
Florida Institute of Technology Florida Institute of Technology

Scholarship Repository @ Florida Tech Scholarship Repository @ Florida Tech

Theses and Dissertations

8-2020

Improving the Efficiency of Coupled Hydrodynamic Predictions by Improving the Efficiency of Coupled Hydrodynamic Predictions by

Implementing a Fetch-based Parametric Wave Model Implementing a Fetch-based Parametric Wave Model

Samuel Carter Boyd

Follow this and additional works at: https://repository.fit.edu/etd

 Part of the Ocean Engineering Commons

https://repository.fit.edu/
https://repository.fit.edu/etd
https://repository.fit.edu/etd?utm_source=repository.fit.edu%2Fetd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/302?utm_source=repository.fit.edu%2Fetd%2F1123&utm_medium=PDF&utm_campaign=PDFCoverPages

Improving the Efficiency of Coupled Hydrodynamic Predictions by Implementing

a Fetch-based Parametric Wave Model

by

Samuel Carter Boyd

A thesis submitted to

The Department of Ocean Engineering and Marine Sciences of

Florida Institute of Technology

in partial fulfillment of the requirements for the degree of

Master of Science

in

Ocean Engineering

Melbourne, Florida

August, 2020

We the undersigned committee hereby approve the attached thesis, “Improving the

Efficiency of Coupled Hydrodynamic Predictions by Implementing a Fetch-based

Parametric Wave Model,” by Samuel Carter Boyd.

Robert J. Weaver, Ph.D.

Associate Professor of Ocean Engineering

Major Advisor

Steven M. Lazarus, Ph.D.

Professor of Meteorology

Stephen L. Wood, Ph.D., PE

Professor and Program Chair of Ocean Engineering

Richard B. Aronson, Ph.D.

Professor and Department Head

Ocean Engineering and Marine Sciences

iii

Abstract

Title: Improving Efficiency of Coupled Hydrodynamic Predictions by

Implementing a Fetch-based Parametric Wave Model

Author: Samuel Carter Boyd

Advisor: Robert J. Weaver, Ph.D.

Within a restricted estuarine environment, the use of third-generation wave models for

predicting wave heights can be computationally expensive, signaling a need for model

development that reduces the computational costs of existing coupled hydrodynamic models.

This study focuses on the development and testing of a parametric wave solver that

incorporates four wave height formulations (SMB, SPM, TMA, and CEM) for predicting

wave properties in a restricted estuarine environment. The emphasis is on improved

efficiency without affecting accuracy, allowing for ensemble wave-surge forecasting to be

performed on desktop computational resources. Evaluation of the performance of the

parametric solver is twofold, first both the parametric solver and a third-generation wave

model, Simulating Waves Nearshore (SWAN), are compared to in-situ ADCP data at a point

in the Indian River Lagoon, on Florida’s east coast. Then the parametric solver and SWAN

solutions are compared across the estuarine domain. The creation of three different synthetic

wind fields allows for model comparison, with wind fields permitting testing of the

parametric model in order to reproduce (1) fully developed conditions, (2) wind speed

variability, and (3) wind direction variability in tropical storm level wind events. For

consistency comparison, wave height solutions over the same domain are generated by

SWAN and the parametric models. Comparisons made between the parametric model

performance and SWAN show a 4-member parametric model is accurate to within 87%

globally, with a runtime improvement of over two orders of magnitude compared to SWAN.

The parametric model’s ensemble average wave height was within 6% of the in-situ

measured wave heights; SWAN also performed within 6%. Therefore, the parametric wave

model proves to be a viable alternative to running an expensive third-generation wave model

for predicting waves in an enclosed estuarine system.

iv

Table of Contents

Abstract ... iii

Acknowledgement .. x

Dedication ... xi

1.0 Introduction .. 1

 1.1 Hydrodynamic Model ... 3

 1.2 Wind-Wave Model .. 4

 1.3 Coupled Hydrodynamic + Wave Model.. 6

2.0 Background ... 7

 2.1 Model Limitations ... 8

 2.1.1 Large Number of Computational Nodes ... 8

 2.1.2 Numerical Schemes ... 12

 2.2 Parametric Wave Height Solution ... 15

 2.2.1 Significant Wave Method ... 16

 2.2.2 Wave Spectra Method... 20

 2.3 Wave Solvers ... 24

3.0 Methodology ... 25

 3.1 Model Input ... 30

 3.1.1 Fetch Length .. 31

 3.1.2 Fetch Width ... 35

 3.1.3 Water Depth .. 38

 3.1.4 Model Input Summary ... 40

 3.2 Physical Processes ... 40

 3.2.1 Wave Shoaling ... 41

 3.3.2 Wave Breaking .. 42

 3.2.3 Bottom Friction ... 43

 3.2.4 Section Summary .. 44

v

 3.3 Parametric Model Evaluation .. 45

 3.3.1 Model Validation against ADCP ... 45

 3.3.2 Model Validation against SWAN ... 48

4.0 Results ... 50

 4.1 Model vs. ADCP .. 50

 4.2 Parametric vs. SWAN ... 51

5.0 Discussion .. 54

6.0 Conclusion ... 58

7.0 Future Work ... 59

8.0 References ... 61

9.0 Appendix A ... 73

9.1 Appendix B ... 74

vi

List of Figures

Figure 1 Operational temporal scales for SWAN and ADCIRC 6

Figure 2 S08 Computational domain .. 9

Figure 3 Continuous domain (A) and nested domain (B) 10

Figure 4 Meshes for one-way nesting technique ... 11

Figure 5 SWAN solution as a number of iterations .. 13

Figure 6 Coupled model computational runtime... 14

Figure 7 Duration-limited conditions .. 26

Figure 8 Fetch-limited conditions ... 27

Figure 9 SMB wave height development curves .. 29

Figure 10 Parametric wave solver schematic .. 31

Figure 11 Parametric stepping process for fetch distance 32

Figure 12 Second fetch ray in fetch solving process ... 34

Figure 13 Wave height contours with varying angular resolution 35

Figure 14 Wave height contours with varying cosine-weighted values.................. 37

Figure 15 Raw fetch rays (A) and effective fetch rays (B) 38

Figure 16 Wave height contours with varying I.D.W. p-values 39

Figure 17 Shoaling coefficient .. 42

Figure 18 Effect of physical processes on wave height .. 45

Figure 19 SONTEK Argonaut-XR pressure bursts ... 46

Figure 20 NOAA Trident Pier Station wind speed and direction 47

Figure 21 ADCP wave energy distribution and sensor location 48

Figure 22 Wave height contours for models during ADCP comparison 51

Figure 23 Globally averaged parametric wave height .. 52

Figure 24 Globally average optimal parametric wave height 53

Figure 25 Model deviation contours ... 54

Figure 26 IRL depth and relative effect of shoaling and friction contours 54

vii

List of Tables

Table 1 Surf Zone Phenomena .. 2

Table 2 ADCIRC+SWAN computational time ... 13

Table 3 Wave classification .. 29

Table 4 ADCP model comparison. .. 51

Table 5 Parametric model performance with respect to SWAN 54

Table 6 Parametric and SWAN model run time performance 54

Table 7 Parametric model set up ... 74

Table 8 SWAN model set up ... 74

viii

List of Equations

Equation 1 Johnson parametric wave height relationship 16

Equation 2 Johnson parametric wave period relationship 16

Equation 3 Revised parametric wave height relationship 17

Equation 4 Revised parametric wave period relationship. 17

Equation 5 Bretschneider deep water wave height .. 17

Equation 6 Bretschnieder deep water wave period ... 17

Equation 7 SPM wave height .. 18

Equation 8 SPM wave period .. 18

Equation 9 SMB wave height .. 18

Equation 10 CEM wave height .. 19

Equation 11 CEM wave period ... 19

Equation 12 Spectral method of moments ... 21

Equation 13 Moment based wave height ... 21

Equation 14 Moment based wave period .. 21

Equation 15 Phillip's steady-state equilibrium range. ... 21

Equation 16 Pierson Moskowitz spectrum .. 21

Equation 17 JONSWAP spectrum ... 22

Equation 18 TMA modal frequency (wave period) ... 22

Equation 19 TMA spectrum. ... 22

Equation 20 TMA parametric wave energy. ... 23

Equation 21 TMA Energy based wave height ... 23

Equation 22 Sea state development ... 25

Equation 23 Barycentric interpolation ... 33

Equation 24 Haversine distance formula ... 33

Equation 25 Cosine weighted effective fetch .. 36

Equation 26 Inverse distance weighting function .. 38

Equation 27 Inverse distance weight values .. 38

ix

Equation 28 Modified wave height after physical processes 41

Equation 29 Shoaling formula ... 41

Equation 30 Breaking formula. ... 42

Equation 31 Dispersion equation ... 43

Equation 32 Friction formula. ... 43

Equation 33 Mean absolute error ... 49

Equation 34 Normalized mean absolute error ... 49

Equation 35 Forecast time reduction ... 49

x

 Acknowledgement

I would like to Acknowledge the professors who helped me achieve my dream: Dr.

Stephen Wood, Dr. Geoffrey Swain, Dr. Ronald Reichard, Dr. Steven Lazarus, and

most of all, Dr. Robert Weaver. Dr. Weaver has been the most influential part of my

academic career, from the day I requested he be my advisor to the day I graduated

with my Master’s degree. He urged me to continue my education, for which I could

not be more grateful, and assured me that if I work hard then everything will fall into

place. It took me until very recently to understand he was right. Thank you for

pushing me to be the best I can be, both academically, and as a person.

xi

Dedication

I would like to dedicate this paper, and my entire academic career, to my Family. To

my grandparents Gran, Nana, and Poppy, who supported me emotionally and

financially throughout this journey. To my siblings, Conrad, Gabby, and Tanner, who

gave me the passion to succeed and the unconditional motivation, love, and support

to keep going. And most of all, to my parents, Keith and Sandy, who taught me to

treat others with respect, have an open mind, have confidence in my abilities, follow

my dreams, pursue my passions, and most importantly, do what I love. Thank you.

1

1.0 Introduction

This research is motivated by the desire to protect coastal communities from

the devastating impacts of severe storms. These storms, such as hurricanes,

frequently impact the U.S. east coast and Gulf of Mexico regions and often cause

devastation to coastal communities in the form of destroyed infrastructure, disruption

to biological communities, and most importantly, loss of lives. Advanced weather

and storm surge forecast models help to alleviate the impact of these storms by

allowing local decision makers and emergency management teams to assess the areas

at highest risk prior to storm impact. In doing so, these organizations are able to

evacuate and allocate resources according to the specific locations forecasted by the

models. Accurate and efficient numerical storm surge models are therefore necessary

tools for coastal communities that allow safety and prosperity to persist in the face

of devastating natural events.

Because of the increased rate of computer processing power, the field of

numerical modeling has steadily evolved (Voller and Porté-Agel, 2002). This

increased processing power is a result of developments in high performance

computing (HPC) which are composed of two major components: advanced

algorithms capable of accurately simulating complex, real-world problems; and

advanced computer hardware and networking with sufficient power, memory, and

bandwidth for executing those simulations (Tezduyar et al., 1996). Most individual,

university, and industry computers are extremely limited in processing capabilities,

resulting in challenges when trying to work with numerical modeling problems

where sufficiently large computational resources are required. This computational

limitation has led to the exploration of more efficient algorithms to solve problems

faster while still using the available hardware.

2

 In the field of Ocean Engineering, numerical models can be classified into

four different types according to the relevant physical phenomena (Sánchez-arcilla

and Lemos, 1990), Table 1.

Table 1 Surf Zone Phenomena (Sánchez-arcilla and Lemos, 1990)

Surf Zone Phenomena Spatial Scale (m) Time Scale

Sediment transport and changes in morphology 100 - 1000 1 day - 1 month

Currents (non-oscillatory flows) 100 - 1000 10 min - 1 hour

Organized oscillatory flows (waves) 1 - 100 10−1 sec - 10 min

Random oscillatory flows (turbulence) 10−4 - 10−1 10−3 sec - 10 sec

The type of model selected for a coastal simulation depends on the scale of

simulation, domain size, and problem being addressed. For coastal regions at risk of

hurricane impacts, the primary model parameter of interest is storm surge, namely

water elevation. Storm surge is an abnormal rise in sea level primarily caused by high

wind speeds pushing water towards the coast over a long fetch (distance which wind

blows over water) (Yin et al., 2020). The Florida coasts are an example of an area at

high risk of hurricane-induced storm surge effects that may be devastating to coastal

communities. Forecasting storm surge requires numerical models that account for

currents (non-oscillatory flows) and waves (organized oscillatory flows), Table 1.

Current-based numerical models are commonly referred to as hydrodynamic models

and wave-based numerical models are commonly referred to as wind-wave models;

both classes of models were investigated.

A model domain is the area of water or land that will be considered in the

model simulation. The model domain for this research is Florida’s Indian River

Lagoon (IRL). The IRL is a shallow (mean depth ~0.8 m) and narrow (~3 km wide)

estuary extending 251 km between Jupiter Inlet and Ponce Inlet. The IRL is

considered one of the most diverse estuaries in North America valued at $3.7B

annually (Jiang, 2017). During the ASBPA Storm Processes and Impacts Workshop

(2018), decision makers expressed a desire to have a suite of storm surge results for

3

the IRL which they can use for guidance (Weaver, Hartegan and Massey, 2018). In

order to fulfill this desire, both components of the storm-surge forecasting system

(hydrodynamic circulation and wind-waves) need to be efficient enough to allow for

multiple simulation runs in a timely manner.

Within a restricted estuarine environment, the use of wind-wave models for

predicting wave height can be computationally expensive, signaling a need for model

development that reduces the computational costs of existing models. This study

develops and tests a parametric wave solver for predicting wave properties in a

restricted estuarine environment. The emphasis is on improved efficiency while

maintaining existing accuracy. Such improvement allows for ensemble wave-surge

forecasting to be performed on desktop computational resources. The specific

models selected for IRL storm surge forecasting were investigated as well as the

limitations of the existing hydrodynamic and wind-wave models.

1.1 Hydrodynamic Model

There are a variety of coastal-scale circulation models that are widely used

for hydrodynamic predictions. Among these are HYCOM (Bleck, 2002), ADCIRC

(Luettich, Westerink and Scheffner, 1992), FVCOM (Chen, Liu and Beardsley,

2003), SELFE (Zhang and Baptista, 2008), and SLOSH (Jelesnianski et al., 1984).

The Advanced Circulation, or ADCIRC, model is desirable for modeling circulation

in the IRL because it can be implemented on a wide scale of computational domains

ranging from deep ocean to estuaries, it allows for two- and three-dimensional

calculations (Luettich and Westerink, 1991), it is highly scalable (P. C. Kerr et al.,

2013), and uses the finite element method, which allows for computation on highly

flexible unstructured grids (Luettich, Westerink and Scheffner, 1992). ADCIRC, is

an open-source software package that is used to solve time dependent, free surface

circulation, and transport problems (Luettich, Westerink and Scheffner, 1992).

ADCIRC solves the generalized wave continuity equation (GWCE) to compute the

4

surface elevation and a modified form of the shallow water equation to compute the

current velocity on an unstructured mesh (Luettich, Westerink and Scheffner, 1992).

ADCIRC’s solution accuracy has been validated by numerous studies including

(Bhaskaran et al., 2013; Chen et al., 2013; P. C. Kerr et al., 2013; Garzon and

Ferreira, 2016; Akbar, Kanjanda and Musinguzi, 2017); see ADCIRC website for

further publications.

1.2 Wind-Wave Model

Similarly, selection of an appropriate wind-wave model can be challenging

due to the number of models available and the need to choose the right model for the

project needs. Designed for specific applications, the physics driving the models can

also differ. Some like the Simulating Waves Nearshore (SWAN) (Booij, Ris and

Holthuijsen, 1999; Ris, Holthuijsen and Booij, 1999) and the Steady-State Spectral

Wave Model (STWAVE) (Smith, 2001; Massey et al., 2011) are phase averaging

spectral wave models; this means that they compute average wave conditions. Others

like the Fully Nonlinear Boussinesq Wave Model (FUNWAVE) (Kirby et al., 1998;

Bruno, De Serio and Mossa, 2009) and MIKE 21 FW (DHI Software, 2017) are phase

resolving wave models; this means that they are able to resolve individual waves.

Some are fully 3D two-phase models like OpenFOAM (OpenFOAM, 2014) and

some are Lagrangian models that incorporate Smooth Particle Hydrodynamics (SPH)

(Dalrymple and Rogers, 2006; Narayanaswamy et al., 2010) solving the conservation

equation for each particle.

Because of differing physics and modeling approaches, it becomes critical

for the user to have a comprehensive understanding of each of the model’s

capabilities and limitations. The choice of wind-wave model depends on the size of

the model domain, desired resolution of the wave field, and the computational

resources available to execute the simulation. Based on the need for large domains

and long simulation periods when running large-scale regional forecast models, and

5

the requirement of performing simulation in an efficient manner in order to keep up

with forecast cycles, only phase averaging spectral wave models were considered.

The most up-to-date, accurate, and widely used phase averaging wave models are

third-generation spectral wind-wave models such as WAM (Hasselmann et al.,

1988), WAVEWATCH III (Tolman, 1991), TOMAWAC (Benoit, Marcos and Becq,

1997), STWAVE (Smith, 2001), and SWAN (Booij, Ris and Holthuijsen, 1999; Ris,

Holthuijsen and Booij, 1999). These models are considered to be “third-generation”

because they parameterize all source terms to be proportional to the action density

spectrum while imposing approximations, such as the Discrete Interaction

Approximation (DIA) (Hasselmann et al., 1985) or the Webb-Resio-Tracy (WRT)

approximation (Webb, 1978; Tracy and Resio, 1982; Resio and Perrie, 1991), for the

non-linear source terms. Each spectral model has its advantages, intended domain

size, and conditions for optimal results.

The Simulating Waves Nearshore, or SWAN, model is desirable for

calculating wind-waves in the Indian River Lagoon because the model was designed

to compute random, short-crested waves in coastal regions with shallow water and

ambient currents (Booij, Ris and Holthuijsen, 1999). SWAN’s accuracy and

consistency has been validated by numerous studies including (Gruijthuijsen, 1996;

Booij, Ris and Holthuijsen, 1999; Ris, Holthuijsen and Booij, 1999; Wood, Muttray

and Oumeraci, 2001; Allard et al., 2004; Padilla-Hernández et al., 2007; Sartini,

Mentaschi and Besio, 2015). SWAN solves the evolution of action density N (t, ϕ, θ,

σ) over time (t), geographical space (ϕ), and spectral space of direction (θ) and

frequency (σ) (Booij, Ris and Holthuijsen, 1999; SWAN, 2014). By integrating

action density, wave properties, such as significant wave height and periods, are

obtained.

6

1.3 Coupled Hydrodynamic + Wave Model

The processes described by the hydrodynamic model will affect the processes

being described by the wave model and vice versa (Weaver and Slinn, 2005, 2007).

The wind induced waves computed by SWAN, may contribute to the water level rise

by as much as 35% (Weaver and Slinn, 2005, 2007; Resio and Westerink, 2008;

Dietrich et al., 2010). This change in water levels, in addition to the effect of currents

computed by ADCIRC, will modify wave propagation and breaking. It is necessary

that the two different models integrate with one another into one framework, so that

the relevant physical processes and their influence on each other is considered. This

technique of model integration is termed model coupling. The ADCIRC+SWAN

coupled model has been previously formulated by (Dietrich et al., 2012) and

independently validated by (Bhaskaran et al., 2013; P. C. Kerr et al., 2013; Akbar,

Kanjanda and Musinguzi, 2017; Chen et al., 2013; Garzon and Ferreira, 2016). The

temporal scales that the SWAN and ADCIRC models operate on are given by

(Westerink et al., 2018), Figure 1.

Figure 1 Operational temporal scales for the SWAN and ADCIRC models (Westerink et al., 2018)

For the ADCIRC+SWAN coupled model, ADCIRC passes water levels,

current velocities, and roughness lengths to SWAN where water depth, wave

7

propagation, depth-induced breaking, and other wave process are calculated. SWAN

then passes wave information, wave action, the ratio of group velocity to phase

velocity, and relative frequency to the ADCIRC model where radiation stress

gradients are calculated at each vertex (Dietrich et al., 2012). Tightly coupling the

models means that both models are able to use the same unstructured mesh and share

the same sub-grids in parallel application; this greatly improves scalability of the

system (P. C. Kerr et al., 2013).

The coupled modeling approach is more comprehensive than a singular

model because it accounts for dynamic process interaction which results in better

representation of the wave field during an oceanic simulation. This makes coupled

models attractive for coastal storm surge modeling; however, this increased accuracy

comes with inherently long runtimes. Each component of the coupled model

(hydrodynamic and wave) has its limitations; however, both models share the general

limitations imposed by requiring high resolution (e.g. large number of computational

nodes), and by the complexity of the numerical schemes developed for discretization

of the governing equations. These limitations were explored by developing a wave

solver that is both accurate and highly efficient which allows for ensemble storm-

surge forecasting in the IRL.

2.0 Background

 In this section the limitations of both components of the coupled model

(hydrodynamics and waves) are investigated. These limitations include high model

resolution, which results in a large number of computational nodes, and expensive

numerical scheme discretization. In addition, the methodology behind obtaining a

parametric wave height formulation is discussed.

8

2.1 Model Limitations

2.1.1 Large Number of Computational Nodes

Coastal-scale wind-wave models are expensive because they have model

domains with a large number of computational nodes. In a semi-enclosed domain

such as an estuary (IRL), bay, or lake, the model domain size is a function of the

bathymetric resolution required to propagate the solution accurately. The

bathymetric resolution is also a function of the complexity of the area of study.

Generally, these semi-enclosed domains are largely heterogeneous, with rapid

changes in bathymetry and complex shoreline geometry; the IRL is one such domain.

Therefore, to model the IRL and similar domains accurately, the grid resolution may

need to be on the order of tens of meters. This high resolution results in gridded

domains with hundreds of thousands to millions of computational points.

Furthermore, to accurately model the circulation in an estuarine environment,

an additional domain needs to be considered; the domain that connects the semi-

enclosed domain to the model boundary, which lies thousands of kilometers away in

the open ocean. There are several reasons for including such a large area of the ocean

in the estuarine model: first, to accurately resolve complex coastal geometries,

bathymetries, and scales of motion a wide range of spatial resolution is required to

maintain model stability; second, the open-ocean boundary must be placed far away

from the coastal region of study to minimize boundary effects (Westerink et al.,

1992); and third, the grid has to provide sufficient resolution for the tidal, wind, and

atmospheric pressure forcing’s to propagate from the ocean basins to the coastal

floodplain. The resulting domain required to model coastal circulation on the U.S.

east coast covers the West North Atlantic Ocean, Caribbean Sea, and the Gulf of

Mexico between 98°W and 60.7°W and between 9°N and 47°N. An example of this

domain is the S08 grid developed by (Westerink et al., 2008), Figure 2.

9

Figure 2 S08 Computational domain specified by (Westerink et al., 2008)

Therefore, to study the hydrodynamics inside of Florida’s Indian River

Lagoon, much of the Atlantic Ocean and the Gulf of Mexico must be included in the

computation; otherwise, the computation may become unstable and unreliable. This

necessarily involves model calculations at a large number of points with a high

degree of grid flexibility, even though the study is only on a lagoon that is 250 km

long. (Taeb and Weaver, 2019).

One solution to the problem of a large number of computational points is to

divide the domain into multiple regions; for example, one smaller domain that

captures the high resolution of the coastal region’s geometry and bathymetry and one

larger domain that captures the entirety of the open ocean to the boundary in coarse

resolution. An example of the continuous domain and the split domain is shown in

Figure 3.

10

(A) (B)

Figure 3 Continuous domain (A) and nested domain (B)

This technique is called one-way nesting and it helps to improve the

efficiency of the simulation by reducing the number of computational nodes (Taeb

and Weaver, 2019). Nodes are eliminated by allowing the resolution to jump from

coarse to fine at the boundary of the two domains without having to smoothly vary

as in the single domain approach, Figure 3. This is achievable because computation

on the fine grid is forced with the boundary conditions that are generated by the

computation on the coarse grid (Harris and Durran, 2010; Ji, Aikman and Lozano,

2010). Since the simulation time step is restricted to the smallest element in the

domain, the wall-clock time for model execution is further reduced by allowing a

significantly larger time step to be applied to the coarse mesh because of the

increased size of the new smallest element. In addition, the one-way nesting

technique allows for different physics to be performed on each mesh. For example,

in the case of a 3D circulation simulation inside an estuary, it may only be necessary

to perform a simpler and quicker 2D barotropic run on the coarse mesh that will

produce the necessary boundary conditions to be used for the 3D baroclinic estuarine

simulation (Taeb and Weaver, 2019). The combination of a smaller timestep, simpler

physics, and less computational nodes, as a result of a nested domain, allows a

simulation to run much quicker than on a traditional continuous domain (Blain,

Cambazoglu and Kourafalou, 2009; Taeb and Weaver, 2019). The coarsely resolved

11

ocean mesh and the highly resolved lagoon mesh created for the IRL are shown in

Figure 4.

 (A) (B)

Figure 4 Coarsely resolved ocean mesh with 40,320 nodes (A) and highly resolved IRL mesh with 126,772 nodes

(B) used for one-way nesting technique

These two meshes have a combined total of 167,092 nodes, which is about

half the number of nodes (314,442) used in the traditional S08 mesh, Figure 2. In

addition, the nested-domain technique achieved the same level of resolution as the

traditional domain at the area of interest (less than 100 m in the channels). The

solution accuracy and physics are also maintained because this approach produces

the same surface gravity features at the boundary, which ensures volume and mass

conservation between the two domains (Chen et al., 2013), (Chen et al., 2016).

