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Abstract 

 

TITLE: Analysis of Factors to Distinguish between Passenger and Cargo Air 

Carrier Accidents 

 

AUTHOR: Warren Pittorie  

MAJOR ADVISOR: Meredith Carroll, Ph.D. 

 

 The purpose of the current study was to analyze a set of factors for their 

ability to distinguish between passenger and cargo air carrier accidents. This study 

utilized a historical dataset of air carrier accidents that occurred between 2002 and 

2019 and identified common factors that were able to be categorized according to 

the theoretical SHELO model. This model, commonly used for analyzing human 

factors-related causation of aircraft accidents, was utilized to categorize accident 

factors in levels of the SHELO model, consisting of Software, Hardware, 

Environment, and Organizational Influences. Data analysis in the form of several 

logistic regressions revealed a significant effect for all four of these levels to be 

able to distinguish between passenger and cargo air carrier accidents. These 

significant factors helped to explain important causal differences between the 

accidents of these two types of operators, as well as provided a practical use for the 

SHELO model in analyzing air carrier accidents. The results of this study helped 

fill gaps within related literature on commercial aviation safety as well as identified 

areas for future research and recommendations for the air carrier industry. 
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Chapter 1 

Introduction 

Background and Purpose 

Background 

 On August 14, 2013, a cargo air carrier flight operated by UPS Airlines 

crashed while on approach to landing in Birmingham, Alabama. The aircraft was 

destroyed upon impact with the ground, fatally injuring the captain and the first 

officer (NTSB, 2014). UPS Airlines Flight 1354 was the fourth fatal aircraft 

accident for a cargo air carrier in the United States between 2009 and 2013. Over 

the same time period, only one fatal commercial passenger air carrier accident 

occurred (Levin et al., 2013; NTSB, 2014).  A similar disparity exists between 

accidents for global passenger and cargo air carriers. The Civil Aviation Authority 

(CAA) of the United Kingdom conducted a study that measured the rate of fatal 

accidents of several types of air carriers.  Between 2002 and 2011, cargo air carriers 

suffered 8 times as many fatal accidents as passenger air carriers (CAA, 2013). 

Definitive reasons for the disparity in accident rates was not immediately apparent, 

but a comparison of the operations of passenger and cargo air carriers identified 

key differences that could have contributed to the frequency of fatal accidents. 

According to Levin et al. (2013), cargo air carriers fly into more dangerous airports 

than passenger air carriers do. The danger of these airports is in reference to the 

lack of safety equipment or infrastructure due to poor socioeconomic conditions. 

However, the crash of UPS Flight 1354 into Birmingham was not into a third world 
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country, and the Birmingham Shuttlesworth International Airport was equipped 

with modern systems to help aircraft navigate to the airport even in unsafe weather 

conditions. 

Levin et al. (2013) suggested that pilot fatigue was likely a causal factor in 

the accident of UPS Airlines Flight 1354.  On December 21, 2011, approximately 2 

years before this accident, a new set of regulations was drafted by the Federal 

Aviation Administration (FAA) to address the issue of pilot fatigue for air carrier 

operations. These regulations located under 14 C.F.R. §117 (2020) are worded so 

that they only address flight crew members and certificate holders of passenger 

operations. The FAA (2020) requires passenger air carriers to follow fatigue risk 

management, education, and awareness training programs. Flight crew members of 

passenger air carriers must undergo training on the effects of fatigue on pilot 

performance and countermeasures to prevent the onset of fatigue from interfering 

with the safe operation of an aircraft. If the pilot of a passenger air carrier has 

reported himself or herself as too fatigued to continue the assigned flight duty, the 

certificate holder must reassign another pilot to this flight. Flight crew members are 

also limited as to the length of the total flight time of an operation and have 

mandatory rest periods between operations. For example, flight crew members 

have a rest period of 30 consecutive hours within any 7-day scheduled work period. 

Cargo air carriers are not mentioned within 14 C.F.R. §117 and therefore do 

not have to abide by these guidelines that protect against flight crew fatigue. The 

Air Line Pilots Association (ALPA) issued a statement that compared fundamentals 
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of passenger to cargo air carrier operations. “Cargo pilots fly the same airplanes, 

over the same routes, in the same airspace, and into the same airports as passenger 

airlines. It’s time to apply these science–based rules to all airline pilots.” (ALPA, 

n.d.). ALPA continued by stating that 16 cargo air carrier accidents since the year 

2000 were directly attributed to pilot fatigue. 

