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Abstract 
 

Title: A Machine Learning-Based Approach to Predict and Optimize the Performance of 

Zero Energy Building (ZEB): A Case Study for Florida 

Author: Benjamin Kubwimana 

Major Advisor: Hamidreza Najafi, Ph.D. 

Machine learning is currently one of the most searched fields aiming to solve real-life 

problems. Building simulation software tools help engineers estimate building energy 

behaviors before the actual construction, allowing implementation of more energy efficient 

choices in building design and construction. Current building energy simulation software 

tools are mostly physics-based and still lack the benefit obtained with machine learning-

based modeling, which offers fast and less computationally expensive techniques to build 

energy models and efficiently perform design optimization. This thesis presents a machine 

learning-based approach for building energy modeling and optimizing design parameters to 

minimize building’s energy consumption. The study is comprised of three main stages. 

These include creating an EnergyPlus simulation model to generate a physics-based model 

for the building with all building characteristics. The model is used to generate a database 

containing input design parameters that are used in energy modeling and annual energy 

consumptions for different energy models. The results obtained from this database are then 

used in the second stage, which involves developing an artificial neural network-based 

surrogate model. The neural network performs simulations by taking a set of inputs and 

trying to predict an output. The inputs, in this case, are building design parameters and 

control settings, while the output is the building energy consumption, photovoltaic system 

power production, and the corresponding net site energy. The third stage is the optimization 

stage implemented on the surrogate model to determine optimal design variables that provide 

minimal energy consumption. Design parameter search space along with the surrogate model 

are provided as inputs to the optimization algorithm. The study uses two different 

optimization approaches, including the genetic algorithm and the Bayesian method. This 
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study shows that the proposed machine learning-based strategy accurately estimates overall 

energy usage and production. Furthermore, the model optimization is implemented on the 

neural network at far less computational costs and time than the traditional strategies that 

involve numerous co-simulation tools to obtain the same results. The developed approach 

bridges between physics-based building energy models and strong optimization tools 

available in python which can allow achieving global optimization. 
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Introduction 

 

i.  Motivation 

Building energy efficiency can be complex to achieve since several interconnected 

subsystems such as building’s architectural design, envelope materials, energy end-users 

(e.g., HVAC systems, lighting, water heater, etc.) as well as building’s operation, control, 

and maintenance impact the building’s overall energy performance. This issue has been 

served well with the current simulation tools such as EnergyPlus, eQuest, DesignBuilder, 

and others that can model buildings as complex systems and allow users to optimize the 

designs to attain higher building performance. While these software tools facilitate the 

calculation of building energy consumption on an hourly basis for various building designs 

and operating schedules and essentially allow developing parametric studies for each 

design/operation variable, the global optimization of the building remains to be a challenging 

target given the numerous parameters involved in building energy analysis and their 

correlations.  

In order to facilitate the optimization process using building energy simulation tools (such 

as EnergyPlus), one can use robust optimization tools available through coding platforms 

such as MATLAB or Python. Most studies aim to find the optimal building design envelope 

and system control strategies that provide minimal energy consumption, cost and better 

thermal comfort, and better environmental impact [1]. Even though the coupling of 

simulation software and optimization tools is being used extensively, this approach still has 

a downside since it requires significant simulation evaluations that make the whole process 

computationally costly, not to mention a higher possibility of errors. As a result, the approach 

may even become unfeasible. Some researchers have performed optimizations using both 

simulation software like EnergyPlus, and TRNSY and generic optimization software like 

GenOpt and BeOpt. Karaguzel et al. used the GenOpt software in conjunction with 

EnergyPlus to determine optimal thermal insulation thickness for a building envelope and 
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glazing types [2]. Rabani et al. proposed a multi optimization approach for automating the 

process of determining the optimal measures that lower building energy consumption and 

obtain a zero energy building performance, thermal and visual comfort. The study used a 

coupling of an Indoor climate and energy simulation software (IDA-ICE) and the GenOpt 

software [3]. Corbin et al. developed a predictive model control environment that integrates 

Matlab and EnergyPlus to perform real-time optimization using a building automation 

system [4].  

One method that can mitigate the computational cost associated with optimization and 

simulation tool coupling mentioned above is the use of simpler models, also called 

“surrogate models” or “meta-models.” These models predict the behavior of the complex 

simulation models through computationally efficient approaches. One way this is achieved 

is by using data sets deployed to develop an artificial1 neural network-based meta-model. 

This study presents an optimization of building systems and design parameters to minimize 

electrical energy consumption.  The optimization uses a genetic algorithm applied on a 

surrogate model developed using a machine learning approach; furthermore, the genetic 

algorithm’s performance is compared with that of a Bayesian optimization algorithm.   

ii.  Problem Statement 

Although building energy simulation tools, such as EnergyPlus, are very powerful in 

predicting the hourly energy consumption of buildings and allow conducting various 

parametric studies to understand the impact of each parameter on the performance of the 

building, they do not facilitate the optimization process for achieving a global optimal. Also, 

they are considered computationally expensive, which is a major concern given the large 

number of variables related to the design and operation/control of a building. In order to 

address this challenge, the present thesis attempts to develop an effective approach that is 

both computationally efficient and facilitates the global optimization of the building 

parameters. The proposed approach consists of three stages, including developing a physics-

 
1 To simplify the reading, the term “artificial” will not be used and will refer to “neural network” 
(NN). 
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based model of a building in EnergyPlus, developing a data-driven model through an 

artificial neural network to be used as a surrogate model and, optimizing the neural network-

based model using advanced optimization algorithms available in coding tools (i.e., Genetic 

Algorithm in Python). The neural network-based model is trained using the physics-based 

model and performs substantially faster than the base model. This facilitates the 

computational effectiveness of the optimization process. In order to assess the performance 

of the proposed approach, it has been implemented on the Florida Tech Folliard Alumni 

Center (FALC) and discussed in detail in this thesis. 

It should be noted that this study establishes a methodology for developing data-driven 

surrogate models with which one can optimize using available optimization packages within 

python or MATLAB. The methodology can be applied to different building-related 

solutions, such as building automation system adaptative control. Additionally, the specific 

design of this project can be used by building energy modelers during the ideation process 

before implementing more complex solutions using simulation software like EnergyPlus.  

 Florida Institute of Technology has completed the construction of the Folliard Alumni 

Center (FALC) in October 2020 (Figure 1 and Figure 2). The FALC is a zero-energy 

building. This project was made possible through funding from the Florida Department of 

Agriculture and Consumer Services and multiple industry partners. The building is an 

example of a high-performance building with several interrelated subsystems employed to 

ensure its energy efficiency and net-zero energy capabilities. This building underwent 

vigorous simulation and optimization process to achieve its current near-zero energy 

building standing. However, given the excessively high computational cost, a global 

optimization process was not conducted prior to the building construction. A surrogate 

model of the building is created using an artificial neural network and optimized with the 

genetic algorithm. The neural network model is trained on building simulation data obtained 

using a reference model of the current building simulated with EnergyPlus. Eight parameters, 

including; wall and roof R-values, window U-value, Window solar heat gain coefficient 

(SHGC), HVAC seer value, cooling setpoint, light power density, and PV tilt angle, are 
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optimized to maximize the building’s energy production through solar panels and minimize 

energy consumption simultaneously. 

 

Figure 1 FALC (side view) 

 

Figure 2 FALC (inside view) 
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iii.  Literature Review  

The so-called “artificial” neural networks, as opposed to the biological neurons in our brain, 

find their origins in neuroscience in the desire to understand and imitate the functioning of 

the human brain. In 1943, Mcculloch [5] invented the first formal neuron, modeling a 

biological neuron with binary behavior, showing that their model can theoretically perform 

complex arithmetic operations. In 1949, Hebb proposed a law of learning by observing 

classical conditioning in animals [6]. He explains the behavior change observed following 

repeated solicitations by introducing the concept of synaptic plasticity. This suggests that 

when two neurons are connected, the link between the mounting strengthens or creates a new 

one. It was not until 1958 that Rosenblatt [7] created the perceptron, a binary classifier 

believed to be the first modern neural network. In 1960, Widrow and Hoff [8]developed a 

neural network which they call ADALINE (adaptive linear neuron), using a new learning 

rule at the origin of the backpropagation algorithm of the gradient, widely used today. Figure 

3 below shows an example of a typical neural network structure that is commonly used these 

days.  

 

 

Figure 3 typical NN Architecture [9]  
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The applications of neural networks in the building sector are numerous and diversified. 

Below is an overview of where NNs are implemented in the building sector. A total of 89 

published articles from 1998 to 2018 were analyzed [10], divided into four categories 

ranging from design to renovation of a building, as shown in Figure 4. The distribution of 

articles in each category is based on practical working methods. This categorization remains 

relatively subjective since some methods may apply to more than one category.  

 

Figure 4 Distribution of the publications2 in connection with building energy 

 

Using prediction models such as meta-models for modeling optimization proves they are far 

more computationally efficient than the original simulation model that requires a long 

optimization process. However, developing this meta-model is a challenging process as it 

requires high prediction accuracy, and this is a problem that needs to be solved [11]).  

Research efforts in this area are considered on an optimization method that integrates neural 

networks (ANN) with a genetic algorithm (G.A) proposed to minimize energy consumption 

 
2 analysis carried out on the publications by Elsevier from 1998 to 2018 in connection with building energy 
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and implementation costs for residential buildings. After the ANN-based predictive model 

was developed, it was used for optimization; HVAC and building envelope parameters were 

optimized to achieve high energy efficiency [12].  

 Neural network-based optimization was proposed and experimented on a two-story building 

in Italy. The study involved applications on building energy management and indoor climate 

control. This study showed high energy savings and better occupant comfort compared to 

traditional building control systems [13]. 

A reinforced learning control strategy for building HVAC was developed using neural 

network models to reduce energy costs and demand charges. The model balances building 

needs with low electricity demand day times to achieve its goals, as presented by Jiang, Z. 

et al. [14]. Similarly, an NN-based optimizer approach is performed on a swimming pool 

heating system in Hong Kong. The model’s objective is to maximize the thermal comfort 

ratio while reducing electricity consumption and lifecycle costs. The model is then optimized 

using a non-dominated sorting genetic algorithm for this multi-objective optimization 

problem; Li, Yantong, et al. [15]. Li, Hongyi, et al. performed a co-simulation between 

EnergyPlus and MATLAB. The study used a biased RELU neural network model to predict 

and optimize temperature control strategies to minimize building energy consumption [16]. 

Another neural network-based prediction model for annual energy consumption forecasting 

and thermal comfort index was developed and optimized with a multi-objective G.A. to 

determine the optimal design properties for a building envelope [17]. Similarly, a multi-

objective optimization model that combines ANN with GA was developed by Asadi et al. to 

identify effective strategies for building energy retrofit that can minimize building energy 

consumption, implementation costs and maximize thermal comfort [18]. Bamdad, Keivan, 

et al. used a sampling strategy involving several surrogate models to perform building energy 

optimization. The given approach is compared to the traditional simulation-based 

optimization. Results show that the surrogate model-based optimization provided results 

faster and generated similar best solutions [19].  
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There have been significant research efforts on building performance optimization, as 

summarized above. The research results indicate how vital building design and operations 

optimization are to affect energy use positively. However, there is still a need to investigate 

surrogate model-based optimization specifically for zero energy buildings. These buildings 

are specifically designed to achieve maximum efficiency, thus undergo rigorous modeling 

before construction and operation. The surrogate model approach can produce models with 

good accuracy and less computational time. This study presents the optimization of a 

feedforward neural network-based surrogate model using a genetic optimization algorithm. 