This one-way nesting technique was incorporated into an automated coastal

estuarine modeling system termed Multistage in a study by (Taeb and Weaver, 2019).

Multistage takes different wind forcing predictions provided by agencies such as

NAM, GEFS, and SREF and uses them to run a coupled circulation and wave model

on two unstructured meshes that are one-way nested, Figures 3 and 4. The study

implemented the Multistage tool in Florida’s Indian River Lagoon and found a

significant reduction in runtimes by 54% to more than 80% as compared to single-

12

domain approach. This increased efficiency was used to perform repetitive

computations, allowing for an ensemble of results. Multistage successfully

performed 3-5 ensemble simulations using the same number of CPU-hours as a

traditional single-domain approach (Taeb and Weaver, 2019). One-way nesting is

therefore a method that can help to improve the efficiency of a finite element oceanic

numerical simulation by incorporating new algorithms on the same hardware

available. In particular, the nested domain approach is able to greatly reduce the

number of nodes and simulation time required for a coastal simulation while still

achieving the same level of bathymetric resolution, and governing physics.

2.1.2 Numerical Schemes

Another factor that limits coupled simulation efficiency is the complexity of

the numerical schemes developed for discretization of the governing equations and

the implicit schemes used by some models to propagate solutions forward in time.

The governing equations associated with the ADCIRC have the advantage of being

explicitly discretizable; this means that they can be directly solved. This is

advantageous because expensive iteration schemes are not necessary; however, the

resulting simulation timesteps required for model stability are small (on the order of

1 second). The governing equations associated with the SWAN model are handled

implicitly; this means that they require expensive iteration schemes for solution

convergence and propagation but can advantageously incorporate large time steps

(on the order of 10 minutes) while still remaining stable. In either case, small time

steps or expensive propagation schemes, resulting from the numerical scheme

discretization and solution propagation, ultimately limit the runtime efficiency of

either component of the coupled model.

Furthermore, the runtimes for the coupled model are greater than the sum of

the runtimes for each model running independently because of the complex

interactions between them (Dietrich et al., 2012). For the ADCIRC+SWAN model

13

specifically, the runtimes are highly dependent on the number of iterations SWAN

needs for its solution to converge; this is due to the implicit numerical scheme used

to propagate SWAN’s solution forward in time (SWAN, 2014). The effect of SWAN

iterations on the coupled model’s total runtime was demonstrated by (Weaver,

Hartegan and Massey, 2018) as shown in the table below.

Table 2 Computational wall clock time for coupled ADCIRC+SWAN simulations (Weaver, Hartegan and

Massey, 2018)

Limiting SWAN’s iterations can be effective in reducing simulation runtime

but it comes with a reduction in solution accuracy. This effect is demonstrated by

(Weaver, Hartegan and Massey, 2018), Figure 5.

Figure 5 SWAN solution (at node 24570) as a number of iterations. The solution converges as SWAN iterations

increase.

To save computational time, Multistage currently limits SWAN to 1-iteration

within the high resolution IRL domain and in doing so successfully reduces model

14

run-time and allows for 3-5 ensemble runs; however, the solution is not converged

and therefore is less accurate than the optimal fully-converged solution. Therefore,

the method of improving simulation runtime by reducing SWAN iterations is

exhausted.

In addition, the runtimes of the coupled model are highly dependent on the

number of processors available for the computation. The coupling between ADCIRC

and SWAN (Dietrich et al., 2012) allows for parallel computation; this means that

the computational burden can be divided between multiple computer processors

which can all function simultaneously. The relationship between runtime and

computer processors in a parallel computation is effectively linear, Figure 6.

Figure 6 Parallel computational runtime as a function of computer processors. The plot was generated by

extrapolating the runtimes given by (Weaver, Hartegan and Massey, 2018) for a 1-day IRL simulation on 45

processors.

Parallelizing the model allows for potentially enormous reduction in

simulation runtime; but as mentioned before, the computational resources available

for performing these types of simulations are usually limited. In order to improve the

efficiency of the wave + circulation coupled model, we looked to implement an

alternative solution to SWAN; a solution for wave height that does not need to iterate

(i.e., is not time dependent) and can be performed on a single computer processor.

1

10

100

1000

10000

1 10 100 1000

R
u

n
ti

m
e

(m
in

)

Number of Processors

1-Day Coupled Simulation in the IRL

15

This is achieved through the use of a simple parametric wave solver that is

coupled to ADCIRC within the Multistage system with an application of ensemble

storm surge forecasting. In the process of creating the simplified wave solver,

different parametric formulations for calculating wave height and physical processes

was investigated. In order to be successful, the solution should not be degraded by

using parametric wave model vs the SWAN model. Both the parametric solver and

the SWAN model solutions were evaluated against in-situ ADCP data at a single site

in the test domain. Additionally, the parametric wave solver’s accuracy and run time

was compared against the fully converged nonstationary SWAN solution across the

entire IRL domain. Since third-generation wave models are found to perform

similarly in accuracy and computational time (Padilla-Hernandez, Perrie and

Toulany, 2004; P. C. Kerr et al., 2013), the results should hold for any third-

generation wave model.

2.2 Parametric Wave Height Solution

The problem of mathematically representing an ocean state can be

approached in several ways. The two most common methods for addressing this

problem are the significant wave method, and the wave spectra method. Both

methods have certain advantages and certain disadvantages and vary fundamentally

in their approach to the problem. It is important to understand that all formulations

developed for representing ocean waves are empirically derived and may also differ

in their underlying assumptions; thus, they may differ in their accuracy depending

on how closely the application region is to the data set from which the equations were

derived. A study of the different forecasting methods found that each method works

better for the particular region from which the principle data were obtained (Roll,

1957). The significant wave method and the wave spectra method are investigated in

the following sections.

16

2.2.1 Significant Wave Method

The Significant wave method is a deterministic approach to modeling the

properties of surface waves. It is very simple because it describes only a single

representative wave with a representative height and period for the entire system

being modeled (Tolman, 2010). The basic tenet of this prediction method is that

interrelationships among dimensionless wave parameters are governed by universal

laws (U.S. Army Corps of Engineers, 2002).

The first rigorous method for wave forecasting was developed by Sverdrup

and Munk (Sverdrup and Munk, 1947) who combined classical wave theory with

available data to obtain semiempirical wave forecasting relationships. As shown by

(Johnson, 1950), the generating parameters for ocean waves may be related by use

of the PI-theorem (Buckingham, 1914) and one-dimensional analysis. The following

parameters are:

𝑔𝐻

𝑈2 = 𝑓1 (
𝑔𝐻

𝑈2 ,
𝑔𝑡

𝑈
) [1]

𝐶0

𝑈
=

𝑔𝑇

2𝜋𝑈
= 𝑓2 (

𝑔𝐹

𝑈2 ,
𝑔𝑡

𝑈
) [2]

where,

𝐻 = 𝐻1

3

= significant wave height [m],

𝑇 = 𝑇1

3

= significant wave period [s],

𝑔 = acceleration of gravity [m/𝑠2],

𝐶0 = deep water wave speed [m/s],

𝑈 = wind speed [m/s],

𝑡 = wind duration [s],

𝑓 = fetch length [m], defined as the uninterrupted horizontal length that wind

blows over the water in a constant direction.

17

Equations [1] and [2] are developed under the assumptions of constant wind

speed and direction. The relationships between the above variables can be written:

𝑔𝐻

𝑈2 = 𝐹1 [3]

𝑔𝑇

2𝜋𝑈
= 𝐹2 [4]

where 𝐹1 and 𝐹2 are functions of wind speed, fetch length, and wind duration. A form

for solutions to these equations was initially given by (Wilson, 1955) and modified

by (C.L. Bretschneider, 1952) who proposed revised coefficients from additional

empirical data. The result is the following explicit solutions.

𝑔𝐻𝑠

𝑈2 = 0.283 𝑡𝑎𝑛ℎ [0.0125 (
𝑔𝐹

𝑈2)
0.42

] [5]

𝑔𝑇𝑠

2𝜋𝑈
= 1.2 𝑡𝑎𝑛ℎ [0.077 (

𝑔𝐹

𝑈2)
0.25

] [6]

These solutions give estimates for wave height and wave period development

in terms of only three variables: gravity, wind speed, and fetch distance. The

limitation of these solutions however is that they assume a deep-water condition and

as such are not suitable for estimating wave characteristics in intermediate water.

Further revisions to these equations were made to include the approximation of wave

development in shallow and intermediate water depths. This was achieved by

successive approximations in which wave energy is added due to wind stress and

subtracted due to bottom friction and percolation. The deep-water solutions given in

(Hasselmann et al., 1976), similar to in Equations [5] and [6], were used to determine

the energy added due to wind stress. Wave energy loss due to bottom friction and

percolation is determined from the relationships developed by (Charles L.

Bretschneider, 2011). Resultant wave heights and periods are obtained by combining

the above relationships by numerical methods (CERC, 1984):

18

𝐻𝑠(𝑆𝑃𝑀) = 0.283 tanh [0.530 (
𝑔𝑑

𝑈𝐴̅̅ ̅̅ 2)
0.75

] tanh {
0.00565 (

𝑔𝐹

𝑈𝐴̅̅ ̅̅ ̅2)

0.50

tanh[0.530 (
𝑔𝑑

𝑈𝐴̅̅ ̅̅ ̅2)

0.75

]

}
𝑈𝐴̅̅ ̅̅ 2

𝑔
 [7]

𝑇(𝑆𝑃𝑀) = 7.54 tanh [0.833 (
𝑔𝑑

𝑈𝐴̅̅ ̅̅ 2)
0.375

] tanh {
0.0379 (

𝑔𝐹

𝑈𝐴
̅̅ ̅̅ ̅2)

0.333

tanh[0.833 (
𝑔𝑑

𝑈𝐴
̅̅ ̅̅ ̅2)

0.375

]

}
𝑈𝐴̅̅ ̅̅ 2

𝑔
 [8]

where,

𝑈𝐴 = 0.731 𝑈𝑠
1.23

and 𝑈𝑠 is the wind speed at the water surface [m/s].

These solutions give estimates for wave height and wave period development

in terms of four variables: gravity, wind speed, and fetch distance, and water depth.

Equations [7] and [8] are referred to as the Sverdrup-Munk-Bretschneider (SMB)

parametric formulations after the initial work performed by (Sverdrup and Munk,

1947) modified by (C. L. Bretschneider, 1952; C. L. Bretschneider, 2011), and later

revised by (Mitsuyasu, 1970; Hasselmann et al., 1973). They will be referred to as

the SPM equations because of they are published in the Shore Protection Manual

(CERC, 1984).

 A study by (Malhotra and Fonseca, 2007) used these formulations with a

slight variation; the wind is explicitly cast in terms of speed at the water surface, as

opposed to the adjusted wind speed in the initial formulation. The coefficients and

exponents in the equations are modified accordingly as seen in the following

Equation.

𝐻𝑠(𝑆𝑀𝐵) = 0.283 tanh [0.530 (
𝑔𝑑

�̅�2)
0.75

] tanh {
0.0125 (

𝑔𝐹

�̅�2)
0.42

tanh[0.530 (
𝑔𝑑

�̅�2)
0.75

]
}

�̅�2

𝑔
 [9]

19

The study by (Malhotra and Fonseca, 2007) did not use a modified form for

the SPM wave period as wave period was not considered in the study. As such, the

wave period used for the SMB formulation will be the same as the SPM wave period,

Equation [8].

Another form of Equations [3] and [4] is given by (U.S. Army Corps of

Engineers, 2002) under different assumptions about wave growth. The first

assumption is fundamentally different from the SMB formulation as it neglects the

effect of depth on the growth of waves in shallow water. This conclusion was reached

based on work by (Bouws et al., 1985; Janssen, 1989, 1991) which found that fetch-

limited wave growth in shallow water appears to follow grown laws that are quite

close to deep water waves for the same wind speeds. This assumption implies that

any bottom-induced physical transformation effects on waves (such as friction,

percolation, and shoaling) should be similarly neglected. The second assumption is

that a local wave field propagates at a group velocity approximately equal to 0.85

times the group velocity of the spectral peak; this factor accounts for both frequency

distribution of energy in a JONSWAP spectrum and angular spreading. Lastly, that

deep water wave growth formulae should be used for all depths, with the constraint

that no wave period can grow past a limiting value as shown by (Bouws et al., 1985).

The resulting Equations, [10] and [11], presented in the Coastal Engineering Manual

(U.S. Army Corps of Engineers, 2002) (CEM) are:

𝐻𝑠(𝐶𝐸𝑀) = 0.0413 (
𝑔𝐹

𝑈∗
2)

0.5 𝑈∗
2

𝑔
 [10]

𝑇(𝐶𝐸𝑀) = 0.651 (
𝑔𝐹

𝑈∗
2)

0.33 𝑈∗

𝑔
 [11]

In conclusion, the significant wave concept is a method that forecasts the

principle parameters, i.e., the significant wave height and significant wave period,

based on fundamental assumptions about the growth of wind-waves. Based on

20

different assumptions, various expressions for Equations [3] and [4] can be derived

with additional empirical data, Equations [7]-[11].

2.2.2 Wave Spectra Method

The wave spectra method was introduced on the basis that waves at sea

represent a stochastic process and that a single representative wave height, as

described by the significant wave method, does not adequately describe the wave

field (Tolman, 2010). The wave spectra method is fundamentally opposite to the

significant wave method; that is, the significant wave method predicts the unit form

of the theoretical spectrum from which the wave spectrum and the normal form of

the directional spectrum can be derived, while the wave spectra method predicts the

direction spectrum from which the one-dimensional spectrum and the significant

wave height are then determined (Bretschneider and Tamaye, 1977). This method

requires more computational resources but may be more accurate, especially in the

distribution of wave energy with frequency (CERC, 1984). This method is

traditionally approached by assuming that ocean waves are a weakly steady-state

ergodic random process, where the wave profiles are distributed according to the

normal probability distribution with zero mean and a variance representing the sea

state severity. The statistical properties can be evaluated by analysis of the time

history of a single wave record. By using the auto-correlation function, a wave record

may be represented by the time average of wave energy (Ochi, 1998). This average

may also be expressed in terms of the wave frequency, in radians per second, by

applying the Parseval Theorem and a Fourier transform. The average wave frequency

may then be written in terms of the spectral density function which represents the

average energy of random waves with respect to time. By assuming the spectral

density function is Rayleigh distributed (Longuet-Higgins, 1952), one can obtain

meaningful wave characteristics by taking moments of a wave spectrum, Equation

[12]. Wave characteristics such as significant wave height, Equation [13] and

average wave period, Equation [14], may therefore be obtained.

21

𝑚𝑖 = ∫ 𝑓𝑖 ∗ 𝑆(𝑓) 𝑑𝑓
∞

0
 [12]

where,

𝑚𝑖 = the i-th moment, and

𝑆(𝑓) = the wave energy spectrum in terms of frequency (f).

𝐻𝑠 ≈ 4√𝑚0 [13]

𝑇𝑚𝑒𝑎𝑛 = 4√
𝑚0

𝑚2
 [14]

The first proposed spectral formulation was developed by (Phillips, 1958) to

represent the upper bound of the wind-generated deep-water gravity waves:

𝐸𝑃ℎ𝑖𝑙𝑙𝑖𝑝𝑠(𝑓) = 𝛼𝑔2𝑓−5(2𝜋)−4 [15]

where,

f = frequency,

g = gravity,

𝛼 ≈ 8 ∗ 10−3.

This formulation represents the steady-state equilibrium range of wind-generated

waves in deep water. This spectral formulation was advanced by (Pierson and

Moskowitz, 1964) who added an additional term which more accurately represents

the low frequency forward face of the spectrum:

 𝐸𝑃𝑀(𝑓) = 𝐸𝑚(𝑓)𝑒
−

5

4
(

𝑓

𝑓𝑚
)

−4

 [16]

where, 𝑓𝑚 is the frequency of the spectral peak which was empirically estimated from

10-meter high wind speeds (U) as:

22

𝑓𝑚 =
0.82𝑔

2𝜋𝑈
 (Pierson and Moskowitz, 1963).

This formulation was extended to include partially developed waves by (Hasselmann

et al., 1973) with the addition of another factor:

𝐸𝐽𝑂𝑁𝑆𝑊𝐴𝑃(𝑓) = 𝐸𝑚(𝑓)𝑒
−

5

4
(

𝑓

𝑓𝑚
)

−4

𝛾
𝑒𝑥𝑝[

(−
𝑓

𝑓𝑚−1
)

2𝜎2]

2

 [17]

where,

𝛼 = 0.076 (
𝑔𝑋

𝑈2
)

−0.22

,

𝑓𝑚 = 𝑇(𝑇𝑀𝐴) = 3.5 (
𝑔

𝑈
) (

𝑔𝑋

𝑈2)
−0.33

, [18]

𝛾 = 7.0 (
𝑔𝑋

𝑈2)
−0.143

 (Mitsuyasu, 1982),

U = windspeed,

X = fetch distance,

σ = 0.07 for 𝑓𝑚 ≥ 𝑓 𝑎𝑛𝑑 0.09 𝑓𝑜𝑟 𝑓𝑚 < 𝑓.

This spectrum more accurately represents narrower spectra which are typical of

growing wind seas in deep water. This formulation was further extended to include

the effect of shallower water depths on the shape of the wave spectrum (Hughes,

1984) with the introduction of yet another factor:

𝐸𝑇𝑀𝐴(𝑓, ℎ) = 𝐸𝑚(𝑓)𝑒
−

5

4
(

𝑓

𝑓𝑚
)

−4

𝛾
𝑒𝑥𝑝[

(−
𝑓

𝑓𝑚−1
)

2𝜎2]

2

[
𝑘−3(𝜔,ℎ)

𝑑𝑘(𝜔,ℎ)

𝑑𝜔

𝑘−3(𝜔,∞)
𝑑𝑘(𝜔,ℎ)

𝑑𝜔

] [19]

where, ω = 2πf. This spectrum was named the TMA spectrum after the data sets

used for validation (Texel, MARSEN, and ARSLOE). By applying linear wave

theory, making several assumptions about the primary frequency components, and

23

integrating the spectrum (Hughes, 1984) a parametric expression for total energy in

the spectrum may be written in the form:

𝐸𝑇𝑀𝐴2 =
𝛼𝑔ℎ

4(2𝜋)2(0.9𝑓𝑚)2
 [20]

By taking the relationship between total energy and significant wave height

developed by (Longuet-Higgins, 1952) the energy-based significant wave height

may now be approximated as:

𝐻𝑚0 = 𝐻𝑠(𝑇𝑀𝐴) = 4(𝐸𝑇𝑀𝐴2)0.5 [21]

The parametric form of the TMA spectrum for wave period will be taken simply as

the modal frequency described by (Hasselmann et al., 1973) in Equation [18]. Now

parametric estimates for significant wave height and wave period in terms of only 3

variables (gravity, fetch, and wind speed) is available.

Several different spectral density formulations, similar to those mentioned

above, have been developed such as the Neumann Spectrum (Neumann and Pierson,

1957), the Two-parameter spectrum (C. L. Bretschneider, 2011), the Six-parameter

spectrum (Ochi and Hubble, 1977), the Toba Spectrum (Toba, 1972, 1973), and the

SMB spectrum (Bretschneider, 1959). All of these spectra are attempts to

mathematically model the stochastic process of ocean waves which vary in their

assumptions and therefore relative accuracy in representing a sea-state. Since

simplified parametric forms of these spectra were not readily available, the

parametric form of the TMA spectrum, Equation [21], was the only spectral-based

equation used in the parametric wave solver.

In conclusion, the spectral method is a more comprehensive analysis of the

evolution of waves while the significant wave method is greatly simplified. It is

interesting to note that simple parametric formulations for wave height and period

24

can be derived by the spectral method (Equations [18] and [21]) as well as the

significant wave method (Equations [7]-[11]) which all have forms that resemble the

initial theoretical relationships (Equations [1]-[4]). Using these parametric

formulations allows for greatly simplified and much more efficient wave height

computation. This efficiency is used by the parametric wave solver by incorporating

Equations [7]-[11], [18], and [21].

2.3 Wave Solvers

 Different wave solving codes have been developed that solve for the spectral

moments, Equation [12], by incorporating discretization schemes for the partial

differential terms. The third-generation wave solvers account for complicated

physical phenomena such as non-linear wave-wave interactions, breaking, shoaling,

diffraction, friction, turbulence, etc. As mentioned in Section 2, SWAN is one of

these types of wave solvers and it represents the wave field as a phase-averaged

spectrum (Booij, Ris and Holthuijsen, 1999). SWAN allows the wave action density

to evolve in time, geographic space, and spectral space according to the user-

specified spectrum (JONSWAP is default). It then integrates the wave action density

curve at every point in the domain at every time step in the simulation according to

user-specified frequency and angular resolution.

According to the SWAN input parameters specified in the Multistage tool,

Table 8, computation on the IRL domain involves 126,000 nodes with 36 directional

bins each and a 45-frequency resolution for every directional bin. With a timestep of

10 minutes, SWAN has to solve approximately 2.94*109 unknowns for every day of

model simulation. This is also assuming only a single iteration SWAN solution,

which as previously stated is not the most accurate solution.

In contrast, to solve any of the parametric formulations for wave height (SMB

Equation [7], WEMO Equation [9], CEM Equation [10], and TMA Equation [21]),

25

a wave solver needs only to solve the parametric wave height equation for every node

in the domain, assuming the values of fetch, depth, and gravity are constant

throughout the simulation. This means that a code that solves all four parametric

equations with the same timestep as SWAN (10 minutes) will need to solve for

approximately 7.23*106 unknowns per day of model simulation. Theoretically, the

parametric code will be about 400 times faster (2.94*109 / 7.23*106) than SWAN

at computing wave heights throughout the same domain with the same simulation

timestep with all other processes neglected. The magnitude of runtime improvement

will be investigated in section 4.

3.0 Methodology

 The first step in creating a parametric wave solver is to consider the driving

mechanism behind the wave heights: wind. Waves are a result of the wind blowing

across the water’s surface and transferring energy down into the water column. In

deep water, wave heights are a function of wind speed, wind duration, and fetch

distance. The parametric equations initially developed by (Hasselmann et al., 1976)

were simplified in the Shore Protection Manual (CERC, 1984) to a form that relates

the variables governing the development of a sea state, Equation [22].

𝑡 = 0.893 (
𝐹2

𝑈𝐴
)

1/3

 [22]

where,

t is time [hr],

F is the fetch length [km], and

𝑈𝐴 is the adjusted wind speed [m/s] defined in Equation [8].

In deep water, wave development will continue to occur as long as the wind

forcing is sustained. Ultimately a sea will reach a state of equilibrium in which the

wind, turbulence, and waves all balance; in this state waves can no longer grow and

26

are said to be fully developed. A fully developed sea-state is very uncommon in the

ocean, as it requires combinations of either long wind durations or long fetch

distances in deep water (Hwang, 2006; Fontaine, 2013). Therefore, the three limiting

cases for wave development are depth, fetch, and wind duration. When considering

a smaller and shallower domain such as a lake, estuary, or lagoon, these three limiting

cases must all be considered in the wave growth formulation.

In the IRL, the surrounding land limits the wind to a maximum fetch distance

of about 15 km and an average fetch distance of about 1 km. With a limited fetch,

the duration time for wind required to create a fully developed condition is greatly

reduced. Equation [9] was used to create the family of wave growth curves (Figure

7) which show the combinations of wind speed (U), and fetch length (F) which result

in a duration-limited sea state in the IRL when water depth is neglected.

Figure 7 Combinations of wind speed and fetch length which result in duration-limited conditions for Equation

[9] according to the deep-water growth relationship described by Equation [22]

0.125

0.25

0.5

1

2

4

8

0 10 20 30 40 50

t
[h

r]

U [m/s]

Duration-Limited Conditions (IRL)

F[km] 1

F[km] 2

F[km] 3

F[km] 5

F[km] 7

F[km] 10

F[km] 15

avg IRL fetch

max IRL fetch

27

As the fetch becomes smaller or wind speed becomes larger, the time required

to reach a fully developed sea state is reduced, Figure 7. In an area such as the IRL,

where the maximum fetch length is about 15 km, the wave generation is usually

always duration-limited; this occurs when the wind duration exceeds the line

represented by the combination of wind speed and fetch length at 15 km (yellow

line). With an average fetch length of 1 km (brown line), this condition is usually

met when wind greater than 5 m/s blows for a duration of 30 minutes or more.

Similarly, Equation [22] may be rearranged to solve for the fetch distance that

represents a fully developed sea state, i.e., the fetch-limiting case. The combinations

of wind speed and wind duration that represent fully developed conditions are shown

by the family of curves in Figure 8.

Figure 8 Combinations of wind speed and wind duration which result in fetch-limited conditions

From Figure 8, it can be seen that as the wind duration or wind speed become

smaller, the fetch length required to reach a fully developed sea state is reduced as

well. In an area such as the IRL where the maximum fetch length is about 15 km, the

wave generation is usually always fetch-limited; this occurs when the fetch length

exceeds the line represented by the combination of wind speed and wind duration.

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

F
[k

m
]

U [m/s]

Fetch-Limited Conditions

t=10 min

t=20 min

t=30 min

t=40 min

t=50 min

t=60 min

t=70 min

t=80 min

max IRL fetch

avg. IRL fetch

28

With an average fetch length of 1km, this condition is usually met when wind greater

than 5 m/s blows for a duration of 30 minutes or more; this also occurs almost

constantly and corroborates the approximate wind duration (30+ min) and speed (5+

m/s) which result in limiting conditions as predicted by the duration-limited

condition.

