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ABSTRACT
Geometric Inference in Machine Learning: Applications of Fisher Information for

Model Selection and Other Statistical Applications
Trevor Herntier

We consider the problem of model selection using the Minimum Description Length
(MDL) criterion for distributions with parameters on the hypersphere. Model selection
algorithms aim to find a compromise between goodness of fit and model complexity.
Variables often considered for complexity penalties involve number of parameters, sam-
ple size and shape of the parameter space, with the penalty term often referred to as
stochastic complexity. Because Laplace approximation techniques yield inaccurate re-
sults for curved spaces, existing criteria incorrectly penalize complexity. We demon-
strate how the use of a constrained Laplace approximation on the hypersphere yields a
novel complexity measure that more accurately reflects the geometry of these spheri-
cal parameters spaces. We refer to this modified model selection criterion as spherical

MDL. As proof of concept, spherical MDL is used for bin selection in histogram density
estimation, performing favorably against other model selection criteria.

Furthermore, we consider the problem of identifying the most similar distribution
from a constrained set to a given distribution. We measure similarity using a symmetric
distance on the manifold governed by the Fisher information metric, with a smaller dis-
tance on the manifold indicating distributions that are more similar. For the most part,
research into the geodesic problem on manifolds is limited to the paths between two
known distribution. Allowing one or both of the endpoint distributions to belong to a
constrained surface on the manifold requires the introduction of transversality conditions
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and the techniques from variational calculus. We show the efficacy of this approach by
applying it to different manifolds and constraint surfaces, including Gaussian manifolds
with the isotropic constraint surface.
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Chapter 1

Introduction

1.1 Motivation
At the heart of all machine learning applications is understanding the distribution of
the data. After all, every machine learning algorithm is at the mercy of the data it is
provided. The probability distributions that generate data can be considered points on a
statistical manifold, the study of which is known as information geometry. Information
geometry allows us to exploit aspects of our prior knowledge by understanding how
the distributions that describe that data interact with other distributions in the model
family with rules governed by the geometry of the manifold they are on. Additionally, it
opens up geometric vocabulary allowing researchers to reason intuitively about statistical
problems.

The geometry of these manifolds precisely links the data to the parameters, giving
the parameters context and the adding clarity to the task at hand. These manifolds are
Riemannian manifolds and, accordingly, are endowed with a natural geometry that al-
lows for the definition of common geometrical concepts. Unlocking this geometry on
the manifold requires an appropriate metric tensor or metric. This metric tensor pro-
vides a notion of distance on the manifold, which allows the measurement of concepts
such as surface areas on the manifold (sometimes referred to as Riemannian volumes)
both locally and globally and arc lengths between two distributions In [40], it is shown
that the the appropriate tensor is the Fisher Information matrix since it is invariant to
reparameterisation of the distributions occupying the manifold.

Most importantly for this research is that the geometry of these statistical manifolds
allows for a comparison between the distributions using the properties of the manifold.
These comparisons will allow for the identification of optimal distributions given sam-
pled data as well as quantify the magnitude of dissimilarities between distributions,
which are sometimes measured by divergence formulae, like Kullback-Leibler [61] or
cross-entropy [92]. As effective as these divergence formulae are, perhaps a more in-
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stinctual comparison of distributions would be the symmetric distance between their lo-
cations on the manifold, something that divergence formulae do not provide, in general.

Armed with a data set and this idea of distance on a manifold, information geometry
is well suited to aid the choice of which model on a manifold best fits the distribution
suggested by the data. Model Selection research has uncovered many criterion to de-
termine the optimal distribution, each with its own unique definition of optimal. In this
definition, most criteria ignore the geometry of the manifolds at worst and, at best, in-
appropriately penalize distributions on curved manifolds. Developing a suitable model
selection criterion that properly accounts for this geometry is a key motivation of this
research

Furthermore, the study of distances on these manifolds leads directly to the proper-
ties of the shortest path between two points, or geodesics. Geodesics are interesting in
the study of geometry because they provide insight into the curvature of a surface. The
behavior of geodesics on a surface can be used to study the global structure of the sur-
face.and to identify which distributions on the manifold are closest to a chosen model. In
this research,we will make use of techniques from variational calculus to develop a novel
use of geodesics on Riemannian manifolds. As will be seen with this research, working
with the geometry of these manifolds can further applications in machine learning and
model selection.

Typically, research regarding geodesics involves the distance between two points on
a manifold, almost entirely focused on closed form expressions for the that distance. Ab-
sent from current research is relaxing the boundary conditions for geodesics by allowing
one of the endpoints of the geodesics some degrees of freedom to move along the man-
ifold. Here,we relax one or both boundary conditions, allowing the geodesic to start or
end on a subsurface on the manifold. This shift in thinking expands the questions that can
be answered. Instead of simply asking what is the distance between two distributions,
the question becomes what is the closest isotropic distribution, for example. Having a
variable boundary condition opens up countless new research questions and applications.

1.2 Main Contributions
The proposed research makes several unique contributions to advancing the exploration
of machine learning and model selection using information geometry to compare statis-
tical distributions. Most significantly:

• A correct Laplace approximation on hyperspherical manifolds;
• A novel model selection criteria for distributions with parameters residing on hy-

perspheres called spherical Minimum Description Length;
• Incorporating a logical complexity penalty with a geometric interpretation for dis-

tributions on hyperspheres
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• Illustrate the efficacy of spherical Minimum Description Length by choosing ap-
propriate bin numbers for histogram density estimators;

• Uses of the Fisher Information matrix to find the shortest path between a known
distribution on a variety of statistical manifolds and a subset of distributions on
the manifold defined by a constraint surface;

• Derive general transversaility conditions for the Multivariate Gaussian distrubtion
• Employ transversality conditions on the manifold of Guassian distributions to sat-

isfy isotroptic boundary conditions;
• Improving the normal approximation to the Poisson Distribution by selecting an

appropriate Gaussian distribution from the submanifold of univariate Gaussian
distributions with equal variance and mean that is closest to a distribution realized
from data.

More specifically and with regards to model selection, we will use differential ge-
ometry to develop a novel model selection criteria for distributions with hyperspherical
parameters, called spherical Minimum Description length with a pleasing geometric in-
terpretation of the penalty term. Separating this criterion for ones already existing in
the literature will be correcting the Laplace approximation for curved parameter spaces.
With regards to the study of geodesics,we will expand on the current research which
typically restricts itself to finding the shortest path between two well defined points by
introducing variable endpoints, or transversality condition. This shift in thinking allows
asking more pertinent questions by focusing on finding the closest distribution to a given
distribution instead of limiting questions to length of the shortest path.

The remainder of this document is organized as follows: In Section 1.3, we provide
a brief introduciton to the key principles of model selection in which we present pio-
neering concepts in the field, to be expanded later in the document. In Section 1.4 we
introduce the concept of geodesics on manifolds and their role in measuring a distance
between statistical distributions, something that is foreign without the ideas of informa-
tion geometry.

Chapter 2 covers the most relevant works to the present development, including some
historical reflection on various model selection criteria. Also in this section will provide
a summary of current relevant works regarding techniques of measuring distances along
curved parameter spaces using the Fisher Information matrix as the metric.

In Chapter 3, a detailed analysis of model selection is found. With an ambitious
goal of making the paper more self-contained,we briefly recap the background of model
selection for a Bayesian perspective in Section 3.1, paying specific attention to geomet-
ric motivations behind the use of the Fisher information matrix. Section 3.2 details the
geometric derivation of MDL in ℝ𝐾 . An approach not as familiar as the original infor-
mation theoretic formulation, yet enabling the analogous development of MDL on the
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hypersphere 𝕊𝐾−1 is detailed in Section 3.3. By comparing the developments in ℝ𝐾 and
𝕊𝐾−1, one can readily see where the modifications must be made for the constrained pa-
rameter space. Next, in Section 3.4,we consider a practical application of spherical MDL
for selecting the bin width of the ubiquitous histogram. Our experimental results vali-
date the utility of spherical MDL in comparison to other state-of-the-art model selection
criteria.

The paper then makes a transition to exploring techniques of calculus of variation
on statistical manifolds in Chapter 4 with the ultimate goal of finding the shortest path
between a given distribution on the manifold and a final distribution somewhere on a
surface residing on the manifold. This will require a brief introduction to the techniques
of variational calculus, which is provided in Section 4.1. This outline is far from ex-
haustive and is just to provide minimal foundation for the current topic. With that in
mind, the Euler-Lagrange equation and transversality conditions are paramount for the
current research, so a reasonably detailed explanation and proof are given in Section 4.2
and Section 4.3, respectively. In Section A.3, the Euler-Lagrange equation with transver-
sality conditions are applied on the 2-sphere, to show proof of concept with the goal of
applying it to more general probability distributions.

Once the proficiency of transversality conditions to select the closest model on the
constraint surface is established, we then apply them by first examining geodesics on the
univariate Gaussian manifold between a distribution and constraint surface, as shown in
Section 4.4.

Next, in Section 4.5 we study the Fisher information of the multivariate Gaussian use
the results to find geodesics on the bivariate Guassian distribution on the isotropic con-
straint surface. Additionally, in order to explore the limits of transversality conditions,
we use them to find geodesics with both variable initial and terminal boundaries as well
as solving for a geodesic when the intitial distribution already satisfies the contsraint
surface we show how transversality conditions on the univariate Gaussian can better the
normal approximation to the Poisson distribution given sampled data, a technique that
receives far less relative attention compared to the binomial distribution, especially when
considering the usefulness of the Poisson distribution.

Finally, in Chapter 5, we provide some further direction to logical extensions of this
current research.

1.3 Introduction to Model Selection
The premise of model selection is to objectively choose, from a set of competing mod-
els, one that most parsimoniously obtains a good fit to the observed data. The difficulty
arises from the fact that goodness of fit and parsimony are inherently conflicting proper-
ties. A more philosophical view is sufficiently captured by Ockham’s razor: “Pluralities
are never to be put forward without necessity.” The widely established measure of good-
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ness of fit is the likelihood of the observed data. With this issue settled for the most
part, research has focused on how to penalize models that overfit the data. Almost all
popular model selection criteria differ primarily on the method of this penalizing fac-
tor. Simple penalties can depend on only the number of parameters of the model and
perhaps the sample size, while more complex criteria take into account the geometric
complexity of the parameter manifold. In this paper,we revisit the geometry associated
with the complexity measure for the Minimum Description Length (MDL) criterion [87,
84]. We note that almost all of this previous development is restricted to unconstrained
parameter spaces. In this paper,we are mainly interested in model selection criteria when
parameters are implicitly constrained.

A simple way to accommodate constraints in parametric models is the explicit re-
moval of the constrained set leaving behind a reduced set of unconstrained parameters.
Unfortunately, this is difficult to analytically perform when the constraints are nonlinear.
In the present paper, we show that a constrained MDL-like criteria can be derived in
such situations, referring to this new model selection criterion as spherical MDL. We
also show that there is no requirement to explicitly reduce the set of parameters to a
smaller unconstrained set. Instead, we work with the constraints implicitly, extending
MDL naturally to such situations. We argue that this opens up MDL to more interesting
and constrained parametric models than hitherto seen in the literature. Before introduc-
ing spherical MDL and the general methodology behind constrained parametric spaces,
we present a simplified version of the current model complexity landscape.

Paramount to every criterion is the value it places on parametric complexity. When
making a decision, however, this value is not the greatest concern. It would be natural to
think that if models with few parameters are chosen consistently by a a certain criteria,
it must be placing a large complexity penalty on models with many parameters. While
this may be true, what is actually happening is that, according to this criterion, when
models get more complex the increase in penalty is larger, making it more undesirable
to choose the next most complicated model. In other words, a 𝐾 parameter model may
be considered extremely complex, but if the 𝐾 + 1 parameter model isn’t exceedingly
more complex, there is little harm in choosing the𝐾 +1 parameter model. Every model
selection criterion compares this increase in complexity from one model to the next to
the improvement in fit and makes its choice accordingly.

Arguably, the three most widely used selection criteria are Akaike’s information cri-
terion (AIC) and its incarnations [3, 2, 52], Bayesian information criterion (BIC) [91]
and Minimum Description Length (MDL). The AIC criterion is given by

𝐴𝐼𝐶 = −2 log 𝑓 (𝑋; 𝜃̂) + 2𝐾 (1.1)
and BIC

𝐵𝐼𝐶 = −2 log 𝑓 (𝑋; 𝜃̂) +𝐾 log(𝑁), (1.2)
where 𝑋 =

{

𝑥𝑖
}𝑁
𝑖=1 is the observed data, 𝐾 is the cardinality of the parameters in the
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candidate model,𝑁 is the sample size and log 𝑓 (𝑋; 𝜃̂) is the log-likelihood of the model
evaluated at the maximum likelihood estimate (MLE) 𝜃̂. In the original forms of Equa-
tions (1.1) and (1.2), the parameters in the set 𝜃 specific to the density 𝑓 are assumed
to lie in an Euclidean space, i.e., 𝜃 ∈ ℝ𝐾 . The candidate model which minimizes the
above in each case will be the appropriate model for the data according to the respec-
tive criteria. Both criteria use the negative log-likelihood as the measure for goodness
of fit and employ similar complexity penalties that reward paucity of parameters. How-
ever, BIC includes the sample size in its penalty term and will tend to choose less com-
plex models as more data is collected. Interestingly, in Equation (1.1), the penalty term
can be derived principally from a bias correction between the unknown true model and
approximation by the selected model family (and, for more details, see [74]).

The criticisms of the complexity penalties for AIC and BIC are tied to the failure
of either to consider how the parameters interact within the model. This shortcoming
was addressed in [87, 88, 85] with the introduction of the Minimum Description Length
principle

𝑀𝐷𝐿 = − log 𝑓 (𝑋; 𝜃̂) + 𝐾
2
log

(𝑁
2𝜋

)

+ log∫
√

det 𝐼(𝜃)𝑑𝜃, (1.3)

where 𝐼(𝜃) is the Fisher information matrix. Even though the predecessors to MDL
acted as inspirations, Rissanen approached model selection from a unique perspective,
that of information theory as opposed to probability theory. Both schools of thought use
data to select an appropriate model that can be used to explain the data. However, where
probability models aim at searching for the true underlying distribution that generated
the data, MDL merely looks at compressing the data. In fact, Rissanen argues [47] that
it is entirely inappropriate to look for this “true” distribution since the existence of it is
questionable and, as such, the task of trying to estimate it is impracticable. This leaves
MDL with the central idea of finding regularities in data and to use these to compress
the data such that the data can be described using less symbols. Data is compressed by
means of a code and models that offer shorter code lengths are considered to describe
the data better. Even though MDL doesn’t concern itself with finding the “true” model,
the search for regularities in the data often results in identifying the distribution which
generated the data [47].

In this work, and, as mentioned above,we propose a novel MDL-like criterion specifi-
cally designed for models with spherical parameter spaces, i.e., 𝜃 ∈ 𝕊𝐾−1. We derive the
new criterion by revisiting the geometric derivation of MDL—as opposed to its original
code-length inspired formulation—and show how when dealing with spherical paramet-
ric spaces one can constrain the Laplace approximation to respect this geometry.

The geometric derivation of MDL [9] is predicated on carving up parametric mani-
folds into disjoint regions within which parametric models are indistinguishable. While
this approach prima facie looks quite different from the standard MDL code length ap-
proach, it is shown that the geometric derivation is entirely equivalent to standard MDL.
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We begin with this geometric approach in the present work since the carving up of para-
metric manifolds into disjoint regions can be readily extended to constrained parameter
spaces. As we show, for the case of spherical MDL, this results in a new complexity
term that penalizes based on the normalizing constant of the Fisher–Bingham distri-
bution [59] generalized appropriately to higher dimensions. The MDL criterion, as it is
presently formulated, assumes that parameters lie in a Euclidean ℝ𝐾 space and are other-
wise unconstrained. Asymptotic analyses based on this model are prone to inaccuracies
for spherical models. In the remainder of this work,we detail the theoretical connections
with the original MDL criterion and more importantly offer insight into the interpretation
of spherical MDL in the context of distinguishable distributions in the model space.

1.4 Introduction to Geodesics on Manifolds
The importance of a metric to measure the similarity between two distributions has
weaved itself into a plethora of applications. Fields concerning statistical inference [58,
4, 37], model selection [2, 87, 51] and machine learning have found it necessary to quan-
tify the likeness of two distributions. A common approach to measure this similarity is
to define a divergence between distributions using the tenets of information geometry,
e.g., the Fisher–Rao distance or the f-divergence [81], respectively.

With information geometry, it is possible to define a distance between two statistical
distributions. In the context of information geometry, statistical distributions are repre-
sented by points on a statistical manifold. Of the many paths that connect two points on
a manifold, the minimizing path is known as a geodesic. The first rigorous mathemati-
cal treatment of geodesics and the geodesic problem is usually attributed to the German
mathematician Carl Friedrich Gauss, who published a paper on the topic in 1828 [43]. It
was in this paper that Gauss defined the geodesic as the shortest path between two points
on a surface and derived the geodesic equation which, in the context of his research, de-
scribed the path of a particle moving under the influence of gravity on a curved surface.
Since Gauss’s work, the geodesic problem has been studied extensively by mathemati-
cians and physicists, and has applications in a wide range of fields, including geometry,
topology, physics, engineering, and computer science. Because of its varied use, study-
ing the behavior of geodesics has become an attractive topic for researchers, most of the
time finding a closed form equation for the length of a geodesic. On some manifolds, this
has been a fruitful endeavour, with satisfying equations defining this distance. However,
on many statistical manifolds, closed form solutions for the length of a geodesic remains
unsolved.

To the best of our knowledge, research and results in information geometry have pre-
dominantly focused on establishing similarities between two given distributions. Here,
we consider an important class of problems where one or both endpoint distributions are
not fixed, but instead, constrained to live on subset of the parameter manifold.
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When one relaxes the fixed endpoint requirements, the development of finding the
shortest path between a given distribution and constraint surface (not single distribution)
must be reconsidered using transversality conditions [45, 44] for the standard length-
minimizing functional. This is precisely the focus of the present work, where we derive
the transversality conditions for working in the Riemannian space of multivariate Gaus-
sian distributions. This approach opens new avenues for research and application areas
where one no longer needs to provide the ending distribution but rather a description of
the constraint set where the most similar model must be discovered.
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Chapter 2

Related Works

In this chapter, we provide a history and comparison of the effectiveness of popular
model selection criterion and how geometry aided in the evolution an interpretations
of the field. Rissanen’s Minimum Description Length is looked at in more detail, con-
sidering it was the first to employ the geometric structures of statistical manifolds in its
complexity penalty. Furthermore, the Minimum Description length has matured through
its development, applications and interpretations, which is germane to my research.

Next, relevant current and historical research are presented that motivated this work
on the applications of the geometry of statistical manifolds, beginning with a history of
divergence measures on manifolds and differential geometry. Then, using divergence
measures, main results of shortest paths between two distributions on manifolds are dis-
cussed. Additionally, some important applications of the calculus of variations are out-
lined, showing its efficacy on a wide range of research areas.

Statistical manifolds are a mathematical framework used to study the geometry of
probability distributions. Rao introduced the concept in [80], where he established that
each unique set of parameters of a probability distribution can reside on a statistical
manifold. He showed that these manifolds can be endowed with a geometric structure,
paving the way for further studies in information geometry. Rao based this geometric
structure on the works of Fisher [42], where the basis of the Fisher information was first
introduced

Decades later, the seminal work of Rao was expanded on by Amari in [6, 4, 5]. His
approached focused on the Riemannian geometry of the manifold and proposed invari-
ant divergence measures that allow for calculating the distance between distributions on
the manifold. His work with the Fisher metric also provided insight into the sensitivity
of the probability distribution to changes in the underlying parameters, which reveals
information about the local geometry around a particular distribution.

These works laid the foundation for the applications of information geometry in a
variety of statistical fields. Kass explored how the distance between distributions has ap-
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plications to inference [58]. Here, Kass showed how ideas in statistical inference merge
nicely with ideas from information geometry. Recognizing the unconventional use of ge-
ometric ideas in While doing so, he was a strong advocate for using geometrical concepts
into Bayesian statistical ideas.

As outlined above, some of the pioneering ideas of model selection criteria are cred-
ited to Akaike [2] with his development of Aikaike’s Information Criterion, or AIC.
Akaike’s original idea generated numerous variants of AIC involving bootstrapping [29]
and small sample corrections [28]. Even with these corrections, the AIC is still con-
sidered to under-penalize complex models. With the Bayesian Information Criterion,
Schwarz [91] tried to address some of these issues. However, neither of these popular
approaches consider the geometry of the manifold. The functional relationship between
the parameters and the distribution wasn’t explored until Rissanen’s Minimum Descip-
tion Length, yet still not with a geometric interpretaion.

Rissanen’s first offering was an early two part code version of MDL. Originally, the
MDL criterion was given by

𝑀𝐷𝐿 = − log 𝑓 (𝑋; 𝜃) + 𝐾
2
log

(𝑁
2𝜋

)

(2.1)

and later evolved to become the three part code seen in Equation (1.3). Similar to AIC
and BIC, this two part code fails to penalize for the geometry of the parameter manifold.
The third term in Equation (1.3) penalizes a model for geometric complexity by incorpo-
rating the Riemannian volume [19] of the parameter manifold. MDL deviates from AIC
[3, 2] and BIC [91] in that its objective is not to search for the underlying true model, but
to encode regularities in the data. The difficulty with this is that the optimal distribution
in the family is required to describe the data properly, but also requires too much infor-
mation to be optimal. This motivated the idea of identifying a universally represented
distribution from a model family, one that compresses every data set almost as well as
the best model for every single unique data set. Rissanen coined the term stochastic
complexity to describe the code length associated with this universal distribution.

In [11], the normalized maximum likelihood (NML) was shown to be the universal
distribution of every model family. Specifically, the probability distribution associated
with the NML distribution is

𝑝(𝑋) =
𝑓 (𝑋|𝜃̂𝑋)

∫ 𝑓 (𝑌 |𝜃̂𝑌 )𝑑𝑌
, (2.2)

where𝑋 denotes the collected data, 𝑌 represents any potential data set that could be ob-
served by the experiment and 𝜃̂𝑋 denotes their respective maximum likelihood estimate
for 𝑋 with a similar notation used for 𝑌 . The normalizing constant, ∫ 𝑓 (𝑌 |𝜃̂𝑌 )𝑑𝑌 , for
the distribution can be thought of as the sum of all maximum likelihood estimates from
all possible data sets the experiment could generate. The code length associated with
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this distribution is found by taking the negative logarithm of Equation (2.2)

𝑆𝐶 = − log 𝑓 (𝑋|𝜃̂𝑋) + log∫ 𝑓 (𝑌 |𝜃̂𝑌 )𝑑𝑌 (2.3)

and provides us with the mathematical definition of stochastic complexity. Like all other
model selection criteria, the first term is a goodness of fit term and the last term is a
penalty for complexity, which is sometimes referred to as the parametric complexity and
is independent of the data in the sample set. The model that minimizes the stochastic
complexity is the one which MDL would choose as optimal.

As elegant as the NML definition of stochastic complexity is, it is not without its
flaws. Mainly, the normalizing integral is usually computationally costly to compute
making the NML distribution elusive in general and as such it is difficult to compare
the stochastic complexity of competing models. In fact, this normalizing integral may
not even be finite, a problem which has been named the infinity problem [47]. Several
solutions have been proposed to fix the infinity problem [86, 101], but only in specific
cases. Without a satisfactory solution to the problem in general, the NML definition of
stochastic complexity is limited in its practical applicability.

Recognizing these issues, an asymptotic formula for the stochastic complexity was
derived for larger sample sizes by Balasubramanian in [9]. A brief proof of this formula
will be provided in Section 3.2. The penalty for complexity in this asymptotic formula
can be understood in terms of the geometry of the statistical manifold on which the
parameters reside. Briefly, instead of trying to compress data using regularities within it,
Balasubramanian defines stochastic complexity as the ratio of the volume of an ellipsoid
near the MLE to the volume of the entire manifold. An undesirable model would be
one in which this ellipsoid is very small when compared to the volume of the entire
manifold. We leverage similar geometric arguments when developing spherical MDL in
Section 3.3.

Prior to Rissanen’s MDL, the Minimum Message Length (MML) was introduced
in [23]. Rissanen’s MDL is, at its foundation, similar to MML in the sense that both
selection criteria aim at finding the model that minimizes the code length that is used
to describe the data. However, MDL and MML differ in two important facets [22].
First, MML assumes a prior distribution over the parameters, whereas MDL does not.
Intuitively, this prior distribution requires a code length so the code length terms in MDL
are inherently shorter. Secondly, the goal of MML is to find the best specific model
for the given data. In fact, MML is almost unconcerned as to which model family the
selected model belongs. In contrast, MDL searches just for a model class that minimizes
the code length needed to explain the data. Further analysis is required to find which
specific model within the class best fits the data.

My model selection criterion is specifically suited for distributions that have param-
eters residing on a spherical manifold. In [64, 98], it was shown that the parameters for
histogram density estimation can appropriately be placed on the hypersphere. In [78,
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79], while showing that MLE theory can be used to estimate the coefficients for wavelet
density estimation, it was shown that the coefficients of any square-root density estimator
expanded in an orthogonal series resides on a unit hypersphere. In [17], the normalizing
constant for the density function for spherical data (not parameters) was studied in detail.
Here, Bingham showed that normalizing distributions on the sphere requires a confluent
hypergeometric function of matrix argument. Furthermore, in [75], it was suggested that
the Laplace approximation employed in the derivation of the asymptotic version of MDL
is erroneous when applied on curved manifolds. Here, we show that the spherical MDL
integral is instead equal to the normalizing constant of the Fisher–Bingham distribution
when the parameters (not data) are constrained to lie on a hypersphere. Even though it
can be difficult to calculate, reference [62] offers efficient numerical ways to estimate the
value of this normalizing constant.

As anecdotal empirical evidence of our theoretical development of spherical MDL,
Section 3.4 evaluates its use for histogram optimal bin width selection. The authors
in [49] detailed the first use of MDL to find the optimal number of bins for histogram
estimation. In this case, stochastic complexity for histograms was developed using the
notion of code lengths, which is aligned with Rissanen’s original formation of the MDL.
Along with the criteria obtained from the code length, two asymptotic versions of the
criteria were developed. These three variants of MDL proved to give results that are
comparable with other methods of histogram density estimation. The capabilities of
the use of NML in MDL has been explored in [60] where the author applies MDL to
histogram density estimators with unequal bin widths. Here, histograms vary based on
the location and quantity of cut points within the range of the data. Stochastic complexity
is found using the normalized maximum likelihood distribution. In [38], the performance
of 11 different bin selection criteria were analyzed, among them variants of AIC, BIC
and MDL. Here, all the criteria were used to calculate the optimal number of bins for 19
different density shapes and real data. The densities were chosen to analyze the efficacy
of each criterion when recognizing varying characteristics of densities, like skewness,
kurtosis and multimodality. The performance of each criterion was measured with two
different metrics: Peak Identification Loss and the Hellinger risk. Among these results,
it was shown that AIC performs relatively poorly when considering either metric, while
BIC and MDL were better performers with MDL performing well with both metrics.