The performance of the genetic optimization is then compared with one done using the 

Bayesian optimization. Building design and control parameters are optimized to minimize 

total building electricity consumption. Two surrogate models are developed that represent 

the performance of a zero energy building during regular operations and unforeseen 

pandemic operations. 

iv.   Methodology 

The present research proposes an efficient approach for modeling and optimizing building 

energy performance through a three-stage methodology implemented on FALC as a case 

study and described below. Figure 5 outlines the project implementation flowchart.  

Stage 1: Develop a physics-based model of the building using EnergyPlus. An input data 

file (IDF) is developed containing simulation data used by EnergyPlus. The reference idf is 

edited to change building design parameters3. A Python Eppy package was used to automate 

the entire process of generating input files (.idf) and reading output files (.eso) from 

EnergyPlus associated simulations. The model is edited and simulated multiple times to 

generate a dataset containing design parameters and corresponding annual energy values. 

Design parameters were defined with ranges of minimum-maximum values, and the dataset 

was uniformly distributed.  

 
3 Idf: input data file, edited using Python package called Eppy 
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Stage 2: Develop a surrogate model using artificial neural networks. The generated dataset 

is loaded to the predictive model to train it to predict energy consumption, production, and 

net site energy.  

 

Figure 5 ANN Surrogate Model Optimization Framework 

The NN model takes the sampled inputs and the associated output values ( machine learning 

features).  

Stage 3: Optimization of the surrogate model. The neural network model is then used as a 

black-box for the Genetic optimization algorithm. The black box model is a scoring function 

to estimate building energy consumption. Additionally, a Bayesian Optimization was tested 

to compare the optimization performance of the two.  
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Building Energy Modeling 

 

i.  EnergyPlus Simulation and Results 

A building energy model for the Folliard center (FALC) was developed first, with a 3D 

model (Figure 6) developed using OpenStudio’s SketchUp plugin. This model was then 

further developed using OpenStudio’s application to add all connected systems, including 

specific heat pumps, water heating system, lighting system, PV system, and building 

envelope materials.  

The baseline model for this investigation was an EnergyPlus medium-sized office building 

(Figure 6) designed to operate as a zero energy building. This is a one-floor building with an 

east-facing orientation. There are 5 office rooms, 1 conference room,  making up 3 core 

thermal zones. The entire floor space is 3,500 ft2 (334 m2). The conference room height is 

16.2ft, while the rest of the building is at an overall height of 14.8 ft, with a glazing ratio of 

7%. 

 

Figure 6: 3D model 
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Although the FALC reference building's original geometry was preserved, the envelope 

materials and their thermophysical characteristics, PV system orientations, and HVAC 

system efficiencies were changed to generate different building designs used in training the 

NN. The building is located in Melbourne, Florida, which has a hot and humid climate, and 

simulations were performed using the Melbourne International Aiport weather TMY3 file 

[20]. The reference model cooling and heating setpoints are 22°C and 18°C, respectively, 

with setback temperatures of 24°C and 16°C. 

 

 

Figure 7 FALC building layout 

3D modeling is the first step that most energy modelers do when they start building energy 

modeling. Several Graphical User Interface (GUI) enhanced software tools such as those in 

OpenStudio enable users to easily add building systems and their criteria before EnergyPlus 

can perform the actual simulation.  However, for this project, all systems were modeled 

individually using EnergyPlus since the Eppy Python package can only communicate with 

the EnergyPlus API. Furthermore, when working with OpenStudio and exporting the 

EnergyPlus IDF file, it seems not to bring all modeled systems with the exported file.  

Zone 3 

Zone 2 

Zone 1 
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Figure 7 shows the FALC building layout used to develop a SketchUp 3D model that was 

essential the backbone of all building simulations. The building is divided into three thermal 

zones, as indicated by the blue dotted lines on the layout. 

Table 1 Folliard center thermal zones parameters 

Thermal Zone Zone 1 Zone 2 Zone 3 

Cooling COP 3.7 4.4 3.9 

Heat COP 2.9 2.9 2.9 
 

Table 2 HVAC system specifications 

Condensing 
Unit 

CU-1 CU-2 CU-3 

Compressors 1 1 1 
Nominal Tons 3.0 2.5 4.0 

Suction 
Temperature 

45 45 45 

Ambient 95 95 95 
Manufacturer TRANE TRANE TRANE 
Model Number 4TWR7036 4TWR6030 4TWR7048 

S.E.E.R. 17.5 17.0 17.0 
Voltage/phase 208/1 208/1 208/1 
MCA (AMPS) 21.0 17.0 28.0 
MOP (AMPS) 35.0 25.0 45.0 

Heating 
Capacity at 47 

°C (MBH) 

33.2 28.8 46.0 

COP at 47 °C 3.9 4.4 3.7 
    

Air Handling 
Unit 

AHU-1 AHU-2 AHU-3 

Manufacturer Trane Trane Trane 

Model Number TAM9A0C36
V31 

TAM9A0B30
V31 

TAM9A0C48V
41DA 

Cabinet Vertical Vertical Horizontal 

Cooling Coil Single Circuit Single Circuit Single circuit 

Electric Heater 
(kW) 

5.76 5.76 7.2 

Total Cooling 35,700 30,000 48,000 
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Capacity 
(BTU/hr) 

Sensible Cooling 
Capacity 
(BTU/hr) 

27,400 22,400 36,800 

Fan Motor Size 
(HP) 

1/2 1/2 3/4 

Air flow (cfm) 35 30 95 

 

The three thermal zones are served by individual heat pumps, each having its condenser unit 

(CU) and air handling unit (AHU). Table 1 shows the SEER values for each Heat pump used. 

Additional HVAC system specifications are listed in Table 2. 

Additionally, the photovoltaic (PV) solar system was modeled to determine onsite power 

generation that could be achieved. Since this study involves training the NN with different 

PV system tilt angles to predict the power production at each tilt angle, thus the modeled PV 

panel system in EnergyPlus provides the training data for the PV system.  The PV system is 

made of a canopy with solar 30 solar panels. The system has a 9.4kW power capacity and 

can generate a minimum of 11MWh annually. Table 3 shows the FALC system specification 

that is used in the building energy model.  

Table 3 PV system specifications 

PV branch Branch 1 Branch 2 Branch 3 

Power Capacity 3000 3000 3000 

Panel Modules 10 10 10 

Inverter efficiency 97.5% 97.5% 97.5% 

Tilt Angle 20o 20o 20o 

 

Other modeled systems that significantly impact the overall building’s energy consumption 

include lighting systems, water heating systems, and building envelopes. Since this study 

aims to produce a virtual model that can be optimized for selecting the best building design 
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parameters, the reference building energy model used to train the NN closely reflects the 

current building design parameters implemented on the FALC.  

Table 4 FALC building envelope specifications 

Area Wall layers Overall Wall R-
Value  

Wall  8” CM block wall with 3- part stucco (layers listed 
from the outside to the inside of the wall): 

3-part stucco, painted 
8” CMU block (hollow) 
1 ½” foil-faced rigid insulation (MIN. R- 
5.5 per inch) R-8.25 for 1.5”. 
7/8” metal Furring channel at 16” O.C. 
5/8” Gypsum Board 

 
 
R-10.1 

Roof TPO Roofing System with 3 layers (layers 
listed from the outside to the inside of the 
wall):  

1. Mechanically fastened TPO 
roofing system (R-0.24) 
2. 6” Polyiso insulation (R-30)  
3. 5/8” Plywood decking (R-1.25) 

 
R-31.49 

 

Table 4, seen above, represents the envelope layers and their respective materials that enclose 

the building. These materials were modeled in EnergyPlus to reflect the actual building 

envelope as implemented at FALC. Eventually, the wall R-values are changed to depict using 

different insulation. The different wall designs and their impact on the overall building 

energy consumption and other design parameters are used to train the NN surrogate model. 

Furthermore, the window types and their heat transfer coefficients and solar heat gain 

coefficients, U-value and SHGC, used at the FALC are also modeled in the reference model. 

Table 5, shown below, lists U-values and SHGC for the FALC windows.  

  



 
 

15 
 

Table 5 Windows thermal performance 

FENESTRATION MAX U-FACTOR 
(FIXED/OPER) 

MAX SHGC (ALL AXIS) 

INSULATED GLASS, 
LOW-E 

1.22 0.40 

 

Additional BEM design inputs include the lighting controls, cooling, and heating setpoints 

performed based on occupancy schedules. The occupancy schedule is based on the school 

calendar for office work, ideally followed for the office occupants at FALC and a 3-hour 

weekly full occupancy of the conference room at FALC.  

Table 6 Glass types in the FALC building 

Glass 
Type 

Thickness 
(in) 

Thickness 
(mm) 

Name 

GL1 1.3125 33.34 Clear Solar Ban 
60 #2 

GL2 0.5625 14.2875 Clear Solar ban 
60 #2 

GL3 0.25 6.35 Clear Tempered 

The building is made of 13 windows that are of 3 different types, shown in Table 6. For each 

type of window, the thickness and names are provided. It should be noted that the windows 

are Low-E double glazed; however, coatings and thickness sizes are different. 

Table 7 Windows reference table 

Reference Glass 
Type(s) 

Door/Window Quantity 

SF1 GL2 Main Door 1 
SF2 GL1 & GL2 Door (GL2) & Window (GL1) 1 
SF3 GL1 & GL2 Door (GL2) & Window (GL1) 1 
SF4 GL1 & GL2 Door (GL2) & Window (GL1) 2 
SF5 GL1 Window 2 
SF6 GL1 Window 2 
SF7 GL1 Window 5 
SF8 GL1 Window 1 
SF9 GL3 Window 1 
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Figure 7 references different windows locations, and their reference names are listed in 

Table 7, along with the number of available windows of each type.  

Table 8 Light fixtures used at FALC 

Lighting Fixture Schedule 
# TYPE MANUFACTURER MODEL LAMP LUMENS W 
B Recessed 

LED 2X2 
CREE CR22-32L-ACK-POE LED 3,200 32 

 

Lights are also included as inputs to the EnergyPlus model and their corresponding power 

densities for each building area. The lights selected provide the best energy savings since 

they are all LEDs and can be automatically controlled using a building automation system 

to achieve even more savings from scheduled operations.  

Table 9 Interior Lighting Power Density 

 Allowance Luminaries  

Area Area 
(ft2) 

Allowed 
(W/ft2) 

Allowed 
Watts 

# Type Watt Designed 
Watts 

Designed 
(W/ft2) 

Conference  
Room 

1,282 1.2 1,538 31 8 32 992 0.8 

Kitchen 98 1.1 108 2 8 32 64 0.7 
Storage 89 0.8 71 2 8 32 64 0.7 
Woman 

R/R 
127 1.0 127 2 8 32 64 0.5 

Man R/R 107 1.0 107 2 8 32 64 0.6 
Computer 

Area 
55 1.1 61 1 8 32 32 0.6 

Entrance 
Hall & 
Other 

327 1.0 327 6 8 32 192 0.6 

Hallway 250 0.8 200 5 8 32 160 0.6 
Mech. 
Room 

72 0.8 58 1 8 32 32 0.4 

Office 1 148 1.1 163 3 8 32 96 0.6 
Office 2 107 1.1 118 2 8 32 64 0.6 
Office 3 107 1.1 118 2 8 32 64 0.6 
Office 4 105 1.1 116 2 8 32 64 0.6 
Office 5 110 1.1 121 2 8 32 64 0.6 
Office 6 101 1.1 111 2 8 32 64 0.6 
Mix R/R 103 1.0 103 2 8 32 64 0.6 
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Janitor 23 0.8 18 1 8 32 32 1.4 
Storage 41 0.8 33 1 8 32 32 0.8 
Total 3,252  3,497   2,208 2,208 0.7 

 

Additional lights are modeled to represent the designed exterior lighting and their power 

densities. Exterior light specifications are shown in Table 10. 