Commonly, wave growth is a combination of both the fetch-limited and

duration-limited cases. A parametric model necessarily needs to assume that one of

these cases are met because they represent asymptotic approximations to the general

problem of wave growth. These limiting cases are exploited to create the parametric

formulations in Equations [7], [9], [10], and [21]. Since wave growth with wind

duration is not as well understood as wave growth with fetch length (CERC, 1984;

Hwang and Wang, 2004), one can simplify the problem by assuming an infinite wind

duration and only consider the limitation imposed by fetch length. The fetch

limitation assumption is a conservative estimate that assumes the sea state to be fully

developed. By making this assumption, the asymptotic approximations of wave

growth for the fetch-limiting case can be exploited and any of the parametric

formulations may be used for explicitly predicting wave heights. An example of

wave development curves for the SMB model is shown in Figure 9.

29

Figure 9 SMB wave height development curves generated from Equation [9] at average IRL water depth (1.8m)

 Wave propagation and generation are also highly dependent on the depth of

water in which waves propagate (Malhotra and Fonseca, 2007). According to linear

(Airy) wave theory, waves are classified into categories based on water depth; these

categories are defined in Table 3 according to the magnitude of d/L, where d is the

water depth and L is the wavelength.

Table 3 Wave classification

Classification d/L

Deep >1/2

Intermediate 1/25 to 1/2

Shallow < 1/25

The parametric SMB, SPM, and TMA formulations were derived to account

for wave height variation with depth; this is why they include a depth term. The CEM

formulation, however, does not include a depth term and does not consider any

classification of waves beyond deep water from which it was derived.

30

 By assuming a wave model operates in an enclosed domain and predicts

waves that are only limited by fetch distance and water depth, the parametric

formulations (SPM, SMB, CEM, and TMA) given by Equations [7], [9], [10], and

[21] respectively, may be used. These formulations are functions of the following

variables: gravity, water depth, fetch length, and wind speed. The methodology

behind obtaining these variables will be discussed in the following section.

3.1 Model Input

 The parametric wave code is written in C++ language in a way such that it

pre-processes as much of the computation as possible. The parametric variables

needed for wave height computation are water depth, wind speed, and fetch length.

By assuming the values of water depth and fetch length are constant across a given

domain, the solver may pre-compute these values and be forced by the only

remaining variable, wind speed. The solver computes fetch lengths for every node

radiating outward in all directions. The solver also computes water depth at each

node and bottom slope in every direction. This information computed by the pre-

processing part of the solver is written to files that are read in by the operational part

of the solver. The operational code uses these domain-specific pre-computed values,

in addition to the wind forcing provided, to compute wave heights according to the

parametric formulations from Equations [7], [9], [10], and [21].

 There are several additions to this process. First, the straight-line fetch rays

computed by the code are cosine weighted in order to account for the effect of

variations in wind transferring energy into the water column. Second, the depths are

inverse distance weighted along straight-line fetch rays to account for depth

variations upwind of the computational node. Third, the physical processes of

friction, shoaling, and breaking are computed and used to modify the initial predicted

wave heights.

31

In addition, the parametric solver is highly customizable. It requires user

input of the averaging parameters, bathymetric and radial resolution, and friction

coefficients applied to the physical processes. Because the parametric solver is

flexible in these parameters, it may be used in different enclosed domains and may

be optimally configured with the availability of additional data from future studies.

A schematic of the code processes is shown in Figure 10 and is explained in

following sections.

Figure 10 Parametric wave solver schematic

3.1.1 Fetch Length

 The parametric wave solver works by starting at each wet node; it

incrementally steps forward some distance in space, specified by the user, checking

depths at each step until land is reached. Once the step hits dry land, the code

computes the total distance traveled based on how many steps were taken. The code

32

also linear interpolates for the final step in order to best estimate exactly where land

meets water with an accuracy equal to half of the user-specified step distance, i.e., if

the step size is 50m, the estimated fetch distance will have an error of no more than

25m; this is a high degree of precision when considering the average fetch length of

1000m. The step size partially determines how long the pre-processing of the code

will take, i.e., the smaller resolution specified, the more steps required and the longer

the run-time will be. However, care must be taken so that the step size is small

enough to resolve the geometry and bathymetry of the grid being used; for the IRL a

50m step size was deemed adequate for resolving the domain’s bathymetry and

shoreline geometry.

 The code steps incrementally along straight-line fetch rays checking for

elevation at each step, but elevation information is only available at nodes. The code

will land inside a triangular element made up of 3 nodes at every incremental step

along a fetch ray. An example of the step location landing inside of a triangular

element can be seen in Figure 11.

Figure 11 Small portion of the IRL domain with starting point (black dot), first step (solid black line) along

North oriented straight-line fetch ray (dotted black line), with interrogation point (red dot), and containing

element (white triangle) with elevation information at nodes (white dots)

The code must search through many elements to find which element the

stepping point is contained in; this is done by using a cross product manipulation of

node coordinates (latitude and longitude). If the cross product between the arbitrary

Land

Water

33

step location and all three surrounding nodes is positive, then the step location lies

inside of the element composed of the 3 surrounding nodes. Once the containing

element is found, the elevation information at each of the 3 surrounding nodes is

analyzed through Barycentric interpolation, Equation [23], to find the approximate

elevation at the step point.

ℎ𝑥 =
𝑊1ℎ1+𝑊2ℎ2+𝑊3ℎ3

𝑊1+𝑊2+𝑊3
 [23]

where ℎ𝑥 is the unknown elevation, ℎ1, ℎ2, ℎ3 are the elevations of the surrounding

nodes, and 𝑊1, 𝑊2, 𝑊3 are the associated weights used when averaging, defined as:

𝑊1 =
(𝑌2−𝑌3)(ℎ𝑥−𝑋3)+(𝑋3−𝑋2)(ℎ𝑦−𝑌3)

(𝑌2−𝑌3)(𝑋1−𝑋3)+(𝑋3−𝑋2)(𝑌1−𝑌3)
,

𝑊2 =
(𝑌3−𝑌1)(ℎ𝑥−𝑋3)+(𝑋1−𝑋3)(ℎ𝑦−𝑌3)

(𝑌2−𝑌3)(𝑋1−𝑋3)+(𝑋3−𝑋2)(𝑌1−𝑌3)
,

𝑊3 = 1 − 𝑊1 − 𝑊2,

where 𝑋’s correspond to the node’s x-coordinate [deg. longitude] and 𝑌’s correspond

to the node’s y-coordinate [deg. latitude]. If this elevation is positive than the location

is still wet and another step is taken and the process is repeated; if the elevation is

negative than the location is dry and the fetch length is calculated up to this point

with the haversine formula. The haversine, or great circle distance formula, is used

to account for the effect of the earth’s curvature on distance; it is more accurate than

assuming a linear distance model and is given by:

𝐹 = 2 𝑅 𝑎𝑟𝑐𝑠𝑖𝑛𝑒 √𝑠𝑖𝑛2 (
𝜑1−𝜑2

2
) + cos(𝜑1) cos(𝜑2) 𝑠𝑖𝑛2 (

∅1−∅2

2
) [24]

where 𝐹 is the fetch length [m] or distance between the starting point and land, 𝜑’s

are latitude [deg], ϕ’s are longitude [deg], and 𝑅 is the radius of the earth calculated

by:

34

𝑅 = √
(𝑟1

2∗cos(𝜑))2+(𝑟2
2∗sin(𝜑))2

(𝑟1∗cos(𝜑))2+(𝑟2∗sin(𝜑))2

where 𝑟1 is the Earth’s radius at sea level (6378.137 km) and 𝑟2 is the radius at the

poles (6356.752 km). Here the 𝜑 value is the average wet latitude in the

computational domain which is computed by the pre-processing code.

Once a fetch ray’s distance has been calculated, the code will go back to the

wet starting node and restart the process again for the fetch ray at the next angle. The

proceeding fetch rays will again be straight lines but will be at an angle offset by the

first fetch ray by the angular resolution specified by the user, Figure 12.

Figure 12 Second fetch ray (solid black line) offset by angular resolution (20° here) from first fetch ray (dotted

black line)

Again, a lower angular resolution for the proceeding fetch rays will result in

faster pre-processing times, but the solution becomes more unrealistic the coarser the

angular resolution is. The effect of the angular resolution can be seen in the wave

height contour plot, Figure 13, which was generated using Equation [9] for a section

of the IRL. All parameters are held constant except for the angular resolution

specified in the pre-processing fetch distance code.

35

(A) (B) (C)

Figure 13 Wave height generated with fetch rays with angular resolution of (A) 10°, (B) 5°, and (C) 2°

As seen in Figure 13, the straight-line fetch distance scheme used to generate

the fetches becomes a visible part of the wave height contour plot at lower angular

resolutions. Care must be taken that an adequate angular resolution be provided such

that the shoreline geometry and wind angle precision are adequate for the domain

being investigated. Therefore, it is recommended that the angular resolution be as

high as possible, especially for an irregular domain such as the IRL; in this study a

2-degree angular resolution was deemed adequate i.e., the solution is smoothed

without adding extraneous fetch lengths to the computation. This means that the code

will compute 360/𝜃𝑟𝑒𝑠 different fetch rays for every wet node in the computational

domain; in the IRL this means 360/2° or 180 fetch rays per wet node.

3.1.2 Fetch Width

When considering the length of a fetch ray, it is important to also

consider fetch width if the simulation occurs in an area with irregular shoreline

geometry (Smith, 1991). In these domains the simple fetch length in a given compass

direction, Equation [24], may give unrealistic results since the width of fetch can

place a substantial restriction on fetch length. One strategy in accounting for

restricted fetch width is to modify the simple fetch length by considering fetch

lengths in off-wind directions. This is achieved by applying weighting factors to the

36

fetch lengths and averaging these weighted lengths over large arcs on either side of

the wind direction (Smith, 1991). A method initially proposed by (Saville, 1954)

used a cosine weighted average modification to the simple fetch rays shown in

Equation [25].

𝐸𝑓𝑓 𝐹𝑖 =
∑ 𝐹𝑗 𝑐𝑜𝑠(𝜃𝑗)𝑛

𝑗=−𝑛

∑ 𝑐𝑜𝑠(𝜃𝑗)𝑛
𝑗=−𝑛

 [25]

where,

𝐸𝑓𝑓 𝐹𝑖 = effective fetch distance for the 𝑖𝑡ℎ direction fetch ray,

𝐹𝑗 = simple (straight-line) fetch ray for 𝑗𝑡ℎ direction at 𝜃𝑗 ∗ 𝑛 degrees from i center,

𝜃𝑗 = angle between 𝑖𝑡ℎ center and 𝑗𝑡ℎ fetch ray, and

𝑛 = number of rays considered on either side of the i starting ray.

This method was implemented by (Malhotra and Fonseca, 2007) who used

this effective fetch formulation under the assumption that wind moving over water

surface transfers energy to the water in the direction of the wind and in all directions

within 45° on either side of the wind direction (Saville, 1954; Smith, 1991). The

effective fetches were used with Equation [25] to calculate wave heights with

moderate success (Malhotra and Fonseca, 2007).

It has been argued by (Resio and Vincent. C. Linwood, 1977) that wave

conditions in fetch-limited areas are relatively insensitive to the width of a fetch;

consequently, the CEM formulation recommends that the effective fetch method

(Equation [25]) not be used. However, based on the methodology used to compute

fetch distances at specific angular increments, the use of the effective fetch averaging

method is also important in ensuring a smooth solution. This effect can be seen in

Figure 14 which was generated by using different angular distance averages for the

fetch values in Equation [9] while keeping all other parameters constant.

37

(A) (B) (C) (D) (E)

Figure 14 Wave height generated with cosine-weighted fetch rays with averaging distance of (A) 0°, (B) 10°,

(C) 20°, (D) 30°, and (E) 40° on either side of the straight-line fetch ray

As seen in Figure 14, the use of a 40° cosine average yields a much smoother

solution which is also consistent with (Saville, 1954; Smith, 1991). Therefore, the

method of effective fetch rays is used in the parametric wave solver. The straight-

line fetches calculated by Equation [24] are modified, according to Equation [25],

before being used in the wave height calculation, Equations [7], [9], [10], and [21].

In addition, the contours in Figure 14 were created with straight-line fetch rays with

10° angular spacing. This coarse resolution was chosen to demonstrate the effect of

solution smoothness with the cosine weighted effective fetch method; however, the

contours in Figure 14(E) will be much smoother, since a finer resolution (2°) is used

in the code executable, Figure 13(C).

 This effective fetch formulation is currently employed in the parametric wave

solver with a user-specified angular resolution considered on either side of the

straight-line fetch, although the default setting is to include the effective fetch method

with an area of 40° considered on either side of the straight-line fetch rays. This

averaging method effectively trims down the fetch lengths and gives a more

conservative wave height estimate for the longest fetch rays. This effect can be seen

in Figure 15 (Malhotra and Fonseca, 2007) where raw fetch rays and effective fetch

rays are both shown.

38

(A) (B)

Figure 15 Raw fetch rays (A) and effective fetch rays (B) (Malhotra and Fonseca, 2007)

3.1.3 Water Depth

The parametric formulations (Equations [7], [9], [10], and [21]) all have a

fundamental limitation for depth; they take one depth value at the point of calculation

but do not consider any of the depths upwind of this point. This is problematic

because there may be dramatic changes in water depth along a single straight-line

fetch ray, which will affect the resulting wave height at the node. To account for the

effect of depth variations upwind of a node, an inverse distance weighting averaging

scheme (Shepart, 1968), Equation [26], was applied to the depths along each straight-

line fetch ray.

𝑑(𝑥) =
∑ 𝑤𝑖(𝑥)𝑑𝑖

𝑁
𝑖=1

∑ 𝑤𝑖(𝑥)𝑁
𝑖=1

 [26]

where,

𝑤𝑖(𝑥) =
1

∆(𝑥,𝑥𝑖)𝑝
 [27]

The equation describes a general form for finding an interpolated value

(depth or d) at a given point (x), based on samples 𝑑𝑖 for i=1, 2,…,N. Here 𝑑(𝑥) is

39

the inverse distance weighted average water depth along a fetch ray at a distance x

upwind from the calculation point and 𝑑𝑖 is the water depth at step i upwind from the

calculation point, and p is the power parameter for the weighting function.

The power parameter (p) applied to the distance between calculation points

∆(𝑥, 𝑥𝑖); must be a positive real number. It affects the weight given to the depth at

increasing distances away from the node. The effect of p-value variation is seen when

comparing wave height contours, Figure 16.

(A) (B) (C)

Figure 16 Wave height generated with inverse distance weighting average for depth at p-values of (A) 0.10, (B)

1.0, and (C) 10

The effect of the inverse distance weighting p-value is that it weights upwind

depths more heavily at low values, Figure 16(A), and approaches the raw depth at

the node at higher values, Figure 16(C). Choosing the optimal power parameter for

an application is not trivial. Many studies have been performed on p-value

optimization (Lu and Wong, 2008; Li and Gao, 2014; Mei, Xu and Xu, 2016). It has

also been suggested that the optimal p-value is a function of wind speed (Malhotra

and Fonseca, 2007). However, performing an optimized 𝑝-value analysis is domain

dependent and requires validation against field data which is not available in the IRL

domain. As such, several constant values were tested, and the results compared to

the SAWN solution. In this initial analysis, it was determined that a 𝑝-value of 5.0,

40

Equation 27, gave parametric model results that most closely resembled SWAN’s

solution across the domain. Therefore, a 𝑝-value of 5.0 will be applied to the water

depths along each fetch ray across the domain for all simulations in this study.

3.1.4 Model Input Summary

 The final result of the processes described in this section is a table of cosine

weighted fetch distances and a table of inverse distance weighted depths along each

fetch ray for every node in the domain. This is the output of the pre-processing part

of the parametric wave code.

The code first computes straight line fetch rays through the step by step

process described in Section 4.2 by finding the depth at each step through Barycentric

Interpolation (Equation [23] and Figure 11) and computes straight-line fetch distance

once land is reached (Equation [24]); this process is repeated for the next fetch ray

offset by the user-specified angular resolution (Figure 12). Once all of the fetch rays

are computed for the computational wet node, the processes are repeated for every

wet node in the domain. The straight-line fetch rays are then cosine averaged

(Equation [25] and Figure 14). The depth values computed from the interpolation

(Equation [23] and Figure 11), that occur during the fetch distance process, are stored

for every node and straight-line fetch ray. These depth values are then inverse

distance weighted (Equation [26]) according to the p-value provided (Figure 16); 5.0

is used in this study. These modified depth and fetch tables are output in two separate

files which will be used with a simulation’s wind forcing to solve the parametric

wave height and period equations (Equations [7], [9], [10], and [21]) in the

operational part of the code.

3.2 Physical Processes

 The significant wave height predicted by Equations [7], [9], [10], and [21]

only considers the wave height as a result of wind energy input to the water column;

41

they do not explicitly consider any other physical processes or mechanisms of energy

dissipation/transformation. As such, the significant wave height predicted by the

parametric equations may be inaccurate in areas where other physical processes are

significantly contributing to total wave energy. Many complex processes can affect

wave height; however, the three processes, which have simple parametric solutions

and are considered most prominent, are shoaling, breaking, and friction. In the

context of the parametric computations, these effects will occur for waves which

propagate along the straight-line fetch rays at a constant compass heading determined

by the wind direction at each timestep in the simulation. The significant wave heights

calculated by Equations [7], [9], [10], and [21] will be modified according to:

𝐻𝑠 = {
𝐻𝑠 ± 𝐻𝑠ℎ𝑜𝑎𝑙 − 𝐻𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 , when no breaking occurs (

h

L
> 0.05)

𝐻𝑏𝑟𝑒𝑎𝑘 , when breaking occurs (
ℎ

𝐿
< 0.05)

 [28]

3.2.1 Wave Shoaling

Wave shoaling is the effect by which waves change in height due to changes

in water depth. Shoaling is caused by the fact that the group velocity, which is also

the wave-energy transport velocity, changes with water depth. Under stationary

conditions, a decrease in transport speed must be compensated by an increase in

energy density in order to maintain a constant energy flux (Longuet-Higgins and

Stewart, 1964). The formulation for wave shoaling coefficient, or the ratio of wave

height (𝐻𝑠) to equivalent deep water wave height (𝐻0), given by (May, 2006) is:

𝐾𝑠 =
𝐻𝑠

𝐻0
= (

2∗𝑐𝑜𝑠ℎ2(𝑘𝑑)

sinh (2𝑘𝑑)+2𝑘𝑑
)

0.5

 [29]

where,

𝑘 = wave number (2π/L),
𝑑 = water depth.

https://en.wikipedia.org/wiki/Group_velocity
https://en.wikipedia.org/wiki/Energy_density

42

The shoaling coefficient varies according to depth as shown in Figure 17.

Figure 17 Shoaling coefficient as a function of water depth and deep-water wavelength (May, 2006)

The shoaling coefficient approaches 1 in deep water, drops slightly in

intermediate water, and then exceeds 1 as the wave enters shallow water. Therefore,

the net effect may be either a decrease or an increase in wave height depending on

the relative water depth at the point of calculation.

3.3.2 Wave Breaking

Waves break when they become unstable; this may occur in deep water or in

shallow water depending on the mechanism that causes waves to exceed linear

stability. In deep water, the wave breaking limit is generally set at d/L = 1/7, but this

is not appropriate for shallow water (Dean and Dalrymple, 1984). The Wave

breaking limit in shallow water depends not only on the relative depth ratio but also

on the beach slope (Booij, 1994). The expression for wave breaking in shallow water

is given by (Wood, Muttray and Oumeraci, 2001; Goda, 2010) as:

𝐻𝑏𝑟𝑒𝑎𝑘 = 𝐿0 ∗ 𝐴 [1 − 𝑒𝑥𝑝 (−1.5
𝜋𝑑𝑏

𝐿0
(1 + 15𝑡𝑎𝑛4/3𝛼))] [30]

where,

𝐻𝑏𝑟𝑒𝑎𝑘 = wave height at breaking,

𝐿0 = wave length predicted by each model,

𝐴 = 0.17 (Goda coefficient) (Wood, Muttray and Oumeraci, 2001; Goda, 2010),

43

𝑑𝑏 = water depth at breaking, and

tan(𝛼) = bottom slope.

The bottom slope is calculated as the difference in water depth one step

upwind of the node. If the breaking criteria is satisfied, the pre-computed value of

bottom slope in the direction upwind of the node is used. In addition, although the

formulation specifies wavelength for deep water, much of the domain is in

intermediate and shallow water; as such, the simple wavelength as calculated from

the dispersion equation (Equation [31]) in linear wave theory is used.

√𝑔𝑘 tanh (𝑘ℎ) = √
2𝜋𝑔

𝐿
 tanh (

2𝜋ℎ

𝐿
) [31]

where,

𝑘 = wave number (2π/L),

ℎ = water depth,

𝐿 = wave length.

3.2.3 Bottom Friction

There are various effects which contribute to energy dissipation in surface

waves, such as bottom friction, viscous boundary flow, and percolation. Bottom

friction however, is the most prominent (Carniello et al., 2005); as such, bottom

friction was the only dissipation mechanism considered in the parametric model.

The expression for the friction decay factor given by (Putnam and Johson, 1949;

Charles L. Bretschneider, 2011) is given in Equation [32].

𝐻𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 𝐻𝑠/𝐾𝑓 = 𝐻𝑠 [1 +
64𝜋3

3𝑔2

𝑓𝐻𝑠𝐹

𝑇4

𝐾𝑠
2

𝑠𝑖𝑛ℎ3(
2𝜋𝑑

𝐿
)
] [32]

where,

𝐻𝑠 = wave height at calculation point [m],

44

𝑓 = friction factor defined by (Charles L. Bretschneider, 2011) as: 𝑓 =
𝑔

(
1.486

𝑛
∗𝑑1/6)

2,

𝑑 = water depth from Equation 26 [m],

𝑛 = Manning’s n value,

𝐹 = Fetch length [m],

𝑇 = wave period [s],

𝐿 = wave length [m], and

𝐾𝑠 = shoaling coefficient = 𝐻𝑠ℎ𝑜𝑎𝑙/𝐻𝑠.

Manning’s n values are available in most fluid mechanics books ranging from

0.01 to 0.05 for smooth to rocky/weedy channels. Due to the lack of field

measurements performed in the IRL domain, an estimate for Manning’s n is

unavailable. To address this, two different values of Manning’s n (0.01 and 0.02)

will be tested and applied to Equation [32]. The friction decay factor approaches 1

in deep water and becomes exceptionally large in shallow water. In all cases, it

modifies the significant wave height by 𝐻𝑠/𝐾𝑓 and therefore acts to reduce wave

heights, except in deep water where its effect is nullified.

3.2.4 Section Summary

The parametric wave solver takes a wind forcing every simulation timestep.

It calculates the wave height (SMB, SPM, TMA, and CEM formulations) based on

the fetch distance and water depth which correspond to the wind direction at each

timestep; it also linear interpolates for wind directions which fall between the pre-

computed fetch distances (2° increments). The code then modifies the wave heights,

calculated by Equations [7], [9], [10], and [21], according the physical processes:

friction, shoaling, and breaking. The resulting wave height, after all processes are

accounted for, is described by Equation [28]. To investigate the relative effect that

each process may have on wave height, we look to compare the contribution of each

process as a function of depth, which is a variable that all processes have in common.

45

An example of each physical process’s effect on total wave height is shown in Figure

18.

Figure 18 Effect of physical processes on wave height according to Equation [9] with wind speed of 30m/s and

fetch distance of 5000m

Each parametric formulation’s optimal combination of physical processes will be

investigated in the following section.

3.3 Parametric Model Evaluation

Evaluations of the parametric system are based on a single point comparison

to in-situ measured data and in comparison to the converged SWAN results over the

entire domain.

3.3.1 Model Validation against ADCP

Both the parametric wave solver and SWAN are compared to field data

collected by an acoustic Doppler current profiler, ADCP, deployed in the IRL for a

3-month period from January to March 2020. The ADCP, a SONTEK Argonaut-XR,

46

was calibrated according to the specifications in (SONTEK, 2007). The instrument

records pressure bursts every 3 hours with a sampling frequency, 𝑓𝑠 = 2 Hz, Figure

19.

Figure 19 SONTEK Argonaut-XR pressure bursts

The ADCP uses pressure bursts to detect sea surface elevations. Significant

wave height is computed from the surface elevation data by the SONWave-PRO

software. Wave height can be reliably extracted from a pressure signal as long as the

instrument depth and sampling frequency are sufficient for the wave field being

measured (‘SonWave-PRO : Directional Wave Data Collection’, 2001). With a

sampling frequency, 𝑓𝑠 = 2 Hz, waves with frequencies lower than the Nyquist

frequency of 0.5 𝑓𝑠 are able to be resolved. The ADCP is therefore able to resolve

waves with periods greater than 1 second.

The wave record obtained by the instrument needs to consist of waves long

enough to meet this criterion to avoid aliasing. In order to ensure this criterion is met,

a wind event was chosen in which relatively high wind speeds act along a fetch

direction that allow for waves with periods greater than 1 sec to be produced at the

instrument location. The wind event was selected during the period of data collection

in which the wind speed and direction were relatively constant for a 10-hour period.

47

The wind data was obtained from the nearest NOAA station at Port Canaveral’s

Trident Pier, Figure 20.

Figure 20 Wind speed and direction from the NOAA trident pier station from (2/21/20 at 18:00) to (2/22/20 at

4:00)

The average wind speed (10.5 m/s) and direction (344°) from NOAA for the

10-hour period was used to force the parametric and SWAN wave models. The model

output will be compared to the average wave height measured by the ADCP (40.2

cm) over the same time interval (10 hours). An example of the wave energy

distribution for the first pressure burst as well as the sensor location is shown in

Figure 21.

 (A) (B)

Figure 21 Directional wave energy distribution for burst 418 at 2/21/2020 18:00 (A) and sensor location (B).