Most efforts towards measuring distances on statistical manifolds build on the foun-
dation started by Fisher in [42], in which he introduces the idea of the information ma-
trix. In [61] Kullback and Leibler published a pioneering effort to describe this distance.
Works such as [16, 53], endowed statistical distributions with geometrical properties.
However, it was Rao [80] that expanded on the ideas of Fisher that defined a metric for
statistical models based on the information matrix. Here, Rao showed that the infor-
mation matrix satisfies the condition of a metric on a Riemannian statistical manifold,
and is widely used because of its invariance [30]. This connection between distance
and distributions encouraged others to explore the distance between specific families of
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distributions [54]. Among these families include special cases of the multivariate nor-
mal model [95], the negative binomial distribution [66], the gamma distribution [82, 7],
Poisson distribution [73], among others.

In [25], the authors offer a detailed exploration of geodesics on a multivariate Gaus-
sian manifold. They show that there exists a geodesic connecting any two distributions
on a Gaussian manifold. Furthermore, they find these distances for specific instances
of distributions on the manifold, but a closed-form solution for the most general case
remains an open problem.

In [21] and expanded on in [35], the authors offer a very detailed discussion, focus-
ing primarily on the univariate normal distribution for which a closed-form solution for
the Fisher–Rao distance is known. Here, the authors focus on a geometrical approach,
abandoning the “proposition-proof” format offered in previous research. With this geo-
metric approach, closed-form solutions to various special cases are derived: univariate
Gaussian distributions, isotropic Gaussian distributions, and Gaussian distributions with
diagonal covariance matrix.

Another novel application of geodesics on a Gaussian statistical manifold is explored
in [78], where the authors use information geometry for shape analysis. Shapes were
represented using a𝐾-component Gaussian Mixture Model, with the number of compo-
nents being the same for each shape. With this, each shape occupied a unique point on
a common statistical manifold. Upon mapping two shapes to their points on this man-
ifold, the authors use an iterative approach to calculate the geodesic between these two
points, with the length of the geodesic offering a measure of similarity of the shapes.
Furthermore, because of the iterative approach to solving for the geodesic, all interme-
diate points along path are revealed. These points can be mapped to their own unique
shapes, essentially showing the evolution from one shape to another. This shape defor-
mation exhibits the benefit of analyzing more than just the distance between points on a
manifold and that “walk” along the path has real substance.

In [24], the authors explore the complexity of Gaussian geodesic paths, with the ulti-
mate goal of relating the complexity of a geodesic path on a manifold to the correlation of
the variables labeling its macroscopic state. Specifically, the authors show that, if there
is a dependence between the variables, the complexity of the geodesic path decreases.
Complexity, for these purposes is defined as the volume of the manifold traversed by
the geodesic connecting a known initial state to a future state, which is well defined.
It is shown that this volume decays by a power law at a rate that is determined by the
correlation between the variables on the Gaussian manifold.

In [33], the authors use the geometry of statistical manifolds to study how the quan-
tum characteristics of a system are affected by its statistical properties. Similar to our
work, the authors prescribe an initial distribution on the manifold of Gaussians and exam-
ine the geodesics emanating from it, without dictating a specific terminating distribution.
The authors show that these paths tend to terminate at distributions that minimize Shan-
non entropy. However, unlike our work, these paths are free to roam on the manifold
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and are not required to terminate on a specific surface on the manifold. Furthermore,
the most relevant part of the author’s work considers only univariate Gaussians with a
two-dimensional parameter manifold, without ever considering higher dimensions.

Though we have chosen to work with Riemannian geometry, it is worth mentioning
that information geometry often employs dualistic geometries that can be established
using divergence measures. In [103], the authors detail the use of divergence measures
to obtain the dual coordinates for the space of multivariate Gaussians. However, they
point out that the choice of divergence measure is not unique and resulting geometries
lack the same interpretative power of the natural parameterization.

Though these previous works operate in the space of multivariate Gaussians and de-
riving geodesics therein, they all require defining the initial and terminal distributions
on the manifold. In this work, we address a novel problem of finding the geodesics when
the terminal conditions are hypersurface constraints rather than a single point. Tech-
nically, these transversality conditions are variable boundary conditions placed on the
initial and final distributions requiring them to reside on a parametric surface typically
defined by constraining the coordinates. The usefulness of these variable boundary con-
ditions has emerged in many areas including physics [20] in which the author studied
wetting phenomenon on rough surfaces and in [46], where the authors studied the elas-
ticity of materials. Additionally, in [48, 69, 57], transversality conditions were employed
in economic optimal control problems with a free-time terminal condition. However, as
practical as transversality conditions have been in the above fields, their application in
information geometry literature is deficient.

Here, we address the deficiency by adopting the techniques of variational calculus.
Calculus of variation has its history rooted in the works of Euler, Lagrange and Laplace.
The simplest problems employing the calculus of variations are boundary value prob-
lems involving a particular set of differential equations called the Euler-Lagrange equa-
tions. Like much of calculus it searches for stationary values, but instead of finding the
stationary points, it searches for stationary curves of functionals . Historically, com-
mon problems which find variational calculus useful are the brachistochrone problem,
minimal surfaces and shortest paths, the lasts of which will be the focus of this current
research [32, 70].
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Chapter 3

Spherical Minimum Description
Length

In this chapter, a brief introduction to a Bayesian approach to model selection criteria is
provided, followed by a detailed proof of an asymptotic form of the Minimum Descrip-
tion Length principle, focusing on the geometric aspects of the criterion. It will be shown
how these interpretations fall short when dealing with parameters that fall on spherical
manifolds, providing motivation for the bulk of this chapter; the development of spher-
ical Minimum Description Length model selection criteria. All model selection criteria
share the early ideas of Akaike with AIC and Schwarz with BIC. Spherical Minimum
Description Length does not compromise what is at the core of these model selection
criteria. As always, spherical Minimum Description Length looks for a balance between
the complexity of a model and its goodness of fit to the sampled data. It does this in part
by comparing the probabilities of each candidate model being responsible for generating
the sampled data which, thanks to differential geometry, has a pleasing geometric inter-
pretation rooted in comparing volumes on a statistical manifold. While its foundation
was built on simple model selection criteria, spherical Minimum Description Length
more closely resembles a consolidation of Rissanen’s MDL and Bayesian statistics.

3.1 Bayesian Approach to Model Selection
3.1.1 Comparing Models
Suppose we have the parameter space Θ𝐾 , such that for all 𝜃 ∈ Θ we have 𝜃 ∶ 𝜃𝑇 𝜃 = 1.
This places all distributions in this space on the (𝐾 − 1)-dimensional hypersphere. We
assume data 𝑋 =

{

𝑥𝑖
}𝑁
𝑖=1 are a sample realization from the density function 𝑓 (𝑥; 𝜃)
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where 𝜃 ∈ Θ and the corresponding likelihood function is given by

𝑙(𝜃;𝑋) =
𝑁
∏

𝑖=1
𝑓 (𝑥𝑖; 𝜃). (3.1)

As in [9], we begin with a Bayesian viewpoint of model selection. Taking the sim-
plest case, suppose we have two candidate models A and B with the goal of choosing
one to represent our data. Let 𝜃𝐴 and 𝜃𝐵 be the parameters for each model, most likely
of unequal dimensions. For the moment, assume that the parameter spaces are uncon-
strained. Later, in Section 3.4, we enforce constraints on them—specifically hypersphere
constraints—and will perform model selection in this space.

We wish to examine the posterior of both models and choose the most likely of the
candidate models. By Bayes’ rule, the posterior probability of model A is

Pr(𝐴|𝑋) =
Pr(𝐴)
Pr(𝑋) ∫𝕊𝐾−1

𝑙(𝜃;𝑋)𝜋(𝜃)𝑑𝜃. (3.2)

Here, Pr(𝐴) is the prior probability of model𝐴, 𝜋(𝜃) is a prior density over the model
parameters and Pr(𝑋) is a prior density function of the data. Candidate model 𝐵 has a
similar expression for its posterior. Henceforth, Pr(𝑋) is ignored since it is a common
factor. In addition, we take the prior probabilities of each candidate model to be equal and
therefore disregarded. The comparison between two posteriors Pr(𝐴|𝑋) and Pr(𝐵|𝑋)
therefore devolves into the comparison of two integrals, one with model parameters 𝜃𝐴and the other with 𝜃𝐵 with the posterior probability being larger for the larger integral.
Thus, our goal is the evaluation and maximization of the integral

(𝑋) = ∫𝕊𝐾−1
𝑙(𝜃;𝑋)𝜋(𝜃)𝑑𝜃 (3.3)

over all valid models.

3.1.2 An Inappropriate Prior
Before evaluating Equation (3.3), we need to define a prior probability in the parame-
ter space. While a uniform prior seems to be a logical choice [68]—following Laplace’s
principle of insufficient reason [99]—it is not reparametrization invariant. That is, choos-
ing a uniform distribution as the prior for a specific parametrization does not guarantee
that the prior for all parametrizations will be uniform. Let a model be defined by param-
eter 𝜃 with 𝜃 ∈ [0, 1] for the sake of convenience. Assume a uniform prior probability
density function given by

𝑝(𝜃) = 1, 𝜃 ∈ [0, 1]. (3.4)
Now assume a second parametrization of the parameters, 𝜓 along with a monotonic
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transformation 𝜃 → 𝜓 , i.e., 𝜓 = 𝑟(𝜃). Of course, under this new parametrization, we
would want the prior distribution to be uniform as well. The prior probability density
function over 𝜓 , 𝑝(𝜓) from Equation (3.4) is expressed as

𝑝(𝜓) = 𝑝(𝜃)
|

|

|

|

|

𝜕𝑟−1(𝜓)
𝜕𝜓

|

|

|

|

|

≠ 1 (3.5)

in general. Clearly, this is undesirable. In fact, 𝑝(𝜓) = 1 is only guaranteed to be true if
the transformation, 𝜓 = 𝑟(𝜃) is a translation, which is a very limited reparametrization.
That is, an unbiased prior for an arbitrary parametrization fails to give equal weight to
the values of the parameters in other parametrizations. A more appropriate prior would
be one with a structure that remains the same regardless of the parametrization used.
The motivation for a more appropriate prior can be explained using the geometry of
hypothesis testing. Below, after a brief discussion on parameter space geometries and
their Fisher information, we will revisit this issue of developing a reparameterization
invariant prior and its connection to the MDL criterion.

3.1.3 Geometry of Probabilistic Models
Applying geometrical constructs to statistical models is not a new idea. Rao [80] and
Jeffreys [55] pioneered the idea of a measure of the distance between two distributions
on a parameter manifold. The usefulness of differential geometry in exploring statistical
inference is discussed in even greater detail in [58, 10]. Here, geometry is tasked with
the challenge of finding a metric to measure distances on a statistical manifold. Distri-
butions that are similar to one another reside closer together on the parametric manifold,
as measured by the chosen metric. As such, deciding on the appropriate metric opens
up geometrical representations for statistical tests. Even though many metrics can be
defined, the Fisher information matrix is a natural metric on a parametric manifold due
to its invariance property [5, 40].

The manifold associated with a family of models is populated with many distribu-
tions. Let a sample set 𝑋 =

{

𝑥𝑖
}𝑁
𝑖=1 be drawn from one of the distributions. A logical

statistical question would be, if someone were just given the data, what the probability is
with which they would choose the distribution on the manifold which produced the data.
The problem of model selection is to pick the best model given a finite sample. Where
one distribution can be mistaken for another, we consider the two distributions to be in-
distinguishable. Distinguishable distributions then can be defined as two distributions
that are sufficiently far enough—as measured by the chosen metric—that the probability
of mistaking one distribution for another is reasonably small.

Given two probability distributions 𝑓 and 𝑔 defined on the same manifold, relative
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entropies between 𝑓 and 𝑔 can be defined as [36]:

𝐷(𝑓‖𝑔) = ∫ 𝑓 (𝑥) ln
(

𝑓 (𝑥)
𝑔(𝑥)

)

𝑑𝑥. (3.6)

The parameter vectors associated with each distribution are 𝜃𝑓 and 𝜃𝑔 (i.e., 𝑓 (𝑥) =
𝑝(𝑥; 𝜃𝑓 ) and 𝑔(𝑥) = 𝑝(𝑥; 𝜃𝑔). Employing Stein’s lemma [9] in Equation (3.6) results in

𝐷(𝑓‖𝑔) ≈ 1
2
Δ𝜃𝑇 𝐼Δ𝜃, (3.7)

where Δ𝜃 = 𝜃𝑓 − 𝜃𝑔 and 𝐼 is the Fisher information matrix (with details below). This
strongly suggests that the Fisher information matrix acts as the natural metric on the
parameter manifold.

The above discussion shifts attention from unique sets of parameters to counting the
number of distinguishable distributions. For an in-depth discussion of distinguishable
distributions, please see [9]. For completeness, we include a brief discussion as follows.
While it is true that every single distribution is indexed by a unique parameter vector,
there is a region around any individual distribution such that distributions in that region
are statistically indistinguishable from one another. That is, there is a reasonable prob-
ability of mistaking one of the distributions for a neighboring distribution. The size of
this elliptical region depends on the natural metric of the manifold, which is the Fisher
information, as well as the sample size, since distributions can be more consistently dif-
ferentiated with a larger sample size.

3.1.4 Fisher Information
The Fisher information matrix is a measure of how much information about the parameter
of interest is available from the data collected. Traditionally, the Fisher information
matrix is given by

𝐼𝑖,𝑗(𝜃) = ∫ 𝑓 (𝑥; 𝜃) 𝜕
𝜕𝜃𝑖

log 𝑓 (𝑥; 𝜃) 𝜕
𝜕𝜃𝑗

log 𝑓 (𝑥; 𝜃)𝑑𝑥, (3.8)

for continuous distributions and

𝐼𝑖,𝑗 = 𝑓 (𝑥; 𝜃)
∑

(

𝜕
𝜕𝜃𝑖

log(𝑓 (𝑥; 𝜃) 𝜕
𝜕𝜃𝑗

log(𝑓 (𝑥; 𝜃))
)

(3.9)

for discrete distributions, where the index (𝑖, 𝑗) represents the appropriate parameter pair
of the multivariate parameter vector 𝜃. In this form, the Fisher information matrix is
the expectation of the variance of the score vector for the multi parameter distribution
𝑓 (𝑥; 𝜃).
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There are two alternate forms of the Fisher information, if certain regularity con-
ditions are satisfied. Firstly, we can compute the Fisher information matrix from the
expectation of the Hessian of the log likelihood. Specifically,

𝐼𝑖,𝑗(𝜃) = −
[

𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
log 𝑓 (𝑥; 𝜃)

]

= − [𝐻] , (3.10)

where 𝐻 is the Hessian matrix of the log-likelihood.
Alternatively, the Fisher information can be calculated from the variance of the score

function
𝐼(𝜃) = Var(𝑆𝑓 (𝑥; 𝜃)), (3.11)

where
𝑆𝑓 (𝑥; 𝜃) = ∇ log 𝑓 (𝑥; 𝜃). (3.12)

Here, we use it for two closely related ideas. The Fisher information is the foundation
for developing Jeffreys prior, a non-informative prior that is reparametrization invariant,
which solves the issues raised in Section 3.1.2. In addition, it provides a natural Rie-
mannian metric for a statistical manifold, which will allow us to find volumes of entire
closed manifolds as well as the local volume of distinguishability around a single value
of the parameter. These volumes will help to interpret the complexity parameter in the
spherical MDL criterion proposed in this work. Additionally, this imparted geometric
structure will allow me to measure the distances between to distributions on a manifold,
which is paramount to finding geodesic paths between distributions.

Adjacent to the current research is the use of the Fisher information for parameter
estimation. The Cramer-Rao lower bound (CRLB) provides a lower bound on the vari-
ance of the MLE for an unknown parameter. In terms of the Fisher information, we can
find this lower bound with

𝐶𝑅𝐿𝐵 = 𝐼−1(𝜃𝑖,𝑗) (3.13)
This lower bound is a measure of the uncertainty of the MLE. The CRLB also pro-

vides a benchmark against which the proficiency of different parameters can be com-
pared. It provides the standard of efficiency and validates the preference of estimates
that meet this standard. Using this lower bound to measure the efficiency of a statistic
has been found useful for evaluating optimality of machine learning algorithms [56, 65]

3.1.5 Observed vs. Expected Fisher Information
In this current work, the Fisher information will be found using Equation (3.10). For
some manifolds, this is difficult to calculate, since the expectations involved are not al-
ways attainable. However, if you can calculate the log-likelihood of a function, you can
calculate the observed Fisher information. To clarify, what we refer to as the Fisher
information, 𝐼 , is sometimes called the expected Fisher information. Whether to use
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the expected information or the observed information is at best situational and at worst
subject to personal choice and at different times, the literature has made cases for the
preference of both [96, 41, 97, 26]. Here, we provide a brief explanation of both the ob-
served and expected information via an example using the Bernoulli distribution. Also,
we validate the choice of the expected Fisher information for the current topic.

The observed Fisher information is defined as
𝐽𝑖,𝑗(𝜃) =

𝜕
𝜕𝜃𝑖

𝑓 (𝑥; 𝜃) 𝜕
𝜕𝜃𝑗

𝑓 (𝑥; 𝜃) (3.14)

and is often used when trying to estimate the value of a parameter. The literature often
misses what differentiates the observed information from the expected information: ob-
servations. Until a sample is observed, it is difficult to calculate the information in that
sample. As an example to call attention to their differences , we examine a Bernoulli
random variable, taking samples of varying sizes and calculating the observed Fisher
information at different values of the parameter. The density function for the Bernoulli
distribution is given by

𝑓 (𝑥; 𝜃) = 𝜃𝑥(1 − 𝜃)1−𝑥 (3.15)
with Fisher information, 𝐼(𝜃)

𝐼(𝜃) = 1
𝜃(1 − 𝜃)

(3.16)
plotted in Figure 3.1.

Figure 3.1: Bernoulli Fisher Information.
The Fisher information vs. parameter value for the Bernoulli distribution.

The graph of the Fisher information confirms some intuitive insights about the metric.
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The definition of the Fisher information is how much information about the parameter
is learned by a single sample. If that sample comes from a distribution with 𝜃 = 0 or
𝜃 = 1, we get all the information about the parameter we could possibly need from this
single observation. As such, the information obtained from the single sample is large.
Accordingly, with such overwhelming evidence regarding the parameter, the variance in
future samples is small. In fact, the variance in these extreme cases would be 0.

However, if the sample comes from a population with 𝜃 = 0.5, many samples would
be required in order to obtain a reasonable estimate of the parameter, hence the minimum
value of the Fisher information at 𝜃 = 0.5 in Figure 3.1. The variance of future samples
is largest at 𝜃 = 0.5 as expected by the CRLB, since future observation are unpredictable.

In Table 3.1, the observed Fisher information is displayed for a distribution with
𝜃 = 0.5 at various sample sizes. These results are averaged over 1000 trials. For this
value of the parameter, the expected information is 𝐼(0.5) = 4, as shown at the last entry
of the table. Considering the MLE of the Bernoulli distribution is an unbiased estimator
of the parameter, one would expect the observed information to the expected information
as the sample size gets larger which is confirmed by the data. The graph of the observed
information versus sample size is shown in Figure 3.2.

𝜃 = 0.5

n J
5 4.87

10 4.57
20 4.23
50 4.09

100 4.04
𝐼(𝜃) 4

Table 3.1: Fisher information for Bernoulli random variable 𝜃 = 0.5
Table showing the observed Fisher information for differing sample sizes for a Bernoulli
distribution with 𝜃 = 0.5. The observed Fisher information converges to the expected
Fisher information, 𝐼(𝜃) = 4 as 𝑛 gets large.

To observe the effects that the value of the parameter has on the rate of convergence,
Table 3.2 repeats the experiment with 𝜃 = 0.75. As you can see, as the sample size
increases, the observed Fisher information approaches the expected Fisher information,
but at a slower rate than parameters closer to 𝜃 = 0.5.

The small value for the observed Fisher information at 𝑛 = 5 is curious. It appears to
be because the sample space of sample parameters is limited with such a small sample
size. As such, the expected Fisher information does not fit the trend seen with sample
sizes that are more reasonable. Additionally, as the value of the parameter approaches
𝜃 = 1, the probability that the sample yields an MLE of 𝜃̂ = 1 increases, causing the
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Figure 3.2: Fisher information for Bernoulli random variable 𝜃 = 0.75
Value of the observed Fisher information for a Bernoulli distribution with 𝜃 = 0.5. at
various sample sizes.

information to diverge. Other than throwing off the average value in our table, this diver-
gence is a clear disadvantage to using the observed Fisher information for small sample
sizes.

𝜃 = 0.75

n J
5 5.27

10 6.32
20 6.21
50 5.6

100 5.46
I(𝜃) 5.33

Table 3.2: Fisher information for Bernoulli random variable 𝜃 = 0.75.
Table showing the observed Fisher information for differing sample sizes for a Bernoulli
distribution with 𝜃 = 0.75. The observed Fisher information converges to the expected
Fisher information, 𝐼(𝜃) = 5.33, as 𝑛 gets large, but more slowly than 𝜃 = 0.5.

In Section 3.2 we’ll show some key ideas of Balasubramanian’s asymptotic MDL.
Here, he refers to both the observed and expected Fisher information in his model se-
lection criteria. He explains that, considering his is an asymptotic selection criteria, the
observed Fisher information approaches the expected Fisher information, a claim corrob-
orated by the data above. However, he adds the disclaimer that the data is drawn from a
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candidate model that is on the manifold of the family of distributions being considered. if
the candidate model resides on a different manifold with its own unique geometry, a cor-
rection factor needs to be included in the criteria to ensure that comparison of volumes
has geometric meaning and consistency. This correction factor involves the observed
Fisher information, which introduces the geometry local to the candidate model into the
model selection criteria.

For all of the research we present here, we concern ourselves with the interaction
between distributions on the same manifold. When we use geometric vocabulary, it will
always apply to the entire manifold, whose geometry is defined by the expected Fisher
information, thus making it the proper choice over the observed information, for our
purposes.

3.1.6 An Appropriate Prior
Armed with this geometric definition of the Fisher information, an appropriate non-
informative prior can be chosen again starting with two𝐾-dimensional parametrizations
𝜃 and 𝜓 . Furthermore, we assume there is a transformation 𝜓 = 𝑟(𝜃) with both 𝑟 and
its inverse 𝑟−1 being differentiable, i.e., 𝑟 is a diffeomorphic map. Consider a density
function 𝑓 (𝑥; 𝜃) with score vector

𝑆𝑓 (𝑥; 𝜃) =
[

𝜕
𝜕𝜃1

log 𝑓 (𝑥; 𝜃), ⋯ , 𝜕
𝜕𝜃𝐾

log 𝑓 (𝑥; 𝜃)
]𝑇
.

Define the Jacobian transformation matrix for both 𝑟 and 𝑟−1 such that
𝐽𝑟(𝜃)𝐽𝑟−1(𝜓) = 𝙸𝐾 , (3.17)

where 𝙸𝐾 is the 𝐾 ×𝐾 identity matrix.
The non-informative prior, which is tantamount to Jeffreys prior [55] is 𝜋(𝜃) ∝

√

det 𝐼(𝜃). To show that Jeffreys prior is invariant to reparametrization, we consider the
transformation proposed above. This reparametrization yields a new density function

𝑔(𝑥;𝜓) = 𝑓 (𝑥; 𝑟−1(𝜓)) |
|

det(𝐽𝑟−1(𝜓))|| (3.18)
and a new score function

𝑆𝑔(𝑥;𝜓) = (𝐽𝑟−1(𝜓))𝑇𝑆𝑓 (𝑥; 𝑟−1(𝜓)). (3.19)
The new Fisher information, 𝐼(𝜓), for the distribution with respect to the new parametriza-
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tion is
𝐼(𝜓) = cov(𝑆𝑔(𝑥;𝜓))

= cov
(

𝐽𝑟−1(𝜓)𝑇𝑆𝑓 (𝑥; 𝑟−1(𝜓))
)

= (𝐽𝑟−1(𝜓))𝑇 𝐼(𝑟−1(𝜓))𝐽𝑟−1(𝜓).
(3.20)

The Jeffreys prior for the 𝜓 parametrization is

𝜋̃(𝜓) ∝
√

det(𝐼(𝜓))

=
√

det
[

(𝐽𝑟−1(𝜓))𝑇 𝐼(𝑟−1(𝜓))𝐽𝑟−1(𝜓)
]

= det(𝐽𝑟−1(𝜓)) det
√

𝐼𝜃(𝑟−1(𝜓))

= det(𝐽𝑟−1(𝜓))𝜋(𝑟−1(𝜓)).

(3.21)

Since the infinitesimals 𝑑𝜃 and 𝑑𝜓 also transform using the same Jacobian with 𝑑𝜓 =
det(𝐽𝑟(𝜃))𝑑𝜃, we get

𝜋̃(𝜓)𝑑𝜓 = 𝜋(𝜃)𝑑𝜃. (3.22)
Therefore, the Jeffreys prior remains unchanged under the reparametrization 𝜓 =

𝑟(𝜃) and the value of Equation (3.3) is indifferent to different representations of the pa-
rameter. With this, we can see that the Fisher information directs us to an appropriate
prior to use in the evaluation of Equation (3.3). Specifically, Jeffreys prior is

𝜋(𝜃) =

√

det(𝐼(𝜃))

∫
√

det(𝐼(𝜃))𝑑𝜃
, (3.23)

where ∫
√

det(𝐼(𝜃))𝑑𝜃 is necessary in order to normalize the prior. In fact, this nor-
malizing constant can sometimes be the largest shortcoming of Jeffreys prior because,
in some cases, the integral may not converge, making the prior improper. If the interval
diverges, it is possible to place artificial bounds on the limits of integration in order to
make the integral converge. However, this won’t be an issue in spherical MDL since,
in many applications, the integral will be in closed form and convergent. Selecting a
non-informative prior to evaluate Equation (3.3) is mathematically preferred, making
Jeffreys prior the most suitable choice. However, differential geometry gives an inter-
esting interpretation of the Jeffreys prior which will help explain the complexity penalty
in spherical MDL. In Riemannian geometry, Equation (3.7) yields the squared distance
element between two nearby points on a parameter manifold, implying again that the
Fisher information is a natural metric for the manifold. This metric tensor can be used
to calculate volumes of the manifold. Firstly,

𝑉 = ∫
√

det (𝐼(𝜃))𝑑𝜃 (3.24)
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measures the Riemannian volume of an entire manifold. This integral is evaluated across
all possible values of the parameter and, as such, only depends on the model family. As
mentioned, this integral is known in closed form for the hypersphere.

Secondly, we are interested in partitioning the volume of the entire manifold into
smaller local volumes encompassing indistinguishable distributions. The number of dis-
tributions in each volume need not be the same, but every volume is given an equal prior
probability. Essentially then, Jeffreys prior provides a uniform prior with regard to these
volumes and not individual parameters. With this, the numerator of Equation (3.23)
represents these volumes on the parameter space. More specifically,

𝑉𝑑 =
√

det (𝐼(𝜃))𝑑𝜃 (3.25)
can be thought to represent the infinitesimal Riemannian volume local to each distin-
guishable distribution. The complexity parameter for spherical MDL will be interpreted
geometrically with these volumes. The reader is pointed to [58] for a more detailed
discussion on the appropriateness of Jeffreys prior for spherical distributions.