Approximately 7 years before the UPS accident in Birmingham, Lacagnina 

(2006) published an article that compared the occupational safety of passenger to 

cargo air carrier operations. Over a 10–year period ranging from the mid–1990s to 

the mid–2000s, cargo air carrier operations were responsible for 14% of all air 

carrier operations that occurred within the United States. During a similar time 

period, cargo operations accounted for 21% of the air carrier accidents that resulted 

in at least one fatality (NTSB, 2010).  Lacagnina identified key differences between 

the operations of passenger and cargo air carriers, beginning with the time of day in 

which the flights are conducted. Specifically, most passenger air carrier operations 

to take place in the daytime; however, cargo air carrier operations are conducted 

primarily at night. This can lead to issues with low–light conditions, which can be 

exasperated if the destination is an airport with inadequate safety and navigation 

systems. Cargo air carriers also, on average, conduct longer flights than passenger 

air carriers. This, combined with nighttime operations, can lead to a fatigued flight 

crew (Levin et al., 2013). 

Lacagnina (2006) compared other operational differences between 

passenger and cargo air carriers. Cargo air carriers typically fly older aircraft, some 
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of which have been converted from passenger to cargo aircraft. An older fleet of 

aircraft can lead to mechanical and reliability issues, as well as the need for a 

different type of maintenance program. Further, the aircraft used by cargo air 

carriers are designed to carry diverse types of payloads that can vary in size, 

weight, and loading requirements. Lacagnina described how cargo that has been 

improperly loaded without the knowledge of the flight crew can render an aircraft 

uncontrollable if this cargo were to shift too far forwards or backwards during the 

flight. 

The growing body of aviation safety literature is largely void of any direct 

comparison of passenger and cargo air carrier accidents.  In fact, only two studies 

have been identified that make this direct comparison, with only one of the two 

studies dedicated to understanding the factors that seem to distinguish the two types 

of air carriers.  Kharoufah et al. (2018) conducted a review of the human-factors 

causations found in a set of commercial air transport accidents and incidents from 

2000 to 2016. Kharoufah et al. classified the details of each event into 13 categories 

in order to analyze the relationship of the factors and accident or incident 

frequency.  One of these 13 classifications compared cargo air carriers to other 

types of operations.  The results of the study concluded that cargo air carriers suffer 

a disproportionally higher number of accidents and incidents than expected when 

considering the number of annual cargo flights. Kharoufah et al.’s findings suggest 

that cargo air carrier safety is still a concern in the modern aviation industry. 
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The only other study to focus on the comparison of passenger to cargo air 

carrier operations was Roelen et al. (2000). With the objective of quantifying the 

safety record of different cargo operations, Roelen et al. was able to compare the 

safety of passenger to cargo air carrier flights based on factors such as aircraft 

manufacturer, type of accident, and the phase of flight in which the accident 

occurred. Roelen et al. was one of the only studies to use location as a factor to 

compare the safety of passenger air carriers to cargo air carriers. Location was split 

into two categories: the global region in which an accident occurred and the state in 

which the air carrier was based. Although these findings helped differentiate 

passenger and cargo air carrier accidents, the most recent data within this study was 

from the year 2000. More recent air carrier accident data needs to be used to 

investigate modern passenger and cargo accidents and to see if the gap between 

these types of operations still exists. 

A large gap exists in aviation safety literature regarding the comparison of 

passenger to cargo air carrier accidents. Only one academic study has been 

identified that focuses on the comparison of these two carriers, and this study is 

now over 20-years-old. In order to fill the gap identified within the literature, the 

current study expanded upon Roelen et al. (2000) and Kharoufah et al. (2018) by 

utilizing a more recent dataset of air carrier accidents and a more rigorous statistical 

analysis. 

One strength of Roelen et al. (2000) that was incorporated into the current 

study was consideration of numerous factors that have been identified as potentially 
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leading to the occurrence of an air carrier accident. Roelen et al. discussed many 

similarities and differences between passenger and cargo air carriers and discussed 

the possibility of each factor leading to an air carrier accident. These factors 

included aircraft manufacturer, phase of flight, and type of accident. However, 

Roelen et al. relied heavily on descriptive statistics associated with air carrier 

accidents, which lacked any type of rigorous inferential statistical analysis. 

