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Abstract

Title:

Nonlinear Mathematical Transformations for Improved Image and Signal Recovery

Using Artificial Neural Network

Author:

Haoran Chang

Major Advisor:

Debasis Mitra, Ph.D.

Medical imaging plays a vital role in modern healthcare, enabling clinicians to diagnose

and treat a range of conditions. However, image acquisition and processing can be chal-

lenging because they can often be hindered by motion blurring, leading to inaccurate

results. To address that, this dissertation proposes a novel approach based on nonlinear

mathematical transformations and artificial neural networks (ANN). The dissertation

begins with an introduction to Nuclear Medicine and the problem of motion blur in

image reconstruction. A background on Medical Imaging techniques, including the

Radon transform and Image Reconstruction methods such as Filtered Back Projection

and Iterative Reconstruction methods are presented. The ANN is introduced, includ-

ing the Fully Connected Neural Network (FCN) and Convolutional Neural Network

(CNN). Then related work is presented, including previous studies on Deep Learn-

ing for Medical Imaging and motion correction techniques, such as image denoising
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and motion correction. Preliminary experiments are conducted to test the viability

of using Deep Learning techniques for parameter prediction, synthetic object recon-

struction, and motion blur handling. The main contribution of this dissertation is the

proposed ANN model for reconstruction from motion blurred sinogram data, and more-

over using zero-shot learning to reconstruct the motion-free image. The methodology

is described in detail, including the use of a CNN with the Self-Attention mechanism.

Experimental results demonstrate the effectiveness of the proposed method in produc-

ing accurate image reconstructions, with improved image quality and reduced motion

blur. Overall, this dissertation presents a novel approach to image reconstruction for

Nuclear Medicine Imaging, using Deep Learning techniques to address the problem of

motion blur in sinogram data. The proposed method has the potential to improve

diagnostic accuracy and enhance patient care in clinical settings.
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Chapter 1

Introduction

Many years ago, when doctors wanted to understand the internal condition of a patient,

in addition to directly opening up the patient’s body, they could only rely on palpation,

but both of these methods have a certain risk. The former one would seriously injure

the patient, and the later one might not provide enough information for the diagnosis.

In 1895, when German physicist Wilhelm Röntgen discovered X-rays, it opened a new

chapter in medical imaging. This provided a non-invasive way to help doctors probe

the inside of the body. After that, researchers developed many other medical imaging

modalities. In this chapter, we will first briefly introduce the nuclear medicine imaging,

then state the problems in image reconstruction, and list the main contributions in our

studies.

1.1 Nuclear Medicine Introduction

Nuclear medicine is a branch of medicine that focuses on medical imaging. It is a

field that uses nuclear techniques for disease diagnosis, treatment, and research, a

product of the combination of medicine and modern science such as nuclear technology,
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electronic technology, computer science and so on. Nuclear medicine is an application

with radioisotopes, nuclear radiation from radioisotopes, and ray beams generated by

some special accelerators. In medicine, radioisotopes and nuclear radiation can be used

for diagnosis, treatment and medical research. In pharmaceuticals, they can be used to

study the principles of drug effects, measuring the activity of drugs, and drug analysis.

There are many kinds of techniques of nuclear imaging: X-ray computed tomography

(XCT), positron emission tomography (PET), nuclear magnetic resonance (NMR),

single photon emission computed tomography (SPECT).

From the 1970s, nuclear imaging has made a breakthrough, due to the development

of singe photon emission computed tomography (SPECT) and positron emission to-

mography (PET), as well as the innovation of radio pharmaceutical. Nuclear imaging,

CT, MRI, and ultrasound are complementary imaging modalities that can greatly en-

hance disease diagnosis and research. Through this, the level of the disease research

and diagnosis are greatly improved. Therefore, nuclear imaging is a very popular and

important part of clinical diagnosis based on imaging..

Nuclear medicine imaging is a medical imaging technique based on the radionuclide

tracers. Nuclear imaging techniques using CT is also called emission computed to-

mography (ECT), because they are imaging by collecting the gamma ray transmitted

from the patient. According to the type of radionuclide used in ECT, there are two

categories, which are also our main research aspects: single photon emission computed

tomography (SPECT) and positron emission tomography (PET). For both of SPECT

and PET, patients need to take the injection of different tracers. The type of tracer

used depends on which organ or tissue that the doctor wants to examine. Because

the radioisotopes are unstable, they undergo radioactive decay and emit gamma rays.

Though both SPECT and PET use a gamma camera to collect rays, there are many

differences in details between them.
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(a) A SPECT scan machine [8]. Picture from a blog in
AskApollo, ”What is a SPECT Scan Commonly Used For?”

(b) The principle of SPECT data acquisition
and geometry [9].

Figure 1.1

In SPECT, the tracer emits the gamma rays directly during decay. Note that decay

or radioactive decay is a phenomenon in which unstable atomic nuclei emit ionizing

radiation and switch their nuclear composition or energy levels after a certain period

of time. Gamma decay is one type of radioactive decay that emits gamma rays. The

gamma camera probe detects gamma photons from one projection line (ray). The

measurement values in each point represent the sum of radioactivity in this line. These

sensitive points in a same line on the camera can detect the activity of radiopharma-

ceutical on a slice of human body. The output is called the one-dimensional projection

(Projection). Due to the collimators, only the projection lines that are parallel to each

other and perpendicular to the detector can be collected, so it is called a parallel beam.

When the detector rotates, people can obtain the projections of different angles. Be-

cause the distance between detector and emission photon is unknown at one angle, it

needs to be viewed from different angles to know the body structure in perpendicular

direction. It has been proven that if all the projections of all the angles are known, the

tomographic image can be computed. Fig. 1.1 shows an example of SPECT Scan and

its physics.

PET uses a tracer that first emits a positron, which travels a short distance (in
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(a) A PET scan machine. Picture from the Na-
tional Health Service (NHS) website [10]. (b) Ring of PET scanner and the event.

Figure 1.2

millimeters) before colliding with an oppositely charged electron. This collision results

in the emission of two gamma photons in opposite directions, a process known as

annihilation. When two detectors detect these gamma photons, the path between them

is referred to as a line of response (LOR), and the detection is called a ”coincidence”

event. Because these events provide more precise localization information, PET can

offer better contrast and spatial resolution than SPECT. However, PET is much more

expensive than SPECT due to the difficulty in obtaining the PET tracer. In contrast to

SPECT, PET machines do not require collimators; instead, they use a ring of detectors

to collect rays from different angles.

The raw data collected by SPECT or PET machines is known as a sinogram. An

example of a 2D image and its corresponding sinogram is shown in Figure 1.3. The 2D

object in the figure is called the Shepp-Logan phantom [1], which is used as a standard

test image for modeling a human head. The main objective of nuclear imaging is to

reconstruct the object as accurately as possible from its sinogram, which is an inverse

problem. The reconstruction process involves using mathematical methods to calculate

the causal factors (original object) from a series of observed effects (sinogram). More

details about the image reconstruction methods will be discussed in Chapter 2.
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Figure 1.3: An example of the original 2D object and its sinogram. Left: Shepp-Logan phantom,
which is a standard test image and serves as the model of a human head [1]. Right: the corresponding
sinogram of the Shepp-Logan phantom using 0-180 degrees. Note that in the sinogram image, one of
the axes is the angle of projection, while both of the axes are the pixel position in the original image.

1.2 Problem Overview

Due to its rapid development, deep learning has the potential to provide solutions to

problems in many areas, including medical imaging. However, image reconstruction is

a complex problem that poses several challenges when applying deep learning methods.

Here, we discuss some of the issues and challenges involved in using deep learning for

image reconstruction:

• Difference space: There is a difference in space between the sinogram, which is

in the projection space, and the object, which is in the ordinary 2D or 3D space.

Although artificial neural networks (ANNs) can estimate or approximate complex

functions, it is essential to investigate their ability to estimate a mathematical

transformation from one space to another. As the reconstruction problem is

ill-posed, the precision of the ANN output should be carefully evaluated.

• Motion: Subject movement during the scan, such as breathing and heartbeats,

can introduce strong artifacts and pose challenges for medical diagnosis. Tradi-
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tionally, this problem is solved by bringing extra steps to suppress motion blur.

However, this can cause other small problems. It is possible to use ANNs to

reconstruct the motion-free image using the raw motion-blurred data directly,

without processing.

• Data amount limitation: To train a deep learning model, a large amount

of data is required. However, the availability of medical data is limited due to

privacy concerns or the rarity of certain diseases. This data amount limitation

can pose a challenge for training deep learning models for image reconstruction

in medical imaging.

1.3 Main Objectives

Our main objectives in this dissertation are:

1. We explore the capability of ANN for different transformations, such as using

ANN to reconstruct the synthetic objects, predict the inverse discrete Fourier

transform, estimate certain parameters given the attenuated objects or the mo-

tion blurred objects, synthetic object reconstruction, and motion correction.

2. We developed a convolutional encoder-decoder with self-attention components

(CEDA) to reconstruct the motion-free image given the motion-corrupted sino-

gram. We test our model on the simulation data (using affine motion) and the real

human data, and compared against the existing ANN models in the literature.

3. Considering the situation of the limited data, we use only the simulated mouse

data to train our model, and then validate with similar real mouse data. And

the results show our model performs better than the traditional reconstruction

method.
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1.4 Chapter Contents

There are seven chapters in this dissertation. In the first chapter, we briefly explain

the nuclear imaging and background to our research. The second chapter demonstrates

some basic methods that are used in image reconstruction and deep learning. The third

chapter reviews the related work. The forth chapter presents some of our preliminary

works with some deep learning methods. The fifth chapter displays the motion-free

reconstruction directly from motion blurred sinogram using neural network. And the

six chapter gives another project that reconstructing the real mouse data by a deep

learning model which is trained with phantom data. In the last chapter, I conclude

the the studies, discuss the limitation and elaborate the future work.
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Chapter 2

Background

2.1 Medical Imaging

Generally speaking, medical imaging is the technology and process obtaining the 2D or

3D images of interior of the human or animal body by a non-invasive way. These images

can show the tissue and organs of the body, which are used for medical treatment or

medical research. Technically, medical imaging uses a certain kind of wave or ray to

penetrate the patient. The projections will be generated after these waves or rays go

through the patient, and collected by some specific devices. Because of the difference

of the tissues, this projection can show the structure inside the patient. In order

to reconstruct the 3D image of the patient, a number of projections from different

angles will be collected. This method is called tomography, which has been widely

used in many areas, as well as medical imaging. Tomography reconstruction (TR)

is the technique to reconstruct the image from these projections. TR is an inverse

problem, thus the final resulting image (characteristics of living tissue) is inferred

through the observed image signal (which is obtained by the machine). Therefore,

most of the techniques are trying to obtain a better reconstruction performance. In
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the next subsections, we will explain how the raw data is collected, and what the

reconstruction methods are.

2.1.1 Radon Transform

As we mentioned before, TR is an inverse problem. The main challenge of it is to

generate the an estimated volume of a targeted object from some discrete projections.

The mathematical foundations of TR is Radon transform [11]. Radon transform as

well as its inverse transform was introduced by Johann Radon in 1917. By convention,

the result of the Radon Transform is called ”sinogram”, since the Radon transform

of a point which is not the center is a sinusoid. The Radon transform of some small

objects looks like several sine waves with different amplitudes and phases overlapping.

(a) Original function. White region is one,
black region is zero. (b) Radon transform of fig 2.1a.

Figure 2.1: The Radon transform(right) of an object(left). The result is called sinogram. Images from
Wikipedia: Radon Transform.

Radon transform is a kind of integral transform. If the function f represents an

unknown density, doing a Radon transform on f is equivalent to obtaining the signal of

the projection of f . It’s applied in computed tomography [12] [13], electron microscopy

of macromolecular assemblies [14], and so on.
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If we say a density function f(x) = f(x, y) is a compact support with the domain

R2, which means it is a closed and bounded subset of R2. Let R is the operator of

Radon transform, then Rf is a line L defined in R2:

Rf(L) =

∫
L

f(x, y)ds

Where ds is the differential element of the line L. Radon transform can also be defined

in n-dimensional Euclidean space Rn. That is,Rf is on the space Σn of the hyperplanes

in Rn:

Rf(ξ) =

∫
ξ

f(x)|dσ(x)|

for ξ ∈ Σn.

Fig shows how Radon transform obtains the projection of a certain angle. On the

other hand, we know the line equation can be: y = ax + b, where a is the slope and

b is the intercept. It can also be written as: L(p, θ) := {(x, y) | x cos θ + y sin θ = p},

where p is the distance from the origin to the line L, θ is the angle the normal vector

to L makes with the x axis. Therefore, Radon transform can be written as:

g(p, θ) = Rf(p, θ) =

∫ +∞

y=−∞

∫ +∞

x=−∞
f(x, y)δ(x cos θ + y sin θ − p)dxdy

δ(X ) is the delta function.

A common solution for the inverse of Radon transform is the back projection algo-

rithm (sometimes called duel Radon transfrom [15]).

f(x, y) =

∫ π

θ=0

g(x cos θ + y sin θ)dθ
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(a) One line. (b) Two lines. (c) Multiple lines.

Figure 2.2: How Radon transform works for a certain line(s). p is the distance from the origin to a
certain line. θ is the angle the normal vector to L makes with the x axis. [2].

In reality, we use a discrete approximation:

f(x, y) ≈ ∆θ
N−1∑
i=0

g(x cos θi + y sin θi)

Obviously, the more projections are used, the more accurate the reconstruction image

is(fig 2.3a and fig 2.3b), but the reconstruction image will be heavily blurred (fig 2.3b).

One solution is using filters. Filtering can be used before the back projection or after,

but today most of the algorithms do that before.

(a) Reconstruction using 18 projec-
tions.

(b) Reconstruction using all the pro-
jections.

(c) Filtered back projection. Using
ramp filter

Figure 2.3: Reconstruction using back projection [3].
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2.1.2 Image Reconstruction

Radon transform and its inverse reveal the mathematical meaning of the projection.

But in real life, the data is finite and discrete. The (forward) projection process is

described in fig 2.4a. More general, if we use variables instead of actual values, we can

get fig 2.4b. gi is the projection value, which is a certain pixel in the sinogram. fj is

the voxel value of the object.

(a) An example of forward projection. (b) A more general form of the projection.

Figure 2.4

Let’s see the three equations in fig 2.4b. Each gi is only related with few voxels

(fj). We can add other voxels with zero coefficients so that the equations are still hold

(eq 2.1 2.3 ).

g1 = f1 + f2 + f3 = f1 + f2 + f3 + 0 · f4 + 0 · f5 + 0 · f6 + 0 · f7 + 0 · f8 + 0 · f9 (2.1)

g2 = f4 + f5 + f6 = 0 · f1 + 0 · f2 + 0 · f3 + f4 + f5 + f6 + 0 · f7 + 0 · f8 + 0 · f9 (2.2)

g3 = f7 + f8 + f9 = 0 · f1 + 0 · f2 + 0 · f3 + 0 · f4 + 0 · f5 + 0 · f6 + f7 + f8 + f9 (2.3)

Say A is the coefficient matrix, g is the vector of stacking all gi, and f is the vector of

all fj. Then the vector g can be evaluated by the product of coefficient matrix A and
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the object vector f :

⎡⎢⎢⎢⎢⎣
g1

g2

g3

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

f5

f6

f7

f8

f9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The more projections of different angles that the sinogram has, the more elements in

the vector gi. In general, we have:

g = Af (2.4)

In this example, we only use a single angle (90 degree) to show the projection. There-

fore, there are only 3 gi shown here. The more number of projections is used, the more

gi will be in vector g, and the more number of rows matrix A has. Still, we can get

g = Af . As we can see, coefficient matrix A is not related to the value of gi and fj. It

is defined by the model, or the projection system. When the system is fixed, we can

compuate A without knowing any actual gi or fj values. There is one problem when

we use our A for computation. Currently, all the elements in A are binary (only 0 or

1), which means at this angle, a certain voxel fj will project to a certain sinogram pixel

gi or not. But it is impossible in real life. Because of the reasons like random noise,

scattering, system errors and so on, fj may project to other sinogram pixels partially.
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So the elements in A are the fraction numbers between 0 1.