The Black arrow indicates the approximate wind direction (344°) and the black circle indicates the approximate

sensor location (28° 24.5627’ N, 80° 39.5741’).

48

Figure 21(A) shows the measured direction of wave propagation which is due

south; this corresponds to a wind direction of due north. Due to the westward location

of the node, some shoaling is expected which may account for the slight deviation in

expected wave direction indicated by the black arrow in Figure 21(B). The wave

height solutions for both SWAN and the parametric model at the same location are

shown in Figure 22 and Table 4.

3.3.2 Model Validation against SWAN

Currently, coupled wave circulation models rely on a third-generation wave

model to produce the wave prediction. As long as the parametric wave solver

produces a result comparable to a third-generation wave model in our domain, the

parametric model may be used in place of the third-generation wave model to provide

the information necessary for hydrodynamic coupling.

The significant wave heights calculated from Equations [7], [9], [10], and

[21] are compared to the significant wave heights calculated by a fully converged

non-stationary version of SWAN under the same wind forcing (SWAN model input

in Appendix). Several different wind fields were created to test the performance of

the parametric wave solver.

The creation of the first wind field tests the ability of the models to reproduce

the depth and fetch limited fully developed conditions that occur with a wind of

constant speed blowing in a constant direction, for a long duration. A 30 m/s wind

speed simulates tropical storm-strength conditions. The IRL’s longest fetch lengths

and corresponding largest wave heights are associated with northerly winds, 0°;

therefore, modeled winds are from this direction.

The second wind field was created to test the model response to varying wind

speeds by having a wind blow from a constant direction (0° North) but vary in

49

magnitude. The wind speed starts at 0 m/s, ramps up to 30 m/s, and then back down

to 0 m/s according to the sine function.

The third wind field created tests the directional capability of the model by

having a constant wind blowing at 30 m/s that starts from the north (0°) and rotates

10° clockwise every hour of the simulation until completing a full 360-degree

rotation.

An investigation of the effect of incorporating the physical process of

shoaling, breaking and friction, according to Equations [29]-[32], takes place for

each of the parametric formulations (Equations [7], [9], [10], and [21]) and each of

the three different wind fields.

The statistical metrics used to quantify the accuracy of the significant wave

height results are as follows: mean absolute error (MAE), normalized mean absolute

error (NMAE), and forecast time reduction (FTR). These metrics are defined in

Equations [33], [34], and [35] respectively.

𝑀𝐴𝐸 =
∑ |𝐻𝑠 (𝑆𝑤𝑎𝑛)𝑖−𝐻𝑠(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐)𝑖|𝑛

𝑖=1

𝑛
 [33]

𝑁𝑀𝐴𝐸 = 100% ∗
𝑀𝐴𝐸

𝐻𝑠(𝑆𝑊𝐴𝑁)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 [34]

𝐹𝑇𝑅 = 100 ∗
𝑡𝑆𝑊𝐴𝑁−𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐

𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑟𝑖𝑐
 [35]

where,

i = node number,

n = total number of nodes (126772 in the IRL domain),

𝐻𝑠 = significant wave height predicted by each model (SWAN and Parametric), and

t = total time of simulation.

50

Lastly, the model simulation wall-clock runtimes for both the parametric

models and SWAN are compared for run time efficiency. The parametric models are

all computed simultaneously in the same executable; as such, the runtime for the

parametric model is reported as the total time to compute results for all 4 parametric

equations.

4.0 Results

The performance of the four different parametric wave height formulations

is investigated to find the model that performs best with respect to SWAN and in-

situ ADCP data. In addition, the ensemble average between all four models is

investigated to determine the validity of using this as the cumulative parametric

solution.

4.1 Models vs. ADCP

 The average wave heights computed from the ADCP data over the 10-hour

time period is 40.2 cm (‘SonWave-PRO : Directional Wave Data Collection’, 2001).

The wave height solutions for both SWAN and the parametric models at the same

location are shown in Figure 22 and Table 4.

Figure 22 Wave height contours for SWAN (A) and parametric models SMB (B), SPM (C), TMA (D), CEM

(E), and Ensemble (F) during ADCP comparison at the nearest node (black dot)

51

Table 4 Model comparison with respect to the average SONTEK sensor wave height. Model wave heights were

computed with wind speed (10.5 m/s) at (344°) for the nearest node (35891) with a depth of 2.0 m. The (+/-) sign

indicates an over/under prediction of the parametric model with respect to the SONTEK wave height.

 Measured 3rd Gen. Parametric Models Ensemble

 SONTEK SWAN SMB SPM TMA CEM Average

Hs [cm] 40.2 42.4 36.0 33.2 45.3 37.3 38.0

Difference [cm] +2.2 -4.2 -7.0 +5.1 -2.9 -2.2

Difference [%] +5.5 -10.4 -17.4 +12.7 -7.2 -5.5

4.2 Parametric vs. SWAN

First, the effect of incorporating the physical process of shoaling, breaking,

and friction, according to Equations [29], [30], and [32], was investigated for each

of the parametric formulations (Equations [7], [9], [10], and [21]) for each of the

three different wind fields. Each of the parametric models’ responses to the physical

processes, presented as global averaged wave height, Figure 23, indicate the

sensitivity of the formulations to friction, shoaling and breaking.

Figure 23 Globally averaged parametric results for wind simulations 1-3, where the top row corresponds to the

constant wind simulation, the middle row corresponds to the varying magnitude wind simulation, and the bottom

row corresponds to the varying direction wind simulation. The colors correspond to (blue) unstructured SWAN,

(orange) parametric model with no physical processes, (yellow) parametric model with physical processes and

Manning’s n=0.01, and (purple) parametric model with physical processes and Manning’s n=0.02.

52

Each respective model has an optimal configuration when comparing the

performance against SWAN. For example, the SMB model (Equation [9]) performs

best with no physical processes included, the SPM and TMA models (Equations [7]

and [21]) perform best with physical processes included with a Manning’s n value of

0.01 and the CEM model (Equation [10]) performs best with physical processes

included with a manning’s n value of 0.02. These realizations hold true for each of

the three different simulations. The globally averaged results for each model under

optimal physical forcing is shown in Figure 24.

Figure 24 Globally averaged optimal parametric model results for simulations 1-3, where colors correspond to

(blue) unstructured SWAN, (orange) SMB, (yellow) SPM, (purple) TMA, and (green) CEM (note, Y-axis is

modified to show model deviations)

In addition, the model performance may be visualized throughout the domain.

The various models’ deviation with respect to SWAN is analyzed by percent

53

deviations (over/under estimations) for the stationary wind simulation at every

computational node, Figure 25.

Figure 25 Model deviation contours for SMB (A), SPM (B), TMA (C), CEM (D), and ensemble average (E)

where (-) deviation (red) indicates parametric model over-estimation, (+) deviation (blue) indicates parametric

model under-estimation, and (+/- 5%) deviation (green) indicates model agreement with respect to SWAN for

the stationary wind simulation (U=30m/s, θ=0° North).

 The models vary in their agreement with SWAN. Qualitatively, the SMB

solution appears to match SWAN the best, with the majority of solution agreement

in the middle of the lagoon. In general, the models appear to be over-estimating along

the edges of the lagoon where water depths are the smallest, and under-estimating

directly behind the causeway where fetches are small. To investigate the areas where

model deviation is highest, contour plots of the relative effect of friction and shoaling

are analyzed, Figure 26.

Figure 26 IRL water depth (A) and relative effects of shoaling (B) and friction (C)

54

 Quantitatively, the wave height deviation between the parametric models and

SWAN is computed with the metrics defined in Equations [33]-[35], respectively.

Wave height deviation for simulations 1-3 are presented in Table 5.

Table 5 Parametric model performance

 MAE [cm] N.MAE [%]

Simulation SMB SPM TMA CEM
Ensemble

Average
SMB SPM TMA CEM

Ensemble

Average

1 5.9 6.9 6.8 11.8 7.0 8.8 10.3 10.1 17.5 10.3

2 6.2 7.1 6.3 9.3 6.2 12.8 15.7 11.8 17.7 11.9

3 8.8 10.4 9.5 16.2 10.4 13.7 16.3 14.9 25.3 16.4

Average 7.0 8.1 7.5 12.4 7.9 11.8 14.1 12.3 20.2 12.9

In addition, the parametric models were compared against SWAN for run

time efficiency. The parametric models are all computed simultaneously in the same

executable; as such, the runtime for the parametric model is the total time to compute

results for all 4 parametric models. The total wall clock time for each of the

simulations is shown in Table 6.

Table 6 SWAN and parametric model run time performance. Simulation wall clock runtime (in minutes) is for

a 1.5 day simulation.

SWAN [min] Parametric [min]

Simulation
Run Length

[hr]
Runtime

Time/day

of sim.
Runtime

Time/day

of sim.
FTR [%]

1 36 317.02 211.35 0.77 0.52 99.76

2 36 315.07 210.05 0.89 0.59 99.72

3 36 308.14 205.43 0.78 0.52 99.75

Average 36 313.41 208.94 0.82 0.54 99.74

5.0 Discussion

Each parametric formulation (Equations [7], [9], [10], and [21]) has an

optimal setup with respect to the physical processes (Equations [29], [30], and [32]

and Figure 23); each model’s optimal set up is shown in the Appendix. Applying the

55

optimal configurations found in this study, the parametric formulations yield

comparable results with respect to SWAN for all wind conditions, Figure 24. It is

unclear that the addition of these physical processes causes any consistent deviations

between the parametric model and SWAN, Figure 25; more specifically, the areas

where friction and shoaling caused the largest reduction in wave heights (red areas

in Figure 26) do not correlate to the areas of wave height underestimation (blue areas

in Figure 25). In addition, although wave breaking is accounted for, its effect is

negligible in the IRL domain; for example, all models predicts less than 0.5% of

nodes will experience wave breaking. This is largely due to the relatively deep water

in which relatively small waves are predicted; however, in a larger and shallower

model domain, the effect of wave breaking is expected to increase. A more

comprehensive study of the effects that friction and shoaling have on the parametric

wave height solution is required to diagnose the areas of highest deviation, Figure

25. More research is also required to determine the optimal physical process

configurations (e.g. drag coefficient and Manning’s n).

Additionally, for strong wind events, the parametric models’ results provide

a good representation of actual measured wave heights during a wind event as

realized by the ADCP comparison. The computed wave heights from the pressure

sensor were made by imposing a low-frequency cutoff of 0.2 Hz; this is because

wave periods in this domain are limited by the depth and fetch. The most accurate

parametric results with respect to the ADCP were obtained from the CEM

formulation, which predicted wave height to within 2.9 cm, or 7.2% (Table 4) at the

sensor location. The parametric models both underestimated (SMB, SPM, and CEM)

and overestimated (TMA) the expected wave height. The measured wave height is

within the four-member ensemble spread. If the ensemble average result is

considered, the parametric solver predicted a wave height to within 2.2 cm, or 5.5%.

The ensemble average produces a more accurate solution than any individual

parametric model for this wind forcing and is equally as accurate as the SWAN

56

solution at this location. In the future, the system can be optimized by evaluating and

selecting the most accurate parametric models to include in an ensemble.

In addition, the parametric models performed well with respect to SWAN

though differences do exist. For example, SWAN is run in nonstationary mode and

is time dependent, resulting in a lag in solution wave height with respect to time. This

lag is apparent in all 3 simulations: the ramping up required for the stationary wind

simulation, the phase lag in the magnitude varying wind simulation, and the

dampened signal in the directionally varying wind simulation, Figures 23 and 24.

 According to Table 5, the models collectively performed best when compared

to SWAN for the stationary case (10.3% ensemble NMAE), second for the

magnitude varying wind (11.9% avg. ensemble NMAE) and third for the directional

varying wind (16.4% avg. ensemble NMAE). It is not surprising that the parametric

models perform best for conditions where wind speed and direction are fairly

constant for an extended period of time; however, it was convincing that the models

still perform considerably well with large changes in wind speed and direction as

shown in simulations 2 and 3.

The SMB model performed the best (11.8% avg. NMAE), followed by the

TMA model (12.3% avg. NMAE), then the SPM model (14.1% avg. NMAE) and

finally the CEM model (20.2% avg. NMAE). The SMB model results for the

stationary simulation (8.8% avg. NMAE) obtained the best performance compared

to SWAN. In general, projections of the performance of the parametric models

indicate global average accuracy within approximately 12.9% (total ensemble

NMAE) with respect to SWAN. Although the ensemble average can produce

enhanced performance, Table 4, it is too early to conclude that the ensemble approach

is the optimal result of the parametric solver.

57

The statistical metrics (Equations [33]-[35]) in Table 5 were computed by

excluding any statistical outliers; wave height values were not compared for time

steps where the MAE values were outside of the simulation’s inter quartile range

(within 25% and 75% of the median). The reason for this is that the nonstationary

SWAN solution has to ramp up from an initial state of zero until the completion of

several computation time steps. Prior to model spin-up, SWAN solutions are

unreliable; therefore, they are discarded.

According to Table 6, the parametric models are over two orders of

magnitude faster than the nonstationary converged version of SWAN running in

serial. On average, the parametric solver calculating each of the four parametric wave

equations takes 48.8 seconds (0.8133 min.) for 1.5 days of simulation and SWAN

takes 314.41 min. The parametric model is, on average, about 38000% faster than

SWAN; i.e., one may perform 380 parametric simulations in the same amount of

time it takes to perform one SWAN simulation; this is in agreement with the

estimated 400 times improvement made by the back of the envelope estimation in

Section 2.3. This corresponds to a model simulation time reduction of 99.74%. For

coupled estuarine modeling applications (e.g. ADCRC+SWAN), the wave model

and the circulation model generally share computational time equally. Implementing

a parametric wave solver cuts the simulation runtime by at least a factor of two.

The parametric model does require a significant amount of pre-processing

time, currently about 3.7 days to precompute the fetch and depth tables for a single

domain. This pre-processing time is a function of grid resolution, number of nodes,

and angular fetch resolution. Pre-processing needs to be performed only once for any

particular estuarine domain. For direct comparison, SWAN was run in serial as

opposed to parallel. SWAN may be run in parallel with a potentially large reduction

in runtime corresponding to the number of processors available. However, to achieve

a comparable runtime to the parametric model, SWAN would need to run in parallel

on about 380 processors. This number of processors is not an issue for large research

58

and government HPC resources, but for local efforts, these processor numbers are a

limiting factor.

 Lastly, it has been argued by (Liu, Schwab and Jensen, 2001) among many

others, that the current, state-of-the-art wind-wave models are fundamentally limited.

They have concluded the following:

Therefore, upon laborious and conscientious deliberations, we would like to

suggest that the present concept of the wind wave spectrum, which has been

a central concept in wind wave studies for over five decades, has reached the

limit of its usefulness as the basis for modeling wind wave processes. The

application of wave spectrum analysis is an approach that was basically a

recourse for convenience and expediency rather than for intrinsic and

deterministic dynamical reasons.

 Therefore, although the parametric model is relatively simple and omits many

of the details employed by third-generation wind wave models, the results may be

equally as valid. The exercise of comparing the parametric models to a third-

generation wave model (SWAN) was done in the absence of comprehensive field

measurements. As we continue to advance our understanding in the area of wave

modeling, we will develop new formulations for wave height. If these formulations

are able to be parameterized in terms of fetch, water depth, and wind speed, then the

parametric solver can incorporate them and continue to be a useful tool in the coastal

engineering community.

6.0 Conclusion

 A parametric solver was created which incorporates four different wave

height formulations (SMB, SPM, TMA, CEM) and can be used to create an ensemble

average of parametric results. With validation from an ADCP deployed in the

domain, the parametric models produced an average accuracy within 6% for wave

59

height. This model also accurately simulates tropical storm wind events including

variability in wind speed and direction with an average global accuracy of within

12.9% compared to SWAN. The parametric model runs much faster than SWAN,

approximately 380 times faster. This reduction in wave model run times will increase

the efficiency of an ensemble coupled model system such as the Multi-Stage (Taeb

and Weaver, 2019), as well as any real time coupled prediction model. The

parametric wave model is therefore a viable alternative to running an expensive third-

generation wave model for predicting waves in an enclosed estuarine system.

7.0 Future Work

 This study was a proof a concept for the applicability of a general parametric

wave model. Many improvements can be made which will allow the solver to be

faster, more accurate, and more user-friendly as well as operational in a coupled

model system.

 The first step towards increased efficiency is code optimization and

parallelization which will provide for drastically reduced processing times.

 Second, a more comprehensive study on optimal configuration of the fetch

and depth averaging schemes (Equations [25] and [26]), the inverse distance

weighting power parameter (Equation [27]), the additional physical processes

(Equations [29], [30], and [32]), and Manning’s n values, is required to increase the

accuracy of the parametric solver. These topics of investigation warrant the need for

more field data which is critical for further validation. In addition, the solver needs

to be tested in different domains to see if the results are consistent with the IRL

results presented here.

 Third, as stated, the parametric model needs to be coupled with a circulation

model in order for it to be used in storm-surge forecasting. The already available

Multistage system (Taeb and Weaver, 2019) is the intended application for model

60

coupling. The parametric solver needs to read in updated water levels throughout a

simulation, calculate radiation stresses induced by the waves, and pass these

radiation stresses back to the circulation model. Work on this topic is currently

underway, and a functional parametric wave + circulation coupled model running

inside of the nested Multistage domains will soon be available. This will allow for

real-time ensemble storm-surge forecasting for the IRL and any other semi-enclosed

environment. Once this is complete, the coupled model will need to be validated

against the SWAN+ADCIRC coupled model, and any field data available, to

compare run-times and simulation results.

61

8.0 References

Akbar, M. K., Kanjanda, S. and Musinguzi, A. (2017) ‘Effect of Bottom Friction ,

Wind Drag Coefficient , and Meteorological Forcing in Hindcast of Hurricane Rita

Storm Surge Using SWAN + ADCIRC Model’, (2005). doi: 10.3390/jmse5030038.

Allard, R. et al. (2004) Validation Test Report for the Simulating Waves Nearshore

Model (SWAN): Cycle III , Version 40 . 11, Naval Research Laboratory.

Benoit, M., Marcos, F. and Becq, F. (1997) ‘TOMAWAC: A prediction model for

offshore and nearshore storm waves’, in Proceedings, Congress of the

International Association of Hydraulic Research, IAHR.

Bhaskaran, P. K. et al. (2013) ‘Performance and validation of a coupled parallel

ADCIRC-SWAN model for THANE cyclone in the Bay of Bengal’, Environmental

Fluid Mechanics. doi: 10.1007/s10652-013-9284-5.

Blain, C. A., Cambazoglu, M. K. and Kourafalou, V. H. (2009) ‘Modeling the

Dardanelles Strait outflow plume using a coupled model system’, in MTS/IEEE

Biloxi - Marine Technology for Our Future: Global and Local Challenges,

OCEANS 2009.

Bleck, R. (2002) ‘An oceanic general circulation model framed in hybrid

isopycnic-Cartesian coordinates’, Ocean Modelling. doi: 10.1016/S1463-

5003(01)00012-9.

Booij, N. (1994) ‘Basic wave mechanics: for coastal and ocean engineers’,

Dynamics of Atmospheres and Oceans. doi: 10.1016/0377-0265(94)90016-7.

Booij, N., Ris, R. C. and Holthuijsen, L. H. (1999) ‘A third-generation wave model

for coastal regions 1. Model description and validation’, Journal of Geophysical

Research: Oceans, 104(C4), pp. 7649–7666. doi: 10.1029/98JC02622.

62

Bouws, E. et al. (1985) ‘Similarity of the wind wave spectrum in finite depth water

1. Spectral form.’, Journal of Geophysical Research, 90(C1), pp. 975–986. doi:

10.1029/JC090iC01p00975.

Bretschneider, C.L. (1952) ‘Revised Wave Forecasting Relationships’, in

Proceedings of Second Conference on Coastal Engineering, pp. 1–5.

Bretschneider, C. L. (1952) ‘The generation and decay of wind waves in deep

water’, Eos, Transactions American Geophysical Union. doi:

10.1029/TR033i003p00381.

Bretschneider, C. L. (1959) ‘Wave variability and wave spectra for wind-generated

gravity waves’, Beach Erosion Board, Tech. Memo. US Army Corps of Engineers,.

Bretschneider, Charles L. (2011) ‘MODIFICATION OF WAVE SPECTRA ON

THE CONTINENTAL SHELF AND IN THE SURF ZONE’, Coastal Engineering

Proceedings. doi: 10.9753/icce.v8.2.

Bretschneider, C. L. (2011) ‘Revisions in wave forecasting: deep and shallow

water’, Coastal Engineering Proceedings, 1(6), p. 3. doi: 10.9753/icce.v6.3.

Bretschneider, C. L. and Tamaye, E. E. (1977) ‘Hurricane wind and wave

forecasting techniques.’, Fifteenth Coastal Engng. Conf. (HAWAII

UNIV.,U.S.A.:JUL.1117, 1976), 1, New Yo, pp. 202–237.

Bruno, D., De Serio, F. and Mossa, M. (2009) ‘The FUNWAVE model application

and its validation using laboratory data’, Coastal Engineering. doi:

10.1016/j.coastaleng.2009.02.001.

Buckingham, E. (1914) ‘On physically similar systems; Illustrations of the use of

dimensional equations’, Physical Review. doi: 10.1103/PhysRev.4.345.

63

Carniello, L. et al. (2005) ‘A combined wind wave-tidal model for the Venice

lagoon, Italy’, Journal of Geophysical Research: Earth Surface. doi:

10.1029/2004JF000232.

CERC (1984) ‘Shore Protection Manual’, in Shore Protection Manual. Dept. of the

Army, U.S. Army Corps of Engineers, Washington., pp. 1–208.

Chen, C. et al. (2013) ‘Extratropical storm inundation testbed: Intermodel

comparisons in Scituate, Massachusetts’, Journal of Geophysical Research:

Oceans. doi: 10.1002/jgrc.20397.

Chen, C. et al. (2016) ‘Circulation in the Arctic Ocean: Results from a high-

resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system’,

Progress in Oceanography. doi: 10.1016/j.pocean.2015.12.002.

Chen, C., Liu, H. and Beardsley, R. C. (2003) ‘An unstructured grid, finite-volume,

three-dimensional, primitive equations ocean model: Application to coastal ocean

and estuaries’, Journal of Atmospheric and Oceanic Technology. doi:

10.1175/1520-0426(2003)020<0159:AUGFVT>2.0.CO;2.

Dalrymple, R. A. and Rogers, B. D. (2006) ‘Numerical modeling of water waves

with the SPH method’, Coastal Engineering. doi:

10.1016/j.coastaleng.2005.10.004.

Dean, R. G. and Dalrymple, R. A. (1984) ‘Water wave mechanics for engineers and

scientists.’ Prentice-Hall Inc.

DHI Software (2017) ‘Mike 21 Boussinesq Wave Module Scientific

Documentation’, DHI Water & Environment, Hørsholm, Denmark. Available at:

http://www.cnki.net/KCMS/detail/detail.aspx?FileName=FSJS201403033&DbNa

me=CJFQ2014.

64

Dietrich, J. C. et al. (2010) ‘A High-Resolution coupled riverine flow, tide, wind,

wind wave, and storm surge model for southern louisiana and mississippi. Part II:

Synoptic description and analysis of hurricanes katrina and rita’, Monthly Weather

Review. doi: 10.1175/2009MWR2907.1.

Dietrich, J. C. et al. (2012) ‘Performance of the unstructured-mesh, SWAN+

ADCIRC model in computing hurricane waves and surge’, Journal of Scientific

Computing. doi: 10.1007/s10915-011-9555-6.

Fontaine, E. (2013) ‘A theoretical explanation of the fetch-and duration-limited

laws’, Journal of Physical Oceanography, 43(2), pp. 233–247. doi: 10.1175/JPO-

D-11-0190.1.

Garzon, J. L. and Ferreira, C. M. (2016) ‘Storm surge modeling in large estuaries:

Sensitivity analyses to parameters and physical processes in the Chesapeake Bay’,

Journal of Marine Science and Engineering. doi: 10.3390/jmse4030045.

Goda, Y. (2010) ‘Random seas and design of maritime structures’, in Advanced

Series on Ocean Engineering, pp. 1–732.

Gruijthuijsen, M. F. Van (1996) Validation of the wave prediction model SWAN

using field data from Lake George , Australia. Delft University of Technology.

Harris, L. M. and Durran, D. R. (2010) ‘An Idealized Comparison of One-Way and

Two-Way Grid Nesting’, Monthly Weather Review. doi:

10.1175/2010MWR3080.1.

Hasselmann, K. et al. (1973) ‘Measurements of wind-wave growth and swell decay

during the joint North Sea wave project (JONSWAP).’

Hasselmann, K. et al. (1976) ‘A Parametric Wave Prediction Model’, Journal of

Physical Oceanography, 6(2), pp. 200–228. doi: 10.1175/1520-

0485(1976)006<0200:apwpm>2.0.co;2.

65

Hasselmann, K. et al. (1988) ‘The WAM model - a third generation ocean wave

prediction model.’, J. Phys. Oceanography.

Hasselmann, S. et al. (1985) ‘Computations and parameterizations of the nonlinear

energy transfer in a gravity-wave spectrum. Part II: parameterizations of the

nonlinear energy transfer for application in wave models.’, J. PHYS. OCEANOGR.

doi: 10.1175/1520-0485(1985)015<1378:capotn>2.0.co;2.

Hughes, S. A. (1984) TMA shallow-water spectrum: description and application,

Technical Report CERC (US Army Engineer Waterways Experiment Station

Coastal Engineering Research.