Kharoufah et al. (2018) did use a more rigorous statistical analysis to 

compare the accident rates of several types of operators to one another, including 

passenger and cargo air carriers. However, the comparison of the type of operator 

was one of several factors included within this study. Therefore, Kharoufah et al. 

did not focus on the factors that differentiate between passenger and cargo air 

carrier accidents. 

The current study combined the substantial number of factors identified by 

Roelen et al. (2000) and the statistical rigor of Kharoufah et al. (2018). It should be 

noted that in neither of these studies were the flight crew of each air carrier 

accident the focus of the analyses. Analyzing the actions taken by the flight crew 

can be complicated and subjective due to the nature of investigating the human 

factors behind an aviation accident. This requires a researcher to infer what the 

flight crew’s knowledge, perception, and understanding of the conditions of the 

flight leading up to the accident itself. Although past studies do exist that 

investigate the human-factors factors behind air-carrier accidents, this often 
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requires complex coding and qualitative data analyses that was determined to be 

out of scope for the current study. 

Instead, the focus of the current study was on the objective data from air-

carrier accidents. Objective data includes details of the aircraft itself, the phase of 

flight in which the accident took place, the type of accident that occurred, and the 

location of the accident, amongst other factors. All factors identified within each air 

carrier accident was grounded in theory and categorized based upon a derivative of 

the SHEL model, established by Edwards (1972). This model has been used within 

aviation research before and was incorporated into the proposed study in a more 

modern form. 

In summary, the discrepancy between the accident rates for passenger and 

cargo air carriers still exists within the commercial aviation industry but has not 

been extensively investigated. The current study is now among the limited number 

of studies in the field of aviation safety that focuses on identifying the factors that 

differentiate passenger and cargo air carrier accidents. 

Purpose 

The purpose of the current study was to identify factors that distinguish 

passenger from cargo air carrier accidents. A commercial air carrier is a company 

or organization that uses aircraft to transport passengers or freight. Most travelers 

are familiar with passenger air carriers as these are the airlines used for business 

and leisure travel. However, there are dedicated cargo air carriers that transport 

large quantities of freight or over–sized payloads.  Passenger and cargo air carriers 
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differ in key areas of their operations, such as the type of aircraft they fly and the 

time of day in which most of their flights are scheduled. Cargo air carriers have a 

disproportionally high rate of accidents per flight when compared to passenger air 

carriers (Lacagnina, 2006). The proposed study will analyze a set of targeted 

factors obtained from a dataset of air-carrier accidents to determine which factors 

can differentiate between passenger and cargo air-carrier accidents. 

Definition of Terms 

Key terms and phrases that were important to the current study are 

operationally defined as follows: 

1. Air carrier is defined as an entity who undertakes directly by lease, or other 

arrangement, to engage in air transportation. Examples of an air carrier 

include an individual, corporation, company, or governmental entity (14 

C.F.R. § 1.1, 2020). 

2. Air carrier aircraft is defined as an aircraft that is being operated by an air 

carrier and is categorized as determined by the aircraft type certificate 

issued by a competent civil aviation authority (14 C.F.R. § 1.1, 2020). 

3. Aircraft accident is defined as an aviation event in which a person is fatally 

or seriously injured, an aircraft sustains damage or structural failure 

requiring repair, or an aircraft is classified as being missing (ICAO, 2020). 

This term should not be confused with aircraft incident which is defined as 

any aviation event in which the safety of operations was affected; however, 
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does not meet the three aforementioned attributes of an accident.  Aircraft 

incidents are considered out of scope for the purpose of the proposed study. 

4. Aircraft generation is a categorical organization of aircraft based on 

technological advances in their design. There are four generations: first, 

second, third, and fourth, and each generation advances in engine 

performance and cockpit automation. First generation aircraft introduced 

the jet engine to air carrier travel and had limited cockpit automation. 

Second generation aircraft made slight improvements to both engine 

operation and cockpit automation. Third generation aircraft introduced 

electronic flight instruments into the cockpit in place of partial or full 

mechanical instruments. Fourth generation aircraft use sophisticated fly–

by–wire technology in place of older, mechanical flight controls. 

(Tarnowski & Speyer, 1997; Airbus, 2019). 