Table 10 Exterior Lighting Power Density 

 Allowance Design 
Area Linear 

(ft) 
Power 
(W/ft) 

Total # Typ Watt Total 

Main entrance 
& other doors 

310 0.7 217 9 W 13 117 

Base 
allowance 

- - 600     

  Total 817   Total 117 

 

The Lutron Roller 100 Shade has the following specifications: 

 Ultra-quiet operation:  

 Shades move in perfect unison and exact alignment within 0.125 in (3 mm) accuracy 

at all times. 

 Smooth, silent starts and stops. 

 Programmable stop points.  

 It provides maximum window coverage with small light gaps.  

 Gaps are symmetrical on both sides of the shade. 

 Easy-to-read and easy-to-use controls. 

 Operating voltage: 24-36 V low-voltage power. 

The Shade fabric has the following specifications also presented in Table 11 

 The shade is a Lutron family name of the shading fabric: “Sheerweave 4900” (Model 

number P06-49- 3). 

 Thickness: 0.0270 in (0.7 mm).  
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 Material: 17% Polyester, 83% Vinyl on Polyester. 

Table 11 shade fabric energy specification 

Openness 
Factor (OF) 

Visible light 
Transmittance 

(Tv) 

Solar 
Transmittance 

(Ts) 

Solar 
Absorptance 

(As) 

Solar 
Reflectance 

(Rs) 
3% 10% 11% 8% 81% 

 

ii.  BEM simulation results: regular building operations 

This section presents simulation results for the modeling representing the normal building 

operations initially designed for the building. At normal operations, the HVAC system is 

scheduled to operate only during occupancy, including warm-up times. The HVAC system 

is off during unoccupied hours, including night times, weekends, and holidays. Additionally, 

the conference room is scheduled to operate 3 hours a week, with which the HVAC for the 

conference room is fully operating, and the lights are turned on.  
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Figure 8 BEM prediction for regular operating schedule: monthly energy consumption 

Figure 8 is a representation of the electricity consumption by all major end uses in the FALC. 

These are results obtained from the building energy simulation performed in EnergyPlus. 

Results are relatively close to the initial building energy analysis done before the 

construction of the FALC. As expected, most electricity is consumed for cooling down the 

building. Space cooling accounts for about 36% of the total electricity consumption, as 
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shown in Figure 9. Interior lighting and fans also consume about 23% and 21% of the total 

consumption, respectively.   

 

Figure 9 Regular BEM: end-use Annual energy share 

After performing the simulation and cross-checking with the initial design simulations to 

confirm the degree of accuracy, the BEM model was ready to be used for NN training. The 

simulation results presented agree with simulations performed with other modeling software 

taking into account the 3 hours weekly schedule for occupancy in the conference room. 

However, it should be noted that the actual energy consumption of the FALC for the past 

year, 2020-2021, is relatively higher than the simulation results in this study. The cause of 

the discrepancy arises from the full capacity operation and using the conference room as a 

classroom throughout the day. Thus the weekly schedule is no longer a 3 hours operation for 

the conference room. On top of the changed schedule, the BEM does not include the EV 

charging station, which has a tremendous impact on the overall energy consumption. The 

EV station is currently used throughout the day to charge two electric vehicles.  
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Figure 10: Regular BEM: annual simulation results 

The EnergyPlus simulation is set to only output 3 annual values, as shown in Figure 10. 

These results are the ones needed in further surrogate model development.  

Table 12 Summarized annual energy use 

 
Electricity consumption 

 
14,243 kWh 

 
Total annual electricity peak 

demand 

 
10.15 kW 

 
EUI (Energy Use Intensity) 

 
15 kBtu/ft2/year 

 

A condensed form of energy results is only used in the development of the NN-based 

surrogate model. The data of interest are the annual electricity consumption by the facility, 

production by the PV system, and the net site electricity (difference between electricity 

produced by PV and electricity consumed by building) for subsequent 8 design inputs to the 
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BEM. The net site energy is significant because it determines the electricity cost for imported 

electricity or the electricity sold in export to the grid.  Figure 10 shows example data of what 

is extracted from the results after each simulation run.  

iii.  BEM Simulation Results: Operations during the pandemic 

This section presents simulation results for the modeling representing the pandemic building 

operations. During the pandemic operations HVAC system is scheduled to operate 

continuously during occupied and non-occupied hours. The schedule ensures that there 

would be maximum fresh air circulation to prevent COVID-19 from spreading through the 

HVAC system. Additionally, the conference room is scheduled to operate more hours per 

week, similar to the office activity schedule of 8 a.m to 5 pm; the conference room is used 

as a classroom throughout the week.  

 

Figure 11 Monthly energy results from a pandemic simulation modeling 
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Figure 11 represents the electricity consumption by all major end uses in the FALC during 

the pandemic times. These are results obtained from the building energy simulation 

performed in EnergyPlus. Results are relatively close to the actual building energy 

consumption. As expected, most electricity is consumed for cooling down the building.  

 

Figure 12 Pandemic annual simulation results 

The EnergyPlus simulation, in this case, is also set to only output 3 annual values, as shown 

in Figure 12. These results are the ones needed in further surrogate model development.  

Table 13 Summarized annual energy use during pandemic 

 
Electricity consumption 

 
26,674 kWh 

 
Total Annual electricity peak 

demand 

 
20 kW 

 
EUI (Energy Use Intensity) 

 
25 kBtu/ft2/year 
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iv.  Automated EnergyPlus Simulation 

Performing multiple simulations can be made easier by automating the process. In this study, 

Python is being used to perform simulations on a locally installed EnergyPlus software 

iteratively. Thus, running multiple simulations is automated to reduce the time that would 

otherwise be taken to manually run individual simulations and later gather all data needed to 

develop the NN surrogate model. A Python package, Eppy, was used to work with 

EnergyPlus using Python.  

 

Figure 13 Auto-simulation Program Framework 

Figure 13 represents the framework of the co-simulation program developed to allow data 

generation. A reference IDF file containing all design variables and components of the 

building energy model is loaded into the Python program. The reference IDF file and the 

variable search space file are inputs to the Eppy API that runs the EnergyPlus on a local 

computer. IDF loading and editing are performed at the fourth stage (3) of surrogate model 

development, as illustrated in the methodology section of this study.  
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Table 14 design and control parameters 

Parameter Minimum Maximum 
Wall R-value 8 25 
Roof R-value 25 45 
Window U-value 1 7 
Window SHGC 0.2 0.7 
Cooling Setpoint 21 26 
HVAC Cooling COP 2 5.5 
Light power density 2 15 
PV Tilt Angle 10 35 

 

Table 14 shows all 8 design and control parameters changed at each simulation run to 

generate subsequent energy consumption, production, and net site energy. A total of 200 

changes are performed for each design parameter, and values are randomly selected between 

the range provided in table 5 for each variable. There are 200 rows and 11 columns 

containing design variable values and simulation results represented as annual electricity 

consumption, production, and net site energy. Each row of data has its specific IDF file 

containing the design variables of that row. This IDF can be simulated in EnergyPlus to 

produce the desired output; only 3 annual results are used for this study.  

At this stage, the Python package has helped create a database that can be used for the NN 

model development. Suppose a random user wants to perform a test using the Python auto-

simulation program developed here. In that case, they need a reference IDF file that a user 

wants to study, and specified ranges of the design variables desired to change within the IDF. 

Thus, the auto-simulation program can quickly generate a dataset for NN model 

development, as the case for this study, or other parametric analysis tools desired by the user. 

The auto-simulation program makes data generation easier and computationally cheap. 
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def get_mapped_vals(col): 
    if col=='Wall R value': 
        return 'Thermal_Resistance' 
     
    elif col=='Roof R value': 
        return 'Thermal_Resistance' 
     
    elif col== 'HVAC COP': 
        return 'Gross_Rated_Cooling_COP' 
     
    elif col=='Window U value': 
        return 'UFactor' 
     
    elif col== 'Window SGHC': 
        return 'Solar_Heat_Gain_Coefficient' 
     
    elif col== 'Cool setpoint': 
        return 'Value_Until_Time_1' 
     
    elif col=='Light Pwr Density': 
        return 'Watts_per_Zone_Floor_Area' 
     
    elif col== 'PV Tilt angle': 
        return 'Tilt_Angle' 
     
def make_mappings(obj_num_df, obj_name_df):        
    mapping= dict() 
     
    for col in obj_num_df.columns:     
        mapping[col]= [obj_name_df[col].dropna().tolist(),(obj_num_df[col]
.dropna().astype(int)-1).tolist(),get_mapped_vals(col)]  
    return mapping 
 
mappings= make_mappings(obj_num_df,obj_name_df) 
 

 

Figure 14 Python auto-simulation  snippet 

An illustration Python script used to map to the design variables in the reference IDF file is 

shown in Figure 14. Once the design variables are mapped, then the program can change 

their values and save a new IDF file with the newly changed values of each mapped design 

variable.  Table 18 in the appendix contains a database that was generated by the python 

auto-simulation program.  
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Figure 15 HVAC COP and electricity consumption Distribution  
 

The Python auto-simulation can also help to visually inspect the data distribution and find 

its relation to the variable of interest. Some data may prove to have no relation to an output 

of interest and may not help in NN development if the NN is a linear model. Figure 15 shows 

one example of a plotted data distribution for design variables relative to the annual facility 

electricity consumption. The data distribution shown pertains to the 100 by 11 matrix of data 

used in this study. Figure 15 shows HVAC COP to have a poor correlation with the electricity 

consumed. It doesn’t render it useless for NN training since the NN model developed in this 

study is a non-linear and multivariable prediction model and performs well with inputs that 

show no correlation.  
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Neural Network Model Development 

 

i.  Data and Machine Learning 

For the past few decades, data has become an essential resource for the functioning of our 

modern societies. Data allows the connection between artificial objects and humans to be in 

unprecedented ways. Each machine or human being associated with a connected object can 

now produce and consume data, whether or not they are aware of it. Since the start of the 

Internet for the general public in the 1990s, the amount of data in circulation has grown 

exponentially; for example, the mass of data created and copied increases by a factor of nine 

every five years [21].  

At the same time, the progress made in machine learning, a field of study in artificial 

intelligence (AI), has opened up new possibilities for the use of big data. These techniques 

allow computers to use data to solve problems they have not explicitly programmed for based 

on mathematical models. The current development of machine learning techniques is 

inseparable from big data, which fuels these algorithms.  