Hwang, P. A. (2006) ‘Duration- and fetch-limited growth functions of wind-

generated waves parameterized with three different scaling wind velocities’,

Journal of Geophysical Research: Oceans. Blackwell Publishing Ltd, 111(2). doi:

10.1029/2005JC003180.

Hwang, P. A. and Wang, D. W. (2004) ‘Field measurements duration-limited

growth of wind-generated ocean surface waves at young stage of development’,

Journal of Physical Oceanography. doi: 10.1175/1520-

0485(2004)034<2316:FMODGO>2.0.CO;2.

Janssen, P. A. E. M. (1989) ‘Wave-Induced Stress and the Drag of Air Flow over

Sea Waves’, Journal of Physical Oceanography. doi: 10.1175/1520-

0485(1989)019<0745:wisatd>2.0.co;2.

Janssen, P. A. E. M. (1991) ‘Quasi-linear theory of wind-wave generation applied

to wave forecasting’, J. Physical Oceanography. doi: 10.1175/1520-

0485(1991)021<1631:QLTOWW>2.0.CO;2.

Jelesnianski, C. P. et al. (1984) ‘SLOSH - A hurricane storm surge forecast model’,

in Oceans Conference Record (IEEE). doi: 10.1109/oceans.1984.1152341.

66

Ji, M., Aikman, F. and Lozano, C. (2010) ‘Toward improved operational surge and

inundation forecasts and coastal warnings’, Natural Hazards. doi: 10.1007/s11069-

009-9414-z.

Jiang, M. (2017) Modeling ecosystem dynamics in the Indian River Lagoon and

assessing the potential impacts of climate change. Harbor Branch Oceanographic

Institute.

Johnson, J. W. (1950) ‘Relationships between wind and waves, Abbotts Lagoon,

California’, Eos, Transactions American Geophysical Union. doi:

10.1029/TR031i003p00386.

Kerr, P. C. et al. (2013) ‘U.S. IOOS coastal and ocean modeling testbed: Inter-

model evaluation of tides, waves, and hurricane surge in the Gulf of Mexico’,

Journal of Geophysical Research: Oceans. doi: 10.1002/jgrc.20376.

Kerr, P C et al. (2013) ‘U . S . IOOS coastal and ocean modeling testbed : Inter-

model evaluation of tides , waves , and hurricane surge in the Gulf of Mexico’, 118,

pp. 5129–5172. doi: 10.1002/jgrc.20376.

Kirby, J. T. et al. (1998) ‘Funwave 1.0, fully nonlinear boussinesq wave model

documentation and user’s manual’, Center for Applied ….

Li, Z. and Gao, J. (2014) ‘Intelligent optimization on power values for inverse

distance weighting’, in Proceedings - 2013 International Conference on

Information Science and Cloud Computing Companion, ISCC-C 2013. doi:

10.1109/ISCC-C.2013.81.

Liu, P. C., Schwab, D. J. and Jensen, R. E. (2001) ‘Has wind-wave modeling

reached its limit?’, Ocean Engineering, 29(1), pp. 81–98. doi: 10.1016/S0029-

8018(00)00074-3.

Longuet-Higgins, M. S. (1952) ‘On the Statistical Distribution of the Heights of

Sea Waves’, Journal of Marine Research.

67

Longuet-Higgins, M. S. and Stewart, R. w. (1964) ‘Radiation stresses in water

waves; a physical discussion, with applications’, Deep-Sea Research and

Oceanographic Abstracts. doi: 10.1016/0011-7471(64)90001-4.

Lu, G. Y. and Wong, D. W. (2008) ‘An adaptive inverse-distance weighting spatial

interpolation technique’, Computers and Geosciences. doi:

10.1016/j.cageo.2007.07.010.

Luettich, R. A. and Westerink, J. J. (1991) ‘A solution for the vertical variation of

stress, rather than velocity, in a three‐dimensional circulation model’, International

Journal for Numerical Methods in Fluids. doi: 10.1002/fld.1650121002.

Luettich, R. A., Westerink, J. J. and Scheffner, N. W. (1992) ADCIRC: An

advanced three-dimensional circilational model for shelves, coasts, and estuaries.

Washington, DC 20314-1000.

Malhotra, A. and Fonseca, M. S. (2007) WEMo (Wave Exposure Model):

Formulation, Procedures and Validation. NOAA Technocal Memorandum NOS

NCCOS #65. 28p.

Massey, T. C. et al. (2011) STWAVE : Steady-State Spectral Wave Model User ’ s

Manual for STWAVE , Version 6.0, Erdc/ChL Sr-11-1.

May, J. P. (2006) ‘Shoaling coefficient’, in Beaches and Coastal Geology.

Schwartz. doi: 10.1007/0-387-30843-1_413.

Mei, G., Xu, N. and Xu, L. (2016) ‘Improving GPU-accelerated adaptive IDW

interpolation algorithm using fast kNN search’, SpringerPlus. doi: 10.1186/s40064-

016-3035-2.

Mitsuyasu, H. (1970) ‘On the Growth of the Spectrum of Wind-Generated Waves’,

Coastal Engineering in Japan. doi: 10.1080/05785634.1970.11924105.

68

Mitsuyasu, H. (1982) ‘Direction spectra of ocean waves in generation area’, in

ASCE., pp. 87–102.

Narayanaswamy, M. et al. (2010) ‘SPHysics-FUNWAVE hybrid model for coastal

wave propagation’, Journal of Hydraulic Research. doi:

10.1080/00221686.2010.9641249.

Neumann, G. and Pierson, W. J. (1957) ‘A detailed comparison of theoretical wave

spectra and wave forecasting methods’, Deutsche Hydrographische Zeitschrift. doi:

10.1007/BF02020059.

Ochi, M. K. (1998) Ocean waves: the stochastic approach. Ocean Tech,

Cambridge University Press. Ocean Tech. Press Syndicate of the University of

Cambridge.

Ochi, M. K. and Hubble, E. N. (1977) ‘Six-parameter wave spectra.’, Fifteenth

Coastal Engng. Conf. (HAWAII UNIV. U.S.A.: JUL.11-17,1976).

OpenFOAM (2014) ‘Open∇FOAM - The Open Source CFD Toolbox - User

Guide’, OpenFOAM Foundation. doi: 10.1023/A.

Padilla-Hernández, R. et al. (2007) ‘Modeling of two northwest Atlantic storms

with third-generation wave models’, Weather and Forecasting. doi:

10.1175/2007WAF2005104.1.

Padilla-Hernandez, R., Perrie, W. and Toulany, B. (2004) ‘An intercomparison of

modern operational wave models’, Workshop on Wave.

Phillips, O. M. (1958) ‘The equilibrium range in the spectrum of wind-generated

waves’, Journal of Fluid Mechanics. doi: 10.1017/S0022112058000550.

Pierson, W. J. and Moskowitz, L. (1963) A proposed spectral form for fully

developed wind seas based on the similarity theory. New York, NY.

69

Pierson, W. J. and Moskowitz, L. (1964) ‘A proposed spectral form for fully

developed wind seas based on the similarity theory of S. A. Kitaigorodskii’,

Journal of Geophysical Research. doi: 10.1029/jz069i024p05181.

Putnam, J. A. and Johson, J. W. (1949) ‘The dissipation of wave energy by bottom

friction’, Eos, Transactions American Geophysical Union. doi:

10.1029/TR030i001p00067.

Resio, D. and Perrie, W. (1991) ‘A numerical study of nonlinear energy fluxes due

to wave-wave interactions Part 1. Methodology and basic results’, Journal of Fluid

Mechanics. doi: 10.1017/S002211209100157X.

Resio, D. T. and Vincent. C. Linwood (1977) ‘Estimation of winds over the Great

Lakes’, J Waterw Port Coastal Ocean Div Proc ASCE.

Resio, D. T. and Westerink, J. J. (2008) ‘Modeling the physics of storm surges’,

Physics Today. doi: 10.1063/1.2982120.

Ris, R. C., Holthuijsen, L. H. and Booij, N. (1999) ‘A third-generation wave model

for coastal regions: 2. Verification’, Journal of Geophysical Research: Oceans.

American Geophysical Union (AGU), 104(C4), pp. 7667–7681. doi:

10.1029/1998jc900123.

Roll, H. U. (1957) ‘Forecasting Surface Gravity Waves: Conference on Long

Waves and Storm Surges’, in. Wormley, England: National Institute of

Oceanography.

Sánchez-arcilla, A. and Lemos, C. M. (1990) Surf-zone Hydrodynamics, Centro

Internacional de Métodos Numéricos de Ingeniería. Pineridge Press.

Sartini, L., Mentaschi, L. and Besio, G. (2015) ‘Evaluating third generation wave

spectral models performances in coastal areas. An application to Eastern Liguria’,

in MTS/IEEE OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for

a New World. doi: 10.1109/OCEANS-Genova.2015.7271395.

70

Saville, T. (1954) The effect of fetch width on wave generation, Beach Erosion

Board.

Shepart, D. (1968) ‘Two- dimensional interpolation function for irregularly- spaced

data’, in Proc 23rd Nat Conf.

Smith, J. M. (1991) Wind-Wave Generation on Restricted Fetches. Vicksburg,

Mississippi. doi: 10.1107/s0365110x55001916.

Smith, M. (2001) ‘Modeling Nearshore Wave Transformation with STWAVE’,

Development.

SONTEK (2007) ‘Argonaut SL/SW/XR User’s Manual’. San Diego, CA: YSI inc.

‘SonWave-PRO : Directional Wave Data Collection’ (2001). San Diego, CA:

SONTEK/Xylem Inc., pp. 1–12.

Sverdrup, H. U. and Munk, W. H. (1947) ‘Wind, Sea, and Swell. Theory of

Relations For FOrecasting’, Office.

SWAN (2014) ‘Swan User Manual’, SWAN Cycle III version 41.01.

Taeb, P. and Weaver, R. J. (2019) ‘An operational coastal forecasting tool for

performing ensemble modeling’, Estuarine, Coastal and Shelf Science. Academic

Press, 217, pp. 237–249. doi: 10.1016/j.ecss.2018.09.020.

Tezduyar, T. et al. (1996) ‘Flow simulation and high performance computing’,

Computational Mechanics, 18(6), pp. 397–412. doi: 10.1007/BF00350249.

Toba, Y. (1972) ‘Local balance in the air-sea boundary processes - I. on the growth

process of wind waves’, Journal of the Oceanographical Society of Japan. doi:

10.1007/BF02109772.

71

Toba, Y. (1973) ‘Local balance in the air-sea boundary processes - III. On the

spectrum of wind waves’, Journal of the Oceanographical Society of Japan. doi:

10.1007/BF02108528.

Tolman, H. L. (1991) ‘A Third-Generation Model for Wind Waves on Slowly

Varying, Unsteady, and Inhomogeneous Depths and Currents’, Journal of Physical

Oceanography. doi: 10.1175/1520-0485(1991)021<0782:atgmfw>2.0.co;2.

Tolman, H. L. (2010) ‘Practical Wind Wave Modeling’, in. doi:

10.1142/9789814304245_0006.

Tracy, B. A. and Resio, D. T. (1982) ‘Theory and calculation of the nonlinear

energy transfer between sea waves in deep water.’

U.S. Army Corps of Engineers, D. of the A. (2002) Coastal Engineering Manual,

Coastal Engineering Manual. doi: 10.1093/intimm/dxs026.

Voller, V. R. and Porté-Agel, F. (2002) ‘Moore’s law and numerical modeling’,

Journal of Computational Physics. doi: 10.1006/jcph.2002.7083.

Weaver, R. J., Hartegan, D. and Massey, C. (2018) USCRP Technology Challenge :

Development and coupling of a parametric wave model to improve efficiency of

high- resolution storm surge modeling allowing an ensemble approach using

ADCIRC USACE BAA CHL-15 WEAVER USACE BAA CHL-15 USCRP

Technology Challenge.

Weaver, R. J. and Slinn, D. N. (2005) ‘Effect of wave forcing on storm surge’, in

Proceedings of the Coastal Engineering Conference. doi: 10.1142/9789812701916-

0122.

Weaver, R. J. and Slinn, D. N. (2007) ‘Real-time and probabilistic forecasting

system for waves and surge in tropical cyclones’, in Proceedings of the Coastal

Engineering Conference. doi: 10.1142/9789812709554_0114.

72

Webb, D. J. (1978) ‘Non-linear transfers between sea waves’, Deep-Sea Research.

doi: 10.1016/0146-6291(78)90593-3.

Westerink, J. et al. (2018) ‘The Evolution of Process and Scale Coupling in Coastal

Ocean Hydrodynamic Modeling The hydrodynamics of the coastal ocean and

floodplain Understanding coastal sustainability and risk means understanding’, in.

Westerink, J. J. et al. (1992) ‘Tide and storm surge predictions using finite element

model’, Journal of Hydraulic Engineering, 118(10), pp. 1373–1390. doi:

10.1061/(ASCE)0733-9429(1992)118:10(1373).

Westerink, J. J. et al. (2008) ‘A basin- to channel-scale unstructured grid hurricane

storm surge model applied to southern Louisiana’, Monthly Weather Review,

136(3), pp. 833–864. doi: 10.1175/2007MWR1946.1.

Wilson, B. W. (1955) Graphical approach to the forecasting of waves in moving

fetches.

Wood, D. J., Muttray, M. and Oumeraci, H. (2001) ‘The SWAN model used to

study wave evolution in a flume’, Ocean Engineering. doi: 10.1016/S0029-

8018(00)00033-0.

Yin, J. et al. (2020) ‘Response of Storm-Related Extreme Sea Level along the U.S.

Atlantic Coast to Combined Weather and Climate Forcing’, Journal of Climate.

doi: 10.1175/jcli-d-19-0551.1.

Zhang, Y. and Baptista, A. M. (2008) ‘SELFE: A semi-implicit Eulerian-

Lagrangian finite-element model for cross-scale ocean circulation’, Ocean

Modelling. doi: 10.1016/j.ocemod.2007.11.005.

73

9.0 Appendix A

Table 7 Parametric model set up

 SMB SPM TMA CEM

Breaking NO YES YES YES

Shoaling NO YES YES YES

Friction NO YES YES YES

Manning's n none 0.01 0.01 0.02

Eff. Fetch θ 40° 40° 40° 40°

IDW p- value 5.0 5.0 5.0 5.0

Table 8 SWAN model set up

Mode
Nonstationary Breaking default

Two dimensional
Friction

JONSWAP (default)

Coordinates Spherical (CCM) constant, CF=0.38

Cgrid

Unstructured (circle) QUAD default

MDC=36 TRIAD default

FLOW=0.031384 Refraction Off

MSC=45 Propagation BSBT

Readgrid
Unstructured

Numerics

STOPC

ADCIRC DABS (0.005)

Inpgrid
Wind DREL (0.01)

Unstructured CURVAT (0.005)

Readinp Wind NPNTS (95)

Generation 3 MXITNS (50)

Wave growth KOMEN, AGROW TEST 1,0

WCAP KOMEN (default) COMPUTE NONSTAT 600 sec

74

9.1 Appendix B

 The following two codes “pre_proc.cpp” and “param_wave.cpp” are the pre-

processing and operational parts of the parametric wave solver that were used to

obtain the results for this research. There are several other supplemental codes,

including the user instructions, that were also used in this research which are hosted

at: https://github.com/sboyd2014/PARAM_wave_solver. The user instructions, pre-

processing code, and operational parametric wave code are included below.

User instructions: Read me file

User Instructions for Parametric Wave Solver

By: Samuel C. Boyd, and Robert J. Weaver

Date: 6/15/2020

Institution: Florida Institute of Technology

Department: Ocean Engineering and Marine Sciences

Reference: ECSS paper and thesis titled 'Improving Efficiency of Coupled Hydrodynamic Predictions by

Implementing a Fetch-based Parametric Wave Model'

The workflow of the codes is as follows

files inside parenthesis are input/output to the codes with executables that are not in parenthesis. Each of the

.cpp files shown in the workflow are explained in detail below.

https://github.com/sboyd2014/PARAM_wave_solver

75

 PARAMETRIC CODE SWAN

 (fort.14)

 |

 (fort.14) wind_gen.cpp (lat_lon_swan.txt)

 | | |

 pre_proc.cpp (fort.22)----------------------------> (INPUT)

 | | |

 | | |

avg_modify.cpp <------- (Distance_data.txt) | |

 | \----- (Depth_data.txt) | |

 | + | swan.exe

 |-------------------> (Slope_upwind.txt) ----------\ | |

 |-------------------> (IDW_depths.txt) -------------\ | |

 |-------------------> (Eff_fetch.txt) -------------------> param_wave.cpp |

 | |

 (SMB_Hs.63)-------> DS_v7.cpp <---(swan_Hs.63)

 (SPM_Hs.63)-----/ |

 (TMA_Hs.63)---/ |

 (CEM_Hs.63)--/ (results.txt)

 (ENS_Hs.63)--/ (results.xls)

The pre-processing part of the solver is titled "pre_proc.cpp"

 Function:

This code calculates fetch distances and depth values for all nodes in a given domain. The

user inputs a distance value for the stepping process (should be on the same order as the smallest

element in the domain). The code then calculates fetch distances along straight-line fetch rays at angular

headings with spacing defined by the user. Once all fetches are calculated, the cosine weighted effective

fetch is computed according to the user's angular averaging distance considered. Inverse distance

weighted depths are also calculated along straight-line fetch rays according to the IDW p-value

specified by the user (5.0 was used for the IRL domain). Bottom slope is computed from a wet node to

1 step upwind of that node at each angular heading. The final output is 3 files (IDW_depths_2_deg.txt,

Eff_fetch_2_deg.txt, Slope_upwind_2_deg.txt) that are later read in by the operational part of the

solver

 Steps:

1) Code requires a grid file in the same directory as the code. The grid file needs to be in ADCIRC

fort.14 format and named 'fort.14' OR the infile.open("fort.14"); line needs to be renamed according

to the grid's file name. The following files on lines 74-80:

 "Distance_data_2_deg.txt"

 "Depth_data_2_deg.txt"

 "Slope_upwind_2_deg.txt"

 "p_values_2_deg.txt"

 "IDW_depths_2_deg.txt"

 "Eff_fetch_2_deg.txt"

 "Raw_depth_2_deg.txt"

76

define the names of the files that the code will generate upon execution. The file contents, formats,

and variables are defined in the Appendix section (bottom of this file).

 2) Code requires an increase in stack size to allow for local array declarations. The command is:

 $ ulimit -s 1000000

The exact stack size required may depend on the domain and is also limited by the machine. Try the

largest ulimit the machine will allow and see if a segmentation fault (core dump) still occurs. This

size works for the IRL domain which has 126772 nodes. Future code improvement would be to

reformat the variable arrays so that they are dynamically allocated, and a large stack size is not

required.

 3) Code needs to be complied in the terminal with

 $ g++ pre_proc.cpp -o pre_proc

 before execution.

 4) It is executed with command

 $./pre_proc

and node numbers will be outputted on the terminal as the stepping process is running. This code

takes 3.7 days to run for the IRL domain with 126772 nodes, 2 degree angular resolution, 40 degree

cosine weighted average value, 50m bathymetric resolution step size, and constant IDW p-value of

5.0.

The operational part of the parametric solver is titled "param_wave.cpp"

 Function:

This code computes wave heights based on 4 different parametric formulations (SMB, SPM,

TMA, and CEM) in addition to the ensemble average. The wave heights are calculated from the fetch

and depth data created by the pre-processing part of the code and are then modified according to the

physical processes of friction, shoaling, and breaking. The results are files containing the final wave

heights in ADCIRC fort.63 format.

 Steps:

1) This code reads in the pre-processed data for fetch, depth, and bottom slope created by the pre-

processing part of the solver titled "pre_proc.cpp". These files are titled:

 "Eff_fetch_2_deg.txt" line: 189 and 246

 "IDW_depths_2_deg.txt" line: 276

 "Slope_upwind_2_deg.txt" line: 368

and must be placed in the same directory as the operational "param_wave.cpp" code. In addition,

these files must be referenced by their names properly on the lines on which they are called (shown

above).

2) A wind file is required to force the solver and it must be in ADCIRC fort.22 (NWS=5) format and

must be placed in the same directory as "param_wave.cpp"

77

There is a code provided which can create 3 different wind fields. The wind field options

are:

 1) constant wind speed constant direction (input #0)

 2) variable wind speed constant direction (input #2)

 3) variable wind speed variable direction (input #1)

The wind field type as well as simulation length will be entered in the terminal window upon

wind code execution. The code is called "wind_gen2.cpp" and needs to be compiled and

executed as mentioned above. SWAN is in Meteorological Convention while ADCIRC and

PARAM are in Oceanographic convention. The wind code will format the fort.22 file

accordingly. Currently all wind fields are with wind from the North (for theta wind #1 the

wind starts from the north and rotates clockwise according to the angular resolution

specified).

The wind field is called at lines 324 and 440 and the file name needs to match this name.

Code linearly interpolates wave heights if the wind direction provided falls in between the

angular resolution specified.

The results for each of the 4 parametric formulations, as well as the ensemble average

between all 4 models are written to the files:

 "WEMO_Hcum_const_wind.63" line 407

 "TMA_Hcum_const_wind.63" line 413

 "CEM_Hcum_const_wind.63" line 419

 "SPM_Hcum_const_wind.63" line 425

 "ENS_Hcum_const_wind.63" line 431

 in ADCIRC fort.63 file format. The results may be visualized in SMS.

For reproducibility of the results the wind files that were generated for the results of the

study are also provided. These are labeled "PARAM_const_U_30.22"

"PARAM_sin_U_30.22" and "PARAM_theta_U_30.22" and similarly

"SWAN_const_U_30.22" "SWAN_sin_U_30.22" and "SWAN_theta_U_30.22"

In the case that the user wants to change the inverse distance weighting function's p-value or effective fetch

cosine angular value without re-running the pre-processing part of the code, "avg_modify.cpp" may be executed

and parameters may be changed.

 Steps:

1) fort.14 grid file must be in the same directory as the code executable in order to read total number

of nodes.

2) The files generated by the pre-processing code: "Distance_data_2_deg.txt" and

"Depth_data_2_deg.txt" need to be in the same directory also.

3) The new files generated upon completion are called "IDW_depth_MOD.txt" "Eff_fetch_MOD.txt"

and "Slope_upwind_MOD.txt". These modified names need to be adjusted within the

"param_wave.cpp" before it can read these files OR rename the files to their original names and move

them to the "param_wave.cpp" directory before execution.

78

For comparing the wave height results of param_wave.cpp to the wave heights generated by SWAN for the same

wind forcing, the code 'DS_v7.cpp' is provided. This code needs to be compiled and executed as mentioned

above.

 Steps:

1) This code requires the SWAN wave height file (generated by the table output requested in the SWAN

INPUT file) in the same directory as the executable. The SWAN INPUT file that was used to generate

the results is also provided for reference. This file will be converted to fort.63 file format upon code

execution. The raw SWAN file needs to be accurately named on line 60 of DS_v7.cpp. The fort.63 file

that will be created is named on line 63. This file is called again on line 122, so ensure that the names

match within the code.

2) The code also requires the parametric wave height solution (fort.63 file generated by

param_wave.cpp) in the same directory as the executable this is called on line 119.

Note: only 1 wave height solution (SMB,SPM,TMA,CEM, or ENS) may be compared to

SWAN per code execution. The parametric files need to be renamed within the code to the

appropriate name of the model solution of interest to be compared to SWAN (rename file on

line 119 for comparison).

3) The results of the solution comparison can be seen for every timestep, as well as the total simulation

statistics, in the results.txt file named on line 124. These results are also formatted in an XLS, or .csv

file format in the file named on line 126.

Appendix

Variable Definitions:

N_tot: total number of nodes in the computational domain (fort.14 file)

Ang_res: user-specified angular resolution of the stepping process (in degrees)

Num_angs: total number of angular increments (360/Ang_res) or number of fetch rays per node

num_steps: number of steps from wet node to d_num_steps (varies per node and per direction)

step_res: user-specified step distance [m]

d_num_steps: depth value along straight-line fetch ray right before land is reached

n1,n2,n3... : node numbers

F1,F2,F3... : fetch values [m]

d1,d2,d3... : depth values [m] along fetch rays

dir_1,dir_2,dir_3: direction number (1 to Ang_res) per node

d_IDW1,d_IDW2,d_IDW3: inverse distance weighted depth according to p-value function

79

File Formats:

 "Distance_data_2_deg.txt"

 Fetch Distances at spatial res: Step_res[m] and angular res: Ang_res[deg]

 Grid used to generate file: 'fort.14'

 n1 F1 F2 F3 ... F(Num_Angs)

 n2

 n3

 .

 .

 .

 N_tot F1 F2 F3 ... F(Num_Angs)

notes: if a node is dry then the fetches will not be written. This file represents the

raw fetch rays generated by the stepping process that will be read in by

pre_proc.cpp at line (1462) which will then be cosine averaged according to the

users Eff_res value.

 "Depth_data_2_deg.txt"

 Water Depths along fetch rays from 'fort.14'

 N_tot Ang_res

 n1 dir_1 num_steps

 d1

 d2

 d3

 ...

 d_num_steps

 n1 dir_2 num_steps

 d1

 d2

 d3

 ...

 d_num_steps

 .

 .

 .

 n2 dir_1 num_steps

 d1

 d2

 d3

 ...

 d_num_steps

 n2 dir_2 num_steps

 d1

 d2

 d3

 .

 .

 .

 d_num_steps

80

 (repeat process for all nodes)

notes: this file contains the interpolated depth values along a straight-line fetch ray

that are calculated at every step until land is reached. d_num_steps represents the

last depth recorded before land is reached. This file will be read in by the code at

line (1529) where the values will then be inverse-distance averaged according to

the p-value specified by the user.

 "Slope_upwind_2_deg.txt"

 n1 m1 m2 m3 ... m(Num_Angs)

 n2

 n3

 .