3.2 Asymptotic MDL in ℝ𝐾

In [9], the author develops an alternative derivation of MDL. Instead of attempting to find
shortest code lengths, stochastic complexity is approached from a geometric perspective,
which is more aligned with our development of spherical MDL. The author begins with
a Bayesian approach to model selection and evaluates Equation (3.3). Again, given a
set of data 𝑋 =

{

𝑥𝑖
}𝑁
𝑖=1, the likelihood of any given model with density 𝑓 (𝑥; 𝜃) and

a 𝐾-dimensional parameter vector is given in Equation (3.1) and its average negative
log-likelihood is given by

𝐿(𝜃) = − 1
𝑁

log(𝑙(𝜃;𝑋)). (3.26)
Our goal is still to evaluate Equation (3.3):

(𝑋) = ∫ exp {−𝑁𝐿(𝜃)}𝜋(𝜃)𝑑𝜃. (3.27)

To evaluate the integral in Equation (3.27), we employ standard Laplace approx-
imation techniques [63]. In order to do so, we first expand the integrand around the
maximum likelihood estimate of the parameters 𝜃̂ using a Taylor series approximation.
The first order term of the expansion of the likelihood vanishes at the MLE, resulting in
the integral being modified to

(𝑋) ≈ exp
{

−𝑁𝐿(𝜃̂)
}

𝜋(𝜃̂)∫ exp
{

−𝑁
2
(

𝜃 − 𝜃̂
)𝑇
𝐻𝐼

(

𝜃 − 𝜃̂
)

}

𝑑𝜃, (3.28)
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where 𝐻𝐼 is the Hessian of the unconstrained negative log likelihood. (We later dis-
tinguish this Hessian from that of the constrained log-likelihood.) Recognizing that the
quadratic integral will result in a Gaussian integral (for unconstrained parameters), the
final evaluation yields an expression for what Balasubramanian called the razor of the
model,

𝑅𝑍𝑅 = exp
{

−𝑁𝐿(𝜃̂)
}

𝜋(𝜃̂)

⎛

⎜

⎜

⎜

⎝

(

2𝜋
𝑁

)𝐾

det(𝐻𝐼 )

⎞

⎟

⎟

⎟

⎠

1
2

, (3.29)

where 𝐾 is the cardinality of the parameter set. Please note that the standard Laplace
approximation has assumed that our parameter space is ℝ𝐾 . With the aforementioned
substitution, and evaluating the prior from Equation (3.23) at the maximum likelihood
estimate, the final form of MDL is found by taking the negative log of the razor and is
given by

𝑀𝐷𝐿 = − log(𝑅𝑍𝑅) = − log 𝑓 (𝑋; 𝜃̂) + 𝐾
2
log

(𝑁
2𝜋

)

+ (3.30)
log∫

√

det (𝐼(𝜃))𝑑𝜃. (3.31)

The first term in Equation (3.31) addresses how well the model fits the data. The
second and third terms concern the complexity of the model, which has three facets: the
number of dimensions in the model, 𝐾 , the form of the model as given by 𝐼(𝜃) and the
domain of the parameter set as implied by the limits of integration on the third term.

During the development of Equation (3.31), the standard Laplace approximation was
employed. The Laplace approximation is widely used to evaluate integrals with a unique
global maximum over ℝ𝐾 . However, the authors in [75] suggested that this approxima-
tion needs modification in order to be used on curved spaces. Thus, if Equation (3.31)
is to be used on parameters that lie on a hypersphere, the penalty for overfitting will not
be accurate, unless the tails of the integrand are ignored. This is the basis of spherical
MDL—an extension of the razor approach to MDL to hyperspherical parameter spaces.

To summarize, spherical MDL addresses certain issues that arise in standard MDL.
First, the Fisher information integral must exist and be finite. Since this integral repre-
sents the Riemannian volume of the model space, and the volumes of unit hyperspheres
are available in closed form, this is usually not an (algebraic) concern for spherical MDL.
In addition, if the value of the maximum likelihood estimate resides close to the edge of
the parameter space, it becomes difficult to find the volume of the parameter space in the
immediate vicinity of the MLE. Of course, if the MLE lies on a symmetric space like
a hypersphere, then every parameter lies sufficiently in the interior of the model space,
so this is not an issue either. Finally, spherical MDL does not ignore parameter con-
straints (such as restriction to a hypersphere) thereby resulting in a more accurate but
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still efficiently computable model complexity.

3.3 Spherical MDL
3.3.1 Derivation of the Spherical MDL Criterion
Geometrically, the concept of penalizing a model for complexity can be interpreted as
comparing the volume of the manifold in the vicinity of the model corresponding to the
MLE to the volume of the entire parameter manifold. If the candidate model occupies
very little space on a manifold, it is considered undesirable. This line of development led
to the need to evaluate the integral in Equation (3.3) while constraining it to a (𝐾 − 1)-
dimensional hypersphere.

First, we use standard constrained optimization to enforce the unit length of the co-
ordinate vectors for the parameters. Let

𝑀(𝜃, 𝜆) = 𝐿(𝜃) + 𝜆
𝑁

(𝜃𝑇 𝜃 − 1) (3.32)
be the Lagrangian corresponding to the constrained optimization problem. Next, the
Lagrange parameter 𝜆 is set during the process of obtaining the optimal maximum like-
lihood estimate 𝜃̂. The bulk of the development below attempts to convince the reader
that we can rewrite Equation (3.3) as

(𝑋) = ∫𝕊𝐾−1
exp

{

−𝑁𝑀(𝜃, 𝜆̂)
}

𝜋(𝜃)𝑑𝜃 (3.33)
with the domain of the integral restricted to coordinate vectors on the unit hypersphere.

To evaluate Equation (3.33), we employ the Laplace approximation methodology but
now with the hypersphere constraint enforced. At the outset, this involves finding 𝜃̂, the
maximum likelihood estimate of the parameter vector 𝜃 at which𝑀 is minimized. At this
minimum value, 𝑀 is stationary, i.e., ∇𝜃𝑀 = 0. We then expand 𝑀(𝜃, 𝜆̂) around this
minimum (with the Lagrange parameter set to a fixed value 𝜆̂). The resulting expansion
is

𝑀(𝜃) =𝑀(𝜃̂) + 1
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂) + (‖𝜃 − 𝜃̂‖32), (3.34)

where 𝐻 is the Hessian of 𝑀 (with the Lagrange parameter 𝜆 set to its optimum value
𝜆̂). We now show that this is a principled approach.

If the maximum likelihood problem had been unconstrained, we could have set 𝜃 to
its MLE value 𝜃̂, expanded the objective function around 𝜃̂ and then employed Laplace’s
approximation to obtain the value of the integral in Equation (3.3). Since the ML param-
eters 𝜃 are constrained to a hypersphere, this route is closed to us. However, we show
below that we can begin with a set of independent coordinates (defining a hypersphere)
and then prove that the second order Taylor series expansion in Equation (3.34) is en-
tirely equivalent to the corresponding expansion using independent coordinates. That is,
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we begin with independent coordinates 𝜃𝑅 and a dependent coordinate 𝜃𝐾 and relate the
quadratic form emanating from the Taylor series expansion using a carefully constructed
“Hessian” of 𝑀 to a corresponding quadratic form driven by the independent Hessian.
The derivation closely follows the more general derivation in [15].

When we use independent coordinates to describe a (𝐾 − 1)-dimensional hyper-
sphere, we get

𝑂(𝜃𝑅) ≡ 𝐿(𝜃𝑅, 𝜃𝐾(𝜃𝑅)), (3.35)
where the𝐾th parameter 𝜃𝐾 has been explicitly written out as a function of the remaining
parameters 𝜃𝑅 ≡

{

𝜃1, 𝜃2, … , 𝜃𝐾−1
}. The new objective function 𝑂(𝜃𝑅) corresponds

to substituting 𝜃𝐾(𝜃𝑅) into the negative log-likelihood objective function 𝐿(𝜃𝑅, 𝜃𝐾).The partial derivatives of 𝑂(𝜃𝑅) can then be related to the corresponding ones from
𝐿(𝜃𝑅, 𝜃𝐾(𝜃𝑅)). Taking partial derivatives, we obtain

𝜕𝑂
𝜕𝜃𝑘

= 𝜕𝐿
𝜕𝜃𝑘

+
𝜕𝜃𝐾
𝜕𝜃𝑘

𝜕𝐿
𝜕𝜃𝐾

, (3.36)

where the explicit dependence of 𝜃𝐾 on 𝜃𝑘 has been included. The second partials are
tedious but straightforward to evaluate:
𝜕2𝑂
𝜕𝜃𝑘𝜕𝜃𝑙

= 𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝑙

+
𝜕𝜃𝐾
𝜕𝜃𝑙

𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝐾

+
𝜕𝜃𝐾
𝜕𝜃𝑘

𝜕2𝐿
𝜕𝜃𝑙𝜕𝜃𝐾

+
𝜕𝜃𝐾
𝜕𝜃𝑘

𝜕𝜃𝐾
𝜕𝜃𝑙

𝜕2𝐿
𝜕𝜃2𝐾

+
𝜕2𝜃𝐾
𝜕𝜃𝑘𝜕𝜃𝑙

𝜕𝐿
𝜕𝜃𝐾

. (3.37)

The quadratic form corresponding to the independent coordinates 𝜃𝑅 can in turn (after
some simplification) be written as

∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝑂
𝜕𝜃𝑘𝜕𝜃𝑙

=
∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝑙

+ 2

(

𝐾−1
∑

𝑘=1
𝑢𝑘
𝜕𝜃𝐾
𝜕𝜃𝑘

)(

𝐾−1
∑

𝑙=1
𝑢𝑙

𝜕2𝐿
𝜕𝜃𝑙𝜕𝜃𝐾

)

+

(

𝐾−1
∑

𝑘=1
𝑢𝑘
𝜕𝜃𝐾
𝜕𝜃𝑘

)2
𝜕2𝐿
𝜕𝜃2𝐾

+ 𝜕𝐿
𝜕𝜃𝐾

∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝜃𝐾
𝜕𝜃𝑘𝜕𝜃𝑙

.

(3.38)

Here, 𝑢 = [

𝑢1, 𝑢2, … , 𝑢(𝐾−1)
]𝑇 and the double summation indices in ∑

𝑘𝑙 each range
from 1 to (𝐾 − 1). So far, we have made no contact with our constrained optimization
problem. From the Lagrangian

𝑀(𝜃, 𝜆̂) = 𝐿(𝜃) + 𝜆̂
𝑁

(

𝐾
∑

𝑘=1
𝜃2𝑘 − 1

)

, (3.39)

where 𝜆̂ is the optimal value of the Lagrange parameter, we see that the MLE of 𝜃 satisfies
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the relation
𝜕𝑀
𝜕𝜃𝑘

= 𝜕𝐿
𝜕𝜃𝑘

+ 2𝜃𝑘
𝜆̂
𝑁

= 0, (3.40)
with the optimal value of the Lagrange parameter

𝜆̂ = −𝑁
2

𝐾
∑

𝑘=1
𝜃̂𝑘
𝜕𝐿
𝜕𝜃𝑘

|

|

|

|𝜃=𝜃̂
(3.41)

obtained by multiplying Equation (3.40) by 𝜃𝑘, summing over all 𝑘 ∈ {1, … , 𝐾}
and enforcing the constraint 𝜃𝑇 𝜃 = 1. Furthermore, Equation (3.40) gives us a relation
connecting 𝜕𝐿

𝜕𝜃𝐾
and 𝜆̂. We can also obtain a relation connecting 𝜕𝜃𝐾

𝜕𝜃𝑘
and (𝜃𝑅, 𝜃𝐾) by

differentiating the constraint equation ∑𝐾−1
𝑘=1 𝜃

2
𝑘 + 𝜃

2
𝐾 = 1 once to get

2𝜃𝑘 + 2𝜃𝐾
𝜕𝜃𝐾
𝜕𝜃𝑘

= 0. (3.42)
This relation holds for all 𝜃 on the hypersphere unlike Equation (3.40) which is valid

only at the MLE. Taking second derivatives, we obtain

2𝛿𝑘𝑙 + 2
𝜕𝜃𝐾
𝜕𝜃𝑘

𝜕𝜃𝐾
𝜕𝜃𝑙

+ 2𝜃𝐾
𝜕2𝜃𝐾
𝜕𝜃𝑘𝜕𝜃𝑙

= 0. (3.43)

We now have all the ingredients necessary to evaluate Equation (3.38) for the con-
strained problem. Substituting Equations (3.40), (3.42) and (3.43) into Equation (3.38),
we get

∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝑂
𝜕𝜃𝑘𝜕𝜃𝑙

=
∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝑙

− 2
𝜃𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)(

𝐾−1
∑

𝑙=1
𝑢𝑙

𝜕2𝐿
𝜕𝜃𝑙𝜕𝜃𝐾

)

+ 1
𝜃2𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)2
𝜕2𝐿
𝜕𝜃2𝐾

+ 2𝜆̂
𝑁

∑

𝑘𝑙
𝑢𝑘𝑢𝑙

(

𝛿𝑘𝑙 +
𝜃𝑘𝜃𝑙
𝜃2𝐾

)

.

(3.44)

This can be reorganized with a view toward our goal of obtaining a quadratic form
corresponding to a “Hessian” derived from the Lagrangian in Equation (3.39). We get
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∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝑂
𝜕𝜃𝑘𝜕𝜃𝑙

=
∑

𝑘𝑙
𝑢𝑘𝑢𝑙

(

𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝑙

+ 2𝜆̂
𝑁
𝛿𝑘𝑙

)

− 2
𝜃𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)(

𝐾−1
∑

𝑙=1
𝑢𝑙

𝜕2𝐿
𝜕𝜃𝑙𝜕𝜃𝐾

)

+ 1
𝜃2𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)2 (

𝜕2𝐿
𝜕𝜃2𝐾

+ 2𝜆̂
𝑁

)

=
∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝑀
𝜕𝜃𝑘𝜕𝜃𝑙

− 2
𝜃𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)(

𝐾−1
∑

𝑙=1
𝑢𝑙
𝜕2𝑀
𝜕𝜃𝑙𝜕𝜃𝐾

)

+ 1
𝜃2𝐾

(

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

)2
𝜕2𝑀
𝜕𝜃2𝐾

,

(3.45)
where we have taken care to set 𝜆̂ to its optimum MLE value (while not treating it as a
function of 𝜃). Consequently, the second partials of 𝑀 do not include the dependence
of 𝜆̂ on 𝜃̂. To further simplify this expression, we now define

𝑣 ≡

[

𝑢1, 𝑢2, … , 𝑢(𝐾−1),−
1
𝜃𝐾

𝐾−1
∑

𝑘=1
𝑢𝑘𝜃𝑘

]𝑇

. (3.46)

Note that 𝑣 satisfies the constraint ∑𝐾
𝑘=1 𝑣𝑘𝜃𝑘 = 0 implying that 𝑣 is orthogonal to

𝜃. This will be important later on in the specification of the constrained quadratic form.
Using the definition of the Lagrangian in Equation (3.39), we get

∑

𝑘𝑙
𝑢𝑘𝑢𝑙

𝜕2𝑂
𝜕𝜃𝑘𝜕𝜃𝑙

|

|

|

|𝜃=𝜃̂
=

𝐾
∑

𝑘=1

𝐾
∑

𝑙=1
𝑣𝑘𝑣𝑙

𝜕2𝑀
𝜕𝜃𝑘𝜕𝜃𝑙

|

|

|

|𝜃=𝜃̂
, (3.47)

which implies the equality of the independent and constrained quadratic forms. Note
that the constraint ∑𝐾

𝑘=1 𝜃
2
𝑘 = 1 implies that

𝐾
∑

𝑘=1
𝜃𝑘𝑑𝜃𝑘 = 0, (3.48)

where 𝑑𝜃𝑘 is an infinitesimal quantity. Assuming this remains valid for a small (but
not infinitesimal) vector Δ𝜃 (up to second order correction factors), this in turn im-
plies that the increment vector [Δ𝜃1, Δ𝜃2, … , Δ𝜃𝐾

]𝑇 is orthogonal to the gradient of
the constraints, equal to [

2𝜃1, 2𝜃2, … , 2𝜃𝐾
]𝑇 . Therefore, the quadratic form obtained

from the Lagrangian 𝑀 is only valid in the subspace spanned by increment vectors
{

𝑣|
∑𝐾

𝑘=1 𝑣𝑘𝜃𝑘 = 0
}

. This further implies that this quadratic form is equivalent to the
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independent quadratic form in Equation (3.38) provided the increments are confined to
the correct subspace.

Given the above analysis, the second order Taylor series expansion of 𝑀 around the
MLE estimate 𝜃̂ in Equation (3.34), where the (𝑘, 𝑙) element of the Hessian is

𝐻𝑘𝑙 =
𝜕2𝑀
𝜕𝜃𝑘𝜕𝜃𝑙

|

|

|

|𝜃=𝜃̂
= 𝜕2𝐿
𝜕𝜃𝑘𝜕𝜃𝑙

|

|

|

|𝜃=𝜃̂
+ 2𝜆̂
𝑁
𝛿𝑘𝑙, (3.49)

emerges as the quantity most closely connected to the expansion of the independent ob-
jective 𝑂 using coordinates 𝜃𝑅. When the increments 𝜃 − 𝜃̂ are confined to the subspace
orthogonal to the gradient vector [2𝜃̂1, 2𝜃̂2, … , 2𝜃̂𝐾

]𝑇 , i.e.,
𝐾
∑

𝑘=1
2(𝜃𝑘 − 𝜃̂𝑘)𝜃̂𝑘 = 0, (3.50)

then the quadratic form (𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂) is equivalent to the independent one as shown
above in Equation (3.47). In the subsequent calculations, we set 𝜃̂ to the constrained
maximum likelihood solution (wherein 𝜃̂ is constrained to lie on the surface of a unit
hypersphere) and allow 𝜃 to vary over just the surface of the same unit hypersphere. For
values of 𝜃 close to 𝜃̂, 𝜃−𝜃̂ will approximately satisfy Equation (3.50), thereby validating
our choice of “Hessian” for the hyperspherically constrained Laplace approximation.

A question may arise at this juncture as to why we could not have directly worked
with the independent coordinates in the first place. Insofar as parameter constraints re-
main implicit (and hypersphere constraints fall into this category), it is much easier to
work with constrained and implicit parameterizations than explicit ones (since the lat-
ter are typically harder to come by). Provided the manifold integrals can be carried out
without defaulting to Gaussian integrals—and we make this case throughout the present
work—implicit parameterizations should be preferred, especially given the correspon-
dence worked out above between the constrained and independent quadratic forms.

With the Hessian defined in this manner (and related to the Lagrangian 𝑀), an
asymptotic solution to Equation (3.33) can be found. Since Equation (3.32) represents
the Lagrangian as a Taylor expansion around the MLE, it will be useful to redefine the
entire integrand as a Taylor expansion. As such, the prior, ́𝜋(𝜃), needs to be expanded as
well. Expanding the prior around the MLE, we get

𝜋(𝜃) = 𝜋(𝜃̂) + (𝜃 − 𝜃̂)𝑇∇𝜋(𝜃̂) + (‖𝜃 − 𝜃̂‖22). (3.51)
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We now rewrite Equation (3.33) as a product of Equations (3.34) and (3.51) to get

(𝑋) = ∫𝕊𝐾−1
exp

{

−𝑁𝑀(𝜃, 𝜆̂
}

𝜋(𝜃)𝑑𝜃

≈ ∫𝕊𝐾−1
exp

[

−𝑁𝑀(𝜃̂) − 𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

]

[

𝜋(𝜃̂) + (𝜃 − 𝜃̂)𝑇∇𝜋(𝜃̂) +…
]

𝑑𝜃

≈ exp
{

−𝑁(𝑀(𝜃̂)
}

𝜋(𝜃̂)∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃.

(3.52)
Here, we have used the fact that 𝜃 → 𝜃̂ as 𝑁 → ∞ on the order of 𝑁− 1

2 [14] which
makes

∫𝕊𝐾−1
(𝜃 − 𝜃̂)𝑇∇𝜋(𝜃̂)𝑑𝜃 = 0. (3.53)

The evaluation of the integral of the quadratic term in Equation (3.52), when con-
strained to the (𝐾 −1)-dimensional hypersphere, is where Rissanen’s MDL inaccurately
penalizes the stochastic complexity of spherical parameter spaces. Instead of resulting
in a Gaussian integral, there is no closed form solution in general. However, for dis-
tributions whose individual parameters contribute equally to the the Fisher information
matrix, as is the case in the histogram, we can efficiently evaluate this integral. This
assertion will be expanded upon in Section 3.4.

We continue solving Equation (3.52), and using the Jeffreys prior as the appropriate
prior, we get

(𝑋) = exp
{

−𝑁𝑀(𝜃̂)
}

∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

√

det(𝐼(𝜃̂))

∫
√

det(𝐼(𝜃))𝑑𝜃
.

(3.54)
As is customary with most model selection criteria, the optimal model according to
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spherical MDL will be the one which minimizes the − log of Equation (3.54). Hence,

𝑀𝐷𝐿𝕊𝐾−1 = 𝑁𝑀(𝜃̂) − log
√

det(𝐼(𝜃̂)) + log∫
√

det(𝐼(𝜃))𝑑𝜃

− log ∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

= 𝑁
[

𝐿 + 𝜆̂(𝜃̂𝑇 𝜃̂ − 1)
]

− log
√

det(𝐼(𝜃̂)) + log∫
√

det(𝐼(𝜃))𝑑𝜃

− log∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

= − log 𝑙(𝜃̂) − log
√

det(𝐼(𝜃̂)) + log∫
√

det(𝐼(𝜃))𝑑𝜃

− log ∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃.

(3.55)

The first term in Equation (3.55) is the log-likelihood and rewards a model for good-
ness of fit. The last three terms represent the parametric complexity penalty in spherical
MDL:

𝐶 = − log
√

det(𝐼(𝜃̂)) + log∫
√

det(𝐼(𝜃))𝑑𝜃 −

log ∫𝕊𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃. (3.56)

The complexity penalty reflects the proportion of the volume of the total parameter
space that lies close to the one model that best describes the data. The second term in
Equation (3.56) is independent of the data and the candidate model, and therefore must
reflect only the complexity in the inherent chosen model family. Specifically, this term
represents the volume of the parameter manifold which is known in closed form. The
first term represents the local volume around the model corresponding to the MLE, as
measured by the natural measure of the parameter manifold. The final term is depen-
dent upon the intrinsic properties of the model family, attributes of the data and on the
candidate distribution. Essentially, it measures the volume of an ellipsoid around the
parameter with respect to a local metric determined by the data. The essence of spheri-
cal MDL is within this integral. During the course of the evaluation of this integral, the
small ellipse around the MLE is constrained to lie on the surface of the sphere.

Alternatively, the complexity term in Equation (3.56) can be represented as a ratio
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of two terms

𝐶 = − log

⎡

⎢

⎢

⎢

⎣

√

det(𝐼(𝜃̂)) ∫𝕊𝐾−1 exp
{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

∫
√

det(𝐼(𝜃))𝑑𝜃

⎤

⎥

⎥

⎥

⎦

. (3.57)

Here, the denominator is the volume of the entire parameter manifold. The numerator
is the volume of a small ellipsoid on the surface of the sphere around the MLE. If the
volume around the MLE is small compared to the volume of the entire manifold, the
model is considered complex and this term grows accordingly.

In contrast, the complexity penalty for the asymptotic version of Rissanen’s MDL in
ℝ𝐾 is

𝐶ℝ𝐾 = 𝐾
2
log

(𝑁
2𝜋

)

+ log∫
√

det (𝐼(𝜃))𝑑𝜃. (3.58)

3.3.2 Riemannian Volume of a Hypersphere
The asymptotic version of MDL requires that the entire Riemannian volume of the mani-
fold be finite. That is, ∫ √

det(𝐼(𝜃))𝑑𝜃 must converge. In complicated cases, this can be
very impractical. If the manifold is unbounded, compromises such as artificially bound-
ing the parameter space are required in order for the integral ∫ √

det(𝐼(𝜃))𝑑𝜃 to con-
verge. Approximations using Monte Carlo integration are also utilized [89]. As difficult
as this mathematical hurdle can be to overcome, it ends up being a big advantage for
spherical MDL. In many cases, spherical MDL concerns itself with hyperspherical man-
ifolds with Riemannian volumes equivalent to the surface area of a (𝐾 −1)-dimensional
hypersphere, which is known in closed form.

The equation for the volume of a hypersphere is

𝑉 =

{ 𝐾𝜋𝐾∕2, 𝐾 even,
2𝐾𝜋

𝐾−1
2

(

𝐾−1
2

)

!

(𝐾−1)!
, 𝐾 odd. (3.59)

Figure 3.3 shows the volume of the unit hypersphere (technically the surface area)
as a function of dimension. Curiously, this volume reaches a maximum at seven pa-
rameters after which the volume rapidly decreases approaching 0. Having the volume
of the entire manifold decreasing to 0 can be troublesome since on the manifold, there
must be room for a local volume around distinguishable distributions. In fact, in some
cases, the local volume around a parameter can exceed the volume of the entire parameter
space resulting in misspecified models. However, high dimensional models only make
sense when dealing with large sample sizes. In this scenario, the dissimilarity between
two neighboring distributions becomes more noticeable. This allows the volume around
each detectable distribution to shrink. Thus, as the number of parameters increases, the
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volume of the entire manifold decreases. However, it only makes sense to use these
models with sample sizes that are large enough to force the volume around the MLE to
be smaller than the overall manifold’s volume [50]. Since spherical MDL represents an
asymptotic approximation of NML, it is more suitable when applied to large sample data.
We refer the reader to [72, 77] for more details regarding the issue of misspecification
for high-dimensional models.
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Figure 3.3: Riemannian volume of hyperspheres.
Riemannian Volume of hypersphere. The surface area of a hyperspherical manifold plot-
ted against the cardinality of the parameters. Interestingly, the surface area grows to a
maximum at seven dimensions and then monotonically decreases. Accordingly, a seven-
dimensional model family requires a relatively large ellipsoid around the MLE in order
to avoid excessive penalties for complexity.

This rapidly decreasing in surface area of higher dimensional unit hyperspheres has
an interesting geometrical oddity. It’s easy to imagine a unit circle (1-sphere) being
placed inside a unit square (a square with side length of 2). In the context of Riemmanian
geometery, the surface area of the 1-sphere is simply the perimeter of this circle and we
have placed this circle into the smallest box in which it can fit. This 1-sphere touches
the face of each sides of the unit box at its exact center. Similarly, we can place a unit
2-sphere into a unit cube. Once again, this 2-sphere is packed as tightly as possible into
this cube. There is not bigger 2-sphere that could fit into the 3-dimensional box. Like
before, this 2-sphere touches each face of the cube at its center. Here, the surface area of
this hypersphere is 𝑆𝐴 = 4𝜋𝑟2 and is clearly larger than the perimeter of a unit circle,
as shown in Figure 3.3.

As we allow the thought experiment to grow in dimension, some facts are held true.
First of all, this (𝐾−1)-dimensional hypersphere touches this (𝐾−1)-dimensional hyper-
cube at the center of each face. Second of all, the (𝐾 − 1)-dimensional unit hypersphere
is the largest possible hypersphere that will fit into the (𝐾 − 1)-dimensional hypercube.
It is packed as tightly as possible. The contradiction is, if this is the largest possible hy-
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persphere that will fit in this box, but the surface area of this hypersphere approaches 0
when the number of dimensions increases, where is this hypersphere. After all, the room
inside the box is not getting smaller, considering the volume of the hypercube 2𝐾 . It must
be the case that these high dimension hyperspheres exist almost entirely at the center of
each face of the hypercube. As 𝐾 grows, almost all of the surface area congregates at a
single point attached to the center of each face of the hypercube.