5. Aircraft manufacturer is defined as the company that originally produced an 

airplane used in air carrier operations. For example, Boeing and Airbus are 

the two leading aircraft manufacturers of air carrier aircraft used for the 

carriage of both passengers and cargo. 

6. Cargo air carrier is defined as a commercial operation carried out by 

dedicated cargo aircraft, which by design or configuration, are operating 

exclusively for the transportation of cargo (IATA, 2020).  An example of a 

cargo air carrier based within the United States is FedEx Express. 
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7. Factors are defined as major unplanned or unintended contributors to an 

accident. Often, they are a negative events or undesirable conditions that, if 

eliminated, could have prevented the accident, or reduced its severity, 

frequency, or likelihood of occurrence (AICHE, 2020). Examples of factors 

of an aircraft accident are low–light conditions and flight crew fatigue due 

to a flight being conducted at night. 

8. Controlled flight into terrain (CFIT) is defined as the occurrence of an 

airworthy aircraft that is flown under positive control into an obstacle, the 

ground, or water with inadequate awareness from the flight crew (FAA, 

2003). 

9. Domestic air carrier is defined as an air carrier with a base of operations 

located within the United States of America. A domestic air carrier is not 

limited to conducting flights solely within the United States. The origin or 

destination of a domestic air carrier can be a location in another country. 

10. Environment is defined as internal and external factors in relation to an 

aircraft. Example external factors include the weather and time of day; 

example internal factors include levels of noise and vibration. 

11. Hardware is defined as physical attributes of a machine, equipment, or 

facilities used by employees (Edwards, 1972). Attributes of an aircraft 

include the manufacturer, age, and aircraft generation. 

12. International air carrier is defined as an air carrier that has a base of 

operations located in any country other than the United States of America. 
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An international air carrier can conduct a flight that either originates or 

terminates within the United States. 

13. Location of accident is defined as the geographic location in which an air 

carrier accident takes place.  

14. Location of operator is defined as the geographic location in which an air 

carrier is based. Whether an air carrier conducts an operation domestically 

or globally, each carrier has only one main base of operations where the 

headquarters of their company is located. 

15. Loss of control (LOC) is defined as an emergency in which an aircraft 

departs from normal flight but does not return to a normal flight attitude 

(FAA, n.d.). For example, an aircraft taking off could experience a situation 

where the cargo on board breaks free from its restraints and shifts towards 

the rear of the aircraft. This would cause the nose of the aircraft to pitch 

upwards, beyond the control of the pilots, and the aircraft could become 

uncontrollable as it rapidly loses speed and falls to the ground. 

16. Mechanical failure is defined as the improper function or physical damage 

of an aircraft component, system, or structure during a flight (Roelen et al., 

2000). If physical damage occurs, it is due to the failure of the aircraft part 

itself and not an external force. 

17. Organizational influences are defined as factors that exist within the 

structure or operations of a company (Chang & Wang, 2009). Although the 

flight crew are front–line personnel that make decisions that can 
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immediately impact the safety of a flight, they are trained and influenced by 

upper management. Examples of organizational influences are regulations 

that govern the operation of an air carrier and the socioeconomic status of 

the country in which an air carrier is based. 

18. Passenger air carrier is defined as a commercial operation carried out by 

dedicated passenger aircraft, which by design or configuration, are 

operating mainly for the transportation of passengers, but may transport a 

limited amount of cargo (IATA, 2020).  An example of a passenger air 

carrier based within the United States is Delta Airlines. 

19. Phase of flight is defined as one of the segments into which an air carrier 

operation can be split including takeoff, climb, cruise, descent, approach, 

landing, and ground operations (ICAO, 2004). 

20. Software is defined as a supporting system that is available to employees. 

Components of this system include computer programs, checklists, 

manuals, publications, and standard operating procedures (Edwards, 1972). 

21. Time of Day is defined as the time of day in which air carrier operations 

take place, specifically either during the daytime or nighttime. The FAA 

(2020) defines night as the time between the end of evening civil twilight 

and the beginning of morning civil twilight. 

22. Weight Factor is defined as a condition in which freight is improperly 

loaded onto an air carrier aircraft or the freight comes lose during a flight 

and affects the aircraft’s integrity or controllability (Roelen et al., 2000). 
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Research Questions and Hypotheses 

Research Questions 

The research questions that guided the current study are as follows: 

RQ1. To what extent does the variable set related to the software level of 

the SHELO model distinguish between passenger and cargo air carrier 

accidents? 