The desire for valuation arises the need for the veracity of the data. Indeed, the quality of 

analysis is impacted by the quality of the initial data. In fact, without current machine 

learning techniques, data would only be a shapeless mass complicated to value. Conversely, 

without these precious data, machine learning techniques would not have proved their 

effectiveness. They would have remained in the object stage study, unable to prove their 

value in concrete applications. The use of big data through machine learning techniques has 

shown its interest in various fields such as scientific research, health, transport, energy, or 

the economy [22]. These techniques appear in particular to reduce energy consumption in a 

multitude of fields of application. Thus, with a techno-centered vision often implemented, 

the use of big data via machine learning is gradually becoming inseparable from the fight 

against climate change, including the building sector, due to its high energy consumption.  
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ii.  Artificial Neural Networks (ANN) 

The human brain inspires the structure of ANN, and they depict how biological neurons 

signal to one another. ANN allows computer programs to recognize patterns and solve 

everyday engineering problems in AI, machine learning, and deep learning. In this study, 

they are used to model building energy consumption, production, and net site energy of a 

particular building.  

 

Figure 16 Example NN Structure 

ANNs are made up of layers, as seen in Figure 16; an input layer, hidden layers, and an 

output layer. These layers are made up of interconnected neurons. Each neuron has an 

associated weight and threshold. An individual neuron is activated if its output is above the 

specified threshold value; this sends data to the next layer. Otherwise, data is not passed 

along to the next network layer. Different activation functions are used at each layer.  

During NN model developments, a dedicated training dataset is used by neural networks to 

learn and increase their accuracy over time [23]. However, once these learning algorithms 

have been fine-tuned for accuracy, they become fundamental tools in computer science and 

AI, allowing users to cluster and categorize data quickly. Compared to manual identification 

by human specialists, speech recognition or picture recognition tasks can take minutes rather 
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than hours. Google's search engine is one of the most well-known systems that use deep 

neural networks in it’s architecture.  

Individual neurons are like linear regression models, with input data, weights, a bias (or 

threshold), and an output. An example formula at the neuron level is shown below 

𝑎 = ෍(𝑊௜𝑋௜ + 𝑏)

௠

௜ୀଵ

 

    a: sum of weighted average 

b: bias  

w: weight 

i: index 

An individual neuron computes the weighted averages of its input, and the sum is passed to 

an activation function which produces an output to pass along to the next layer. The output 

of one neuron becomes the input of the next neuron. Common activation functions include 

sigmoid, exponential Linear Unit, rectified exponential Linear unit (ReLU), and many 

others. Suppose the sum of weights is activated by a sigmoid function; it would look similar 

to the function below. 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓(𝑥) =
1

1 + 𝑒ି௔
 

After determining the input layer, weights are assigned, and they help determine the 

importance of any input variable. Thus larger input variables contribute more significantly 

to the output than other inputs. The process of passing data from one layer to the next is what 

makes it a feedforward NN.  

A more practical use for neural networks such as image recognition and other classification 

problems leverages supervised learning, or labeled datasets, to train the NN models. Training 

a model involves evaluating its accuracy, which is done by defining a cost (or loss) function. 
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In most regression problems, the cost function is the mean squared error (MSE). The formula 

for computing MSE is shown below. 

    

𝑀𝑆𝐸 =
1

𝑚
෍(𝑦ො − 𝑦)ଶ

௠

௜ୀଵ

 

i: sample index 

yො: predicted outcome, y: actual value, m: total samples. 

Finally, one needs to minimize the cost function to guarantee that each given observation is 

correctly fitted. The model uses the cost function and reinforcement learning to change its 

weights and bias for convergence or reaching the local minimum. Gradient descent is the 

method through which the algorithm modifies its weights, allowing the model to discover 

the best path to minimize the error represented by minimizing the cost function. The model's 

parameters adjust with each training case, eventually converging at the minimum.  

The majority of deep neural networks are feedforward, as they flow from input to output. 

Backpropagation, which moves in a reverse direction, from output to input, is another way 

to train NN models. Backpropagation is used to compute and assign errors to each neuron, 

enabling users to correctly alter and fit the model's parameters [24]. Similarly, this study uses 

a feedforward neural network with backpropagation. The model is not developed from 

scratch as the Keras Python library already has several neural networks developed for users 

who wish to apply them to their studies.  

iii.  Network Development  

In this study, inputs to the NN are referred to as features, and the target variables are labels. 

There are a total of 8 features and 3 outputs, and each feature has 100 data points. Thus, the 

input layers and output layers contain 8 and 3 neurons, respectively. Data preprocessing is 

also included during NN model development, but since this study involved automated data 
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generation, the python co-simulation program was also used to do data preprocessing before 

network development. However, before data was fed to the neural network, it was 

standardized to have the mean of the values be zero and their standard deviation be one.  

 

Figure 17 NN model architecture 

Figure 17 above illustrates the flow of the NN model that is used in this study. It contains 10 

layers, as listed in Table 15. Each layer uses the rectified linear unit, ReLU activation 

function; however, the output layer has no activation function. Other activation functions 

such as sigmoid, linear and exponential linear unit, ELU, were tested during model 

development; however, they were not providing model convergence. The dropout layers are 

used for model regularization, which helps prevent model overfitting and avoid adaptation 

when the neurons extract the same hidden feature from the model inputs, thus leading to 

overfitting [25]. The fraction of dropout (dropout rate) determines a fraction layer neurons 

that are shut down. This study has a dropout rate of 0.2 since the model used doesn’t involve 

many neurons compared to other complex models with hundreds and thousands of neurons 

in hidden layers. The loss function is used to determine the performance of the surrogate 

model is the root mean squared error (RMSE). 

It should be noted that the six layers were manually selected since they provide the best 

convergence. The development started with fewer layers and neurons. However, the model 

was underfitting; thus, more layers and neurons were added to prevent model underfitting.  
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Table 15 Feed Forward NN Model Summary 

Layer number Neurons Activation function 
1: input layer 8 ReLU 
2 dropout (0.2) 
3 128 ReLU 
4 dropout (0.2) 
5 64 ReLU 
6 32 ReLU 
7 16 ReLU 
8 8 ReLU 
9 4 ReLU 
10: output layer 3  

 

The study involved developing two neural network models representing two surrogate 

models for pandemic and regular building operations. These models have similar 

architecture presented above. The pandemic BEM model was obtained by modifying the IDF 

design variables slightly to have a different design from the regular operations BEM model. 

The pandemic model has an overall building electricity consumption of close to 26.7 MWh 

per year and around 14 MWh of electricity produced by the PV system. This pandemic model 

has different building design settings relating to schedules of operations. For example, the 

HVAC system for each of the 3 thermal zones is set to continuous operation while the regular 

BEM has set schedules for the HVAC systems. However, the python co-simulation program 

uses the same design parameter search space for the two models when a test is performed to 

generate new building designs to train the neural network.  

The reference BEMs have design variables assigned different numbers even though different 

objects share them. For example, in the reference model, there are different power densities 

in different building areas. However, newly generated models using the co-simulation 

program assign the same light power densities for all areas in the building. Similarly, the 

program assigns the same window value to all the windows even though some windows have 

different U values. As a result, data generated from the co-simulation may not provide 

similar energy consumptions as the original trained model since the trained model is more 

specific in assigning values to design variables for individual building components. The 
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lowest energy-consuming design model generated by the co-simulation is still higher than 

the baseline model used for data generation.  

iv.  Surrogate Model for Building Operation During Pandemic 

The generated data representing design parameters and their respective annual energy values 

were divided into a training dataset that accounts for 80% and a validation dataset that 

accounts for 20% of the total training data. Initially, 100 different designs models were 

generated for NN training and testing. However, these were not enough in producing a well-

trained NN model. Additional data were generated using the co-simulation program to make 

200 designs used in NN training and testing. Figure 18  and Figure 17 present the annual 

energy use across all 200 generated designs.  
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Figure 18 Energy consumptions for generated data  

 

Figure 19 PV energy for generated data 
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The plot in Figure 20 shows the progress of the model across the epochs. 1000 epochs were 

used for this model. And the model achieves convergence after 400 epochs approximately. 

More epochs were used since fewer epochs provided very high loss values.  On the 

training, the model eventually converges to an RMSE loss of 0.151, which is a good 

performance. However, this is only the first model version with minimal tuning 

implemented. Further tuning is done to have a well-generalized model; this is evaluated 

using a reserved test set to determine how well the model represents the FALC under 

pandemic operations.  

 

Figure 20 NN model Convergence 

Plotting actual and predicted results could help visualize how the model is performing. 

Figure 21 shows how the predicted electricity consumption compares with the simulation 

data obtained from the EnergyPlus BEM on the train set. The model does very well on 

prediction for the training dataset. However, it should be validated to confirm its 

performance with unseen data.  
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Figure 21 training performance results: electricity consumption 

The actual, simulated results from EnergyPlus and predicted (by neural network mode) total 

energy consumption values for each simulation plotted in Figure 21 are almost a perfect 

match, with a loss value of 0.151 for normalized output values.  
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Figure 22 validation performance results: energy consumption 

The model is then evaluated on the validation set. The model still performs well with a loss 

value of 1.4, and as expected, the loss would be higher than that of the training set. The lower 

loss implies a well-generalized model that can perform accurately on unseen data. Figure 22 

proves that the NN model created can instantly predict building energy consumption, energy 

production, and net site energy for 50 different designs with great accuracy.  The model still 

has outlying data points that are not accurately predicted. Some reasons causing the issue 

include sudden changes in building design energy consumption, and lack of enough training 

data to generalize over a wide range of building designs. Comparatively, EnergyPlus takes 

1 minute average simulation time for just one building design. Note that the energy 

consumption values are relatively close to the reference model, which predicts a 26.7MWh 

annual power consumption. The co-simulation python program produces building designs 
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with higher or lower consumption than the baseline (reference) model; because the same 

design values are generally applied to building components that share the same variable. 

A similar comparison plot for the NN model prediction of the power production by the PV 

system and the actual BEM data shows a good correlation, as illustrated in Figure 23  below.  

 

Figure 23 Actual and Predicted PV power production 

The power production is only affected by one design variable: the PV panel tilt angle. The 

tilt angles are varied from 10 to 30 degrees, while the azimuth angle is 180 degrees. The 

results of power production move between 13MWh and 14.2MWh of electricity produced 

by the PV system in one year. The NN model has a relatively good prediction of the  

EnergyPlus BEM PV power production.  



 
 

40 
 

 

Figure 24 Correlation between EnergyPlus (true values) and NN-predicted energy 
consumption 

An R2 correlation coefficient was also used as a metric to measure how accurate the 

prediction model is doing on unknown data; the model achieved a maximum of 90% R2 with 

different hyperparameter tunings.  

v.  K-fold Cross-Validation: Pandemic Surrogate Model 

Better NN model training is achieved if there is no overfitting. Thus different techniques can 

be used to evaluate model performance and prevent overfitting. One technique used in this 

model is the K-fold cross-validation. Cross-validation is a resampling technique for 

evaluating NN models on a small sample of data. The process has one parameter, named k, 

which specifies the number of groups into which a given data sample should be divided. 

Thus the name k-fold cross-validation. When a precise value for k is specified, it may be 

substituted for K in the model's reference, for example, k=10 for 10-fold cross-validation. 