Adding support to this argument is a quick examination of what occupies the corners
of each of these hypercubes. As we increase the number of dimensions, the amount of
empty space in the corners grows. Essentially, these hyperspheres quickly abandon the
corners in favor of the center point on the face of each hypercube. This tendency must
increase with number of dimensions, leaving the corners of these boxes desolate.

Quantifying this is easy. Working only in the positive orthant starting at the origin,
every point on the hypersphere is 1 unit away. If we were to draw a line from the origin
towards the corner of the hypercube, this line would intersect the hypersphere 1 unit
away and every dimensions component would have the same magnitude. That is, the
𝐾-dimensional vector,,< 𝑎1, 𝑎2,… , 𝑎𝑖,… , 𝑎𝐾 >, pointing directly towards the corner of
the hypercube with magnitude one has every component with magnitude. That is all 𝑎𝑖are equal. This magnitude depends on the number of dimensions and is given by

𝑎𝑖 =

√

𝐾
𝐾

. (3.60)

Also, the points at the vertices of the (𝐾 − 1)-dimensional hypercube have 𝐾 unit coor-
dinates. The distance from the origin to the corner also only depends on the dimension.
This distance, 𝐷 is given by

𝐷 =
√

𝐾. (3.61)
These equations show that the distance from the origin to the corner of a hypercube grows
on the order of 𝐾0.5 while the distance along the same path to the intersection with the
hypersphere grows on the order of 𝐾−0.5. This quickly leaves the corners empty. A
table showing the perpendicular distance between the vertex of the hypercube and the
hypersphere is shown in Table 3.3.

How exactly the geometry appears in higher dimensions is difficult to picture. For cer-
tain, the behavior must be similar to what is described above. One additional thought
experiment would be to imagine the disappointment of a 20 dimensional boy receiving
a 20 dimensional ball in a 20 dimensional box for Christmas when he opens up his gift
to see almost nothing but emptiness.
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Dimension Distance
2 0.707
3 1.155
4 1.5
5 1.789
6 2.041
7 2.268
8 2.475
9 2.667

10 2.846
Table 3.3: Vertex distance of hypercubes and dimension.

The above table summarizes the distances between the corners of hypercubes and the the
intersection point on the hypersphere and the line connecting the origin with the corner.
This distance monotonically increases with dimension.

3.4 Case Study: Spherical MDL for Histograms
The regular histogram is one of the most popular nonparametric density estimators. It
is the go-to method for data scientists for quickly visualizing the regularities of their
data. With relatively few parameters, a histogram can approximately model a variety of
density functions without explicit knowledge of any underlying structure. Despite their
simplicity, histograms can display very complicated characteristics of density functions
like kurtosis and multimodality, which are often tied to the construction method.

Histogram construction always begs the question: what are the appropriate number
of bins? While, in most cases, since the ultimate purpose of the histogram is to highlight
features in the data, a subjective choice of number of bins would be one that best shows
the features you wish to highlight. However, it is possible to use model selection to
remove some of the subjectivity from this decision. Here, as a simple proof of concept,
we show how spherical MDL can be used to select the optimal number of bins for a
fixed-bin-width histogram. We detail the full scope of applying spherical MDL to this
model, starting from the log likelihood and then deriving the relevant equations from
Section 3.3 to reach the final criterion given in Equation (3.55).

Probably because of its prominence, approaches to bin selection for histograms are
very popular, with many of the schemes deeply rooted in model selection theory [100,
38]. Here, we consider histograms with equal bin width, also known as regular his-
tograms. When doing so, we can use Equation (3.55) to optimize the number of bins
once a simple algebraic transformation produces the required hypersphere geometry.
The geometric interpretation of spherical MDL also allows for a satisfying solution to
the question of how to penalize empty bins, something ignored in much of the current
research or addressed by allowing for unequal bin width.
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3.4.1 Theoretical Development
The histogram can be realized by estimating an unknown density function via deploying
piecewise constant functions and then using the maximum likelihood estimator, which
results in the histogram. The height of each bin is proportional to the number of data
points falling in its interval, i.e.,

𝑓 (𝑥) =
{

𝑐𝑖, if 𝑥 is in interval 𝑖,
0, otherwise. (3.62)

Given data 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑁}, the likelihood function is given by

𝑙(𝑐) =
𝐾
∏

𝑖=1
𝑐𝑣𝑖𝑖 , (3.63)

where 𝑣𝑖 is the number of data points in the 𝑖-th interval and𝐾 is the number of bins.This
makes the average negative log-likelihood

𝐿(𝑐) = − 1
𝑁

𝐾
∑

𝑖=1
𝑣𝑖 log 𝑐𝑖. (3.64)

As in [98], we choose to map the parameters of the histogram to the hypersphere.
We begin by making the variable substitution 𝑢2𝑖 = 𝑐𝑖 after which the average negative
log-likelihood becomes (with a mild abuse of notation)

𝐿(𝑢) = − 1
𝑁

𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖. (3.65)

We now restrict the parameters to lie on a (𝐾−1)-dimensional hypersphere by setting
𝐾
∑

𝑖=1
𝑢2𝑖 = ℎ−1, (3.66)

where ℎ is the regular bin width of the histogram. This ensures the volume under the
density to be one. To emphasize the dependence of the complexity on the number of
parameters 𝐾 , we make the substitution ℎ = 𝑅

𝐾
, where 𝑅 is the range of the data. The
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constrained average negative log-likelihood is then

𝑀(𝑢, 𝜆) = 𝐿(𝑢) + 𝜆
𝑁

(
𝐾
∑

𝑖=1
𝑢2𝑖 −

𝐾
𝑅
)

= − 1
𝑁

[

𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 − 𝜆(

𝐾
∑

𝑖=1
𝑢2𝑖 −

𝐾
𝑅
)

]

.

(3.67)

Minimizing 𝑀(𝑢, 𝜆) w.r.t. 𝑢 yields 𝑢̂𝑘 =
√

𝑣𝑘𝐾
𝑁𝑅

with the optimal value of the La-
grange parameter being 𝜆̂ = 𝑁 𝑅

𝐾
.

We wish to solve Equation (3.49) for the histogram density log-likelihood function
Equation (3.67). Starting with Equation (3.65),

𝐿(𝑢) = − 1
𝑁

𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖, (3.68)

the resulting gradient is
𝜕𝐿
𝜕𝑢𝑘

= − 1
𝑁

2𝑣𝑘
𝑢𝑘

(3.69)
and the Hessian

𝜕2𝐿
𝜕𝑢2𝑘

= 1
𝑁

2𝑣𝑘
𝑢2𝑘

(3.70)
with all other mixed partials equal to zero.

Next, we evaluate the Hessian of the average negative log likelihood at the MLE.
Using Equation (3.49),

𝐻𝑘𝑘 =
2𝑣𝑘
𝐾𝑣𝑘
𝑅

+ 2𝑅
𝐾

= 4𝑅
𝐾
.

(3.71)

Hence, the Hessian is a diagonal matrix with all positive entries, ensuring that it is
positive definite as required by the Taylor expansion in Equation (3.49). To evaluate the
Fisher information, we take the expectation of Equation (3.71) to get

𝐼𝑘𝑘(𝜃) = ∫ 𝐻𝑘𝑘𝑓 (𝑥)𝑑𝑥

= 𝐻𝑘𝑘 ∫ 𝑓 (𝑥)𝑑𝑥

= 4𝑅
𝐾
,

(3.72)
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which does not depend on the histogram model parameters.
The parameters of the histogram density function do not lie on a unit hypersphere

but, rather, they reside on a hypersphere with radius
(

𝐾
𝑅

)
1
2 . Additionally, this volume

requires a scale factor of
√

det(𝐼(𝜃̂)) =
(

4𝑅
𝐾

)
𝐾
2 based on the Fisher information from

Equation (3.72) which defines a metric tensor on our manifold. Considering both of these
influences, the volume of our sphere must be adjusted by a factor of

(

𝐾
𝑅

)
𝐾
2
(

4𝑅
𝐾

)
𝐾
2 = 2𝐾 ,

making the volume of the entire manifold for each family
𝑉𝐻 = 2𝐾𝑉, (3.73)

where 𝑉 is the hypersphere volume given in Equation (3.59). It may seem necessary to
restrict the volume of the manifold even further, considering that the parameters of the
histogram necessarily reside only in the positive hyperorthant of the hypersphere and the
volume in Equation (3.73) accounts for the entire hypersphere. However, the same logic
that would apply to restricting the Riemannian volume would also apply to the integral
of the exponential of the quadratic form in Equation (3.55). With both restrictions hav-
ing the same opposite effects on spherical MDL, restriction to the positive hyperorthant
becomes unnecessary.

According to spherical MDL, the optimal number of bins for a histogram is the one
which minimizes

𝑀𝐷𝐿𝑠𝑝ℎ𝑒𝑟𝑒 = −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 − log

√

det(𝐼(𝜃̂)) + log𝑉𝐻

− log∫𝑆𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

= −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 −

𝐾
2
log

(

4𝑅
𝐾

)

+ log𝑉𝐻

− log∫𝑆𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃.

(3.74)

The third term, which is independent of the data, penalizes solely based on the num-
ber of parameters in the model family. If the model family being assessed has 𝐾 param-
eters, of which 𝑙 are empty, the model family is penalized as a 𝐾 parameter family and
not as a 𝐾 − 𝑙 parameter family. This particular distribution with 𝑙 empty bins simply is
one which resides on the 𝑙 axes of the hypersphere.

The final term can be elusive to find in general, but when the Hessian of the log-
likelihood consists of identical elements as it does with the histogram, the integral now
represents the normalizing constant of the von Mises distribution whose solution is
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known in closed form. Focusing just on this integral, we first expand the quadratic form,
recalling that every diagonal element of the Hessian is 4ℎ and can be amalgamated with
𝑁
2

to get
𝑄(𝜃̂) = ∫𝑆𝐾−1

exp
{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

= ∫𝑆𝐾−1
exp

{

−2𝑁ℎ(𝜃 − 𝜃̂)𝑇 (𝜃 − 𝜃̂)
}

𝑑𝜃

= ∫𝑆𝐾−1
exp

{

−2𝑁ℎ(𝜃𝑇 𝜃 − 2𝜃𝑇 𝜃̂ + 𝜃̂𝑇 𝜃̂)
}

𝑑𝜃.

(3.75)

Now, in the expanded quadratic, we have two quadratic terms that are subject to our
constraint 𝜃𝑇 𝜃 = ℎ−1. We can further simplify the integral to be

𝑄(𝜃̂) =∫𝑆𝐾−1
exp

{

−2𝑁ℎ(ℎ−1 − 2𝜃𝑇 𝜃̂ + ℎ−1)
}

𝑑𝜃

=∫𝑆𝐾−1
exp

{

−4𝑁 + 4𝑁ℎ𝜃𝑇 𝜃̂)
}

𝑑𝜃

=exp {−4𝑁}∫𝑆𝐾−1
exp

{

4𝑁ℎ𝜃𝑇 𝜃̂)
}

𝑑𝜃.

(3.76)

In order to satisfy the definition of the von Mises distribution, we will need to put
this on the unit hypersphere. We do this by making the following substitutions:

𝑥𝑖
√

ℎ
= 𝜃𝑖,

𝑥𝑖
√

ℎ
= 𝜃𝑖 𝚊𝚗𝚍 𝑑𝜃 = 𝑑𝑥

√

ℎ
. (3.77)

Once again, to more clearly show that complexity increases as the number of param-
eters increases, we make the substitution ℎ = 𝑅

𝐾
. Equation (3.76) becomes (after a minor

abuse of notation)

𝑄(𝑥̂) = exp(−4𝑁)∫𝑆𝐾−1
exp

{

4𝑁ℎ 𝑥
𝑇

√

ℎ

𝑥̂𝑇
√

ℎ

}

𝑑𝑥 1
√

ℎ
𝐾

=
(𝐾
𝑅

)

𝐾
2
exp(−4𝑁)∫𝑆𝐾−1

exp
{

4𝑁𝑥𝑇 𝑥̂
}

𝑑𝑥.

(3.78)

The integral in Equation (3.78) is now in the form of a von Mises distribution. In
general, the von Mises distribution is

𝑓𝐾(𝑥, 𝑢, 𝜅) =
exp(𝜅𝑢𝑇𝑥)
𝐶𝐾(𝜅)

, (3.79)
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where 𝜅 ≥ 0, ‖𝑢‖ = 1 and 𝑥 is random unit vector. The distribution in Equation (3.79)
must integrate to one, so

∫𝑆𝐾−1
exp(𝜅𝑢𝑇𝑥)𝑑𝑥 = 𝐶𝐾(𝜅), (3.80)

where
𝐶𝐾(𝜅) =

(2𝜋
𝜅

)

𝐾
2
𝜅 𝐼𝐾

2 −1
(𝜅) (3.81)

and 𝐼𝜁 (𝜅) is the modified Bessel function of order 𝜁 [1]. The right side of Equation (3.81)
will be used to determine the value of the integral in Equation (3.78).

By comparing the integral in Equation (3.78) to Equation (3.80), we can see that
𝜅 = 4𝑁 . With this, Equation (3.78) then becomes

𝑄(𝑥̂) =
(𝐾
𝑅

)

𝐾
2
exp (−4𝑁)

( 𝜋
2𝑁

)
𝐾
2 4𝑁 𝐼𝐾

2 −1
(4𝑁), (3.82)

which is independent of 𝑥̂. Substituting this into Equation (3.74), we obtain that spherical
MDL will choose a histogram with the number of bins that minimizes

𝑀𝐷𝐿𝑠𝑝ℎ𝑒𝑟𝑒 = −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 −

𝐾
2
log

(

4𝑅
𝐾

)

+ log𝑉𝐻

− log∫𝑆𝐾−1
exp

{

−𝑁
2
(𝜃 − 𝜃̂)𝑇𝐻(𝜃 − 𝜃̂)

}

𝑑𝜃

= −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 −

𝐾
2
log

(

4𝑅
𝐾

)

+ log𝑉𝐻

− log

[

(𝐾
𝑅

)

𝐾
2
exp (−4𝑁)

( 𝜋
2𝑁

)
𝐾
2 4𝑁 𝐼𝐾

2 −1
(4𝑁)

]

,

(3.83)

where 𝑉𝐻 is defined in Equation (3.73). We note in passing that, even though terms
that only depend on the sample size will contribute to the complexity of the model, they
don’t contribute to the selection process since they are identical to every model. With
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this, Equation (3.83) simplifies to

𝑀𝐷𝐿𝑠𝑝ℎ𝑒𝑟𝑒 = −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 +

𝐾
2
log

( 𝐾
4𝑅

)

+ log𝑉𝐻

+ 𝐾
2
log

(𝑅
𝐾

)

+ 𝐾
2
log

(2𝑁
𝜋

)

− log
(

𝐼𝐾
2 −1

(4𝑁)
)

= −
𝐾
∑

𝑖=1
2𝑣𝑖 log 𝑢𝑖 + log(𝑉𝐻 ) +

𝐾
2
log

(𝑁
2𝜋

)

− log
(

𝐼𝐾
2 −1

(4𝑁)
)

.

(3.84)

Spherical MDL closely tracks ordinary MDL when it comes to asymptotics. The
modified Bessel function in Equation (3.84) can be considerably simplified as 𝑁 → ∞:

𝐼 (𝐾−1)
2
(4𝑁) ≈

exp{4𝑁}
√

2𝜋

[

1

(4𝑁)
1
2

+
(4𝐾 − 3 −𝐾2)

8(4𝑁)
3
2

+ ( 1

(4𝑁)
5
2

)

]

. (3.85)

Since the leading term in Equation (3.85) is independent of 𝐾 , we obtain that spher-
ical MDL and ordinary MDL converge to the same complexity (after ignoring terms
independent of 𝐾) as 𝑁 → ∞.

3.4.2 Experimental Results
Every model selection criterion uniquely penalizes parametric complexity. All penalties
have mathematical foundations that validate their individual appropriateness. In the case
of choosing a model for a distribution whose parameters lie on the hypersphere, as is the
case for the histogram, criteria that ignore the geometry of the manifold or improperly
apply asymptotic approximations are inherently less appropriate than a criterion that
considers these characteristics.

Experiments were conducted generating results of optimal bin counts for histograms
of differently shaped distributions. A variety of sampling distributions were created from
mixtures of one-dimensional Gaussian distributions as in [67, 102]. The densities cho-
sen represent many characteristics of real densities such as multimodality, skewness and
spatial variability. The densities estimated were: Bimodal, Skewed Unimodal, Trimodal
and Claw as shown in Figure 3.4. In addition, 2500 trials of sample size 60 were taken
from each distribution. The optimal number of bins for AIC, BIC, two part MDL from
Equation (2.1), Balasubramanian’s asymptotic MDL from Equation (3.31) and spheri-
cal MDL was calculated for each trial. The frequency with which the decisions made
by AIC, BIC, two part MDL and asymptotic MDL deviated from the decision made by
spherical MDL are summarized in Table 3.4.

The results show that AIC and two part MDL penalize complex models the least with
AIC most frequently making incorrect decisions. This is true to the reputation of AIC,
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Figure 3.4: Bimodal, skewed, trimodal and claw densities.
Four different densities selected for varying characteristics. Bimodal (left), skewed (cen-
ter left), trimodal (center right) and claw (right).

AIC BIC MDL2 MDL
Bimodal 1407 221 1372 4

Skew 1441 200 1349 9
Trimodal 1478 197 1323 3

Claw 1569 257 1471 6
Total 5895 875 5515 22

Table 3.4: Comparison of different model selection criteria for histogram density
estimation.
Frequency of deviation of 2500 trials of the choice made by Akaike’s information crite-
rion (AIC), Bayesian information criterion (BIC), two part Minimum Description Length
(MDL) (MDL2) and asymptotic MDL from the choice of spherical MDL for a sample
size of 60 drawn from different distributions. We found that BIC consistently penalizes
complexity the most while AIC and MDL2 are consistently forgiving of complex mod-
els. Spherical MDL and ordinary MDL offer a compromise between goodness of fit and
complexity, with spherical MDL always choosing a less complex model, showing that
ordinary MDL underpenalizes the complexity of curved parameter spaces.

at reasonable sample sizes. This is expected considering that the number of parameters
alone are used to penalize models, with sample size not considered. BIC always chooses
models that are the least complex, showing the importance it places on sample size. Bal-
asubramanian’s asymptotic MDL and spherical MDL always choose models that have
less extreme number of bins. When compared to MDL, spherical MDL tended to prefer
less complex models, indicating that MDL underpenalizes the complexity of curved pa-
rameter spaces. While these results are somewhat anecdotal, they serve to demonstrate
the importance of incorporating the histogram’s hypersphere geometry into model se-
lection. Furthermore, in general, we advocate for the modification of model selection
criteria to respect their parameter space geometries.
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Chapter 4

Geodesics and Transversality
Conditions

One common problem geodesics are used to solve is to find the shortest path between
two defined points. The goal of this chapter is to find the path with the shortest distance
between a distribution on a manifold and a surface on the manifold making one or both of
the endpoints of the geodesic variable. Furthermore, we wish to identify the distribution
on the surface with which this path intersects. This will involve proofs and applications of
the Euler-Lagrange equation and a variable endpoint condition called the transversality
condition.

As an aside, the literature in model selection criteria designates the observed Fisher
information as 𝐽 (𝜃) and the expected Fisher information as 𝐼(𝜃), as have we in the pre-
vious chapter. A more common way to denote a generic metric tensor is to use 𝑔𝑖𝑗 , where
the subscript represents the location inside the information matrix. Going forward, we
adopt this more common approach when we refer to the Fisher information matrix.

4.1 Background
Among differential calculus’s many applications are problems regarding finding the max-
ima and minima of functions. Typically, this involves finding the critical points of a
function by setting its first derivative to 0 then using any number of tests, the second
derivative test of concavity for example, to classify the critical points as maxima or a
minima. After this classification, the desired value of the independent and dependent
is determined based on the question asked. Simply put, in the single variable case, dif-
ferential calculus searches for the values of the independent variable, 𝑥, that returns the
maximum or minimum value of the function, 𝑓 (𝑥). In the multi-variable case, the search
turns to finding the vector (𝑥1, 𝑥2, ..., 𝑥𝑛), that returns the maximum value for the func-
tion, 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛).
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Analogously, techniques of calculus of variation operate on functionals, which are
mappings from a space of functions to its underlying field of scalars. That is, a functional
is a function that, instead of taking real numbers as inputs, it has functions as inputs and
returns a scalar. For example, a simple functional is the definite integral of a function. In
this case, the functional takes a function and returns the scalar value of the area under-
neath the curve between the limits of integration. Clearly, for fixed limits of integration,
the value for the area only depends on the function which you are integrating.

Considering the functional 𝐼[𝑦], the typical formulation of a calculation of variations
problem is

min 𝐼[𝑦] = ∫

𝑥2

𝑥1

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥

𝑦(𝑥1) = 𝑦1 𝑦(𝑥2) = 𝑦2

(4.1)

where initial and terminal values are defined as (𝑥1, 𝑦1) and (𝑥2, 𝑦2) respectively, 𝑦̇ is
Newton’s dot notation for the derivative, often adopted in differential geometry, and
𝐹 (𝑥, 𝑦, 𝑦̇) is the function argument for the functional. In some cases, when the depen-
dencies are obvious or to clarify expressions in proofs, the dependencies of 𝐹 may be
dropped. In general 𝑦 can be a vector of functions dependent on 𝑥, a vector of inde-
pendent variables. The theory behind finding the extremum to problems like this are
analogous to single variable calculus, in which a vanishing first derivative is used to lo-
cate critical points. Here, we locate the extremal functions using functional derivatives,
leading to solving the Euler-Lagrange equations outlined in Section 4.2.

One classic problem which can be solved by the calculus of variation is to find the
shortest path between two points 𝑃1 = (𝑥1, 𝑦1) and𝑃2 = (𝑥2, 𝑦2). In introductory calculus
courses, it is often correctly explained that the total arc length of a curve connecting two
points is the sum of infinite, infinitesimally small distances.

𝐿 = ∫
√

1 + 𝑦̇2(𝑥)𝑑𝑥. (4.2)
In 𝑛-dimensional Euclidean space, the square of one of those small distances is given by

𝑑𝑠2 = 𝑑𝑞21 + 𝑑𝑞
2
2 +⋯ + 𝑑𝑞2𝑛 (4.3)

where 𝑑𝑞𝑖 is a small distance along the 𝑛𝑡ℎ dimension.
Considering distributions as points on a statistical manifold, an intuitive measure

of similarity is the shortest distance along the manifold between the two distributions.
Early works [16, 53, 41] endowed statistical distributions with geometrical properties.
However, it was Rao [80] that expanded on the ideas of Fisher [42] that defined a metric
for statistical models based on the Fisher information matrix. This connection between
distance and distributions, encouraged others to explore the distance between specific
families of distributions. Among these families include special cases of the multivariate
normal model [95], the negative binomial distribution [66], the gamma distribution [82],
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Poisson distribution [73], among others. In differential geometry, these shortest paths
between points on a manifold are known as geodesics.

Formulating a geodesic problem as a calculus of variations problem is rather elemen-
tary, though its solution is involved. In Euclidean geometry, this path is a straight line,
and this distance is easily found. However, moving these ideas onto statistical manifolds
complicates both the geometry and the calculus of this seemingly elementary problem.
However, just like the elementary case in Equation (4.3), solving for the shortest path 𝐿
on a manifold, involves the summation of many infinitely small arc lengths, 𝑑𝑠.

𝑑𝑠2 = Θ̇𝑇 𝑔(Θ)Θ̇ (4.4)
where Θ is a parameter vector, 𝑔(Θ) is a metric tensor dependent on the parameter vector
and (⋅)𝑇 represents the transpose of a vector. The metric tensor for Euclidean space is
the identity matrix but on the multivariate Gaussian manifold, this metric tensor is the
Fisher Information matrix, discussed later in Section 4.2.

This makes the functional we wish to minimize

𝐿 = ∫

√

Θ̇𝑇 𝑔(Θ)Θ̇𝑑𝑥. (4.5)

or, because the square root is a monotonically increasing function, we can conveniently
use

𝐾 = ∫ Θ̇𝑇 𝑔(Θ)Θ̇𝑑𝑥. (4.6)
With this, the calculus of variation problem that solves for the minimum distance on a
manifold is

min 𝐾 = ∫ Θ̇𝑇 𝑔(Θ)Θ̇𝑑𝑥

Θ0 = [𝜃01, 𝜃02,… , 𝜃0𝑛] Θ1 = [𝜃11, 𝜃12,… , 𝜃1𝑛]
(4.7)

The metric tensor 𝑔(Θ) = 𝑔(𝜇,Σ) on Riemannian manifolds is the Fisher information
matrix, discussed earlier in section 3.1.

The solution to problems like this involve employing the Euler-Lagrange equations,
which are a system of second order differential equations useful for finding extremals of
functionals. Looking at Equation (4.1), the Euler-Lagrange equation is

𝐾𝑦 −
𝑑
𝑑𝑥
𝐾𝑦̇ = 0 (4.8)

A detailed proof of Equation (4.8) is found in Section 4.2.
Historically and recently, research regarding geodesics on manifolds has focused on

developing closed form equations for the distance between two distributions on the man-
ifold. However, for many purposes, being able to choose the most acceptably similar
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distribution outweighs the gravity of knowing the exact degree of likeness. In essence,
given a single distribution, a more appropriate question would be which other distribu-
tion is most similar, with little bother given to the exact measure of similarity. Regard-
less, a very intuitive metric of similarity could utilize some concept of distance between
distributions.

For example,the goal of all model selection criteria [87, 88, 2, 51] is to choose a
model which is most similar to a given distribution. During the choosing method, model
selection purposefully clouds the similarity of models with a penalty parameter, resulting
in a metric that measures the relative goodness of models. Using this metric, the criteria
can select the most optimal model, without relying on exactly how optimal the choice is.
Essentially, when model selection chooses a best model, since it truly is better than all
other models available, little concern is given to how good the choice really is. When
employing model selection, the result is always a distribution, not a measure of similarity
between distributions.

The current body of research concerning geodesics on statistical manifold focuses
almost entirely on finding the shortest path between two distributions on the manifold and
finding a closed form equation for the length of this path. Essentially, limiting research
to the narrow focus concerning just the exact distance between two distribution ignores
important questions regarding the relationship a single distribution has with all other
possible distributions on the manifold. Essentially, questions like the latter focus on
both the journey and the destination instead of narrowly posed questions about just the
journey, like the former. Absent from the current research in this field are answers to
questions concerning which distribution, from a subset on the manifold is most similar
to a given distributions. Here, we examine in detail how to closest distribution to a given
distribution given a constraint that the final distribution must satisfy. To our knowledge,
this is the first time that geodesics on a Gaussian manifold is studied have been used
t. This transfer of focus opens up possible applications to domain adaptation, model
selection among other fields that differential geometry has been proven useful.

4.2 Euler-Lagrange Equation
When solving calculus of variation problems the Euler-Lagrange equations is used to
find the extremal function. The Euler-Lagrange equations are a system of second-order
differential equations that must be satisfied by the stationary function of the functional
in question. In attempt to make this work self contained, what follows is a proof of the
Euler-Lagrange equation.