In g = Af , g is the sinogram which is known, A is the system matrix which can

be calculated. So the reconstruction problem is, given g and A, how to find f . Ideally,

we can compuate the inverse of A, that is A−1, and then get f by f = A−1g. But

this method has some fatal problem in practice: (1) Calculating A−1 is unfeasible or

at least high intensive since A−1 is huge; (2) A−1 may not exist because A−1 may not

be square or it is singular; (3) A−1 can be ill-conditioned, so that a change in g will

cause great differences in f . In the following sections, several common reconstruction

method will be demonstrated including FBP, CG, and MLEM.

2.1.2.1 Filtered Back Projection

Fig 2.3a and 2.3b show an example of the backprojection. Ideally, backprojection can

be defined by:

bp(x, y) =

∫ π

0

g(s, θ)dθ

Same as Radon transform, the projections only covers from 0 to π radians, because

another half of the rotation (π to 2π) will get the same values as the first half in the

ideal situation. Moreover, in discrete domain, which is closer to practice, the formula

of the backprojection can be written as:

bpD(x, y) =
n∑

k=1

g(sk, θk)∆θ

where n is the number of discrete projections, and ∆θ is the angle interval between

two successive projections (∆θ = π/n), sk is the k − th location along the detector

and θk is the kth projection. For example, in fig 2.1b, sk shows the x-coordinate in the

sinogram, while θk is the y-coordinate.

Let’s see an example about how backprojection works. Suppose we have an 3 × 3
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object, the pixel value within the object is unknown. Fig 2.5 shows an example of the

discrete backprojection computing given two projections which are at angle 0 and π/2.

Figure 2.5: The process of how to calculate the backprojection given the projections. The left one
shows the algebra and the right one is an example of some real numbers.

Figure 2.6: A simple example to show that how the blur is introduced by the backprojection process.
(A) Given the projections but pixel value of the image is unknown. (B) Backprojection to find the all
9 pixel values. (C) Final result of the backprojection. (D) Actual pixel value of the image. See the
difference between any two pixels in C and D. One can notice that the difference in C is lower than
in D.

Backprojection may introduce blur. Fig 2.6 shows an example of how a blurred

backprojected image (C in fig 2.6) is generated. Note that the absolute difference of

any pixel values in C is lower than in D. Thus, the pixel values in C are more closer
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to each other, and it makes image be blur. On the other hand, we can see the star

artifacts when using limited number of projections backprojection (fig 2.7).

Technically, star artifacts can be suppressed by using more number of projections

for the backprojection. If we can use infinite projections, we can perfectly reconstruct

the original image. But it is impossible. Normally, people prefer to use a convolution

filter to remove blurring. For example, we can give a small weight for those low

frequency components so that the the high frequency components, which are most

likely to be the edges, are emphasized. There are two ways to do this filtering. One

can backproject the sinogram and then filter the backprojection. While another way,

which is more common in real life, is to filter the projections first then backproject the

filtered projections. People called the later method filtered backprojection (FBP [16]).

Figure 2.7: Star artifacts in backprojection. (A) Original image. (B-E) backprojection using 2, 8, 16,
64 number of projections which are equally distributed between 0 to π (180 degree). We can clearly
see the star artifacts at the beginning. During the number of projections increasing, star artifacts
decreases.

As we know, frequency is defined by the repeating times of an event happens during

a certain period. High frequency means a large amount of occurrences of this event

during a unit period. Therefore, the frequency of an image means the change of the

pixel value in any direction within a certain distance (that’s why image frequency is

also called spatial frequency). High frequency in a image means the pixel value change

rapidly, which is usually the edge of an object. To filter an image, we normally use

Fourier transformation (FT) to spilt it into different components, then apply the filter

to weight these components, and finally sum up these weighted components to get the
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image back. Fig 2.8A shows some of the common filters used in FBP. Fig 2.8 B-E

shows the results of FBP using different filters. The original image is the same as fig

2.7(A). The sinogram of this image to do FBP contains 64 projections which are evenly

distributed between 0 to π.

Figure 2.8: FBP using different kind of filters. (A) Original image. (B-E) FBP using Ramp, Shepp-
Logan, Cosine, Hamming, and Hann filter. The sinogram used here has 64 projections which are
evenly distributed between 0 to π.

We can apply a filter that reduces the low frequency components of the sinogram

(like Ramp filter). Thus, the high frequency components are enhanced. That means

the edges of the reconstructed image can be sharpened. However, it is unfortunate that

much image noise is in high frequency. An alternative choice is to use a filter that can

restrain both lowest and highest frequency components. Now there is a trade-off: we

can use a stronger filter to reduce more noise, but we will also lose more information

of the image.
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2.1.2.2 Iterative Reconstruction Method

Algebraic Reconstruction Technique

FBP derives the results directly from the projections. So the process of FBP can be

very fast. There is another type of reconstruction method which is slower than FBP,

but has a better quality. It is called iterative reconstruction method. Recall that our

goal is to solve g = Af . Iterative method first initializes an estimated f , measures the

difference between the estimated f and the given sinogram g, and then tries to improve

the estimation based on the difference in the next iteration. A simple approach is called

the algebraic reconstruction technique (ART eq. (2.5)).

f
(k+1)
j = f

(k)
j +

gi −
∑N

j=1 f
(k)
ij

N
(2.5)

In equation (2.5), f
(k)
j is the estimation at the k-th iteration; f

(k+1)
j is the estima-

tion of next iteration ((k + 1)-th); gi is the projection along the ray i;
∑N

j=1 f
(k)
ij is the

sum of all the pixel values along ray i of the k-th estimation; N is the number of pixels

along ray i. Fig 2.9 shows an example of ART application.

Figure 2.9: An example of how ART reconstructs the image. (A) Unknown image with two projections
at angle 0 and angle π/2. (B) Initialize all the pixel values to be zero, then calculate the the first
estimation using the projection at angle 0. (C) Calculate the second estimation using the projection
at angle π/2. Here we only show the calculation of 4 pixels. Rest of the pixels are computed with
similar way.
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Gradient

There is another approach to find the best estimation of f . Suppose we initialize a

large number of different images. If we compute the projections of them, then compare

these projections with the measured projection by subtraction, we can get the differ-

ences between our estimations and the measured sinogram. Some of them may have

large differences, while others may have small differences. Our target is to find the one

that has the smallest difference with the measured projection.

However, to create thousands or millions of different images and compute the dif-

ferences is monotonous and prolonged. We prefer a clever way to find the image that

has the minimal difference. Back to the numerous differences we mentioned in the pre-

vious paragraph. If we plot them (suppose they can be plotted in the 3D coordinate

system), we shall visualize a terrain with a number of valleys and peaks, while valleys

mean small differences and peaks mean high differences. Starting from a random point

on this terrain, if we want to go to the lowest point (valley), we may look around, find

the direction to a lower point, and go there. Repeating this process, we can finally

reach the lowest point. We always want to reach the lowest point as fast as possible,

hence, the direction and the step length we walk must be carefully chosen. Intuitively,

go down the steepest slope can help us reach the lowest point faster. Therefore the

direction should always point to the steepest slope. Besides, the step length is spe-

cially designed, so that we can stop before ascending. This algorithm is called gradient

algorithm.

In general, the reconstruction problem can be described as: find the best solution

(estimation) f so that the difference between the estimated projection and given pro-

jection is minimized. Given the estimated image f , we can compute the gradient based

on the difference between the projection of f and the measured projection. The dif-

ference can be computed by using absolute difference, squared difference, and so on.
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Using gradient algorithm to iteratively find the best estimation can be defined as the

following equation (eq. 2.6):

f (k+1) = f (k) − αλ(k) (2.6)

Where f (k+1) is the new estimation, f (k) is the current estimation, λ(k) is the vector

which has the same direction as the local gradient (direction that the loss will have

the greatest change), α is the weight that controls the rate of the decreasing step

(the length of step we walk to the lowest point). Since we want to minimize the the

difference, we need to use the negative direction of the gradient −λ(k).

However, using gradient to optimize the estimation exists some problems. First one

is the local minima. Most of the time, gradient usually points to the local minimum

point of the function but not the global minimum. Fig 2.10 shows an example of that.

If we start from point A, then the negative gradient points to the local minima point

B instead of the global minima point C. Besides, the estimation might keep bouncing

around the minimum point, as it cannot make sure the next estimation is exactly the

minimum one. A better choice is to use conjugate gradient (CG) instead. In normal

gradient method, the vector λ only considers the current gradient. While in CG, λ will

consider the gradients in the previous steps as well. In practice, CG takes fewer steps

to converge comparing the normal gradient method.

Maximum Likelihood Expectation Maximization

Based on the probability theory, Maximum Likelihood Expectation Maximization (MLEM)

focuses on finding the best general solution of f [17]. A certain observation g is com-

ing from a specific f . The goal of MLEM is to find the mean number of radioactive

particles f̄ in the image (or 3D object) that has the highest likelihood to produce g.
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Figure 2.10: Local minima problem in gradient. If we start from A, then the gradient method tells us
we should go to B. But actually C is the global minima which is what we need.

In nuclear medicine, it has been proved that the amount of the particles that the

camera can detect (which is g in the formula g = Af) follows the Poisson distribution.

Recall that the Poisson probability mass function is given by:

P (X = k) =
e−λλk

k!
(2.7)

where k is the actual count of occurrences of event X, e is the Euler number, λ is

the expectation of X and also its variance. In our case, say event X is the amount of

particles obtained in bin i, then we can replace k by gi and λ by ḡi, and obtain the

formula of the probability of collecting gi particles in bin i:

P (gi) =
e−ḡi ḡi

gi

gi!
(2.8)

Note the mean of gi is the sum of the mean count of particles emitted from all the

pixels:

ḡi =
M∑
j=1

aij f̄j (2.9)

21



We want the best estimation of f̄ that can obtain g with the highest likelihood. In

other words, we want to maximize the probability that the observation g happens given

f̄ , thus P (g|f̄). That is:

L(f̄) = P (g|f̄) = P (g1, g2, ...gn|f̄) =
P (g1, g2, ...gn, f̄)

P (f̄)
(2.10)

Because Poisson variables are independent, by Bayes’ theorem, equation (2.10) can be

written as:

L(f̄) =
P (g1, g2, ..., gn, f̄)

P (f̄)
(2.11)

=
P (g1)P (g2)...P (gn)P (f̄)

P (f̄)
(2.12)

= P (g1)P (g2)...P (gn) (2.13)

Conventionally, log-likelihood function l(f̄) is always used instead of using likelihood

direction. Because: 1) simplify the computation (multiplication becomes addition, so

that to compute the derivative is easier), and 2) they have the same monotonicity

(monotonic increasing function, means the maximum point for both likelihood and

log-likelihood functions are the same). Therefore:

l(f̄) = ln(P (g1)P (g2)...P (gn)) (2.14)

= ln(P (g1) + P (g2) + ... + P (gn)) (2.15)

=
n∑

i=1

ln(P (gi)) (2.16)

=
n∑

i=1

ln
e−ḡi ḡi

gi

gi!
(2.17)

=
n∑

i=1

(−ḡi + gi ln(ḡi)− ln(gi!)) (2.18)
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Introducing equation (2.9) to the above one, we obtain our likelihood function:

l(f̄) =
n∑

i=1

(−
M∑
j=1

aij f̄j + gi ln(
M∑
j=1

aij f̄j)− ln(gi!)) (2.19)

To maximize the likelihood function, we can compute the derivative of the function

and make it be zero:

dl(f̄)

df̄
= −

n∑
i=1

aij +
n∑

i=1

gi∑M
j=1 aij f̄j

aij = 0 (2.20)

If we multiply f̄ on both sides, equation still holds:

−f̄
n∑

i=1

aij + f̄
n∑

i=1

gi∑M
j=1 aij f̄j

aij = 0 (2.21)

Thus:

f̄ =
f̄∑n

i=1 aij

n∑
i=1

gi∑M
j=1 aij f̄j

aij (2.22)

Now we obtain the iterative form of MLEM reconstruction method:

f̄ (k+1) =
f̄ (k)∑n
i=1 aij

n∑
i=1

gi∑M
j=1 aij f̄j

(k)
aij (2.23)

2.2 Artificial Neural Network

2.2.1 Fully Connected Neural Network

In 1943, a computational model for neural network was created [18]. In 1957, the

simplest feed-forward artificial neural network was invented, called ”Perceptron [19]

[20]”(fig 2.11a). Perceptron is a simple abstraction of the biological neuron. The core
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function of the perceptron is nothing but weighted sum (eq 2.24):

Output = f(
n∑

i=1

wixi + w0) (2.24)

f is the activation function. Using that we can transfer the output from (−∞,+∞)

to ”yes or no”. w0 is the bias. xi, for i = 1, 2, 3, ... are the inputs, and set x0 = 1.

Perceptron learning algorithm is very similar to the stochastic gradient descent:

1. Initialize wi = 0, for i = 0, 1, · · · , n

2. Traverse all the data until find a point such that the result of f(
∑n

i=1wixi +w0)

is negative, Then update the weights: wi ← wi + αxi for i = 1, 2, · · · , n.

3. Repeat step 2 until no more mistake.

(a) (b) (c)

Figure 2.11: Perceptron: (2.11a) A biological neuron and artificial neuron [4]. (2.11b) How does a
perceptron learn. Picture from Wikipedia: perceptron. (2.11c) XOR problem [5] for single perceptron.

However, it was proved that the perceptron cannot solve the non-linear problems

[21]. For example, the XOR problem(fig 2.11c) is unfeasible for a single perceptron,

since in the XOR problem, we cannot use a single line to divide these two categories. It

is very easy to solve – use more perceptrons(fig 2.12). In fact, a naive solution is to use

more layers and nodes at each layers. The first and last layers are the input and output.
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Those layers between the input and output layers are called hidden layers. Every

single node in hidden layers is a perceptron. This architecture is called ”Multilayer

Perceptron (MLP)” [22–24]. Since this structure is more sophisticated and hard to use

single perceptron learning algorithm, people need to use more complex algorithm such

as backpropagation [23] to make MLP learn things.

Figure 2.12: Fully connnected MLP. Sometimes called dense network. The number of nodes in the
input and output layers is normally fixed. But the number of hidden layers and the hidden nodes of
the hidden layers are vary.

2.2.2 Convolutional Neural Network

Figure 2.13: Convolutional Neural Network [6].

It will be very expensive to train the MLP if every layer is fully-connected to each

other. For example, if each hidden layer has 10000 nodes and the input image is

25



1000×1000, then each layer will maintain 10002×10000 = 1010 number of parameters.

Because this network is fully connected, which means every single node connects to all

the nodes in the next layer. Also, because we have more than one layer and do back

propagation, in every step, the system has to update n× 1010 number of parameters.

Therefore, people invented a variation of MLP, convolutional neural network (CNN)

[25]. Compared to the fully connected network, CNN is much more specialized and

efficient. In CNN, there are two important methods used to reduce the computation

load: locally connectivity(fig 2.14a) and shared weights(fig 2.14b). Local connectivity

(a) Fully connected (left) and locally connected (right) [26].