 .

 .

 N_tot m1 m2 m3 ... m(Num_Angs)

notes: This file represents the bottom slope between the depth at the wet node and

the depth 1 step upwind (step according to step_res) at every angular heading

(Num_Angs)

 "Eff_fetch_2_deg.txt"

 (N_tot) (Ang_res)

 n1 F1 F2 F3 ... F(360/Angres)

 n2 F1 F2 F3 ... F(360/Angres)

 .

 .

 .

 N_tot F1 F2 F3 ... F(360/Angres)

notes: this file contains the cosine weighted fetch values that are averaged from

the "Depth_data_2_deg.txt" file based on the user-specified p-value.

 "IDW_depths_2_deg.txt"

 (N_tot) (Ang_res)

 n1 d_IDW1 d_IDW2 d_IDW3 ... F(360/Angres)

 n2 d_IDW1 d_IDW2 d_IDW3 ... F(360/Angres)

 .

 .

 .

 N_tot d_IDW1 d_IDW1 d_IDW1 ... F(360/Angres)

notes: this file contains the cosine weighted fetch values that are averaged from

the "Depth_data_2_deg.txt" file based on the user-specified p-value.

81

C++ code: pre_proc.cpp

//This program pre-processes the fetch and depth data needed for the parametric wave code.
//It reads in a grid file (fort.14) and calculates fetch rays (cosine averaged), depth values (I.D.W. averaged),
//and bottom slopes for all wet nodes in the domain at angular increments (2 deg recommended)
//
//By: Samuel Boyd
//Date: 04/13/2020

#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <stdlib.h>
#include <cstdlib>
#include <math.h>
#include <vector>
#include <sstream>

using namespace std;

//variable definitions

char content[10];
double a;
double distlon,distlat;
double lat0,lon0,dlat1,dlat2,dlat3,dlat4,dlon1,dlon2,dlon3,dlon4;
int wet_tot,dry_tot,x,i,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,ii,step1,step2,step3,step4,node1,node_tot,elm_tot;
double res; //resolution (meters) for spatial step
int Angres; //res (deg) for angular step
bool check;
double p,p_temp,Eff_res; //IDW power value and cosine weighted angular averaging value
double vx[4] = {};
double vy[4] = {};
double dx; //deg lat
double dy; //deg lon
double xloc[4],yloc[4] = {};
double D,delx,dely,theta;
double crossprod1,crossprod2,crossprod3;
int contELM1,contELM2,contELM3,contELM4;
double w1,w2,w3;
vector<double> dephold1,dephold2,dephold3,dephold4;
double meanwetlat,meanwetlon,wetlonsum,wetlatsum = 0;
double pi = 4*atan(1);
double Rearth;
double Req=6378137;
double Rpo=6356752;
double dhav1,dhav2,dhav3,dhav4;
int emin1,emax1,emin2,emax2,emin3,emax3,emin4,emax4=0;
int line,x1,x2,c,Ftop,Ftop2,Favg,k,k1,k2,num_depths,direction,dir_tot=0;
string s;
char temp[10];
double g=9.7918;
double Eff_top,Eff_bot,Eff_fetch,depth_temp,depth_tot,depth_cur,depth_prev,Eff_depth,denominator,Up;

int main(){

 float clock_t,time_req;
 time_req=clock(); //initializing the clock for timing tasks
//**
//These are the names of the final output files created for the grid's depth and fetch information
//**
 ofstream outfile6("Distance_data_2_deg.txt");
 ofstream outfile7("Depth_data_2_deg.txt");
 ofstream outfile8("Slope_upwind_2_deg.txt");
 ofstream outfile9("p_values_2_deg.txt");
 ofstream outfile2("IDW_depths_2_deg.txt");

82

 ofstream outfile1("Eff_fetch_2_deg.txt");
 ofstream outfile5("Raw_depth_2_deg.txt");

 ifstream infile;
 infile.open("fort.14"); //name of grid file
 //reading element and node total from fort.14
 while(infile >> content){
 x=x+1;
 if(x==2){
 elm_tot = atoi(content);
 }
 if(x==3){
 node_tot = atoi(content);
 break;
 }
 }
 x=0;

 infile.close();

 cout<<endl;
 cout<<"Element Total: "<<elm_tot<<" Node Total: "<<node_tot<<endl;
 cout<<endl;
 //defining arrays once dimensions have been read
double elv[node_tot+1]; //all nodes elevation
double lon[node_tot+1]; //all nodes longitude
double lat[node_tot+1]; //all nodes node latitude
double node[node_tot+1]; //all nodes node number
double wetnode[node_tot+1]; //wet node number
double wetelv[node_tot+1]; //wet node elevation
double wetlon[node_tot+1]; //wet node longitude
double wetlat[node_tot+1]; //wet node latitude
int ELM[elm_tot]; //triangular elements
int NE[elm_tot][3]; //neighboring nodes in each element

 infile.open("fort.14");
 //reading lat,lon,elv,node,ELM,and NE data from fort.14
 while(infile >> content){
 x=x+1;
 if(x>=4 && x<= 4 + (node_tot*4)){ //4 is from node number(1),lat(2),lon(3),elv(4)
 i = i+1;
 a = atof(content);
 if(((i+0)%4) == 0){
 c1=c1+1;
 elv[c1] = a;
 }
 if(((i+1)%4) == 0){
 c2=c2+1;
 lat[c2] = a;
 }
 if(((i+2)%4) == 0){
 c3=c3+1;
 lon[c3] = a;
 }
 if(((i+3)%4) == 0){
 c4=c4+1;
 node[c4] = a;
 }
 }
//Element information is being read once code reaches end of regular nodal info
 if(x >= (4 + (node_tot*4)) && x < (4 + (node_tot*4))+(elm_tot*5)){
 ii = ii+1;
 a = atoi(content);
 if(((ii+4)%5) == 0){
 c7 = c7+1;
 ELM[c7] = a;
 }
 if(((ii+2)%5) == 0){
 c8 = c8+1;

83

 NE[c8][1] = a;
 }
 if(((ii+1)%5) == 0){
 c9 = c9+1;
 NE[c9][2] = a;
 }
 if(((ii+0)%5) == 0){
 c10 = c10+1;
 NE[c10][3] = a;
 }
 }
 }
 infile.close();
//calculating average wet lat and lon in domain
 for(int j=1; j<=node_tot; j++){
 if(elv[j] > 0){
 c5=c5+1;
 wetlatsum = wetlatsum+lat[j];
 wetlonsum = wetlonsum+lon[j];
 }
 if(elv[j] < 0){
 c6=c6+1;
 }
 } //close node_tot loop
 wet_tot = c5;
 dry_tot = c6;
 meanwetlat = wetlatsum/wet_tot;
 meanwetlon = wetlonsum/wet_tot;
 cout<<"Mean longitude (wet): "<<meanwetlon<<" mean latitude wet(wet): "<<meanwetlat<<endl;
 cout<<endl;
//interpolating the radius of earth between equator and poles wrt avg wet lattitude of the domain
 Rearth = sqrt((pow((Req*Req*cos(meanwetlat*pi/180)),2.0)+pow((Rpo*Rpo*sin(meanwetlat*pi/180)),2.0))/
 (pow((Req*cos(meanwetlat*pi/180)),2.0)+pow((Rpo*sin(meanwetlat*pi/180)),2.0)));
 cout<<"Radius of Earth at this location: "<<Rearth/1000<<" km"<<endl;
//haversine forumla distance(m) for 1 deg lat and 1 deg lon based on avg wetlat and wetlon of domain
 distlon = 2*Rearth*asin(sqrt(cos((meanwetlat-.5)*pi/180)*cos((meanwetlat+.5)*pi/180)*
 sin(.5*pi/180)*sin(.5*pi/180)));
 distlat = 2*Rearth*asin(sqrt(sin(.5*pi/180)*sin(.5*pi/180)));
 cout<<"1 deg lattitude = "<<distlat<<" m"<<endl;
 cout<<"1 deg longitude = "<<distlon<<" m"<<endl;
 cout<<endl;
 double d12;
 double d13;
 double d23;
 double dmin;
 double dhold=100000;
//calculating minimum distance (dhold) between wet nodes for spatial step reccomendation
 for(int e=1; e<=elm_tot; e++){
 if(elv[NE[e][1]]>0 && elv[NE[e][2]]>0 && elv[NE[e][3]]>0){
 d12=distlon*sqrt(pow(lon[NE[e][1]]-lon[NE[e][2]],2)+(pow(lat[NE[e][1]]-lat[NE[e][2]],2)));
 d13=distlon*sqrt(pow(lon[NE[e][1]]-lon[NE[e][3]],2)+(pow(lat[NE[e][1]]-lat[NE[e][3]],2)));
 d23=distlon*sqrt(pow(lon[NE[e][2]]-lon[NE[e][3]],2)+(pow(lat[NE[e][2]]-lat[NE[e][3]],2)));
 //cout<<"d12: "<<d12<<" d13: "<<d13<<" d23: "<<d23<<endl;
 if(d12<d13 && d12<d23){
 dmin=d12;
 }
 if(d13<d12 && d13<d23){
 dmin=d13;
 }
 if(d23<d12 && d23<d13){
 dmin=d23;
 }
 //cout<<"dmin: "<<dmin<<endl;
 if(dmin<dhold){
 dhold=dmin;
 //cout<<"e: "<<e<<" NE[1]: "<<NE[e][1]<<" NE[2]: "<<NE[e][2]<<" NE[3]: "<<NE[e][3]<<" dmin: "<<dhold<<endl;
 }
 }
 dmin=0;

84

 }
double steprec=floor(3*dhold); //recomended spatial step resolution
//User input for step and angular resolution
 cout<<"Enter spatial step resolution (recommended = "<<steprec<<"m): ";
 cin>>res;
 dx = res/distlon; //50m step in lat/lon degrees specified by the step resolution
 dy = res/distlat;
 //cout<<"dx("<<res<<"m): "<<dx<<" deg lon"<<endl;
 //cout<<"dy("<<res<<"m): "<<dy<<" deg lat"<<endl;
 cout<<"Enter angular resolution (2,5,10,18,or 30 deg): ";
 cin>>Angres;
 check=false;
 if(Angres==2 || Angres==5 || Angres==10 || Angres==18 || Angres==30){
 check=true;
 cout<<endl;
 }
 while(check==false){
 cout<<"Inter valid angular resolution (2,5,10,18, or 30 deg): ";
 cin>>Angres;
 if(Angres==2 || Angres==5 || Angres==10 || Angres==18 || Angres==30){
 check=true;
 cout<<endl;
 }
 }
//initializing solution array once angular resolution is known
 double d[node_tot+1][360/Angres];
 double Ares = (360/Angres)/4; //Num of angles per quadrent
 int Ares2 = Ares; //cast to integer for indexing array
 double fetch[node_tot+1][360/Angres];
 double F[node_tot+1][360/Angres];
 double depth[node_tot+1][360/Angres];
 double slopehold[node_tot][360/Angres];
 double startelv;
 for (int j=1; j<=node_tot; j++){ //initializing slope array with zeros
 for(int m=1; m<=360/Angres; m++){
 slopehold[j][m]=0;
 }
 }
double Pelv1[1+(360/(4*Angres))],Pelv2[1+(360/(4*Angres))],Pelv3[1+(360/(4*Angres))],Pelv4[1+(360/(4*Angres))];
double XP1[1+(360/(4*Angres))],XP2[1+(360/(4*Angres))],XP3[1+(360/(4*Angres))],XP4[1+(360/(4*Angres))];
double YP1[1+(360/(4*Angres))],YP2[1+(360/(4*Angres))],YP3[1+(360/(4*Angres))],YP4[1+(360/(4*Angres))];
double Phold1[1+(360/(4*Angres))],Phold2[1+(360/(4*Angres))],Phold3[1+(360/(4*Angres))],Phold4[1+(360/(4*Angres))];
double dpast1[1+(360/(4*Angres))],dpast2[1+(360/(4*Angres))],dpast3[1+(360/(4*Angres))],dpast4[1+(360/(4*Angres))];
 cout<<"Enter a positive power parameter for depth weights"<<endl;
 cout<<"(100 = no depth weighting, 0 = variable weighting): ";
 cin>>p_temp;
 check=false;
 if(p_temp>0){
 check=true;
 cout<<endl;
 }
 if(p_temp==0){ //variable weighting 0 number
 check=true;
 cout<<endl;
 }
 while(check==false){
 cout<<"Inter valid power parameter (greater than or equal to zero): ";
 cin>>p_temp;
 if(p_temp>0){
 check=true;
 cout<<endl;
 }
 }
 cout<<"Enter an angular resolution for effective fetch weighting (deg): ";
 cin>>Eff_res;
 cout<<"Effective angular averaging will consider "<<floor(Eff_res/Angres)<<" rays on either side"<<endl;
 cout<<endl;
 cout<<"Enter Avg. wind speed expected in domain (m/s)"<<endl;
 cout<<"(this will be used for IDW p-value if chosen): ";

85

 cin>>Up;
 //creating raw depth output (just the depth at each node)
 for(int i=1; i<=node_tot; i++){
 outfile5<<i<<" "<<elv[i]<<endl;
 }
 outfile5.close();
//***************************************Begin Fetch and Depth Code**
 cout<<"**********Calculating Fetch and Depth**********"<<endl;
 outfile6<<"Fetch Distances at spatial res: "<<res<<"[m] and angular res: "<<Angres<<"[deg]"<<endl;
 outfile6<<"Grid used to generate file: 'fort.14'"<<endl;
 outfile7<<"Water Depths along fetch rays from 'fort.14'"<<endl;
 outfile7<<node_tot<<" "<<360/Angres<<endl;
 //outfile8<<"Upwind bottom slope from node used for breaking criteria"<<endl;
 //outfile8<<"Grid used to generate file: 'fort.14'"<<endl;
 for(int j=1; j<=node_tot; j++){ //for all nodes
 cout<<"node: "<<j<<endl;
 outfile6<<j<<" ";
 outfile8<<j<<" ";
 lon0 = lon[j];
 lat0 = lat[j];
 if(elv[j] < 0){ //if node is dry, write 0 slopes for output file
 for(int k=1; k<=360/Angres; k++){
 outfile8<<"0 ";
 }
 }
 if(elv[j] > 0){ //if node is wet
 startelv=elv[j]; //depth at the start node
//*************************************Q1**
 for(int m=0; m<Ares; m++){ //Angular resolution including 0 excluding Ares [0-90) deg
 outfile7<<j<<" ";
 outfile7<<m+1<<" ";
 dephold1.clear(); //erases elements from dephold vector
 step1 = 0;
 Pelv1[m] = elv[j];
 Phold1[m] = elv[j];
 dpast1[m]=0;
 //min and max from elm search optimization
analysis
 emin1=2*j-floor(.0163*j+1500);
 emax1=2*j+1500;
 while(Pelv1[m] > 0){ //while (XP,YP) is wet
 dephold1.push_back(Pelv1[m]); //stores every Pelv value
 step1=step1+1; //increment XP and YP 1 step further
 XP1[m] = lon0 + (dx*cos((pi/180)*(90-(Angres*m))))*step1;
 YP1[m] = lat0 + (dy*sin((pi/180)*(90-(Angres*m))))*step1;
//if first step already taken, compare the 1st neighboring node of the previous containing element
//so that the restricted element search is wrt the containing element instead of the start node j
//Pelv1 at step1==2 corresponds to the first step's interpolated depth. Calculate slope from start to here
//BUT slope values are stored in slopehold array in flipped indexes. Q1<-->Q3 and Q2<-->Q4 because we want
//the index to correspond to upwind slope for determining wave breaking
 if(step1==2){
 slopehold[j][m+1]=(startelv-Pelv1[m])/res;
//if slope is less than 1/1000 set to 0, this inludes negative slopes (from shallow to deeper water)
 if(slopehold[j][m+1] < 1/1000){
 slopehold[j][m+1]=0;
 }
 outfile8<<slopehold[j][m+1]<<" ";
 }
 if(step1>1){
 emin1=2*NE[contELM1][1]-floor(.0163*NE[contELM1][1]+1500);
 emax1=2*NE[contELM1][1]+1500;
 }
 if(emin1<1){
 emin1=1;
 }
 if(emax1>=elm_tot){
 emax1=elm_tot;
 }
 contELM1 = false; //resent containing element

86

//****Element Search*****
//restricted element search according to emin and emax values
 for(int e=emin1; e<=emax1; e++){
 for(int i=1; i<=3; i++){ //vectors of neighboring nodes
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP1[m];
 dely = yloc[i] - YP1[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 //cross products of neighboring node
vectors
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 //if cross products are all >= 0,
containing ELM
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM1 = ELM[e];
//cout<<"R.SearchFound. contELM1: "<<contELM1<<" emin: "<<emin1<<" emax: "<<emax1<<endl;
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP1[m]-xloc[3])+(xloc[3]-xloc[2])*(YP1[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP1[m]-xloc[3])+(xloc[1]-xloc[3])*(YP1[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv1[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv1[m] > 0){
 Phold1[m] = Pelv1[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted element search for loop
 if(contELM1 == false){
//cout<<"Long Search Q1************** steps: "<<step1<<endl;
//if containing element is not found, check all elements to see if restricted seach missed it
 for(int e=1; e<elm_tot; e++){
 for(int i=1; i<=3; i++){ //vectors of neighboring nodes
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP1[m];
 dely = yloc[i] - YP1[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 //cross products of neighboring node
vectors
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 //if cross products are all >= 0,
containing ELM
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM1 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP1[m]-xloc[3])+(xloc[3]-xloc[2])*(YP1[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP1[m]-xloc[3])+(xloc[1]-xloc[3])*(YP1[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv1[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);

87

 if(Pelv1[m] > 0){

 Phold1[m] = Pelv1[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close for all elements loop
//cout<<"!!!!contELM1: "<<contELM1<<" emin: "<<emin1<<" emax: "<<emax1<<endl;
 } //close if contELM1 == false
//if containing element is still false, then the element is out of bounds
 if(contELM1 == false){
 Pelv1[m]=0;
 }
 } //close while Pelv (XP,YP) > 0 loop
 outfile7<<dephold1.size()<<endl;
 for(int h=0; h<dephold1.size(); h++){
 outfile7<<dephold1[h]<<endl;
 }
 //estimating distance past the last wet point

 dpast1[m] = Phold1[m]/((Phold1[m] + abs(Pelv1[m]))/res);
 dlon1 = abs(XP1[m] - lon0); //distance from start to land in lat/lon
 dlat1 = abs(YP1[m] - lat0);
 //if NOT the first step and does NOT go out of bounds, this is the usual condition
 //distance from start to land-res = dist from start to step before land + dist past that last point
 dhav1 = 2*Rearth*asin(sqrt(sin(((dlat1)/2)*pi/180)*
 sin(((dlat1)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP1[m]*pi/180)*
 sin(((dlon1)/2)*pi/180)*
 sin(((dlon1)/2)*pi/180))))-res+dpast1[m];
 //if first step hits land, dhav = dpast
 if(step1 == 1){
 dhav1=dpast1[m];
 //if first step is out of bounds, set dhav = 0
 if(contELM1 == false){
 dhav1=0;
 }
 }
 //if NOT first step and out of bounds,calculate dhav = d(out of bounds)-res/2, this is a round estimate
 if(step1!=1 && contELM1 ==false){
 dhav1 = 2*Rearth*asin(sqrt(sin(((dlat1)/2)*pi/180)*
 sin(((dlat1)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP1[m]*pi/180)*
 sin(((dlon1)/2)*pi/180)*
 sin(((dlon1)/2)*pi/180))))-(res/2);
 }
 outfile6<<dhav1<<" ";
 } //close for m
//*************************************Q4**
 for(int m=0; m<Ares; m++){ //including 0 excluding Ares [90-180) deg
 outfile7<<j<<" ";
 outfile7<<m+Angres<<" ";
 dephold4.clear();
 step4 = 0;
 Pelv4[m] = elv[j];
 Phold4[m] = elv[j];
 dpast4[m]=0;
 emin4=2*j-floor(.0163*j+1500);
 emax4=2*j+1500;
 while(Pelv4[m] > 0){ //while (XP,YP) is wet
 dephold4.push_back(Pelv4[m]); //stores every Pelv value
 step4=step4+1;
 XP4[m] = lon0 + (dx*cos((pi/180)*(Angres*m)))*step4;
 YP4[m] = lat0 - (dy*sin((pi/180)*(Angres*m)))*step4;
//if first step already taken, compare the 1st neighboring node of the previous containing element
//so that the restricted element search is wrt the containing element instead of the start node j
//Pelv4 at step4==2 corresponds to the first step's interpolated depth. Calculate slope from start to here
//BUT slope values are stored in slopehold array in flipped indexes. Q1<-->Q3 and Q2<-->Q4 because we want

88

//the index to correspond to upwind slope for determining wave breaking
 if(step4==2){
 slopehold[j][m+Ares2+1]=(startelv-Pelv4[m])/res;
//if slope is less than 1/1000 set to 0, this inludes negative slopes (from shallow to deeper water)
 if(slopehold[j][m+Ares2+1] < 1/1000){
 slopehold[j][m+Ares2+1]=0;
 }
 outfile8<<slopehold[j][m+Ares2+1]<<" ";
 }
 if(step4>1){
 emin4=2*NE[contELM4][1]-floor(.0163*NE[contELM4][1]+1500);
 emax4=2*NE[contELM4][1]+1500;
 }
 if(emin4<1){
 emin4=1;
 }
 if(emax4>=elm_tot){
 emax4=elm_tot;
 }
 contELM4 = false; //resent containing element
//****Element Search****
 for(int e=emin4; e<=emax4; e++){
 for(int i=1; i<=3; i++){
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP4[m];
 dely = yloc[i] - YP4[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM4 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP4[m]-xloc[3])+(xloc[3]-xloc[2])*(YP4[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP4[m]-xloc[3])+(xloc[1]-xloc[3])*(YP4[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv4[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv4[m] > 0){
 Phold4[m] = Pelv4[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted elemt search for loop
//if no containing element, search all nodes
 if(contELM4 == false){
//cout<<"Long Search Q4************** steps: "<<step4<<endl;
 for(int e=1; e<elm_tot; e++){
 for(int i=1; i<=3; i++){

 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP4[m];
 dely = yloc[i] - YP4[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];

89

 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM4 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP4[m]-xloc[3])+(xloc[3]-xloc[2])*(YP4[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP4[m]-xloc[3])+(xloc[1]-xloc[3])*(YP4[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv4[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv4[m] > 0){
 Phold4[m] = Pelv4[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted elemt search for loop
//cout<<"!!!!contELM4: "<<contELM4<<" emin: "<<emin4<<" emax: "<<emax4<<endl;
 } //close if contELM4 == false
//if contELM4 is still false, then out of bounds
 if(contELM4 == false){
 Pelv4[m]=0;
 }
 } //close while Pelv (XP,YP) > 0 loop
 outfile7<<dephold4.size()<<endl;
 for(int h=0; h<dephold4.size(); h++){
 outfile7<<dephold4[h]<<endl;
 }
 dpast4[m] = Phold4[m]/((Phold4[m] + abs(Pelv4[m]))/res);
 dlon4 = abs(XP4[m] - lon0);
 dlat4 = abs(YP4[m] - lat0);
 dhav4 = 2*Rearth*asin(sqrt(sin(((dlat4)/2)*pi/180)*
 sin(((dlat4)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP4[m]*pi/180)*
 sin(((dlon4)/2)*pi/180)*
 sin(((dlon4)/2)*pi/180))))-res+dpast4[m];
 if(step4 == 1){
 dhav4=dpast4[m];
 if(contELM4 == false){
 dhav4=0;
 }
 }
 if(step4!=1 && contELM4 ==false){
 dhav4 = 2*Rearth*asin(sqrt(sin(((dlat4)/2)*pi/180)*
 sin(((dlat4)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP4[m]*pi/180)*
 sin(((dlon4)/2)*pi/180)*
 sin(((dlon4)/2)*pi/180))))-(res/2);
 }
 outfile6<<dhav4<<" ";
 } //close for m
//*************************************Q3**
 for(int m=0; m<Ares; m++){ //including 0 excluding Ares (0-80 deg)
 outfile7<<j<<" ";
 outfile7<<m+Angres+Angres-1<<" ";
 dephold3.clear();
 step3 = 0;
 Pelv3[m] = elv[j];
 Phold3[m] = elv[j];
 dpast3[m]=0;
 emin3=2*j-floor(.0163*j+1500);
 emax3=2*j+1500;
 while(Pelv3[m] > 0){ //while (XP,YP) is wet
 dephold3.push_back(Pelv3[m]); //stores every Pelv value
 step3=step3+1;
 XP3[m] = lon0 - (dx*cos((pi/180)*(90-(Angres*m))))*step3;
 YP3[m] = lat0 - (dy*sin((pi/180)*(90-(Angres*m))))*step3;
//if first step already taken, compare the 1st neighboring node of the previous containing element

