_MATERIAL) || (WhatToDo ==
ADD_ENERGY) || (WhatToDo == ADD_SIGNAL)) // Case 1
DeleteElement(pDoc->CEdgeList.GetTail());

if (WhatToDo == ESCAPE) // Case 2
{

pDoc->CEdgelList.GetAt(pos)->pHeadElem =
pRememberHeadElement;

pDoc->CEdgelList.GetAt(pos)->HeadPoint =
RememberHeadPoint;

pDoc->CEdgelList.GetAt(pos)->pTailElem =
pRememberTailElement;
pDoc->CEdgelList.GetAt(pos)->TailPoint =

RememberTailPoint;
}
if ((WhatToDo == ADD_ENV) || (WhatToDo == ADD_FUNCTION))
// Case 3
DeleteElement(pDoc->CNodelList.GetTail());
return;
}
pDoc->CEdgeList.GetNext(pos);
}
}

GrammarCheckRequired = true;

// CConMod2View printing

void CConMod2View::0nFilePrintPreview()

#ifndef SHARED_HANDLERS
AFXPrintPreview(this);
#endif

}

BOOL CConMod2View::0OnPreparePrinting(CPrintInfo* pInfo)
{

145

// default preparation
return DoPreparePrinting(pInfo);

}

void CConMod2View::0nBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)

{
}

void CConMod2View::0nEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/)
{

}

// TODO: add extra initialization before printing

// TODO: add cleanup after printing

void CConMod2View::0OnContextMenu(CWnd* /* pWnd */, CPoint point)

{
#ifndef SHARED_HANDLERS

theApp.GetContextMenuManager () - >ShowPopupMenu(IDR_POPUP_EDIT, point.x, point.y,
this, TRUE);
#endif

}

// CConMod2View diagnostics

#ifdef _DEBUG
void CConMod2View: :AssertValid() const

{
CView: :AssertValid();
}
void CConMod2View: :Dump(CDumpContext& dc) const
{
CView: :Dump(dc);
}

CConMod2Doc* CConMod2View: :GetDocument() const // non-debug version is inline

{
ASSERT (m_pDocument ->IsKindOf(RUNTIME_CLASS(CConMod2Doc)));

return (CConMod2Doc*)m_pDocument;

}
#endif //_DEBUG

void CConMod2View::Handler_SaveFile(void)

AfxMessageBox(_T("Save File."));

void CConMod2View::0nQualitativeConservation()

{
ReasoningOption = QUALITATIVE_CONSERVATION;
AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE CONSERVATION."));
¥
void CConMod2View::0OnQualitativeIrreversibility()
{
ReasoningOption = QUALITATIVE_IRREVERSIBILITY;
AfxMessageBox(_T("Reasoning Switched to: QUALITATIVE IRREVERSIBILITY."));
¥
void CConMod2View::0OnQuantitativeEfficiency()
{
ReasoningOption = QUANTITATIVE_EFFICIENCY;
AfxMessageBox(_T("Reasoning Switched to: EFFICIENCY."));
¥
void CConMod2View::0OnQuantitativePowerRequired()
{
ReasoningOption = QUANTITATIVE_POWERREQUIRED;
AfxMessageBox(_T("Reasoning Switched to: POWER REQUIRED."));
¥

void CConMod2View::Handler_AddFunction(void)

{
WhatToDo = ADD_FUNCTION;
}
void CConMod2View::Handler_AddMaterial(void)
{
WhatToDo = ADD_MATERIAL;
¥

void CConMod2View::Handler_AddEnergy(void)

WhatToDo = ADD_ENERGY;
}

void CConMod2View::Handler_AddSignal(void)

WhatToDo = ADD_SIGNAL;

}
void CConMod2View::Handler_AddEnv(void)
{
WhatToDo = ADD_ENV;
}

147

// FEATURES TOOLBAR EVENT HANDLER FUNCTIONS - ONLY FOR SETTING "WHAT TO DO"

void CConMod2View::Handler_AddConvert_E_Template(void)

{
WhatToDo = ADD_CONVERT_E_TEMPLATE;
¥
void CConMod2View::Handler_AddConduct_E_Template(void)
{
WhatToDo = ADD_CONDUCT_E_TEMPLATE;
¥
void CConMod2View::Handler_AddEnergize_M Template(void)
{
WhatToDo = ADD_ENERGIZE_M_TEMPLATE;
¥
void CConMod2View::Handler_AddDistribute_E_Template(void)
{
WhatToDo = ADD _DISTRIBUTE_E_TEMPLATE;
¥
void CConMod2View::Handler_AddDeEn_M_Template(void)
{
WhatToDo = ADD_DEEN_M_TEMPLATE;
¥
void CConMod2View::Handler_AddActuateE_Template(void)
{
WhatToDo = ADD_ACTUATEE_TEMPLATE;
¥

void CConMod2View::Handler_Qualitative(void)

{
ComposeQualitativeMessage();
}
void CConMod2View::Handler_Quantitative(void)
{

ComposeQuantitativeMessage();

void CConMod2View::Handler_Causal(void)

{

ComposeCausalMessage();

void CConMod2View: :Handler_EditCut()

{
if (pSelectedElement == NULL)
return;
if (WhatToDo == ESCAPE)
{
CConMod2Doc* pDoc = GetDocument();
DetachEdgesFromElement (pSelectedElement);
DeleteElement(pSelectedElement);
pSelectedElement = NULL; // Resets the pointer to NULL
}

//0nDraw(this->GetDC());

// MOUSE EVENT HANDLER FUNCTIONS - CA
/] ========= =

void CConMod2View: :0OnLButtonDown(UINT nFlags, CPoint point)

{
CConMod2Doc* pDoc = GetDocument();
MouselLDownPoint = point;
LButtonIsDown = TRUE;
switch (WhatToDo)
{
case ESCAPE:
if (ElementIsEdge(pSelectedElement))
{
// Remember head topology, in case you have to revert back to
this state.
// This condition may arise if the new topology after move /
connect is
// unacceptable by the grammar rules, in which case the OnDraw
function
// reverts the topology to the older "REMEMBERED" one.
RememberHeadPoint = pSelectedElement->HeadPoint;
pRememberHeadElement = pSelectedElement->pHeadElem;
RememberTailPoint = pSelectedElement->TailPoint;
pRememberTailElement = pSelectedElement->pTailElem;
}
break;

case ADD_FUNCTION:
AddFunction();
break;

case ADD_ENV:
AddEnv();
break;

case ADD_CONVERT_E_TEMPLATE:
AddConvert_E_Template();
break;

149

case ADD_CONDUCT_E_TEMPLATE:
AddConduct_E_Template();
break;

case ADD_ENERGIZE_M_TEMPLATE:
AddEnergize_M Template();
break;

case ADD_DISTRIBUTE_E_TEMPLATE:
AddDistribute_E_Template();
break;

case ADD_DEEN_M_TEMPLATE:
AddDeEn_M_Template();
break;

case ADD_ACTUATEE_TEMPLATE:
AddActuateE_Template();
break;

}

void CConMod2View::0OnLButtonUp(UINT nFlags, CPoint point)

{
MouselLUpPoint = point;
CConMod2Doc* pDoc = GetDocument();

switch (WhatToDo)

{

case ESCAPE:
MoveConnect();
break;

case ADD_MATERIAL:
AddMaterial();
break;

case ADD_ENERGY:
AddEnergy();
break;

case ADD_SIGNAL:
AddSignal();
break;

}

LButtonIsDown = FALSE;
}

void CConMod2View: :0OnRButtonDown(UINT nFlags, CPoint point)

{

MouseRDownPoint = point;
RButtonIsDown = TRUE;

CConMod2Doc* pDoc = GetDocument();
// IF PreselectionList IS EMPTY, RIGHT CLICK WILL SET WhatToDo = ESCAPE

// OTHERWISE, IF THE LIST IS FULL, IT SHOULD SCROLL THROUGH THAT LIST
if (pDoc->PreselectionList.IsEmpty())

150

WhatToDo = ESCAPE;

else
ScrollThroughPreselection();

}
void CConMod2View::OnRButtonUp(UINT /* nFlags */, CPoint point)
{

MouseRUpPoint = point;

RButtonIsDown = FALSE;
}

void CConMod2View: :OnMouseMove (UINT nFlags, CPoint point)

{

MouseMovePoint = point;

// FOR ALL WHATTODO's, IF BOTH BUTTONS ARE UP, MOUSE MOVEMENT WILL PRESELECT
ELEMENTS

if ((!LButtonIsDown) && (!RButtonIsDown))
Preselect(&point);

switch (WhatToDo)
{
case ESCAPE:
if (LButtonIsDown && pSelectedElement != NULL)
MoveConnectDynamic();
break;

case ADD_MATERIAL:
if ((LButtonIsDown) && (!RButtonIsDown))
AddEdge_Dynamic();
break;

case ADD_ENERGY:
if ((LButtonIsDown) && (!RButtonIsDown))
AddEdge_Dynamic();
break;

case ADD_SIGNAL:
if ((LButtonIsDown) && (!RButtonIsDown))
AddEdge_Dynamic();
break;

}

void CConMod2View: :0nLButtonDblClk(UINT nFlags, CPoint point)

{

CConMod2Doc* pDoc = this->GetDocument();

if (pSelectedElement == NULL)
ComposeQualitativeMessage();

else if (ElementIsEnv(pSelectedElement))
pDoc->CEnvList.GetAt(EnvIndexInEnvList)->DoModal();

else if (ElementIsMaterial(pSelectedElement))
pDoc->CMateriallist.GetAt(MaterialIndexInMateriallList)->DoModal();

else if (ElementIsEnergy(pSelectedElement))
pDoc->CEnergylList.GetAt(EnergyIndexInEnergylList)->DoModal();

else if (ElementIsSignal(pSelectedElement))

{

151

CSignal * selSignal = pDoc->CSignallist.GetAt(SignalIndexInSignallist);

selSignal->DoModal();

CString* ChangedSignal = new CString;

*ChangedSignal = selSignal->GivenName;

AfxMessageBox(_T("Current Signal Is " + *ChangedSignal));

for (POSITION posl = pDoc->ActuateE_Template_List.GetHeadPosition();
posl != NULL;)

{

pSelectedElement)

if (pDoc->ActuateE_Template_List.GetAt(posl)->pSignal_InS ==

{
DetermineState(*ChangedSignal, pDoc-
>ActuateE_Template_List.GetAt(posl));
CausalReasoning(pDoc-
>ActuateE_Template_List.GetAt(posl));

pDoc->ActuateE_Template_List.GetNext(posl);

}

void CConMod2View::CausalReasoning(ActuateE_Template* actuatedfunc)
{

CConMod2Doc* pDoc = this->GetDocument();

int i = 0;

do

{
for (POSITION pos2 = pDoc->CFunctionList.GetHeadPosition(); pos2 !=
NULL; pDoc->CFunctionList.GetNext(pos2))
{
CFunction * currFunc = pDoc->CFunctionList.GetAt(pos2);
for (POSITION pos3 = pDoc->CEdgelList.GetHeadPosition(); pos3 !=
NULL; pDoc->CEdgelList.GetNext(pos3))

CEdge * currkdge = pDoc->CEdgelList.GetAt(pos3);
if (actuatedfunc->EisActuated == true)

{
if ((currkdge->IsHidden == false) && (currEdge-
>pHeadElem == currFunc))
{
currFunc->IsHidden = false;
if ((currFunc->IsHidden == false) && (currkEdge-
>pTailElem == currFunc))
{
currkdge->IsHidden = false;
}
}
else
{
if ((currkEdge->IsHidden == true) && (currEdge-
>pHeadElem == currFunc))
{
currFunc->IsHidden = true;
if ((currFunc->IsHidden == true) && (currEdge-
>pTailElem == currFunc))
{
currkdge->IsHidden = true;
s

152

}
/*pDoc->CEdgeList.GetNext(pos3);*/

¥
//pDoc->CFunctionList.GetNext(pos2);
¥
i++;
} while (i< pDoc->CFunctionList.GetCount());
}
void CConMod2View::0OnMButtonUp(UINT nFlags, CPoint point)
{
//if ((this->ElementIsEnergy(this->pSelectedElement)) ||
// (this->ElementIsMaterial(this->pSelectedElement)))
// this->pSelectedElement->IsResidual = !(this->pSelectedElement-
>IsResidual);
}
BOOL CConMod2View::OnEraseBkgnd(CDC* pDC)
{
return FALSE;
}

void CConMod2View::AddFunction()

{
CConMod2Doc* pDoc = GetDocument();
Invalidate();
//===
// Auto-increment the name counter
//===

Counter_F = Counter_F + 1;
CounterString.Format(_T("%d"), Counter_F);

if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement->GrabHandle == TAIL))
// Grabbed an edge at tail

{
CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(pSelectedElement->TailPoint), &CounterString);
pSelectedElement->pTailElem = NewCFunction;
pDoc->CElementList.AddTail(NewCFunction);
pDoc->CNodeList.AddTail(NewCFunction);
pDoc->CFunctionList.AddTail(NewCFunction);

}

if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement->GrabHandle == HEAD))
// Grabbed an edge at head

{
CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(pSelectedElement->HeadPoint), &CounterString);
pSelectedElement->pHeadElem = NewCFunction;
pDoc->CElementList.AddTail(NewCFunction);
pDoc->CNodelList.AddTail (NewCFunction);
pDoc->CFunctionList.AddTail (NewCFunction);

153

}
if (pSelectedElement == NULL)

{
CFunction* NewCFunction = new CFunction(NULL,
SnapToGrid(MouselLDownPoint), &CounterString);
pDoc->CElementList.AddTail (NewCFunction);
pDoc->CNodeList.AddTail(NewCFunction);
pDoc->CFunctionList.AddTail(NewCFunction);

}
//0nDraw(this->GetDC());
LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set

// to TRUE, since a
click was made on the

// screen to add the
function. When the button

// is lifted, it is
usually in the Add Function

// Dialog, so the
graphics window does not know

// that L Button was
lifted. Therefore,

// functions such as
Preselect misbehave.

}
void CConMod2View: :AddEdge_Dynamic()
{
CConMod2Doc* pDoc = GetDocument();
Invalidate();
CEdge* NewCEdge = new CEdge(MouselLDownPoint, MouseMovePoint);
//NewCEdge->pTailElem = pTailElemDynamic;
if (pTailElemDynamic != NULL)
{
NewCEdge->pTailElem = pTailElemDynamic;
TailNodeSelected = true;
}
Preselect(&VouseMovePoint);
NewCEdge->pHeadElem = pHeadElemDynamic;
NewCEdge->DrawOnDC(this->GetDC());
delete NewCEdge;
}
void CConMod2View::AddMaterial()
{

CConMod2Doc* pDoc = GetDocument();
Invalidate();

Counter_M = Counter_M + 1;
CounterString.Format(_T("%d"), Counter_M);

CMaterial* NewCMaterial = new CMaterial(NULL, MouselLDownPoint, MouselLUpPoint,
&CounterString, this->ReasoningOption);

NewCMaterial->pTailElem = pTailElemDynamic;
NewCMaterial->pHeadElem = pHeadElemDynamic;

154

pDoc->CElementList.AddTail(NewCMaterial);
pDoc->CEdgeList.AddTail(NewCMaterial);
pDoc->CMateriallist.AddTail(NewCMaterial);
//0nDraw(this->GetDC());

// Clear up the temporary edge creation data for the next use
pTailElemDynamic = NULL;
pHeadElemDynamic = NULL;
TailNodeSelected = false;
}

void CConMod2View::AddEnergy()

{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

Counter_E = Counter_E + 1;
CounterString.Format(_T("%d"), Counter_E);

CEnergy* NewCEnergy = new CEnergy(NULL, MouseLDownPoint, MouselLUpPoint,
&CounterString, this->ReasoningOption);

NewCEnergy->pTailElem = pTailElemDynamic;
NewCEnergy->pHeadElem = pHeadElemDynamic;

pDoc->CElementList.AddTail (NewCEnergy);
pDoc->CEdgelList.AddTail(NewCEnergy);
pDoc->CEnergyList.AddTail (NewCEnergy);
//0nDraw(this->GetDC());

// Clear up the temporary edge creation data for the next use
pTailElemDynamic = NULL;
pHeadElemDynamic = NULL;
TailNodeSelected = false;
}

void CConMod2View::AddSignal()

{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

Counter_S = Counter_S + 1;
CounterString.Format(_T("%d"), Counter_S);

CSignal* NewCSignal = new CSignal(NULL, MouselLDownPoint, MouselLUpPoint,
&CounterString);

NewCSignal->pTailElem = pTailElemDynamic;
NewCSignal->pHeadElem = pHeadElemDynamic;

pDoc->CElementList.AddTail(NewCSignal);
pDoc->CEdgeList.AddTail(NewCSignal);
pDoc->CSignallList.AddTail(NewCSignal);
//0nDraw(this->GetDC());

// Clear up the temporary edge creation data for the next use
pTailElemDynamic = NULL;
pHeadElemDynamic = NULL;

155

TailNodeSelected = false;

}

void CConMod2View::AddEnv()

{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

Counter_Env = Counter_Env + 1;
CounterString.Format(_T("%d"), Counter_Env);

if ((ElementIsEdge(pSelectedElement)) && (pSelectedElement->GrabHandle == TAIL))
// Grabbed an edge at tail
{
CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement->TailPoint),
&CounterString);
pSelectedElement->pTailElem = NewCEnv;
pDoc->CElementList.AddTail(NewCEnv);
pDoc->CNodeList.AddTail (NewCEnv);
pDoc->CEnvList.AddTail (NewCEnv);

}

if ((ElementIsEdge(pSelectedElement)) &% (pSelectedElement->GrabHandle == HEAD))
// Grabbed an edge at head

{
CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(pSelectedElement->HeadPoint),
&CountersString);
pSelectedElement->pHeadElem = NewCEnv;
pDoc->CElementList.AddTail (NewCEnv);
pDoc->CNodeList.AddTail (NewCEnv);
pDoc->CEnvList.AddTail (NewCEnv);
}
if (pSelectedElement == NULL)
{

CEnv* NewCEnv = new CEnv(NULL, SnapToGrid(MouselLDownPoint),
&CounterString);

pDoc->CElementList.AddTail(NewCEnv);

pDoc->CNodeList.AddTail (NewCEnv);

pDoc->CEnvList.AddTail(NewCEnv);

}
//0nDraw(this->GetDC());
LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set

// to TRUE, since a
click was made on the

// screen to add the
function. When the button

// is lifted, it is
usually in the Add Function

// Dialog, so the
graphics window does not know

// that L Button was
lifted. Therefore,

// functions such as
Preselect misbehave.

void CConMod2View::AddConvert_E_Template()
{

156

CConMod2Doc* pDoc = GetDocument();
Invalidate();

CString* pCounterString_F = new CString;
CString* pCounterString_InE = new CString;
CString* pCounterString_OutE = new CString;
CString* pCounterString OutE_Res = new CString;

Counter_F++;

pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + _T(" [Conv_E]");
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE_Res->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the
screen - otherwise more
//attachment
issues will arise

{
CConvert_E_Template* NewCConvert_E_Template = new
CConvert_E_Template(NULL, SnapToGrid(MouseLDownPoint),
pCounterString_F, pCounterString_InE, pCounterString_OutE,
pCounterString_OutE_Res, this->ReasoningOption);

pDoc->CTemplatelList.AddTail(NewCConvert_E_Template);
pDoc->CConvert_E_Template_List.AddTail(NewCConvert_E_Template);

pDoc->CElementList.AddTail (NewCConvert_E_Template->pFunctionBlock);

pDoc->CNodelList.AddTail (NewCConvert_E_Template->pFunctionBlock);

pDoc->CFunctionList.AddTail(NewCConvert_E_Template->pFunctionBlock);

pDoc->CConvert_E_Function_List.AddTail(NewCConvert_E_Template-
>pFunctionBlock); // Enables grammr checking

pDoc->CElementList.AddTail (NewCConvert_E_Template->pEnergy_InE);
pDoc->CEdgeList.AddTail(NewCConvert_E_Template->pEnergy_InE);
pDoc->CEnergyList.AddTail (NewCConvert_E_Template->pEnergy_InE);

pDoc->CElementList.AddTail(NewCConvert_E_Template->pEnergy OutE);
pDoc->CEdgeList.AddTail(NewCConvert_E_Template->pEnergy_OutE);
pDoc->CEnergyList.AddTail (NewCConvert_E_Template->pEnergy_OutE);

pDoc->CElementList.AddTail(NewCConvert_E_Template->pEnergy OutE_Res);
pDoc->CEdgeList.AddTail(NewCConvert_E_Template->pEnergy_ OutE_Res);
pDoc->CEnergyList.AddTail(NewCConvert_E_Template->pEnergy_OutE_Res);