(b) Shared weights [26].

Figure 2.14: CNN.

is also called sparse connectivity. That is, instead of being fully connected, every node

only connects to one part of the input, say 10, then the amount of the parameters will

be 10×10×10, 000 = 106. Now we only have 1
104

of the original number of parameters.

Based on sparse connectivity, every node shares the weight. That is, share this 10× 10

weights to rest of the nodes (fig 2.14b). Therefore, no matter how many nodes used in

each layer, the number of parameters will be 10×10 only. In CNN, we call this 10×10
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weighs ”convolution kernels” or ”filter”. 10 × 10 is the kernel size or filter size. One

filter will produce one feature from the input image. Normally, we will use multiple

filters to get more features from the image. Using different filters, different features

will be produced. This is what we called ”feature map”.

2.2.2.1 Transposed Convolution

CNN models got significant improvements on the image classification and recognition.

But people didn’t completely understand why CNN is much better than the tradi-

tional methods. So the researchers developed a technique to visualize the output of

the intermediate hidden layers [27, 28]. At first, it was called ”deconvolution”, since

it’s doing upsampling which is the opposite way compared to ”convolution”. Now we

normally call it ”transposed convolution”, because the term ”deconvolution” is am-

biguous [29–31]. There already exists a deconvolution technique. It refers to a method

of removing the effect of filtering. For example, the original image (or signal) is clear,

but the image observed through the cameras (or other devices) becomes blurred. If it

is assumed that the function of the cameras is equivalent to a certain filter acting on

the original image, which causes the image to become blurred, then according to the

blurring image, the process of estimating this filter or restoring the original clear image

based on the blurred image is called deconvolution.

On the other side, deconvolution in deep learning is actually doing the transposed

convolution. For the feature visualization and backpropagation, there is no actual

layer for the transposed convolution. It’s only a process using the same filters as the

convolution step (filter needs to be transposed). But in other situations like image

segmentation and decoder/generator, there are transposed convolution layers, and the

filters are computed by training. To understand how the transposed convolution works,

let’s see the process of convolution. Figure. 2.15 shows an example of the convolution
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calculation given a 2 × 2 kernel and a 3 × 3 input. One should notice that in the

mathematical definition, the convolution function takes the mirror of the kernel, while

in neural network it uses the original order of the kernel.

Figure 2.15: An example to show how the convolution works. Here we have a 2× 2 kernel and a 3× 3
input, with the unit stride and zero padding. Every pixel in the kernel will multiply the corresponding
pixel in the input and then all the products will be summed up to get one pixel value in the output.
The unit stride means every time the kernel will move one pixel to compute the next output pixel.
Zero padding here means there is no padding for the input to expand its size.

Note that this process can be written as a matrix multiplication. The 3× 3 input

X can be reshaped to 1-D vector:

X = (1, 2, 3, 4, 5, 6, 7, 8, 9)T

And do the same thing for the output reshaping:

Y = (y0, y1, y2, y3) = (21, 27, 39, 45)

Our kernel is: ⎡⎢⎣k0 k1

k2 k3

⎤⎥⎦ =

⎡⎢⎣1 1

2 2

⎤⎥⎦
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To do matrix multiplication, we need to change the kernel to a specific sparse matrix

K:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k0 k1 0 k2 k3 0 0 0 0

0 k0 k1 0 k2 k3 0 0 0

0 0 0 k0 k1 0 k2 k3 0

0 0 0 0 k0 k1 0 k2 k3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 2 2 0 0 0 0

0 1 1 0 2 2 0 0 0

0 0 0 1 1 0 2 2 0

0 0 0 0 1 1 0 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Now we have:

K ×X =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 2 2 0 0 0 0

0 1 1 0 2 2 0 0 0

0 0 0 1 1 0 2 2 0

0 0 0 0 1 1 0 2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

3

4

5

6

7

8

9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

21

27

39

45

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Y

Here we show the convolution calculation in neural network, and represent the

convolution in matrix multiplication form KX = Y . Next we will show how the

transposed convolution works and why it is called “transposed”.

Typically, transposed convolution is the way to upsample the input. For example,

we use the previous mentioned Y as the input here and the same kernel k. The output

dimension of this process is 3×3, which is the same as the input in the convolution step.

In order to compute upsample the input from 2× 2 to 3× 3, we take every pixel in the

input and multiply with the every element in the kernel to calculate the corresponding
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output pixel. Notice that there are some elements overlapped. The solution is simply

to sum them up. After this upsampling step, the output is:

Figure 2.16: A transposed convolution example. The input here is the output in the previous convo-
lution step, and the kernel is the same. We use different colors to display the output pixel position.
For instance, when taking the green pixel of the input to multiply the kernel elements, the position
of the four resulting pixels are shown using the same color in the output.

(21, 48, 27, 81, 180, 99, 78, 168, 90)T

However, if we use the transpose of the sparse matrix of the kernel KT multiply Y , we

will obtain the same result as the previous upsampling step. That’s why people called
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it “transposed” convolution, because it’s doing convolution with the transposed kernel:

KT × Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

1 1 0 0

0 1 0 0

2 0 1 0

2 2 1 1

0 2 0 1

0 0 2 0

0 0 2 2

0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

21

27

39

45

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21

48

27

81

180

99

78

168

90

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Chapter 3

Related Work

This chapter is dedicated to review the related works. Firstly, we provide an overview

of some typical deep learning methods that are used in image processing. Next, the

applications of deep learning in medical imaging are demonstrated.

3.1 Artificial neural network

3.1.1 Convolutional neural network

CNN is one of the most important approaches in deep learning. From 1989 to 1998,

LeCun et al. published a series of papers to elaborate a feed-forward neural network

and how to train it [32–35]. This network is called LeNet or LeNet-5, as one of the

earliest CNN. They confirmed that in handwriting character recognition, LeNet had

the outstanding performance compared to all other models [35]. This simple network

defines the basic elements of CNN: convolution, pooling, and dense (fully connected)

layers. Because of the limited computing power, people at that time didn’t pay to much

attention on it. In the 21st century, researchers started to use graphics processing
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unit (GPU) to accelerate the CNN computation and won some image competitions

[36–39]. In 2012, AlexNet won the ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) and its top-5 error rate was 10% more lower than other the runner up [40,41].

AlexNet has an significantly influence in computer vision, stimulating many studies on

CNN and GPU acceleration. Now, CNN is widely used in image recognition [42–46],

natural language processing (NLP) [47–49], and other areas like medicine [50, 51] and

checker game [52–54].

3.1.2 U-net

U-net is one of the expansions of CNN. Olaf et al. proposed this special architecture

for biomedical image segmentation [55]. It is an improvement of fully convolutional

network (FCN) [56]. An ordinary U-net structure contains two symmetric components:

a contracting path and a expanding path. The contracting path is a common CNN. On

the other hand, the expanding path is similar to the contracting path, except concate-

nating the features from the contracting path at the same level, and using unpooling

or transposed convolution to do upsampling. Most of the time, U-net was applied in

biomedical image segmentation, like Brain Tumor Segmentation (BraTS) [57–59], Seg-

mentation of the Liver Competition 2007 (SLIVER07) [60–62]. There are some other

applications of U-net. Çiçek et al. demonstrated their 3D U-net for volumetric seg-

mentation which learned from sparsely annotated volumetric images and achieved good

performance of a complex, highly variable 3D structure, the Xenopus kidney. Nazem’s

group used a improved 3D U-net to predict the binding sites of the proteins and there-

fore, helped the drug design for the novel proteins [63]. Vladimir Iglovikov and Alexey

Shvets showed that using a pre-trained encoder (the contracting path) can improve

the performance of U-net in image segmentation and won the Kaggle competition of

Carvana Image Masking Challenge [64].
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3.1.3 Attention Mechanism

The attention mechanism has been applied in many areas. Originally it was applied

in computer vision and then rapidly for the learning long-range association between

data [65–67], like the semantics of a word in a sentence may be determined by the

context in the sentence at many words apart. Due to the presence of long-range data

association in input data, it is important to pay attention to a particular region of the

data and reveal the connection between two areas which are not close to each other.

When we look at some information (i.e sentences, image, ...), we pay more attention to

those aspects of data, which are perceived to be more important. Initially, the attention

mechanism appeared in computer vision, and rapidly grew in deep learning, especially

natural language processing (NLP) [65] [66]. Now, areas such as computer vision and

pattern recognition have begun to use attention to produce better results. Wang,

et al. [67] presented non-local operations, which originated from the non-local means

method, to “compute the response at a position as a weighted sum of the features at all

positions.” Zhang, et al. modified Wang’s work and used it in the generative adversarial

network (GAN), called self-attention GAN (SAGAN) [68]. SAGAN can generate the

image by using cues from features across different locations. In this paper, the author

claimed they obtained better performance on the challenging ImageNet dataset. In

other words, the attention component can be embedded into a convolutional network

to enhance the reconstruction quality, as observed in our experiments with the proposed

ANN.

3.2 Deep learning in medical imaging

Recently, due to the rapid development of deep learning (DL) techniques, increasing

research is being devoted towards the potential of using an ANN model to improve
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image reconstruction. A survey from McCann et al. reviewed the recent applications

of CNNs to the inverse problems such as denoising, deconvolution, super-resolution,

and medical image reconstruction [69]. Improvements are shown over traditional tech-

niques, including sparsity-based techniques, e.g., compressed sensing. The authors

attempted to address some important questions in the application of deep learning in

inverse problems, such as, where do the training data come from; what are the im-

pacts of architectures of the CNN; and, how is the learning problem formulated and

solved? There are other deep learning applications dedicated to medical imaging tech-

niques [70]. They can be used for image reconstruction, image conversion (from one

modality to another), pre- and post-processing, etc.

3.2.1 Image denoising

A specific application of deep learning in medical imaging is image denoising. Wang, et

al. [71] proposed an approach that is useful in recovering wavefronts from direct inten-

sity measurements, imaging objects from diffusely reflected images (as in ultrasound or

seismic imaging), and denoising the scanning transmission electron microscopy images.

They claimed its utility in solving arbitrary inverse problems. Instead of estimating

source data directly from observations, Zou, et al. [72] trained a deep neural network to

estimate the degradation parameters under an adversarial training paradigm, and ap-

plied their method to a variety of real-world problems including image denoising, image

de-raining (raining being a type of noise commonly found in old television sets), shadow

removal, non-uniform illumination correction, and under-determined blind source sep-

aration of images or speech signals. The AUTOMAP [73] initially used two fully

connected (FC) layers to learn the linear mapping, and then used several convolutional

layers over the output of the FC layers for denoising.

Heinrich, et al.’s model [74] combined a fully convolutional network (FCN) and a U-
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net using residual connections for low-dose CT image denoising and obtained promising

results on the XCAT phantom data. Reymann, et al. [75] exploited a four-layer U-net

and proved this model can significantly increase image quality when using the data

obtained from Monte Carlo simulations of XCAT phantoms. In Liu, et al.’s paper

[76], a couple U-net structures (CU-net) was considered to improve the detectability

of perfusion defects compared to the traditional Gaussian post-filter for denoising.

The human data result demonstrated that CU-net had a stronger capability for noise

suppression and perfusion defect detection as compared to the traditional Gaussian

filtering. Po-Yu Liu and Edmund Y. Lam [77] created a deep learning structure to do

the Poisson image denoising, and got a significant improvement than the traditional

denoising algorithms. Gong K, et al [78] introduced a modified U-net [55] for PET

image reconstruction, and got a better result than the Gaussian filter and anatomically-

guided reconstructions using the kernel method or the neural network penalty.

3.2.2 Motion correction

As previously mentioned, there exists a multitude of literature and algorithms on mo-

tion correction in many modalities, primarily in the context of cardiac imaging as well

as imaging of other organs affected by motion. Following is a select list of relevant

works. Dubbs, et al. [79] introduced a Fourier-transform approach to accelerate the

computation of the L2 norms and the FFT convolutions for tMC which was the first step

in a pipeline of algorithms to analyze calcium imaging videos. Besides MC in calcium

imaging, Min, et al. [80] proposed a coronary MC algorithm in computed tomography

(CT) angiography. In Single Photon Emission Computed Tomography (SPECT), an

MC algorithm called MoCo from Cedars-Sinai is licensed by most vendors in cardiac

SPECT and embedded in their iterative reconstruction algorithms [81,82]. Rather than

correcting the organ motion, Mitra, et al. [83] provided a tool SinoCor that can detect
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and correct the patient motion on camera-projection data for SPECT. The deep partial

angle-based motion compensation (Deep PAMoCo) [84] made use of a CNN to predict

the motion model to aptly determine the motion vector field (MVF). It has been shown

that the Deep PAMoCo provided an efficient approach for the improvement of image

quality and processing time. U-net was also used for MC as a post-processing step

after image reconstruction [85,86].

3.2.3 Image Reconstruction

Zhang and Zuo [87] proposed a method using a recurrent neural network (RNN) for

computed tomography (CT) image reconstruction such that the reconstruction with

the total variation (TV) prior was significantly improved, especially for those images

containing small metal objects. Fu and De Man [88] decomposed the reconstruction

problem into hierarchical sub problems, and designed a neural network of six hier-

archical stages to solve the sub-reconstruction problems, level-by-level. Li et al. [89]

developed an intelligent CT network (iCT-Net), that can reconstruct images with high

quantitative accuracy with either complete or incomplete line integral data. Wu et

al. [90] used a k-sparse autoencoder [91] to learn the nonlinear sparse prior from normal-

dose CT images reconstructed by FBP, and then applied this model to the iterative

reconstruction of the low-dose data. Lim et al. [92] proposed the BCD-Net to be the

regularization method for the low-count PET reconstruction, and showed significant

improvements compared to non-trained regularizers, total variation (TV) and non-local

means (NLM). Ouyang et al. [93] used a generative adversarial network (GAN) to re-

construct high-quality and accurately pathological features of standard-dose amyloid

PET images from ultra-low-dose PET images. Häggström et al. [94] presented a deep

convolutional encoder-decoder network that can reconstruct the images directly from

the PET sinograms. Our proposed approach is based on Häggström’s network model.
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Some methods unified iterative reconstruction with deep learning, like EM-Net [95]

and MAPEM-Net [96]. The original maximum a posteriori probability expectation

maximization (MAP-EM) algorithm [97] is an extension of the expectation maximiza-

tion method for maximum likelihood image reconstruction in emission tomography

(MLEM) [17, 98]. Both MLEM and MAP-EM can reconstruct the image by several

iterative steps. EM-Net replaces the penalty item in the original (MAP-EM) algorithm

by a modified U-net [55] (developed for image transformation), while the MAPEM-Net

are combined with the iterative reconstruction more deeply. In the MAPEM-Net, there

are nine modules, and each module performs two MAPEM steps (maximum likelihood

estimation and expectation maximization), followed by an independent U-net.
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Chapter 4

Preliminary Experiments

In this chapter, we show some of our preliminary work using deep learning to solve

problems, including the parameter prediction, inverse problem, and motion correction.

All the data we used in these works is created by ourselves, in order to explore the

ability of the neural network in the area of the image transformation.

4.1 Parameter Prediction

4.1.1 Fourier Transformation

Fourier transform (FT) is widely used in medical imaging for image analysis and pro-

cessing. FT is a mathematical technique that decomposes a signal or image into its

frequency components. In medical imaging, it is used to transform signals from the

time domain into the frequency domain, making it possible to analyze and manipulate

the frequency content of the image. In medical reconstruction, FT provides a powerful

tool as it allows the extraction of useful information from acquired data (like sinogram)

by transforming it into the frequency domain, filtering it, and then reconstructing it
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back into the time or space domain. This technique has revolutionized medical imag-

ing, enabling the creation of detailed and accurate images of internal structures and

functions of the body.