This study uses 5-fold cross-validation to determine model performance. Figure 25 is a 

convergence plot for the model when cross-validation is used on the dataset. Using K-fold 

cross-validation does not show a significant difference with the initial model. The minimum 

loss values for training and validation sets remain close to the initial model at 0.108 RMSE 

for training and 1.269 for the validation set.  
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Figure 25 5-Fold cross-validation Model convergence 

 

Figure 26 predicted and actual power consumption: K-fold validation 

Results for actual and predicted building power consumption for 20 designs are plotted 

together for 5-fold cross-validation in  Figure 26. These results are not different from those 

presented in Figure 22, with no cross-validation, confirming that the model is well-

generalized.  
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vi.  Surrogate Model for Regular Building Operation 

Similarly, a model copy was used to train and test datasets developed for regular building 

operations. A good performance was achieved when the model was evaluated on unseen data 

representing this study's regular operation BEM model. This second model’s 

hyperparameters were slightly modified to adapt to different data. Note, the goal was to make 

an NN-based surrogate model that can accurately predict the energy consumption of the 

FALC under regular operations. Suppose the model accurately predicts the energy 

consumption of this BEM. In that case, it is ready to be used as a surrogate model that can 

model FALC energy consumption, production, and net site energy. The surrogate model in 

this study can only predict building energy consumption based on 8 design variables whose 

values can be changed by the user. The surrogate model can be further improved to include 

more design variables. The EnergyPlus modeling scenarios make the surrogate model more 

complex but valuable for building energy designers in time and computational cost-

effectiveness. Additionally, the model can simulate many different designs quickly, thus 

giving designers the option of making a fast parametric analysis to determine the best 

building energy design.  

A dataset of two hundred data points of different building design models was generated from 

the co-simulation program. Figure 27, Figure 28, and Figure 29 are a representation of annual 

energy use, PV energy production, and net site energy across all generated design models. 

These values are slightly higher or lower than the reference model annual energy values. The 

reason is similar to the fact that the co-simulation program generally assigns the same values 

to all building objects sharing the same variables.  
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Figure 27 Electrical consumption distribution in the test set 

 

Figure 28 Test set data distribution for the PV power production 



 
 

44 
 

 

Figure 29 Test set data distribution for Net site energy 

 

It should be noted that the python co-simulation program that uses EnergyPlus for 

simulations took 26 minutes in total to run all 200 simulations. That is slower than the few 

seconds taken by the NN model to predict energy consumption for the various designs.  

 

Figure 30 Model performance on the modified dataset 
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The regular operations model achieves an RMSE of 0.079 on training and 1.070 for the 

validation dataset. It should be noted that the learning rate of this model was relatively higher 

than the learning rate used in the pandemic operations surrogate model to achieve better 

performance.  Figure 31 shows the comparison graph for predicted data and actual simulation 

data used for training. The results show that good learning is achieved.  

 

Figure 31 training performance results: electricity consumption 

Similarly, a comparison graph is plotted in Figure 33, and the NN model accurately predicts 

almost all data points. The correlation graph plotted in Figure 33 also illustrates the similarity 

between NN model predicted data and simulated data from the test set. The majority of the 

data points show a perfect linear relation, indicated by the fit line, apart from a few data 

points away from the best fit line.  



 
 

46 
 

 

Figure 32 Actual and Predicted energy consumption 

 

Figure 33 Correlation between EnergyPlus (true values) and NN-predicted energy 
consumption 

The purpose of this test is to determine if this NN-based surrogate model is a good model 

that can be used as a function that represents the energy consumption, production, and net 

site energy. As a result, the surrogate model can be used for further studies and determine 
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the best design variables that provide the minimum building energy consumption, as 

illustrated using genetic optimization in the next chapter of this study. 

 

Figure 34 Actual and Predicted PV power production 

The model also has a good performance in predicting the PV power production, as illustrated 

in Figure 34. However, cross-validation should be performed on the model for better 

evaluation given the few datasets being used.  

vii.  K-fold Cross-Validation: Regular Surrogate Model 

5-fold cross-validation is used in this section as a way of validating the performance of this 

model. The K-fold cross-validation does not show a significant difference with the initial 

model. The minimum loss values for training and validation sets remain close to the initial 

model at 0.075 RMSE for training and 1.153 for the validation set. However, the predicted 

and actual data proved to have a better correlation, as shown in Figure 36 below.  
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Figure 35 predicted and actual power consumption: K-fold validation 

 

Figure 36 Correlation between EnergyPlus (true values) and NN-predicted energy 
consumption  
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Optimization of the Neural Network-Based Model 

 

i.  Genetic Algorithm 

The optimization described in this chapter is not the same as the optimization performed 

while developing the NN prediction model. The optimization is meant to find design 

variables that provide the minimum building energy consumption; this is done using a 

genetic function minimization algorithm. The NN surrogate model can only predict the 

energy consumption given a design variable inputs and doesn’t modify the design variable. 

The surrogate model is enhanced when coupled with the GA to predict and select the best 

design variables with the lowest building energy consumption. Genetic algorithms make it 

possible to find a function's maximum (or a minimum), using operations analogous to those 

in the DNA of living beings: selection, crossing, and mutations [26]. Other methods can 

perform such an optimization, such as simulated annealing or conventional gradient descent 

methods. Still, the genetic algorithms have the advantage of resisting local minima 

reasonably well and have computational time advantages over simulated annealing.  

Genetic optimization lies in the classification of algorithms known as evolutionary 

algorithms (EAs). Unlike traditional algorithms methods, the EAs are not static but dynamic, 

which means that they evolve. The evolutional optimization approach is appropriate for this 

study since the goal is to find the best optimal design that gives the lowest energy 

consumption with minimal computation cost.  

Several energy efficiency-related studies have been made using a genetic algorithm to 

achieve building energy efficiency. A study that addresses bi-objective scheduling systems 

aiming to minimize electricity cost under time-of-use tariffs used a genetic algorithm in this 

study proved successful in achieving the study goals [27]. Similarly, warehouse energy 

management using a genetic algorithm is proposed to minimize energy consumption in 

warehouses in a study by Seval Ene et al. [28]. In their study, Ricardo Simões Santos et al. 
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used genetic algorithms to minimize energy consumption in buildings by determining the 

best choices of household appliances [29]. 

The Genetic optimization is implemented as shown in the flowchart presented in Figure 37: 

 

Figure 37 Genetic Algorithm Flowchart 

The optimization process was carried out in 5 steps. The first step was population 

initialization, which is achieved by producing 100 different outputs from the surrogate model 

and saving the corresponding values for each design variable. 

The second step is candidate selection. The selection process involves taking candidates 

from the population in the mating pool. Based on the previously calculated energy 

consumption value, a threshold (lower energy consumption than previously calculated) is 

used to select the best individuals. From the selected subset, parents are prepared for the 

mating. Selecting the parents to be used in mating is done using the Roulette wheel selection, 

which is an efficient way of selecting candidates by giving a higher probability of selection 

to the parents that have a lower energy consumption design model. The third step involves 

doing a crossover, where offspring are generated from two candidate parents. These 

offsprings have similar genetic properties as their parents, mathematically represented as 

decimal values in this study. Offsprings are then mutated to provide a different version with 

different genetic properties from its parent. New offspring are merged with the population, 

and the pool is sorted. Poor candidates are eliminated from the population. The remaining 

population is part of a new generation that undergoes a similar process starting from step 1 

until a solution with the lowest energy consumption can not be overtaken. The process should 
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be done in only 100 iterations; thus, either the minimum or energy consumption is reached, 

or the iterations are reached. The last step is terminating the process when the best solution 

is reached, and this can be compared as reaching the global minimum.  

ii.  Surrogate Model Energy Optimization 

The minimization function approach is summarised with the equation below 

min 𝑓(𝑥) = 𝑚𝑖𝑛 𝑜𝑓 𝑠𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒 𝑚𝑜𝑑𝑒𝑙 

𝑐𝑜𝑛𝑠𝑡𝑎𝑖𝑛𝑒𝑑 𝑡𝑜 

 10 ≤ 𝑥ଵ  = 𝑊𝑎𝑙𝑙 𝑅 𝑉𝑎𝑙𝑢𝑒 ≤ 25 

25 ≤ 𝑥ଶ  = 𝑟𝑜𝑜𝑓 𝑅 𝑉𝑎𝑙𝑢𝑒 ≤ 45 

2 ≤ 𝑥ଷ  = 𝐻𝑉𝐴𝐶 𝐶𝑂𝑃 ≤ 5.5 

1 ≤ 𝑥ସ  = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑈 𝑣𝑎𝑙𝑢𝑒 ≤  7 

0.1 ≤ 𝑥ହ  = 𝑊𝑖𝑛𝑑𝑜𝑤 𝑆𝐻𝐺𝐶 ≤ 1 

21 ≤ 𝑥଺  = 𝐶𝑜𝑜𝑙 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 ≤ 26 

2 ≤ 𝑥଻  = 𝐿𝑖𝑔ℎ𝑡 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 ≤ 15 

 

The GA optimization approach minimizes the energy consumption of the pandemic 

surrogate model. In other words, GA determines design variables that produce a building 

model with minimized energy use. The surrogate model is used as a fitness function to find 

a building design that may provide a lower energy consumption. These results can be 

compared to the results and design obtained when the minimization is done using the 

Bayesian Algorithm.  
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Comparatively, the Bayesian optimization uses a surrogate model as a black-box function to 

be minimized. An available package within python called Scikit Optimizer allows 

implementing the Bayesian optimization on the surrogate model. Thus this was worth 

implementing on the already developed surrogate model to compare the performance with 

the self-developed genetic algorithm; most of the inputs to this Bayesian algorithm are 

similar to those used in the genetic algorithm. Since the optimization variables considered in 

this study do not change for both the pandemic and regular operation models, the 

optimization illustration is only performed on the regular operation surrogate model, as 

shown in the next section.  

iii.  Regular Surrogate Model Energy Optimization 

Once the NN surrogate model was modified and trained on the regular operations building 

design dataset, the model made good predictions that depict the actual BEM under regular 

operations. The surrogate model was then used as a fitness function for the genetic 

optimization and compared with those obtained with the Bayesian optimization. Constraints 

are applied during this optimization. Figure 38 presents the minimization trend followed by 

the GA algorithm for 100 iterations. The computation started converging after 40 epochs, 

and the total computation time was 5min 36s for a maximum of 100 iterations and an initial 

population size of 50 design models. Using more design models results in a longer 

computation time. However, since the computation should be as low as possible, the 

maximum iterations and number of design models are selected to provide the shortest time.  
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Figure 38 Building energy minimization with GA on test surrogate model 

The GA minimizes the energy consumption of the regular BEM from 14MWh per year to 

11.3MWh per year. A significant improvement in terms of energy consumption. The lower 

energy consumption is mainly achieved by the GA choosing a design model with more 

efficient design variables.  

Table 16 GA optimization on actual BEM surrogate model 

Parameter Best 
solution 

Units 

Wall R-value 24.4 W/m2K 
Roof R-value 28.94 m2K /W 
HVAC Cooling COP 4.33 - 
Window U value 4.75 W/m2K 
Window SHGC 0.40 - 
Cool Setpoint 25.6 C 
Light power density 2.01 W/m2K 

Lowest Annual Energy Consumption 11,300.3 kWh  
 

Design variables in this test model practically provide better energy efficiency. The cooling 

setpoint is in the range that would provide a lower energy consumption by the HVAC system. 
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The window U-value decision is considerably higher than the U-values for windows used in 

the building construction. This could result from the surrogate model errors resulting from a 

lack of proper window-U value and energy consumption correlation.  