}

delete pCounterString_F;

delete pCounterString_InE;
delete pCounterString_OutE;
delete pCounterString_OutE_Res;

//0nDraw(this->GetDC());
LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set

157

void CConMod2View::AddConduct_E_Template()
{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

CString* pCounterString_F = new CString;
CString* pCounterString InE = new CString;
CString* pCounterString_OutE = new CString;
CString* pCounterString OutE_Res = new CString;

Counter_F++;

pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + _T(" [Cond_E]");
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE_Res->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the
screen - otherwise more
//attachment
issues will arise

{
CConduct_E_Template* NewCConduct_E_Template = new
CConduct_E_Template(NULL, SnapToGrid(MouselLDownPoint),
pCounterString_F, pCounterString_InE, pCounterString_OutE,
pCounterString_OutE_Res, this->ReasoningOption);

pDoc->CTemplateList.AddTail(NewCConduct_E_Template);
pDoc->CConduct_E_Template_List.AddTail(NewCConduct_E_Template);

pDoc->CElementList.AddTail (NewCConduct_E_Template->pFunctionBlock);

pDoc->CNodelList.AddTail(NewCConduct_E_Template->pFunctionBlock);

pDoc->CFunctionList.AddTail(NewCConduct_E_Template->pFunctionBlock);

pDoc->CConduct_E_Function_List.AddTail(NewCConduct_E_Template-
>pFunctionBlock); // Enables grammr checking

pDoc->CElementList.AddTail(NewCConduct_E_Template->pEnergy_InE);
pDoc->CEdgeList.AddTail(NewCConduct_E_Template->pEnergy_InE);
pDoc->CEnergyList.AddTail (NewCConduct_E_Template->pEnergy_InE);

pDoc->CElementList.AddTail(NewCConduct_E_Template->pEnergy OutE);
pDoc->CEdgeList.AddTail (NewCConduct_E_Template->pEnergy_OutE);
pDoc->CEnergyList.AddTail (NewCConduct_E_Template->pEnergy_OutE);

pDoc->CElementList.AddTail(NewCConduct_E_Template->pEnergy OutE_Res);
pDoc->CEdgeList.AddTail(NewCConduct_E_Template->pEnergy_ OutE_Res);
pDoc->CEnergyList.AddTail (NewCConduct_E_Template->pEnergy_OutE_Res);

}

delete pCounterString_F;

delete pCounterString_InE;
delete pCounterString_OutE;
delete pCounterString OutE_Res;

//0nDraw(this->GetDC());

158

LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set

}

void CConMod2View::AddEnergize_M_Template()
{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

CString* pCounterString F = new CString;

CString* pCounterString InM = new CString;
CString* pCounterString_OutM = new CString;
CString* pCounterString InE = new CString;
CString* pCounterString_OutE = new CString;

Counter_F++;

pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + _T(" [En_Mat]");
Counter_M++;

pCounterString_InM->Format(_T("%d"), Counter_M);
Counter_M++;
pCounterString_OutM->Format(_T("%d"), Counter_M);
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;
pCounterString_OutE->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the

screen - otherwise more
//attachment

issues will arise

{

CEnergize_M Template* NewCEnergize_M_Template = new
CEnergize_M_Template(NULL, SnapToGrid(MouselLDownPoint),
pCounterString_F, pCounterString_InM, pCounterString_OutM,

pCounterString_InE, pCounterString OutE, this->ReasoningOption);

pDoc->CTemplatelList.AddTail(NewCEnergize M_Template);
pDoc->CEnergize_M_Template_List.AddTail(NewCEnergize_M_Template);

pDoc->CElementList.AddTail(NewCEnergize_M Template->pFunctionBlock);

pDoc->CNodeList.AddTail(NewCEnergize_M_ Template->pFunctionBlock);

pDoc->CFunctionList.AddTail(NewCEnergize_M_Template->pFunctionBlock);

pDoc->CEnergize_M_Function_List.AddTail(NewCEnergize_M_Template-
>pFunctionBlock); // Enables grammr checking

pDoc->CElementList.AddTail(NewCEnergize_M_Template->pMaterial_InM);
pDoc->CEdgeList.AddTail(NewCEnergize_M_Template->pMaterial_InM);
pDoc->CMateriallist.AddTail(NewCEnergize_M_Template->pMaterial_InM);

pDoc->CElementList.AddTail(NewCEnergize_M Template->pMaterial_OutM);
pDoc->CEdgeList.AddTail(NewCEnergize_M_Template->pMaterial_OutM);
pDoc->CMateriallist.AddTail(NewCEnergize_M_Template->pMaterial_OutM);

pDoc->CElementList.AddTail(NewCEnergize M _Template->pEnergy_InE);
pDoc->CEdgeList.AddTail(NewCEnergize_M_Template->pEnergy_InE);
pDoc->CEnergylList.AddTail (NewCEnergize_M_Template->pEnergy_InE);

pDoc->CElementList.AddTail (NewCEnergize_M_Template->pEnergy OutE);

159

pDoc->CEdgeList.AddTail(NewCEnergize_M_Template->pEnergy OutE);
pDoc->CEnergyList.AddTail (NewCEnergize_M_Template->pEnergy OutE);

}

delete pCounterString_F;

delete pCounterString_InM;
delete pCounterString_OutM;
delete pCounterString_InE;
delete pCounterString_OutE;

//0nDraw(this->GetDC());

LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set
}
void CConMod2View::AddDistribute E_Template()
{

CConMod2Doc* pDoc = GetDocument();
Invalidate();

CString* pCounterString F = new CString;
CString* pCounterString InE = new CString;
CString* pCounterString OutEl = new CString;
CString* pCounterString OutE2 = new CString;

Counter_F++;

pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + _T(" [Dist_E]");
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutEl->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE2->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the
screen - otherwise more
//attachment
issues will arise

{
CDistribute_E_Template* NewCDistribute_E_Template = new
CDistribute_E_Template(NULL, SnapToGrid(MouselLDownPoint),
pCounterString_F, pCounterString_InE, pCounterString OutE1l,
pCounterString_OutE2, this->ReasoningOption);

pDoc->CTemplateList.AddTail(NewCDistribute_E_Template);
pDoc->CDistribute_E_Template_List.AddTail(NewCDistribute_E_Template);

pDoc->CElementList.AddTail(NewCDistribute_E_Template->pFunctionBlock);

pDoc->CNodeList.AddTail (NewCDistribute_E_Template->pFunctionBlock);

pDoc->CFunctionList.AddTail(NewCDistribute_E_Template->pFunctionBlock);

pDoc->CDistribute_E_Function_List.AddTail(NewCDistribute_E_Template-
>pFunctionBlock); // Enables grammr checking

pDoc->CElementList.AddTail(NewCDistribute_E_Template->pEnergy_InE);
pDoc->CEdgeList.AddTail(NewCDistribute_E_Template->pEnergy_InE);
pDoc->CEnergylList.AddTail (NewCDistribute_E_Template->pEnergy_InE);

pDoc->CElementList.AddTail (NewCDistribute_E_Template->pEnergy OutEl);

160

}

pDoc->CEdgeList.AddTail(NewCDistribute_E_Template->pEnergy OutEl);
pDoc->CEnergyList.AddTail(NewCDistribute_E_Template->pEnergy_OutEl);

pDoc->CElementList.AddTail(NewCDistribute_E_Template->pEnergy OutE2);
pDoc->CEdgeList.AddTail(NewCDistribute_E_Template->pEnergy OutE2);
pDoc->CEnergyList.AddTail (NewCDistribute_E_Template->pEnergy_OutE2);

}

delete pCounterString_F;
delete pCounterString_InE;
delete pCounterString_OutE1l;
delete pCounterString_OutE2;

//0nDraw(this->GetDC());
LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains set

void CConMod2View::AddDeEn_M_Template()

{

CConMod2Doc* pDoc = GetDocument();
Invalidate();

CString* pCounterString F = new CString;

CString* pCounterString_InM = new CString;
CString* pCounterString_OutM = new CString;
CString* pCounterString_InE = new CString;
CString* pCounterString_OutE = new CString;

Counter_F++;

pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + _T(" [DeEn_M]");
Counter_M++;

pCounterString_InM->Format(_T("%d"), Counter_M);
Counter_M++;
pCounterString_OutM->Format(_T("%d"), Counter_M);
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;
pCounterString_OutE->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the

screen - otherwise more

//attachment

issues will arise

{

CDeEn_M_Template* NewCDeEn_M_Template = new CDeEn_M_Template(NULL,

SnapToGrid(MouselLDownPoint),

pCounterString_F, pCounterString_InM, pCounterString_OutM,

pCounterString_InE, pCounterString_OutE, this->ReasoningOption);

pDoc->CTemplateList.AddTail(NewCDeEn_M_Template);
pDoc->CDeEn_M_Template_List.AddTail(NewCDeEn_M_Template);

pDoc->CElementList.AddTail(NewCDeEn_M_Template->pFunctionBlock);
pDoc->CNodeList.AddTail (NewCDeEn_M_Template->pFunctionBlock);
pDoc->CFunctionList.AddTail(NewCDeEn_M_Template->pFunctionBlock);
pDoc->CEnergize_M_Function_List.AddTail (NewCDeEn_M_Template-

>pFunctionBlock); // Enables grammr checking

161

pDoc->CElementList.AddTail (NewCDeEn_M_Template->pMaterial_InM);
pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pMaterial_InM);
pDoc->CMateriallist.AddTail(NewCDeEn_M_Template->pMaterial_InM);

pDoc->CElementList.AddTail(NewCDeEn_M_Template->pMaterial_OutM);
pDoc->CEdgeList.AddTail (NewCDeEn_M_Template->pMaterial_OutM);
pDoc->CMateriallist.AddTail(NewCDeEn_M_Template->pMaterial_ OutM);

pDoc->CElementList.AddTail (NewCDeEn_M_Template->pEnergy_InE);
pDoc->CEdgeList.AddTail (NewCDeEn_M_Template->pEnergy_InE);
pDoc->CEnergylList.AddTail (NewCDeEn_M_Template->pEnergy_InE);

pDoc->CElementList.AddTail(NewCDeEn_M_Template->pEnergy_OutE);
pDoc->CEdgeList.AddTail(NewCDeEn_M_Template->pEnergy_OutE);
pDoc->CEnergyList.AddTail (NewCDeEn_M_Template->pEnergy_OutE);

}

delete pCounterString_F;
delete pCounterString_InM;
delete pCounterString_OutM;
delete pCounterString_InE;
delete pCounterString_OutE;

//0nDraw(this->GetDC());
LButtonIsDown = FALSE; // Without this line, LButtonIsDown remains
}
int CConMod2View: :DetermineState(CString CSinput, ActuateE_Template* actuatedfunc)
{
TCHAR szFilters[] = _T("Text Files (*.txt)|*.txt|All Files (*.*)|*.*||");
CFileDialog* fileDlg = new CFileDialog(TRUE, _T("txt"), _T("*.txt"),
OFN_HIDEREADONLY | OFN_FILEMUSTEXIST, szFilters);
if ((*fileDlg).DoModal() == IDOK)

CString pathName = (*fileDlg).GetPathName();

CString fileName = (*fileDlg).GetFileTitle();

CFileException Error;

CFile* transitions = new CFile;

if (!(*transitions).Open(pathName, CFile::modeReadWrite, &Error))

{
}

else

{

TRACE(_T("File could not be opened %d\n"), Error.m_cause);

CString* strNameValue = new CString;
CString* inState = new CString;
CString* inCS = new CString;
CString* outState = new CString;
bool StateRecognized = false;

bool CSRecognized = false;
CList<CString, CString &> FromState;
CList<CString, CString &> CS;
CList<CString, CString &> CSedited;
CList<CString, CString &> ToState;

//Opening the file

ULONGLONG* filelength = new ULONGLONG;

set

162

byte for NULL char
to dwLength

that not to get garbage

state\r\n"));

state\r\n"));

T

state\r\n"));

_TCL N

signal\r\n"));

T

*filelength = (*transitions).GetLength();
BYTE *buffer = (BYTE *)malloc(*filelength + 1); // Add 1 extra

(*transitions).Read(buffer, *filelength); // read character up
*(buffer + *filelength) = '\@'; // Make last character NULL so
CString* sFileContent = new CString((char*)buffer);
//Extracting intial state

AfxExtractSubString(StartingState, *sFileContent, @, ';');

if ((StartingState) == _T("statel"))

{
AfxMessageBox(_T("Start state is the actuated

else if ((StartingState) == _T("stated"))
{
AfxMessageBox(_T("Start state is the deactuated
}
else
{
AfxMessageBox(_T("Error extracting start state\r\n"));
¥

//Extracting 1st, 2nd and 3rd columns to lists

CString* stateTransitions = new CString;

CString* thirdString = new CString;
AfxExtractSubString(*stateTransitions, *sFileContent, 1, ';');
int i = 0;

while (AfxExtractSubString(*strNameValue, *stateTransitions, i))

{
i++;
if (!AfxExtractSubString(*inState, *strNameValue, O,

{

AfxMessageBox(_T("Error extracting start

else
FromState.AddTail(*inState);
if (!AfxExtractSubString(*inCS, *strNameValue, 1,

{

AfxMessageBox(_T("Error extracting control

else
CS.AddTail(*inCS);
if (!AfxExtractSubString(*outState, *strNameValue, 2,

{

163

state\r\n"));

AfxMessageBox(_T("Error extracting end

ToState.AddTail(*outState);

// Determination of State

for (int x = @; x < FromState.GetCount(); x++)
for (int y=0; y < CS.GetCount(); y++)

{

FromState.GetAt(FromState.FindIndex(x)))

ToState.GetAt(ToState.FindIndex(x));

Actuated"));

true;

>IsHidden = false;

sizeof(c[0]);

1);

_T("stateo"))

DeActuated"));

>ModeIsDeActuate();

int FromStateIndex, CSIndex;
if (StartingState ==

FromStateIndex = x;
}
else
continue;
if (CSinput == CS.GetAt(CS.FindIndex(y)))

{

CSIndex = y;
¥
else
continue;
if (FromStateIndex == CSIndex)
{
(*thirdString) =
if ((*thirdString) == _T("statel"))
{

AfxMessageBox(_T("The flow is
actuatedfunc->Mode = Actuate;
actuatedfunc->ModeIsActuate();
actuatedfunc->EisActuated =
actuatedfunc->pEnergy_OutE-
transitions->SeekToBegin();
char c[] = "statel;";

int size = sizeof(c) /
transitions->Write(c, size -
continue;

else if ((*thirdString) ==

{
AfxMessageBox(_T("The flow is

actuatedfunc->Mode = DeActuate;
actuatedfunc-

164

actuatedfunc->EisActuated =
false;

actuatedfunc->pEnergy_OutE-
>IsHidden = true;

transitions->SeekToBegin();

char c[] = "stateo;";

int size = sizeof(c) /

sizeof(c[0@]);
transitions->Write(c, size -
1);
continue;
}
else
{
AfxMessageBox(_T("Check 3rd
Column for incorrect end state"));
}
¥
else
continue;

// Reasoning on FSA grammar

int* StartState@Count new int;
int* StartStatelCount = new int;

*StartStateeCount 0;
*StartStatelCount = 0;

int unique = 1;

for (int outer = 1; outer < CS.GetCount(); ++outer)
{
int is_unique = 1;
for (int inner = @; is_unique && inner < outer; ++inner)

{
if (CS.GetAt(CS.FindIndex(inner)) ==
CS.GetAt(CS.FindIndex(outer))) is_unique = ©;

if (is_unique) ++unique;

}

for (int i = ©; i < FromState.GetCount(); i++)
{
CString* currentString = new CString;
*currentString =
(FromState.GetAt(FromState.FindIndex(i)));

if (*currentString == _T("stated"))
{

*StartState@Count = *StartState@Count + 1;
else if (*currentString == _T("statel"))
{

*StartStatelCount = *StartStatelCount + 1;
¥
else

165

CString* line = new CString;
(*1ine).Format(_T("%d"), 1i);
AfxMessageBox(_T("Check 1st Column for incorrect
start states"));
delete line;
¥

delete currentString;

}

double* uniqueCSLines = new double;

*uniqueCSLines = (FromState.GetCount() / 2);

AfxMessageBox(_T("The control signal in one of the transitions
is not a member of the set of valid control signals"));

if (unique != *StartState@Count)
{
AfxMessageBox(_T("The state transition matrix has
incorrect number of deactuating states in the 1st column"));

else if (unique != *StartStatelCount)
{
AfxMessageBox(_T("The state transition matrix has
incorrect number of actuating states in the 1st column"));

else if (unique != *uniqueCSLines)
{
AfxMessageBox(_T("The control signal in one of the
transitions is not a member of the set of valid control signals"));

}

FromState.RemoveAll();
CS.RemoveAll();
ToState.RemoveAll();
(*transitions).Close();
free(buffer);

delete stateTransitions;
delete StartStateeCount;
delete StartStatelCount;
delete uniqueCSLines;
delete strNameValue;
delete inState;
delete inCsS;
delete outState;
delete thirdString;
delete sFileContent;
delete filelength;

¥

delete transitions;

delete fileDlg;
return Mode;

void CConMod2View::AddActuateE_Template()
{
CConMod2Doc* pDoc = GetDocument();
Invalidate();

166

CString* pCounterString_F = new CString;

CString* pCounterString_InE = new CString;
CString* pCounterString_OutE = new CString;
CString* pCounterString_InS = new CString;
CString* pCounterString_InCarrier = new CString;
CString* pCounterString_OutCarrier = new CString;

Counter_F++;
pCounterString_F->Format(_T("%d"), Counter_F);
*pCounterString_F = *pCounterString_F + (_T(" [Actuate_E]"));

Counter_S++;
pCounterString_InS->Format(_T("%d"), Counter_S);

Counter_M++;
pCounterString_InCarrier->Format(_T("%d"), Counter_M);
Counter_M++;
pCounterString_OutCarrier->Format(_T("%d"), Counter_M);

Counter_E++;

pCounterString_InCarrier->Format(_T("%d"), Counter_E);
Counter_E++;
pCounterString_OutCarrier->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_InE->Format(_T("%d"), Counter_E);
Counter_E++;

pCounterString_OutE->Format(_T("%d"), Counter_E);

if (pSelectedElement == NULL) // Create only in empty, white space of the
screen - otherwise more
//attachment
issues will arise
{
ActuateE_Template* NewActuateE_Template = new ActuateE_Template(NULL,
SnapToGrid(MouselLDownPoint),
pCounterString_F, pCounterString InkE, pCounterString_OutE,
pCounterString_InS, pCounterString_InCarrier, pCounterString OutCarrier, this-
>ReasoningOption);

DetermineState(NewActuateE_Template->pSignal_InS->GivenName,
NewActuateE_Template);

pDoc->CTemplateList.AddTail(NewActuateE_Template);

pDoc->ActuateE_Template_List.AddTail(NewActuateE_Template);

pDoc->CElementList.AddTail(NewActuateE_Template->pFunctionBlock);

pDoc->CNodeList.AddTail (NewActuateE_Template->pFunctionBlock);

pDoc->CFunctionList.AddTail(NewActuateE_Template->pFunctionBlock);

pDoc->ActuateE_Function_List.AddTail(NewActuateE_Template-
>pFunctionBlock); // Enables grammar checking

pDoc->CElementList.AddTail(NewActuateE_Template->pSignal_InS);
pDoc->CEdgeList.AddTail(NewActuateE_Template->pSignal_InS);
pDoc->CSignallList.AddTail(NewActuateE_Template->pSignal_InS);

pDoc->CElementList.AddTail(NewActuateE_Template->pEnergy_InE);
pDoc->CEdgeList.AddTail(NewActuateE_Template->pEnergy_InE);
pDoc->CEnergylList.AddTail (NewActuateE_Template->pEnergy_InE);

pDoc->CElementList.AddTail (NewActuateE_Template->pEnergy OutE);

167

pDoc->CEdgeList.AddTail(NewActuateE_Template->pEnergy OutE);
pDoc->CEnergyList.AddTail (NewActuateE_Template->pEnergy_OutE);

if (NewActuateE_Template->CarrierIsEnergy == true)
{
pDoc->CElementList.AddTail(NewActuateE_Template-
>pEnergy_In_CarrierE);
pDoc->CEdgeList.AddTail(NewActuateE_Template-
>pEnergy_In_CarrierE);
pDoc->CEnergylList.AddTail (NewActuateE_Template-
>pEnergy_In_CarrierE);

pDoc->CElementList.AddTail (NewActuateE_Template-
>pEnergy_Out_CarrierE);

pDoc->CEdgeList.AddTail(NewActuateE_Template-
>pEnergy_Out_CarrierE);

pDoc->CEnergyList.AddTail (NewActuateE_Template-
>pEnergy_Out_CarrierE);

else if (NewActuateE_Template->CarrierIsMaterial == true)
{
pDoc->CElementList.AddTail (NewActuateE_Template-
>pMaterial_In_CarrierM);
pDoc->CEdgeList.AddTail(NewActuateE_Template-
>pMaterial_In_CarrierM);
pDoc->CMateriallList.AddTail(NewActuateE_Template-
>pMaterial_In_CarrierM);

pDoc->CElementList.AddTail (NewActuateE_Template-
>pMaterial_Out_CarrierM);

pDoc->CEdgeList.AddTail(NewActuateE_Template-
>pMaterial_Out_CarrierM);

pDoc->CMateriallist.AddTail(NewActuateE_Template-
>pMaterial_Out_CarrierM);

}

else

{

}
}
delete pCounterString_F;
delete pCounterString_InE;
delete pCounterString_OutE;
delete pCounterString_InS;

delete pCounterString_InCarrier;
delete pCounterString_OutCarrier;

return;

LButtonIsDown = FALSE;

void CConMod2View::Preselect(CPoint* pMouseTip)
{

168

CConMod2Doc* pDoc = GetDocument();
Invalidate();

/] ============= T

pDoc->PreselectionList.RemoveAll();
ScrollPosition = NULL;
pSelectedElement = NULL;

/] ==
// SPECIAL REQUIREMENT FOR EDGES - CLEAR OFF THE TEMPORARY HEAD AND TAIL NODES
/] ==
if (!TailNodeSelected)

pTailElemDynamic = NULL;
pHeadElemDynamic = NULL;

// LOOK FOR PROXIMITY BETWEEN MOUSE TIP AND ALL CELEMENT INSTANCES.