In practice, we used discrete Fourier transform (DFT) since the data was obtained

in discrete time. Most of the time, The Fast Fourier transform (FFT) algorithm is

preferred over the DFT algorithm because it is computationally efficient (from O(n2)

to O(n log n)), requires less memory, is easier to implement, and is as accurate as the

DFT algorithm for most applications. FFT was derived in 1805, but not widely used

until 1965 [99]. The American mathematician Gilbert Strang believed that FFT is ”the

most important numerical algorithm of our lifetime” [100] [101]. Also, IEEE put FFT

into the list of the top 10 algorithms of 20th century in the IEEE journey ”Computing

in Science & Engineering” [102].

In the following context, I show how to use a fully connected network to simulate

inverse discrete Fourier transform. That is, according to the frequency-domain samples,

reconstruct the certain signals in time-domain. So the frequency-domain samples will

be the input, and the time-domain samples will be the output.

The training data I used is generated by the trigonometric functions, sine and

cosine. Totally, there are four types of signals:

A sin(2π × t) + B sin(2π × 5t) + 2sin(ω × 3t) (4.1)

A sin(2π × t)−B sin(2π × 5t) + 2sin(ω × 3t) (4.2)

A cos(2π × t) + B sin(2π × 5t) + 2sin(ω × 3t) (4.3)
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A cos(2π × t)−B sin(2π × 5t) + 2sin(ω × 3t) (4.4)

While t is the time, whose range is [0, 5), step 0.005. A and B have the same range:

[1, 3), step = 0.2. ω is from 2π to 12π (exclusive), step π. Thus, there are 10 different

A values, 10 different B values and 10 different ω values. For each type, there are

10× 10× 10 = 1, 000 different signals. Totally, I have 4× 1, 000 = 4, 000 signals. Use

different amplitudes (A and B), and angular frequency ω to create different signals. Do

FFT on these signals, and the result of that will be the input of my neural network.

The original signals will be the outputs (or the labels).

Figure 4.1: One of the signals and the corresponding FFT (real and imaginary). The signal function
is: 2 sin(2π × t) + 3 sin(2π × 5t) + 2sin(7π × 3t)

My neural network model is a fully connected network (FCN). Totally, I have 4,000

signals, then I randomly chose 100 of them to be the testing set and rest of them to be

the training set. The number of the training iterations is 10,000. In every iteration,

randomly choose 100 signals from the training set to train the network. Loss function

is the sum of the squared difference(eq 4.5).

error =
∑

(x⃗i − x⃗i
′)2 (4.5)

41



where x⃗i is the original 1D signal, x⃗i
′ is the reconstructed signal.

Actually, using too many hidden nodes per hidden layer will not improve the re-

sult. fig 4.2 shows the error curve during training. All of them use 4 hidden layers,

but different number nodes. In both fig 4.2a and fig 4.2b, Y-axis is the error value,

computed by eq 4.5. X-axis is the number of iterations. In every iteration, randomly

choose 100 signals from the training set to train the network. And the reconstructed

signal is in fig 4.3.

(a) Using lots of nodes per hidden layer. (b) Using fewer nodes per hidden layer.

Figure 4.2: Using 4 hidden layers but different number of hidden nodes.

Figure 4.3: Original signal and the corresponding reconstruction. RMS is 0.6890. X-axis represents
time, while y-axis is the signal intensity.
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4.1.2 Attenuated Uniform Disk

Real data may not be ”real” since it will be corrupted by attenuation. When a beam

penetrates a volume of any material, photons will be absorbed or scattered. Therefore,

the detectors will lose counts. Attenuation is one of the main problem in medical

imaging. It may increase noise, or distort the image. One of the ways to correct

for attenuation is Chang’s method [103]. Each pixel of the object is multiplied by a

coefficient of attenuation (eq 4.6).

C(x, y) = (
1

M

M∑
i=0

e−µlθi )−1 (4.6)

where M is the number of projections. lθi is the distance from (x, y) to the boundary

of the object (see fig 4.4) In order to ”correct” the image, the additional information

Figure 4.4: Illustrate the parameters used in formula of the attenuation correction coefficient in a
coordinate system.
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is needed when reconstructing the image. It can come from statistic features [104],

or from somewhere else. For example, in medical imaging, people will use x-rays to

construct the attenuation map for the correction [105,106].

My experiment is to test if NN can automatically embed the attenuation correction

while trying to reconstruction the image. I create many disks with different positions

and radius. And then, use an analytical expression to compute the attenuated pro-

jections of a certain disk with a fixed attenuation coefficient. Then we build a simple

convolutional neural network, use attenuated projections to be the input, to predict

the position and the radius of the disk, and the attenuation coefficient.

Following equation (eq 4.7) is the analytical expression to compute the attenuated

projections.

p(ξ) =
C − Ce−2µ

√
R2−ξ2

µ
(4.7)

Figure 4.5: Illustrate the geographical meaning of the parameters used in analytical expression.

In eq 4.7 µ is the attenuation coefficient, C is the pixel value of the disk which is

always one here, R is the radius of the disk, e is a mathematical constant, the Euler’s
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number (the base of the natural logarithm), ξ is the distance starting from the center

of the camera ending with the projection of a disk pixel on the camera (fig 4.5).

The neural network is a convolutional neural network (fig 4.6a). In convolution

layer 1 and 2, there are 16 filters. The kernel size is 5 x 5. The activation function is

Rectified Linear Unit (ReLU) [107]. In convolution layer 3 and 4, there are 32 filters.

The kernel size is 5 x 5. The activation function is relu. The optimizer function is

Adam, learning rate 0.0001. Loss function is mean square. Batch size 30, 40 epochs.

(a) CNN model. (b) Loss value during training.

Figure 4.6: CNN model and error curves for attenuated disk projectio

In total, there were 1764 sinograms created. 1500 of them were used for training,

and rest of the 264 sinograms for validating. Fig 4.6b shows the loss value during

the training. Fig 4.7 shows the part of the results. Note the attenuation coefficients

µ are small fraction numbers (much smaller than one) and other values are integers.

Considering the accuracy, I used the exponent of µ, because this model may not give
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Figure 4.7: Some results. You can see there are two parts in this big table. The left one contains
the results from the CNN. The data from the right one is the real data that is used to generate the
sinograms.

me a good result for µ if directly using it for training. For example, if µ is 0.00001 and

the output of µ is 0.001, the error is still very low because other numbers are much

larger than this µ value, but actually the predicted µ value is 100 times more than

the actual µ value. That’s why instead of directly using 10−k, I used k to train the

network. In 4.7, I converted back to the actual µ values in order to understand easily.

4.2 Synthetic Object Reconstruction

In order to simulate the myocardium, we chose U-shape object to be the ideal image.

The size of all the generated images is 64x64. There are four basic U-shapes which

are shown in fig 4.9. According to those basic shapes, translation and flipping are

applied on them to create a large data set. Algorithm shows in fig 4.8. There are

640 for each shape. In total, 2560 images were created. In each shape of images, 40

images are randomly selected to be the testing set, and rest of the 600 images to be
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the training set. Thus, the testing set has 4 × 40 = 160 images, and the training set

has 4times(640− 40) = 2400 images.

Figure 4.8: How to generate more data based on those four basic images(fig 4.9)

The neural network model I used is a FCN. There are five hidden layers in the

model, each hidden layer has 100 neurons. Activation function is rectified linear unit

(reLU [107] [108]), since negative value is meaningless in an image. Error function is

mean squared error(MSE), also called mean squared deviation (MSD). The optimizer

is Adam, because some researchers believe Adam might be the best overall choice

[109]. Also, in Stanford course ”CS231n: Convolutional Neural Networks for Visual

Recognition”, Adam is ”currently recommended as default algorithm”. The learning

rate is 0.001

Recall that my training set has 2400 images and my testing set has 160 images.
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(a) Unsymmetrical U-shape image and the corre-
sponding radon transform. Generated by several
squares, each square is constructed by 6x6 pixels.

(b) Disconnected U-shape image and the correspond-
ing radon transform. Generated by several squares,
each square is constructed by 6x6 pixels.

(c) Thinner U-shape object. Generated by several
squares. Square size is 4x4 pixels.

(d) V-shape object. Generated by several squares.
Square size is 4x4 pixels.

Figure 4.9: Four basic shapes. Image size is 64× 64.

While training, the number of epochs I set is 100, batch size 50. In each epoch, I used

testing set to validate the error. The training and validation error curves are in fig

4.10. Some reconstruction shown in fig 4.11.

Figure 4.10: Training and validation error while training
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Figure 4.11: Reconstructions using FCN. The first row is the real image. The second row is the
reconstruction from Dense NN. MSE, RMSE, SSIM are used to measure the difference between the
reconstruction and the real image.

4.3 Motion Blur Elimination

In this work, we address motions like cardiac motion as symmetric Gaussian blur and

try to recover that directly from the sinogram data. For simplicity of fast experimen-

tation, we use 2D synthetic data that may be easily extended to 3D. Rather, we used

different shapes (motivated by that of the heart) and locations of the target object to

prove the robustness of our results. We train a convolutional neural network (CNN)

for recovering the ground truth motion model (Gaussian function).

Four basic 2D U-shape masks and annular elliptical rings were selected to be the

ideal shapes in this work (fig 4.13 and 4.12). The four basic U-shape images were

augmented by changing the positions (translation) and orientations (rotation) of these

images producing 2560 different images. For the different annular elliptical rings gener-

ation, two different ellipse functions were utilized: one for the outer ellipse and another

for the inner one. By changing the center, the width, and the height, we got 640 differ-

ent annular elliptical rings. Then we did the same augmentation operations as before

for this 640 images that is included for training and validation along with the previous
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abstract shapes (fig 4.12).

Figure 4.12: Annular elliptical rings. They are generated by two ellipse functions. The outer ellipse
is fixed. By changing the center, the width and the height of the inner ellipse, we get different images
to simulate hearts.

The symmetric Gaussian blur was decided to simulate the cardiac motion in this

work. We used 8 different 2D 5× 5 Gaussian filters to blur these images. The discrete

Radon transform was applied to those blurred images to produce blurred sinograms.

Subsequently, Poisson noise is added to the sinograms. Fig 4.14 shows this process.

Figure 4.13: Four basic shapes.

Figure 4.14: Steps to create a noisy blurred sinogram. (From left to right) Based on the real image,
we used Gaussian filter to blur it to get a blurred image. Then, Radon transform this blurred image
to create the blurred sinogram. Finally, by adding Poisson noise we get the noisy blurred sinogram
that is used as input.

In summary, say f is the Gaussian filter, g is the image, s is the sinogram, R is

the Radon transform, and ∗ is the notation for the convolution operation, then the
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equation we used to generate the sinogram s is:

s = R(f ∗ g) (4.8)

Our problem is: given an s, can we recover f and g by training a deep learning model.

We developed and trained two independent neural networks to: 1) learn to recover

the filter f from a motion-blurred sinogram; and 2) learn to reconstruct the noise free

image g from the motion-blurred sinogram. Therefore, we used two individual NNs

to solve these two problems: 1) A CNN to extract the Gaussian filter from the noisy

sinogram, and 2) A CED to reconstruct the image from the noisy sinogram.

4.3.1 Motion function recovery

A convolutional neural network (CNN) was used to recover the motion function. It was

trained to extract the filter from the blurred sinogram. It contains three convolutional

layers and two dense layers (fig 4.15). The number of the epoch is 20, batch size 50.

The optimization function is Adam [110], and the loss function is the mean squared

error. We used mean squared error to measure the model loss. After 100 epochs,

Figure 4.15: Convolutional neural network. It is used to extract the filter from the sinogram.

the training loss is 1.4249e-6 (RMS = 1.1937e-3), and the validation loss is 1.6612e-5

(RMS = 4.0758e-3). Each epoch of training takes approximately 3 sec on our machine

(CPU is Intel(R) Core(TM) i7-9700K @ 3.60GHz. GPU is Nvidia Titan Xp. RAM
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Figure 4.16: A sample result. Compare the real filter and the estimated filter. The third one shows
the absolute difference between the real filter and the estimated filter.

is 32 GB). Fig 4.16 shows one sample result of the estimated filter (from the model

output) compared to the ground truth filter.

4.3.2 Image reconstruction from noisy blurred sinogram

Using the same data, we used CED (fig 6.5) to reconstruct the motion-free from the

noisy sinogram. We trained the network on a GPU node on a cluster with the dataset

which contains the ellipse rings. The number of the epoch is 100. Batch size is 50,

optimization function is Adam, and the loss function is MSE. The configuration of this

GPU node is: 2 x 10 core Intel Xeon @ 2.30GHz, 131GB of RAM, 4 x Nvidia Tesla

K40m. After 100 epochs, the training loss is 4.0035e-04 (RMS = 0.02001), and the

testing loss is 1.928e-4 (RMS = 0.01825). Training time is 24302.638 seconds, and the

average reconstruction time per image is 2.710e-3 seconds.

According to our results, we believed the neural networks have a great potential to

recover motion model and reconstruct images from motion-blurred sinograms. It can

improve the reconstruction process in nuclear imaging such as PET, SPECT, and CT,

for example, for noise reduction. It also provides a fast way to reconstruct the image

in place of iterative reconstruction methods, though it takes much more time to train
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Figure 4.17: CED to reconstruct the image from a noisy blurred sinogram.

Figure 4.18: Image reconstruction with adapted CED. Annular elliptical ring on the last row simulates
shapes of hearts. First row shows the ground truths. Second row shows the reconstructions. Third
row is the difference between the ground truth images and the reconstruction images.
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the network.

In order to avoid motion generated noise, respiratory and cardiac gating method-

ologies have been developed. They are quite useful for static imaging protocols with

radiotracers and contrast agents, where tracer agent-concentrations are allowed to sta-

bilize in body and imaging takes place after some wait time. However, in dynamic

imaging protocols, which provide better quantitative and diagnostic information [111],

and where imaging starts immediately after injection to study the pharmacokinetics

of the imaging agent, gating techniques are not as effective as in static imaging. Our

proposed technique will be very useful in dynamic imaging as the trained neural net-

work will incorporate the motion model. In the near future we want to develop such

motion corrected dynamic image reconstruction deep learning models.

Finally, our technique needs to be validated with real data. Availability of large real

training dataset is a challenge. We believe, combination of synthetic data and limited

amount of available patient data will provide quality training. Another challenge is the

adaptability of a model for individualized patient. Motion model’s topological shape

is expected to be very similar for all patients, however, our motion model is too simple

to simulate the patient motion. In the future, using real data or an enough complex

simulation data as well as the motion model is our research direction.
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Chapter 5

Reconstruction From Motion

Blurred Sinogram Using Deep

Learning

This work addresses Inverse Radon Transform (IRT) with Artificial Neural Network

(ANN) or Deep Learning, while performing motion correction. The purported appli-

cation domain is cardiac image reconstruction in emission or transmission tomography

where IRT is relevant. Our main contribution is in proposing an ANN architecture

that is particularly suitable for this purpose. We validate our approach with two types

of datasets. First, we use an abstract object that looks like a heart to simulate motion-

blurred Radon Transform (RT). With the known ground truth in hand, we train our

proposed ANN architecture and validate its effectiveness in Motion Correction (MC).