The recommended designs are then implemented in the EnergyPlus software to compare 

with the results from the surrogate model optimization. The EnergyPlus simulation results 

show a reduced energy consumption of 12420 kWh. Thus there is a 9.9% percent error 

between the optimization results using surrogate modeling and EnergyPlus modeling.  

Likewise, the Bayesian optimization results are shown below in Figure 39, and tabulated 

results are presented in Table 17  for 100 iterations. The Bayesian optimization takes a 

shorter computational time compared with genetic optimization. The Bayesian optimization 

is a traditional optimization, unlike evolutionary optimization, and is expected to take a 

shorter computational time.  

 

Figure 39 Bayesian Optimization on actual BEM surrogate model 

The Bayesian optimization converges after 20 iterations and takes a shorter computational 

time. The total time for all 100 iterations was 59.5s; still, a faster computational time than 

that taken by the GA optimization. The Bayesian optimization can minimize building design 
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energy consumption from 14MWh to 12.7MWh. A minimization that is not as low as the 

one achieved by the GA but does provide lower consumption than the actual BEM energy 

consumption estimates.  

Table 17 Design variables obtained with Bayesian optimization  

Parameter Best 
solution 

Units 

Wall R-value 23 W/m2K 
Roof R-value 27 m2K /W 
HVAC Cooling COP 3.6 - 
Window U value 4 W/m2K 
Window SHGC 0.44 - 
Cool Setpoint 26 C 
Light power density 3 W/m2K 

Lowest Annual Energy Consumption 12,738.2 kWh  
 

The Bayesian optimization results show an approach to lower energy consumption by 

increasing the wall R-value and the cool setpoint. However, the roof R-values and window 

U-values can be increased to have an even lower energy consumption. 

The optimization process in this study creates a benchmark for a more complex optimization 

approach that involves the use of other variables such as variable electricity rates and systems 

life cycle costs etc. Additionally, the surrogate model could be improved in a way that 

provides the GA with multi-objective fit functions to optimize several variables at the same 

time. Such additional variables could be electricity cost, visual and thermal comfort. 

The recommended designs by Bayesian optimization are then implemented in the 

EnergyPlus software to compare with the results from the surrogate model optimization. The 

EnergyPlus simulation results show a reduced energy consumption of 13,613 kWh. Thus 

there is a 6.86% percent error between the Bayesian optimization results on the surrogate 

model and EnergyPlus modeling.  
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Conclusion 

 

This study suggested a machine learning-based optimization strategy to predict and 

minimize overall energy consumption in buildings. Artificial Neural Network was used to 

create the surrogate model of an EnergyPlus based building energy model. This study 

combined surrogate modeling with one objective optimization to identify energy-efficient 

designs and their corresponding design variables. The approach was examined by reviewing 

the surrogate model error as a function of the simulated total energy value. There were 

noticeable prediction errors when the surrogate model was tested with an unknown dataset. 

The errors were specific to datapoints that have energy consumption values very high than 

the average energy consumption. The model was continually trained with more mixed 

datasets to improve the model’s generalization.  

A surrogate model proved to be more time effective in estimating building energy 

consumption compared to the traditional simulation software like EnergyPlus at the expense 

of an extensive training process to have a well generalized NN-based surrogate model. The 

surrogate model must be tested and modified multiple times before an accurate predictive 

model is achieved.  

Energy optimization with genetic optimization algorithm is then performed using the 

surrogate model as a fitness function. The GA uses 8 variables with defined design space to 

perform function minimization that produces the least energy-consuming design model. 

Other methods can be used for optimizing the surrogate models. However, the genetic 

algorithm was chosen for its evolutionary approach to solving a given problem that tends to 

go a step further in finding the best solutions, unlike traditional optimization methods such 

as the gradients descent methods. Nonetheless, the GA optimization performance is 

compared with an easy-to-implement Bayesian optimization available in a python package 

to be easily integrated with the developed surrogate model. As expected, the GA 

optimization provided designs that can lower a building's energy consumption. 
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Similarly, Bayesian optimization also produces designs that lower a building's energy 

consumption. However, the GA takes a longer computational time than the Bayesian 

optimization; this is also expected as the GA takes an evolutionary approach involving many 

more steps to ensure the best solutions can be achieved. The GA optimization was able to 

provide lower energy-efficient solutions than the Bayesian optimization. An optimization 

performed on a surrogate model that presents the regular operations BEM for the FALC 

lowered the building energy consumption from 14MWh to 11MWh per year by choosing 8 

design variables that provide more energy efficiency. Similarly, the energy consumption of 

a surrogate model representing the pandemic operations was lowered from 26MWh to 

22MWh using the GA. The GA optimization made a balanced improvement to all design 

variables to obtain the best solution, unlike the Bayesian optimization that seemed to stick 

to those design variables that provide the best solution and keep making them better. On the 

other hand, the Bayesian optimization also lowered the regular operations surrogate model’s 

energy consumption from 14MWh to 12 MWh per year.  

In conclusion, the study successfully demonstrated the development and use of surrogate 

models to represent a building energy model. Furthermore, the study has successfully 

implemented building surrogate energy models and genetic optimization to find the best 

design solutions that offer an energy-efficient building design. Additionally, the whole 

process of generating an estimated building energy consumption, power production, and net 

site energy, given the required inputs to the surrogate model, takes less than 10 seconds. The 

surrogate model takes 3min 24s to predict 100 different design models based on the given 

inputs; this would be hours of simulation with traditional BEM simulation software. Thus, 

proving the time effectiveness of using surrogate models. Additionally, surrogate models 

can easily be connected to many optimization algorithms to determine the best design 

solutions, as illustrated with this study's GA optimization. The successfully created an 

approach for one to bridge between physics-based building energy models and strong 

optimization tools available in python which can allow achieving global optimization. 

Future work should involve investigating techniques for sampling and training the surrogate 

model to decrease prediction errors and establish a clear correlation between all design 
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variables and the target output to help the optimization algorithm find practical optimum 

designs. Additionally, the GA should be improved to allow multi-objective optimization.  
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Table 18:Pandemic operation dataset 

Design # 
Wall R 
value 

Roof R 
value 

HVAC 
COP 

Window 
U value 

Window 
SGHC 

Cool 
setpoint 

Light 
Pwr 
Density 

PV Tilt 
angle 

PV 
Energy 

Building 
Energy 
Use 

Net Site 
Energy 

1 5 25 2 7 1 21 15 10 14122 10916 -2604 
2 14 36 4 5 0 25 4 21 13715 13930 803 
3 16 40 4 3 0 24 11 30 14041 13689 247 
4 13 40 4 4 0 24 4 21 13872 18341 5062 
5 20 32 4 6 0 22 8 27 14054 12829 -625 
6 24 32 2 1 0 22 4 29 13985 13926 538 
7 22 35 3 3 1 24 4 10 13590 15202 2195 
8 12 41 3 5 1 22 11 27 13701 14862 1748 
9 21 29 4 6 1 25 5 16 14083 12480 -1002 

10 14 32 5 5 1 23 6 12 13749 14525 1365 
11 18 40 4 5 0 24 13 21 14126 15090 1567 
12 8 34 2 5 0 21 6 16 13589 22252 9246 
13 17 28 5 5 0 23 6 21 13869 13042 -234 
14 22 34 5 6 1 24 12 19 14125 17339 3817 
15 14 32 3 6 0 22 11 10 13930 12804 -531 
16 7 44 4 2 1 24 13 12 14123 14315 795 
17 7 34 5 3 0 23 11 23 14105 15325 1821 
18 25 29 4 2 1 21 10 13 13640 18812 5757 
19 8 44 4 3 1 23 14 26 13852 14342 1081 
20 12 28 5 7 0 22 6 15 14127 17323 3799 
21 6 38 2 2 0 22 12 30 13933 15758 2421 
22 8 32 5 2 0 22 10 17 14115 12555 -958 
23 19 41 4 3 1 24 11 30 14052 13144 -309 
24 13 34 2 4 0 21 14 24 14129 16043 2517 
25 18 38 2 2 1 24 11 11 13936 12281 -1060 
26 21 44 4 1 1 24 10 15 13743 13339 185 
27 5 42 3 5 1 25 7 27 14123 16984 3464 
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28 19 26 2 6 0 23 4 17 13660 14739 1665 
29 22 25 4 3 0 22 11 25 13945 14000 651 
30 19 43 4 6 1 24 10 29 14053 13495 42 
31 21 38 4 3 0 22 9 17 14126 14574 1051 
32 7 26 5 3 0 22 4 13 14116 15160 1646 
33 23 31 3 7 0 22 9 26 14028 12729 -700 
34 19 40 4 3 1 24 11 11 14122 12684 -836 
35 13 42 5 6 1 22 7 17 13914 13374 54 
36 18 32 5 5 0 21 12 21 14120 15312 1795 
37 21 27 4 5 1 23 8 26 13784 19236 6042 
38 14 39 3 5 0 21 15 25 14064 14832 1368 
39 8 44 5 6 0 22 10 20 13649 12939 -125 
40 12 25 4 5 0 22 4 17 14119 14740 1224 
41 8 41 4 2 1 22 6 25 14129 13737 210 
42 18 44 2 3 1 23 11 14 14095 13371 -123 
43 8 33 4 5 1 21 4 22 13975 14816 1437 
44 8 44 4 3 0 22 4 11 14073 11778 -1694 
45 6 33 3 1 0 25 14 25 14054 15127 1673 
46 24 37 4 3 0 21 12 28 13785 15983 2788 
47 6 39 4 3 0 23 7 23 14129 13953 427 
48 17 40 3 3 0 22 3 18 13928 14252 919 
49 16 31 5 2 0 24 7 22 14129 18201 4674 
50 17 35 2 1 0 22 8 14 14070 17466 3997 
51 15 26 5 5 1 22 7 28 14129 14702 1175 
52 18 33 5 2 1 23 2 17 13906 13587 275 
53 22 37 2 5 1 25 14 27 14020 13220 -201 
54 15 33 2 6 0 23 9 22 14018 12008 -1411 
55 8 31 4 3 1 24 13 28 14095 15696 2203 
56 24 30 5 5 1 24 12 16 14128 13202 -323 
57 20 29 5 6 0 23 10 20 13908 16620 3306 
58 14 29 5 1 0 22 13 20 14126 15418 1895 
59 15 32 3 6 0 25 13 23 13790 19950 6750 
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60 12 27 3 5 0 24 15 16 13982 14042 658 
61 7 44 2 2 0 23 6 29 13694 12788 -319 
62 12 42 2 7 1 22 4 14 14080 13496 17 
63 11 35 5 6 1 23 3 19 13872 16566 3286 
64 9 31 4 2 0 23 11 12 14065 15121 1657 
65 23 44 5 3 1 22 12 22 13706 19472 6353 
66 24 34 2 1 0 21 5 16 14037 11427 -2011 
67 11 33 4 5 1 23 9 22 14128 16958 3433 
68 23 42 2 3 1 22 10 12 13604 13641 620 
69 22 28 5 2 0 25 5 20 13846 14276 1023 
70 20 41 4 5 0 21 15 10 13623 17539 4500 
71 11 34 4 2 1 23 15 15 13752 14063 900 
72 7 26 3 5 1 22 3 11 14128 16684 3159 
73 8 30 5 6 1 25 12 13 14029 16681 3251 
74 15 43 2 5 0 21 3 27 13880 15218 1930 
75 18 33 2 5 0 21 8 20 14128 13524 -1 
76 8 32 4 6 1 22 6 16 14045 13575 129 
77 24 30 4 2 0 23 3 27 13909 16545 3231 
78 5 34 5 5 0 24 15 21 13613 15917 2888 
79 18 30 3 1 1 23 14 16 14129 16942 3416 
80 12 33 2 4 0 25 13 28 13914 20021 6702 
81 15 25 2 6 1 21 3 17 13647 13792 730 
82 6 26 5 3 1 22 13 11 13946 14321 971 
83 22 30 5 6 1 22 10 17 14049 14011 561 
84 12 43 4 5 0 21 15 21 14106 15494 1990 
85 7 27 4 2 1 22 9 24 13813 14754 1532 
86 15 26 2 2 0 24 9 14 14129 13284 -242 
87 18 41 4 2 1 25 14 28 13855 18987 5724 
88 6 45 2 3 0 21 4 15 13599 15619 2603 
89 18 29 3 7 0 22 10 10 14129 16870 3344 
90 16 42 3 2 0 21 5 14 13817 15192 1966 
91 25 27 5 5 0 22 4 24 14110 12737 -772 
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92 12 37 5 5 0 23 7 29 14129 12729 -797 
93 5 34 2 5 0 23 11 19 13990 16703 3310 
94 9 25 5 2 1 22 15 11 13622 13298 260 
95 18 36 4 7 0 22 11 27 14129 14260 734 
96 11 40 2 6 1 24 5 22 14069 20162 6694 
97 5 26 2 3 0 24 6 26 14122 16005 2486 
98 6 31 4 5 1 25 10 17 13917 14957 1635 
99 12 37 5 7 1 25 8 11 13637 13900 848 