First, let’s denote the maximizing or minimizing function of Equation (4.1) to be
𝑦∗(𝑥). This function is unknown, but not variable. That is, 𝑦∗(𝑥) is known to exist,
is not subject to change and it will be the function that minimizes (or maximizes) our
functional. Because it is the extremal, it will yield a more optimal result than any other
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function in the vicinity. We will designate all other functions, sometimes referred to
as admissible curves or admissible functions to be 𝑦(𝑥) where 𝑦(𝑥) varies slightly from
𝑦∗(𝑥) at every 𝑥 value in between the limits of integration except at the endpoints, for
which we will force 𝑦(𝑥) = 𝑦∗(𝑥). As will be seen shortly, we will capture these slight
variations from 𝑦∗ by simply adding a small value to the optimal function at every point,
buy simply adding some different arbitrary to it at every 𝑥 in its domain.

In Figure 4.1, we can see that we have an optimal function in red/solid. The blue/-
dashed function sharing endpoints with the optimal function is an admissible function
that possibly differs from the optimal function at every value of x, except (for now) at
the end points. In other words, the difference between 𝑦∗(𝑥) and an admissible curve is
a function of 𝑥 and this difference is captured in a perturbing function, 𝜙(𝑥) shown in
green/dashed touching the x axis.. By multiplying 𝜙(𝑥) by a scalar,it is possible to gener-
ate all possible differences from our optimal function, resulting in all possible admissible
functions. Since 𝜙(𝑥) is arbitrary, all admissible functions need not be a member of the
same family of functions. We can now define all admissible curves to be

𝑦(𝑥) = 𝑦∗(𝑥) + 𝜖𝜙(𝑥), (4.9)
where 𝜙(𝑥1) = 𝜙(𝑥2) = 0.
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Figure 4.1: Optimal path and neighboring path with perturbing function.
The optimal function, 𝑦∗(𝑥) in red with the perturbing function, 𝜙(𝑥) in green. A generic
function 𝑦(𝑥) = 𝑦∗(𝑥) + 𝜖𝜙(𝑥) in the neighborhood of 𝑦∗(𝑥) is shown.

The vertical distance between the optimal function and the candidate function is de-
noted as 𝛿𝑦 and is called the variation. The total variation is measure of how sub-optimal
a neighboring function is when compared to the optimal function. The total variation is
given by
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Δ𝐼 = 𝐼[𝑦] − 𝐼[𝑦∗]

= ∫

𝑥2

𝑥1

(

𝐹 [𝑥, 𝑦, 𝑦̇] − 𝐹 [𝑥, 𝑦∗, 𝑦̇∗]
)

𝑑𝑥.
(4.10)

In Section 4.3, we expand upon this proof to allow the optimal function, and therefor
all candidate functions a variable endpoint by introducing a transversality condition. The
concepts of the proof diverge from the usual Euler-Lagrange equation at this point. Es-
sentially, when utilizing transversality conditions, we need to find both the optimal path,
and the optimal boundary conditions of the functions. While this added complexity to
the solution comes with added complexity to the mathematics, the proof branches off
because of one simple change. In the fixed end point problem, all candidate functions
are required to pass through the problem defined initial point and terminal point. This is
precisely why the perturbing function, 𝜙(𝑥) must be 0 at the endpoints. During the proof
of the transversality conditions, this restriction is relaxed at one or both of the endpoints.
As shown later, this relaxation results in an orthogonality requirement between the op-
timal path and the terminating surface defined in the transversality condition. Using
Equation (4.9), we can rewrite Equation (4.1) evaluated at an arbitrary curve as

𝐼 = ∫

𝑥2

𝑥1

𝐹
(

𝑥, 𝑦∗(𝑥) + 𝜖𝜙(𝑥), 𝑦̇∗(𝑥) + 𝜖𝜙̇(𝑥)
)

𝑑𝑥. (4.11)
Since 𝜙(𝑥) could be any function and 𝑦∗(𝑥) is not variable (it is optimal), the value
of Equation (4.11) depends entirely on 𝜖, since 𝑥 is integrated out of the expression.
Because of this, and because we know that the optimal value of 𝐼 happens at 𝑦∗(𝑥), we
know that the first derivative evaluated at 𝜖 = 0 (the condition that sets 𝑦(𝑥) = 𝑦∗(𝑥))
must be 0. That is,

𝑑𝐼
𝑑𝜖

⌋

𝜖=0
= 0. (4.12)

To clarify future parts of the proof, we will redefine 𝑦(𝑥) as
Φ(𝜖) = 𝑦∗(𝑥) + 𝜖𝜙(𝑥) = 𝑦(𝑥), (4.13)

reinforcing the sole dependence of the admissible curves on the scalar value of 𝜖. Using
Equations (4.11), (4.12) and (4.13), the condition which our optimal function, 𝑦∗(𝑥) must
satisfy are

𝑑𝐼
𝑑𝜖

= ∫

𝑥2

𝑥1

(𝜕𝐹
𝜕Φ

𝑑Φ
𝑑𝜖

+ 𝜕𝐹
𝜕Φ̇

𝑑Φ̇
𝑑𝜖

)𝑑𝑥 = 0. (4.14)
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Since Φ is only a function of 𝜖, 𝑑Φ
𝑑𝜖

= 𝜙(𝑥) and 𝑑Φ̇
𝑑𝜖

= 𝜙̇(𝑥). Then, (4.14) becomes
𝑑𝐼
𝑑𝜖

= ∫

𝑥2

𝑥1

(𝜕𝐹
𝜕Φ

𝜙(𝑥) + 𝜕𝐹
𝜕Φ̇

𝜙̇(𝑥))𝑑𝑥. (4.15)

Noticing that the second term of Equation (4.15) has the structure of an integration by
parts problem from introductory calculus

∫ 𝑢(𝑥)𝑑𝑣 = 𝑢(𝑥)𝑣(𝑥) − ∫ 𝑣(𝑥)𝑑𝑢 (4.16)

with 𝑢 = 𝜕𝐹
𝜕Φ̇

and 𝑑𝑣 = 𝜙̇(𝑥) By inspection, the second term in (4.15) becomes

∫

𝑥2

𝑥1

𝜕𝐹
𝜕Φ̇

𝜙̇(𝑥)𝑑𝑥 = 𝜙(𝑥)𝜕𝐹
𝜕Φ̇

]𝑥2

𝑥1

− ∫

𝑥2

𝑥1

𝑑
𝑑𝑥

𝜕𝐹
𝜕Φ̇

𝜙(𝑥)𝑑𝑥. (4.17)

Furthermore, 𝜙(𝑥1) = 𝜙(𝑥2) = 0 so the first term of Equation (4.17) vanishes.
With these substitutions, (4.15) becomes

𝑑𝐼
𝑑𝜖

= ∫

𝑥2

𝑥1

(𝜕𝐹
𝜕Φ

𝜙(𝑥) − 𝑑
𝑑𝑥

𝜕𝐹
𝜕Φ̇

𝜙(𝑥))𝑑𝑥

= ∫

𝑥2

𝑥1

(𝜕𝐹
𝜕Φ

− 𝑑
𝑑𝑥

𝜕𝐹
𝜕Φ̇

)𝜙(𝑥)𝑑𝑥

= 0.

(4.18)

which we evaluate at 𝜖 = 0,the condition to find our extremum. Equation (4.18) can
be 0 if 𝜙(𝑥) = 0 and/or 𝜕𝐹

𝜕Φ
− 𝑑
𝑑𝑥

𝜕𝐹
𝜕Φ̇

= 0. The choice of 𝜙(𝑥) is only restricted by 𝜙(𝑥1) = 0
and 𝜙(𝑥2) = 0. While this doesn’t exclude 𝜙(𝑥) = 0 for every 𝑥1 < 𝑥 < 𝑥2, letting the
perturbing function be 0 everywhere makes little sense since it will cause no variation
from our optimal function. This fact, along with Equation (4.18) having to be satisfied
at all allowable 𝜙(𝑥), requires that the solution must satisfy.

𝜕𝐹
𝜕𝑦

− 𝑑
𝑑𝑥

𝜕𝐹
𝜕𝑦̇

= 0, (4.19)
which is known as the Euler-Lagrange equation, the solution to which will give use the
optimal function, 𝑦∗(𝑥), Considering that solving (4.19) will require solving a second-
order differential equation (not necessarily linear) with boundary conditions 𝑦(𝑥1) = 𝑦1and 𝑦(𝑥2) = 𝑦2., the Euler-Lagrange equation can be mathematically difficult to solve.

Using typical notation for partial derivatives, the Euler-Lagrange equation will be
written as

𝐹𝑦 −
𝑑
𝑑𝑥
𝐹𝑦̇ = 0. (4.20)
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Ending this section is an alternate approach to proving the Euler-Lagrange equation
in Equation (4.20), using second order Taylor approximation of a functional. As will
be seen, this approach can offers more generality and introduces the terms first varia-
tion and second variation. In short, this will involve writing the total variation given in
Equation (4.10) as a second order Taylor polynomial and inspecting the each term in the
polynomial.

For an arbitrary admissible curve 𝑦 in the neighborhood of the maximizing function
𝑦∗, the second order Taylor approximation for the functional 𝐹 (𝑥, 𝑦, 𝑦̇) is

𝐹 (𝑥, 𝑦, 𝑦̇) ≈ 𝐹 (𝑥, 𝑦∗, 𝑦̇∗) + 𝐹𝑦∗(𝑦 − 𝑦∗) + 𝐹 ̇𝑦∗(𝑦 − 𝑦∗)+
1
2
[

𝐹𝑦∗𝑦∗(𝑦 − 𝑦∗)2 + 2𝐹𝑦∗ ̇𝑦∗(𝑦 − 𝑦∗)(𝑦̇ − 𝑦̇∗) + 𝐹 ̇𝑦∗ ̇𝑦∗(𝑦̇ − 𝑦̇∗)2
]

.
(4.21)

Using previously defined notation for arbitrary admissible curves, 𝑦 = 𝑦∗ + 𝜖𝜙(𝑥)
and subtracting the first term of Equation (4.21) to the left side, we have an equation that
looks useful, considering how variation was defined in Equation (4.10).

𝐹 (𝑥, 𝑦, 𝑦̇) − 𝐹 (𝑥, 𝑦∗, 𝑦̇∗) ≈ 𝐹𝑦∗𝜖𝜙(𝑥) + 𝐹 ̇𝑦∗𝜖𝜙̇(𝑥)

+ 1
2
[

𝐹𝑦∗𝑦∗𝜖
2𝜙2(𝑥) + 2𝐹𝑦∗ ̇𝑦∗𝜖2𝜙(𝑥)𝜙̇(𝑥) + 𝐹 ̇𝑦∗ ̇𝑦∗𝜖

2𝜙2(𝑥)
]

.
(4.22)

This is the integrand of Equation (4.10). Substituting this approximation, the total
variation is now.

Δ𝐼 ≈ 𝜖 ∫

𝑥2

𝑥1

[

𝐹 ∗
𝑦 𝜙(𝑥) + 𝐹 ̇𝑦∗𝜙̇(𝑥)

]

𝑑𝑥

+𝜖
2

2 ∫

𝑥2

𝑥1

[

𝐹𝑦∗𝑦∗𝜙
2(𝑥) + 2𝐹𝑦∗ ̇𝑦∗𝜙(𝑥)𝜙̇(𝑥) + 𝐹 ̇𝑦∗ ̇𝑦∗𝜙

2(𝑥)
]

𝑑𝑥.
(4.23)

The first integral in Equation (4.23) is called the first variation and is given the symbol
𝛿𝐼 . the second integral is called the second variation and is given the symbol 𝛿2𝐼 .

The first variation will result in the Euler-Lagrange equation with a proof that mimics
the proof following Equation (4.15). The second variation offers insight into the nature
of the extremum, similar to a second derivative test in single variable calculus. Those
familiar with maximizing functions from single variable calculus should find the first
approach to proving the Euler-Lagrange equation appealing. However, employing Taylor
expansions to the funcitonal, then defining the total variation based on this expansion is
more intuitive when we introduce variable endpoints.
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4.3 Transversality Conditions
Problems which find only Equation (4.20) useful require that the endpoint conditions be
fixed points. That is, when working on a statistical manifold and solving for the shortest
path, Equation (4.20) are the only conditions that need to be satisfied, in addition to the
prescribed endpoint distributions.

In many instances, however, it is desirable to allow the optimal function, 𝑦∗(𝑥), to
start or end anywhere on a known subsurface of the manifold. In this way, the endpoints
are not known, but are constrained by a user defined restriction. This extra freedom
requires further conditions on the optimal path, called tranversality conditions. These
new conditions are

[𝐹 + (𝜎̇ − 𝑦̇)𝐹𝑦̇]
|

|

|𝑥=𝑥2
= 0 (4.24)

and
[𝐹 + (𝜌̇ − 𝑦̇)𝐹𝑦̇]

|

|

|𝑥=𝑥1
= 0. (4.25)

Here, 𝜎(𝑥) is the surface at which the optimal function terminates, 𝜌(𝑥) is the surface
at which the optimal function originates. Of course, the optimal function still needs to
satisfy the original Euler-Lagrange equation in addition to these two new conditions.

What follows is a proof for a variable endpoint transversality condition in equation
Equation (4.24), knowing a variable initial point in Equation (4.25) follows a very similar
proof. Also, the proof will be done for a single variable path, but we will extend the
results to multi-variable paths when appropriate. As a reminder, it was noted in Equation
(4.18), that 𝜙(𝑥2) = 0, was the requirement for the known endpoint distribution, and
that this requirement helped simplify the integration involved in the proof of the Euler-
Lagrange equation. This is no longer true, and is the key difference which will motivate
the proof that follows.

Figure 4.2 graphically represents the problem. The optimal path in red, labelled 𝑦∗
and an arbitrary neighboring path in yellow, labelled 𝑦 are shown. For clarity, not shown
is a perturbing function, 𝜙(𝑥), but this function still exists, the effects of which result in
the vertical difference of these paths. As in the proof of the Euler-Lagrange equation,
this perturbing function is required to be 0 at the initial point, forcing the known initial
distribution. However, and key to the transversality condition proof, is that 𝜙(𝑥2) ≠ 0,
resulting in an unknown final distribution for the geodesic. This perturbing function
is exaggerated in magnitude in order to produce a clear difference between the optimal
path and the candidate path. However, the candidate paths are required to be in the
neighborhood of the optimal path, a fact that we will leverage in many parts of the proof.

Briefly, here is what the proof entails. We first formulate an expression for the total
variation between the candidate function 𝑦 and the optimal function 𝑦∗. This involves
in part and most importantly, the difference in the values of the functional as a result of
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Figure 4.2: General transversality condition.
Showing the relationship between the optimal path 𝑦∗, an arbitrary neighboring candidate
path 𝑦 and the terminal transversality surface 𝜎. For clarity purposes, the neighborhood
of paths around the optimal path is generously extended to highlight the differences at
the variable endpoint. These differences would be smaller, in order to validate the use
of first order approximations for the behavior of the the paths at the endpoint

the paths intersecting the boundary surface at different distributions. Then, using first
order approximations for the behavior of these paths, we redefine the first variation, 𝛿𝐼
from Equation (4.23). Like before, we define this first variation as just a function of
𝜖, the scalar multiple of the arbitrary perturbing function. With this, we can use single
variable calculus to come up with the additional conditions that satisfy the transversality
constraint. The approximations involved to most of the heavy lifting for the proof. These
approximations will rely on all candidate functions being in the neighborhood of the
optimal path. This makes any deviations small on the order 1.

During the proof of the Euler-Lagrange equation, the variation of these paths were
capture by a 𝛿𝑦 at every point in the path. Here, considering the concern is the endpoint
and not the path itself, in an effort to simplify notation, the terms 𝛿𝑦 and 𝛿𝑥 will be used
to signify the deviation from the optimal curve at the points at which they intersect 𝜎(𝑥),
rather than at any point within the interval. Noteworthy is the fact that generally, because
of the variable endpoint surface, the arbitrary candidate function 𝑦 and the optimal path
𝑦∗ do not share a common value of the parameter at the endpoint, the idea of which
is captured in 𝛿𝑥. Because of this, 𝛿𝑦 is a vertical distance, but not exactly a distance
between two paths at 𝑥2. This 𝛿𝑦 can be written in terms of the paths or the terminal
surface. Specifically, 𝛿𝑦 is given by the following

𝛿𝑦 = 𝑦(𝑥2 + 𝛿𝑥) − 𝑦∗(𝑥2)
= 𝜎(𝑥2 + 𝛿𝑥) − 𝜎(𝑥2).

(4.26)
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As in the proof of the Euler-Lagrange equation, we are looking for an optimal path
defined by the following minimization problem:

minimize 𝐼[𝑦] = ∫ 𝑥2
𝑥1
𝐹 [𝑥, 𝑦, 𝑦̇]𝑑𝑥 (4.27)

where 𝑥1 is known, but now 𝑥2 is unknown and restricted to the constraint surface.
Using the definition of total variation from Equation (4.10), we mimic the proof from

the Euler-Lagrange equation. However, considering that the neighboring path is defined
over the interval (𝑥1, 𝑥2 + 𝛿𝑥), the integrals limits must change to reflect this.

Δ𝐼 = 𝐼[𝑦] − 𝐼[𝑦∗]

= ∫

𝑥2+𝛿𝑥

𝑥1

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥 − ∫

𝑥2

𝑥1

𝐹 (𝑥, 𝑦∗, 𝑦̇∗)𝑑𝑥.
(4.28)

Here, 𝑥1 is defined, but neither 𝑥2 or (of course) 𝑥2 + 𝛿𝑥 is defined. According to Figure
4.2, 𝛿𝑥 takes on a positive value, but this is not true in general.

The integrals in Equation (4.28) do not share common limits. However, the first
integral’s limits can be split, resulting in

Δ𝐼 = ∫

𝑥2

𝑥1

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥 + ∫

𝑥2+𝛿𝑥

𝑥2

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥 − ∫

𝑥2

𝑥1

𝐹 (𝑥, 𝑦∗, 𝑦̇∗)𝑑𝑥

= ∫

𝑥2

𝑥1

[𝐹 (𝑥, 𝑦, 𝑦̇) − 𝐹 (𝑥, 𝑦∗, 𝑦̇∗)]𝑑𝑥

𝐴

+ ∫

𝑥2+𝛿𝑥

𝑥2

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥

𝐵

.
(4.29)

Equation (4.29) has a fulfilling geometric interpretation when examined in conjunc-
tion with the behaviors of these paths, outlined in Figure 4.2. The first integral is the area
between 𝐹 (𝑥, 𝑦, 𝑦̇) and 𝐹 (𝑥, 𝑦∗, 𝑦̇∗) between 𝑥1 and 𝑥2, which we have already consid-
ered in Equation (4.23) during the proof of the Euler-Lagrange equations. The second
integral is the additional area under 𝐹 (𝑥, 𝑦, 𝑦̇) resulting from the candidate path extend-
ing past 𝑥2, to its intersection with the terminal surface, shown in Figure 4.3. The sum
of these areas represents a geometric interpretation of the total variation.

Using the results from Equation (4.23), and shortening the notation for clarity, to a
first order approximation, Equation (4.29) can be written as

Δ𝐼 = 𝜖 ∫

𝑥2

𝑥1

[

𝐹𝑦𝜙(𝑥) + 𝐹 ̇𝑦∗𝜙̇(𝑥)
]

𝑑𝑥 + ∫

𝑥2+𝛿𝑥

𝑥2

𝐹 (𝑥, 𝑦, 𝑦̇)𝑑𝑥

𝐵

. (4.30)

Now, in order to address the second integral in Equation (4.30), we must extend the
optimal path past its intersection with the constraint surface, 𝑥 = 𝑥2 + 𝛿𝑥. The nature of
this extension will be discussed later. However, considering that the candidate function
is in the neighborhood of the optimal solution, the areas under each of these paths in the
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Figure 4.3: Area under neighboring function as a result of transversality condition.
The candidate path 𝑦 intersects the terminal surface at 𝑥2 + 𝛿𝑥. This part of the path
adds to the total variation, mathematically represented by the second integral in Equation
(4.29) and graphically by the red area above.

interval (𝑥2, 𝑥2 + 𝛿𝑥) are almost identical. This is the first time we are leveraging the
fact that the candidate path is in the neighborhood of the optimal path. Extending the
optimal path past the constraint surface and writing integral𝐵 in Equation (4.30) with 𝑦∗
instead of 𝑦 allows us to take advantage of the calculus of optimal solutions later in the
proof. As such, Equation (4.30) can be rewritten using the optimal path in the integrand
of the second integral.

Δ𝐼 ≈ 𝜖 ∫

𝑥2

𝑥1

[

𝐹𝑦𝜙(𝑥) + 𝐹 ̇𝑦∗𝜙̇(𝑥)
]

𝑑𝑥 + ∫

𝑥2+𝛿𝑥

𝑥2

𝐹 (𝑥, 𝑦∗, 𝑦̇∗)𝑑𝑥

𝐵

. (4.31)

In an attempt to simplify Equation (4.31) to a more useful form, some additional ap-
proximations must be made in order to have the upper limits of the integrals be identical.
To do so, we are going to find it necessary to define the nature of the extension of the
optimal path in Figure 4.2 through the constraint surface, and ending at 𝑥2 + 𝛿𝑥. As
stated, he optimal path, 𝑦∗, is not defined over this part of the domain, so the nature of
the extension is chosen at our convenience. Furthermore, considering that 𝛿𝑥 is small,
the additional area underneath 𝐹 (𝑥, 𝑦∗, 𝑦̇∗) as a result of this extension, mathematically
represented by the underset 𝐵 integral is Equation (4.31), is relatively unaffected by the
nature of the extension. Because of this, we choose to extend 𝑦∗ such that 𝐹 (𝑥, 𝑦∗, 𝑦̇∗)
remains constant in (𝐹 , 𝑥) space throughout this interval. We can take comfort knowing
that the mean value theorem of integrals allows us to approximate the area as a result of
any extension of the path using a simple rectangle. This last integral of equation (4.31) is
then approximated by the area of a rectangle shown in Figure 4.4. Essentially, the green
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rectangle in Figure 4.4 is equivalent to the red rectangle in Figure 4.3. Using the mean
value theorem of integrals, we make the following assertion

∫

𝑥2+𝛿𝑥

𝑥2

𝐹 (𝑥, 𝑦∗, 𝑦̇∗)𝑑𝑥 ≈ (𝛿𝑥)𝐹 (𝑥, 𝑦∗, 𝑦̇∗)
|

|

|

|𝑥=𝑥2
(4.32)

and substitute this result into Equation (4.31). Doing so results in

Δ𝐼 ≈ 𝜖 ∫

𝑥2

𝑥1

[

𝐹𝑦𝜙(𝑥) + 𝐹 ̇𝑦∗𝜙̇(𝑥)
]

𝑑𝑥 + (𝛿𝑥)𝐹 (𝑥, 𝑦∗, 𝑦̇∗)
|

|

|

|𝑥=𝑥2
𝐵

. (4.33)

Figure 4.4: Approximation of additional area using MVT for integrals.
The above shows the horizontal extension of the𝐹 (𝑥, 𝑦∗.𝑦̇∗) into the interval (𝑥2, 𝑥2+𝛿𝑥).
This horizontal extension, and its area in green, will allow the second integral of Equation
(4.31) to be evaluated using simple geometry. This area is used as an approximate of the
area in the same region under the 𝐹 (𝑥, 𝑦, 𝑦̇), whose path is shown in black.

In addition to this substitution, we invoke the results of Equation (4.15), and rewrite
the Equation (4.33) as

Δ𝐼 ≈ 𝜖 ∫

𝑥2

𝑥1

[

𝐹 ∗
𝑦 − 𝑑

𝑑𝑥
𝐹 ̇𝑦∗

]

𝜙(𝑥)𝑑𝑥 + 𝜖𝜙(𝑥2)𝐹𝑦̇
|

|

|

|𝑥=𝑥2
+ (𝛿𝑥)𝐹 (𝑥, 𝑦∗, 𝑦̇∗)

|

|

|

|𝑥=𝑥2
. (4.34)

At this point, we focus on what is contributing to 𝛿𝑦. As we can see in Figure 4.5, it is
the result of two independent vertical distances. First of all, at 𝑥2, 𝑦 and 𝑦∗ differ because
of the perturbing function by an amount of 𝜖𝜙(𝑥2). However, because in our example,
the candidate function keeps increasing through the interval (𝑥2, 𝑥2 + 𝛿𝑥) the perturbing
function does not capture the entire 𝛿𝑦. There is an additional contribution resulting from
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the two paths terminating at different values of 𝑥. If we extend 𝑦∗ tangentially so that
it also terminates at 𝑥2 + 𝛿𝑥 as shown in Figure 4.5, we can graphically see where this
additional contribution to 𝛿𝑦 originates. Mathematically, it is the sum of two terms; one
from the perturbing function evaluated at 𝑥2 and the other from the tangential extension
of the optimal path, both of which are captured by

𝛿𝑦 = 𝜖𝜙(𝑥2) + 𝑦̇∗(𝑥2)𝛿𝑥. (4.35)

Figure 4.5: Contributors to 𝛿𝑦 as a result of variable endpoint.
The above shows relationships of the deviations of the neighboring curve from the opti-
mal curve. The value for 𝛿𝑦. is the sum of two different vertical difference: one from the
perturbing function at 𝑥2, 𝜖𝜙(𝑥2) in dashed black and one from the tangential extension
of 𝑦∗ to 𝑥2 + 𝛿𝑥, red closed brace.