90

//so that the restricted element search is wrt the containing element instead of the start node j
//Pelv3 at step3==2 corresponds to the first step's interpolated depth. Calculate slope from start to here
//BUT slope values are stored in slopehold array in flipped indexes. Q1<-->Q3 and Q2<-->Q4 because we want
//the index to correspond to upwind slope for determining wave breaking
 if(step3==2){
 slopehold[j][m+Ares2+Ares2+1]=(startelv-Pelv3[m])/res;
//if slope is less than 1/1000 set to 0, this inludes negative slopes (from shallow to deeper water)
 if(slopehold[j][m+Ares2+Ares2+1] < 1/1000){
 slopehold[j][m+Ares2+Ares2+1]=0;
 }
 outfile8<<slopehold[j][m+Ares2+Ares2+1]<<" ";
 }
 if(step3>1){
 emin3=2*NE[contELM3][1]-floor(.0163*NE[contELM3][1]+1500);
 emax3=2*NE[contELM3][1]+1500;
 }
 if(emin3<1){
 emin3=1;
 }
 if(emax3>=elm_tot){
 emax3=elm_tot;
 }
 contELM3 = false; //resent containing element
//****Element Search****
 for(int e=emin3; e<=emax3; e++){
 for(int i=1; i<=3; i++){
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP3[m];
 dely = yloc[i] - YP3[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM3 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP3[m]-xloc[3])+(xloc[3]-xloc[2])*(YP3[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP3[m]-xloc[3])+(xloc[1]-xloc[3])*(YP3[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv3[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv3[m] > 0){
 Phold3[m] = Pelv3[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted element search for loop
 if(contELM3 == false){
//cout<<"Long Search Q3************** steps: "<<step3<<endl;
 for(int e=1; e<elm_tot; e++){
 for(int i=1; i<=3; i++){
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP3[m];
 dely = yloc[i] - YP3[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }

91

 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM3 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP3[m]-xloc[3])+(xloc[3]-xloc[2])*(YP3[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP3[m]-xloc[3])+(xloc[1]-xloc[3])*(YP3[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv3[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv3[m] > 0){
 Phold3[m] = Pelv3[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted element search for loop
//cout<<"!!!!contELM3: "<<contELM3<<" emin: "<<emin3<<" emax: "<<emax3<<endl;
 } //close if contELM3 == false;
//if still no containing element, out of bounds
 if(contELM3 == false){
 Pelv3[m]=0;
 //break; //break to...
 }
 } //close while Pelv (XP,YP) > 0 loop
 outfile7<<dephold3.size()<<endl;
 for(int h=0; h<dephold3.size(); h++){
 outfile7<<dephold3[h]<<endl;
 }
 dpast3[m] = Phold3[m]/((Phold3[m] + abs(Pelv3[m]))/res);
 dlon3 = abs(XP3[m] - lon0);
 dlat3 = abs(YP3[m] - lat0);
 dhav3 = 2*Rearth*asin(sqrt(sin(((dlat3)/2)*pi/180)*
 sin(((dlat3)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP3[m]*pi/180)*
 sin(((dlon3)/2)*pi/180)*
 sin(((dlon3)/2)*pi/180))))-res+dpast3[m];

 if(step3 == 1){
 //dold3[m] = dpast3[m];
 dhav3=dpast3[m];
 if(contELM3 == false){
 //dold3[m] = 0;
 dhav3=0;
 }
 }
 if(step3!=1 && contELM3 ==false){
 dhav3 = 2*Rearth*asin(sqrt(sin(((dlat3)/2)*pi/180)*
 sin(((dlat3)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP3[m]*pi/180)*
 sin(((dlon3)/2)*pi/180)*
 sin(((dlon3)/2)*pi/180))))-(res/2);
 }
 outfile6<<dhav3<<" ";
 } //close for m
//*************************************Q2**
 for(int m=0; m<Ares; m++){ //including 0 excluding Ares (0-80 deg)
 outfile7<<j<<" ";
 outfile7<<m+Angres+Angres+Angres-2<<" ";
 dephold2.clear();
 step2 = 0;
 Pelv2[m] = elv[j];
 Phold2[m] = elv[j];
 dpast2[m]=0;
 emin2=2*j-floor(.0163*j+1500);
 emax2=2*j+1500;
 while(Pelv2[m] > 0){ //while (XP,YP) is wet

92

 dephold2.push_back(Pelv2[m]); //stores every Pelv value
 step2=step2+1;
 XP2[m] = lon0 - (dx*cos((pi/180)*(Angres*m)))*step2;
 YP2[m] = lat0 + (dy*sin((pi/180)*(Angres*m)))*step2;
//if first step already taken, compare the 1st neighboring node of the previous containing element
//so that the restricted element search is wrt the containing element instead of the start node j
//Pelv1 at step1==2 corresponds to the first step's interpolated depth. Calculate slope from start to here
//BUT slope values are stored in slopehold array in flipped indexes. Q1<-->Q3 and Q2<-->Q4 because we want
//the index to correspond to upwind slope for determining wave breaking
 if(step2==2){
 slopehold[j][m+Ares2+Ares2+Ares2+1]=(startelv-Pelv2[m])/res;
//if slope is less than 1/1000 set to 0, this inludes negative slopes (from shallow to deeper water)
 if(slopehold[j][m+Ares2+Ares2+Ares2+1] < 1/1000){
 slopehold[j][m+Ares2+Ares2+Ares2+1]=0;
 }
 outfile8<<slopehold[j][m+Ares2+Ares2+Ares2+1]<<" ";
 }
 if(step2>1){
 emin2=2*NE[contELM2][1]-floor(.0163*NE[contELM2][1]+1500);
 emax2=2*NE[contELM2][1]+1500;
 }
 if(emin2<1){
 emin2=1;
 }
 if(emax2>=elm_tot){
 emax2=elm_tot;
 }
 contELM2 = false; //resent containing element
//****Element Search****
 for(int e=emin2; e<=emax2; e++){
 for(int i=1; i<=3; i++){
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP2[m];
 dely = yloc[i] - YP2[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);
 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM2 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP2[m]-xloc[3])+(xloc[3]-xloc[2])*(YP2[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP2[m]-xloc[3])+(xloc[1]-xloc[3])*(YP2[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv2[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv2[m] > 0){
 Phold2[m] = Pelv2[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close restricted element search for loop
 if(contELM2 == false){
//cout<<"Long Search Q2************** steps: "<<step2<<endl;
 for(int e=1; e<elm_tot; e++){
 for(int i=1; i<=3; i++){
 xloc[i] = lon[NE[e][i]];
 yloc[i] = lat[NE[e][i]];
 delx = xloc[i] - XP2[m];
 dely = yloc[i] - YP2[m];
 D = pow((pow(delx,2.0)+pow(dely,2.0)),0.5);

93

 theta = atan2(dely,delx);

 vx[i] = D*cos(theta);
 vy[i] = D*sin(theta);
 }
 crossprod1 = vx[1]*vy[2] - vy[1]*vx[2];
 crossprod2 = vx[2]*vy[3] - vy[2]*vx[3];
 crossprod3 = vx[3]*vy[1] - vy[3]*vx[1];
 if(crossprod1>=0 && crossprod2>=0 && crossprod3>=0){
 contELM2 = ELM[e];
//****Barycentric elevation interpolation****
 w1 =((yloc[2]-yloc[3])*(XP2[m]-xloc[3])+(xloc[3]-xloc[2])*(YP2[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w2 =((yloc[3]-yloc[1])*(XP2[m]-xloc[3])+(xloc[1]-xloc[3])*(YP2[m]-yloc[3]))/
 ((yloc[2]-yloc[3])*(xloc[1]-xloc[3])+(xloc[3]-xloc[2])*(yloc[1]-yloc[3]));
 w3 = 1-w1-w2;
 Pelv2[m] = (w1*elv[NE[e][1]]+w2*elv[NE[e][2]]+w3*elv[NE[e][3]])/(w1+w2+w3);
 if(Pelv2[m] > 0){
 Phold2[m] = Pelv2[m]; //The last wet
point
 }
 break; //out of for elements loop
 } //close if(crossprod > 0)
 } //close all element search for loop
//cout<<"!!!!contELM2: "<<contELM2<<" emin: "<<emin2<<" emax: "<<emax2<<endl;
 } //close if contELM2 == false
//if containing element still false, out of bounds
 if(contELM2 == false){
 Pelv2[m]=0;
 }
 } //close while Pelv (XP,YP) > 0 loop
 outfile7<<dephold2.size()<<endl;
 for(int h=0; h<dephold2.size(); h++){
 outfile7<<dephold2[h]<<endl;
 }
 dpast2[m] = Phold2[m]/((Phold2[m] + abs(Pelv2[m]))/res);
 dlon2 = abs(XP2[m] - lon0);
 dlat2 = abs(YP2[m] - lat0);
 dhav2 = 2*Rearth*asin(sqrt(sin(((dlat2)/2)*pi/180)*
 sin(((dlat2)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP2[m]*pi/180)*
 sin(((dlon2)/2)*pi/180)*
 sin(((dlon2)/2)*pi/180))))-res+dpast2[m];
 if(step2 == 1){
 dhav2=dpast2[m];
 if(contELM2 == false){
 dhav2=0;
 }
 }
 if(step2!=1 && contELM2 ==false){
 dhav2 = 2*Rearth*asin(sqrt(sin(((dlat2)/2)*pi/180)*
 sin(((dlat2)/2)*pi/180)+
 (cos(lat0*pi/180)*cos(YP2[m]*pi/180)*
 sin(((dlon2)/2)*pi/180)*
 sin(((dlon2)/2)*pi/180))))-(res/2);
 }
 outfile6<<dhav2<<" ";
 } //close for m
 } //close if wet
 outfile6<<endl;
 outfile8<<endl;
 } //close for all nodes loop
outfile6.close();
outfile7.close();
outfile8.close();
 time_req=clock()- time_req;
 cout<<"***Time taken: "<<(float)time_req/CLOCKS_PER_SEC<<" seconds***"<<endl;
//**************Begin Averaging Schemes***
 ifstream infile1;

94

 infile1.open("Distance_data_2_deg.txt"); //reading in fetch data
 float time_req2;
 time_req2=clock(); //initializing the clock for timing tasks
 c=0;
 if(infile1.is_open()){
 cout<<"Reading Fetch Data"<<endl;
 while(getline(infile1,s)){
 line=line+1;
 if(line>3 && line<node_tot+3){ //ignoring header lines
 if(s.length()>7){ //if the length of line > 7 characters
 stringstream ss;
 ss<<s; //read the line as string (s)
 ss>>content; //read number by number from s as
(content)
 x=0; //indexing variable reset to 0
 while(!ss.eof()){ //while values in the line (string ss)
 ss>>temp; //read each value
 x=x+1; //indexing variable
 if(x==1){ //if first number, store value as node number
 node1=atoi(content);
 //cout<<"NODE: "<<node<<endl;
 }
 if(x<=360/Angres){//if any of the next 36 numbers, store as fetch
 fetch[node1][x]=atof(temp);
 }
 } //close while !eof for ss
 } //close if s.length>7
 } //close if header >3 and <126773
 } //close while getline for "Distance_data4.txt"
 } //close if "Distance_data4.txt" is open
// AVG fetch
 for(int j=1; j<=node_tot; j++){
 Ftop=0;
 for(int i=1; i<=360/Angres; i++){
 Ftop=Ftop+fetch[j][i];
 }
 Ftop=Ftop/(360/Angres);
 Ftop2=Ftop2+Ftop;
 c=c+1;
 }
 Favg=Ftop2/c;
 cout<<"Average Fetch in domain: "<<Favg<<" m"<<endl;
 time_req2=clock()- time_req2;
 cout<<"***Time taken: "<<(float)time_req2/CLOCKS_PER_SEC<<" seconds***"<<endl;
//****************Reading in Depth Data and computing IDW depth
 line=0;
 ifstream infile2;
 infile2.open("Depth_data_5_deg.txt"); //reading in depth data
 outfile9<<"p-values determined from variable calculation with U=30"<<endl;
 float time_req3;
 time_req3=clock();
 c=0;
 if(infile2.is_open()){
 cout<<"Reading Depth Data and Computing Averages with p: "<<p<<endl;
 while(getline(infile2,s)){
 line=line+1;
 if(line==2){ //second line is where node total and direction total are stored
 stringstream ss;
 ss<<s;
 ss>>content;
 node_tot=atof(content);
 //cout<<"Node_tot: "<<node_tot<<endl;
 ss>>temp;
 dir_tot=atof(temp);
 //cout<<"Dir_tot: "<<dir_tot<<endl;
 }
//x2 indexes each line of Depth_data from 0 to num_depths and resets after every direction
//x1 indexes the number of values per line after the first value
//format is: node dir.index #steps

95

// depth at step1
// depth at step2
// ...
// depth at stepN (node before land)
// repeat for next dir. index, then once all directions are performed, repeat for next node
 if(line>2){ //for all other lines
 x2=x2+1; //indexing variable 2 progress
 x1=0; //indexing variable 1 reset when there is a new line
 stringstream ss;
 ss<<s;
 ss>>content;
 while(!ss.eof()){
 x2=0; //indexing varriable 2 reset when there is a new
value
 ss>>temp; //read in each value of ss
 x1=x1+1; //progress indexing variable 1
 check=false; //reset boolean check value to false
 if(x1==1){ //first value is direction (1:4*Ares)
 direction=atof(temp);
 check=true; //if the direction value is read, check is reset
 //to true because you know a new node has been reached
 }
 if(check=true && depth_tot!=0){ //if a new node has been
reached
 direction=direction-1; //reset direction to the
previous
 if(direction==0){ //if==0 reset to the last
value
 direction=360/Angres;
 }
 //depth averaging scheme
 d[node1][direction]=depth_tot/denominator;
 depth_tot=0; //resetting depth_tot to 0 once value is
stored
 denominator=0;
 }
 if(x1==2){ //second value is number of depths(needed for averaging)
 num_depths=atof(temp);
 }
 } //close while !ss.eof
 if(x2==0){ //reading in node number
 node1=atof(content);
 outfile9<<endl;
 outfile9<<node1<<" ";
 //cout<<"N: "<<node<<endl;
 }
 if(x2==1){ //first depth value special case
 depth_temp = atof(content);
//**
//variable p-value, CAN be implemented at this step. Presently 1 constant p-value is taken for all fetches
//***
 p=p_temp;
 if(p_temp==0){
 //p=log((10924*exp(-0.064*Up))/depth_temp) / log(fetch[node1][direction]);
 }
 if(p < 0){ //occurs when depth is set to -99999
 if(p_temp==0){
 //p=log((10924*exp(-0.064*Up))/depth_temp) / log(fetch[node1][direction]);
 }
 if(p_temp!=0){
 p=p_temp;
 }
 //cout<<"p<0 at ["<<node<<"]["<<direction<<"]"<<endl;
 }
 outfile9<<p<<" ";
 depth_tot = (2*depth_temp)/(pow(res,p));
 denominator = 2/(pow(res,p));
 //cout<<"depth["<<x2<<"]: "<<depth_temp<<endl;
 }

96

 if(x2>2){ //skip 2nd line, built into special case, read 3rd line+
in the depths and sum together for average
 depth_temp = atof(content);
 depth_tot = depth_tot+(depth_temp/(pow(((x2-1)*res),p)));
 denominator = denominator+(1/(pow(((x2-1)*res),p)));
 //cout<<"depth["<<x2<<"]: "<<depth_temp<<endl;
 }
 } //close if line > 2
 } //close while getline
 } //close if infile2 is_open
outfile9.close();
// AVG depth
 Ftop2=0;
 c=0;
 for(int j=1; j<=node_tot; j++){
 Ftop=0;
 for(int i=1; i<=360/Angres; i++){
 Ftop=Ftop+d[j][i];
 }
 Ftop=Ftop/(360/Angres);
 Ftop2=Ftop2+Ftop;
 c=c+1;
 }
 Favg=Ftop2/c;
 cout<<"Average Depth in domain: "<<Favg<<" m"<<endl;
 time_req3=clock()- time_req3;
 cout<<"***Time taken: "<<(float)time_req3/CLOCKS_PER_SEC<<" seconds***"<<endl;
//storing depth avgs in an output file
 for(int i=1; i<=node_tot; i++){
 outfile2<<i<<" ";
 for(int j=1; j<=360/Angres; j++){
 outfile2<<d[i][j]<<" ";
 }
 outfile2<<endl;
 }
 outfile2.close();
// AVG bottom slope
 Ftop2=0;
 c=0;
 for(int j=1; j<=node_tot; j++){
 Ftop=0;
 for(int i=1; i<=360/Angres; i++){
 Ftop=Ftop+slopehold[j][i];
 }
 Ftop=Ftop/(360/Angres);
 Ftop2=Ftop2+Ftop;
 c=c+1;
 }
 Favg=Ftop2/c;
 cout<<"Average slope in domain: "<<Favg<<endl;
//******Effective fetch calculation*******
 cout<<"Calculating Effective Fetch with res: "<<Eff_res<<" deg"<<endl;
 outfile1<<node_tot<<" "<<Angres<<endl;
 float time_req5;
 time_req5=clock();
 for(int j=1; j<=node_tot; j++){ //for all nodes
 //cout<<"Node(j): "<<j<<endl;
 outfile1<<j<<" ";
 for(int i=1; i<=360/Angres; i++){ //for all angles
 k2=0; //reset all counting and temp variables
 k1=0;
 Eff_top=0;
 Eff_bot=0;
 //cout<<"Angle(i): "<<i<<endl;
 if(Eff_res==0){ //case for no effective resolution (use raw fetches)
 F[j][i]=fetch[j][i];
 outfile1<<F[j][i]<<" ";
 }
 else{ //case for any effective resolution

97

 F[j][i]=0;
 for(int n=-floor(Eff_res/Angres); n<=floor(Eff_res/Angres); n++){
//rounding down to the nearest integer division for direction given the Effective fetch resolution specified
 //cout<<"k0: "<<i+n<<endl;
 check=false; //resetting special case check value
 //case for start nodes (1:4) when <0 is encountered
 if(i+n < 1 && i+n+(360/Angres)>k1){ //direction within Eff_res deg left or right of
 //the current node. for values that go below 1
 k1=i+n+(360/Angres); //reset index to (33:36)
 //cout<<"k1: "<<k1<<endl;
 //cosine weighted average numerator and denominator, as summations
 Eff_top = fetch[j][k1]*cos(n*Angres*pi/180) + Eff_top;
 Eff_bot = cos(n*Angres*pi/180) + Eff_bot;
 check=true; //checks for this special case
 }
 //case for start nodes (33:36) when >36 is encountered
 if(i+n > 360/Angres && i+n-(360/Angres)>k2){ //for values that go above max direction
 k2=i+n-(360/Angres); //reset index to (1:4)
 //cout<<"k2: "<<k2<<endl;
 Eff_top = fetch[j][k2]*cos(n*Angres*pi/180) + Eff_top;
 Eff_bot = cos(n*Angres*pi/180) + Eff_bot;
 check=true; //checks for this special case
 }
 //case for all other nodes(normal +/- 45 deg on each side of start node
 if(check==false){ //if neither special case, than regular case
 k=i+n;
 //cout<<"k : "<<k<<endl;
 Eff_top = fetch[j][k]*cos(n*Angres*pi/180) + Eff_top;
 Eff_bot = cos(n*Angres*pi/180) + Eff_bot;
 }
 } //close for -4<n<4 loop
 } //close else statement
 if(Eff_res!=0){
 Eff_fetch = Eff_top/Eff_bot; //devide sum top/sum bot for Effective fetch
 F[j][i]=Eff_fetch;
 outfile1<<F[j][i]<<" ";
 }
 //cout<<"fetch: "<<fetch[j][i]<<" Eff_fetch: "<<Eff_fetch<<endl;
 } //close for 1<i<36 loop
 outfile1<<endl;
 } //close for all nodes loop
 outfile1.close();
 time_req5=clock()- time_req5;
 cout<<"***Time taken: "<<(float)time_req5/CLOCKS_PER_SEC<<" seconds***"<<endl;
return 0;
}

98

C++ code: param_wave.cpp

//Code for reading in the fetch and depth data created by pre-proccessing parametric code.
//Here wave heights for each of the 4 formulations (WEMO,SPM,TMA,and CEM) are calculated based on
//the wind forcing provided (ADCIRC .22 file) in addition to the physical processes of friction,breaking,and
//shoaling as computed from each formulation's period.
//The final results are 5 global elevation files (ADCIRC .63 files), one for each parametric formulation, and
//one for the ensemble average.
//
//By: Samuel Boyd
//Date: 04/13/2020

#include <cmath>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <string>
#include <stdlib.h>
#include <cstdlib>
#include <math.h>
#include <vector>
#include <sstream>
#include <algorithm>
#include <ctime>
#include <stdio.h>
#include <string.h>
#define pi 3.14159265

using namespace std;

//**
//Here the manning's n values which correspond to optimal model performance from
//previous tests are used. WEMO does not have any additional physical formulations
double mannings_n_SPM=0.01;
double mannings_n_TMA=0.01;
double mannings_n_CEM=0.02;
//**
char content[10],temp[10];
int x,i,n,di_low,di_high,node_tot,Angres,dir,dir_tot,c,node;
double g=9.7918; //gravity at meanlat (28.1091 deg)
int NDSETSE,NP,DTDP,NSPOOLGE,IRTYPE,TIME,IT;
bool check;
string s;
double Hw,Hwabove,Hwbelow,u,di_temp,di_input,y3,PRN, HWEMO,HSPM,HCEM,HTMA,WSPM,TSPM,TCEM,TTMA,Tw;
double HwaboveWEMO,HwbelowWEMO,HwaboveSPM,HwbelowSPM,HwaboveTMA,HwbelowTMA,HwaboveCEM,HwbelowCEM;
double TaboveSPM,TbelowSPM,TaboveTMA,TbelowTMA,TaboveCEM,TbelowCEM;
double WEMO_shoal,WEMO_fric,WEMO_cum,H_break;
double kSPM,LSPM,ksSPM,kfSPM,SPM_shoal,SPM_fric,SPM_cum;
double kCEM,LCEM,ksCEM,kfCEM,CEM_shoal,CEM_fric,CEM_cum;
double kTMA,LTMA,ksTMA,kfTMA,TMA_shoal,TMA_fric,TMA_cum;
double ENS_cum,H_break_SPM;
double sigma;
double tol;
double eps;
double knew,kold,k0;
double k;
double L;
double ks,kf,Tm,fm;
int line;
int Ftop,Ftop2,Favg,v=0;
double Dtop,Davg,dconst=0;
//*****************TMA formulation (EQ 19 from TMA paper)
double WaveTMA(double g, double f, double d, double u){
 double alpha;
 alpha = 0.076*pow(((g*f)/(u*u)),-0.22);
 double fm;
 fm = 3.5*(g/u)*pow((g*f/(u*u)),-0.33);
 double ET;

99

 ET = alpha*g*d/(16*pi*pi*0.9*0.9)*1/(fm*fm);
 double WTMA;
 WTMA = 4*pow(ET,0.5);
return WTMA;
}
double PeriodTMA(double g, double f, double d, double u){
 double fm = 3.5*(g/u)*pow(((g*f)/(u*u)),-0.33);
 TTMA = 1/fm;
return TTMA;
}
//***************CEM formulation (Eq II-2-36 in CEM)
double WaveCEM(double g, double f, double u){
 double Cd;
 Cd = 0.001*(0.009042*u + (-4.44*pow(10,-8)*f*f + 3.56*pow(10,-4)*f + 1.10949)); //Colvin
 //Cd = 0.001*(1.1+0.035*u);
 double Ustsq;
 Ustsq = Cd*u*u;
 double WCEM;
 WCEM = (Ustsq/g)*0.0413*pow((g*f/Ustsq),0.5);
return WCEM;
}
double PeriodCEM(double g, double f, double u){
 double Cd;
 Cd = 0.001*(0.009042*u + (-4.44*pow(10,-8)*f*f + 3.56*pow(10,-4)*f + 1.10949)); //Colvin
 //Cd = 0.001*(1.1+0.035*u);
 double Ustsq;
 Ustsq = u*u*Cd;
 double TCEM;
 TCEM = (pow(Ustsq,0.5)/g)*0.651*pow((g*f/Ustsq),0.3333333);
 //if(node==34283){
 //cout<<" Cd: "<<Cd<<" Ustsq: "<<Ustsq<<" TCEM: "<<TCEM<<endl;
 //}
return TCEM;
}
//**************SMB formulation in WEMO paper
double WaveWEMO(double g, double f, double d, double u){ //from WEMO
 Hw = 0.283*tanh(0.530*pow((g*d/(u*u)),0.75))*tanh((0.0125*pow((g*f/(u*u)),0.42))/
 tanh(0.530*pow((g*d/(u*u)),0.75)))*(u*u)/g;
return Hw;
}
//*************SMB from SPM H and T formulations Eqs (3-39) and (3-40)
double PeriodSPM(double g, double f, double d, double u){
 double Ua = 0.713*pow(u,1.23);
 Tw = 7.54*tanh(0.833*pow((g*d/(Ua*Ua)),0.375))*tanh((0.0379*pow((g*f/(Ua*Ua)),(0.333333)))/
 tanh(0.833*pow((g*d/(Ua*Ua)),0.375)))*(Ua/g);
return Tw;
}
double WaveSPM(double g, double f, double d, double u){ //from SPM
 double Ua = 0.713*pow(u,1.23);
 WSPM = 0.283*tanh(0.530*pow((g*d/(Ua*Ua)),0.75))*tanh((0.00565*pow((g*f/(Ua*Ua)),0.50))/
 tanh(0.530*pow((g*d/(Ua*Ua)),0.75)))*(Ua*Ua)/g;
return WSPM;
}
//**************Linear Interpolation Function
double Interp(double x1, double x2, double x3, double y1, double y2){
 y3 = ((x2-x3)*y1 + (x3-x1)*y2) / (x2-x1);
return y3;
}
int main(){
 float clock_t,time_req;
 time_req=clock(); //initializing the clock for timing tasks
 ifstream infile1;
 infile1.open("Eff_fetch_2_deg.txt"); //reading in fetch data
 if(infile1.is_open()){
 cout<<endl;
 cout<<"Reading in fetch data"<<endl;
 }
 else{
 cout<<endl;