// FOR ALL PROXIMAL CELEMENT INSTANCES, HIGHLIGHT, ASSIGN GRABHANDLE, AND ADD TO
// PRESELECTIONLIST (IF NOT ALREADY THERE).

// THREE TESTS FOR GRABHANDLE ARE NECESSARY TO PERFORM THIS ACTION.
// IF NOT PROXIMAL, THEN UNHIGHLIHGT, RESET GRABHANDLE, AND REMOVE FROM

// PRESELECTIONLIST (IF NOT ALREADY REMOVED).

if (!pDoc->CElementList.IsEmpty())
for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != NULL;)

{

if (distance(*pMouseTip, pDoc->CElementList.GetAt(pos)-

>GeometricCenter) <= SELECTION_RADIUS)

{
pDoc->CElementList.GetAt(pos)->GrabHandle = CENTER;

// Applies to both nodes and edges
Highlight(pDoc->CElementList.GetAt(pos));
if (!pDoc->PreselectionList.Find(pDoc-

>CElementList.GetAt(pos)))

pDoc->PreselectionList.AddTail(pDoc-

>CElementList.GetAt(pos));

else if (distance(*pMouseTip, pDoc->CElementList.GetAt(pos)-

>HeadPoint) <= SELECTION_RADIUS)

pDoc->CElementList.GetAt(pos)->GrabHandle = HEAD;//

Applies to edges

Highlight(pDoc->CElementList.GetAt(pos));
if (!pDoc->PreselectionList.Find(pDoc-

>CElementList.GetAt(pos)))

pDoc->PreselectionList.AddTail(pDoc-

>CElementList.GetAt(pos));

else if (distance(*pMouseTip, pDoc->CElementList.GetAt(pos)-

>TailPoint) <= SELECTION_RADIUS)

pDoc->CElementList.GetAt(pos)->GrabHandle = TAIL;//

Applies to edges

Highlight(pDoc->CElementList.GetAt(pos));

169

if (!pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))
pDoc->PreselectionList.AddTail(pDoc-
>CElementList.GetAt(pos));

else
{
UnHighlight(pDoc->CElementList.GetAt(pos));
pDoc->CElementList.GetAt(pos)->GrabHandle = NULL;
if (pDoc->PreselectionList.Find(pDoc-
>CElementList.GetAt(pos)))
pDoc->PreselectionList.RemoveAt(pDoc-
>PreselectionList.Find(pDoc->CElementList.GetAt(pos))); // (pDoc-
>CElementList.GetAt(pos));

}

pDoc->CElementList.GetNext(pos);

// GET READY FOR SCROLLING:

// IF PreselectionList HAS THINGS IN IT, SELECT THE FIRST ITEM AND SET

// ScrollPosition AS THE HEAD POSITION WITHIN THAT LIST.

// OTHERWISE, THE EXISTING NULL VALUES SET AT THE BEGINNING OF THIS FUNCTION
// CALL WILL PREVAIL.

if (!pDoc->PreselectionList.IsEmpty())
SelectElement(pDoc->PreselectionlList.GetHead()); // stroes
pSelectedElement

ScrollPosition = pDoc->PreselectionList.GetHeadPosition();

// SCPECIAL CASE - IF ADDING AN EDGE, STORE ITS temporary TAIL and HEAD

if ((WhatToDo == ADD_ENERGY) || (WhatToDo == ADD_MATERIAL) || (WhatToDo
== ADD_SIGNAL))
{
if (LButtonIsDown)
pHeadElemDynamic = pSelectedElement;
else
pTailElemDynamic = pSelectedElement;
if (pHeadElemDynamic == pTailElemDynamic)
pHeadElemDynamic = NULL; // Prevents self-cycling edges
}
}

// Finally, redraw the screen
//0nDraw(this->GetDC());

}
void CConMod2View::Highlight(CElement* pElement)
{
pElement->IsHighlighted = true;
pElement->IsSelected = false;
}

void CConMod2View: :UnHighlight (CElement* pElement)

170

pElement->IsHighlighted = false;
pElement->IsSelected = false;

}

void CConMod2View::SelectElement(CElement* pElement)

{
pSelectedElement = pElement;
pElement->IsSelected = true;
pElement->IsHighlighted = false;

}

void CConMod2View::ScrollThroughPreselection()

{
CConMod2Doc* pDoc = GetDocument();

// Reset the current selection to PRESELECTION_PEN_ colors
Highlight(pDoc->PreselectionList.GetAt(ScrollPosition));

// If the tail of PreselectionList has arrived, start over at the head
if (ScrollPosition == pDoc->PreselectionList.GetTailPosition())
ScrollPosition = pDoc->PreselectionList.GetHeadPosition();
else
pDoc->PreselectionList.GetNext(ScrollPosition);

// Select the element at this incremented ScrollPosition
SelectElement(pDoc->PreselectionList.GetAt(ScrollPosition));

//0nDraw(this->GetDC());

/] =========================s===s===s=ss==sss=ss=sss=ssssss=sss=ssssssssss=s=s==

// SCPECIAL CASE - IF ADDING EDGE, STORE ITS TAIL NODE and HEAD NODE.

// AN IDENTICAL IF STATEMENT IS ALSO USED IN Preselect, TO ENABLE THE

// SAME FEATURES IF TEH USER SELECTED THE FIRST SELECTED ELEMENT WITHOUT
// SCROLLING.

e

if (WhatToDo == ADD_ENERGY || WhatToDo == ADD_MATERIAL || WhatToDo ==
ADD_SIGNAL)

{
if (LButtonIsDown)
pHeadElemDynamic = pSelectedElement;
else
pTailElemDynamic = pSelectedElement;
if (pHeadElemDynamic == pTailElemDynamic)
pHeadElemDynamic = NULL; // Prevents self-cycling edges
}
}
bool CConMod2View::ElementIsNode(CElement* pElement)
{

CConMod2Doc* pDoc = GetDocument();
for (POSITION pos = pDoc->CNodelList.GetHeadPosition(); pos != NULL;)

if (pDoc->CNodelList.GetAt(pos) == pElement)
{

NodeIndexInNodelList = pos;
return true;

171

}

pDoc->CNodelList.GetNext(pos);

}

return false;

}

bool CConMod2View::ElementIsFunction(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)

{
if (pDoc->CFunctionList.GetAt(pos) == pElement)

{
FunctionIndexInFunctionList = pos;
return true;

}

pDoc->CFunctionList.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsEnv(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CEnvList.GetHeadPosition(); pos != NULL;)

{

if (pDoc->CEnvList.GetAt(pos) == pElement)

{

EnvIndexInEnvList = pos;
return true;

}

pDoc->CEnvList.GetNext(pos);
}

return false;

}
bool CConMod2View::ElementIsEdge(CElement* pElement)
¢ CConMod2Doc* pDoc = GetDocument();
for (POSITION pos = pDoc->CEdgelList.GetHeadPosition(); pos != NULL;)
if (pDoc->CEdgelist.GetAt(pos) == pElement)

EdgeIndexInEdgeList = pos;
return true;

}

pDoc->CEdgeList.GetNext(pos);
}

return false;

172

bool CConMod2View::ElementIsMaterial(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != NULL;)

{
if (pDoc->CMateriallist.GetAt(pos) == pElement)

{
MaterialIndexInMateriallist = pos;
return true;

}

pDoc->CMateriallist.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsEnergy(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)

{
if (pDoc->CEnergyList.GetAt(pos) == pElement)

{
EnergyIndexInEnergylList = pos;
return true;

}

pDoc->CEnergylList.GetNext(pos);

}

return false;

}

bool CConMod2View::ElementIsSignal(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CSignallist.GetHeadPosition(); pos != NULL;)
if (pDoc->CSignallList.GetAt(pos) == pElement)

SignalIndexInSignallist = pos;
return true;

}

pDoc->CSignallList.GetNext(pos);
}

return false;

bool CConMod2View::ElementIsConvert_E_Template(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

173

for (POSITION pos = pDoc->CConvert_E_Template_List.GetHeadPosition(); pos !=

NULL;)
{
if (pDoc->CConvert_E_Template_List.GetAt(pos) == pElement)
{
Convert_E_Template_IndexInConvert_E_Template_List = pos;
return true;
¥
pDoc->CConvert_E_Template List.GetNext(pos);
}

return false;
}
bool CConMod2View::ElementIsConduct_E_Function(CElement* pElement)
{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CConduct_E_Function_List.GetHeadPosition(); pos !=

NULL;)
{
if (pDoc->CConduct_E_Function_List.GetAt(pos) == pElement)
{
Conduct_E_Function_IndexInConduct_E_Function_List = pos;
return true;
}
pDoc->CConduct_E_Function_List.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsConduct_E_Template(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CConduct_E_Template_List.GetHeadPosition(); pos !=
NULL;)

if (pDoc->CConduct_E_Template_List.GetAt(pos) == pElement)

Conduct_E_Template_IndexInConduct_E_Template_List = pos;
return true;

}

pDoc->CConduct_E_Template_List.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsEnergize_M_Function(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

174

for (POSITION pos = pDoc->CEnergize_ M Function_List.GetHeadPosition(); pos !=

NULL;)
{
if (pDoc->CEnergize_M_Function_List.GetAt(pos) == pElement)
{
Energize_M_Function_IndexInEnergize_M_Function_List = pos;
return true;
}
pDoc->CEnergize_M_Function_List.GetNext(pos);
}

return false;

}
bool CConMod2View::ElementIsEnergize M Template(CElement* pElement)
{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CEnergize_M Template_List.GetHeadPosition(); pos !=

NULL;)
{
if (pDoc->CEnergize_M_Template_List.GetAt(pos) == pElement)
{
Energize_M_Template_IndexInEnergize_M_Template_List = pos;
return true;
¥
pDoc->CEnergize_M_Template_List.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsDistribute_E_Function(CElement* pElement)

{
CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CDistribute_E_Function_List.GetHeadPosition(); pos !=
NULL;)

if (pDoc->CDistribute_E_Function_List.GetAt(pos) == pElement)

Distribute_E_Function_IndexInDistribute_E_Function_List = pos;
return true;

}

pDoc->CDistribute_E_Function_List.GetNext(pos);
}

return false;

}

bool CConMod2View::ElementIsDistribute_E_Template(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CDistribute_E_Template List.GetHeadPosition(); pos !=
NULL;)

175

}

}

if (pDoc->CDistribute_E_Template_List.GetAt(pos) == pElement)

{

Distribute_E_Template_IndexInDistribute_E_Template_List = pos;
return true;

}

pDoc->CDistribute_E_Template List.GetNext(pos);

return false;

bool CConMod2View::ElementIsDeEn_M_Function(CElement* pElement)

{

}

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CDeEn_M_Function_List.GetHeadPosition(); pos != NULL;

{

}

if (pDoc->CDeEn_M_Function_List.GetAt(pos) == pElement)
{

DeEn_M_Function_IndexInDeEn_M_Function_List = pos;
return true;

}

pDoc->CDeEn_M_Function_List.GetNext(pos);

return false;

bool CConMod2View::ElementIsDeEn_M_Template(CElement* pElement)

{

}

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->CDeEn_M_Template_List.GetHeadPosition(); pos != NULL;

{

}

if (pDoc->CDeEn_M_Template_List.GetAt(pos) == pElement)

{
DeEn_M_Template_IndexInDeEn_M_Template_List = pos;

return true;

}

pDoc->CDeEn_M_Template_List.GetNext(pos);

return false;

bool CConMod2View::ElementIsActuateE_Function(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

for (POSITION pos = pDoc->ActuateE_Function_List.GetHeadPosition(); pos != NULL;

{

if (pDoc->ActuateE_Function_List.GetAt(pos) == pElement)

176

ActuateE_Function_IndexInDeActuateE_Function_List = pos;
return true;

}
pDoc->ActuateE_Function_List.GetNext(pos);
}
return false;
}
bool CConMod2View::ElementIsActuateE_Template(CElement* pElement)
{
CConMod2Doc* pDoc = GetDocument();
for (POSITION pos = pDoc->ActuateE_Template_List.GetHeadPosition(); pos != NULL;
)
{
if (pDoc->ActuateE_Template_List.GetAt(pos) == pElement)
{
ActuateE_Template_IndexInActuateE_Template_List = pos;
return true;
}
pDoc->ActuateE_Template_List.GetNext(pos);
¥

return false;

void CConMod2View::MoveConnectDynamic() // Called by OnMouseMove

{
CConMod2Doc* pDoc = GetDocument();
GrammarCheckRequired = false; // This callis very important - without

it,

// the
grammr checks for topological error will take effect DURING

// the
move / connect operation BEFORE LIFTING UP THE MOUSE L

//
BUTTON and throw errors for topology that the user has not

//
committed to (by lifting mouse L button)

//

// THIS
IS A BASIC CHECK THAT AN ELEMENT IS SELECTED FOR MOVE OR CONNECT.

//
PRACTICALLY, THIS CHECK IS REDUNDANT, SINCE THE ONLY CALLING FUNCTION

// OF
THIS FUNCTION, OnMouseMove, MAKES SURE THAT AN ELEMENT IS INDEED SELECTED.

//

if (!LButtonIsDown || pSelectedElement == NULL)

return;
/| ==
// IF AN EDGE IS ANCHORED ON ANY ONE SIDE, PREVENT MOVING IT BY ITS CENTER
/| ==

if ((ElementIsEdge(pSelectedElement))
&&
((pSelectedElement->pHeadElem != NULL)
[

(pSelectedElement->pTailElem != NULL))

&&
(pSelectedElement->GrabHandle == CENTER))
return;
Invalidate();
|/ ==
// MOVE NODES AND DOUBLY-DANLGING EDGES BY THE CENTER GRABHANDLE
|/ ==
if (pSelectedElement->GrabHandle == CENTER) // Works for nodes and
edges with both ends dangling
{
// First, compute the orientation and length of the arrow using its
existing

// center, tail and head points. This check will workk even for the
nodes, although

// that would not mean anything real. So, it is unnecessary to check
that the element

// is an edge.

long HalfDeltaX = pSelectedElement->HeadPoint.x - pSelectedElement-
>GeometricCenter.x;

long HalfDeltaY = pSelectedElement->HeadPoint.y - pSelectedElement-
>GeometricCenter.y;

// Then, move the center point. This moves nodes directly. For edges,

the ends
// need to be recalculated, as done next.
pSelectedElement->GeometricCenter = MouseMovePoint;
// Then re-compute the new head and tail poitns based on the new center
point.
pSelectedElement->HeadPoint.x = pSelectedElement->GeometricCenter.x +
HalfDeltaX;
pSelectedElement->HeadPoint.y = pSelectedElement->GeometricCenter.y +
HalfDeltaY;
pSelectedElement->TailPoint.x = pSelectedElement->GeometricCenter.x -
HalfDeltaX;
pSelectedElement->TailPoint.y = pSelectedElement->GeometricCenter.y -
HalfDeltaY;
}
/| ===ss=ssssSssSssssSsSsssSsssssSsssssssss=sss==
// MOVE AND/OR CONNECT THE head POINT OF AN EDGE
// ===ss=SssssSssssSssssssssssssssssssss=s==

if (ElementIsEdge(pSelectedElement) && (pSelectedElement->GrabHandle == HEAD))
{

178

pSelectedElement->pHeadElem = NULL;
for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != NULL;)

{
if (distance(MouseMovePoint, pDoc->CElementList.GetAt(pos)-
>GeometricCenter) <= SELECTION_RADIUS)
{
Highlight(pDoc->CElementList.GetAt(pos));
pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos);

else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->TailPoint) <= SELECTION_RADIUS) &&
(ElementIsEdge(pDoc->CElementList.GetAt(pos))) &&
(pDoc->CElementList.GetAt(pos)->pHeadElem != NULL) &&
(pDoc->CElementList.GetAt(pos)->pTailElem == NULL))

Highlight(pDoc->CElementList.GetAt(pos));

pSelectedElement->pHeadElem = pDoc-
>CElementList.GetAt(pos)->pHeadElem;

pElementToBeDeleted = pDoc->CElementList.GetAt(pos);

}
else
{
UnHighlight(pDoc->CElementList.GetAt(pos));
pSelectedElement->HeadPoint = MouseMovePoint;
if (pDoc->CElementList.GetAt(pos) ==
pElementToBeDeleted)
pElementToBeDeleted = NULL;
¥
pDoc->CElementList.GetNext(pos);
¥
}
/| ====================================s=====s=ssssssssssssssssssssssssssssssss=s=s
// MOVE AND/OR CONNECT THE tail POINT OF AN EDGE
/| ====================================s=ss==ssssssssssssssssssssssssssssssssss=s

if (ElementIsEdge(pSelectedElement) && (pSelectedElement->GrabHandle == TAIL))

{
pSelectedElement->pTailElem = NULL;

for (POSITION pos = pDoc->CElementList.GetHeadPosition(); pos != NULL;)

if (distance(MouseMovePoint, pDoc->CElementList.GetAt(pos)-
>GeometricCenter) <= SELECTION_RADIUS)
{
Highlight(pDoc->CElementList.GetAt(pos));
pSelectedElement->pTailElem = pDoc-
>CElementList.GetAt(pos);

else if ((distance(MouseMovePoint, pDoc-
>CElementList.GetAt(pos)->HeadPoint) <= SELECTION_RADIUS) &&
(ElementIskdge(pDoc->CElementList.GetAt(pos))) &&
(pDoc->CElementList.GetAt(pos)->pTailElem != NULL) &&
(pDoc->CElementList.GetAt(pos)->pHeadElem == NULL))

Highlight(pDoc->CElementList.GetAt(pos));

179

pElementToBeDeleted = pDoc->CElementList.GetAt(pos);

}
else
{
UnHighlight(pDoc->CElementList.GetAt(pos));
pSelectedElement->TailPoint = MouseMovePoint;
if (pDoc->CElementList.GetAt(pos) ==
pElementToBeDeleted)
pElementToBeDeleted = NULL;
¥
pDoc->CElementList.GetNext(pos);
¥
}
// OnDraw(this->GetDC()); // Do NOT call OnDraw here - it will fire the
// grammar checks before the move/connect is complete
}
void CConMod2View: :MoveConnect() // Called by OnLButtonUp, when moving edges
(ESCAPE)
{

if (pSelectedElement == NULL)
return;