We will use this relationship to substitute for 𝜖𝜙(𝑥2) in Equation (4.34). Since Equa-
tion (4.35) is a first order approximation of the extension of of 𝑦∗, this expression is
called the first variation of 𝐼 or 𝛿𝐼 . The motivation for this substitution is to define the
first variation of 𝐼 as a function of only 𝜖 and not the candidate path or the perturbing
function, both of which are arbitrary. Later in the proof, we will take the derivative of
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𝛿𝐼 with respect to 𝜖, leveraging the fact that 𝜖 = 0 at the optimal function. Substituting
Equation (4.35) into Equation (4.34), we get

𝛿𝐼 ≈𝜖 ∫

𝑥2

𝑥1

[

𝐹 ∗
𝑦 − 𝑑

𝑑𝑥
𝐹 ̇𝑦∗

]

𝜙(𝑥)𝑑𝑥 + (𝛿𝑦 − 𝑦̇∗𝛿𝑥)𝐹𝑦̇
|

|

|𝑥=𝑥2

+ (𝛿𝑥)𝐹 (𝑥, 𝑦∗, 𝑦̇∗)||
|𝑥=𝑥2

.
(4.36)

Collecting all terms with 𝛿𝑥, Equation (4.36) becomes

𝛿𝐼 ≈𝜖 ∫

𝑥2

𝑥1

[

𝐹 ∗
𝑦 − 𝑑

𝑑𝑥
𝐹 ̇𝑦∗

]

𝜙(𝑥)𝑑𝑥 + 𝐹𝑦̇
|

|

|𝑥=𝑥2
(𝛿𝑦)

+
[

𝐹 ||
|𝑥=𝑥2

− 𝑦̇∗𝐹𝑦̇
|

|

|𝑥=𝑥2

]

(𝛿𝑥).
(4.37)

Previously, the terms involving 𝛿𝑦 and 𝛿𝑥 were eliminated from the fixed endpoint
proof, since these are the deviations of the paths as a result of the transversality condition.
That is, there is no deviation from at the endpoint when we define the final distribution
exactly. During the fixed endpoint proof, the first variation, 𝛿𝐼 only had the integral term
from Equation (4.37). At this point, it is worth assessing what we have. The ultimate goal
is to minimize 𝐼 , our functional. In doing so, we define the total variation as 𝐼[𝑦]−𝐼[𝑦∗].
Since 𝑦∗ is the minimum path, all neighboring paths are larger when evaluated in our
functional, so the difference above is negative. That is

Δ𝐼 ≈ 𝛿𝐼 = 𝐼[𝑦] − 𝐼[𝑦∗] ≤ 0. (4.38)
With Equation (4.37), we have a first order approximation for this variation. Because
𝜖 is arbitrary in both magnitude and sign, Equation (4.38) is true if Δ𝐼 ≈ 𝛿𝐼=0, since
changing the sign of 𝜖 moves the candidate function across the optimal path. Of course,
this does not require that every individual term in Equation (4.37) be 0. However, we
recognize the first term involving the integral from our proof of the Euler-Lagrange equa-
tion and, identical to the fixed end point problem, this integral must be 0. Even though
we do not yet know which point on the constraint surface the optimal path will intersect,
that is 𝑥2 is still unknown, we do know that the optimal path must be the best path that
intersects it at that point, otherwise it would not be optimal. So, the integral term in
Equation (4.37) must be 0 and thus a solution to the Euler-Lagrange equation. The rest
of Equation (4.37) must also be 0

𝐹 ̇𝑦∗
|

|

|𝑥=𝑥2
(𝛿𝑦) +

[

𝐹 ||
|𝑥=𝑥2

− 𝑦̇∗𝐹 ̇𝑦∗
|

|

|𝑥=𝑥2

]

(𝛿𝑥) = 0 (4.39)
or

𝐹 ̇𝑦∗
|

|

|𝑥=𝑥2
(𝛿𝑦) + (𝐹 − 𝐹 ̇𝑦∗ 𝑦̇∗)

|

|

|𝑥=𝑥2
𝛿𝑥 = 0. (4.40)

Absent from Equation (4.39) is any explicit dependence on the constraint surface. This
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surface is a crucial aspect to the transversality condition and must play a role in choosing
the optimal path. To introduce the surface, we look at its behavior at the intersection point
with the optimal path. In Equation (4.35), we have an expression for 𝛿𝑦 that relies on the
perturbing function and the tangential extension of the optimal path. Alternatively, we
could define 𝛿𝑦 as the tangential extension of the the constraint surface 𝜎(𝑥) in the inter-
val (𝑥2, 𝑥2 + 𝛿𝑥), providing that 𝛿𝑥 is small enough to make a first order approximation
of 𝜎(𝑥) accurate, which it is. With this idea, we redefine 𝛿𝑦 as 𝛿𝑦 ≈ 𝜎̇(𝑥2)𝛿𝑥.

Using this in conjunction with Equation (4.39)

𝐹 ̇𝑦∗
|

|

|𝑥=𝑥2
(𝜎′(𝑥2))(𝛿𝑥) +

[

𝐹𝑦∗
|

|

|𝑥=𝑥2
− 𝑦̇∗𝐹 ̇𝑦∗

|

|

|𝑥=𝑥2

]

(𝛿𝑥) = 0

=
[

𝐹 ̇𝑦∗
|

|

|𝑥=𝑥2
(𝜎′(𝑥2)) +

[

𝐹𝑦∗
|

|

|𝑥=𝑥2
− 𝑦̇∗𝐹 ̇𝑦∗

|

|

|𝑥=𝑥2

]]

(𝛿𝑥) = 0

=
[

𝐹 + (𝜎̇ − 𝑦̇)𝐹𝑦̇
]

|

|

|𝑥=𝑥2
(𝛿𝑥) = 0.

(4.41)

Considering that 𝛿𝑥 ≠ 0 in general, for Equation (4.41) to be true
[

𝐹 + (𝜎̇ − 𝑦̇)𝐹𝑦̇
]

|

|

|𝑥=𝑥2
= 0. (4.42)

which is the transversality condition for a single parameter manifold, previewed in Equa-
tion (4.24)

With little effort, these results can be expanded to accommodate for multi-parameter
distributions with higher dimensional transversality constraints. This is going to involve
extending the single value parameter to an 𝑛-dimensional vector, and redefining the con-
straint as a multi-variable function. Fundamentally, the transversality requirement is
captured in Equation (4.40). In order to assist the introduction of higher dimension no-
tation, this equation can be rewritten as an inner product of two vectors.

[

(𝐹 − 𝐹 ̇𝑦∗)
𝐹𝑦∗

]

⋅
[

𝛿𝑥
𝛿𝑦

]

= 0 (4.43)

evaluated at 𝑥 = 𝑥2.Without changing direction, we change the magnitude of the second vector in the
inner product in Equation (4.43) by a factor of (𝛿𝑥−1).

1
𝜕𝑥

[

𝛿𝑥
𝛿𝑦

]

=
[

1
𝜕𝑦 ⁄ 𝜕𝑥

]

=
[

1
𝜎̇(𝑥2)

]

. (4.44)
In Equation (4.44), we have a vector that is clearly tangent to the transversality surface

at 𝑥 = 𝑥2. This equation reveals an orthogonality relationship between the tangent vector
to the surface at 𝑥 = 𝑥2 and a vector involving the functional.

In order to take a closer look of the geometry of the constraint surface and to facilitate
its extension to multi-parameter manifolds, we redefine it as a level curve of a higher
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dimensional surface. Up until this point, the surface had been defined as 𝑦 = 𝜎(𝑥).
Alternatively, we can define a three dimensional surface 𝑆(𝑥, 𝑦) = 𝑦−𝜎(𝑥) and redefine
the terminal surface as 𝑆(𝑥, 𝑦) = 0 allowing us to use some concepts from multi-variable
calculus to extend Equation (4.44) to higher dimensions.

With the transversality surface redefined in this way, we can find and utilise properties
of the gradient of this surface. The gradient is typically defined as

∇𝑆 =

[ 𝜕𝑆
𝜕𝑥
𝜕𝑆
𝜕𝑦

]

=
[

𝑆𝑥
𝑆𝑦

]

. (4.45)

It is well known that the direction of gradient to a surface defines the orthogonal vector
to the surface at the point which it is evaluated, and is a property easily extended to
higher dimensional space. Being orthogonal to the surface, the gradient must also be
orthogonal to any tangent vector to the surface, including

[

1
𝜎̇(𝑥2)

]

. In Equation (4.28),
we already established an orthogonal vector to this. These mutually orthogonal vectors
must be parallel to each other, which will yield a new expression for the transversality
condition.

[

(𝐹 − 𝐹 ̇𝑦∗)
𝐹𝑦∗

]

= 𝛼
[

𝑆𝑥
𝑆𝑦

]

. (4.46)
Equation (4.46) is, perhaps, a complicated notation for conditions that were more

simply stated in Equation (4.24). However, written in this way, we can logically extend
the conditions to multi-parameter distributions. First of all our only concern is that these
vectors be parallel, so while the the scalar multiple 𝛼 has a logical part in the proof, we
can let 𝛼 = 1 without changing the conditions. Secondly, and more importantly is the
extension of these ideas into higher dimensions. In that case, the functional 𝐹 becomes
dependent on a vector of parameters 𝐲 = [𝑦1, 𝑦2,… , 𝑦𝑛] and the surface becomes a func-
tion of these parameters 𝑆(𝑥, 𝑦1, 𝑦2,… , 𝑦𝑛) = 0. The transversality conditions can be
written as

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐹 − [𝐹𝐲̇] ⋅ [𝐲̇]
𝐹𝑦1∗
𝐹𝑦2∗
⋮
𝐹𝑦𝑛∗

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆𝑥
𝑆𝑦1
𝑆𝑦2
⋮
𝑆𝑦𝑛

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (4.47)

Obtaining closed form solutions to the Euler-Lagrange equation is mathematically dif-
ficult on complicated manifolds. Introducing transversality conditions adds orders of
magnitude to the difficulty of the task. In this work, the first novel application of both
concepts was done on the 2-sphere. Using this surface as an introduction it both offered a
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natural transition from spherical MDL to geodesics as well as providing a relatively sim-
ple surface on which to apply transversality conditions. However, considering that the
remaining on this dissertation focuses on the paramteer space for Gaussian distributions,
the results of the working on the sphere are provided in the appendices.

4.4 Euler-Lagrange for univariate Gaussian
Here, we continue or exploration of transversality conditions as they apply to univariate
Gaussian distributions. We show the derivation of the Fisher information matrix, fol-
lowed by the Euler-Lagrange equations. Both of these are used to develop the transver-
sality conditions and applied to surfaces on the manifold of all normal distributions.

4.4.1 Euler-Lagrange Equation for Gaussian
Let a sample𝑋 be realized from a univariate normal distribution. That is𝑋𝑖 =

{

𝑥1, 𝑥2,… , 𝑥𝑛
}

∼
𝑁(𝜇, 𝜎2) . The probability density function for 𝑋𝑖 is

𝑓 (𝑥𝑖; 𝜃) =
1

√

2𝜋𝜎2
exp

{

− 1
2𝜎2

(

𝑥𝑖 − 𝜇
)2
}

(4.48)

and the log-likelihood is

𝑙(𝜇, 𝜃,𝑋) = −1
2
log(2𝜋𝜎2) − 1

2𝜎2

{

∑

(𝑥𝑖 − 𝜇)2
}

. (4.49)

Using Equation (3.10) and the above probability density function, we can find the entries
𝑔𝑖𝑗 to the Fisher Information matrix for the univariate Normal distribution

𝑔11 = −
[

𝜕2

𝜕𝜇2

(

−1
2
log(2𝜋𝜎2) − 1

2𝜎2

{

∑

(𝑥𝑖 − 𝜇)2
})

]

= −
[

− 1
2𝜎2

{

𝜕
𝜕𝜇

∑
(

−2(𝑥𝑖 − 𝜇)
)

}]

= −
[

− 1
𝜎2

]

= 1
𝜎2
,

(4.50)
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𝑔12 = 𝑔21 = −
[

𝜕2

𝜕𝜇𝜕𝜎

(

−1
2
log(2𝜋𝜎2) − 1

2𝜎2

{

∑

(𝑥𝑖 − 𝜇)2
})

]

= −
[

− 1
2𝜎2

{ 𝜕
𝜕𝜎

∑
(

−2(𝑥𝑖 − 𝜇)
)

}]

= 0,

(4.51)

𝑔22 = −
[

𝜕2

𝜕𝜎2

(

−1
2
log(2𝜋) − 1

2
log 𝜎2) − 1

2𝜎2

{

∑

(𝑥𝑖 − 𝜇)2
})

]

= −
[ 𝜕
𝜕𝜎

{

−1
𝜎
+ 1
𝜎3

∑
(

(𝑥𝑖 − 𝜇)2
)

}]

= −
[ 1
𝜎2

− 3
𝜎4

∑
(

(𝑥𝑖 − 𝜇)2
)

]

= 2
𝜎2
.

(4.52)

Displaying these as a matrix, the Fisher information matrix for the univariate Gaus-
sian is

𝑔 =

[

1
𝜎2

0
0 2

𝜎2

]

. (4.53)

This metric tensor has some interesting properties. First of all, it is entirely indepen-
dent of 𝜇, so the concept of distance does not change as we move along isovariance lines.
Secondly, the metric rewards, in the sense of arc length, the paths that choose to traverse
in the space with larger standard deviations. In Figure 4.6, contour lines are shown to
show the relative distances on the manifold and different values for the standard devia-
tion. Traversing along the manifold at a standard deviation of 1.5 is quintuple as far as
traversing the between the same two means at a standard deviation of 3.4. Because of
the behavior of the Fisher information, geodesics will favor traveling through parts of
the manifold occupied by distributions with large standard deviations.

Understanding that the distances between distributions on a manifold is a measure of
similarity, intuition confirms the idea that smaller standard deviations are less favorable
than large standard deviations if one is concerned with minimizing distances. In Figure
4.7, four distributions are plotted in two pairs. In each pair, one distribution has 𝜇 =
−5 and the other has 𝜇 = 5, making the distribution ten “𝜇” units from each other,
a seemingly equal difference, However, in Figure 4.7a, each distribution has 𝜎 = 1
whereas in Figure 4.7b each distribution has 𝜎 = 50. It’s clear that the distributions
with large standard deviations are inherently more similar and should probably be closer
together on the manifold. If data were drawn from one of the distributions in Figure 4.7a,
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Select Level Curves of Metric on Gaussian Distribtuions
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Figure 4.6: Fisher information plot in parameter space of univariate Gaussian.
Contour lines displaying affects that the metric tensor has on paths traversed along dif-
ferent standard deviations. Paths traveling along higher standard deviations are shorter
than equivalent Euclidean paths traversing along shorter standard deviations.

it would be easy to discern from which of the two distributions it originated. On the other
hand, data drawn from a distribution in Figure 4.7b could easily be confused as coming
from its counterpart. These ideas reinforce the definitions of the Fisher information and
distinguishable distributions, outlined earlier in this work.

With the metric Equation (4.53), the argument for the arc length functional that we
want to minimize is

𝐹 = 1
2

[

𝜇̇2

𝜎2
+ 2𝜎̇2

𝜎2

]

. (4.54)
Here, we once again have adopted the common practice of ignoring the square root

sign associated with Pythagorean distances, since the square root function is monotoni-
cally increasing and will share optimizing paths. Using this function with Equation (4.8),
we begin the proof by focusing on 𝜇 we can easily see that 𝐹𝜇 = 0 We now need

𝐹𝜇̇ =
𝜇̇
𝜎2
. (4.55)

Using this
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(a) 𝜎 = 1
(b) 𝜎 = 50

Figure 4.7: Visual comparison of normal distributions with different variances.
Shown above in Figure 4.7a is two distributions: 𝑁(−5, 1) and 𝑁(5, 1). In Figure 4.7b
are two distributions: 𝑁(−5, 50) and𝑁(5, 50). Even though the difference of the means
in each pair of distributions are the same, the distributions in Figure 4.7b appear more
similar.

𝑑
𝑑𝑥
𝐹𝜇̇ =

𝜎2𝜇̈ − 2𝜎𝜇̇𝜎̇
𝜎4

0 = 𝐹𝜇 −
𝑑
𝑑𝑡
𝐹𝜇′

= 0 −
𝜎2𝜇̈ − 2𝜎𝜇̇𝜎̇

𝜎4

= −𝜎2𝜇̈ + 2𝜎𝜇̇𝜎̇

𝜇̈ =
2𝜇̇𝜎̇
𝜎
.

(4.56)

Focusing on 𝜎,
𝐹𝜎 = − 1

𝜎3

[

𝜇̇2 + 2𝜎̇2]

and
𝐹𝜎̇ =

2𝜎̇
𝜎2
. (4.57)

Taking the derivative with respect to the parameter
𝑑
𝑑𝑥
𝐹𝜎̇ =

2𝜎2𝜎̈ − 4𝜎̇2𝜎
𝜎4

.
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With this

0 = − 1
𝜎3

[

𝜇̇2 + 2𝜎̇2] − 2𝜎2𝜎̈ − 4𝜎̇2𝜎
𝜎4

= −𝜇̇2 − 2𝜎̇2 − 2𝜎𝜎̈ + 4𝜎̇2

= −𝜇̇2 − 2𝜎̇2 − 2𝜎𝜎̈ + 4𝜎̇2 (4.58)
𝜎̈ =

2𝜎̇2 − 𝜇̇2

2𝜎
.

So, the Euler-Lagrange equation for the Gaussian are

𝜇̈ =
2𝜇̇𝜎̇
𝜎

(4.59)
and

𝜎̈ =
2𝜎̇2 − 𝜇̇2

2𝜎
. (4.60)

To solve this second order system of differential equations, we take advantage of a
common change of variable technique that will convert this to a first order system by
employing the following substitutions.

𝑦1 = 𝜇
𝑦2 = 𝜇̇
𝑦3 = 𝜎
𝑦4 = 𝜎̇.

(4.61)

With these changes, the Euler-Lagrange equations become
𝑦′1 = 𝑦2

𝑦′2 =
2𝑦2𝑦4
𝑦3

𝑦′3 = 𝑦4

𝑦′4 =
2𝑦24 − 𝑦

′2
2

2𝑦3
,

(4.62)

4.4.2 Example for Gaussian Variable Endpoint
If given fixed boundary conditions, all that is required to find the shortest path are Equa-
tions (4.59) and (4.60). However, the goal is to find the closest distribution on a given
surface, the transversality conditions for the Gaussian need to be applied. For clarity, a
specific example will be used.
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What is the shortest path from the distributions𝑁(0, 0.5) to a distribution on the line
𝑆(𝜇, 𝜎) = 𝜎 − 𝜇2=0?

Equation (4.47) gives us everything required to find the additional conditions to solve
this. Considering the surface does not depend on the time parameter, the remaining
requirements are 𝐹𝜇̇ = 𝑆𝜇 and 𝐹𝜎̇ = 𝑆𝜎 , with the functional 𝐹 (𝜇, 𝜎) already defined in
Equation (4.54).

First, focusing on 𝜇, we already have 𝐹𝜇̇ = 𝜇̇
𝜎2

. From our surface, we can see that
𝑆𝜇 = −2𝜇 (4.63)

With these
𝐹𝜇̇ = 𝑆𝜇
𝜇̇
𝜎2

= −2𝜇

𝜎2 = −
𝜇̇
2𝜇

(4.64)

Similarly, for 𝜎
𝐹𝜎̇ = 𝑆𝜎
2𝜎̇
𝜎2

= 1

𝜎2 = 2𝜎̇

(4.65)

Equating Equations (4.64) and (4.65), we can see that the transersality condition for
the surface 𝑆(𝜇, 𝜎) = 𝜎 − 𝜇2 is

2𝜎 = −
𝜇̇
2𝜇

(4.66)
In summary, the shortest path from 𝑁(0, 0.5) to the nearest distribution on the line

𝑆(𝜇, 𝜎) = 𝜎 − 𝜇2 must satisfy the following:

2𝜎 = −
𝜇̇
2𝜇

𝜎 = 𝜇2 (from the surface)
𝜇̈ =

2𝜇̇𝜎̇
𝜎

𝜎̈ =
2𝜎̇2 − 𝜇̇2

2𝜎

(4.67)

The results are contrary to usual Euclidean idioms suggesting that the shortest path
between two points is a straight line. In Figures 4.8 and 4.9, it can be seen that the
shortest path involves traversing through larger standard deviations, with more favorable
conditions according to the Fisher metric tensor. The final distribution is 𝑁(0.71, 0.50),
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which is on the terminal prescribed terminal surface and the distance along this path is
1.306. Noteworthy is the fact that it appears that the almost horizontal line connecting
the initial distribution and final distribution appears to be shorter that the above path.
However, the metric tensor defined by the Fisher Information matrix heavily penalizes
this path. Essentially, each unit parallel to the 𝜇 axis at 𝜎 = 0.5 has an arc length of
much larger than its Euclidean distance.

0 0.1 0.2 0.3 0.4 0.5 0.6

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Figure 4.8: Shortest path from 𝑁(0, 0.5) to 𝜎 = 𝜇2.
Shortest path from 𝑁(0, 0.5) to 𝜎 = 𝜇2. The final distribution is 𝑁(0.71, 0.50). The
distance is 1.306.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

Figure 4.9: Shortest path from 𝑁(0, 0.5) to 𝜎 = 𝜇2 as terminal surface.
Shortest path from 𝑁(0, 0.5) to 𝜎 = 𝜇2. The blue path is identical to the path found in
Figure 4.8 but the terminal surface, 𝑆(𝜇, 𝜎) = 𝜎 − 𝜇2 = 0 is shown in red.

Figure 4.10 shows seven intermediate distribution along the geodesic. As expected
by the path, the distributions along the path have a larger standard deviation. As already
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established, larger standard deviations hide the uniqueness in univariate Gaussians, thus
providing a logical bridge between the initial distribution and the terminal surface.
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Figure 4.10: Evolution of Gaussian from N(0,0.5) to final distribution.
Showing the evolution of the seven Gaussian distributions as they transition from N(0,.5)
(leftmost distribution) to the closest distributions on 𝜎 = 𝜇2, N(.71,0.5) (rightmost dis-
tribution).

As an example to provide further insight, Figure 4.11 shows the shortest path from
the distribution 𝑁(5, .35) to the line 𝜇 = 7. As expected, the path traverses through
higher standard deviations. Furthermore, it achieves the highest standard deviation at its
eventual terminal distribution. Logically, 𝜎̇ = 0 at the final distribution since 𝜎̇ < 0,
at the terminal distribution the shortest path would start to be penalized by the tensor
prior to achieving its destination. Conversely, if 𝜎̇ > 0 at the terminal distribution. the
shortest path would have not yet used the most beneficial standard deviations, according
to the Fisher Information matrix.

The intermediate distributions shown in Figure 4.12 show the distributions change as
they seek the final surface. As the path move towards the final surface 𝜇 = 7, the spread
of the distributions get larger, with the largest spread being the final distribution. This is
expected, since there is no benefit to revisiting smaller standard deviation, according to
the metric tensor.
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Figure 4.11: Shortest path to 𝑆(𝜇) = 𝜇 − 7 = 0.
Shortest path from𝑁(5, 0.35) to 𝜇 = 7. The final distribution is𝑁(7, 1.46). The distance
is 3.0.
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Figure 4.12: Evolution of distributions to 𝜇 = 7.
Showing the evolution of seven Gaussian distributions as they transition from N(5,.35)
(leftmost distribution) to the closest distributions on 𝜇=7, N(7,1.46) (rightmost distribu-
tion).
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4.5 Euler-Lagrange Equation for Multivariate Gaussian
Distributions

The Euler-Lagrange equations are a system of second differential equations used to find
extremals in calculus of variation problems. Euler’s and Lagrange’s original motivation
was in solving the isochrone curve, but applications in many areas soon emerged. Here,
we employ the Euler-Lagrange equations to find shortest path between two points on a
Riemannian manifold.

To find any distance on a manifold, you need to define a distance concept using a
metric tensor. Rao [80] was first to determine that the Fisher information matrix satisfies
the conditions of a metric on a Riemannian manifold, and is widely used because of its
invariance [30].

Recall that the Fisher information matrix is a measure of how much information about
the parameter of interest from a multivariate distribution is revealed from collected data.
Intuitively, it can be considered an indication of how "peaked" a distribution is around
a parameter. If the distribution is sharply peaked, very few data points are required to
locate it. As such, each data point carries a lot of information. For a multivariate proba-
bility distribution, the Fisher information matrix is given by we use the Equations (A.4)
or (3.10). In our model selection criteria, the Fisher information was used to measure a
ratio of of volumes in order to properly penalize models on a manifold. Now, the Fisher
Information matrix is the metric tensor that will define distances on Riemannian mani-
folds. Given a distribution on a manifold, by use of this metric tensor, we can identify a
closest second distribution residing on a surface within the manifold. Furthermore, find-
ing the Fisher Information matrix for the multivariate Gaussian will allow exploration
into the behaviour of geodesics on their manifold via the use of Equation 4.6.

Here, we consider the 𝑛-dimensional multivariate Gaussian with density given by:

𝑓 (𝑥𝑛 ∶ 𝜇𝑛,Σ) = 2𝜋− 𝑛
2 det (Σ)−

1
2 exp−

(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)
2

(4.68)
where 𝑋 is a data vector, 𝜇 = 𝜇1, 𝜇2, ..., 𝜇𝑛 is the 𝑛-dimensional mean vector of the

distribution and Σ is the 𝑛 × 𝑛 covariance matrix.
Since the covariance matrix is symmetric, the number of unique parameters con-

tained in it is the sum of the number of diagonal elements and the upper (𝑛+1)(𝑛)
2

= 𝑛(𝑛+1)
2

.
With the 𝑛-dimensional mean vector, the total number of scalar parameters in an 𝑛-
dimensional multivariate Gaussian is (𝑛+3)𝑛

2
, which will be the size of the Fisher Infor-

mation matrix. For the purpose of this proof, we will collect all of these parameters as a
single vector, 𝜃 such that

𝜃 = {𝜇1, 𝜇2, ...𝜇𝑛
𝜃1,𝜃2,...,𝜃𝑛

, 𝜎2
1,1, 𝜎

2
1,2, ..., 𝜎

2
𝑛,𝑛}

𝜃𝑛+1,...𝜃 (𝑛+3)𝑛
2

(4.69)
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To clarify, this new parameter 𝜃 has the mean vector 𝜇 as its first 𝑛 components
and the resulting components are made up of the unique elements of the covariance
matrix, starting with the first row, followed, by the second row but without the first entry,
since Σ1,2 = Σ2,1 and Σ1,2 is already included in 𝜃. We capture all of the parameters of
the multivariate Gaussian distribution in this non-traditional vector form because it is
more conceptually inline with the calculation of the Fisher Information matrix defined
in Equation (A.4).

So using Equations (A.4) and 4.68, the Fisher Information for the general multivariate
Gaussian distribution is

𝑔𝑖𝑗(𝜇,Σ) =
1
2
𝑡𝑟
[(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

+
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1 𝜕𝜇
𝜕𝜃𝑗

(4.70)

for which a very detailed proof can be found in the appendix of this work. In the case
of the bivariate Gaussian distribution, this 5 x 5 matrix has only 15 unique elements,
because of its symmetry. Once again, the detailed derivation of each of the elements is
provided in the appendix. The results are
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𝑔11 =
𝜎2
2

𝜎2
1𝜎

2
2 − 𝜎

2
12

𝑔22 =
𝜎2
1

𝜎2
1𝜎

2
2 − 𝜎

2
12

𝑔33 =
1
2

(

𝜎2
2

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

𝑔44 =
1
2

(

𝜎2
1

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

𝑔55 =
𝜎2
1𝜎

2
2 + 𝜎

2
12

(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

𝑔12 = −
𝜎12

𝜎2
1𝜎

2
2 − 𝜎

2
12

= 𝑔21

𝑔34 =
1
2

(

𝜎12
𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

= 𝑔43

𝑔35 = −
𝜎12𝜎2

2
(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2
= 𝑔53

𝑔45 = −
𝜎12𝜎2

1
(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2
= 𝑔54

(4.71)

All elements dealing with the information between a component of 𝜇 and an element
of Σ vanish, which is a property extended to every multivariate Gaussian distributions
of higher dimensions than the bivariate case.

4.5.1 Euler-LaGrange equations for Bivariate Gaussian Distribu-
tions

In general, the Euler-Lagrange equations have proven very difficult to solve for the 𝑛−dimensional
multivariate Gaussian distribution, in part because the derivatives required are elusive.
However, restricting the multivariate Gaussian to one with a bivariate mean vector leaves
us with problems that have both manageable solutions and interesting consequences.

With the Fisher information matrix defined in Equation 4.70 and more specifically
for the bivariate Gaussian distribution discussed in the appendix, and the general form of
the arc length functional from Equation 4.6, we can define the functional to be minimized
in order to find the geodesic on a bivariate Gaussian distribution as
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𝐾(𝜃) =
𝜎2
2 𝜇̇1

2

𝑘
+
𝜎2
1 𝜇̇2

2

𝑘
+

(𝜎2
2)

2(𝜎̇2
1)

2

2𝑘2
+

(𝜎2
1)

2(𝜎̇2
2)

2

2𝑘2
+
𝜎2
1𝜎

2
2 𝜎̇

2
12

𝑘2
+
𝜎2
12𝜎̇

2
12

𝑘2

−
2𝜎12𝜇̇1𝜇̇2

𝑘
+
𝜎2
12𝜎̇

2
1 𝜎̇2

2

𝑘2
−

2𝜎12𝜎2
2 𝜎̇

2
1 𝜎̇12

𝑘2
−

2𝜎12𝜎2
1 𝜎̇

2
2 𝜎̇12

𝑘2

(4.72)

where 𝑘 = 𝜎2
1𝜎

2
2 − 𝜎

2
12.After a considerable amount of algebra, Equation 4.72 and Equation 4.8 finally yield

the system of second order differential equations with solutions that satisfy the Euler-
LaGrange equation and reveal the shortest path between two distributions.