100

 cout<<"**************ERROR Fetch input file not read"<<endl;
 cout<<endl;
 }
//******These numbers need to be read in from EFF_fetch, make the format as such
 x=0;
 while(infile1 >> content){ //reading headers
 x=x+1; //content counter;
 if(x==1){
 node_tot=atoi(content);
 }
 if(x==2){
 Angres=atoi(content);
 dir_tot=360/Angres;
 break;
 }
 }
 cout<<"Node total: "<<node_tot<<endl;
 cout<<"Angular resolution: "<<Angres<<endl;
 cout<<"Number of angles: "<<dir_tot<<endl;
 double F[node_tot+1][dir_tot];
 double d[node_tot+1][dir_tot];
 double WVX[node_tot+1];
 double WVY[node_tot+1];
 double WDIR[node_tot+1];
 double WVEL[node_tot+1];
 double slope[node_tot][dir_tot];
 infile1.close();
 infile1.open("Eff_fetch_2_deg.txt");
 x=-3;
 n=0;
 while(infile1 >> content){
 x=x+1;
 if(x%(dir_tot+1)==0){
 n=n+1; //node counter increment
 i=-1; //direction counter reset at new node
 }
 i=i+1; //direction counter increment
 F[n][i]=atof(content); //fetch values
 //if(n<15){
 // cout<<"F["<<n<<"]["<<i<<"]: "<<F[n][i]<<endl;
 //}
 }
 infile1.close();
 ifstream infile2;
 infile2.open("IDW_depths_2_deg.txt"); //reading in depth data
 if(infile2.is_open()){
 cout<<endl;
 cout<<"Reading in depth data"<<endl;
 }
 else{
 cout<<endl;
 cout<<"**************ERROR IDW depth input file not read"<<endl;
 cout<<endl;
 }
 n=0; //reset counters
 x=-1;
 i=0;
 while(infile2 >> content){
 x=x+1; //content counter;
 if(x%(dir_tot+1)==0){
 n=n+1; //node counter increment
 i=-1; //direction counter reset at new node
 //dir index (i) = 0 corresponds to node number
 }
 i=i+1; //direction counter increment
 d[n][i]=atof(content); //depth values
 if(n==126765 || n==126769 || n==126770 || n==126771 || n==126772){ //for nan values
 d[n][i]=0;
 //cout<<n<<endl;

101

 }
 }
 infile2.close();
 ifstream infile3; //reading wind field data
 infile3.open("PARAM_const_U_30.22");
 if(infile3.is_open()){
 cout<<endl;
 cout<<"Reading in wind data (fort.22)"<<endl;
 }
 else{
 cout<<endl;
 cout<<"**************ERROR wind input file not read"<<endl;
 cout<<endl;
 }
 NDSETSE=1;
 x=0;
 while(infile3 >> content){ //counting NDSETSE number of time steps
 x=x+1;
 if(x<=node_tot*4){
 }
 else{
 x=1;
 NDSETSE=NDSETSE+1;
 }
 }
 infile3.close();
 cout<<"NDSETSE: "<<NDSETSE<<endl;
//avg bottom slope
 ifstream infile4;
 infile4.open("Slope_upwind_2_deg.txt"); //reading in bottom slope data
 x=-1;
 n=0;
 while(infile4 >> content){
 x=x+1;
 if(x%(dir_tot+1)==0){
 n=n+1; //node counter increment
 i=-1; //direction counter reset at new node
 }
 i=i+1; //direction counter increment
 slope[n][i]=atof(content); //fetch values
 //if(n<15){
 //cout<<"slope["<<n<<"]["<<i<<"]: "<<slope[n][i]<<endl;
 //}
 }
 infile4.close();
 NP=node_tot; //# of nodes
 DTDP=1; //ADCIRC time step in seconds
 NSPOOLGE=3600; //output is written to fort.63 every NSPOOLGE time steps
 IRTYPE=1; //the record type (1 for elevation files, 2 for velocity files)
 TIME=1; //model time (in seconds) (TIME = STATIM*86400 + IT*DTDP)
 IT=1; //model time step number since the beginning of the model run
 ofstream outfile14("WEMO_Hcum_const_wind.63");
 outfile14<<"Wave Height SMB TEST:3 U="<<u<<"(m/s) Dir="<<di_temp<<"(deg N)"<<" from Mesh.grd"<<endl;
 outfile14<<NDSETSE<<" "<<NP<<" "<<DTDP*(NSPOOLGE)<<" "<<NSPOOLGE<<" "<<IRTYPE<<endl;
 outfile14<<NSPOOLGE<<" "<<NSPOOLGE<<endl; //should be TIME<<" "<<IT<<endl; if they are not equal
 ofstream outfile15("TMA_Hcum_const_wind.63");
 outfile15<<"Wave Height SMB TEST:3 U="<<u<<"(m/s) Dir="<<di_temp<<"(deg N)"<<" from Mesh.grd"<<endl;
 outfile15<<NDSETSE<<" "<<NP<<" "<<DTDP*(NSPOOLGE)<<" "<<NSPOOLGE<<" "<<IRTYPE<<endl;
 outfile15<<NSPOOLGE<<" "<<NSPOOLGE<<endl; //should be TIME<<" "<<IT<<endl; if they are not equal
 ofstream outfile16("CEM_Hcum_const_wind.63");
 outfile16<<"Wave Height SMB TEST:3 U="<<u<<"(m/s) Dir="<<di_temp<<"(deg N)"<<" from Mesh.grd"<<endl;
 outfile16<<NDSETSE<<" "<<NP<<" "<<DTDP*(NSPOOLGE)<<" "<<NSPOOLGE<<" "<<IRTYPE<<endl;
 outfile16<<NSPOOLGE<<" "<<NSPOOLGE<<endl; //should be TIME<<" "<<IT<<endl; if they are not equal
 ofstream outfile17("SPM_Hcum_const_wind.63");
 outfile17<<"Wave Height SMB TEST:3 U="<<u<<"(m/s) Dir="<<di_temp<<"(deg N)"<<" from Mesh.grd"<<endl;
 outfile17<<NDSETSE<<" "<<NP<<" "<<DTDP*(NSPOOLGE)<<" "<<NSPOOLGE<<" "<<IRTYPE<<endl;
 outfile17<<NSPOOLGE<<" "<<NSPOOLGE<<endl; //should be TIME<<" "<<IT<<endl; if they are not equal
 ofstream outfile18("ENS_Hcum_const_wind.63");
 outfile18<<"Wave Height SMB TEST:3 U="<<u<<"(m/s) Dir="<<di_temp<<"(deg N)"<<" from Mesh.grd"<<endl;

102

 outfile18<<NDSETSE<<" "<<NP<<" "<<DTDP*(NSPOOLGE)<<" "<<NSPOOLGE<<" "<<IRTYPE<<endl;
 outfile18<<NSPOOLGE<<" "<<NSPOOLGE<<endl; //should be TIME<<" "<<IT<<endl; if they are not equal
 cout<<"Time Step: "<<IT<<" at "<<NSPOOLGE<<" seconds"<<endl;
 infile3.open("PARAM_const_U_30.22"); //opening wind field data again
 //ofstream outfile3("fort.22_out");
 x=0;
 c=0;
 node=0;
 //int Q=0;
 //while(infile3 >> content){
 //if(infile3.is_open()){
 x=0;
 c=0;
 node=0;
 line=1;
 IT=1;
 int Q=0;
 int y=0;
 HWEMO=-99999;
 HSPM= -99999;
 HCEM= -99999;
 HTMA= -99999;
 while(getline(infile3,s)){
 //outfile3<<s<<endl;
 node=node+1;
 if(node<=126772){
 stringstream ss1;
 ss1<<s; //read the line as string (s)
 ss1>>content;
 y=0;
 //if(node<15 && IT==1){
 //cout<<s<<endl;
 //}
 //cout<<s<<endl;
 while(!ss1.eof()){ //while values in the line (string ss)
 y=y+1;
 ss1>>temp; //read each value
 if(y==1){
 WVX[node]=atof(temp);
 }
 if(y==2){
 WVY[node]=atof(temp);
 }
 if(y==3){
 PRN=atof(temp);
 WVEL[node] = sqrt(WVX[node]*WVX[node] + WVY[node]*WVY[node]);
 if(WVX[node] <= 0 && WVY[node] < 0){ //Q1 [0,90)
 WDIR[node] = atan(WVX[node]/WVY[node]) * 180/pi;
 //WDIR[node] = 180+atan(WVX[node]/WVY[node]) * 180/pi;
 }
 if(WVX[node] < 0 && WVY[node] >= 0){ //Q4 [90,180)
 WDIR[node] = 90+atan(abs(WVY[node]/WVX[node]))*180/pi;
 //WDIR[node] = 270+atan(abs(WVY[node]/WVX[node]))*180/pi;
 }
 if(WVX[node] >= 0 && WVY[node] > 0){ //Q3 [180,270)
 WDIR[node] = 180+atan(WVX[node]/WVY[node]) * 180/pi;
 //WDIR[node] = atan(WVX[node]/WVY[node]) * 180/pi;
 }
 if(WVX[node] > 0 && WVY[node] <= 0){ //Q2 [270,360)
 WDIR[node] = 270+atan(abs(WVY[node]/WVX[node]))*180/pi;
 //WDIR[node] = 90+atan(abs(WVY[node]/WVX[node]))*180/pi;
 }
 u = WVEL[node];
 di_input=WDIR[node]/Angres;//di_input is interpolation direction index
 di_low=floor(di_input); //rounds down to the direction index below
 di_high=ceil(di_input); //rounds up to the direction index above
 //casting the double to int for the evenly divisible case
 dir = int(di_input);
 //if converged (evenly divisible case) no interpolation

103

if(node==1){
//cout<<"BEFORE, WDIR: "<<WDIR[node]<<" di_input: "<<di_input<<" di_low: "<<di_low<<" di_high: "<<di_high<<" dir: "<<dir<<" IT:
"<<IT<<endl;
//cout<<"dir: "<<dir<<endl;
}
 //if(abs(((WDIR[node]+Angres)/Angres)-(2*IT)) < 0.01 || di_low==di_high){
 if(abs(di_input-di_low) < 0.01 || abs(di_input-di_high) < 0.01){
 if(node==1){
 cout<<"NO interpolation at time "<<IT;
 }
 if(abs(di_input-di_low) < 0.01){ //round down
 WDIR[node]=floor(WDIR[node]);
 }
 if(abs(di_input-di_high) < 0.01){ //round up
 WDIR[node]=ceil(WDIR[node]);
 }
 di_input=WDIR[node]/Angres;
 //+1 is because 0 deg N corresponds to index 1
 dir = int(di_input)+1;
if(node==1){
cout<<" WVEL: "<<WVEL[node]<<" WDIR: "<<WDIR[node]<<endl;
//cout<<endl;
//cout<<"F["<<node<<"]["<<dir<<"]: "<<F[node][dir]<<" d["<<node<<"]["<<dir<<"]: "<<d[node][dir]<<endl;
//cout<<endl;
//cout<<"AFTER, WDIR: "<<WDIR[node]<<" di_input: "<<di_input<<" di_low: "<<di_low<<" di_high: "<<di_high<<" dir: "<<dir<<endl;
}
 HWEMO = WaveWEMO (g,F[node][dir],d[node][dir],u);
 HSPM = WaveSPM (g,F[node][dir],d[node][dir],u);
 HCEM = WaveCEM (g,F[node][dir],u);
 HTMA = WaveTMA (g,F[node][dir],d[node][dir],u);
 TSPM = PeriodSPM(g,F[node][dir],d[node][dir],u);
 TCEM = PeriodCEM(g,F[node][dir],u);
 TTMA = PeriodTMA(g,F[node][dir],d[node][dir],u);
 if(F[node][dir]==0 || d[node][dir]==0 || HWEMO < 0.0001){
 HWEMO=-99999;
 HSPM =-99999;
 HTMA =-99999;
 HCEM =-99999;
 }
 } //close if converged (evenly divisible no interpolation)
//*****case for an angle in between (not evenly divisible by Angres) using linear interpolation
 else{
//case for setting maxindex(360)back to 0 deg
 if(WDIR[node]>360-Angres){
 di_high=1;
 }
 if(node==1){
 cout<<" Interpolation between "<<di_low*Angres<<" and "<<di_high*Angres<<" degrees"<<endl;
//cout<<"F[node][di_high+1]: "<<F[node][di_high+1]<<" F[node][di_low+1]: "<<F[node][di_low+1]<<endl;
//cout<<"d[node][di_high+1]: "<<d[node][di_high+1]<<" d[node][di_low+1]: "<<d[node][di_low+1]<<endl;
//cout<<"WDIR: "<<WDIR[node]<<" di_input: "<<di_input<<" di_low: "<<di_low<<" di_high: "<<di_high<<" dir: "<<dir<<endl;
 }
 HwaboveWEMO = WaveWEMO(g,F[node][di_high+1],d[node][di_high+1],u);
 HwbelowWEMO = WaveWEMO(g,F[node][di_low+1],d[node][di_low+1],u);
 HwaboveSPM = WaveSPM(g,F[node][di_high+1],d[node][di_high+1],u);
 HwbelowSPM = WaveSPM(g,F[node][di_low+1],d[node][di_low+1],u);
 HwaboveTMA = WaveTMA(g,F[node][di_high+1],d[node][di_high+1],u);
 HwbelowTMA = WaveTMA(g,F[node][di_low+1],d[node][di_low+1],u);
 HwaboveCEM = WaveCEM(g,F[node][di_high+1],u);
 HwbelowCEM = WaveCEM(g,F[node][di_low+1],u);
 TaboveSPM = PeriodSPM (g,F[node][di_high+1],d[node][di_high+1],u);
 TbelowSPM = PeriodSPM (g,F[node][di_low+1],d[node][di_low+1],u);
 TaboveTMA = PeriodTMA (g,F[node][di_high+1],d[node][di_high+1],u);
 TbelowTMA = PeriodTMA (g,F[node][di_low+1],d[node][di_low+1],u);
 TaboveCEM = PeriodCEM (g,F[node][di_high+1],u);
 TbelowCEM = PeriodCEM (g,F[node][di_low+1],u);
//resetting index to 36 to account for di_high
 if(di_temp>360-Angres){
 di_high=360/Angres;

104

 }
 HWEMO =
Interp(di_low,di_high,di_input,HwbelowWEMO,HwaboveWEMO);
 HSPM =
Interp(di_low,di_high,di_input,HwbelowSPM,HwaboveSPM);
 HTMA =
Interp(di_low,di_high,di_input,HwbelowTMA,HwaboveTMA);
 HCEM =
Interp(di_low,di_high,di_input,HwbelowCEM,HwaboveCEM);
 TSPM = Interp(di_low,di_high,di_input,TbelowSPM,TaboveSPM);
 TTMA =
Interp(di_low,di_high,di_input,TbelowTMA,TaboveTMA);
 TCEM = Interp(di_low,di_high,di_input,TbelowSPM,TaboveCEM);
 if(F[node][dir]==0 || d[node][dir]==0 || HWEMO < 0.0001){
 HWEMO=-99999;
 HSPM =-99999;
 HTMA =-99999;
 HCEM =-99999;
 }
 //outfile3<<node<<" "<<HWEMO<<endl;
 } //close interpolation else statement
 check=false;
 if(F[node][dir]==0 || d[node][dir]==0 || HWEMO < 0.0001){
 HWEMO=-99999;
 HSPM= -99999;
 HCEM= -99999;
 HTMA= -99999;
 WEMO_cum=-99999;
 TMA_cum =-99999;
 SPM_cum =-99999;
 CEM_cum =-99999;
 ENS_cum =-99999;
 TSPM=0;
 TCEM=0;
 TTMA=0;
 check=true;
 }
//*******Dispersin Equation for k and L
 if(check==false){//wet node with non-zero fetch and depth values
 //SPM
 Tm=TSPM;
 fm=1/Tm;
 sigma=2*pi*fm;
 k0=sigma*sigma/g;
 kold=k0;
 eps=10;
 int b=0;
 while(eps>0.0001){
 knew=sigma*sigma/(g*tanh(kold*d[node][dir]));
 eps=abs(knew-kold);
 kold=knew;
 b=b+1;
 if(b>1000000){ //statement for no
convergence
 break;
 }
 }
 kSPM=knew;
 LSPM=2*pi/kSPM;
 //CEM
 Tm=TCEM;
 fm=1/Tm;
 sigma=2*pi*fm;
 k0=sigma*sigma/g;
 kold=k0;
 eps=10;
 b=0;
 while(eps>0.0001){
 knew=sigma*sigma/(g*tanh(kold*d[node][dir]));

105

 eps=abs(knew-kold);
 kold=knew;
 b=b+1;
 if(b>1000000){
 break;
 }
 }
 kCEM=knew;
 LCEM=2*pi/kCEM;
 //TMA
 Tm=TTMA;
 fm=1/Tm;
 sigma=2*pi*fm;
 k0=sigma*sigma/g;
 kold=k0;
 eps=10;
 b=0;
 while(eps>0.0001){
 knew=sigma*sigma/(g*tanh(kold*d[node][dir]));
 eps=abs(knew-kold);
 kold=knew;
 b=b+1;
 if(b>1000000){
 break;
 }
 }
 kTMA=knew;
 LTMA=2*pi/kTMA;
double Ch_SPM=(1.486/mannings_n_SPM)*pow(d[node][dir],1/6);
double Ch_TMA=(1.486/mannings_n_TMA)*pow(d[node][dir],1/6);
double Ch_CEM=(1.486/mannings_n_CEM)*pow(d[node][dir],1/6);
double ffactor_SPM=g/(Ch_SPM*Ch_SPM);
double ffactor_TMA=g/(Ch_TMA*Ch_TMA);
double ffactor_CEM=g/(Ch_CEM*Ch_CEM);
//shoaling coefficient ks (varies from 1 in deep water, dips to 0.9 in intermediate and grows larger than 1 as it approaches shallow water.
Multiply H by this)
ksCEM = pow(((2*pow(cosh(kCEM*d[node][dir]),2)) / (sinh(2*kCEM*d[node][dir]) + 2*kCEM*d[node][dir])),0.5);
ksSPM = pow(((2*pow(cosh(kSPM*d[node][dir]),2)) / (sinh(2*kSPM*d[node][dir]) + 2*kSPM*d[node][dir])),0.5);
ksTMA = pow(((2*pow(cosh(kTMA*d[node][dir]),2)) / (sinh(2*kTMA*d[node][dir]) + 2*kTMA*d[node][dir])),0.5);
//friction factor kf (varies from 1 in deep water to larger than 1 in shallow. Divide H by this)
kfCEM = 1 + (64*pi*pi*pi)/(3*g*g) * (ffactor_CEM*HCEM*F[node][dir]/pow(TCEM,4)) *
 (ksCEM*ksCEM/pow(sinh(2*pi*d[node][dir]/LCEM),3));
kfSPM = 1 + (64*pi*pi*pi)/(3*g*g) * (ffactor_SPM*HSPM*F[node][dir]/pow(TSPM,4)) *
 (ksSPM*ksSPM/pow(sinh(2*pi*d[node][dir]/LSPM),3));
kfTMA = 1 + (64*pi*pi*pi)/(3*g*g) * (ffactor_TMA*HTMA*F[node][dir]/pow(TTMA,4)) *
 (ksTMA*ksTMA/pow(sinh(2*pi*d[node][dir]/LTMA),3));
//double slope=1/30; //impliment formula for calculating beach slope
double A=0.17;
double H_break=0;
//SPM / WEMO
//WEMO_shoal = HWEMO*ksSPM;
//WEMO_fric = HWEMO/kfSPM;
//WEMO_cum = HWEMO - (HWEMO-WEMO_shoal) - (HWEMO-WEMO_fric);
WEMO_cum = HWEMO; //wind only
SPM_shoal = HSPM*ksSPM;
SPM_fric = HSPM/kfSPM;
SPM_cum = HSPM - (HSPM-SPM_shoal) - (HSPM-SPM_fric);
//if(ksSPM>1 && IT==1){
//cout<<"SPM positive shoal effect at node: "<<node<<" ksSPM: "<<ksSPM<<endl;
//}
 //if(IT==1){
 //cout<<"d["<<node<<"]["<<dir<<"]: "<<d[node][dir]<<" LSPM: "<<LSPM<<" d/L: "<<d[node][dir]/LSPM<<endl;
 //}
if(d[node][dir]/LSPM < 0.05){
 H_break_SPM = LSPM*A*(1-exp (-1.5* (pi*d[node][dir]/LSPM)*(1+15*pow(slope[node][dir],4/3))));
 //if(IT==1){
 //cout<<"SPM BREAK!!! at node:"<<node<<" SPM_cum: "<<SPM_cum<<" SPM_break: "<<H_break_SPM<<endl;
 //}
 WEMO_cum = H_break_SPM;

106

 SPM_cum = H_break_SPM;
}
else{
 H_break_SPM = -99999;
}
//CEM
CEM_shoal = HCEM*ksCEM;
CEM_fric = HCEM/kfCEM;
CEM_cum = HCEM - (HCEM-CEM_shoal) - (HCEM-CEM_fric);
if(d[node][dir]/LCEM < 0.05){
 H_break = LCEM*A*(1-exp (-1.5* (pi*d[node][dir]/LCEM)*(1+15*pow(slope[node][dir],4/3))));
 CEM_cum = H_break;
 //cout<<"BREAK!!! node:"<<node<<endl;
}
//TMA
TMA_shoal = HTMA*ksTMA;
TMA_fric = HTMA/kfTMA;
TMA_cum = HTMA - (HTMA-TMA_shoal) - (HTMA-TMA_fric);
if(d[node][dir]/LTMA < 0.05){
 H_break = LTMA*A*(1-exp (-1.5* (pi*d[node][dir]/LTMA)*(1+15*pow(slope[node][dir],4/3))));
 TMA_cum = H_break;
 //cout<<"BREAK!!! node:"<<node<<endl;
}
//statement to fix infinity values on some ks denominator values, in this case reset cumulative wave heights
//back to the wind wave height only value
if(isinf(sinh(2*kCEM*d[node][dir]) + 2*kCEM*d[node][dir]) ==1){ //denominator in ks, causing infinity
CEM_cum=HCEM; //reset to wind wave
height
}
if(isinf(sinh(2*kSPM*d[node][dir]) + 2*kSPM*d[node][dir]) ==1){ //denominator in ks, causing infinity
SPM_cum=HSPM;
WEMO_cum=HWEMO; //reset to wind wave
height
}
if(isinf(sinh(2*kTMA*d[node][dir]) + 2*kTMA*d[node][dir]) ==1){ //denominator in ks, causing infinity
TMA_cum=HTMA; //reset to wind wave
height
}
ENS_cum = (WEMO_cum + SPM_cum + TMA_cum + CEM_cum)/4; //ensemble avg.
 } //close if check=false
 else{ //fetch and depth are zero. Hshoal=-99999
 ks=1;
 kf=1;
 }
 outfile14<<node<<" "<<WEMO_cum <<endl;
 outfile15<<node<<" "<<TMA_cum <<endl;
 outfile16<<node<<" "<<CEM_cum <<endl;
 outfile17<<node<<" "<<SPM_cum <<endl;
 outfile18<<node<<" "<<ENS_cum <<endl;
if(node==35884){
//cout<<"10 dir: "<<dir<<endl;
}
if(node==35884){
//cout<<fixed<<setprecision(3)<<endl;
//cout<<"node: "<<node<<" HWEMO: "<<WEMO_cum<<" HSPM: "<<SPM_cum<<" HTMA: "<<TMA_cum<<" HCEM: "<<CEM_cum<< "
ENS_cum: "<<ENS_cum<<endl;
//cout<<"dir: "<<dir<<" F: "<<F[node][dir]<<" d: "<<d[node][dir]<<" HSPM: "<<HSPM<<" SPM_cum: "<<SPM_cum<<endl;//" SPM_shoal:
"<<SPM_shoal<<" SPM_fric: "<<SPM_fric<<endl;
//cout<<"node: "<<node<<" TWEMO: "<<TSPM<<" TSPM: "<<TSPM<<" TTMA: "<<TTMA<<" TCEM: "<<TCEM<<endl;
}
//statement to write wave height solutions of 0 to -99999 for ADCIRC and SMS
 HWEMO=0;
 HCEM =0;
 HTMA =0;
 HSPM =0;
 TSPM =0;
 TCEM =0;
 TTMA =0;
 WEMO_cum=-99999;

107

 TMA_cum =-99999;
 SPM_cum =-99999;
 CEM_cum =-99999;
 ENS_cum =-99999;
 } //close if y==3
 } //close while!eof
 //cout<<node<<" "<<WVX[node]<<" "<<WVY[node]<<" "<<WDIR[node]<<" "<<IT<<endl;
 } //close if node <=126772
 if(node==126772){ //new timestep, reset node counter
 if(IT==NDSETSE){ //to break out of loop before writing next time step
 break;
 }
 IT=IT+1; //model timestep number
 TIME=NSPOOLGE*IT; //model time (in seconds)
 node=0;
 outfile14<<TIME<<" "<<TIME<<endl;
 outfile15<<TIME<<" "<<TIME<<endl;
 outfile16<<TIME<<" "<<TIME<<endl;
 outfile17<<TIME<<" "<<TIME<<endl;
 outfile18<<TIME<<" "<<TIME<<endl;
 cout<<"Time Step: "<<IT<<" at "<<TIME<<" seconds"<<endl;
 cout<<"Number of SPM breaking nodes: "<<v<<endl;
 v=0;
 }
 } //close while getline infile3
 //outfile3.close();
 outfile14.close();
 outfile15.close();
 outfile16.close();
 outfile17.close();
 outfile18.close();
 time_req=clock()- time_req;
 cout<<"***Time taken: "<<(float)time_req/CLOCKS_PER_SEC<<" seconds***"<<endl;
return 0;
}

	Improving the Efficiency of Coupled Hydrodynamic Predictions by Implementing a Fetch-based Parametric Wave Model
	tmp.1677507482.pdf.9g8Xv