CConMod2Doc* pDoc = GetDocument();
Invalidate();

// SNAP THE NODES TO THE GRID AFTER MOVE IS OVER, WHEN L-BUTTON IS LIFTED
if (ElementIsNode(pSelectedElement))

pSelectedElement->GeometricCenter = SnapToGrid(pSelectedElement-
>GeometricCenter);

if (pElementToBeDeleted != NULL)

{
DeleteElement(pElementToBeDeleted);
pElementToBeDeleted = NULL;

}

GrammarCheckRequired = true;

//0nDraw(this->GetDC());

}
void CConMod2View::DetachEdgesFromElement(CElement* pElement)
{
CConMod2Doc* pDoc = GetDocument();
for (POSITION pos = pDoc->CEdgelList.GetHeadPosition(); pos != NULL;)
if (pElement == pDoc->CEdgeList.GetAt(pos)->pHeadElem)
pDoc->CEdgeList.GetAt(pos)->pHeadElem = NULL;
if (pElement == pDoc->CEdgeList.GetAt(pos)->pTailElem)
pDoc->CEdgeList.GetAt(pos)->pTailElem = NULL;
pDoc->CEdgeList.GetNext(pos);
}
}
Vi ——————————————————————_—————————————————————

void CConMod2View::DeleteElement(CElement* pElement)

{

CConMod2Doc* pDoc = GetDocument();

DetachEdgesFromElement (pElement);

delete pElement; // Deletes the actual instance of the element

// pointed by pElement

POSITION pos = pDoc->CElementList.Find(pElement);

pDoc->CElementList.RemoveAt(pos); // Removes the pointer entry from
CElementList

if (ElementIsNode(pElement))
pDoc->CNodeList.RemoveAt(NodeIndexInNodelList); // Removes the pointer
entry from CNodelList

if (ElementIsFunction(pElement))
pDoc->CFunctionList.RemoveAt(FunctionIndexInFunctionList); //
Removes the pointer entry from CFunctionList

if (ElementIsEnv(pElement))
pDoc->CEnvList.RemoveAt(EnvIndexInEnvList); // Removes the pointer
entry from CFunctionList

if (ElementIskdge(pElement))
pDoc->CEdgelList.RemoveAt (EdgeIndexInEdgelList); // Removes the pointer
entry from CEdgelList

if (ElementIsMaterial(pElement))
pDoc->CMateriallist.RemoveAt(MaterialIndexInMateriallist); //
Removes the pointer entry from CEdgelList

if (ElementIsEnergy(pElement))
pDoc->CEnergylList.RemoveAt (EnergyIndexInEnergylList); // Removes the
pointer entry from CEdgelList

if (ElementIsSignal(pElement))
pDoc->CSignallList.RemoveAt(SignalIndexInSignalList); // Removes the
pointer entry from CEdgelList

void CConMod2View::Set_OrphanFlowMsg()
{

CConMod2Doc* pDoc = GetDocument();

Msg_OrphanFlow =

181

CString* pEdgeNames = new CString;
*pEdgeNames = _T("");

for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != NULL;)

{
if (pDoc->CMateriallist.GetAt(pos)->ParentList.IsEmpty() &&
IElementIsEnv(pDoc->CMateriallist.GetAt(pos)->pTailElem))
*pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMateriallList.GetAt(pos)->GivenName;

pDoc->CMateriallist.GetNext(pos);
}

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)

{
if (pDoc->CEnergylList.GetAt(pos)->ParentList.IsEmpty() &&
IElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pTailElem) && !(pDoc->CEnergylList.GetAt(pos)-
>ThisFlowIsIncomingBaggage))
*pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergylList.GetAt(pos)->GivenName;

pDoc->CEnergyList.GetNext(pos);
}

if (*pEdgeNames != "")
Msg_OrphanFlow = _T("\nOrphan Flow Detected: ") + *pEdgeNames + _T(".");

delete pEdgeNames;

}

void CConMod2View::Set_BarrenFlowMsg()

{

CConMod2Doc* pDoc = GetDocument();

Msg_BarrenFlow = "";
CString* pEdgeNames = new CString;
*pEdgeNames = _T("");

for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != NULL;)

if (pDoc->CMateriallist.GetAt(pos)->ChildList.IsEmpty() &&
IElementIsEnv(pDoc->CMateriallList.GetAt(pos)->pHeadElem))
*pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CMateriallList.GetAt(pos)->GivenName;

pDoc->CMateriallist.GetNext(pos);
}

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)

if (pDoc->CEnergylList.GetAt(pos)->ChildList.IsEmpty() &&
IElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pHeadElem) && !(pDoc->CEnergylList.GetAt(pos)-
>ThisFlowIsOutgoingBaggage))
*pEdgeNames = *pEdgeNames + _T(", ") + pDoc-
>CEnergylList.GetAt(pos)->GivenName;

pDoc->CEnergylList.GetNext(pos);

182

if (*pEdgeNames != "")
Msg_BarrenFlow = Msg_BarrenFlow + _T("\nBarren Flow Detected: ") +
*pEdgeNames + _T(".");

delete pEdgeNames;

}
void CConMod2View::Set_OneInManyOutMsg M()
{
CConMod2Doc* pDoc = GetDocument();
Msg_OneInManyOut_ M = "";
for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{
CString* pInputEdgeName = new CString;
*pInputEdgeName = _T("");
CString *pOutputEdgeNames = new CString;
*pOutputEdgeNames = _T("");
//===
// Inference of MATERIAL conservation - One In Many Out
//===
for (POSITION posl = pDoc->CMateriallist.GetHeadPosition(); posl !=
NULL;)

{
if (pDoc->CMateriallist.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CMateriallList_IN_TEMP.AddTail(pDoc-
>CMateriallist.GetAt(posl));

pDoc->CMateriallist.GetNext(posl);
}

if (pDoc->CMateriallList_IN_TEMP.GetCount() == 1)

{
for (POSITION pos2 = pDoc->CMateriallist.GetHeadPosition(); pos2
I= NULL;)

if (pDoc->CMateriallList.GetAt(pos2)->pTailElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CMateriallist_OUT_TEMP.AddTail(pDoc-
>CMateriallList.GetAt(pos2));

pDoc->CMateriallist.GetNext(pos2);
}

if (pDoc->CMateriallList_OUT_TEMP.GetCount() >= 1)

*pInputEdgeName = pDoc->CMateriallist_IN_TEMP.GetHead()-
>GivenName;

for (POSITION pos3 = pDoc-
>CMateriallist_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)
{

183

pDoc->CMateriallist_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CMateriallList_OUT_TEMP.GetAt(pos3));

pDoc->CMateriallist_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CMateriallList_IN_TEMP.GetHead());

*pOutputEdgeNames = *pOutputEdgeNames + _T(", ")
+ pDoc->CMateriallList_OUT_TEMP.GetAt(pos3)->GivenName;

pDoc->CMateriallist_OUT_TEMP.GetNext(pos3);
¥

Msg_OneInManyOut_M = Msg_OneInManyOut_M + _T("\nInferred
Derivations: {") + *pInputEdgeName + _T("} --> {") + *pOutputEdgeNames + _T("}.");

}

delete pInputEdgeName;
delete pOutputEdgeNames;

EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);
}
}
void CConMod2View::Set_OneInManyOutMsg_E()
{
CConMod2Doc* pDoc = GetDocument();
Msg_OneInManyOut_E = "";
for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{
CString* pInputEdgeName = new CString;
*pInputEdgeName = _T("");
CString *pOutputEdgeNames = new CString;
*pOutputEdgeNames = _T("");
//===
// Inference of MATERIAL conservation - One In Many Out
//===
for (POSITION posl = pDoc->CEnergylList.GetHeadPosition(); posl != NULL;
)

if (pDoc->CEnergylList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(posl));

pDoc->CEnergyList.GetNext(posl);
}

if (pDoc->CEnergylList_IN_TEMP.GetCount() == 1)
for (POSITION pos2 = pDoc->CEnergylList.GetHeadPosition(); pos2
I= NULL;)
{

>CFunctionList.GetAt(pos))

if (pDoc->CEnergylList.GetAt(pos2)->pTailElem == pDoc-

184

pDoc->CEnergyList_OUT_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(pos2));

pDoc->CEnergyList.GetNext(pos2);
}

if (pDoc->CEnergylList_OUT_TEMP.GetCount() >= 1)
{
*pInputEdgeName = pDoc->CEnergylList_IN_TEMP.GetHead()-
>GivenName;

for (POSITION pos3 = pDoc-
>CEnergylList_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)

{
pDoc->CEnergyList_IN_TEMP.GetHead()-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetAt(pos3));
pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetHead());

*pOutputEdgeNames = *pOutputEdgeNames + _T(", ")

+ pDoc->CEnergyList_OUT_TEMP.GetAt(pos3)->GivenName;

pDoc->CEnergyList_OUT_TEMP.GetNext(pos3);
¥

Msg_OneInManyOut_E = Msg_OneInManyOut_E + _T("\nInferred

Derivations: {") + *pInputEdgeName + _T("} --> {") + *pOutputEdgeNames + _T("}.");

¥

delete pInputEdgeName;

delete pOutputEdgeNames;

EmptyAllTempLists(); // For every function block

pDoc->CFunctionList.GetNext(pos);

}
}
void CConMod2View::Set_ManyInOneOutMsg_M()
{
CConMod2Doc* pDoc = GetDocument();
Msg_ManyInOneOut_M = "";
for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{
CString *pInputEdgeNames = new CString;
*pInputEdgeNames = _T("");
CString *pOutputEdgeName = new CString;
*pOutputEdgeName = _T("");
//===
// Inference of MATERIAL conservation - Many In One Out
|/===
for (POSITION posl = pDoc->CMateriallist.GetHeadPosition(); posl !=
NULL;)

{
if (pDoc->CMateriallist.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))

185

pDoc->CMateriallist_IN_TEMP.AddTail(pDoc-
>CMateriallList.GetAt(posl));

pDoc->CMateriallist.GetNext(posl);

}

if (pDoc->CMateriallist_IN_TEMP.GetCount() > 1)

{
for (POSITION pos2 = pDoc->CMateriallist.GetHeadPosition(); pos2
I= NULL;)
{

>CFunctionList.GetAt(pos))

if (pDoc->CMateriallist.GetAt(pos2)->pTailElem == pDoc-

pDoc->CMateriallist_OUT_TEMP.AddTail(pDoc-
>CMateriallList.GetAt(pos2));

pDoc->CMateriallist.GetNext(pos2);
¥

if (pDoc->CMateriallist_OUT_TEMP.GetCount() == 1)

{
*pOutputEdgeName = pDoc-
>CMateriallList_OUT_TEMP.GetHead()->GivenName;

for (POSITION pos3 = pDoc-
>CMateriallList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)

pDoc->CMateriallList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CMateriallList_IN_TEMP.GetAt(pos3));

pDoc->CMateriallList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CMateriallList_OUT_TEMP.GetHead());

*pInputEdgeNames = *pInputEdgeNames + _T(", ") +
pDoc->CMateriallList_IN_TEMP.GetAt(pos3)->GivenName;

pDoc->CMateriallist_IN_TEMP.GetNext(pos3);
¥

Msg_ManyInOneOut_M = Msg_ManyInOneOut_M + _T("\nInferred
Derivations: {") + *pInputEdgeNames + _T("} --> {") + *pOutputEdgeName + _T("}.");

}
delete pInputEdgeNames;

delete pOutputEdgeName;
EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);

}
}
void CConMod2View::Set_ManyInOneOutMsg_E()
{

CConMod2Doc* pDoc = GetDocument();

Msg_ManyInOneOut_E =

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{

CString *pInputEdgeNames = new CString;

*pInputEdgeNames = _T("");

CString *pOutputEdgeName = new CString;

186

*pOutputEdgeName = _T("");

for (POSITION posl = pDoc->CEnergyList.GetHeadPosition(); posl != NULL;

{
if (pDoc->CEnergyList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(posl));

pDoc->CEnergyList.GetNext(posl);
¥

if (pDoc->CEnergylList_IN_TEMP.GetCount() > 1)

{
for (POSITION pos2 = pDoc->CEnergylList.GetHeadPosition(); pos2

= NULL;)
{

>CFunctionList.GetAt(pos))

if (pDoc->CEnergyList.GetAt(pos2)->pTailElem == pDoc-

pDoc->CEnergylList_OUT_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(pos2));

pDoc->CEnergyList.GetNext(pos2);

}

if (pDoc->CEnergyList_OUT_TEMP.GetCount() == 1)
{
*pOutputEdgeName = pDoc->CEnergylList OUT_TEMP.GetHead()-
>GivenName;

for (POSITION pos3 = pDoc-
>CEnergylList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)

{
pDoc->CEnergylList_OUT_TEMP.GetHead()-
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetAt(pos3));
pDoc->CEnergyList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CEnergyList_OUT_TEMP.GetHead());
*pInputEdgeNames = *pInputEdgeNames + _T(", ") +
pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName;

pDoc->CEnergyList_IN_TEMP.GetNext(pos3);
}

Msg_ManyInOneOut_M = Msg ManyInOneOut_M + _T("\nInferred
Derivations: {") + *pInputEdgeNames + _T("} --> {") + *pOutputEdgeName + _T("}.");

}
delete pInputEdgeNames;

delete pOutputEdgeName;
EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);

187

void CConMod2View::Set_ManyInManyOutMsg()

{
CConMod2Doc* pDoc = GetDocument();
Msg_ManyInManyOut = "";
for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{
CString *pInputEdgeNames = new CString;
*pInputEdgeNames = _T("");
CString *pOutputEdgeNames = new CString;
*pOutputEdgeNames = _T("");
//===
// Inference of Impossible Conclusion - Many In Many Out
//===
for (POSITION posl = pDoc->CEnergylList.GetHeadPosition(); posl != NULL;
)

{
if (pDoc->CEnergylList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(posl));

pDoc->CEnergyList.GetNext(posl);

}

if (pDoc->CEnergyList_IN_TEMP.GetCount() > 1) // Only then you
investigate further, otherwise don't waste time

{
for (POSITION pos2 = pDoc->CEnergylList.GetHeadPosition(); pos2
I= NULL;)
{

>CFunctionList.GetAt(pos))

if (pDoc->CEnergylList.GetAt(pos2)->pTailElem == pDoc-

pDoc->CEnergylList_ OUT_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(pos2));

pDoc->CEnergyList.GetNext(pos2);
}

if (pDoc->CEnergylList_OUT_TEMP.GetCount() > 1) // Now both
sides have too many flows to conclude

{
for (POSITION pos3 = pDoc-
>CEnergylList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)

for (POSITION pos4 = pDoc-
>CEnergylList_OUT_TEMP.GetHeadPosition(); pos4 != NULL;)

pDoc->CEnergyList_OUT_TEMP.GetAt(pos4) -
>ParentList.AddTail(pDoc->CEnergyList_IN_TEMP.GetAt(pos3));

pDoc->CEnergyList_IN_TEMP.GetAt(pos3)-
>ChildList.AddTail(pDoc->CEnergyList OUT_TEMP.GetAt(pos4));

pDoc-
>CEnergylList_OUT_TEMP.GetNext(pos4);

188

}
*pInputEdgeNames = *pInputEdgeNames + _T(", ") +
pDoc->CEnergyList_IN_TEMP.GetAt(pos3)->GivenName;

pDoc->CEnergyList_IN_TEMP.GetNext(pos3);

for (POSITION pos5 = pDoc-
>CEnergylList_OUT_TEMP.GetHeadPosition(); pos5 != NULL;)

{
*pOutputEdgeNames = *pOutputEdgeNames + _T(", ")
+ pDoc->CEnergylList_OUT_TEMP.GetAt(pos5)->GivenName;
pDoc->CEnergylList_OUT_TEMP.GetNext(pos5);
¥

Msg_ManyInManyOut = Msg_ManyInManyOut + _T("\nInferred
Derivations: {") + *pInputEdgeNames + _T("} --> {") + *pOutputEdgeNames + _T("}.");

¥

*pInputEdgeNames = _T("");

*pOutputEdgeNames = _T("");

EmptyAllTempLists(); // For every function block

for (POSITION posl = pDoc->CMateriallist.GetHeadPosition(); posl !=

{
if (pDoc->CMateriallist.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))

NULL;)

pDoc->CMateriallList_IN_TEMP.AddTail(pDoc-
>CMateriallist.GetAt(posl));

pDoc->CMateriallist.GetNext(posl);
¥

if (pDoc->CMateriallList_IN_TEMP.GetCount() > 1) // Only then you
investigate further, otherwise don't waste time
{
for (POSITION pos2 = pDoc->CMateriallist.GetHeadPosition(); pos2
I= NULL;)

if (pDoc->CMateriallist.GetAt(pos2)->pTailElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CMateriallist_OUT_TEMP.AddTail(pDoc-
>CMateriallList.GetAt(pos2));

pDoc->CMateriallist.GetNext(pos2);
}

if (pDoc->CMateriallist_OUT_TEMP.GetCount() > 1) // Now both
sides have too many flows to conclude

{
for (POSITION pos3 = pDoc-
>CMateriallList_IN_TEMP.GetHeadPosition(); pos3 != NULL;)

for (POSITION pos4 = pDoc-
>CMateriallist_OUT_TEMP.GetHeadPosition(); pos4 != NULL;)
{

189

pDoc-
>CMateriallList_OUT_TEMP.GetAt(pos4)->ParentList.AddTail(pDoc-
>CMateriallList_IN_TEMP.GetAt(pos3));

pDoc-
>CMateriallList_IN_TEMP.GetAt(pos3)->ChildList.AddTail(pDoc-
>CMateriallList_OUT_TEMP.GetAt(pos4));

pDoc-
>CMateriallList_OUT_TEMP.GetNext(pos4);

*pInputEdgeNames = *pInputEdgeNames + _T(", ") +
pDoc->CMateriallist_IN_TEMP.GetAt(pos3)->GivenName;

pDoc->CMateriallList IN_TEMP.GetNext(pos3);
}/**/

for (POSITION pos5 = pDoc-
>CMateriallist_OUT_TEMP.GetHeadPosition(); pos5 != NULL;)

{
*pOutputEdgeNames = *pOutputEdgeNames + _T(", ")
+ pDoc->CMateriallList OUT_TEMP.GetAt(pos5)->GivenName;
pDoc->CMateriallList_OUT_TEMP.GetNext(pos5);

}

Msg_ManyInManyOut = Msg_ManyInManyOut + _T("\nInferred
Derivations: {") + (*pInputEdgeNames) + _T("} --> {") + *pOutputEdgeNames + _T("}.");

}

delete pInputEdgeNames;

delete pOutputEdgeNames;

EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);

}
}
void CConMod2View::Set_MissingResidualEnergyMsg()
{
if (ReasoningOption == QUALITATIVE_CONSERVATION)
return;
CConMod2Doc* pDoc = GetDocument();
Msg_MissingResidualEnergy = "";
for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
for (POSITION posl = pDoc->CEnergylList.GetHeadPosition(); posl != NULL;
)

if (pDoc->CEnergylList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
pDoc->CEnergyList_IN_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(posl));

pDoc->CEnergyList.GetNext(posl);
}

if (pDoc->CEnergyList_IN_TEMP.GetCount() >= 1)
{

190

for (POSITION pos2 = pDoc->CEnergylList.GetHeadPosition(); pos2

{

>CFunctionList.GetAt(pos))

I= NULL;)
if (pDoc->CEnergylList.GetAt(pos2)->pTailElem == pDoc-

pDoc->CEnergylList_OUT_TEMP.AddTail(pDoc-
>CEnergylList.GetAt(pos2));

pDoc->CEnergyList.GetNext(pos2);
¥

if (pDoc->CEnergyList_OUT_TEMP.GetCount() >= 1)
{
// Testing if there is at least one residual energy flow
at the output
bool ResidualEnergyFound = false;

for (POSITION pos3 = pDoc-
>CEnergylList_OUT_TEMP.GetHeadPosition(); pos3 != NULL;)

{
if (pDoc->CEnergylList_OUT_TEMP.GetAt(pos3)-
>IsResidual)
ResidualEnergyFound = true;
pDoc->CEnergylList_OUT_TEMP.GetNext(pos3);
¥
if (!ResidualEnergyFound)
{

Msg_MissingResidualEnergy =
Msg_MissingResidualEnergy +
_T("\n::Warning:: Energy Loss Not Shown
in Function: ") + pDoc->CFunctionList.GetAt(pos)->GivenName + _T(".");
}
¥
¥

EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);