𝜇̈1 =
𝜇̇1𝜎̇2

1𝜎
2
2 + 𝜇̇2𝜎

2
1 𝜎̇12 − 𝜇̇2𝜎̇

2
1𝜎12 − 𝜇̇1𝜎12𝜎̇12

𝜎2
1𝜎

2
2 − 𝜎

2
12

(4.73)

𝜇̈2 =
𝜇̇2𝜎2

1 𝜎̇
2
2 + 𝜇̇1𝜎

2
2 𝜎̇12 − 𝜇̇1𝜎̇

2
2𝜎12 − 𝜇̇2𝜎12𝜎̇12

𝜎2
1𝜎

2
2 − 𝜎

2
12

(4.74)

𝜎̈2
1 =

𝜇̇2
1𝜎

2
12 + 𝜎̇

2
1𝜎

2
2 + 𝜎

2
1 𝜎̇

2
12 − 𝜇̇

2
1𝜎

2
1𝜎

2
2 − 2𝜎̇2

1𝜎12𝜎̇12
𝜎2
1𝜎

2
2 − 𝜎

2
12

(4.75)

𝜎̈2
2 =

𝜇̇22𝜎2
12 + 𝜎̇

2
2𝜎

2
1 + 𝜎

2
2 𝜎̇

2
12 − 𝜇̇

2
2𝜎

2
1𝜎

2
2 − 2𝜎̇2

2𝜎12𝜎̇12
𝜎2
1𝜎

2
2 − 𝜎

2
12

(4.76)

𝜎̈12 = −
𝜎12𝜎̇2

12 − 𝜇̇2𝜇̇2𝜎
2
12 − 𝜎

2
1 𝜎̇

2
2 𝜎̇

2
12 − 𝜎̇

2
1𝜎

2
2 𝜎̇

2
12 + 𝜎̇

2
1 𝜎̇

2
2𝜎

2
12 + 𝜇̇2𝜇̇2𝜎

2
1𝜎

2
2

𝜎2
1𝜎

2
2 − 𝜎

2
12

(4.77)

Along with satisfying this system of equations, the solutions presented here must
satisfy transversality conditions at one or both the terminal and initial boundaries. Those
conditions will be prescribed accordingly, considering the application of interest.
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4.6 Results

4.6.1 Isotropic Terminal Distribution
Multivariate Gaussian distributions can be computationally expensive, especially when
trying to use their Fisher Information matrix, considering that the number of parameters
grows quadradically with dimension. However, isotropic Gaussian distributions, defined
below in 4.78 grow only linearly with the mean vector which can be orders of magnitude
more favorable. Accordingly, If given a general multivariate Gaussian distribution, it
would be useful computationally to find the isotropic distribution that is most similar.

Let Σ𝑖 be the covariance matrix of an multivariate Gaussian distribution with 𝑛mean
components. This distribution is isotropic if

Σ𝑖 = 𝜎2𝐼𝑛 (4.78)
where 𝐼𝑛 is the 𝑛−dimensional identity matrix.

In addition to being computationally efficient, isotropic Gaussian distributions pro-
vide a convenient submanifold on which we can build a transversality condition. As
such, we can start with any general bivariate Gaussian distribution and locate the closest
member of isotropic constraint surface defined by the transversality condition.

Formally, let Θ capture all the parameters of a multivariate Gaussian distribution
according to Equation 4.69. The functional to minimize is given be

min 𝐾 = 1
2 ∫ Θ̇𝑇 𝑔(Θ)Θ̇𝑑𝑥

Θ1 = [𝜇1,Σ1] Θ2 = 𝜙(𝜇2,Σ2)
(4.79)

where 𝜇1 and Σ1 are defined but 𝜇2 and Σ2 must satisfy the condition in equation 4.78
For the bivariate Gaussian distribution, the terminal surface described in Equation

4.78 can be defined by the surface

Φ(𝜎2
1 , 𝜎

2
2) = 𝜎2

1 − 𝜎
2
2 = 0 (4.80)

with 𝜇1 free and 𝜎12 = 0
Apply Equation (4.47) to this surface, we get the condition

(𝜎2
2)

2𝜎̇1
2 + (𝜎2

1)
2𝜎̇2

2 + 𝜎2
12𝜎̇2

2 + 𝜎2
12𝜎̇1

2 − 2𝜎12𝜎2
1 ̇𝜎12 − 2𝜎12𝜎2

2 ̇𝜎12 = 0 (4.81)
So, in addition to the Euler-Lagrange equations in Equation 4.73 thru Equation 4.77,

requiring the final distribution to be isotropic requires the geodesic to also satisfy Equa-
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tion 4.81, along with with the terminal distribution satisfying the conditions of constraint
surface in Equation 4.80, of course.

4.6.1.1 Constant Mean Vector

To introduce the application of this, we will start with an arbitrary non-isotropic distri-
bution with no covariance between the variables. Additionally, we keep the mean vector
of the initial and final distributions to be 𝜇0 = 𝜇1 = [0, 0], thus isolating the motivation
of the geodesic to only satisfying the isotropic constraint..

With this in hand, we can now find the closest isotropic distribution to any prescribed
bivariate Gaussian distribution. Let’s assume an initial distribution with

𝜇1 = [0, 0], Σ1 =
[

7 0
0 2

]

(4.82)

and the final distribution lie on the surface defined in Equation 4.80.
Applying the Euler-Lagrange equation with the transversality conditions to the prob-

lem above results in a final isotropic distribution is 𝜎2 = 3, 74. Figure 4.13a shows
the path (dashed) from the initial distribution to the chosen distribution on the isotropic
constraint. A Euclidean perpendicular distance would end with a distribution with an
isotropic variance equivalent to the average of the original variances and the shortest
path is shown with a dotted line. The actual path is an indication of the curvature of
the manifold in this area. Here it is shown that it is the final distribution has variances
closer to the smaller variance of the original distribution. In fact, with initial variances
of 𝜎2

1 , 𝜎
2
2 , it can be shown that the final variance, 𝜎2

𝑓 is given by

𝜎2
𝑓 =

√

𝜎2
1𝜎

2
2 (4.83)

In Figure 4.13b, we can see the evolution of all the parameters of the distribution
along the shortest path. Noteworthy is that, even though 𝜎12 is not required to stay at 0,
there is no benefit for it deviating from 0, as seen in Figure 4.13b. The Fisher Information
Matrix is independent of the mean vector and, since the values of the mean vector are
also not part of our isotropic constraint on the final distribution, the mean vector is not
compelled to change from the original distribution not shown, justifying the exclusion
of the mean vector’s path in Figure 4.13
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(a) path comparison (b) parameter values

Figure 4.13: Isotropic example 1.
Shown above in 4.13a is the shortest path (dashed line) from a prescribed initial distribu-
tion with diagonal covariance matrix, 𝜎2

1 = 7, 𝜎2
2 = 2, to the closest isotropic distribution.

The final distribution has 𝜎2
1 = 𝜎2

2 = 3.74. The solid line above is the transversality con-
straint 𝜎2

1 = 𝜎2
2 , represents the isotropic submanifold. Also drawn is a line connecting

the original distribution to the distribution on the constraint with the shortest Euclidean
distance, showing the effects of the metric on the path. In 4.13b are the paths showing
the value of each element of the Σ as the distributions move towards the transversality
constraint.

4.6.1.2 Constant Mean Vector with Initial Covariance

In the example above, the distributions are essentially moving along a 2−dimensional
manifold parameterized just by the individual variances of the variables. Neither the
mean vector nor the off diagonal values of the covariance matrices are considered by
the Euler-Lagrange equation and therefore remain static. However, starting with an off
diagonal element of the covariance matrix changes the problem appreciably. For the
reason of comparison, we will start with same diagonal elements of the covariance matrix
but include a value for the off-diagonal element.

Here, we consider the problem outline in Equation 4.79 subject to the isotropic con-
straint in Equation 4.80. Furthermore, we define the initial distribution as

𝜇1 = [0, 0], Σ1 =
[

7 −3
−3 2

]

(4.84)
As seen in Figure 4.14, including 𝜎12 = −3 alters the where the geodesic ends up on

the transversality constraint. Now, the final covariance matrix has diagonal elements of
𝜎2
1 = 𝜎2

2 = 2.24. In Figure 4.14a, it is seen that how much influence including a value
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for 𝜎12 on the path of the geodesic, as shown by the large amount of deviation from the
previous path and the destination on the surface. Figure 4.14b shows all values of the
parameters along the geodesic. As mentioned before the mean vector remains constant
at all intermediate values of the distribution. Unlike before, the value for 𝜎12 has to
evolve in order to satisfy the terminal constraint surface, as shown in Figure 4.14b and
emphasized in Figure 4.14c

(a) path comparison (b) parameter values

(c) 𝜎12 path

Figure 4.14: Isotropic example 2.
Shown above in 4.14a is the shortest path (blue line) from a prescribed initial distribu-
tion an off diagonal covariance element of 𝜎12 = −3. Also shown for comparison is the
path from Figure 4.14a (dashed) to see that the difference in variances of the terminal
distribution.The final distribution has 𝜎2

1 = 𝜎2
2 = 2.24. The red line above is the transver-

sality constraint 𝜎2
1 = 𝜎2

2 , and represents the isotropic submanifold. Also drawn in Figure
4.14b is the path of all parameters from the initial distribution to the final distribution.
Figure 4.14c highlights the values of 𝜎12 for each distribution in the geodesic. along the
manifold.
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4.6.1.3 Starting on the Constraint

While searching for the isotropic boundary condition, interesting geodesics occur if we
start with an initial isotropic distribution, but require the mean vector to change. That
is, if the initial distribution already resides on the terminal constraint surface, it would
seem counter-intuitive if the geodesic is compelled to leave this constraint. However, as
seen in Figure 4.15, this is exactly what happens.

Here, once again, we consider the problem outline in Equation 4.79 subject to the
isotropic constraint in Equation 4.80. Furthermore, we define the initial distribution as

𝜇1 = [−3, 3], Σ1 =
[

1 0
0 1

]

(4.85)
which is already isotropic. Here, we search for the closest final distribution that is

isotropic but with a mean vector 𝜇2 = [3,−4]. So, just considering the location of the
mean vector, the distribution starts in Quadrant II and seeks a distribution in Quadrant
IV. To the eye, the initial and final distributions are perfectly geometrically symmetric,
though we do not know how wide the final distribution will look.

It would be reasonable to think that, on its way to satisfying its final value for 𝜇,
the shortest path would be one that maintains its current shape and just slide along the
surface. After all, altering a perfectly good covariance matrix seems like more effort that
just to change the mean vector.

However, as shown in Figure 4.15, this is not the case. In fact, intermediate distribu-
tions obtain covariance matrices with 𝜎12 < 0. as emphasized in Figure 4.15c. Instead
of just sliding, the distributions stretch in the direction of the desired mean, which ex-
plains negative values of the covariance between the variables, considering the relative
locations of the initial mean vector (Quadrant II) and of the final mean vector (Quadrant
IV), It is as if the distributions along the geodesic "reach" or "stretch" for its destination,
as shown by the middle ellipse in Figure 4.16.

To emphasize how these intermediate distributions reach toward the final distribu-
tion, the problem above is repeated, but with a mean vector that starts in Quadrant III
with a mean vector of 𝜇1 = [−3,−3] and seeks out a final mean vector in Quadrant I
with a mean vector of 𝜇2 = [3, 4]. The initial distribution is still isotropic and the re-
quirement to end isotropic remains. However, as seen in Figure 4.17, the values of 𝜎12acquire positive values along the geodesic. The path of the variance of the variables
remains unchanged.

4.6.2 Variable Initial and Final Conditions
It is possible place transversality conditions on both the initial and final boundaries and
these conditions can be entirely independent. Essentially, we are searching for a geodesic
between two almost unknown distributions, with just a minimal amount of knowledge
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(a) parameter values (b) 𝜎12

(c) 𝜎2𝑖 paths

Figure 4.15: Starting on transversality constraint.
Shown above are representations of the geodesic from an initial isotropic distribution as
it seeks a final isotropic distribution with a different mean vector. In Figure 4.15a, the
values of all five parameters are shown at each iteration. Figure 4.15b highlights the val-
ues of 𝜎12 showing that it leaves the constraint surface and acquires negative values. The
individual variances of the variables also temporarily abandon their required isotropicity
as seen in Figure 4.15c. In Figure 4.15c, the dotted line shows the path of the 𝜎2

1 and 𝜎2
2and the solid line shows the isotropic constraint surface.
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Figure 4.16: Error ellipses showing movement of distribution along constraint.
Shown above are ellipses showing contour lines of three different density functions along
the geodesic. The initial distribution shown in the top left and final distribution in the
bottom right are isotropic. The intermediate distribution acquires negative covariance
values, as if to reach towards the final distribution.

about their identities.
As an example, we will require that the final distribution be isotropic as before, but

furthermore require that the initial distribution have a mean vector with equal compo-
nents. In practice, this would further increase the efficiency of algorithms since it could
greatly reduce the number of dimensions of the distributions used. The typical problem
is slightly more involved so it is redefined as

min 𝐾 = 1
2 ∫ Θ̇𝑇 𝑔(Θ)Θ̇𝑑𝑥

Θ1 = 𝜙0(𝜇1,Σ1) Θ2 = 𝜙(𝜇2,Σ2)
(4.86)

where 𝜙1 and 𝜙2 represent the initial and final transversality surface, such that
𝜙1(𝜇11, 𝜇12) = 𝜇11 − 𝜇12 = 0 and 𝜙2(𝜎2

1 , 𝜎
2
2) = 𝜎2

1 − 𝜎
2
2 = 0 (4.87)

In a necessary arbitrary choice, the initial distribution with unknown mean vector
must be prescribed with a covariance matrix. Here, we use

Σ1 =
[

10 0
0 2

]

(4.88)

Similarly, the unknown isotropic terminal distribution must be prescribed with a mean
vector. Here, we use 𝜇2 = [−3, 13]
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(a) parameter values (b) 𝜎12

(c) 𝜎2𝑖 paths

Figure 4.17: Starting on constraint, example 2.
Shown above are representations of the geodesic from an initial isotropic distribution

with a mean vector in Quadrant III as it seeks a final isotropic distribution with a
different mean vector Quadrant I. In Figure 4.17a, the values of all five parameters are
shown at each iteration. Figure 4.17b highlights the values of 𝜎12 showing that it leaves
the constraint surface and acquires positive values in contrast to the previous example.

The individual variances of the variables also temporarily abandon their required
isotropicity as seen in Figure 4.15c. In Figure 4.17c, the dotted line shows the path of

the 𝜎2
1 and 𝜎2

2 and the solid line shows the isotropic constraint surface. This path is
exactly equivalent to the path in Figure 4.15c
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Figure 4.18: Error ellipses showing movement of distribution from Quadrant III to
Quadrant I.
Similar to Figure 4.16, level curves of three densities along the geodesic are shown. This
time, the intermediate distribution acquires 𝜎12 > 0 along the geodesic as the distribu-
tions move from quadrant I to quadrant III along the dotted path.

Using Equation (4.47), it can be shown that the requiring the initial distribution to
reside on 𝜙1 further requires that the geodesic satisfy

(𝜎2
2 − 𝜎12)𝜇̇1 + (𝜎2

1 − 𝜎12)𝜇̇2 = 0 (4.89)
The unknown initial mean vector satisfying the 𝜙1 is 𝜇1 = [7.4, 7.4] and the final

isotropic distribution has 𝜎2
1 = 𝜎2

2 = 26.4. The behavior of the geodesic is shown inn
Figure 4.19.
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(a) parameter values (b) path of 𝜇

(c) 𝜎2𝑖 paths

Figure 4.19: Initial and final variable endpoint.
Shown above are representations of the geodesic with both a variable initial and

terminal boundary condition. Figure 4.19a shows the behaviour of all parameters along
the geodesic. Figure 4.19b shows how the geodesic (dashed) seeks out the initial

distribution on the constraint (solid) and Figure 4.19c shows how the geodesic (dashed)
seeks out the final distribution on the isotropic constraint.
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Figure 4.20: Error ellipses form initial and final variable endpoints.
Showing how the geodesic path of the mean vector (dashed) appears curved, but would
be straight on the manifold. Additionally, a contour ellipse of the initial, intermediate
and final distribution are included. The initial distribution represented by the bottom
right ellipse, has components of the mean vector that are equal. The final distribution, at
the top left of the path, isotropic.

4.7 Normal Approximation to the Poisson Distribution
Two of the most widely used discrete distributions in statistics are the binomial distri-
bution and the Poisson distributions, with numerous applications of each and countless
pages dedicated to them in statistics text books. Historically, especially when sample
sizes are large, the calculations for the probabilities for these distributions are costly,
considering that you cannot use integral calculus to calculate probabilities over an inter-
val of the discrete random variable. To simplify these calculations, often a continuous
distribution was used to approximate the probabilities, with the normal distribution being
a popular and accurate choice.

With current statistical software packages, the calculation difficulty for discrete dis-
tributions is no longer an issue, making these approximations less important. However,
these approximations are useful when teaching about the difference in behavior between
discrete and continuous distributions, uses of the Central Limit Theorem in statistical
inference and still to simplify large sample calculations. Additionally, in [31], the au-
thor shows that continuous approximation of discrete distributions are useful in various
moment matching techniques.

Probably because its usefulness for statistical inference on population proportions,
the normal approximation to the binomial distribution is well studied and explained. In
first year statistics text books, students learn how to take a sample from a population that
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is expected to follow a binomial distribution and use the normal approximation when
appropriate to estimate confidence intervals and to perform t-tests.

Less common is an equal treatment for the data sampled from expected Poisson dis-
tributions. Nonetheless, the Poisson distribution has proven extremely valuable to model
in a variety of fields. The simplicity of of its mass function and the lack of complexity
that accompanies a single parameter distribution makes it attractive. From modeling
DNA mutations [39], modeling mortality from COVID-19 [18] or modeling the cluster-
ing of bomb attacks on a city [34], the Poisson distribution is appropriate for numerous
research applications.

The probability mass function for a Poisson random variable is given by

𝑃 (𝑋 = 𝑥) = 𝑒−𝜆𝜆𝑥

𝑥!
(4.90)

and is plotted in Figure 4.21, for 𝜆 = 5, 𝜆 = 10 and 𝜆 = 30. The distribution appears
more normal as the value of 𝜆 increase. For clarity, the distribution has been plotted as
if it is continuous, simply by connecting the value of the mass functions at each discrete
value. Typically, the normal approximation is used when 𝜆 > 20, a rather arbitrary
value with no mathematical justification. However, the errors in approximation shrink
with larger values of the parameter. However, obviously absent from current research is
an appropriate method of choosing the normal distribution

Figure 4.21: Three Poisson distributions.
Three Poisson distributions shown, with increasing values of 𝜆. As the value of the
parameter increases, the normal approximation becomes a better fit.

A classic problem involving the normal approximation for the Poisson distribution
would give someone the value 𝜆 and simply use that value for the mean and variance
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of a normal distribution to calculate probabilities that the random variable falls within
certain values. However, the biggest setback of questions like this s is that, if someone
were to attempt apply the normal approximation to a Poisson distribution, the original
value of 𝜆 is most likely unknown. In fact when applied, all we would have to utilize is
data sampled from a population. The challenge then would be how to choose a normal
distribution using the data to best fit the original unknown distribution.

An obvious choice would be to use the MLE of data, absent of knowing any more
information than just the realized sample. However, if we know that the data comes
from a Poisson distribution, we can leverage this into finding a more suitable normal
distribution that better approximates the original Poisson distribution from which the
data was sampled. In the context of this research, the univariate Gaussian defined by
the MLE resides on the 2-dimensional manifold of all univariate Gaussian distributions.
Also on this manifold is a submanifold containing all univariate Gaussian distribution
with equal mean and variance.

Choosing the MLE of the data may be over-penalizing an estimate. We are not sug-
gesting that the normal distribution obtained from the MLE is the best possible approx-
imation. However, the purpose of using it is to show how improvements can be made
by using this as an initial distribution on the univariate Gaussian and the Laplace con-
straint surface as our transversality condition. Furthermore, as shown in Figure 4.23,
the approximation obtained by using transversality conditions has very little error at the
peek of the distribution. Considering that this point uniquely defines a particular uni-
variate Gaussian distribution, it is unlikely that any other method of choosing a normal
distribution outperforms the one chosen using the transversality contraint.

Formally, to choose the best univariate Gaussian to fit a sample from a Poisson dis-
tribution we would first find the normal distribution corresponding to the MLE of the
data. Then, using 𝜇 = 𝜎2 as a boundary surface, use the Euler-Lagrange equation with
transversality constraints to identify a better approximation that satisfies the characteris-
tics of the Poisson distribution.

The transversality conditions associated with using this surface as the boundary are
𝜇 − 𝜎2 = 0
𝜎𝜇̇ + 𝜎̇ = 0

(4.91)
To show the relative accuracy of a normal approximation using the MLE and the

distribution chosen from the transversality condition, various samples of different sizes,
𝑛 = 10, 15, 30, 100, were drawn from a Poisson distribution with 𝜆 = 30. After sampling,
both the

In Figure 4.22, we see the histogram of the original Poisson distribution in blue. In
each case, both the MLE approximation and the transversality approximation are plotted.
Even with small sample sizes, the distribution chosen from the transversality constraint
outperforms the MLE distribution. As expected, the MLE distribution performs much
better when the sample size is larger.
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(a) n=10 (b) n=15

(c) N=30 (d) N=100

Figure 4.22: Normal approximation to the Poisson distribution.
Shown above are samples of different sizes drawn from a Poisson distribution with 𝜆 =
30. Shown in blue is the probability mass function of the original distribution. Shown
in black is the normal distribution using the MLE of the drawn sample. Shown in red
is the normal distribution resulting from finding the closest normal distribution on the
manifold using the transversality condition that mean and the variance have the same
value.

88



To show the efficacy of the approximations, we calculated the difference between
the population probability mass function, the Poisson distribution with 𝜆 = 5 and both
the univariate Gaussian constructed from using the MLE and the distribution chosen
using the transversality condition. The results are shown in Figure 4.23. Except for
large samples, the error from the MLE generated distribution fluctuates widely, with
higher maximums and lower minimums. As expected by the law of large numbers, the
MLE distribution is a better fit when sample sizes become larger. Except for instances
where the sample size is large, the largest error for the MLE distribution occurs close
to the mean of the distribution , 𝜆 = 30, Often, this corresponds to minimum error for
the distribution from the transversality constraint. This is an indication the peak of the
distribution is accurate. Errors in the tails are a result of the shape of the distribution,
not the choice of parameter.

Visually, we can see that the distribution chosen by the transversality condition fits
the original distribution better than the one chosen by the MLE. Researchers have quanti-
fied these errors in many ways [71, 83]. Here, we simply use the area of the absolute value
of the difference of each normal probability density function from the probability mass
function of the population. The results are summarized in Table 4.1. The errors, which
are averaged over 1000 trials, show that the distribution chosen from the transversality
condition outperforms the MLE across all sample sizes, with smaller samples showing
the largest advantage.

𝜆 = 30

n MLE difference Transversality Difference
10 0.3325 0.2279
15 0.1875 0.1599
30 0.1670 0.1127

100 0.0701 0.0953
Table 4.1: Errors in normal approximation for 𝜆 = 30.

For each different sample size taken, the error of each distribution, measured by the area
between the approximation and the mass function, was found. In all cases the Transver-
sality outperforms the MLE, with both approximations improving with larger sample
sizes.

Typically, the normal approximation is used only when 𝜆 > 20. The skew of Pois-
son distributions with 𝜆 < 20 is too severe for any normal approximation to fit well.
However, if only given a sample, it could be uncertain as to what the actual value of
the population parameter is, making the criteria for appropriateness elusive. To show
that the distribution chosen from the transversality condition still outperforms the MLE,
even when uncertain as to whether a normal approximation is advised, Table 4.2 shows
the average errors over 1000 trials for both approximations with 𝜆 = 5. As expected,
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(a) n=10 (b) n=15

(c) n=30 (d) n=100

Figure 4.23: Errors in the normal approximation to the Poisson distributions.
Shown above are samples of different sizes drawn from a Poisson distribution with 𝜆 =
30. Shown in blue is the probability mass function of the original distribution. Shown
in black is the normal distribution using the MLE of the drawn sample. Shown in red
is the normal distribution resulting from finding the closest normal distribution on the
manifold using the transversality condition that mean and the variance have the same
value.
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both fits improve as the sample size grows. However, even large sample sizes cannot
overcome the skewness of the population’s mass function. Regardless, the distribution
chosen by the transversality condition still outperforms the MLE in all cases.

𝜆 = 5

n MLE difference Transversality Difference
10 0.2793 0.2137
15 0.2438 0.1965
30 0.1788 0.1489

100 0.1229 0.1084
Table 4.2: Errors in normal approximation for 𝜆 = 5.

Results showing the errors for normal approximations with 𝜆 = 5, as measured by the
integral between the approximation and the pmf.
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Chapter 5

Conclusions and Further Study

5.1 Conclusions
Model selection criteria seek to parsimoniously balance complexity and goodness of
fit. Though many formulations exist, like the well-known AIC, BIC and ordinary MDL,
most of them fail to appropriately consider the geometry of the parameter manifold when
penalizing models. This always results in underpenalizing the complexity for AIC (for
example). Here, we have revisited the MDL criterion from a geometric perspective and
derived a new measure for spherical parameter spaces.

Spherical MDL incorporates appropriate asymptotic and geometric arguments to en-
sure the resulting criterion is intrinsic to the manifold. It was shown through experi-
mental trials that, if regular MDL is used, the complexity penalty is small, resulting in
choosing optimal models that are somewhat more complex than spherical MDL. The
complexity penalty of the proposed spherical MDL measure employs corrections that
take into consideration the shape of the manifold and mitigates the tendency to select
unnecessarily complicated models. Using the histogram density estimator as proof of
concept, spherical MDL proved that correctly applying the Laplace approximation to
constrained parameters yields models that rival current criteria that are either too lenient
or incorrectly calculate the volumes on the manifold.

Comparing two distributions is at the core of many statistical and differential geom-
etry applications. If a symmetric difference is desirable, the most logical comparison
would be finding a distance the distributions on the residing manifold, with the Fisher
information matrix being a natural tensor on the manifold. Employing techniques from
calculus of variations is an efficient way of finding this distance.

Finding the distance between a known a parameter and the closest parameter on a
surface requires transversality conditions. Here, the implementation of transversality
conditions applied to Gaussian distributions and spherical geometries is shown to yield
results that are logical and consistent with current research.
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Pursuit of the behavior of geodesics on Riemannian manifolds has been proven to be
useful endeavor, both in application and expanding the body of research. With almost
all of the current research focusing on geodesics between two known distribution on a
manifold, obviously is any exploration of geodesics between surfaces on the manifold.

By placing transversality conditions on initial and final distributions, we can see how
the geodesic interacts with the manifold as it seeks an unknown distribution. Though this
present effort focused on just a small variety of constraints on Gaussian manifolds, this
approach to geodesics can be applied to any manifold with any user prescribed con-
straints.