Second, we used human cardiac gated datasets for training and validation of our ap-

proach. Gating mechanism time-bins data using electro-cardiogram (ECG) signals for

cardiac motion correction. We have shown that the trained ANNs can perform bet-
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ter motion-corrected image reconstruction than most commonly used reconstruction

techniques. We have compared our model against two existing ANN-based approaches

to prove the former’s superiority. In this chapter, we provide an approach for recon-

structing motion-corrected image that eliminates the need for any hardware gating in

medical imaging.

5.1 Introduction

The Radon transformation (RT), or the integral projection of a probed object, rep-

resents the abstract view of tomographic imaging in medicine, astronomy, and other

areas. Integral projection is the signal received by an 1D- or 2D-camera pixel from the

integration over 2D- or 3D-pixel values along a line-of-sight perpendicular to the cam-

era pixel [11]. A Radon transformed image represents the acquired data or sinogram.

RT provides the analytical forward model in emission and transmission tomography,

seismic imaging, and other disciplines. RT of a moving object, such as the heart,

creates a blurred sinogram. The inverse Radon transformation (IRT) of a blurred sino-

gram introduces motion artifacts in the reconstructed image, and poses challenges to

diagnostic applications in medical imaging [112–116]. Significant research efforts have

been invested in addressing this challenge [114–120].

Cardiac and respiratory motion are particularly challenging in the medical context.

Dedicated gating hardware are being developed for the purpose of synchronized data

acquisition over individual motion-phases. Gating provides time-binned data from

the same phase of a heart-beat or respiratory cycle. Typically, an electrocardiogram

(EKG) is used for cardiac gating where data is time-binned over a few (6-10) car-

diac phases [121–123]. For respiratory gating [124–126], many devices (e.g., infrared

cameras) have been developed for similar data binning over the respiratory phases.
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Subsequent image reconstructions over gated acquisitions provide motion-corrected

images for each phase (cardiac or respiratory). Our work is motivated by a similar

gated reconstruction of the probed object (e.g., heart), without any need for hardware

gating. Our main contribution in this work is to propose a deep learning architecture

based on Convolutional Neural Network (CNN), which is a type of artificial neural

network (ANN) suitable for computer vision. We propose a specialized CNN model

that uses so-called attention mechanism for reconstructing a single phase cardiac image

from the respective motion-blurred sinogram. A deep learning model trained with mo-

tion blurred Radon transformed (RT) images will remove the need for any additional

hardware or post-processing for the purpose, like using EKG for gating or some deep

learning models for denoising (U-net).

In this chapter, we demonstrate how to address Inverse Radon Transform (IRT)

with Artificial Neural Network (ANN) or Deep Learning, while performing motion

correction. The purported application domain is cardiac image reconstruction in emis-

sion or transmission tomography where IRT is relevant. Our main contribution is in

proposing an ANN architecture that is particularly suitable for this purpose. We val-

idate our approach with two types of datasets. First, we use an abstract object that

looks like a heart to simulate motion-blurred Radon Transform (RT). With the known

ground truth in hand, we train our proposed ANN architecture and validate its effec-

tiveness in Motion Correction (MC). Second, we used human cardiac gated datasets

for training and validation of our approach. Gating mechanism time-bins data using

electro-cardiogram (ECG) signals for cardiac motion correction. We have shown that

the trained ANNs can perform better motion-corrected image reconstruction than most

commonly used reconstruction techniques. We have compared our model against two

existing ANN-based approaches to prove the former’s superiority. This work provides

an approach for reconstructing motion-corrected image that eliminates the need for
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any hardware gating in medical imaging.

5.2 Methodology

Firstly, in subsection A, we describe how we have simulated motion affected images

for training and testing. In the same subsection, we describe the human data used in

our experiments. Subsection B discusses the structure of our proposed neural network,

convolutional encoder-decoder extended with attention, or CEDA. In C, we elaborate

on the statistical measures we have used for comparing the results from proposed CEDA

to the other two approaches against ground truth or base-line images.

5.2.1 Data

5.2.1.1 Simulation

We start with the original data of a heart-shaped object that we refer to as pseudo-

heart. There are three regions of interest (ROIs) on the apparent U-shaped object

representing (1) infarcted tissue (lesion), (2) blood pool appearing as a cavity within

the object, and (3) healthy myocardium (Fig. 5.1a). We have used random intensity

variations on the pseudo-heart pixels to create a total of eighty original images. Fifty

of these images are set aside for testing purposes and the other thirty images are

further augmented with Affine transformations resulting in a total 60000 images for

training the ANN. Scaling, shearing, translation, and rotational transformation models

are applied to the images.

Each of the augmented training images is subjected to a set of arbitrary Affine

motion to create a motion-blurred image. For blurring, we used multiple small Affine

transformations which were averaged to create each motion-blurred image. This blurred

image is then subjected to RT to produce the motion-affected sinogram, which acts
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as the input layer to the ANN (CED and CEDA), while the corresponding ground

truth original un-blurred image is used as the output layer. Fifty set-aside test images

were not augmented but only blurred by Affine motions in a similar fashion as the

test image set. Fig. 5.2 shows the work-flow of the data generation for the original

pseudo-heart image. To simulate real data acquisition, Poisson noise was included to

mimic the photon counting process.

(a) (b) (c)

Figure 5.1: An example pseudo heart: (a) ground truth, (b) FBP (c) blurry sinogram. (a) is the
target output. (b) is the input of U-net. (c) is the input for CED/CEDA. Although not shown in the
figure for clarity of visualization, Poisson noise has been added to the sinograms before they are used
for training and testing the ANN model.

5.2.1.2 Human data

We have used retrospective data acquired from patients who underwent nuclear cardio

stress-test with a Technetium-99m (99mTc) sestamibi tracer for cardiac SPECT studies.

Twenty 3D datasets were provided by the Health First corporation’s Holmes Regional

Medical Center in Melbourne, Florida. Appropriate data-release consents were ac-

quired at the clinic prior to imaging. The acquisition protocol for SPECT followed

the established procedures and guidelines for cardiac studies. All data are completely

anonymized at the clinic before our access. For each patient, we have (1) the sinogram,

(2) gated reconstructed images of eight phases of the heart, and (3) un-gated recon-
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Figure 5.2: Work-flow for generation of training data with the pseudo-heart. After augmentation, a
clear augmented image is used as the target output. We apply motion blur to these augmented images
before forward projecting them to generate sinograms. Test data is generated similarly but without
the augmentation step.

structed image that have blurring from the real cardiac motion. The MLEM algorithm

was used for reconstruction.

The human data underwent necessary preprocessing steps before being used in our

data analyses experiments, as described in this paragraph. Note that our goal is to

reconstruct the motion-free cardiac image from the motion-blurred sinogram. For this

purpose, we have two types of data: un-gated (motion affected) sinogram as the input,

and gated (motion-free) MLEM reconstruction as the target output. In order to train

a neural network, the sample size must be large enough. This required the training

data to be augmented. For the same purpose (of obtaining a large data set), we used

sliced 2D images. In total, 74160 augmented 2D images were created for training.

Since we focus on the cardiac motion, we selected 2D-slices only around the heart. No

augmentation was performed on the test set. The following describes how we generated

the training and test data.

First, the un-gated sinogram was created by summing up all eight gated sino-

grams, and then Filtered Backprojection (FBP) was applied to obtain the reconstructed

motion-blurred image. Next, MLEM reconstruction was performed on the gated sino-

gram for the end-systole phase, which had the smallest heart shape and maximum

cardiac motion. Finally, we have chosen 206 2D-slices from FBP and MLEM recon-

structions around the heart. These 206 slices were split into two groups: the first
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Figure 5.3: The process that displays how to create training data given the real human data.

103 slices were used for the training set creation, and the other 103 slices were set

aside as the test set. Fig. 5.3 shows the process generating the training dataset. The

un-gated FBP reconstructions were augmented by scaling, shearing, rotation, transla-

tion, and flipping. Each of the augmented images were forward projected to produce

the un-gated motion affected sinogram. These un-gated sinograms were used as the

training input. Similarly, the gated MLEM reconstruction went through the respective

augmentation steps, so that each augmented motion-blurred sinogram (input) and the

corresponding gated reconstructed image (output) correctly corresponded to each other

in the augmentation step. No forward projection was needed for the MLEM since it

was used as the target high-quality output for the ANN architectures. The 2D-slices in

the test dataset underwent similar procedures to generate input and output pairs for

testing. The only difference was that the 103 test images did not go through the data

augmentation steps. Fig. 5.4 shows an example image of the human data for training.

5.2.2 The Neural Networks

Our proposed model (Fig. 5.5) is based on the Convolutional Encoder-Decoder (CED)

[94] enhanced with the self-attention mechanism, which we callConvolutional Encoder-

Decoder with Attention or CEDA [67, 68]. Originally, the CED was proposed by
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(a) (b) (c)

Figure 5.4: An example human data: (a) gated MLEM reconstructed image, (b) blurry motion-
induced MLEM, (c) blurry sinogram. Here (a) is the target output, (b) is the input for experiments
with the U-net, and (c) is the input for the CED and the CEDA. The blurry MLEM (b) is obtained
by performing MLEM reconstruction on the blurry sinogram, using the real system-matrix from the
data acquisition protocol as in acquiring (c). For better visibility of the heart, all images presented
here have been cropped around heart and adjusted for brightness, whereas the dimension of the actual
images used in experiments were of 64× 64 pixels.

Häggström, et al [94]. The conventional CED architecture contains two parts: the

encoder and the decoder. The encoder is similar to a CNN, like LeNet-5 [32] [35] and

VGG-16 [127]. Our encoder takes the sinogram as the input and then compresses it

into a one-dimensional vector. The second component, the decoder, is the reverse of

the encoder and decompresses the encoding to reconstruct the image (Fig. 5.5).

In CEDA encoder, there are six convolutional components. Each component has

two convolution-batch normalization units: a convolutional layer followed by a batch

normalization layer. The structure of the decoder is similar to the encoder, but the

decoder uses deconvolutional layers instead of convolutional layers. The self-attention

component is added after the 4th and 5th convolutional components in both the encoder

and decoder. We used Adam optimizer with the learning rate r = 0.002. Dropout

layers are added after the encoder and decoder with the rate of 0.2. Additionally, to

prevent overfitting, we applied an inverse time decay for the learning rate schedule.

After 10 iterations, the learning rate is halved. In total, there are 3, 192, 869 number

of parameters in CED, and 10, 201, 316 in CEDA.
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Figure 5.5: The architecture of the proposed CEDA. Each encoder block contains two convolutional
layers. Each decoder block contains one convolutional transpose layer followed by two convolutional
layers. Every convolutional layer in both the encoder and the decoder is followed by a batch nor-
malization layer and a Leaky ReLU layer. Two self-attention layers are used in the encoder and the
decoder.

In addition to comparing our model against the conventional CED, we have also

compared CEDA against a U-net for deblurring. The architecture of U-net contains a

contracting path and an expansive path. Further, there are several “bridges” to connect

the features in the contracting path and the upsampled outputs in the expansive path.

The U-net used the blurry MLEM reconstruction as the input and the gated MLEM

as the output. The U-net transforms a motion blurred image to a deblurred version

of the image. It cannot perform image reconstruction directly from a sinogram to an

image which involves IRT.

5.2.3 Measures used for comparison

We measured the performance of three models (CEDA proposed by us, the original

CED, and a deblurring U-net [128]) against known ground truth in simulation and

the gated (motion-free) MLEM reconstruction as the base-line for human data. The
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performance of CEDA is compared against the other two.

We utilize visual information fidelity (VIF) [129] as a measure to compare the

quality of reconstructed image. The VIF is shown to be very close to the human

assessment of image quality [130]. It uses a channelized information-theoretic concept

of mutual information to quantify the information shared between the reference image

(ground truth) and the referred image (prediction) where Channels may be the wavelet

bands. It assumes that the shared information is highly related to the fidelity of the

visual quality. In simple terms, VIF is the ratio of I(C;F ) and I(C;E), where I(x; y)

is the mutual information between image x and image y. C is the reference image, E

is the output of the human visual system (HVS) given the reference image C, and F is

the output of HVS given the referred (presumably, corrupted) C. In general, VIF lies

between 0 and 1, and the higher the VIF, the better it is for a human observer. If two

images are exactly the same and no information is lost, the VIF would be 1.

We have also used the signal-to-noise ratio (SNR, eq. (5.2)) and contrast-to-noise

ratio (CNR, eq. (5.3)) to compare between reconstructed images from different models.

In both equations, µROI is the average pixel value of the ROI, µBKGD is the average

pixel value of the background (the region outside the ROI),and σBKGD is the stdv of

the background. A strong SNR enables the visual sensitivity to easily distinguish the

desired image signal over the background noise. The CNR subtracts the µBKGD before

taking the ratio, and is beneficial in scenarios such as haze or motion-blur. Ultimately,

CNR has similarity to those of human visual evaluations.
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V IF =
I(C;F )

I(C;E)
(5.1)

SNR =
µROI

σBKGD

(5.2)

CNR =
µROI − µBKGD

σBKGD

(5.3)

5.3 Results

We ran our experiments on Intel(R) CPU Core(TM) i7-9700K with clock-cycle @

3.60GHz, and memory 32GB RAM. We used an NVIDIA GPU Titan XP with 12GB

memory. The ANNs were developed with the Keras [131] library with Tensorflow [132]

back-end. Keras is an open source library which provides high-level Python APIs for

building the ANN. In the following we describe our results from each experiment.

5.3.1 Simulation

Fig. 5.6 shows some examples of output reconstruction of the human data from dif-

ferent models. The first row is from CED reconstruction, the second row is CEDA

reconstruction, the third row is from the U-net deblurring, and the last row is from

conventional reconstruction algorithm considered as base-lines. The output of U-net

deblurring is not as clear as those from CED and CEDA. The U-net significantly failed

to remove motion-blur in most of the images, and some of the regions are actually

further dilated (the third row in Fig. 5.6).

Fig. 5.7 shows the comparison measures over the test dataset. They are computed

over a fixed region around the heart, since the background is unimportant and confuses

the measures for cardiac studies. The ordering of the data elements on the X-axes is
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Figure 5.6: Examples of reconstructed images for pseudo-heart data from different models. First row
is from CED reconstruction, second is from CEDA reconstruction, and the third row is from U-net
deblurring. The last row shows the corresponding ground truth (clean motion-free) images.

arbitrary. The VIF is measured against the ground truth, and the SNR and CNR are

measured for each model-generated image. According to the VIF (Fig. 5.7a), the CED

and CEDA have better quality reconstructions for human observers than those from

the U-net. Note that U-net performs deblurring over conventionally reconstructed

blurred images. The mean VIF of CED is 0.61 ± 0.059, CEDA 0.62 ± 0.049, U-net

0.47 ± 0.049 (Fig. 5.8a). A Kruskall-Wallis test performed for each of these tests

comparing CEDA to U-net and CEDA to CED. Results were significant for the U-net

and CEDA comparison for all of the similarity measures. For VIF with CEDA (Median

or Mdn = 0.6097 ) and U-net (Mdn = 0.4522 ), H(2) = 58.6608, p < .00001.

The ROI used to compute SNR was the region of myocardium containing the lesion.

For SNR (Fig. 5.7b), CEDA has the best performance. The mean SNR of CED is

30.44 ± 10.665, whereas that of CEDA is comparatively higher, 32.12 ± 11.900. The

SNR values from the U-net are much lower, 20.88 ± 9.717 (Fig. 5.8b). A Kruskall-
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(a)

(b)

(c)

Figure 5.7: Plots of the three different measurements used to compare the performance of different
models against the ground truth in simulation. In each plot, X-axis represents the arbitrarily ordered
indices of test images, and the Y-axis represents the values of the corresponding measurements.