100 25 45 6 1 0 25 2 30 13884 15418 2127 
101 12 34 4 5 1 22 6 21 14101 17188 3689 
102 20 37 5 1 1 22 7 13 14129 13440 -87 
103 5 27 4 4 1 21 10 22 14125 14780 1259 
104 17 30 5 4 0 21 8 23 13820 15051 1821 
105 11 40 5 7 0 24 12 20 14128 12663 -862 
106 10 43 5 4 0 22 15 11 14127 12861 -663 
107 7 39 5 4 1 23 9 25 14124 12241 -1280 
108 6 41 2 2 0 22 6 17 13981 14122 737 
109 20 25 3 5 0 24 7 24 14124 12951 -570 
110 22 41 4 2 0 23 12 28 13696 19740 6631 
111 24 26 3 7 0 24 3 30 13589 22252 9246 
112 12 43 3 4 0 23 4 14 13775 11713 -1472 
113 11 41 5 7 0 24 12 27 14128 13700 174 
114 15 36 5 7 0 21 7 27 13618 13957 923 
115 25 30 4 2 0 22 14 30 14129 16522 2996 
116 20 32 3 1 0 23 10 19 14075 14909 1434 
117 17 26 5 1 0 23 12 30 14022 16802 3378 
118 9 27 2 6 1 23 12 12 14128 15730 2204 
119 24 43 4 1 0 25 3 13 14127 19593 6069 
120 23 31 4 6 0 21 14 29 13885 13916 624 
121 18 36 5 2 1 23 10 10 14128 14303 778 
122 23 44 3 6 1 24 11 28 14043 15540 2096 
123 21 25 4 3 1 22 7 22 13622 16873 3835 
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124 17 27 3 6 1 24 14 20 14012 14530 1116 
125 7 39 4 6 1 23 8 29 14110 13052 -456 
126 8 43 2 4 1 22 14 27 14124 14728 1206 
127 17 30 4 2 0 24 9 16 13999 12048 -1354 
128 8 34 5 4 1 21 9 29 14129 15982 2455 
129 8 37 2 5 0 24 6 11 13653 14748 1680 
130 5 43 5 2 1 24 9 20 14059 15034 1575 
131 24 32 5 6 0 21 10 24 13971 12487 -888 
132 6 34 4 4 1 21 9 26 13895 15487 2186 
133 22 41 5 3 0 23 5 19 13731 12938 -205 
134 13 32 3 6 0 21 9 28 13904 15541 2231 
135 17 25 5 6 1 22 5 11 13682 15935 2839 
136 12 29 4 7 1 22 13 21 13968 15057 1685 
137 7 43 5 6 0 23 12 18 13873 12320 -960 
138 20 29 4 2 1 22 8 16 13896 15020 1718 
139 13 32 3 5 0 24 7 16 13889 13838 543 
140 10 44 2 6 0 24 8 12 13791 16063 2862 
141 17 37 3 4 0 22 15 18 14114 16146 2634 
142 17 38 5 5 0 23 15 16 13968 13831 459 
143 7 45 3 2 0 22 13 16 14129 16786 3260 
144 20 35 4 3 0 22 8 16 14077 15217 1740 
145 16 29 2 2 0 23 7 14 14129 13844 318 
146 9 35 3 2 1 22 10 25 13694 15748 2641 
147 7 35 5 1 1 24 7 18 14005 15498 2090 
148 11 42 3 4 1 25 6 28 14124 12884 -637 
149 10 31 5 2 1 25 14 27 14119 14699 1182 
150 22 29 3 4 0 24 15 12 14129 12612 -915 
151 19 33 4 7 1 22 11 19 13682 13224 129 
152 6 43 5 3 0 22 2 30 14051 12680 -771 
153 17 30 4 7 0 25 12 25 14101 17144 3644 
154 13 27 4 1 0 23 13 27 13977 12407 -973 
155 21 30 5 2 0 21 13 12 14089 12866 -623 
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156 16 41 5 4 0 24 13 21 14099 17293 3795 
157 16 41 3 3 1 22 7 24 13840 13392 143 
158 20 38 5 2 0 23 12 18 14026 14890 1462 
159 11 34 2 4 0 22 12 24 14125 12968 -554 
160 9 39 5 5 0 22 12 15 13878 12430 -855 
161 23 43 4 3 1 25 4 20 14093 13086 -405 
162 19 26 4 3 0 23 8 30 13984 13404 17 
163 14 42 4 5 0 23 13 16 13771 14396 1215 
164 18 33 5 6 0 23 15 23 13973 15770 2394 
165 22 29 4 3 0 22 5 19 14082 15751 2270 
166 14 31 5 6 1 22 13 13 14030 13833 402 
167 11 43 4 6 1 24 8 18 14057 15821 2365 
168 10 33 2 6 0 24 13 23 14107 12342 -1163 
169 17 32 3 4 1 24 7 21 14112 13280 -230 
170 14 39 5 4 0 24 13 24 13745 19431 6275 
171 18 41 5 3 1 24 8 25 14001 18195 4792 
172 11 41 2 7 1 21 12 13 13598 13030 15 
173 19 42 2 6 0 22 6 19 13745 18126 4969 
174 11 30 4 3 0 21 8 10 14080 12191 -1288 
175 23 33 3 5 1 23 10 13 13969 13439 67 
176 6 39 5 6 0 22 7 22 14120 13025 -492 
177 22 31 4 3 0 25 4 18 13642 12998 -59 
178 11 39 5 5 0 22 3 25 13879 12944 -343 
179 14 34 5 5 0 22 9 16 14063 13749 286 
180 9 26 3 4 0 22 10 22 14017 17450 4032 
181 10 34 2 5 0 23 7 20 13970 14515 1141 
182 13 32 4 4 0 22 14 18 14039 14723 1283 
183 24 36 3 2 0 24 4 21 14108 18677 5171 
184 6 25 3 7 1 24 7 24 14128 14902 1378 
185 16 39 3 5 0 21 14 29 13916 14419 1098 
186 17 35 5 3 1 23 3 17 13617 16162 3129 
187 10 43 3 2 1 24 2 10 13821 13955 725 
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188 23 34 3 3 0 25 5 14 14119 14398 881 
189 18 36 2 1 1 23 5 28 14129 18424 4898 
190 7 40 5 4 0 24 9 28 14129 12582 -944 
191 9 30 5 5 0 22 14 17 13940 13537 193 
192 19 44 2 7 0 24 10 24 14104 16273 2770 
193 21 44 4 4 0 21 4 29 14127 14242 718 
194 21 35 3 2 0 24 5 22 14080 13527 47 
195 6 28 4 3 1 24 7 18 13954 14576 1218 
196 20 35 2 4 0 23 4 13 13743 17124 3970 
197 10 40 5 4 0 25 14 13 13748 12965 -195 
198 13 28 5 1 0 25 7 29 14126 11285 -2237 
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Table 19 Regular operation dataset  

Design 
# 

Wall R 
value 

Roof R 
value 

HVAC 
COP 

Window 
U value 

Window 
SGHC 

Cool 
setpoint 

Light 
Pwr 
Density 

PV Tilt 
angle PV Pwr 

Building 
Energy 
Use 

Net Site 
Energy 

1 5 25 2 7 1 21 15 10 14122 13584 57 

2 14 33 3 6 0 25 9 20 13774 20382 7189 

3 10 36 4 4 0 22 11 21 13843 24359 11099 

4 5 28 3 3 1 24 8 13 14049 25360 11902 

5 14 25 3 4 0 23 11 21 14079 26168 12682 

6 13 41 4 4 1 24 6 19 13647 21582 8511 

7 6 26 3 3 1 21 6 24 14129 23870 10336 

8 5 33 5 2 0 24 2 13 13625 21768 8718 

9 24 37 3 6 0 24 10 27 13677 17228 4128 

10 11 30 4 3 1 22 4 13 14079 31034 17548 

11 21 34 5 4 0 23 11 15 14017 27387 13959 

12 16 34 4 1 1 25 10 21 13589 43462 30447 

13 9 42 5 4 1 23 10 22 14072 21179 7698 

14 22 43 3 6 0 22 3 11 13944 20495 7138 

15 9 37 3 4 1 23 5 28 13710 22707 9576 

16 22 32 2 6 0 23 2 11 13805 28857 15634 

17 18 31 5 3 0 22 5 12 14076 20796 7312 

18 10 34 4 6 0 21 14 22 14125 19700 6169 

19 21 33 4 4 0 22 10 20 13621 23060 10014 

20 13 38 3 2 0 24 6 22 14129 29862 16328 

21 16 30 5 5 0 23 7 17 13848 21228 7963 
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22 7 35 3 6 0 21 5 12 14091 16551 3053 

23 14 39 3 2 1 23 11 14 14023 27428 13995 

24 12 39 3 4 0 21 4 22 13888 29628 16325 

25 14 26 5 1 0 25 6 26 14035 34022 20578 

26 18 26 5 2 0 25 10 11 14076 21797 8314 

27 14 35 4 3 1 22 13 27 14125 28256 14726 

28 14 32 4 5 1 24 4 15 14116 31168 17647 

29 19 43 5 2 0 24 3 23 13630 19931 6877 

30 18 37 2 6 1 24 5 16 13840 20321 7064 

31 9 40 2 2 1 23 9 20 14119 21104 7578 

32 25 38 3 4 1 22 3 22 14041 22513 9063 

33 9 35 3 2 0 22 12 29 14096 31753 18251 

34 14 44 3 6 1 24 10 25 14045 27804 14349 

35 21 33 3 2 0 23 5 11 13831 17044 3796 

36 23 25 3 2 0 24 4 15 13647 29409 16339 

37 21 28 3 6 0 23 3 25 14059 26739 13271 

38 24 38 3 6 0 24 5 21 14070 23749 10271 

39 17 38 3 2 1 23 12 23 14028 17925 4487 

40 23 37 4 4 0 23 2 15 13933 30422 17075 

41 7 43 2 5 0 21 8 11 13965 25877 12500 

42 6 33 4 5 0 22 10 21 13921 30467 17132 

43 25 36 2 2 1 22 3 22 14034 20318 6875 

44 16 44 3 2 0 22 3 20 13973 22463 9078 

45 23 28 4 6 1 23 13 17 13780 26869 13671 

46 21 34 5 3 1 25 12 18 13915 30056 16727 
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47 6 34 4 1 1 23 13 17 13631 22692 9636 