The efficacy of using transversality conditions was validated by searching for the op-
timal univariate normal distribution to model a random variable generated from a Poisson
distribution. Even though limitations exist because of the nature of the approximation,
using the distribution chosen by a transversality constraint outperformed the distribution
suggested bt the MLE of the data.

5.2 Further Study
The research presented in this document builds on the current body of knowledge as well
as lays a foundation for future research to build upon. Here, we outline some of these
possible extensions.

5.2.1 Future in Model Selection
Spherical MDL is one of the few model selection criteria that approaches the field from
a geometric perspective. Using vocabulary and ideas of information geometry to define
complexity penalties for statistical models is rather novel. Correctly employing asymp-
totic approximations for curved manifolds has never been done.

We have shown that the standard Laplace approximation introduces inaccuracies
when used for parameters residing on curved manifolds. Accordingly, the ideas used
in the development of spherical MDL are applicable to other curved parameter spaces.
Particularly if the manifold has a predictable geometry, the quadratic integral may have a
known closed form solution. For example, for hyper-cylindrical surfaces, there is some
indication that the closed form of the integral involves the normalizing constant of the
normal von Mises distribution.

Furthermore, we have shown proof of concept by applying spherical MDL to the
histogram density estimator, both because of how widely researched histograms are and
the ease at which the parameters can be placed on a hypersphere. However, spherical
MDL can be applied to other distributions with parameters appropriately reside on hy-
perspheres. For example, the transition probabilities of a Markov process can be placed
on a unit hypersphere [12]. Spherical MDL can be applied to decide the optimal number
of transitions of the state space to move from the initial state to the final state.
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5.2.2 Geodesics
Employing transversality conditions is a technique that is missing from machine learning
algorithms. Considering that machine learning focuses on building models using train-
ing data, using transversality conditions to aid in building some models seems a logical
application.

The goal of all inference procedures is too generalize statistics to a larger population.
However, in cases where that goal is too ambitious, if the sample isn’t representative of
a diverse population, the results of the generalization can be suspect. In extreme cases,
researchers may question whether the results of one population can be generalized to an
entirely different population. For example, how accurately can models of a spread of
disease in the United States be used to predict the spread of a disease in South Africa.
Such problems are known as domain adaptation problems [76, 13, 90]. The population
of interest is known as the target domain and the population from which the original
inference procedure was performed is known as the source domain.

In [8], the authors propose an information geometric approach to domain adaptation.
Here it is shown that making careful use of the structure of the manifold, selected source
samples can be trained using support vectors to obtain labels on target samples. The
selection of source samples was based on the Hellinger distance to possible target dis-
tributions. Using this distance, it was shown that this approach can outperform current
domain adaptation algorithms.

The Fisher Rao distance should be equally qualified in this approach to domain adap-
tation. Furthermore, one or both of the source distribution or target distribution belong
to a family of distributions, using transversality conditions could build upon this research
improving the performance of the algorithm. It is a sensible next step in researching the
application of transversality conditions on manifolds.

However, transversality conditions may be able to expand machine learning algo-
rithms in many statistical research areas. The geometry implied by the Fisher information
metric has contributed to dimensional reduction [27], Monte Carlo sampling [93], sta-
tistical inference [58], among other explorations of statistical manifolds. Implementing
transversality conditions into these fields is restricted by the creativity of the researcher.

Incremental learning [94] offers another problem to which transversality conditions
could offer some further insight. Neural networks have the reputation of suffering from
catastrophic forgetting, the phenomenon of putting higher priority on newly acquired
data. The evolution of the distributions displayed in Chapter 4 offer solutions to this
forgetting. Perhaps new data suggests a family of distributions on the same manifold as
the current model. The work in Chapter 4 can both choose which model in the family is
most like our current model and offer incremental steps towards that chosen distribution.

Regardless of the future applications of transversality conditions on geodesics, the
largest obstacle to overcome is to obtain closed form solutions for the Euler-Lagrange
equation and the transversality conditions. The mathematics involved in finding these
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closed form solutions is extensive and, in many cases, an unsolved problem. But, as
lofty of a goal that closed formed solution may be, it is an important goal and a best
case scenario. Until then, employing transversality conditions on manifolds may re-
quired approximation methods, which currently has the focus of researchers in the field
of information geometry.
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Chapter 6

Publication

The bulk of the work detailed in Chapter 3 was published on August 3, 2018 in the special
issue Entropy: From Physics to Information Sciences and Geometry and was presented
at a poster in the 2018 From Physics to Information Sciences and Geometry conference
in Barcelona, Spain.

The bulk of the work detailed in Chapter 4 was published on November 21, 2022 in
the special issue of Entropy: Information and Divergence Measures.
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Appendix A

Proof

A.1 Fisher Information for Gaussian
Here, we consider the structure of the Fisher information matrix for 𝑛-dimensional mul-
tivariate Gaussian with density given by

𝑓 (𝑥𝑛 ∶ 𝜇𝑛,Σ) = 2𝜋− 𝑛
2 det (Σ)−

1
2 exp−

(𝑋 − 𝜇)𝑇Σ−1(𝑋 − 𝜇)
2

(A.1)
where 𝑋 is a data vector, 𝜇 = [𝜇1, 𝜇2, ..., 𝜇𝑛] is the 𝑛-dimensional mean vector of the
distribution and Σ is the 𝑛 × 𝑛 covariance matrix.

These define an 𝑛-dimensional multivariate Gaussian. This distribution has (𝑛+3)𝑛
2unique parameters, which we will capture as a single vector 𝜃 such that

𝜃 = {𝜇1, 𝜇2, ...𝜇𝑛
𝜃1,𝜃2,...,𝜃𝑛

, 𝜎2
1,1, 𝜎

2
1,2, ..., 𝜎

2
𝑛,𝑛}

𝜃𝑛+1,...𝜃 (𝑛+3)𝑛
2

. (A.2)

The log-likelihood associated with Equation (A.1) is

log 𝑓 = 𝐿(𝜃) = 𝑛
2
ln 2𝜋 − 1

2
ln det Σ − 1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇). (A.3)

As stated, we will find an equation that will yield each element of the Fisher information
matrix using the following definition

𝑔𝑖𝑗(𝜃) = 𝐸
[

𝜕
𝜕𝜃𝑖

log 𝑓 (𝑥; 𝜃) 𝜕
𝜕𝜃𝑗

log 𝑓 (𝑥; 𝜃)
]

. (A.4)
Equation (A.4) requires the partial derivative of each parameter in the log-likelihood

defined in Equation (A.3).
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𝜕𝐿
𝜕𝜃𝑖

= −1
2
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

]

𝐴

+ 1
2
(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ

𝜕𝜃𝑖
Σ−1(𝑥 − 𝜇)

𝐵

+
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1(𝑥 − 𝜇)
𝐶

(A.5)

Similarly, we can take the partial derivative with respect to a different parameter, 𝜃𝑗and obtain the same result, indexed with 𝑗 instead of 𝑖. The below equation labels𝐴.𝐵, 𝐶
will provide clarity in the proof.

To find each 𝑔𝑖𝑗 in the Fisher information matrix, we need to find the expectation of
the product of every combination two partial derivatives which will result in nine terms.
However, upon taking the expectation, some of these terms will vanish to 0, because the
expectation of data vector 𝑥 approaches the mean vector 𝜇. Specifically, let us denote
𝐴𝑖, 𝐵𝑖, 𝐶𝑖 to be the terms of 𝜕𝐿

𝜕𝜃𝑖
and 𝐴𝑗 , 𝐵𝑗 , 𝐶𝑗 to be the terms of 𝜕𝐿

𝜕𝜃𝑗
. Upon taking the

expectation of the product, 𝐴𝑖𝐶𝑗 = 𝐶𝑖𝐴𝑗 = 𝐵𝑖𝐶𝑗 = 𝐵𝑗𝐶𝑖 = 0. Ignoring these, we will
look individually at each of the remaining terms. Starting with 𝐴𝑖𝐴𝑗

𝐴𝑖𝐴𝑗 =
(

−1
2
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

−1
2
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

= 1
4
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

]

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

] (A.6)

Next, calculating 𝐵𝑖𝐵𝑗 ,

𝐵𝑖𝐵𝑗 =
[

1
2
(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ

𝜕𝜃𝑖
Σ−1(𝑥 − 𝜇)

] [

1
2
(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ

𝜕𝜃𝑗
Σ−1(𝑥 − 𝜇)

]

= 1
4

[

(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑖

Σ−1(𝑥 − 𝜇)(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑗

Σ−1(𝑥 − 𝜇)
] (A.7)

We are required to take the expectation of this, which is a fourth moment of the multi-
variable normal distribution. The result of this is

𝐵𝑖𝐵𝑗 =
1
4

[

𝑡𝑟
(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)

𝑡𝑟
(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

+ 2𝑡𝑟
[(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

. (A.8)
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Turning attention to 𝐶𝑖𝐶𝑗 ,

𝐶𝑖𝐶𝑗 =
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1(𝑥 − 𝜇)(𝑥 − 𝜇)𝑇Σ−1 𝜕𝜇
𝜕𝜃𝑗

=
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1ΣΣ−1 𝜕𝜇
𝜕𝜃𝑗

=
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1 𝜕𝜇
𝜕𝜃𝑗

.

(A.9)

The final set of non-vanishing terms, 𝐴𝑖𝐵𝑗 + 𝐵𝑖𝐴𝑗 are considered simultaneously.

𝐴𝑖𝐵𝑗 + 𝐵𝑖𝐴𝑗 =
(

−1
2
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

1
2
(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ

𝜕𝜃𝑗
Σ−1(𝑥 − 𝜇)

)

+
(

1
2
(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ

𝜕𝜃𝑖
Σ−1(𝑥 − 𝜇)

)(

−1
2
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

= − 1
4

{

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑗

Σ−1(𝑥 − 𝜇)
)

+
(

(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑖

Σ−1(𝑥 − 𝜇)
)(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

}

(A.10)

Now, we use the identity
𝑏𝑇𝐴𝑏 = 𝑡𝑟(𝑏𝑏𝑇𝐴) (A.11)

on all terms of Equation (A.10) that do not yet involve the trace of a matrix. Doing so,
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Equation (A.10) becomes

𝐴𝑖𝐵𝑗 + 𝐵𝑖𝐴𝑗 = − 1
4

{

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

(𝑥 − 𝜇)(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑗

Σ−1
])

+
(

𝑡𝑟
[

(𝑥 − 𝜇)(𝑥 − 𝜇)𝑇Σ−1 𝜕Σ
𝜕𝜃𝑖

Σ−1
])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

}

= − 1
4

{

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

ΣΣ−1 𝜕Σ
𝜕𝜃𝑗

Σ−1
])

+
(

𝑡𝑟
[

ΣΣ−1 𝜕Σ
𝜕𝜃𝑖

Σ−1
])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

}

= − 1
4

{

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

𝜕Σ
𝜕𝜃𝑗

Σ−1
])

+
(

𝑡𝑟
[

𝜕Σ
𝜕𝜃𝑖

Σ−1
])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

}

.

(A.12)

Once again, we took the expectation as required to find the Fisher information. Finally,
we use the commutative property of trace to clean up the expression in Equation (A.12)

𝐴𝑖𝐵𝑗 + 𝐵𝑖𝐴𝑗 = −1
4

{

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

+
(

𝑡𝑟
[

Σ−1[ 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

}

= −1
2

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

.

(A.13)
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Combining Equations (A.6), (A.7), (A.9) and (A.13) into Equation (A.5), we obtain

𝑔𝑖,𝑗(𝜃) =
1
4
𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

]

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

]

+ 1
4

[

𝑡𝑟
(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)

𝑡𝑟
(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

+ 2𝑡𝑟
[(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

+
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1 𝜕𝜇
𝜕𝜃𝑗

+ −1
2

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑖

])(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜃𝑗

])

=1
2
𝑡𝑟
[(

Σ−1 𝜕Σ
𝜕𝜃𝑖

)(

Σ−1 𝜕Σ
𝜕𝜃𝑗

)]

+
𝜕𝜇
𝜕𝜃𝑖

𝑇

Σ−1 𝜕𝜇
𝜕𝜃𝑗

.

(A.14)

A.2 Fisher Information of a 2-Dimensional Gaussian
The usefulness of Equation (A.14) lies in the ability of calculating the individual terms
in the equation. Here, the inverse of a covariance matrix is extremely illusive for a high-
dimensional Gaussian distribution, even after leveraging its symmetric properties.

Considering just a 2 × 2 covariance matrix, Equation (A.14) is tractable, since its
inverse is known exactly and is reasonably manageable. Furthermore, we will collect
all the parameters of a general bivariate Gaussian into a single vector, to facilitate the
calculation of each element of the Fisher information matrix.

𝜃 =
[

𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5
]

=
[

𝜇1, 𝜇2, 𝜎
2
1 , 𝜎

2
2 , 𝜎12

] (A.15)
Starting with the diagonal elements, 𝑔11 and 𝑔22 share similar structures. Focusing

just on 𝑔11, and consider a 2-dimensional Gaussian with mean vector 𝜇𝑇 = [𝜇1, 𝜇2] and
covariance matrix

Σ =
(

𝜎2
1 𝜎12

𝜎12 𝜎2
2

)

which will be indexed according to Equation (A.15). We now have, using the standard
definition of the inverse

Σ−1 = 1
𝜎2
1𝜎

2
2 − 𝜎

2
12

(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)

.

For succinctness, we will let 𝑘 = 1
𝜎21𝜎

2
2−𝜎

2
12

.
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Conveniently, the means are not involved in the covariance matrix, so the first term
of Equation (A.14) vanishes. To find 𝑔11 we need

𝑔11 =
1
𝑘

[

𝜕𝜇
𝜕𝜇1

𝑇 ( 𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)

𝜕𝜇
𝜕𝜇1

]

= 1
𝑘

[

(

1 0
)

(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

1
0

)]

=
𝜎2
2

𝑘

=
𝜎2
2

𝜎2
1𝜎

2
2 − 𝜎

2
12

.

(A.16)

Finding 𝑔22 easily follows the above, resulting in

𝑔22 =
𝜎2
1

𝜎2
1𝜎

2
2 − 𝜎

2
12

. (A.17)

the remaining diagonal elements involve the just the first term of Equation (A.14).
For the variance of the first variable, we will need to find

𝑔33 =
1
2

⎛

⎜

⎜

⎝

𝑡𝑟

[

Σ−1 𝜕Σ
𝜕𝜎2

1

]2
⎞

⎟

⎟

⎠

= 1
2

(

𝑡𝑟
[

1
𝑘

(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

1 0
0 0

)]2
)

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
2 0

−𝜎12 0

)]2
)

= 1
2𝑘2

(

𝑡𝑟
[(

(𝜎2
2)

2 0
(𝜎12𝜎2

2)
2 0

)])

= 1
2𝑘2

(𝜎2
2)

2

= 1
2

(

𝜎2
2

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

.

(A.18)

Once again, the element of the Fisher information matrix for the variance of the second
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variable mirrors the above exactly.

𝑔44 =
1
2

(

𝜎2
1

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

. (A.19)

The covariance component will complete the diagonal elements of the Fisher infor-
mation matrix.

𝑔55 =
1
2

(

𝑡𝑟
[

Σ−1 𝜕Σ
𝜕𝜎12

]2
)

= 1
2

(

𝑡𝑟
[

1
𝑘

(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

0 1
1 0

)]2
)

= 1
2𝑘2

(

𝑡𝑟
[(

−𝜎12 𝜎2
2

𝜎2
1 −𝜎12

)]2
)

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
1𝜎

2
2 + 𝜎

2
12 2𝜎2

2𝜎12
2𝜎2

1𝜎12 𝜎2
1𝜎

2
2 + 𝜎

2
12

)])

= 1
2𝑘2

2(𝜎2
1𝜎

2
2 + 𝜎

2
12)

=
𝜎2
1𝜎

2
2 + 𝜎

2
12

(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2
.

(A.20)

The off-diagonal elements are only slightly more involved. However, because the
terms in Equation (A.14) involve the partial derivatives, and because the mean vector
and the covariance matrix have no overlapping terms, many of the off-diagonal elements
vanish, specifically the ones that involve both a mean component and a variance compo-
nent, i.e., 𝑔𝑖𝑗 = 0 for 𝑖 ∈ (1, 2) and 𝑗 ∈ (3, 4, 5). For the other off-diagonal components,
we will employ all the conveniences of symmetry to complete the Fisher information
matrix.

Turning our attention to the 𝑔12, the element concerning the two means:

𝑔12 =
𝜕𝜇
𝜕𝜃1

𝑇

Σ−1 𝜕𝜇
𝜕𝜃2

= 1
𝑘
(

1 0
)

(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

0
1

)

= −1
𝑘
𝜎12

= −
𝜎12

𝜎2
1𝜎

2
2 − 𝜎

2
12

= 𝑔21.

(A.21)
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Next, we consider the elements of the Fisher information matrix involving both vari-
ances, 𝑔34

𝑔34 =
1
2

(

𝑡𝑟

[

Σ−1 𝜕Σ
𝜕𝜎2

1

Σ−1 𝜕Σ
𝜕𝜎2

2

])

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

1 0
0 0

)(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

0 0
0 1

)])

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
2 0

−𝜎12 0

)(

0 −𝜎12
0 𝜎2

1

)])

= 1
2𝑘2

(

𝑡𝑟
[(

0 −𝜎2
2𝜎12

0 𝜎2
12

)])

= 1
2

(

𝜎12
𝜎2
1𝜎

2
2 − 𝜎

2
12

)2

= 𝑔43.

(A.22)

The variance/covariance elements of the Fisher information matrix will all have sim-
ilar structures. We calculate one of them below

𝑔35 =
1
2

(

𝑡𝑟

[

Σ−1 𝜕Σ
𝜕𝜎2

1

Σ−1 𝜕Σ
𝜕𝜎12

])

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

1 0
0 0

)(

𝜎2
2 −𝜎12

−𝜎12 𝜎2
1

)(

0 1
1 0

)])

= 1
2𝑘2

(

𝑡𝑟
[(

𝜎2
2 0

−𝜎12 0

)(

−𝜎12 𝜎2
2

𝜎12 −𝜎12

)])

= 1
2𝑘2

(

𝑡𝑟
[(

−𝜎12𝜎2
2 𝜎2

12
𝜎2
12 −𝜎12𝜎2

2

)])

= −
𝜎12𝜎2

2
(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2
= 𝑔53.

(A.23)

Similarly, the element involving the second variance with the covariance is

𝑔45 = 𝑔54 = −
𝜎12𝜎2

1
(

𝜎2
1𝜎

2
2 − 𝜎

2
12

)2
. (A.24)
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A.3 Euler-Lagrange on 2-Sphere
Before applying the results of Section 4.3 to Gaussian distributions, we demonstrate
their application on the 2-sphere. The research of geodesics on the 2-sphere is extensive.
However, most of it focuses on the path between 2 prescribed points, or the geodesic
given an initial point and direction. Applying transversality conditions on a well stud-
ied surface reveals characteristics about the path as well as allows the exhibition of the
techniques from Section 4.3 on a simple surface prior to using them on the manifold of
Gaussians.

The examination of distributions on hyperspheres was the focus and motivation of
spherical MDL. Choosing which distribution is most likely the data generating distribu-
tion is extremely important with regards to model selection. Slightly peripheral to this
question would be the problem of finding which distribution on a submanifold of the hy-
persphere is closest to the chosen distribution. Calculus of variations is uniquely capable
of answering these new questions.

What follows is the a detailed examination of geodesics on the 2-sphere, followed by
examples with variable boundary conditions. Points on the 2-sphere are parameterized
as (𝜃, 𝜙), where 𝜃 is the azimuthal angle measured from the 𝑥−𝑎𝑥𝑖𝑠, 𝜙 is the polar angle
measured from the 𝑧 − 𝑎𝑥𝑖𝑠. The arc length for a curve along the surface of a sphere is
given as

𝐿 = ∫

√

𝜙̇2 + 𝜃2 sin2 𝜙𝑑𝑥. (A.25)
Once again, we simplify this to

𝐾 = 1
2
[

𝜙̇2 + 𝜃2 sin2 𝜙
] (A.26)

with the factor of 1
2

added to streamline future expressions without changing the
extremal. Applying the Euler-Lagrange equations to each parameter, we end up with the
following equations:

𝜕𝐾
𝜕𝜃

− 𝑑
𝑑𝑥

𝜕𝐾
𝜕𝜃̇

= 0, and (A.27)

𝜕𝐾
𝜕𝜙

− 𝑑
𝑑𝑥

𝜕𝐾
𝜕𝜙̇

= 0. (A.28)
The solution to this system of partial differential equations will define the shortest

path between two points on a sphere. In solving this system, we look at the individual
terms of Equations (A.27) and (A.28) separately. First, turning our attention to (A.27)
consisting of two terms. The first of which is elementary, considering that 𝐾 has no
dependence on 𝜃. Accordingly,
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𝜕𝐾
𝜕𝜃

= 0. (A.29)
The second term of (A.27) becomes.

𝜕𝐾
𝜕𝜃̇

= 𝜃̇ sin2 𝜙

𝑑
𝑑𝑥

𝜕𝐾
𝜕𝜃̇

= 𝜃̈ sin2 𝜙 + 𝜃̇𝜙̇ sin𝜙 cos𝜙 (A.30)

where 𝜃̈ = 𝑑2𝜃
𝑑𝑥2
.

With Equations (A.29) and (A.30), we can simplify (A.27),
0 − (𝜃̈ sin2 𝜙 + 𝜃̇𝜙̇ sin𝜙 cos𝜙) = 0 (A.31)

Dividing both sides by sin2 𝜙 we end up with the final form of the Euler-Lagrange
equation for 𝜙

𝜃̈ = −2 ̇𝜙𝜃̇ cot 𝜙. (A.32)
Now, turning our attention to Equation, we again solve for both terms individually,

givin us (A.28)

𝜕𝐾
𝜕𝜙

= 𝜃2 sin𝜙 cos𝜙, (A.33)
𝜕𝐾
𝜕𝜙̇

= 𝜙̇

𝑑
𝑑𝑥

𝜕𝐾
𝜕𝜙̇

= 𝜙̈. (A.34)

With Equations (A.33) and (A.34), we can simply (A.28),

𝜃2 sin𝜙 cos𝜙 − 𝜙̈ = 0
2𝜙̇𝜃̇ cot 𝜙 + 𝜃̈ = 0 (A.35)

Now, our solution for the shortest path between two points must satisfy Equations
(A.32) and (A.35). It will be useful to have this system of second order differential
equations to be a system first order differential equation. To achieve this, we make the
following substitutions.

113



𝑦1 = 𝜃 (A.36)
𝑦2 = 𝑦′1 = 𝜃̇
𝑦′2 = 𝜃̈
𝑦3 = 𝜙
𝑦4 = 𝑦′3 = 𝜙̇
𝑦′4 = 𝜙̈

With this, we can redefine Equations (A.32) and (A.35) as system of four first order
differential equations.

𝑦′1 = 𝑦2 (A.37)
𝑦′2 = sin(𝑦1) cos(𝑦1)(𝑦3)2

𝑦′3 = 𝑦4
𝑦′4 = −2 cot(𝑦1)(𝑦2)(𝑦4)

Together with sometimes fixed boundary conditions, we can use the above to find the
shortest path between two points on a sphere.

A.3.1 Transversality Conditions on the 2-Sphere
Exploring the transversality conditions on a 2-sphere will require our minimum path to
satisfy both the Euler-Lagrange equations in (A.32) and (A.35), and the generic transver-
sality conditions in (A.43).

A generic solution for an arbitrary surface offers little insight into how this shortest
path behaves on the 2 sphere. Instead, the initial motivation will be provided by the
following question:

What is the shortest path between the initial point (𝜃, 𝜙) = (3𝜋
2
, 𝜋
6
), to the line on the

sphere defined by 𝜃 = 𝜙2?
We can choose to define this line as a level curve given by

𝑆(𝜃, 𝜙) = 𝜃 − 𝜙2 = 0. (A.38)
According to Equation (4.46), the system of partial differential equations that must

be satisfied are:
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𝐾 −𝐾𝑌̇ ⋅ 𝑌̇ = 𝑆𝑠
𝐾𝜃̇ = 𝑆𝜃 (A.39)
𝐾𝜙̇ = 𝑆𝜙.

where 𝐾 is defined in Equation (A.26) and the parameters are captured in the vector
𝑌 =

[

𝜙 𝜃
].

We will look at each equation individually, starting with 𝐾 −𝐾𝑌̇ ⋅ 𝑌̇ = 𝑆𝑥
𝐾 is defined in Equation (A.26) as

𝐾 = 1
2
[

𝜙̇2 + 𝜃2 sin2 𝜙
]

.
The next term is the product of two vectors.

[

𝐾𝜃̇ 𝐾𝜙̇
]

⋅
[

𝜃̇ 𝜙̇
]

=
[

𝜃̇ sin2 𝜙 𝜙̇
]

⋅
[

𝜃̇ 𝜙̇
]

= 𝜃2 sin2 𝜙 + 𝜙̇2.

Since the surface is independent of the path parameter, we have 𝑆𝑋 = 0. This results
in the first transversality condition

𝐾 −𝐾𝑌̇ ⋅ 𝑌̇ = 𝑆𝑥
1
2
[

𝜙̇2 + 𝜃2 sin2 𝜙
]

−(𝜃2 sin2 𝜙 + 𝜙̇2) = 0

0 =1
2
(𝜃2 sin2 𝜙 + 𝜙̇2). (A.40)

The next transversality condition will be focus on the relationship between the de-
pendence of the the extremal and the terminal surface on the parameter 𝜙. Specifically

𝐾𝜙̇ = 𝑆𝜙.

We have already defined𝐾𝜙̇ = 𝜙̇. In Equation (A.38), we define our terminal surface
for this specific question. With that, we see

𝑆𝜙 = −2𝜙

.
Giving us

𝜙̇ = −2𝜙. (A.41)
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Finally, we focus at the relationship between the dependence of the extremal and the
terminal surface on the parameter 𝜃. Specifically,

𝐾𝜃̇ = 𝑆𝜃
.

We have already defined 𝐾𝜃̇ = 𝜃̇ sin2 𝜙. In Equation (A.38), we define our terminal
surface for this specific question. with that, we see

𝑆𝜃 = 1

giving us

𝜃̇ = 1
sin2 𝜙

. (A.42)
Substituting Equations (A.41) and (A.42) into Equation (A.40), we get the transver-

sality requirement that accounts for the geometrical relationship of our extremal with the
terminal surface to be

1
2

(

1
sin4 𝜙

sin2 𝜙 + 4𝜙2̇

)

= 0

or more simply
sec2 𝜙 + 4𝜙2 = 0. (A.43)

Together, Equations (A.43) and (A.38) account for the geometry and location of our final
boundary condition, respectively.
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Figure A.1: Example of transversality on 2-sphere.
Two representation of the shortest path on a sphere between the initial point ( 3𝜋

2
, 𝜋
6
) and

the curve given by 𝜃 = 𝜙2.
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Working first on spherical manifolds both offers a bridge between our research from
Chapter 3 and future sections and provides proof of concept of the applications of transver-
sality conditions on Riemannian manifolds. Regarding model selection, spherical MDL
chooses the best model given sampled data. Here, an obvious extension would be to
choose the best model given data and a user defined constraint. However, more im-
portantly is applying the Fisher Information to transversality conditions in search for
geodesics on Riemannian manifolds of different distributions.
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