}

void CConMod2View::Set_MaterialChangeWithoutEnergyMsg()
{

CConMod2Doc* pDoc = GetDocument();

Msg_MaterialChangeWithoutEnergy =

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{

bool ThisFuncHasInputM;

bool ThisFuncHasOutputM;

bool ThisFuncHasInputEBaggage;

bool ThisFuncHasOutputEBaggage;

ThisFuncHasInputM = false;
ThisFuncHasOutputM = false;
ThisFuncHasInputEBaggage = false;
ThisFuncHasOutputEBaggage = false;

191

for (POSITION posl = pDoc->CMateriallist.GetHeadPosition(); posl !=
NULL;)

{
if (pDoc->CMateriallist.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))

ThisFuncHasInputM = true;

for (POSITION pos2 = pDoc-
>CEnergylList.GetHeadPosition(); pos2 != NULL;)

if ((pDoc->CEnergylList.GetAt(pos2)->pTailElem ==
pDoc->CMateriallist.GetAt(posl)) &&
(pDoc->CEnergyList.GetAt(pos2)-
>pHeadElem == pDoc->CFunctionList.GetAt(pos)))

ThisFuncHasInputEBaggage = true;
//return;

¥
pDoc->CEnergyList.GetNext(pos2);

}

if (pDoc->CMateriallList.GetAt(posl)->pTailElem == pDoc-
>CFunctionList.GetAt(pos))

ThisFuncHasOutputM = true;

for (POSITION pos2 = pDoc-
>CEnergylList.GetHeadPosition(); pos2 != NULL;)

if ((pDoc->CEnergylList.GetAt(pos2)->pHeadElem ==
pDoc->CMateriallList.GetAt(posl)) &&
(pDoc->CEnergylList.GetAt(pos2)-
>pTailElem == pDoc->CFunctionList.GetAt(pos)))

ThisFuncHasOutputEBaggage = true;
//return;

¥
pDoc->CEnergylList.GetNext(pos2);

}

pDoc->CMateriallist.GetNext(posl);
}

if ((ThisFuncHasInputM) && (ThisFuncHasOutputM) &&
I (ThisFuncHasInputEBaggage) && ! (ThisFuncHasOutputEBaggage))
Msg_MaterialChangeWithoutEnergy =
Msg_MaterialChangeWithoutEnergy +
_T("\nEnergy must be exchanged to/from Material to transform
Material (") + pDoc->CFunctionList.GetAt(pos)->GivenName + _T(").");

EmptyAllTempLists(); // For every function block
pDoc->CFunctionList.GetNext(pos);

void CConMod2View::EmptyAllTempLists()

192

}

CConMod2Doc* pDoc = GetDocument();

pDoc->CMateriallist_IN_TEMP.RemoveAll();
pDoc->CMateriallist_OUT_TEMP.RemoveAll();
pDoc->CEnergyList_IN_TEMP.RemoveAll();
pDoc->CEnergylList_OUT_TEMP.RemoveAll();
pDoc->CSignalList_IN_TEMP.RemoveAll();
pDoc->CSignallList_OUT_TEMP.RemoveAll();

void CConMod2View::ComposeQualitativeMessage()

{

CConMod2Doc* pDoc = this->GetDocument();

Msg_OneInManyOut_ M = "";
Msg_OneInManyOut_E = H
Msg_ManyInOneOut_M = "";
Msg_ManyInOneOut_E = H
Msg_ManyInManyOut =
Msg_MissingResidualEnergy =
Msg_MaterialChangeWithoutEnergy =
Msg_OrphanFlow = "";

Msg_BarrenFlow =

nn,
El
wn,

CString* pMsg_DerivationChecks = new CString;
*pMsg_DerivationChecks = _T("***** QUALITATIVE CONSERVATION REPORT **¥**\pn"};

// First, clear all existing parent-child relations that are
// leftover from a previous call to this function.
// The relations will be recomputed during the next inferences anyways.
for (POSITION pos = pDoc->CMateriallist.GetHeadPosition(); pos != NULL;)
{
pDoc->CMateriallist.GetAt(pos)->ParentList.RemoveAll();
pDoc->CMateriallist.GetAt(pos)->ChildList.RemoveAll();
pDoc->CMateriallist.GetNext(pos);

}

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)
{
pDoc->CEnergyList.GetAt(pos)->ParentList.RemoveAll();
pDoc->CEnergyList.GetAt(pos)->ChildList.RemoveAll();
pDoc->CEnergyList.GetNext(pos);

}

// Must finish drawing inferences before deciding barren and orphan flows,
// because it is during these inferences that parent and children are

// computed. WIthout these inferences, all flows will return as both

// orphan abd barren.

Set_OneInManyOutMsg_M();

Set_OneInManyOutMsg_E();

Set_ManyInOneOutMsg_M();

Set_ManyInOneOutMsg E();

Set_ManyInManyOutMsg();

Set_MissingResidualEnergyMsg();

193

Set_MaterialChangeWithoutEnergyMsg();

// Now call orphan and barren flow messages
Set_OrphanFlowMsg();
Set_BarrenFlowMsg();

// Now compose all the messages generated by the above checks and display
*pMsg_DerivationChecks = *pMsg_DerivationChecks +

Msg_OneInManyOut_M +

Msg_OneInManyOut_E +

Msg_ManyInOneOut_M +

Msg_ManyInOneOut_E +

Msg_ManyInManyOut +

Msg_MaterialChangeWithoutEnergy +

Msg_OrphanFlow +

Msg_BarrenFlow;

int* m = new int;

*m = MessageBox(*pMsg_DerivationChecks, _T("Qualitative Conservation Report"),

MB_ICONWARNING | MB_OK);
delete m;

delete pMsg_DerivationChecks; // Resets to empty string

//

CString* pMsg_IrrevChecks = new CString;
*pMsg_IrrevChecks = _T("**#*** QUALITATIVE IRREVERSIBILITY REPORT *¥#*¥¥\n");

if (ReasoningOption >= QUALITATIVE_IRREVERSIBILITY)
{
*pMsg_IrrevChecks = *pMsg_IrrevChecks + Msg_MissingResidualEnergy;
int* n = new int;
*n = MessageBox(*pMsg_IrrevChecks, _T("Qualitative Irreversibility
Report"), MB_ICONWARNING | MB_OK);

delete n;
}
delete pMsg_IrrevChecks;
}
void CConMod2View::VerifyPositivePowerOfFlows()
{

CConMod2Doc* pDoc = this->GetDocument();
ContinueReasoning = true;

CString* pNegativeEnergyReportString = new CString;

*pNegativeEnergyReportString = "***** NEGATIVE POWER REPORT *****\nThe following

flows have negative power. \n";

for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)
{

194

pDoc->CEnergyList.GetAt(pos)->Power = pDoc->CEnergylList.GetAt(pos)-
>UI_ForceTerm *
pDoc->CEnergylList.GetAt(pos)->UI_RateTerm;

if (pDoc->CEnergylList.GetAt(pos)->Power < 9)
{
ContinueReasoning = false;
CString* pPowerString = new CString;
pPowerString->Format(_T("%4.1f"), pDoc->CEnergyList.GetAt(pos)-
>Power);

*pNegativeEnergyReportString = *pNegativeEnergyReportString +
_T("\nFlow: ") + pDoc->CEnergylList.GetAt(pos)->GivenName +
_T("\t\tPower = ") + *pPowerString + _T(" W");

delete pPowerString;

¥
pDoc->CEnergyList.GetNext(pos);
}
if (ContinueReasoning == false)
{

int n = MessageBox(*pNegativeEnergyReportString, _T("Negative Power
Report"), MB_ICONWARNING | MB_OK);

AfxMessageBox(_T("Quantitative reasoning (Energy Balance, Efficiency,
Confluence) cannot continue with flows with negative power."));

}

delete pNegativeEnergyReportString;

}

void CConMod2View: :VerifyEnergyBalanceOfFunctions()
{

if (ContinueReasoning == false)
return;

CConMod2Doc* pDoc = this->GetDocument();

CString* pEnergyBalanceReportString = new CString;
*pEnergyBalanceReportString = "***** ENERGY BALANCE REPORT *****\n";

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{

double* pTotalInputPower = new double;
double* pTotalOutputPower = new double;

*pTotalInputPower = 0.0;
*pTotalOutputPower = 0.0;

for (POSITION posl = pDoc->CEnergylList.GetHeadPosition(); posl != NULL;
{
pDoc->CEnergyList.GetAt(posl)->Power = pDoc-
>CEnergylList.GetAt(posl)->UI_ForceTerm *

pDoc->CEnergyList.GetAt(posl)->UI_RateTerm;

if (pDoc->CEnergylList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))

195

*pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergylList.GetAt(posl)->Power);

if (pDoc->CEnergylList.GetAt(posl)->pTailElem == pDoc-
>CFunctionList.GetAt(pos))
*pTotalOutputPower = *pTotalOutputPower + (pDoc-
>CEnergylList.GetAt(posl)->Power);

pDoc->CEnergyList.GetNext(posl);
¥

if (*pTotalInputPower == *pTotalOutputPower)
*pEnergyBalanceReportString = *pEnergyBalanceReportString +
_T("\nFunction: ") + pDoc->CFunctionList.GetAt(pos)->GivenName + _T("\tBalanced.");

else

{

ContinueReasoning = false;

CString* pInputPString = new CString;
CString* pOutputPString = new CString;

pInputPString->Format(_T("%4.1f"), *pTotalInputPower);
pOutputPString->Format(_T("%4.1f"), *pTotalOutputPower);

*pEnergyBalanceReportString = *pEnergyBalanceReportString +
_T("\nFunction: ") +
pDoc->CFunctionList.GetAt(pos)->GivenName + _T("\tInput
= ") + *pInputPString +
_T(" W\tOutput = ") + *pOutputPString + _T(" W.");

delete pInputPString;
delete pOutputPString;
}

delete pTotalInputPower;
delete pTotalOutputPower;

pDoc->CFunctionList.GetNext(pos);
}

int n = MessageBox(*pEnergyBalanceReportString, _T("Energy Balance Violation
Report"), MB_ICONWARNING | MB_OK);

if (ContinueReasoning == false)
AfxMessageBox(_T("Quantitative reasoning (Efficiency, Confluence) cannot
continue without energy balance in each function."));

delete pEnergyBalanceReportString;

}
void CConMod2View::ComputeEfficiency()
if (ContinueReasoning == false)
return;

CConMod2Doc* pDoc = this->GetDocument();

// Compute function-wise efficiency

CString* pEfficiencyMessage = new CString;
*pEfficiencyMessage = "***** INDIVIDUAL FUNCTION EFFICIENCY REPORT *****\n"
"\nFunction\tInput\tUsable\tLoss\tEfficiency"

for (POSITION pos = pDoc->CFunctionList.GetHeadPosition(); pos != NULL;)
{
pDoc->CFunctionList.GetAt(pos)->Efficiency = 0.0; // Reset the
efficiency at the beginning of

// each run of this algorithm

double* pTotalInputPower = new double;
double* pTotalUsableOutputPower = new double;

*pTotalInputPower = 0.0;
*pTotalUsableOutputPower = 0.0;

for (POSITION posl = pDoc->CEnergylList.GetHeadPosition(); posl != NULL;

{
pDoc->CEnergylList.GetAt(posl)->Power = pDoc-
>CEnergylList.GetAt(posl)->UI_ForceTerm *
pDoc->CEnergylList.GetAt(posl)->UI_RateTerm;

if (pDoc->CEnergyList.GetAt(posl)->pHeadElem == pDoc-
>CFunctionList.GetAt(pos))
*pTotalInputPower = *pTotalInputPower + (pDoc-
>CEnergylList.GetAt(posl)->Power);

if ((pDoc->CEnergylList.GetAt(posl)->pTailElem == pDoc-
>CFunctionList.GetAt(pos)) &&
(pDoc->CEnergylList.GetAt(posl)->IsResidual == false))
*pTotalUsableOutputPower = *pTotalUsableOutputPower +
(pDoc->CEnergyList.GetAt(posl)->Power);

pDoc->CEnergylList.GetNext(posl);
¥

if ((*pTotalInputPower != 0.0) && (*pTotalUsableOutputPower != 0))
pDoc->CFunctionList.GetAt(pos)->Efficiency =
(*pTotalUsableOutputPower / *pTotalInputPower);

CString* pInputEString = new CString;
CString* pUsableOutputEString = new CString;
CString* pLossEString = new CString;
CString* pEffyString = new CString;

pInputEString->Format(_T("%5.1f"), *pTotalInputPower);

pUsableOutputEString->Format(_T("%5.1f"), *pTotalUsableOutputPower);

pLossEString->Format(_T("%5.1f"), (*pTotalInputPower -
*pTotalUsableOutputPower));

pEffyString->Format(_T("%5.3f"), pDoc->CFunctionList.GetAt(pos)-
>Efficiency);

*pEfficiencyMessage = *pEfficiencyMessage +

197

"\n" + pDoc->CFunctionList.GetAt(pos)->GivenName +
"\t" + *pInputEString +

"\t" + *pUsableOutputEString +

"\t" + *pLossEString +

"\t" + *pEffyString;

delete pTotalInputPower;

delete pTotalUsableOutputPower;
delete pInputEString;

delete pUsableOutputEString;
delete pLossEString;

delete pEffyString;

pDoc->CFunctionList.GetNext(pos);

double* pModelInputPower = new double;
double* pModellLossPower = new double;
double* pModelEfficiency = new double;

*pModelInputPower = 0;
*pModelLossPower = 0;
*pModelEfficiency = 0;

for (POSITION pos = pDoc->CEnergylist.GetHeadPosition(); pos != NULL;)

if ((ElementIsFunction(pDoc->CEnergylList.GetAt(pos)->pHeadElem)) &&
(pDoc->CEnergyList.GetAt(pos)->pTailElem != NULL) &&
((ElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pTailElem)) ||
(ElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pTailElem->pTailElem))))
*pModelInputPower = *pModelInputPower + pDoc-
>CEnergylList.GetAt(pos)->Power;

if ((ElementIsFunction(pDoc->CEnergylList.GetAt(pos)->pTailElem)) &&
(pDoc->CEnergylList.GetAt(pos)->pHeadElem != NULL) &&
((ElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pHeadElem)) ||
(ElementIsEnv(pDoc->CEnergylList.GetAt(pos)->pHeadElem->pHeadElem))) &&
(pDoc->CEnergyList.GetAt(pos)->IsResidual == true))
*pModelLossPower = *pModelLossPower + pDoc-
>CEnergylList.GetAt(pos)->Power;

pDoc->CEnergyList.GetNext(pos);
}

if ((*pModelInputPower != @) /*&& (*pModelLossPower != 0)%*/) // Have to set
more traps
*pModelEfficiency = (*pModelInputPower - *pModelLossPower) /
*pModelInputPower;

CString* pModelEffyString = new CString;
pModelEffyString->Format(_T("%5.3f"), *pModelEfficiency);

*pEfficiencyMessage = *pEfficiencyMessage + "\n\nOVERAL MODEL EFFICIENCY: " +
*pModelEffyString;

198

delete pModelInputPower;
delete pModellLossPower;

delete pModelEfficiency;
delete pModelEffyString;

int n = MessageBox(*pEfficiencyMessage, _T("Efficiency Report"), MB_ICONWARNING
| MB_OK);

delete pEfficiencyMessage;

}

void CConMod2View::ComposeQuantitativeMessage()

{
//================================
// Commented out for rolling back to Layer One (Chapter 6)
//================================

if ((ReasoningOption == QUALITATIVE_CONSERVATION) || (ReasoningOption ==
QUALITATIVE_IRREVERSIBILITY))

{
AfxMessageBox(_T("***** QUANTITATIVE REASONING NOT AVAILABLE *****\n\nTo
turn on, choose \"Quantitative -> Efficiency\" from Reasoning Menu."));

return;
}
if (ReasoningOption == QUANTITATIVE_EFFICIENCY)
{
VerifyPositivePowerOfFlows();
VerifyEnergyBalanceOfFunctions();
ComputeEfficiency(); // Resets every function's effy to zero, then
recomputes
// from present state
of model
}
if (ReasoningOption == QUANTITATIVE_POWERREQUIRED)
{
AfxMessageBox(_T("Under Construction."));
}

}
void CConMod2View::ComposeCausalMessage()

AfxMessageBox(_T("Reasoning on Causal Behaviour"));
CConMod2Doc* pDoc = this->GetDocument();
for (POSITION pos = pDoc->CEnergylList.GetHeadPosition(); pos != NULL;)

if (pDoc->ActuateE_Template_List.GetAt(pos)->EisActuated == false)

for (POSITION pos2 = pDoc->CFunctionList.GetHeadPosition(); pos2
I= NULL;)

{
if (pDoc->ActuateE_Template_List.GetAt(pos)-
>pEnergy_OutE->pTailElem == pDoc->CFunctionList.GetAt(pos2))

{
pDoc->CFunctionList.GetAt(pos2)->ElementIsHidden

= true;

199

if (pDoc->CFunctionList.GetAt(pos2)->ElementIsHidden ==

{
for (POSITION pos3 = pDoc-
>CEnergylList.GetHeadPosition(); pos3 != NULL;)

true)

if (pDoc->CEnergyList.GetAt(pos3) ==

{

>CFunctionList.GetAt(pos2)->ElementIsHidden = true;

}
pDoc->CEnergyList.GetNext(pos3);

pDoc->CFunctionList.GetAt(pos2)->pTailElem)

pDoc-

}
}
pDoc->CFunctionList.GetNext(pos2);

}
}
pDoc->ActuateE_Template_List.GetNext(pos);

}

#include "stdafx.h"

#include "ConMod2.h"

#include "Convert_E_Template.h"
#include "afxdialogex.h"

IMPLEMENT_DYNAMIC(CConvert_E_Template, CDialog)

CConvert_E_Template::CConvert_E_Template(CWnd* pParent /*= NULL*/, CPoint InsertionPoint
/*= (500,500)*/,

CString* pCounterString F /*= NULL*/, CString* pCounterString_InE /*= NULL*/,

CString* pCounterString_OutE /*= NULL*/, CString* pCounterString_OutE_Res /*=
NULL*/,

int ReasOpt)

: CDialog(CConvert_E_Template::IDD, pParent)

, ReasoningOption(ReasOpt)

pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString_F);

CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutE(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutE_Res(InsertionPoint.x, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, pCounterString_ InE,
this->ReasoningOption);

pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString OutE, this->ReasoningOption);

pEnergy_OutE_Res = new CEnergy(NULL, InsertionPoint, HeadOfOutE_Res,
pCounterString OutE_Res, this->ReasoningOption);

pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_OutE->pTailElem = pFunctionBlock;
pEnergy_OutE_Res->pTailElem = pFunctionBlock;
pEnergy_OutE_Res->UI_IsResidual = true;

}

CConvert_E_Template::~CConvert_E_Template()

{

)i

200

void CConvert_E_Template::DoDataExchange(CDataExchange* pDX)

{
}

Cbhialog: :DoDataExchange(pDX);

BEGIN_MESSAGE_MAP(CConvert E_Template, CDialog)
END_MESSAGE_MAP ()

// Convert_E_Template message handlers

#include "stdafx.h"

#include "ConMod2.h"
#include "DeEn_M_Template.h"
#include "afxdialogex.h"

IMPLEMENT_DYNAMIC(CDeEn_M_Template, CDialog)

CDeEn_M_Template::CDeEn_M_Template(CWnd* pParent/* = NULL*/,
CPoint InsertionPoint /*= (500,500)*/,
CString* pCounterString F /*= NULL*/,
CString* pCounterString InM /*= NULL*/,
CString* pCounterString OutM /*= NULL*/,
CString* pCounterString InE /*= NULL*/,
CString* pCounterString OutE /*= NULL*/,
int ReasOpt)
: CDialog(CDeEn_M _Template::IDD, pParent)
, ReasoningOption(ReasOpt)

pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString F);

CPoint TailOfInM(InsertionPoint.x - 1.5*TEMPLATE_FLOW_LENGTH, InsertionPoint.y);
CPoint HeadOfOutM(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y);
CPoint HeadOfOutE(InsertionPoint.x, InsertionPoint.y - TEMPLATE_FLOW_LENGTH);

pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint,
pCounterString InM, this->ReasoningOption);

pMaterial_OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM,
pCounterString OutM, this->ReasoningOption);

pEnergy_InE = new CEnergy(NULL, InsertionPoint /*Dummy*/, InsertionPoint,
pCounterString InkE, this->ReasoningOption);

pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutE,
pCounterString OutE, this->ReasoningOption);

pMaterial_InM->pHeadElem = pFunctionBlock;
pMaterial_OutM->pTailElem = pFunctionBlock;
pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_InE->pTailElem = pMaterial_InM;
pEnergy_OutE->pTailElem = pFunctionBlock;