Wallis test of SNR for CEDA and U-net H(2) = 21.5894, p < .00001, showed again

that CEDA (Mdn = 34.16 ) out-preforms U-net (Mdn = 19.68 ).

Our third comparison measure was CNR, which utilizes the same ROI as used

for SNR. According to the result of CNR (Fig. 5.7c), CEDA also appears to have

performed the best. The mean CNR of CED is 30.16± 10.667, CEDA 31.84± 11.902,

and U-net 20.65± 9.719 (Fig. 5.8c). Similar to SNR, the Kruskall-Wallis test for CNR
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(a) (b) (c)

Figure 5.8: Pseudo-heart comparison of average measures over all test data: (a) VIF, (b) SNR, and
(c) CNR values as computed from the outputs of different models (CED, CEDA, and U-net) against
the ground truth.

H(2) = 21.4614, p < .00001, showed a significantly different and better performance

for the CEDA (Mdn = 33.89 ) as compared to U-net (Mdn = 19.47 ).

5.3.2 Human data

Fig. 5.9 shows some example output from CED (first row), CEDA (second row), and

U-net (third row). We also show the gated MLEM reconstruction (last row) that acts

as a base-line for comparison, in the absence of any ground truth as in the case of

experiments with simulation data. The U-net reconstruction appears similar to the

gated MLEM reconstruction ascertaining that U-net can perform motion correction in

real data. However, CED and CEDA reconstructions appear smoother and clearer.

On careful observation, the CEDA appears to have enhanced the myocardium seg-

ment, giving it a brighter and cleaner appearance, justifying the attention mechanism

introduced in the network.

To confirm our visual analyses of output from the three models, we have measured

VIF of each reconstructed image against the base-line conventionally reconstructed

image, and SNR and CNR of each model-generated image. Fig. 5.10 and the Fig. 5.11

show the measures over the test images. The SNR and CNR are measured over a small
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Figure 5.9: Random sample output of human data from different models. The first row is from CED,
the second row is from CEDA, the third row is from U-net, and the last row shows the base-line
iterative reconstructions from the gated MLEM.

box around the heart or the ROI, and the background is disregarded.

Fig. 5.10a shows that U-net attained the best VIF in overall, while CEDA remains

better than CED. The mean VIF of CED is 0.13 ± 0.033, CEDA 0.15 ± 0.040, U-net

0.20 ± 0.053 (Fig. 5.11a). For every test image (out of 103 test images in total), all

of U-net’s deblurred images provided higher VIF than CEDA reconstruction. When

comparing CEDA and CED, 95 images were reconstructed by CEDA with higher VIF

scores than that from CED. A Kruskal-Wallis test was performed to measure the rela-

tive performance between CEDA and CED as well as CEDA and U-net. Results were

significant for CEDA comparison to CED and CEDA comparison to U-net. For VIF,

H(2) = 13.2214, p = .00028, for CEDA (Mdn = 0.14564 ) and CED (Mdn = 0.13010 ).

Additionally, for VIF, H(2) = 52.6987, p < .00001, for CEDA and U-net (Mdn =

0.19347 ), showing U-net’s effectiveness over CEDA.

For the SNR (Fig. 5.10b, CEDA provides the best performance. The mean SNR
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(a)

(b)

(c)

Figure 5.10: Comparison of different outputs using VIF, SNR, and CNR for human data. The reference
image is the gated MLEM (end-systole) reconstruction. Note that U-net deblurs the motion-corrupted
MLEM from conventional reconstruction as its input. Both CEDA and CED directly used motion-
corrupted sinogram as their input. In each plot, X-axis represents the arbitrarily ordered indices of
test images, and the Y-axis represents the values of the corresponding measurements.

of CED is 5.78 ± 1.459, CEDA 6.31 ± 1.478, U-net 4.69 ± 1.299 (Fig. 5.11b). When

comparing the SNR between CEDA and U-net, all of CEDA’s reconstructions are

better than those of U-net. Between CEDA and CED, there are 85 images where

CEDA obtained a higher SNR than CED. The CNR measurement (Fig. 5.10c) also

shows CEDA performing the best. The mean CNR of CED is 5.39 ± 1.446, CEDA
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(a) (b) (c)

Figure 5.11: Overall mean and stdv from different models over human data, for (a) VIF, (b) SNR,
and (c) CNR. Vertical lines on the bars indicate the stdv of each measure.

5.97 ± 1.492, U-net 4.35 ± 1.302 (Fig. 5.11c). As with SNR, all of CEDA’s output

images are better than those of U-net, and there are 87 images where CEDA has a

higher CNR than CED. Kruskall-Wallis test for SNR, H(2) = 49.1953, p < .00001,

showed that CEDA (Mdn= 6.2633) performed better than U-net (Mdn = 4.7145 ).

Similarly, the Kruskall-Wallis test for SNR H(2) = 5.1255, p = .02358, showed that

CEDA also performed better than CED(Mdn= 6.0039). The Kruskall-Wallis test for

CNR, H(2) = 48.184, p < .00001, showed that CEDA (Mdn= 5.9362) significantly

performed better than U-net (Mdn = 4.3839 ), while, the Kruskall-Wallis test for SNR,

H(2) = 6.4209, p = .01128, showed that CEDA also performed better than CED(Mdn=

5.61823).

5.4 Discussion

We discuss below our results from the simulation and the human data separately for

three statistical measures used for comparison. To compare these measures from differ-

ent models, we use a non-reflexive relative difference (RD) measure, as defined below.
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RDS(Ma,Mb) =

⏐⏐⏐⏐ Ma −Mb

1
2
(Ma + Mb)

⏐⏐⏐⏐ (5.4)

where S is the respective statistical measure like VIF, CNR, or SNR), and Ma and Mb

are the measures from the two compared network models like U-net, CED, or CEDA).

5.4.1 Simulation data

5.4.1.1 VIF

Since VIF is the ratio of the information content in the test image and the reference

ground truth image, a higher VIF indicates less information loss. Relatively lower

VIF values for U-net indicated that it performed worse than CED and CEDA. Hence,

in most of the cases U-net has produced images with less information content than

the reconstructions by CED and CEDA. Some of the deblurred images from U-net are

visibly noisier (Fig. 5.6) than the original input blurred reconstructions. U-net appears

to be less adept at removing the Affine motion blur as introduced in the simulation.

A possible explanation is that the connecting bridges in U-net between downsampling

and upsampling paths transmitted the blur information between the input and the

output. Also to be noted, the VIF scores from both CEDA and CED are more stable

than those from the U-net as seen by a lower standard deviation.

Comparing specifically (Fig. 5.7a) U-net against CED/CEDA, 47 images recon-

structed by CED and CEDA have higher VIF scores than those from the U-net,

demonstrating that the U-net performs worse than CED and CEDA. As we compare

VIF scores between CED and CEDA, CEDA provides 27 images with better VIF than

CED. Furthermore, based on mean VIFs (Fig. 5.8a), CEDA illustrates a slightly better

performance than CED.

The RDV IF (CED,CEDA) reveals that CEDA is 5.22% better than CED for the
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27 images where CEDA has higher VIF values, while it is 3.81% worse for the rest of

the images where CEDA has lower VIF. Table 5.1 displays the RDV IF (CED,CEDA)

of all the models.

Table 5.1: VIF RD of Pseudo-heart between different models

Models # of images RD

U-net vs. CED U-net better 3 20.94%
CED better 47 31.38%

U-net vs. CEDA U-net better 3 22.32%
CEDA better 47 32.59%

CEDA vs. CED CEDA better 27 5.22%
CED better 23 3.81%

5.4.1.2 SNR and CNR

The figures Fig. 5.7b and Fig. 5.7c display the mean and stdv of SNR and CNR,

respectively. Both CED and CEDA perform better than U-net by these measures,

while CEDA performs the best of the three. Furthermore, inspecting SNR and CNR

of individual reconstructed images reveals that CED performs better for 41 images

than U-net, and CEDA performs better over 47 images than the U-net. For 33 images,

CEDA has higher SNR and CNR than CED. Table 5.2 and Table 5.3 summarize the

RD comparisons of all the different models for SNR and CNR.

Table 5.2: SNR RD of Pseudo-heart between different models

Models # of images RD

U-net vs. CED U-net better 9 8.25%
CED better 41 47.14%

U-net vs. CEDA U-net better 3 15.72%
CEDA better 47 44.77%

CEDA vs. CED CEDA better 33 9.07%
CED better 17 5.18%
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Table 5.3: CNR RD of Pseudo-heart between different models

Models # of images RD

U-net vs. CED U-net better 9 8.25%
CED better 41 47.14%

U-net vs. CEDA U-net better 3 15.72%
CEDA better 47 44.77%

CEDA vs. CED CEDA better 33 9.17%
CED better 17 5.23%

5.4.2 Human data

5.4.2.1 VIF

In experiments with human data, U-net deblurring achieves the highest VIF in all the

103 testing images compared to either CED or CEDA. On average, the VIF of U-net

is 41.27% higher than CED and 30.52% higher than CEDA. CEDA has better image

quality than CED according to VIF (Table. 5.4). There are 95 images reconstructed

by CEDA which are 12.54% higher than CED. The rest of the 8 images where CEDA

has lower VIF score, the CEDA is 4.92% worse than CED.

Table 5.4: VIF RD of human data between different models

Models # of images RD

U-net vs. CED U-net better 103 41.27%
CED better 0 NA

U-net vs. CEDA U-net better 103 30.52%
CEDA better 0 NA

CEDA vs. CED CEDA better 95 12.54%
CED better 8 4.92%

5.4.2.2 SNR and CNR

Both CED and CEDA have better SNR and CNR than U-net. Comparing between

U-net and CED, we find only 2 images where U-net has a higher SNR and CNR. For
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the remaining 101 images, CED gets better SNR and CNR, with those of CEDA being

even better, since it has the highest score for all the 103 images compared to those

from U-net. For the comparison between CEDA and CED, CEDA leads to superior

results, with 85 images with better SNR (RD 13.83%) and 87 images with better CNR

(RD 15.40%). The results are summarized in (Table. 5.5 and Table. 5.6). We purport

that CEDA’s superior performance can be ascribed to its directed focus on the ROI

and suppression of the background noise.

Table 5.5: SNR RD of human data between different models

Models # of images RD

U-net vs. CED U-net better 2 2.90%
CED better 101 21.97%

U-net vs. CEDA U-net better 0 NA
CEDA better 103 30.71%

CEDA vs. CED CEDA better 85 13.83%
CED better 18 11.15%

Table 5.6: CNR RD of human data between different models

Models # of images RD

U-net vs. CED U-net better 2 3.75%
CED better 101 22.80%

U-net vs. CEDA U-net better 0 NA
CEDA better 103 33.00%

CEDA vs. CED CEDA better 87 15.40%
CED better 16 12.62%

5.4.3 Analysis

From the RD analyses we observed that by all measures and data types (simulation and

human), direct reconstructions of motion-affected sinograms by CED and CEDA are

uniformly better than deblurring with U-net post-processing, except by the VIF mea-

sure on human data where U-net performed significantly better. Overall, our proposed
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Figure 5.12: There are some gated MLEM reconstructions (last row) which are not very clear due to
the low counts. As we can see, U-net tries to be similar to the gated MLEM, while CED/CEDA tries
to improve it by inferring the shape.

model CEDA performed the best of the three models, aside from the VIF measure for

clinical data with U-net. A better VIF indicates that U-net has a better capability

to learn channel distortions caused by cardiac motion, whereas direct reconstruction

models CED and CEDA are better adapted for noise removal in ROI (as indicated with

the higher SNR and CNR). However, CED and CEDA produced clearer reconstructed

images (Fig. 5.9) as compared to base-line MLEM reconstructed images, while U-net

maintained visual similarity, as measured by VIF, with target MLEM images. Further-

more, since the gated projection data has relatively poor counts, the gated reconstruc-

tion may not necessarily show a clear shape (Fig. 5.12). For those reconstructions,

U-net tries to imitate the target reconstructed image, while CEDA tries to reconstruct

a smoother noise-free and motion-deblurred image with the correct shape. One should

also note that, as a post-processing method, U-net needs the image reconstruction from

a conventional algorithm first, and only then can it perform deblurring. Our proposed
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model CEDA, and the comparable model, CED, can directly use the noisy motion

blurred sinogram as the input and reconstruct a motion-free reconstructed image. As

a result, it is easier and faster to use than U-net. For example, iterative reconstruction

took 0.7 sec, followed by deblurring (inferencing by the trained U-net model) of 0.02

sec, whereas CEDA inferencing (direct reconstruction) from sinogram took 0.04 sec,

about 18 times faster.

5.5 Conclusion

The objective of this work was motion correction while performing IRT from the mo-

tion blurred Radon transformed image. We developed a new deep learning architecture

called CEDA for this purpose. The model was tested with two types of datasets, a sim-

ulated and a human cardiac dataset. Deep learning-based IRT has many implications,

one of which is faster image reconstruction. For example, it learns the data acquisition

(or underlying physics) model and the motion-model from a training set, and does not

need any additional hardware (e.g., gating) or software (e.g., system-matrix genera-

tion). We validated our proposed model against ground-truth in simulation, and the

traditional MLEM reconstructed base-line image in clinical data. We compared the

quality of our approach against two other deep learning-based approaches.

A future direction of this work involves training and validating the model directly

with 3D images rather than with 2D slices as has been done in this work. We could not

use 3D presently for two primary reasons: (1) the required computational resources for

training with 3D images are exorbitant, not only for a research set up, but also in a

clinical scenario, and (2) the number of training and validation data points needed in

a 3D work is far more than what is easily available from clinics. Currently, a standard

practice in the literature is to slice the 3D images around the ROI (i.e the heart) in

77



sufficient numbers of 2D data sets, as we did to prove the concept. Looking forward,

we aim to acquire more 3D data for better training of the model and for validating its

motion correction capability in a diagnostic setting, e.g., in detecting cardiac infarction.

Also, we intend to apply this technique in non-medical areas where motion affects IRT,

e.g., in astrophysics.
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Chapter 6

PET Imaging of Mouse

In this chapter, we answer the question regarding how to reconstruct the image when

data is not sufficient for ANN training. The data we used is the pre-clinical mouse

data, which is provided by Cardiff university. Our main task is to reconstruct the

motion-free image from the noisy sinogram, without using any real data to train the

ANN model. Before doing that, we tested an adapted CED model to reconstruct the

clear image from the Radon transform of the corresponding noisy image.

6.1 Prior Work

The data we used is the PET scan of a healthy mouse. During this experiment,

we mainly focus on the cardiac image. Since this data doesn’t contain sinograms,

we applied the Radon transform on the dynamic scan to obtain sinogram, and chose

the gated scan to be the target output of the neural network. Because the dynamic

scan is noisy, we want to see if the neural network model can produce motion-free

reconstructions given the noisy images. To test the accuracy of our approach, we

selected one of the six gates that exhibited the most deformation of the myocardium in
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comparison to the reference gate at end systole. Some common image transformation

methods were applied on the these images for augmentation. Then the sinograms of

this augmented data were generated by Radon transform. The neural network model

we trained is CED. It takes those motion corrupted (dynamic) sinograms as input, and

uses the Gated scan as the target output. Our motivation is to train the CED to take

the noisy sinograms as input, then produce the clear reconstructions void of motion

degradation.

Figure 6.1: The dimension of the dynamic scan is 150x94x245. Fig. 6.1 shows a certain slice of the
scan in three different anatomic planes. The left one is the axial plane, the middle one is the sagittal
plane, and the right is the coronal plane. The corresponding dimension of these images are (from left
to right): 95x150, 94x245, 150x245.