48 6 40 5 3 0 23 6 20 13937 20849 7499 

49 18 30 5 3 1 23 8 18 14129 25338 11804 

50 8 30 3 4 0 23 12 17 14049 32214 18756 

51 14 31 5 2 0 23 10 11 14129 25988 12453 

52 21 26 3 5 0 24 2 17 14056 29293 15829 

53 8 37 2 6 0 23 5 29 14094 35574 22074 

54 7 40 3 2 1 25 12 21 14107 27946 14433 

55 10 27 3 4 1 24 6 28 14064 27731 14259 

56 8 30 4 5 0 24 14 21 14059 29126 15658 

57 19 42 3 4 0 24 14 23 14123 15542 2015 

58 12 35 5 5 0 21 14 24 13974 28540 15155 

59 21 41 3 5 1 22 7 22 14057 25090 11625 

60 18 37 5 3 0 23 3 30 14066 25481 12006 

61 15 28 4 4 0 25 12 18 14128 28568 15035 

62 24 34 4 2 1 23 9 21 14129 26160 12626 

63 12 28 5 6 0 22 11 22 14123 25985 12457 

64 21 37 3 6 1 22 10 29 14100 28664 15158 

65 24 29 2 6 0 24 5 28 14116 32268 18746 

66 8 40 3 6 0 21 7 30 13817 16630 3395 

67 19 35 5 6 0 21 14 24 14002 22881 9468 

68 11 27 3 5 1 23 12 25 14114 30731 17212 

69 10 36 4 6 0 21 2 14 13892 19769 6462 

70 7 39 3 6 0 21 14 25 13605 33401 20371 

71 6 29 3 2 0 23 4 16 13893 31338 18031 
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72 25 29 2 4 1 24 11 10 14124 21645 8115 

73 12 32 3 6 0 23 13 16 13630 27319 14264 

74 21 40 3 2 0 24 6 26 14047 24250 10794 

75 22 30 5 2 1 25 12 11 13829 20825 7579 

76 14 29 5 6 0 23 10 21 14114 32747 19227 

77 24 44 2 5 0 21 3 15 13981 25532 12139 

78 18 40 3 6 0 23 13 25 14107 27072 13559 

79 8 29 3 5 1 21 6 19 13897 20376 7065 

80 24 29 4 1 1 23 4 16 14115 31849 18328 

81 19 26 2 6 0 22 11 25 14120 18788 5263 

82 22 31 4 6 1 22 3 25 14125 24835 11305 

83 19 35 4 2 0 21 9 26 14082 23336 9846 

84 19 31 3 4 1 23 5 23 14129 25053 11518 

85 10 38 3 2 0 24 8 28 14097 31715 18212 

86 22 32 4 7 1 22 13 23 13885 32144 18843 

87 14 26 2 3 0 24 10 16 14128 20995 7461 

88 25 29 5 2 0 23 8 27 13966 22054 8676 

89 24 41 4 6 1 25 5 18 13753 16366 3192 

90 23 32 2 3 0 24 10 15 13849 30401 17135 

91 16 33 4 4 1 24 14 27 14128 31229 17696 

92 24 28 2 3 0 24 14 28 14129 34379 20844 

93 15 32 4 6 1 24 11 23 14094 27264 13763 

94 9 26 3 3 1 23 7 26 14122 25510 11983 

95 21 30 5 3 1 24 11 28 14129 26723 13189 

96 21 42 4 4 1 21 8 16 13887 25994 12693 
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97 7 32 2 2 0 23 10 23 14086 28993 15499 

98 9 37 3 5 0 24 5 24 14107 21935 8421 

99 9 32 4 2 1 24 3 20 14017 17805 4378 

100 25 45 6 1 0 25 2 30 14128 29152 15619 

101 10 29 5 5 1 24 6 12 14129 21911 8377 

102 11 30 3 7 1 22 12 11 14125 26121 12590 

103 9 33 3 5 0 25 13 13 14035 27832 14388 

104 15 27 3 7 0 21 10 17 13810 22542 9314 

105 11 25 4 2 0 22 6 22 13918 16499 3167 

106 16 42 2 3 1 23 11 14 13915 19426 6097 

107 5 41 2 6 1 24 7 25 13621 28415 15370 

108 6 33 5 1 1 24 5 29 14105 18729 5217 

109 13 40 5 4 0 23 8 27 13714 22561 9426 

110 20 37 3 1 1 24 9 26 14127 26640 13108 

111 16 39 2 5 0 21 8 20 13589 43462 30447 

112 13 28 4 2 1 21 7 14 14104 23993 10483 

113 22 32 5 2 1 23 2 17 13710 25016 11885 

114 13 36 5 6 1 24 3 17 13938 27451 14100 

115 10 36 3 2 1 25 9 11 13776 24685 11490 

116 10 31 4 6 0 25 3 24 13912 25733 12407 

117 9 29 5 3 0 22 9 12 13885 25435 12135 

118 17 33 3 2 1 23 7 29 14107 34688 21175 

119 17 43 4 4 1 25 8 24 14122 17273 3746 

120 25 40 5 2 0 24 12 12 14099 30623 17117 

121 20 39 4 4 0 24 11 17 13689 23009 9897 
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122 13 40 4 5 0 21 9 13 13703 21137 8012 

123 14 37 5 3 1 24 12 17 13595 24091 11071 

124 8 28 5 4 0 24 11 16 14092 30620 17121 

125 7 33 3 2 1 25 15 24 13787 27701 14496 

126 19 27 5 6 0 22 3 26 14112 21860 8341 

127 7 45 5 7 1 25 14 24 14114 18174 4654 

128 18 36 5 6 0 24 10 12 13893 24938 11630 

129 11 39 4 4 1 22 7 10 13874 26223 12934 

130 11 43 3 2 0 22 11 23 13910 19814 6489 

131 13 43 5 2 0 25 14 14 14060 26015 12548 

132 20 37 2 5 0 22 2 25 14129 31263 17729 

133 19 30 5 2 1 22 3 25 13655 31926 18848 

134 17 31 4 1 1 24 9 16 13955 28619 15252 

135 8 43 3 5 0 24 7 16 13628 18435 5382 

136 10 29 4 4 0 24 5 17 13756 31140 17964 

137 24 35 4 6 0 24 10 21 14008 17186 3767 

138 11 36 4 4 1 23 15 27 13746 31636 18470 

139 20 33 5 4 0 24 14 18 13633 21930 8872 

140 19 44 3 2 0 24 2 11 14111 18969 5452 

141 19 43 4 6 0 23 13 13 14129 28923 15389 

142 14 39 5 4 0 22 4 19 14129 27516 13981 

143 10 30 3 6 0 24 14 13 13818 35396 22160 

144 16 38 3 6 1 22 4 11 13739 30884 17724 

145 13 26 5 5 0 22 4 25 14051 31318 17859 

146 8 43 3 4 1 25 8 28 13845 17095 3833 
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147 16 27 3 1 1 23 8 28 13777 20792 7596 

148 23 31 2 6 0 21 13 14 14129 17718 4183 

149 16 36 3 4 1 21 11 21 13756 19009 5833 

150 9 30 5 4 0 24 3 15 14029 32591 19153 

151 16 34 4 7 0 22 7 13 14082 26605 13116 

152 24 33 4 1 0 25 5 28 14045 17495 4041 

153 19 39 5 1 0 21 6 13 13960 33734 20362 

154 25 33 3 4 1 22 12 20 14119 19489 5964 

155 11 43 2 3 0 22 7 23 13926 28013 14673 

156 18 25 5 6 0 21 4 21 14129 22755 9220 

157 6 40 3 6 0 23 15 18 13894 33671 20362 

158 12 32 5 5 0 22 5 25 13991 28629 15227 

159 18 39 4 4 0 24 7 28 13885 28000 14700 

160 25 35 3 3 1 24 15 16 13999 18395 4986 

161 19 36 4 4 1 22 12 19 13657 25533 12452 

162 19 29 5 5 0 21 15 16 13898 23845 10533 

163 8 44 5 4 0 23 5 19 14112 28292 14775 

164 22 28 5 2 1 24 11 11 14113 24651 11132 

165 6 40 4 5 1 24 7 16 14097 26762 13258 

166 6 41 5 1 1 24 14 25 14072 19822 6342 

167 18 26 2 5 1 24 2 25 13824 21837 8596 

168 24 35 4 3 0 22 12 24 14128 38667 25134 

169 12 39 3 1 1 21 3 14 13746 21617 8451 

170 8 43 2 4 1 24 14 29 14033 22364 8922 

171 8 37 3 5 0 23 3 13 13998 21723 8314 



 
 

78 
 

172 6 42 3 3 1 22 3 20 13682 23625 10520 

173 11 38 5 3 1 21 6 19 13969 33809 20428 

174 8 45 4 4 1 24 6 12 14031 29233 15792 

175 22 33 3 6 0 22 15 18 14054 23760 10297 

176 15 31 3 4 1 24 9 20 14129 27504 13970 

177 7 29 4 2 1 22 7 21 13804 33644 20422 

178 6 44 4 6 1 22 9 29 14127 26388 12855 

179 14 44 2 6 0 25 4 27 13987 33529 20131 

180 7 25 2 4 0 21 11 19 14042 29678 16227 

181 22 42 5 1 1 23 14 21 13754 14821 1647 

182 17 39 5 3 0 25 2 13 13658 19304 6222 

183 17 42 4 2 0 22 5 11 13748 34808 21641 

184 23 35 2 6 0 25 10 13 14038 25581 12135 

185 19 31 3 6 0 24 7 21 14129 39362 25828 

186 17 34 2 5 1 23 14 28 14092 21598 8099 

187 9 44 5 2 1 25 7 23 14039 20739 7291 

188 15 43 5 2 0 21 8 21 14116 29978 16457 

189 12 31 4 6 0 22 14 23 14092 30981 17482 

190 18 26 4 5 0 23 7 16 13884 21718 8419 

191 10 43 4 7 1 25 14 13 13753 31517 18344 

192 13 28 5 6 1 23 3 29 14129 18204 4670 

193 21 30 4 5 1 23 11 20 14018 27719 14291 

194 13 25 4 1 0 23 4 30 14124 19398 5869 

195 15 27 4 7 0 24 10 13 13760 27334 14154 

196 9 42 2 1 0 25 12 16 13909 33087 19764 
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197 20 27 2 2 0 22 11 24 14107 33284 19771 

198 8 26 4 7 0 23 7 29 14128 22985 9452 
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Figure 40 K-Fold validation on regular surrogate model: energy consumption 

 

 

Figure 41 K-Fold validation on regular surrogate model: PV power production 
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Figure 42 K-Fold validation on regular surrogate model: net site energy  
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