}

CDeEn_M Template::~CDeEn_M_Template()
{
¥

void CDeEn_M Template::DoDataExchange(CDataExchange* pDX)

201

Cbhialog: :DoDataExchange(pDX);

BEGIN_MESSAGE_MAP(CDeEn_M Template, CDialog)
END_MESSAGE_MAP ()

// DeEn_M Template message handlers

#include "stdafx.h"

#include "ConMod2.h"

#include "Distribute_E_Template.h"
#include "afxdialogex.h"

IMPLEMENT_DYNAMIC(CDistribute_E_Template, CDialog)

CDhistribute_E_Template::CDistribute_E_Template(CWnd* pParent /*= NULL*/,
CPoint InsertionPoint /*= (500,500)*/,
CString* pCounterString F /*= NULL*/,
CString* pCounterString InE /*= NULL*/,
CString* pCounterString OutEl /*= NULL*/,
CString* pCounterString OutE2 /*= NULL*/,
int ReasOpt)
: CDialog(CDistribute E_Template::IDD, pParent)
, ReasoningOption(ReasOpt)

pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString F);

CPoint TailOfInE(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutEl(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y -
TEMPLATE_FLOW_LENGTH);

CPoint HeadOfOutE2(InsertionPoint.x + TEMPLATE_FLOW_LENGTH, InsertionPoint.y +
TEMPLATE_FLOW_LENGTH);

pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, pCounterString_InE,
this->ReasoningOption);

pEnergy_OutEl = new CEnergy(NULL, InsertionPoint, HeadOfOutEl,
pCounterString OutEl, this->ReasoningOption);

pEnergy_OutE2 = new CEnergy(NULL, InsertionPoint, HeadOfOutE2,
pCounterString OutE2, this->ReasoningOption);

pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_OutEl->pTailElem = pFunctionBlock;
pEnergy_OutE2->pTailElem = pFunctionBlock;

}

CDistribute E_Template::~CDistribute_E_Template()
{

}
void CDistribute E_Template::DoDataExchange(CDataExchange* pDX)

{
}

CDialog: :DoDataExchange(pDX);

BEGIN_MESSAGE_MAP(CDistribute_E_Template, CDialog)
END_MESSAGE_MAP ()

202

// Distribute_E_Template message handlers

#include "stdafx.h"
#include "ConMod2.h"
#include "Edge.h"
#include "math.h"

CEdge: :CEdge(void)
{
}

CEdge: :CEdge(CPoint TailClick, CPoint HeadClick)

TailPoint = TailClick;

HeadPoint = HeadClick;

GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, ©.5);
StemThickness = THIN;

StemLineFont = PS_SOLID;

HeadSize = EDGE_HEAD_SIZE;
HalfHeadAngle = EDGE_HEAD_HALF_ANGLE;

ComputeAnchorPoints();
pHeadElem = NULL;
pTailElem = NULL;
ThisFlowIsIncomingBaggage
ThisFlowIsOutgoingBaggage

false;
false;

FontSize = GENERIC_FONT_SIZE;

}
CEdge: :~CEdge(void)
{
}
void CEdge::AttachEdgeToNearestAnchor()
{
FontSize = GENERIC_FONT_SIZE;
HeadSize = EDGE_HEAD_SIZE;
if (pTailElem != NULL)
{
// Initialize with any one anchor point - zeroth chosen arbitrarily
long double d = distance(HeadPoint, pTailElem->Anchors[@]);
TailPoint = pTailElem->Anchors[@];
for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor points on
both nodes and edges
{
if (distance(pTailkElem->Anchors[n], HeadPoint) < d)
d = distance(HeadPoint, pTailElem->Anchors[n]);
TailPoint = pTailElem->Anchors[n];
}
}
}

203

if (pHeadElem != NULL)

{
// Initialize with any one anchor point - zeroth chosen arbitrarily
long double d = distance(TailPoint, pHeadElem->Anchors[0]);
this->HeadPoint = pHeadElem->Anchors[0];
for (int n = 1; n <= 15; n++) // Hard coded - 16 anchor points on
both nodes and edges
{
if (distance(pHeadElem->Anchors[n], TailPoint) < d)
{
d = distance(TailPoint, pHeadElem->Anchors[n]);
HeadPoint = pHeadElem->Anchors[n];
}
}
}

if (ThisFlowIsOutgoingBaggage) // i.e., this flow's is a baggage flow and its
pHeadElem (carrier)

// 1is another
flow that is exiting the same function as this one

{

for (int n = @; n <= 15; n++)

{

>pHeadElem->TailPoint)

if (this->pTailElem->AnchorsForBaggageFlows[n] == this-

this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[n + 2];
// The following two conditional statements are special cases
where
// the 1442 = 16 and 15+2 = 17 -th elements do not exist in the
array.
if (this->pTailElem->AnchorsForBaggageFlows[14] == this-
>pHeadElem->TailPoint)
this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[0];
if (this->pTailElem->AnchorsForBaggageFlows[15] == this-
>pHeadElem->TailPoint)
this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[1];
if (this->pTailkElem->AnchorsForBaggageFlows[@] == this-
>pHeadElem->TailPoint)
this->TailPoint = this->pTailElem-
>AnchorsForBaggageFlows[2];

this->HeadPoint = this->pHeadElem->Anchors[5];
// The following two lines improves readability of baggage flows

FontSize = BAGGAGE_FONT_SIZE;
HeadSize = EDGE_HEAD_SIZE / 2;

}
if (ThisFlowIsIncomingBaggage)
for (int n = @; n <= 15; n++)

if (this->pHeadElem->AnchorsForBaggageFlows[n] == this-
>pTailElem->HeadPoint)

204

this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[n + 2];
// The following two conditional statements are special cases
where
// the 1442 = 16 and 15+2 = 17 -th elements do not exist in the
array.
if (this->pHeadElem->AnchorsForBaggageFlows[14] == this-
>pTailElem->HeadPoint)
this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[0];
if (this->pHeadElem->AnchorsForBaggageFlows[15] == this-
>pTailElem->HeadPoint)
this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[1];
if (this->pHeadElem->AnchorsForBaggageFlows[0] == this-
>pTailElem->HeadPoint)
this->HeadPoint = this->pHeadElem-
>AnchorsForBaggageFlows[2];

this->TailPoint = this->pTailElem->Anchors[10];
// The following two lines improves readability of baggage flows

FontSize = BAGGAGE_FONT_SIZE;
HeadSize = EDGE_HEAD_SIZE / 2;

}

}

void CEdge: :DrawOnDC(CDC* pDC)

{

// if (this->IsHidden == false)
{

AttachEdgeToNearestAnchor();

CElement::DrawOnDC(pDC); // Call the drawing function of the parent class - sets
pen color

CPen PenStem;

PenStem.CreatePen(StemLineFont, StemThickness, RGB(PenR, PenG, PenB));
CPen* p0OldPen = pDC->SelectObject(&PenStem);

CPoint* ArrowTerminalPoints = new CPoint[2];

ArrowTerminalPoints[@] = TailPoint;

ArrowTerminalPoints[1] = HeadPoint;

pDC->Polyline(ArrowTerminalPoints, 2);

delete[] ArrowTerminalPoints;

ComputeAnchorPoints(); // Computes the eight anchor points
along the stem of
// the edge
whenever the edge is edited, moved, or whatever.
ResetGeometricCenter(); // Makes sure that the GeometricCenter

is reset between the

205

// Tail and
Head points, when an arrow is moved by grabbing

// Those
terminal points

/*for (int
AnchorInx = 1; AnchorInx <= 16; AnchorInx++)

pDC-
>Ellipse(Anchors[AnchorInx - 1].x - 1, Anchors[AnchorInx - 1].y - 1,

Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx - 1].y + 1);*/

//

// Draw the
HEAD of the arrow using PenHead and BrushHead

//

CPen PenHead;
PenHead.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB));

if (this->pHeadElem == NULL)

{
HeadBrushR = DANGLING_BRUSH_R;
HeadBrushG = DANGLING_BRUSH_G;
HeadBrushB = DANGLING_BRUSH_B;

b

else

{

HeadBrushR = GENERIC_BRUSH_R;
HeadBrushG = GENERIC_BRUSH_G;
HeadBrushB = GENERIC_BRUSH_B;

if (this->IsHidden == true)

{
HeadBrushR = HIDDEN_PEN_R;
HeadBrushG = HIDDEN_PEN_G;
HeadBrushB = HIDDEN_PEN_B;
b

CBrush BrushHead(RGB(HeadBrushR, HeadBrushG, HeadBrushB));
CBrush* pOldBrush = pDC->SelectObject(&BrushHead);

pOldPen = pDC->SelectObject(&PenHead);

double alpha = atan(fabs(double(HeadPoint.y) - double(TailPoint.y)) /
fabs(double(HeadPoint.x) - double(TailPoint.x)));

int X_Factor, Y_Factor;

if (HeadPoint.x >= TailPoint.x)
X_Factor = 1;
else X_Factor = (-1);

if (TailPoint.y >= HeadPoint.y)
Y_Factor = 1;
else Y_Factor = (-1);

206

HeadLeftVertex.x = HeadPoint.x - HeadSize * cos(alpha - HalfHeadAngle) *
X_Factor;

HeadLeftVertex.y = HeadPoint.y + HeadSize * sin(alpha - HalfHeadAngle) *
Y_Factor;

HeadRightVertex.x = HeadPoint.x - HeadSize * cos(alpha + HalfHeadAngle)
* X_Factor;

HeadRightVertex.y = HeadPoint.y + HeadSize * sin(alpha + HalfHeadAngle)
* Y_Factor;

HeadVertexArray[@] = HeadPoint;
HeadVertexArray[1l] = HeadlLeftVertex;
HeadVertexArray[2] = HeadRightVertex;

pDC->Polygon(HeadVertexArray, 3);

!/

CPen PenTail;
PenTail.CreatePen(PS_SOLID, THIN, RGB(PenR, PenG, PenB));

if (this->pTailElem == NULL)

{
TailBrushR = DANGLING_BRUSH_R;
TailBrushG = DANGLING_BRUSH_G;
TailBrushB = DANGLING_BRUSH_B;

¥

else

{
TailBrushR = GENERIC_BRUSH_R;
TailBrushG = GENERIC_BRUSH_G;
TailBrushB = GENERIC_BRUSH_B;

}

if(this->IsHidden==true)

{
TailBrushR = HIDDEN_PEN_R;
TailBrushG = HIDDEN_PEN_G;
TailBrushB = HIDDEN_PEN_B;

}

CBrush BrushTail(RGB(TailBrushR, TailBrushG, TailBrushB));
pOldBrush = pDC->SelectObject(&BrushTail);
pOldPen = pDC->SelectObject(&PenTail);

pDC->Ellipse(TailPoint.x - 4, TailPoint.y - 4, TailPoint.x + 4,
TailPoint.y + 4);

// Put back the old objects, although I do not understand how this
impacts anything.

//

pDC->SelectObject(pOldPen);
pDC->SelectObject(pOldBrush);

}
}
void CEdge: :ComputeAnchorPoints()
{

// First eight poitns - between tail and center

for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)

{

Anchors[AnchorInx - 1] = *InterpolatePoints(TailPoint, HeadPoint, (©.5 /

9 * AnchorInx));

}

// Second eight popints - between center and head
for (int AnchorInx = 1; AnchorInx <= 8; AnchorInx++)

{
Anchors[AnchorInx + 7] = *InterpolatePoints(TailPoint, HeadPoint, (©.5 +
0.5 / 9 * AnchorInx));

}
}
void CEdge::ResetGeometricCenter()
{
GeometricCenter = *this->InterpolatePoints(this->HeadPoint, this->TailPoint,
0.5);
i

#include "stdafx.h"
#include "ConMod2.h"
#include "Element.h"

CElement::CElement(void)

{
IsHighlighted = false;
IsSelected = false;
IsResidual = false;
IsHidden = false;
PenR = GENERIC_PEN_R;
PenG = GENERIC_PEN_G;
PenB = GENERIC_PEN_B;
GrabHandle = @; // NONE
}
CElement: :~CElement(void)
{
}
void CElement::DrawOnDC(CDC* pDC)
{
|/ ==
// Decide the color, based on HIGHLIGHT, SELECTED, or GENERIC status
|/ ==

if (this->IsHighlighted) // This ORDER of checks is very important. If
{ // changed, this will
change the highlight and

208

this->PenR = PRESELECTION_PEN_R; // unhighlight behavior of energies

this->PenG = PRESELECTION_PEN_G;
this->PenB = PRESELECTION_PEN_B;

¥

else if (this->IsSelected)

{
this->PenR = SELECTION_PEN_R;
this->PenG = SELECTION_PEN_G;
this->PenB = SELECTION_PEN_B;

¥

else if (this->IsResidual)

{
this->PenR = RESIDUAL_PEN_R;
this->PenG = RESIDUAL_PEN_G;
this->PenB = RESIDUAL_PEN_B;

¥

else if (this->IsHidden)

{
this->PenR = HIDDEN_PEN_R;
this->PenG = HIDDEN_PEN_G;
this->PenB = HIDDEN_PEN_B;

}

else

{
this->PenR = GENERIC_PEN_R;
this->PenG = GENERIC_PEN_G;
this->PenB = GENERIC_PEN_B;

}

// Energize M _Template.cpp : implementation file
//

#include "stdafx.h"

#include "ConMod2.h"

#include "Energize_M_Template.h"
#include "afxdialogex.h"

// Energize_M_Template dialog
IMPLEMENT_DYNAMIC(CEnergize_M_Template, CDialog)

CEnergize_M_Template::CEnergize_M_Template(CWnd* pParent/* = NULL*/,
CPoint InsertionPoint /*= (500,500)*/,
CString* pCounterString F /*= NULL*/,
CString* pCounterString InM /*= NULL*/,
CString* pCounterString_OutM /*= NULL*/,
CString* pCounterString_InE /*= NULL*/,
CString* pCounterString_OutE /*= NULL*/,
int ReasOpt)
: CDialog(CEnergize_M_Template::IDD, pParent)
, ReasoningOption(ReasOpt)

pFunctionBlock = new CFunction(NULL, InsertionPoint, pCounterString F);

209

CPoint TailOfInM(InsertionPoint.x - TEMPLATE_FLOW_LENGTH, InsertionPoint.y);

CPoint HeadOfOutM(InsertionPoint.x + 1.5*TEMPLATE_FLOW_LENGTH,
InsertionPoint.y);

CPoint TailOfInE(InsertionPoint.x, InsertionPoint.y - TEMPLATE_FLOW_LENGTH);

pMaterial_InM = new CMaterial(NULL, TailOfInM, InsertionPoint,
pCounterString_InM, this->ReasoningOption);

pMaterial OutM = new CMaterial(NULL, InsertionPoint, HeadOfOutM,
pCounterString_OutM, this->ReasoningOption);

pEnergy_InE = new CEnergy(NULL, TailOfInE, InsertionPoint, pCounterString_InE,
this->ReasoningOption);

pEnergy_OutE = new CEnergy(NULL, InsertionPoint, HeadOfOutM /*Dummy*/,
pCounterString_OutE, this->ReasoningOption);

pMaterial_InM->pHeadElem = pFunctionBlock;
pMaterial_OutM->pTailElem = pFunctionBlock;
pEnergy_InE->pHeadElem = pFunctionBlock;
pEnergy_OutE->pTailElem = pFunctionBlock;
pEnergy_OutE->pHeadElem = pMaterial_OutM;
if (pEnergy_InE->IsHidden == true)

pEnergy_OutE->IsHidden = true;
pMaterial_OutM->IsHidden = true;

¥
¥
CEnergize M Template::~CEnergize M Template()
{
¥
void CEnergize M Template::DoDataExchange(CDataExchange* pDX)
{
Cbhialog: :DoDataExchange(pDX);
¥

BEGIN_MESSAGE_MAP(CEnergize_M_Template, CDialog)
END_MESSAGE_MAP ()

// Energize_M Template message handlers

#include "stdafx.h"
#include "ConMod2.h"
#include "Env.h"
#include "afxdialogex.h"
#include "geometry.h"

// CEnv dialog
IMPLEMENT_DYNAMIC(CEnv, CDialog)

CEnv::CEnv(CWnd* pParent, CPoint InsertionPoint, CString* pCounterString)
: CDialog(CEnv::IDD, pParent)
, GivenName(_T("Env") + *pCounterString)

GeometricCenter = InsertionPoint;
ComputeBlockCoordinates();

210

DoModal(); // Launches modal dialog

}

CEnv: :~CEnv()

{

}

void CEnv::DoDataExchange(CDataExchange* pDX)

{
CDhialog: :DoDataExchange(pDX);
DDX_Text(pDX, IDC_ENV_NAME, GivenName);

}

void CEnv::ComputeBlockCoordinates()
{

Anchors[@] = CPoint((GeometricCenter.x + ENV_SIZE), (GeometricCenter.y));

Anchors[1] = CPoint((GeometricCenter.x), (GeometricCenter.y + ENV_SIZE *
0.866));

Anchors[2] = CPoint((GeometricCenter.x - ENV_SIZE), (GeometricCenter.y));

Anchors[3] = CPoint((GeometricCenter.x), (GeometricCenter.y - ENV_SIZE *
0.866));

Anchors[4] = CPoint((GeometricCenter.x + ©.5*ENV_SIZE), (GeometricCenter.y +
ENV_SIZE * 0.866));

Anchors[5] = CPoint((GeometricCenter.x - @.5*ENV_SIZE), (GeometricCenter.y +
ENV_SIZE * 0.866));

Anchors[6] = CPoint((GeometricCenter.x - @.5*ENV_SIZE), (GeometricCenter.y
ENV_SIZE * 0.866));

Anchors[7] = CPoint((GeometricCenter.x + ©.5*ENV_SIZE), (GeometricCenter.y
ENV_SIZE * 0.866));

Anchors[8] = CPoint((GeometricCenter.x + ©.75*ENV_SIZE), (GeometricCenter.y +
ENV_SIZE * 0.433));

Anchors[9] = CPoint((GeometricCenter.x - @.75*ENV_SIZE), (GeometricCenter.y +
ENV_SIZE * 0.433));

Anchors[10] = CPoint((GeometricCenter.x - ©.75*ENV_SIZE), (GeometricCenter.y -
ENV_SIZE * 0.433));

Anchors[11] = CPoint((GeometricCenter.x + ©.75*ENV_SIZE), (GeometricCenter.y -
ENV_SIZE * 0.433));

Anchors[12] = Anchors[0];

Anchors[13] = Anchors[0];

Anchors[14] = Anchors[0];

Anchors[15] = Anchors[0];

AnchorsForBaggageFlows[@] = Anchors[0];
AnchorsForBaggageFlows[1] = Anchors[11];
AnchorsForBaggageFlows[2] = Anchors[7];
AnchorsForBaggageFlows[3] = Anchors[3];
AnchorsForBaggageFlows[4] = Anchors[6];
AnchorsForBaggageFlows[5] = Anchors[10];
AnchorsForBaggageFlows[6] = Anchors[2];
AnchorsForBaggageFlows[7] = Anchors[9];
AnchorsForBaggageFlows[8] = Anchors[5];
AnchorsForBaggageFlows[9] = Anchors[1];
AnchorsForBaggageFlows[10] = Anchors[4];
AnchorsForBaggageFlows[11] = Anchors[8];
AnchorsForBaggageFlows[12] = Anchors[@];
AnchorsForBaggageFlows[13] = Anchors[0];
AnchorsForBaggageFlows[14] = Anchors[0];
AnchorsForBaggageFlows[15] = Anchors[0];

211

}

void CEnv::DrawOnDC(CDC* pDC)

{

CElement::DrawOnDC(pDC); // Call the drawing function of the parent class

pen color

if (this->NoInputAttached && this->NoOutputAttached)

{
BrushR DANGLING_BRUSH_R;
BrushG DANGLING_BRUSH_G;
BrushB DANGLING_BRUSH_B;

}

else

{
BrushR ENV_BRUSH_R;
BrushG ENV_BRUSH_G;
BrushB = ENV_BRUSH_B;

}

CPen Pen;

Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB));

CPen* pOldPen =

pDC->SelectObject(&Pen);

CBrush Brush(RGB(BrushR, BrushG, BrushB));
CBrush* pOldBrush = pDC->SelectObject(&Brush);

ComputeBlockCoordinates();

CPoint AnchorsForHexagon[6];

AnchorsForHexagon[@] = Anchors[0];
AnchorsForHexagon[1] = Anchors[4];
AnchorsForHexagon[2] = Anchors[5];
AnchorsForHexagon[3] = Anchors[2];
AnchorsForHexagon[4] = Anchors[6];
AnchorsForHexagon[5] = Anchors[7];

pDC->Polygon(AnchorsForHexagon, 6);

//pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,
//GeometricCenter.x + 2, GeometricCenter.y + 2);

/*
for (int AnchorlInx =

1; AnchorInx <= 16; AnchorInx++)

pDC->Ellipse(Anchors[AnchorInx - 1].x - 1, Anchors[AnchorInx - 1].y - 1,
Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx - 1].y + 1);*/

// Initializes a CFont object with the specified characteristics.