Figure 6.2: The dimension of each gate is 127x95x245. Here we picked up the 156-th slice from each
gate. Therefore, the dimension of the slices is 95x127. Note that the third one (gate) is the most
stressed one. We chose this gate as the neural network target output.

Fig 6.1 shows the dynamic scan of this mouse. The dimension of it is 150x94x245.

The gated scan we have contains six gates, with the dimension of each 127x90x245.

Fig 6.2 shows the same heart slice but coming from six different gates. Cardiac move-

ment artifacts are one of the major image degrading factors that require reduction.

Therefore, we take some slices around the heart of the three main anatomical planes

(coronal, sagittal, and transverse). In total, we obtain 40 slices (coronal 12 slices,

sagittal 11 slices, transverse 17 slices). Due to the computational consideration, all the
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Figure 6.3: Examples of the image transformation. The images in the first row are the original images
(same slice). The second row contains the images after transformation. From left to right, they are:
shearing, rotation, and translation.

slices are cropped to 64x64 pixels. Firstly according to the slice indices of the three

different planes, determine the center of the heart (center of the bounding box). Then

decide the boundary of the cropped image according to this center (±32). The 2D

slices of the gated scan will be directly used as the target output. For the slices of the

dynamic scan, we need to do one more Radon transform step to produce the sinograms

as the input. However, before Radon transform, both gated and dynamic slices need

augmentation.

Originally, there are 40 slices. We split them such that alternating slices from the

same plane served as testing; i.e, first slice for testing, second one for training, third

one for testing, fourth one for training, and so on. This results in two sets of slices: one

set 19 slices and the other set 21 slices. We use the set with 19 slices as the training

set and perform augmentation; the set with 21 slices serves as the testing set. We use

shearing, rotation and translation to augment the training images. Equation (6.1, 6.2,
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and 6.3) show these transformations in matrix form. [x, y] is the original coordinate

of a certain image pixel. [sx, sy], [rx, ry], and [tx, ty] are the coordinates after shearing,

rotation and translation. cx and cy are the shearing factors. θ is the rotation angle.

[vx, vy] is the translation vector. We also use horizontal and vertical flipping for the

augmentation. ⎡⎢⎣sx
sy

⎤⎥⎦ =

⎡⎢⎣ 1 cx

cy 1

⎤⎥⎦
⎡⎢⎣x
y

⎤⎥⎦ (6.1)

⎡⎢⎣rx
ry

⎤⎥⎦ =

⎡⎢⎣cos θ − sin θ

sin θ cos θ

⎤⎥⎦
⎡⎢⎣x
y

⎤⎥⎦ (6.2)

⎡⎢⎣tx
ty

⎤⎥⎦ =

⎡⎢⎣vx
vy

⎤⎥⎦ +

⎡⎢⎣x
y

⎤⎥⎦ (6.3)

Figure 6.4: Some augmented images and the corresponding sinograms. The first row contains the
sinograms and the second row displays the gated images.

Fig. 6.3 shows an example of images after shearing, rotation and translation. Shear-

ing factors are cx = 0.2, cy = 0.5. Rotation angle is 90 degree. The translation vector

is [10, 20]. Note that we need to apply the same transformation on both the dynamic

images and gated images. There is one more step for the dynamic images: use the

Radon transform to generate the sinograms of these augmented dynamic images. Fig.

6.4 show some of the images after augmentation. The first row shows the sinograms,

and the second row shows the corresponding gated images. Finally, the training data
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Figure 6.5: Convolutional Encoder-Decoder architecture. The numbers around the input and output
images are the dimension. The numbers near the cubes are the dimension of the feature maps.

Figure 6.6: Some results. First row shows the original gated images (target output). Second row is
the reconstructed output from CED. Third row is the difference image between original gated image
and the reconstruction. Each image in the second row also shows some statistics (MSE, SSIM, and
PSNR) compared to its corresponding gated image.
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set has 201571 images as well as the sinograms.

The model we use is called CED, which is adapted from DeepPet [94]. The input

is the sinogram with a size of 64 × 64 × 1. The output reconstructed image has the

same size (64 × 64 × 1). The model has two components: an encoder and a decoder.

The encoder is just a common convolutional neural network (CNN). It has several

convolutional units. Each unit has one convolutional layer, followed by one batch

normalization layer and one leakyReLU activation layer. The filter size of the first 6

convolutional layers is 5 × 5, the filter size of rest of the units are 3 × 3. The output

of the encoder has 64 feature maps of size 4 × 4. The decoder takes these encoding

messages and performs upsampling to reconstruct the gated images. Therefore, the

decoder appears as a mirror of the encoder. Each unit in the decoder is very similar

to the encoder. The only difference is at the beginnind of each layer D1, D2, D3, ...,

where we use the upsampling layer to increase the size, instead of the convolutional

layer. The decoder contains 5 upsampling layers and 11 convolutional layers (Fig. 6.5).

The loss function is the mean square error (MSE) to measure the difference between

the gated images and the neural network output. The Adam optimizer is used for

convergence. Batch size is 50. The number of epochs is 100. We use one GPU node

of the cluster at Florida Tech. It has 4 Nvidia Tesla K40m GPUs. And we utilize all

4 GPUs to train the model by Keras.

It took 151570 seconds for training (around 42 hours). The MSE of the test set

is 0.005478. Fig. 6.6 demonstrates an example of the results. The top row highlights

the original myocardium image. The middle row presents the reconstructed output

from CED and the final row displays the reconstruction error. As can be observed, the

reconstruction seemed to be smoothed by the neural network. Notice that under each

image in the second row, we also put the MSE, structural similarity index measure

(SSIM), and peak signal-to-noise ratio (PSNR) to mathematically show the difference
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between the produced images and the gated images. From those values, we noticed

that even the MSE is relatively low, but the SSIM and PSNR are not that good. Recall

that the range of SSIM is from 0 to 1 and when two images are very similar, the SSIM

will be close to 1. On the other hand, higher PSNR value means the better quality

of the reconstruction. PSNR around 20 (dB) means the quality is acceptable, but

humans can easily see the difference by eyes. These statistical values are not beyond

our anticipation. Because it’s obvious that the reconstruction from the neural network

output is cleaner and smoother than the original gated image. However, we need to

peform more extensive analysis to measure whether this kind of smoothing makes the

reconstruction more accurate or not. We have however demonstrated in this work, the

CED model does provide potential as an efficient mechanism to not only reconstruct

PET images but also provide a data correction methodology which requires exploration.

6.2 Introduction of zero-shot reconstruction

In this work we investigate the effectiveness of transfer learning for cardiac gated PET

(positron emission tomography) image reconstruction in absence of any training data

from in-vivo imaging. For these purposes we utilize computational phantom imaging

data of a Mouse Whole Body (MOBY) to train a deep learning network that is capa-

ble of reconstructing in-vivo PET sinograms, while simultaneously removing motion

artifacts, i.e., producing a gated output. In this sense, our work is related to zero-shot

learning. Our model, whilst trained on phantom data, uses in-vivo ungated sinogram

as the input and reconstructs gated or motion-corrected images as the output. The

major significance of our work is that a gated reconstruction may be produced, void of

motion artifact without the need of using gating hardware or the requirement for in-

vivo images of training data. We utilize an innovative convolutional encoder-decoder
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(CED) artificial neural network (ANN) architecture that is enhanced with so called

self-attention layers (CEDA). The self-attention layers focuses on the cardiac region

of interest (ROI), and thus, is capable of reconstructing PET images of a motion free

heart. We demonstrate our model’s superior performance in comparison to the con-

ventional iterative maximum likelihood expectation maximization (MLEM) algorithm

in recognizing healthy versus diseased myocardium.

Medical image reconstruction is a complex process which attempts to solve the in-

verse problem of image formation, traditionally using physical assumptions on count

statistics and the relation between the object and the measurements during acqui-

sition. Multiple sources of error can corrupt these assumptions and obfuscate the

reconstruction process. The ANN has been shown to have the capability to learn the

measurement model transparently and reconstruct images without any explicit model-

ing of the involved parameters [87,88,93,94,133,134]. However, the primary drawback

of ANN-based modeling is the requirement for a large amount of training data a priori,

which is often unrealistic in the medical imaging field. In this paper we demonstrate

that one may artificially generate such training data with prior knowledge. We still

need to model the system manually in the context of forward modeling or training data

generation, but that is much easier than solving the inverse problem.

In this research, we artificially generate mouse cardiac images with motion by en-

hancing MOBY phantom, forward project them for a specific PET data acquisition

process, and then, train a proposed ANN architecture with these datasets. We show

that the trained model performs better than the conventional iterative reconstruction

method. To address the issue of cardiac motion, one of the most important extant

techniques is to use external gating devices. It uses electrocardiogram (ECG) to record

the cardiac motion signal [135, 136] and temporally bins data from pre-determined

cardiac phases. Subsequently, image reconstruction is performed on projection data
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from each phase, thus, producing motion compensated images [135–138]. Also, litera-

ture is abundant with motion-compensation algorithms, including some usage of ANN

as a post-processing step to reduce motion-blur [139, 140]. Our primary contribution

is that the proposed method here obviates any need of hardware devises or motion-

compensation software, even for the purpose of training a machine learning algorithm.

6.3 Methodology

6.3.1 Data

The problem addressed in this work is a motion compensated pre-clinical cardiac PET

study using the motion corrupted sinogram data using an ANN model trained with only

simulated phantom data. This necessitates generating appropriate object and motion

model in simulation. We enhanced the 4D MOBY [141,142] phantom for ANN training

purposes by creating a pseudo pre-clinical cardiac PET series through pre-processing

steps described below. However, MOBY can only display the shapes and positions of

the tissues and organs. We designed a special pre-processing step to approximate the

real data to the maximum extent.

6.3.1.1 Training data generation with MOBY

Motion simulation: The MOBY phantom is a 3D mouse model with the ability to

generate realistic voxel based objects at different phases of cardiac and respiratory

motion [143–145]. The MOBY phantom is designed from underlying high resolution

gated multi-detector CT (MDCT) data [7, 146]. It contains in total one hundred time

frames over a complete cardiac cycle. Fig. 6.7 shows the change of volume in the four

heart chambers of heart over time. The MOBY data we created included a complete
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cardiac cycle. The final generated MOBY phantom object consisted of 10 output

frames, which were evenly distributed over the cardiac cycle. Say the purpose first,

I assume to generate PET images, we changed the myocardium tissue intensity and

the heart size to represent 2793 different MOBY 3D phantoms. For computational

efficiency we selected four 2D slices per 3D mouse phantom which spanned the volume

of the myocardium for limitation in computational resources. Two data series are

constructed, (a) a motion corrupted data series, which consists of the summation of all

10 cardiac phases and hence is corrupted by motion blur and (b) a single end-diastolic

phase, which represents a gated frame void of motion blur. Thus, in total four gated

slices and four motion corrupted slices of pseudo PET data were generated from the

MOBY object data. In total, altogether 4× 2793 = 11172 slices (both gated or noisy

types) were utilized for training.

Figure 6.7: The motion curves of MOBY showing the volume changes of the heart chambers over
time [7].

Pixel randomization: The MOBY phantom is a digitized object wherby every voxel

in each organ is assigned the same voxel value. To generate realistic PET data from the
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phantom object we use a voxel variation method to randomize the voxels such that they

are more representative of count statistics observed in a PET image. In a real PET scan,

it is impossible that all the pixel values are the same within the same tissue or organ.

For this reason, we design a pixel variation method to randomize the pixel values.

Every pixel within the same region (e.g., in the left ventricle of myocardium) is re-

assigned to a random value that is generated by a Gaussian distribution. The Gaussian

distribution is with a mean µ that is the scaled original MOBY pixel value and a chosen

standard deviation (stdv) δ. We varied the scaling factor r and the δ to create multiple

images from each phantom slice. A range of r was arbitrarily selected from 0.1 to 0.3,

in increments of 0.01. For example, suppose a pixel has the value 75 in the original

MOBY image, then µ = 75. If the random rate r is 0.15, then δ = 0.15× 75 = 11.25,

and the Gaussian distribution will be with µ = 75 and δ = 11.25. Next, the new pixel

value is picked up randomly from this distribution. Fig. 6.8a illustrates the process

of this pixel randomization method. Gaussian convolution is applied to the result of

the pixel randomization to alleviate the well defined edges that are observed in the

MOBY phantom; thus generating a more realistic PET image. Hence, we further

applied a Gaussian kernel over each image to blur the edges between different regions.

In Fig. 6.8b, we can see how the MOBY image changed after randomizing the pixel

and blurring the edges.

Training data augmentation: For increased performance of the ANN model image

augmentation of all 11172 slices was performed. The augmentation step consisted

of eight affine transformations, including shearing, scaling, rotation, translation, and

flipping. The ranges of the parameters of those transformations are listed below:

• Shearing: 0 to 0.4, increment 0.1.

• Scaling: 8 to 10, increment 1.
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(a) This is an example to show the pixel randomization. The mean of the Gaussian distribution is the same as
the pixel value, while the stdv is the product of a random rate and the mean (here the rate is 0.15, thus stdv is
75× 0.15 = 11.25).

(b) What the final MOBY image looks like after pixel randomizing and Gaussian filtering.

Figure 6.8: The two steps of the MOBY data post-processing: Pixel randomization and Gaussian
blur. With these two steps, the original MOBY image is rendered more realistic.

• Rotation: 0 to 350 in degree, increment 10.

• Translation: −16 to 16, increment 1.

• Flipping: 0 to 4, increment 1, which means “vertical flipping”, “horizontal”,

“both vertical and horizontal”, and “no flipping” respectively.

For each affine transformation of a 2D slice, the affine parameters were randomly se-

lected. Augmentation results in 11172 × 8 = 89376 images for both the gated and

motion corrupted simulated PET data. To create matched sinograms for the syn-

thesized PET data forward projection was performed. The acquisition parameters of

the forward projection were selected to match the PET system in which the testing

data was acquired. A system matrix modeled the image acquisition process to convert

sinogram to an image. Following image augmentation and forward projection, 89376

images and sinograms were created. As a result, we have the correct noisy sinogram
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Figure 6.9: The workflow of creating the training data from MOBY.

Figure 6.10: Convolutional encoder-decoder with self-attention. Each small block contains one con-
volutional layer followed by a batch normalization layer and a Leaky ReLU layer. In the encoder side
(upper row), we set convolutional stride to 2 to downsampling the input features. In the decoder side
(lower row), we used upsampling layer to upsample the input features.

that corresponds to the gated image used in training the ANN as the respective input

and output pair, respectively. Fig. 6.9 shows the process of generation of training data

from MOBY phantom.