CFont font;
VERIFY(font.CreateFont(
16,
o,
o,
o,
FW_NORMAL,
FALSE,
FALSE,
o,
ANSI_CHARSET,
OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,

nHeight
nWidth
nEscapement
nOrientation
nWeight
bItalic
bUnderline
cStrikeOut
nCharSet
nOutPrecision
nClipPrecision
nQuality

- sets

DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
_T("Arial"))); // lpszFacename

CFont* def_font = pDC->SelectObject(&font);
pDC->SetTextAlign(TA_CENTER | TA_BASELINE);

pDC->TextOut (GeometricCenter.x, GeometricCenter.y, GivenName);
pDC->SelectObject(def_font);

font.DeleteObject();
pDC->SelectObject(pOldPen);

pDC->SelectObject(pOldBrush);
¥

BEGIN_MESSAGE_MAP(CEnv, CDialog)
END_MESSAGE_MAP ()

// CEnv message handlers

void CEnv::0OnEnChangeEdit1()

{
// TODO: If this is a RICHEDIT control, the control will not
// send this notification unless you override the __ super::0OnInitDialog()
// function and call CRichEditCtrl().SetEventMask()
// with the ENM_CHANGE flag ORed into the mask.
// TODO: Add your control notification handler code here
)3

#include "stdafx.h"
#include "ConMod2.h"
#include "Function.h"
#include "afxdialogex.h"

// CFunction dialog

IMPLEMENT_DYNAMIC(CFunction, CDialog)

CFunction::CFunction(CWnd* pParent, CPoint InsertionPoint, CString* pCounterString)
: CDialog(CFunction::IDD, pParent)

, GivenName(_T("F") + *pCounterString) // Populates the string in the
GivenName field - default
{
GeometricCenter = InsertionPoint;
ComputeBlockCoordinates();
Efficiency = 0;
DoModal(); // Launches modal dialog
}
CFunction::~CFunction()
{
}
void CFunction::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);

213

element

}

DDX_Text(pDX, IDC_FUNCTION_NAME, GivenName); // Connects variable with dialog

BEGIN_MESSAGE_MAP(CFunction, CDialog)

END_MESSAGE_MAP ()

void CFunction::ComputeBlockCoordinates()

{

left = GeometricCenter.x - BLOCK_LENGTH / 2;
right = GeometricCenter.x + BLOCK_LENGTH / 2;
top = GeometricCenter.y - BLOCK_HEIGHT / 2;
bottom = GeometricCenter.y + BLOCK_HEIGHT / 2;

Anchors[@] = CPoint(right, (top + bottom) / 2); // E

Anchors[4] = CPoint(right, top); // NE
Anchors[1] = CPoint((right + left) / 2, top); // N

Anchors[5] = CPoint(left, top); // NW
Anchors[2] = CPoint(left, (top + bottom) / 2); // W

Anchors[6] = CPoint(left, bottom); // SW
Anchors[3] = CPoint((left + right) / 2, bottom); // S

Anchors[7] = CPoint(right, bottom); // SE
Anchors[8] = CPoint(right, top + BLOCK_HEIGHT / 4); // ENE
Anchors[9] = CPoint(right - BLOCK_LENGTH / 4, top); // NNE
Anchors[10] = CPoint(left + BLOCK_LENGTH / 4, top); // NNW
Anchors[11] = CPoint(left, top + BLOCK_HEIGHT / 4); // WNW
Anchors[12] = CPoint(left, bottom - BLOCK_HEIGHT / 4); // WSW
Anchors[13] = CPoint(left + BLOCK_LENGTH / 4, bottom); // SSW

Anchors[14] = CPoint(right - BLOCK_LENGTH / 4, bottom);// SSE
Anchors[15] = CPoint(right, bottom - BLOCK_HEIGHT / 4); // ESE

// The following lines reorders the anchors to a
different list,

// AnchorsForBaggageFlows. This list is
scrolled through when a

// baggage flow (incoming or outgoing) needs to
be attached to

// the function with only two nodes apart from
where the main

// flow is attached.

AnchorsForBaggageFlows[@] = Anchors[0];
AnchorsForBaggageFlows[1] = Anchors[8];
AnchorsForBaggageFlows[2] = Anchors[4];
AnchorsForBaggageFlows[3] = Anchors[9];
AnchorsForBaggageFlows[4] = Anchors[1];
AnchorsForBaggageFlows[5] = Anchors[10];
AnchorsForBaggageFlows[6] = Anchors[5];
AnchorsForBaggageFlows[7] = Anchors[11];

AnchorsForBaggageFlows[8]

= Anchors[2];

214

AnchorsForBaggageFlows[9] = Anchors[12];
AnchorsForBaggageFlows[10] = Anchors[6];
AnchorsForBaggageFlows[11] = Anchors[13];
AnchorsForBaggageFlows[12] = Anchors[3];
AnchorsForBaggageFlows[13] = Anchors[14];
AnchorsForBaggageFlows[14] = Anchors[7];
AnchorsForBaggageFlows[15] = Anchors[15];
}

void CFunction::DrawOnDC(CDC* pDC)
{

CElement::DrawOnDC(pDC); // Call the drawing function of the parent class
- sets pen color

if (this->NoInputAttached && this->NoOutputAttached)

{
BrushR = DANGLING_BRUSH_R;
BrushG = DANGLING_BRUSH_G;
BrushB = DANGLING_BRUSH_B;

¥

else

{
BrushR = FUNCTION_BRUSH_R;
BrushG = FUNCTION_BRUSH_G;
BrushB = FUNCTION_BRUSH_B;

¥

if (this->IsHidden)

{
BrushR = HIDDEN_PEN_R;
BrushG = HIDDEN_PEN_G;
BrushB = HIDDEN_PEN_B;

}

CPen Pen;

Pen.CreatePen(PS_SOLID, 2, RGB(PenR, PenG, PenB));
CPen* p0ldPen = pDC->SelectObject(&Pen);

CBrush Brush(RGB(BrushR, BrushG, BrushB));

CBrush* pOldBrush = pDC->SelectObject(&Brush);

ComputeBlockCoordinates();
CRect VerbRect(left, top, right, bottom);
pDC->Rectangle(VerbRect);

//pDC->Ellipse(GeometricCenter.x - 2, GeometricCenter.y - 2,
//GeometricCenter.x + 2, GeometricCenter.y + 2);

/*

for (int AnchorInx = 1; AnchorInx <= 16; AnchorInx++)
pDC->Ellipse(Anchors[AnchorInx - 1].x - 1, Anchors[AnchorInx - 1].y - 1,
Anchors[AnchorInx - 1].x + 1, Anchors[AnchorInx - 1].y + 1);*/

// Initializes a CFont object with the specified characteristics.
CFont font;
VERIFY(font.CreateFont(

16, // nHeight
o, // nWidth
Q, // nEscapement

215

0 // nOrientation

B

FW_NORMAL, // nWeight

FALSE, // bItalic

FALSE, // bUnderline
0, // cStrikeOut
ANSI_CHARSET, // nCharSet
OUT_DEFAULT_PRECIS, // nOutPrecision
CLIP_DEFAULT_PRECIS, // nClipPrecision
DEFAULT_QUALITY, // nQuality
DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
_T("Arial™))); // lpszFacename

CFont* def_font = pDC->SelectObject(&font);
pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
//if (this->IsHidden == false)

{
pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName);
pDC->SelectObject(def_font);

}

font.DeleteObject();

pDC->SelectObject(pOldPen);
pDC->SelectObject(pOldBrush);

#include "stdafx.h"
#include "ConMod2.h"
#include "Geometry.h"

#define GRID_SIZE 20
CGeometry::CGeometry(void)

{
}
CGeometry: :~CGeometry(void)
{
}
int CGeometry::RoundToInteger(long Coordinate, int GridSize)
{
int GridCountLower = int(Coordinate) / GridSize;
if ((Coordinate - GridCountLower * GridSize) <= (GridSize / 2))
return (GridCountLower * GridSize);
else return (GridCountLower * GridSize + GridSize);
}
CPoint CGeometry::SnapToGrid(CPoint p)
{
return CPoint(RoundToInteger(p.x, GRID_SIZE), RoundToInteger(p.y, GRID_SIZE));
}
long CGeometry::distance(CPoint pl, CPoint p2)
{
return sqrt(pow((pl.x - p2.x), 2.0) + pow((pl.y - p2.y), 2.0));
}

CPoint* CGeometry::InterpolatePoints(CPoint pl, CPoint p2, double ratio)

{

long x_new = ((p2.x - pl.x) * ratio) + pl.x;

216

long y_new = ((p2.y - pl.y) * ratio) + pl.y;
CPoint NewPoint(x_new, y_new);
return &NewPoint;

// MainFrm.cpp : implementation of the CMainFrame class

//

#include "stdafx.h"
#include "ConMod2.h"

#include "MainFrm.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CMainFrame
IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWndEx)

const int iMaxUserToolbars = 10;
const UINT uiFirstUserToolBarId = AFX_IDW_CONTROLBAR_FIRST + 40;
const UINT uilLastUserToolBarId = uiFirstUserToolBarId + iMaxUserToolbars - 1;

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWndEx)
ON_WM_CREATE ()
ON_COMMAND (ID_WINDOW_MANAGER, &CMainFrame::0OnWindowManager)
ON_COMMAND(ID_VIEW_CUSTOMIZE, &CMainFrame::0OnViewCustomize)
ON_REGISTERED_MESSAGE (AFX_WM_CREATETOOLBAR, &CMainFrame::0OnToolbarCreateNew)
ON_COMMAND_RANGE (ID_VIEW_APPLOOK_WIN_2000, ID_VIEW_APPLOOK_WINDOWS_7,
&CMainFrame: :0nApplicationLook)
ON_UPDATE_COMMAND_UI_RANGE (ID_VIEW_APPLOOK_WIN_2000, ID_VIEW_APPLOOK_WINDOWS_7,
&CMainFrame: :0nUpdateApplicationLook)
ON_WM_SETTINGCHANGE ()
END_MESSAGE_MAP ()

static UINT indicators[] =

{
ID_SEPARATOR, // status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,
¥

// CMainFrame construction/destruction

CMainFrame: :CMainFrame()

{

// TODO: add member initialization code here
theApp.m_nAppLook = theApp.GetInt(_T("ApplicationLook"),
ID_VIEW APPLOOK_VS_2008);

}

CMainFrame: :~CMainFrame()

{
}

int CMainFrame::0nCreate(LPCREATESTRUCT lpCreateStruct)

217

if (CMDIFrameWndEx::OnCreate(lpCreateStruct) == -1)
return -1;

BOOL bNameValid;
CMDITabInfo mdiTabParams;

mdiTabParams.m_style = CMFCTabCtrl::STYLE_3D_ONENOTE; // other styles
available...

mdiTabParams.m_bActiveTabCloseButton = TRUE; // set to FALSE to place close
button at right of tab area

mdiTabParams.m_bTabIcons = FALSE; // set to TRUE to enable document icons on
MDI taba

mdiTabParams.m_bAutoColor = TRUE; // set to FALSE to disable auto-coloring of
MDI tabs

mdiTabParams.m_bDocumentMenu = TRUE; // enable the document menu at the right
edge of the tab area

EnableMDITabbedGroups(TRUE, mdiTabParams);

if (!m_wndMenuBar.Create(this))

{
TRACE@("Failed to create menubar\n");
return -1; // fail to create

}

m_wndMenuBar.SetPaneStyle(m_wndMenuBar.GetPaneStyle() | CBRS_SIZE_DYNAMIC |
CBRS_TOOLTIPS | CBRS_FLYBY);

// prevent the menu bar from taking the focus on activation
CMFCPopupMenu: :SetForceMenuFocus (FALSE) ;

if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE | CBRS_TOP
| CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
Im_wndToolBar.LoadToolBar (theApp.m_bHiColorIcons ? IDR_MAINFRAME_256 :
IDR_MAINFRAME))
{
TRACEO("Failed to create toolbar\n");
return -1; // fail to create

}
// Custom ConMod2 toolbar controls: PRIMITIVES TOOLBAR

if (!m_primitivesToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE |
CBRS_LEFT | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
Im_primitivesToolBar.LoadToolBar(IDR_PRIMITIVES, @, ©, TRUE, @, @0, 0))
{

TRACEO("Failed to create the PRIMITIVES toolbar\n");
return -1; // fail to create

}

//m_primitivesToolBar.EnableDocking(CBRS_ALIGN_ANY);
//EnableDocking(CBRS_ALIGN_ANY);
//DockPane(&n_primitivesToolBar);

// Custom ConMod2 toolbar controls: REASONING TOOLBAR
if (!m_reasoningToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE |
CBRS_RIGHT | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
Im_reasoningToolBar.LoadToolBar(IDR_REASONING, ©, @, TRUE, @, 0, 9))
{

218

TRACE@("Failed to create the REASONING toolbar\n");
return -1; // fail to create

}

//m_reasoningToolBar.EnableDocking(CBRS_ALIGN_ANY);
//EnableDocking (CBRS_ALIGN_ANY);
//DockPane(&m_reasoningToolBar);

// Custom ConMod2 toolbar controls: FEATURES TOOLBAR

if (!m_featuresToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE |
CBRS_BOTTOM | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
Im_featuresToolBar.LoadToolBar(IDR_FEATURES, @, ©, TRUE, ©, 0, 0))
{
TRACEO("Failed to create FEATURES toolbar\n");
return -1; // fail to create

}

//m_featuresToolBar.EnableDocking(CBRS_ALIGN_ANY);
//EnableDocking(CBRS_ALIGN_ANY);
//DockPane(&n_featuresToolBar);

CString strToolBarName;

bNameValid = strToolBarName.LoadString(IDS_TOOLBAR_STANDARD);
ASSERT (bNameValid);

m_wndToolBar.SetWindowText (strToolBarName);

CString strToolBarName_PRIMITIVES;

bNameValid = strToolBarName_PRIMITIVES.LoadString(IDS_TOOLBAR_PRIMITIVES);
ASSERT(bNameValid);
m_primitivesToolBar.SetWindowText(strToolBarName_PRIMITIVES);

CString strToolBarName_REASONING;

bNameValid = strToolBarName_REASONING.LoadString(IDS_TOOLBAR_REASONING);
ASSERT (bNameValid);

m_reasoningToolBar.SetWindowText (strToolBarName_REASONING);

CString strToolBarName_FEATURES;

bNameValid = strToolBarName_FEATURES.LoadString(IDS_TOOLBAR_FEATURES);
ASSERT (bNameValid);
m_primitivesToolBar.SetWindowText(strToolBarName_FEATURES);

CString strCustomize;

bNameValid = strCustomize.lLoadString(IDS_TOOLBAR_CUSTOMIZE);

ASSERT (bNameValid);

m_wndToolBar.EnableCustomizeButton(TRUE, ID_VIEW CUSTOMIZE, strCustomize);

// Allow user-defined toolbars operations:
InitUserToolbars(NULL, uiFirstUserToolBarId, uilLastUserToolBarId);

if (!m_wndStatusBar.Create(this))

{
TRACEO("Failed to create status bar\n");

return -1; // fail to create

219

m_wndStatusBar.SetIndicators(indicators, sizeof(indicators)/sizeof(UINT));
// TODO: Delete these five lines if you don't want the toolbar and menubar to be

dockable

m_wndMenuBar.EnableDocking (CBRS_ALIGN_ANY);
m_wndToolBar.EnableDocking (CBRS_ALIGN_ANY);
m_primitivesToolBar.EnableDocking(CBRS_ALIGN_ANY);
m_reasoningToolBar.EnableDocking(CBRS_ALIGN_ANY);
m_featuresToolBar.EnableDocking(CBRS_ALIGN_ANY);

EnableDocking(CBRS_ALIGN_ANY);

DockPane(&n_wndMenuBar) ;
DockPane(&n_wndToolBar);
DockPane(&m_primitivesToolBar);
DockPane (&m_reasoningToolBar);
DockPane(&m_featuresToolBar);

// enable Visual Studio 2005 style docking window behavior
CDhockingManager: :SetDockingMode (DT_SMART);

// enable Visual Studio 2005 style docking window auto-hide behavior
EnableAutoHidePanes(CBRS_ALIGN_ANY);

// Load menu item image (not placed on any standard toolbars):
CMFCToolBar: :AddToolBarForImageCollection(IDR_MENU_IMAGES,

theApp.m_bHiColorIcons ? IDB_MENU_IMAGES_24 : 0);

// create docking windows

if (!CreateDockingWindows())

{
TRACE@("Failed to create docking windows\n");
return -1;

}

m_wndFileView.EnableDocking(CBRS_ALIGN_ANY);
m_wndClassView.EnableDocking(CBRS_ALIGN_ANY);

DockPane (&m_wndFileView);

CDockablePane* pTabbedBar = NULL;
m_wndClassView.AttachToTabWnd(&m_wndFileView, DM_SHOW, TRUE, &pTabbedBar);
m_wndOutput.EnableDocking (CBRS_ALIGN_ANY);

DockPane(&n_wndOutput);

m_wndProperties.EnableDocking (CBRS_ALIGN_ANY);

DockPane(&n_wndProperties);

// set the visual manager and style based on persisted value
OnApplicationLook(theApp.m_nAppLook);

// Enable enhanced windows management dialog
EnableWindowsDialog(ID_WINDOW_MANAGER, ID_WINDOW_MANAGER, TRUE);

// Enable toolbar and docking window menu replacement
EnablePaneMenu(TRUE, ID_VIEW_CUSTOMIZE, strCustomize, ID_VIEW_TOOLBAR);

// enable quick (Alt+drag) toolbar customization
CMFCToolBar: :EnableQuickCustomization();

if (CMFCToolBar::GetUserImages() == NULL)
{
// load user-defined toolbar images
if (m_UserImages.Load(T(".\\UserImages.bmp")))

220

}

CMFCToolBar: :SetUserImages(&m_UserImages);

// enable menu personalization (most-recently used commands)

// TODO: define your own basic commands, ensuring that each pulldown menu has at

least one basic command.
CList<UINT, UINT> lstBasicCommands;

1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
.AddTail(ID_VIEW_APPLOOK_WINDOWS_7);

1stBasicCommands

1stBasicCommands.
1stBasicCommands.
1stBasicCommands.
1stBasicCommands.

AddTail(ID_FILE_NEW);
AddTail(ID_FILE_OPEN);
AddTail(ID_FILE_SAVE);
AddTail(ID_FILE_PRINT);
AddTail(ID_APP_EXIT);
AddTail(ID_EDIT CUT);

AddTail(ID_EDIT PASTE);

AddTail(ID_EDIT UNDO);
AddTail(ID_APP_ABOUT);
AddTail(ID_VIEW STATUS BAR);
AddTail(ID_VIEW TOOLBAR);
AddTail(ID_VIEW APPLOOK_OFF 2003);
AddTail(ID_VIEW APPLOOK_VS_2005);
AddTail(ID_VIEW_APPLOOK_OFF_2007 BLUE);
AddTail(ID_VIEW APPLOOK_OFF 2007 SILVER);
AddTail(ID_VIEW APPLOOK_OFF_2007 BLACK);
AddTail(ID_VIEW_APPLOOK_OFF_2007 AQUA);

AddTail(ID_SORTING_SORTALPHABETIC);
AddTail(ID_SORTING_SORTBYTYPE);
AddTail(ID_SORTING_SORTBYACCESS);
AddTail(ID_SORTING_GROUPBYTYPE);

CMFCToolBar: :SetBasicCommands(1lstBasicCommands);

// Switch the order of document name and application name on the window title
bar. This

// improves the usability of the taskbar because the document name is visible
with the thumbnail.

ModifyStyle(@, FWS_PREFIXTITLE);

return 0;

}

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)

if(!CMDIFrameWndEx::PreCreateWindow(cs))

return FALSE;
// TODO: Modify the Window class or styles here by modifying
// the CREATESTRUCT cs

return TRUE;
}

BOOL CMainFrame::CreateDockingWindows()

{
BOOL bNameValid;

// Create class view
CString strClassView;

221

bNameValid = strClassView.LoadString(IDS_CLASS_VIEW);

ASSERT (bNameValid);

if (!m_wndClassView.Create(strClassView, this, CRect(@, ©, 200, 200), TRUE,
ID_VIEW_CLASSVIEW, WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CBRS_LEFT
| CBRS_FLOAT_MULTI))

{
TRACE@("Failed to create Class View window\n");

return FALSE; // failed to create
}

// Create file view

CString strFileView;

bNameValid = strFileView.LoadString(IDS_FILE_VIEW);

ASSERT (bNameValid);

if (!m_wndFileView.Create(strFileview, this, CRect(e, ©, 200, 200), TRUE,
ID_VIEW _FILEVIEW, WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CBRS_LEFT|
CBRS_FLOAT_MULTI))

{
TRACEO("Failed to create File View window\n");

return FALSE; // failed to create
}

// Create output window

CString strOutputWnd;

bNameValid = strOutputWnd.LoadString(IDS_OUTPUT_WND);

ASSERT (bNameValid);

if (!m_wndOutput.Create(strOutputWnd, this, CRect(@, o, 100, 100), TRUE,
ID_VIEW OUTPUTWND, WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN |
CBRS_BOTTOM | CBRS_FLOAT_MULTI))

{

TRACEO("Failed to create Output window\n");
return FALSE; // failed to create

}

// Create properties window

CString strPropertieshnd;

bNameValid = strPropertiesWnd.LoadString(IDS_PROPERTIES_WND);

ASSERT (bNameValid);

if (!m_wndProperties.Create(strPropertiesWnd, this, CRect(@, 0, 200, 200), TRUE,
ID_VIEW_PROPERTIESWND, WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN |
CBRS_RIGHT | CBRS_FLOAT MULTI))

{
TRACEO("Failed to create Properties window\n");

return FALSE; // failed to create
}

SetDockingWindowIcons(theApp.m_bHiColorIcons);
return TRUE;

}

void CMainFrame::SetDockingWindowIcons(BOOL bHiColorIcons)

{

HICON hFileViewIcon = (HICON) ::LoadImage(::AfxGetResourceHandle(),
MAKEINTRESOURCE (bHiColorIcons ? IDI_FILE_VIEW_HC : IDI_FILE_VIEW), IMAGE_ICON,
: :GetSystemMetrics(SM_CXSMICON), ::GetSystemMetrics(SM_CYSMICON), 0);

m_wndFileView.SetIcon(hFileViewIcon, FALSE);

222

HICON hClassViewIcon = (HICON) ::LoadImage(::AfxGetResourceHandle(),
MAKEINTRESOURCE (bHiColorIcons ? IDI_CLASS_VIEW_HC : IDI_CLASS_VIEW), IMAGE_ICON,
: :GetSystemMetrics(SM_CXSMICON), ::GetSystemMetrics(SM_CYSMICON), 0);

m_wndClassView.SetIcon(hClassViewIcon, FALSE);

HICON hOutputBarIcon = (HICON) ::LoadImage(::AfxGetResourceHandle(),
MAKEINTRESOURCE (bHiColorIcons ? IDI_OUTPUT_WND_HC : IDI_OUTPUT_WND), IMAGE_ICON,
: :GetSystemMetrics(SM_CXSMICON), ::GetSystemMetrics(SM_CYSMICON), 0);

m_wndOutput.SetIcon(hOutputBarIcon, FALSE);

HICON hPropertiesBarIcon = (HICON) ::LoadImage(::AfxGetResourceHandle(),
MAKEINTRESOURCE (bHiColorIcons ? IDI_PROPERTIES _WND _HC : IDI_PROPERTIES_WND), IMAGE_ICON,
: :GetSystemMetrics(SM_CXSMICON), ::GetSystemMetrics(SM_CYSMICON), 0);

m_wndProperties.SetIcon(hPropertiesBarIcon, FALSE);

UpdateMDITabbedBarsIcons();
}

// CMainFrame diagnostics

#ifdef _DEBUG
void CMainFrame::AssertValid() const

{
CMDIFrameWndEx: :AssertValid();
}
void CMainFrame: :Dump(CDumpContext& dc) const
{

CMDIFrameWndEx: :Dump(dc);

#endif //_DEBUG
// CMainFrame message handlers

void CMainFrame::OnWindowManager()

{
}

ShowWindowsDialog();

void CMainFrame::0nViewCustomize()

{

CMFCToolBarsCustomizeDialog* pDlgCust = new CMFCToolBarsCustomizeDialog(this,
TRUE /* scan menus */);

pDlgCust->EnableUserDefinedToolbars();

pDlgCust->Create();

}

LRESULT CMainFrame::0nToolbarCreateNew(WPARAM wp, LPARAM 1p)

{

LRESULT lres = CMDIFrameWndEx::0nToolbarCreateNew(wp,1lp);
if (lres == 0)

return 0;

}

CMFCToolBar* pUserToolbar = (CMFCToolBar*)lres;
ASSERT_VALID(pUserToolbar);

BOOL bNameValid;
CString strCustomize;

223

}

bNameValid = strCustomize.loadString(IDS_TOOLBAR_CUSTOMIZE);
ASSERT(bNameValid);

pUserToolbar->EnableCustomizeButton(TRUE, ID_VIEW_CUSTOMIZE, strCustomize);
return lres;

void CMainFrame::0nApplicationLook(UINT id)

{

CWaitCursor wait;

theApp.m_nAppLook = id;

switch (theApp.m_nAppLook)

iase ID_VIEW_APPLOOK_WIN_2000:
CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS(CMFCVisualManager));
break;

case ID_VIEW_APPLOOK_OFF_XP:

CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS(CMFCVisualManagerOfficexP));
break;

case ID_VIEW_APPLOOK_WIN_XP:
CMFCVisualManagerWindows: :m_b3DTabsXPTheme = TRUE;

CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerWindows));
break;

case ID_VIEW APPLOOK_OFF_2003:
CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerOffice2003))

CDhockingManager: :SetDockingMode(DT_SMART);
break;

case ID_VIEW APPLOOK_VS_2005:

CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerVS2005));
CDockingManager: :SetDockingMode (DT_SMART);
break;

case ID_VIEW_APPLOOK_VS_2008:

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerVS2008));
CDockingManager: :SetDockingMode (DT_SMART);
break;

case ID_VIEW_APPLOOK_WINDOWS 7:

CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS(CMFCVisualManageriWindows?7));
CDockingManager: :SetDockingMode (DT_SMART);

break;

default:
switch (theApp.m_nAppLook)

case ID VIEW APPLOOK OFF 2007 BLUE:

224

CMFCVisualManagerOffice2007: :SetStyle(CMFCVisualManagerOffice2007::0ffice2007_Lu
naBlue);
break;
case ID_VIEW_APPLOOK_OFF_2007_BLACK:
CMFCVisualManagerOffice2007: :SetStyle(CMFCVisualManagerOffice2007::0ffice2007_0b
sidianBlack);
break;

case ID_VIEW APPLOOK_OFF 2007 SILVER:

CMFCVisualManagerOffice2007: :SetStyle(CMFCVisualManagerOffice2007: :0ffice2007_Si

lver);
break;
case ID_VIEW APPLOOK_OFF_ 2007 AQUA:
CMFCVisualManagerOffice2007: :SetStyle(CMFCVisualManagerOffice2007::0ffice2007_Aq
ua);

break;

CMFCVisualManager: :SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerOffice2007))

CDhockingManager: :SetDockingMode(DT_SMART);
¥
m_wndOutput.UpdateFonts();
RedrawWindow(NULL, NULL, RDW_ALLCHILDREN | RDW_INVALIDATE | RDW_UPDATENOW |
RDW_FRAME | RDW_ERASE);

theApp.WriteInt(_T("ApplicationLook"), theApp.m_nAppLook);

}
void CMainFrame::OnUpdateApplicationLook(CCmdUI* pCmdUT)
{
pCmdUI->SetRadio(theApp.m_nAppLook == pCmdUI->m_nID);
}

BOOL CMainFrame::LoadFrame(UINT nIDResource, DWORD dwDefaultStyle, CWnd* pParentWnd,
CCreateContext* pContext)

{
// base class does the real work
if (!CMDIFrameWndEx::LoadFrame(nIDResource, dwDefaultStyle, pParentWnd,
pContext))
{
return FALSE;
¥

// enable customization button for all user toolbars

BOOL bNameValid;

CString strCustomize;

bNameValid = strCustomize.loadString(IDS_TOOLBAR_CUSTOMIZE),;

225

ASSERT (bNameValid);

for (int i = @; i < iMaxUserToolbars; i ++)

{
CMFCToolBar* pUserToolbar = GetUserToolBarByIndex(i);
if (pUserToolbar != NULL)

{

pUserToolbar->EnableCustomizeButton(TRUE, ID_VIEW_CUSTOMIZE,

strCustomize);

}

return TRUE;

void CMainFrame::0nSettingChange(UINT uFlags, LPCTSTR lpszSection)

{
CMDIFramelWndEx: :0OnSettingChange(uFlags, lpszSection);
m_wndOutput.UpdateFonts();

#include "stdafx.h"

#include "ConMod2.h"

#include "Material.h"
IMPLEMENT_DYNAMIC(CMaterial, CDialog)

CMaterial::CMaterial(CWnd* pParent,
CPoint TailClick,
CPoint HeadClick,
CString* pCounterString,
int ReasOpt)
: CDialog(CMaterial::IDD, pParent)
, GivenName(_T("M") + *pCounterString)
, UI_IsResidual(false)
, ReasoningOption(ReasOpt)

TailPoint = TailClick;

HeadPoint = HeadClick;

GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, ©.5);
StemThickness = MEDIUM; // This sets the thickness of Material arrows

HeadSize = EDGE_HEAD SIZE;
HalfHeadAngle = EDGE_HEAD HALF_ANGLE;

ComputeAnchorPoints();
pHeadElem = NULL;
pTailElem = NULL;

DoModal(); // Launches modal dialog
}

BOOL CMaterial::OnInitDialog()

{
CDialog::0nInitDialog();

if (this->ReasoningOption == QUALITATIVE_CONSERVATION)
GetDlgItem(IDC_RESIDUAL_MATERIAL)->EnableWindow(false); //Greys out
control

if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)

{
pMaterialTaxonomy = new CTreeCtrl;
pMaterialTaxonomy->Create(WS_CHILD | WS_VISIBLE | WS_BORDER | WS_TABSTOP
TVS_HASLINES | TVS_HASBUTTONS | TVS_LINESATROOT |
/*TVS_SINGLEEXPAND | */TVS_SHOWSELALWAYS | TVS_TRACKSELECT,
CRect(11, 60, 248, 150), this, 0x1221);
// Full List of all energy types (leaf nodes and intermediate nodes)
HTREEITEM hMaterial, // Primary
hSolid, hlLiquid, hGaseous; //Secondary under hMaterial
// PRIMARY
LEVEL
hMaterial = pMaterialTaxonomy->InsertItem(_T("M"), TVI_ROOT);
// SECONDARY LEVEL (UNDER hMaterial)
hSolid = pMaterialTaxonomy->InsertItem(_T("S"), hMaterial);
hLiquid = pMaterialTaxonomy->InsertItem(_T("L"), hMaterial);
hGaseous = pMaterialTaxonomy->InsertItem(_T("G"), hMaterial);
pMaterialTaxonomy->SelectItem(hMaterialType);
pMaterialTaxonomy->Expand(hMaterial, TVE_EXPAND);
}
return TRUE; // return TRUE unless you set the focus to a control
}
CMaterial::~CMaterial()
{
//delete pMaterialTaxonomy;
}

void CMaterial::DoDataExchange(CDataExchange* pDX)

{

CDialog: :DoDataExchange(pDX);

DDX_Text(pDX, IDC_MATERIAL_NAME, GivenName); // Connects variable
IDC_MATERIAL_NAME to member GivenName

DDX_Check(pDX, IDC_RESIDUAL_MATERIAL, UI_IsResidual);
}
void CMaterial::0nOK()
{

CDialog::0nOK();

if (this->ReasoningOption >= QUANTITATIVE_EFFICIENCY)

{
hMaterialType = pMaterialTaxonomy->GetSelectedItem();
MaterialTypeName = pMaterialTaxonomy->GetItemText(hMaterialType);
delete pMaterialTaxonomy;

}

227

else
MaterialTypeName = "M";

}

void CMaterial::DrawOnDC(CDC* pDC)

{
IsResidual = UI_IsResidual;

CEdge: :DrawOnDC(pDC); // Execute the entire drawing code of
the parent class CEdge

// Initializes
a CFont object with the specified characteristics.
CFont font;
VERIFY(font.CreateFont(

FontSize, // nHeight

0, // nWidth

0, // nEscapement

0, // nOrientation

FW_NORMAL, // nWeight

FALSE, // bItalic

FALSE, // bUnderline

0, // cStrikeOut

ANSI_CHARSET, // nCharSet

OUT_DEFAULT_PRECIS, // nOutPrecision

CLIP_DEFAULT_PRECIS, // nClipPrecision

DEFAULT_QUALITY, // nQuality

DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily

_T("Arial"))); // lpszFacename
// if (this->IsHidden == false)

{

CFont* def_font = pDC->SelectObject(&font);

pDC->SetTextAlign(TA_CENTER | TA_BASELINE);

pDC->TextOut(GeometricCenter.x, GeometricCenter.y, (GivenName +
_T(" [") + MaterialTypeName + _T("1")));

pDC->SelectObject(def_font);

// Put back the old objects, although I do not understand how this
impacts anything.
//

font.DeleteObject();

228

BEGIN_MESSAGE_MAP(CMaterial, CDialog)
END_MESSAGE_MAP ()

#include
#include
#include

"stdafx.h"
"ConMod2.h"
"Node.h"

CNode: :CNode(void)

{
}

CNode: :~CNode(void)

{
}

void CNode::ComputeBlockCoordinates()

{1

/*void CNode: :DrawOnDC(CDC* pDC)

{3*/

#include
#include
#include
#include

"stdafx.h"
"ConMod2.h"
"afxdialogex.h"
"Signal.h"

// CSignal dialog

IMPLEMENT DYNAMIC(CSignal, CDialog)

CSignal:

:CSignal(CWnd* pParent, CPoint TailClick, CPoint HeadClick, CString*

pCounterString)

}

CSignal:

{
}

: CDialog(CSignal::IDD, pParent)
, GivenName(_T("S") + *pCounterString)

TailPoint = TailClick;

HeadPoint = HeadClick;

GeometricCenter = *InterpolatePoints(TailPoint, HeadPoint, ©0.5);
StemThickness = THIN; // This sets the thickness of signal arrows
StemLineFont = PS_DOT;

HeadSize = EDGE_HEAD SIZE;
HalfHeadAngle = EDGE_HEAD HALF_ANGLE;

ComputeAnchorPoints();
pHeadElem = NULL;
pTailElem = NULL;

DoModal(); // Launches modal dialog

:~CSignal()

void CSignal::DoDataExchange(CDataExchange* pDX)

{

229

Cbhialog: :DoDataExchange(pDX);
DDX_Text(pDX, IDC_SIGNAL_NAME, GivenName); // Connects variable
IDC_SIGNAL_NAME to member GivenName

}

void CSignal::DrawOnDC(CDC* pDC)
{
if (this->IsHidden == false)
{
CEdge: :DrawOnDC(pDC); // Execute the entire drawing code of
the parent class CEdge

// Initializes
a CFont object with the specified characteristics.
CFont font;
VERIFY(font.CreateFont(

FontSize, // nHeight
0, // nWidth

0, // nEscapement

0, // nOrientation
FW_NORMAL, // nWeight

FALSE, // bItalic

FALSE, // bUnderline

0, // cStrikeOut
ANSI_CHARSET, // nCharSet
OUT_DEFAULT_PRECIS, // nOutPrecision
CLIP_DEFAULT_PRECIS, // nClipPrecision
DEFAULT_QUALITY, // nQuality
DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
_T("Arial"))); // lpszFacename

CFont* def_font = pDC->SelectObject(&font);
pDC->SetTextAlign(TA_CENTER | TA_BASELINE);
pDC->TextOut(GeometricCenter.x, GeometricCenter.y, GivenName);
pDC->SelectObject(def_font);

// Put back the old objects, although I do not understand how this
impacts anything.
/7

font.DeleteObject();

BEGIN_MESSAGE_MAP(CSignal, CDialog)
END_MESSAGE_MAP ()

// CSignal message handlers

230

// Template.cpp : implementation file
//

#include "stdafx.h"
#include "ConMod2.h"
#include "Template.h"

// TemplateCTemplate::CTemplate()
{

}

CTemplate::~CTemplate()
{
3

231

Appendix D

L] Dialog

B

" Carrier Flow Selection
() Material Carrier

(_JEnergy Carrier

| Ok | Cancel

Dialog Box for Actuate E

Resource files for ConMod 2.0

=

Energy Mame | Sample edit box

[]Residual Energy

Power Data

Force Term (e.q., Vaoltage) | Sample edit box
Rate Term (g.g., Current) | Sample edit box

Dialog Box for an Energy Entity

232

e ol

B Add Enviornemnt @

Env. Name | Sample edit box |

............

Dialog Box for an Environment Entity

- -

W] Add Function @

Function | Sample edit box |

| K | Cancel

Dialog Box for a Function Entity

- y

B Add Material @

Material | Sample edit box |

[] Residual Material

Dialog Box for a Material Entity

233

A Dialog @

Signal | Sample edit box

| QK | Cancel

Dialog Box for a Signal Entity

234

	A Finite State Automata-Based Description of Device States for Function Modeling of Multi-State Technical Devices
	Chapter 1 Introduction
	1.1 Overview of Function Modeling
	1.2 Need for Capturing Device States in Function Modeling
	1.3 Need for Demonstrating Conjugate Behavior
	1.4 Research Questions, Hypothesis and Tasks
	1.5 Solution Overview

	Chapter 2 Literature Review
	2.1 Function Representations and Vocabularies
	2.2 Function-Based Reasoning
	2.3 Representation of States and Modes

	Chapter 3 Frame of Reference
	3.1 Structure of ConMod Language of Function Modeling
	3.2 Vocabulary of Functions of the ConMod Language
	3.3 Finite State Automata-Based Descriptions in Function Modeling

	Chapter 4 Scope of Research
	4.1 Scope of Representation for Signal-Processing Verbs
	4.2 Scope of Representation for Conjugacy in Function Modeling
	4.3 Scope of Reasoning for the Formalism

	Chapter 5 Representation: Formal Definitions of Signal Processing Verbs
	5.1 Actuate_E
	5.2 Regulate_E_Discrete
	5.3 Regulate_E_Continuous

	Chapter 6 Representation: Formal Definitions of Conjugate Verbs
	6.1 CEnergize_M
	6.2 CStore_E
	6.3 CDistribute_M
	6.4 CTypeChange_E

	Chapter 7 Representation: Extension of Conjugacy to Function Features
	7.1 CHandover_E
	7.2 CConvergize_EM

	Chapter 8 Reasoning: Implementation of FSA based reasoning to ConMod
	8.1 Implementation of Actuate_E
	8.2 Implementation of CEnergize_M
	8.3 Implementation of FSAs for Function Modeling
	8.4 Algorithms to Determine the End State of a Function Receiving Control Signals
	8.4.1 Algorithm for Checking FSA Validity
	8.4.2 Algorithm for Finding the Function’s End State

	8.5 Algorithm for Propagating the Effect of a Control Signal Through the Model
	8.5.1 Algorithm for Propagating the Downstream Causal Effect
	8.5.2 Algorithm for Propagating the Upstream Causal Effect
	8.5.3 Demonstration of Causal Propagation

	Chapter 9 Reasoning: FSA-Based Reasoning Supported by the Formalism
	Chapter 10 Reasoning: Conjugacy-Based Reasoning Supported by the Formalism
	Chapter 11 Conclusions
	11.1 Summary of Contributions
	11.2 Answers to Research Questions
	11.3 Impact on the State of Art
	11.4 Future Work