6.3.1.2 Test data from pre-clinical PET

For testing, the mouse study was conducted at PET Imaging Centre (PETIC), Cardiff

University, UK, using a Mediso nanoScan 122S small bore PET/CT imaging system

(Mediso Medical Imaging Systems, Budapest, Hungary). The protocol was standard-

ised to ensure optimal and consistent biodistribution of 18F-FDG. Briefly, mice had

food withdrawn and were warmed at 37 °C for 1 hour before scanning, which was car-

ried out under isoflurane-anaesthesia (1.5-2% in 1 L/min oxygen). An intraperitoneal

injection of 100–150 µL of Iohexol CT contrast agent (647 mg/mL) (Omnipaque 300,
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GE Healthcare Inc., Marlborough, MA, USA) was followed by a tail vein injection of

32 ± 8 MBq 18F-FDG. Mice were maintained under anaesthesia for 50 minutes post

injection to allow the uptake of 18F-FDG before a 20-min cardiac gated PET scan was

acquired followed by a 2.5 min whole-body CT scan. We used retrospective pre-clinical

cardiac PET data over ten mice, three of which were healthy and the rest were from

obese and diabetic models. Since we focus on the heart, approximately 10 slices around

the heart were picked up for each mouse (the exact number depends on the respective

mouse’s image). However, due to the computer memory concern, we reduced the di-

mension by cropping around heart to 64×64 pixels (original dimension of different mice

is around 100 × 100). To reduce the dimension of the sinogram, we first back project

the original sinogram, crop the backprojection to 64 × 64 pixels, and then forward

project it to get the new cropped sinogram (using the system matrix with 64 number

of projections). Finally, we used ninety-nine 2D test images for validation purposes.

6.3.2 ANN model

We used the self-attention components while adapting the original CED architecture

proposed in the literature. The conventional CED [94] contains two parts: an encoder

to extract the features from the sinograms (downsampling) which works like a normal

convolutional neural network (CNN), and a decoder to restore the image from the

encodings which are the outputs of the encoder (upsampling). In each of the encoder

and decoder, there are 6 modules. Each module has 3 convolutional blocks (CB). Every

CB consists of one convolutional layer, a batch normalization layer, and a leaky ReLU

layer. Since the encoder is performing downsampling and the decoder is performing

upsampling, the CBs are slightly different in the module of the encoder and decoder.

In the module of the encoder, the first CB has a stride 2 convolutional layer while the

remaining two CBs are with stride 1. However, in the module of the decoder, the first
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CB is using a convolutional transpose layer with stride 2, and rest of the two CBs are

using the normal convolutional layer with stride 1. We developed this architecture by

trial and error based on previously presented work [94].

The self-attention [66, 68] component was inspired from the attention mechanism

[66]. It attempts to to simulate the human visual attention, which focuses on some

areas of an image instead of the overall image. In deep learning, attention mechanism

will give a score to interpret the importance of this element (a pixel in a image, or

a word in a sentence). The self-attention component will take the output x from the

previous layer and derive the key (K), value (V ), and query (Q) by using three 1× 1

filter convolutional layers. Next, we use softmax on the dot product of the key-query

pair to get the attention map (a matrix with the score of each pixel), and perform

the dot-product again with V to generate the self-attention feature map O. At last,

the output O of the self-attention layer is scaled by an arbitrarily chosen parameter

λ and added back to the original input s. Because of this, our ANN model was able

to capture the spatial relationship between different regions. Since we add the self-

attention component into the encoder and decoder of the CED, we name our proposed

architecture as CEDA.

6.3.3 Statistical Analysis

As a reminder, we used simulation data (MOBY) to train our model and real data

(pre-clinical gated PET study) to test it. Two types of reconstructioned images are

used in our work. (a) Gated ordered set expectation maximization (OSEM is an efficient

version of the MLEM algorithm used by the imaging system vendors, Mediso, Hungary)

reconstructed images from the PET machines internal software at Cardiff University;

and, (b) reconstructions from our trained CEDA model. All the reconstructed images

were 64×64 (with the pixel size 0.4×0.4 mm2). The gated OSEM reconstructions at end
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diastole were selected as the reference image (gated ground truth). The reconstructed

images from CEDA were compared to the reference image, in order to measure the

quality of the reconstruction. We have used three types of statistical measures for

comparison that are described below.

6.3.3.1 Visual information fidelity

Images are often characterized or measured by traditional statistical models. However,

these approaches sometimes produce a different conclusion compared to the subjec-

tive assessment of human visual system (HVS). Visual information fidelity (VIF) can

quantify the information which the human brain perceives from the reference images.

This allows quantification of the HVS and is commonly used in image distortion mod-

els [129]. When measuring the Laboratory for Image & Video Engineering (LIVE)

image quality assessment database, the Spearman Rank-Order Correlation Coefficient

(SROCC) between the VIF scores of distorted images and the corresponding human

opinion scores is 0.96 [130], the VIF scores proved to be very close to the human as-

sessment of image quality. The equation is the same as we showed in Chapter 5 (Eq.

5.1). VIF is usually between [0, 1]. For the tested image being a copy of reference

image without any information lost, V IF = 1. Note that if only the linear contrast of

the reference image is enhanced without any increase of the noise, VIF may be greater

than 1.

6.3.3.2 Signal-to-noise ratio and Image contrast

To calculate the signal-to-noise ratio (SNR) and the image contrast ratio (CR), we

defined the ROI as a rectangular box around the heart, thus, ignoring the larger back-

ground. The SNR is computed by the ratio of the mean intensity of the ROI and the

standard deviation (stdv) of the background, while CR is the mean of ROI divided by
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the mean of the background.

6.4 Results

Our test input is the non-gated sinogram of mouse, and the output is a CEDA re-

constructed motion free image, which is compared to the OSEM gated output. Fig.

6.11 shows some sample reconstructions from the gated OSEM reconstructions (first

row) and from our CEDA model (second row) trained with motion-enhanced MOBY

phantoms (Fig. 6.11). With 200 epochs, the training time was 24488.31 sec and the

average evaluation time (reconstruction) per 2D slice was 0.0011 sec. The machine to

train this model has Intel Core i7-9700K 3.6 GHz 8-Core Processor, 1 TB Solid State

Drive, NVIDIA Titan Xp 12 GB Video Card, 2× 16 GB DDR4 Memory.

Fig. 6.12 shows the comparisons with VIF, SNR and CR for all the testing images.

For all VIF, SNR, and CR, a higher score means better performance. A higher VIF

indicates that the visual information being presented or processed in the reconstructed

image is more faithful, accurate, and closer to the reference image. A high SNR shows a

higher quality and clarity of the reconstructed image, with less interference from noise.

Figure 6.11: Sample reconstructed images. First row: gated OSEM. Second row: CEDA. Third row:
Non-gated MLEM.
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A higher CR makes the reconstructed image easier to distinguish and differentiate

between different anatomical features or regions of interest.

For SNR, all the CEDA reconstructed images have higher SNR than those from

MLEM and the gated OSEM (Fig. 6.12b). On the average, SNR of the CEDA was

16.74± 1.51, the MLEM was 6.59± 2.25, and the OSEM was 7.82± 1.57 (Fig. 6.13b).

The CR showed that CEDA also achieved higher values for all the testing images (Fig.

6.12c). The mean of CEDA CR was 24.17± 2.63, that of MLEM was 12.56± 3.98, and

that of the gold standard OSEM was 12.03± 3.22 (Fig. 6.13c).

6.5 Discussion

The results presented above shows that the proposed CEDA model can reconstruct the

motion-free heart image of the real mouse from the non-gated sinogram with reasonable

performance. A primary novelty of the work is that our model was trained by the

synthetic data only without using any real data. Compared to MLEM reconstruction

from the same non-gated sinogram data, our model obtained higher VIF scores (Fig.

6.13a), which indicated that the CEDA model produces motion-compensated images

with better information content compared to that with MLEM (with respect to the

gated OSEM as the ground truth).

A noteworthy observation is that our model has significantly higher SNR for the

reconstructions. The mean SNR increased 113.96% compared to the gated OSEM,

respectively. Our model also achieved superior CR. The relative rates of increase were

100.96% compared to the gated OSEM. Also, visual inspections of reconstructed images

showed that CEDA can automatically emphasize the heart, while decreasing the noise

level.
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(a)

(b)

(c)

Figure 6.12: Measuring the performance of CEDA using VIF, SNR, and CR. Note that to compute
VIF, the gold standard OSEM reconstructions were used as reference images, while SNR and CR are
computed for each image independently. Hence, in (a) there are two curves and in (b) and (c) there
are three curves. In each plot, X-axis represents the arbitrarily ordered indices of test images, and
the Y-axis represents the values of the corresponding measurements.

6.6 Conclusion and Future Works

In this paper, we demonstrated that the proposed CEDA model can reconstruct a gated

image given its non-gated sinogram of pre-clinical PET imaging, while the model was

trained only with the phantom data. The significance of the work is that it opens the

possibility for training ANN models without the availability of real data using TL from
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(a) (b) (c)

Figure 6.13: The mean and stdv of VIF, SNR, CNR from Fig. 6.12.

realistic simulation. This shows that hardware gating mechanisms are not required at

all to reconstruct gated images, provided simulation of cardiac phases are modeled

appropriately. This is achieved with three innovations: (1) creating a more realistic

phantom by enhancing the MOBY phantom with randomization of pixel values, (2)

cardiac motion modeling, and (3) proposing an ANN architecture called CEDA to re-

construct the gated image from non-gated sinogram. For each experiment we have

used VIF, SNR, and image contrast for comparison against conventional MLEM re-

construction, and have shown that CEDA performs better. We also have shown that

the proposed model has better capability to detect diseased heart (obese mice, in our

case) than that by the MLEM reconstruction.

One of the limitations of the current study comes from MOBY phantom genera-

tion. The MOBY data we used did not contain defects. Also, even though we used

augmentation to vary the heart shape, we couldn’t produce independent variation of

the shapes of different parts of a heart. The augmentation process can only alter the

size of the whole heart, and the shape of each part changes proportionately. This

means our augmented hearts may not represent different realistic cardiac geometries

and conditions. Future work will take these issues into consideration and create a more

realistic phantom. This should finally improve the reconstruction quality when testing
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more diverse real data.

Another direction of this work will involve directly reconstructing fully 3D data

that are computationally challenging both at clinical and research settings. It is quite

reasonable to expect that the ANN model will be able to learn even better reconstruc-

tion in 3D than in 2D. Also, our image and motion modeling can be further improved

toward real scenarios, e.g., by adding respiratory motion model. Especially, for human

cardiac imaging, respiratory modeling is important. Finally, we would like to train our

model for direct recognition of different cardiac diseases than just the obesity (which

possibly appeared as cardiac hypertrophy [147]) with improved simulation for training,

as we have mentioned above.
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Chapter 7

Conclusion and future work

In this dissertation, We explore and explain some traditional problems in medical

imaging, as well as basic concepts and applications of artificial neural networks. We

also showcase some research achievements that combine neural networks and medical

imaging. Following, we present our achievements of applying neural networks to solve

medical imaging problems.

In chapter 4, we demonstrate the use of ANN to solve some of the simple medical

imaging problems, such as FFT prediction, attenuation coefficient estimation of a uni-

form disk, U-shape mask image reconstruction, motion function recovery and motion

elimination. The results of these experiments indicate that ANN has sufficient ability

to address the medical imaging problems. The success of these preliminary experiments

laid the foundation for subsequent experiments. Additionally, we use different ANN

models to solve the problems in these works, like FCN, CNN, and CED. The problem of

FCN is that FCN can solve the issue but require much more resources than other ANN

models. A classic CNN can effectively extract desired features, including parameters

of the object like the position and attenuation coefficient, but it cannot independently

perform the reconstruction task. When we use CED, it can perfectly extract features
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from blurry sinograms and reconstruct the clear images. As a consequence, our main

tasks are based on CED. However, the limitations of these experiments are also evi-

dent, as the images and parameters used were too idealized. Therefore, the following

experiments were improved in two ways: (1) more realistic data or even real data,

and (2) improve CED so that it can have better performance on a more sophisticated

scenario.

In chapter 5, we used another simulation data to simulate the heart. Compared

to the U-shape mask image, this pseudo heart image is closer to the real myocardium

with introduced tissue type separation including infarction. Further, the affine trans-

formation including translation, rotation, and scaling is applied to imitate the cardiac

motion. In order to improve the performance, we adopt the self-attention mechanism

to modify CED. We call it CEDA. Further, we also utilize CEDA to reconstruct the

motion-free image from the noisy human data. To measure the performance, we in-

troduce VIF to compare the performance between CEDA and the original CED. The

result show that CEDA has a good quality on the reconstruction with motion correction

from the motion blurred Radon transformed image. It learns the data acquisition (or

underlying physics) model and the motion-model from a training set, and does not need

any additional hardware (e.g., gating) or software (e.g., system-matrix generation).

In chapter 6, we advance our research further. The previous experiments prove that

the ANN model can learn the underlying physics and the motion model of the data.

As a result, we abandon the traditional approach of using the same type of data to

train the ANN model. Instead, the mouse phantom data MOBY is employed to train

CEDA and we test it using real mouse data (pre-clinical PET imaging). In this work,

we: (1) enhance the MOBY phantom by randomizing pixel values to create a more

realistic phantom, (2) model cardiac motion, and (3) propose a new ANN architecture

called CEDA, which is used to reconstruct gated images from non-gated sinograms.
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Moving forward, there are several avenues for future research that could build upon

our work. One of the future directions is to extend this work by directly training and

validating the model with 3D images instead of 2D slices as done in this study. However,

using 3D images presents significant challenges. Firstly, the computational resources

required for training with 3D images are currently impractical, both in research and

clinical settings. Secondly, the amount of training and validation data needed for 3D

models is considerably higher than what is commonly available from clinics. Therefore,

as is standard practice in the literature, we sliced the 3D images around the region of

interest to obtain sufficient 2D data sets for this study. In the future, we intend

to collect more 3D data to improve the model’s training and to validate its motion

correction capability in detecting cardiac infarction. Moreover, we plan to apply this

technique in non-medical areas, such as astrophysics, where motion can also affect

imaging.

There is also a limitation for the experiment of reconstructing real data using ANN

model that is trained by the phantom data. Thus, the present study is related to the

generation of the MOBY phantom. Specifically, the MOBY data utilized in this study

did not include any defects. Moreover, although we employed augmentation techniques

to increase the variability of the heart shapes, we were unable to produce independent

variations in the shapes of different parts of the heart. Our augmentation process only

enabled alteration of the overall heart size, with each part changing proportionately.

As a result, our augmented hearts may not accurately represent various realistic cardiac

geometries and conditions. Moving forward, future studies will need to address these

limitations by creating a more realistic phantom to improve the reconstruction quality

when testing with more diverse real data.

Furthermore, our work aims to enhance the signal intensity and improve the overall

image quality, thereby unlocking the untapped potential of our research in this do-
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main. In recent years, there have been notable advancements in this area, with studies

focusing on super-resolution techniques for SPECT reconstruction [148–150], as well

as cross-modality synthesis, such as converting CT images to MRI [151–153]. These

studies demonstrate the effectiveness of deep learning approaches in improving image

resolution and quality. The studies mentioned before inspire us to explore further ad-

vancements in SPECT reconstruction. Notably, SPECT is more widely adopted in

clinical practice compared to PET due to its significantly lower cost. While PET offers

superior resolution, it is hindered by inherent system errors resulting from the emit-

ted positron transmission. In other words, if SPECT can achieve higher resolution, it

would mark a revolutionary breakthrough benefiting both hospitals and patients alike.

By bridging the resolution gap between SPECT and PET, we can enhance diagnostic

capabilities and provide more accurate and detailed imaging results.
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“Organ movement reduction in pet/ct using dual-gated listmode acquisition,”

Zeitschrift für Medizinische Physik, vol. 16, no. 1, pp. 93–100, 2006, schwerpunkt:

Bildgebung in der Nuklearmedizin.

[136] A. Gillman, J. Smith, P. Thomas, S. Rose, and N. Dowson, “Pet motion correc-

tion in context of integrated pet/mr: Current techniques, limitations, and future

projections,” Medical Physics, vol. 44, no. 12, pp. e430–e445, 2017.

[137] W. Van Elmpt, J. Hamill, J. Jones, D. De Ruysscher, P. Lambin, and M. Öllers,
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