RQ2. To what extent does the variable set related to the hardware level of 

the SHELO model distinguish between passenger and cargo air carrier 

accidents? 

RQ3. To what extent does the variable set related to the environment level 

of the SHELO model distinguish between passenger and cargo air carrier 

accidents? 

RQ4. To what extent does the variable set related to the organizational 

influences level of the SHELO model distinguish between passenger and 

cargo air carrier accidents? 

Research Hypotheses 

The corresponding research hypotheses are as follows: 

H1. When examined from a simultaneous perspective, the variable set 

related to the software level of the SHELO model is predicted to have a 

statistically significant influence on group membership in either passenger 

or cargo air carrier accidents. 
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H2. When examined from a simultaneous perspective, the variable set 

related to the hardware level of the SHELO model is predicted to have a 

statistically significant influence on group membership in either passenger 

or cargo air carrier accidents. 

H3. When examined from a simultaneous perspective, the variable set 

related to the environment level of the SHELO model is predicted to have a 

statistically significant influence on group membership in either passenger 

or cargo air carrier accidents. 

H4. When examined from a simultaneous perspective, the variable set 

related to the organizational influences level of the SHELO model is 

predicted to have a statistically significant influence on group membership 

in either passenger or cargo air carrier accidents. 

Study Design 

 The current study utilized a causal-comparative design. This methodology 

was selected due to the nature of pre-existing air-carrier accident data that was used 

to identify factors to distinguish between passenger and cargo-carrier accidents. 

Specifically, a retroactive causal-comparative design was used as the group 

membership of passenger or cargo was represented in the single criterion variable 

used in all of the statistical analyses.  This particular design was appropriate as the 

membership of passenger or cargo for each air carrier accident had already 

occurred. 
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Significance of the Study 

 The current study addressed the lack of attention given to the factors that 

can differentiate passenger and cargo air carrier accidents. Even though there are 

fewer daily cargo air carrier flights than passenger air-carrier flights, the frequency 

of cargo accidents is higher than passenger accidents. Although air carrier accidents 

are a rare occurrence, just a single accident can result in significant loss of human 

life and a major monetary loss of cargo and the aircraft itself. After any air carrier 

accident, it is common to see rules and regulations adopted to address the factors 

and preexisting conditions that contributed to the occurrence and severity of the 

accident. However, the crash of UPS Airlines Flight 1354 in 2013 only triggered a 

temporary interest in the disparity between the accident rates of passenger and 

cargo air carriers. Aviation regulations and operational differences between 

passenger and cargo air carriers has remained unchanged since this major accident 

occurred.  

 The current study also addressed the gap that exists within aviation safety 

literature. Only two empirical studies have been published that compared the 

factors of passenger to cargo air carrier accidents. Of the two studies that have been 

published, Roelen et al. (2000) provided a detailed comparison of the operations 

and characteristics that differentiate passenger from cargo air carriers. However, 

Roelen et al. lacked rigorous inferential statistics when comparing differences 

between these two types of air carriers. Kharoufah et al. (2018) provided a more 

recent analysis that compared several types of air carrier operations, including 
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passenger and cargo. However, this comparison was made in the presence of 

several other types of air carriers that are not part of the scope of the proposed 

study. Kharoufah et al. also analyzed other factors that contribute to aircraft 

accidents and did not focus on the comparison of passenger and cargo. 

The current study used all factors identified by Roelen et al. (2000) and 

Kharoufah et al. (2018) that were hypothesized to be able to differentiate between 

passenger and cargo air carrier accidents. This was followed by a rigorous 

statistical analysis to analyze the relationship between the targeted factors and the 

group membership criterion variable of passenger and cargo air carrier accidents. 

The targeted factors were organized according to the SHELO model. It should be 

noted that this type of theoretical grounding was absent from Roelen et al. and 

Kharoufah et al. By grounding the proposed study in a human factors theoretical 

framework like the SHELO model (Chang & Wang, 2009), an explanation of the 

relationship between the targeted factors and the dichotomous group membership 

variable supported the results of the statistical analysis.  

The current study did not analyze the factors related to the liveware level of 

the SHELO model. Instead, the focus on software, hardware, environment, and 

organizational influences determined if there were other possible factors that could 

differentiate passenger and cargo air carrier accidents.  The findings from the 

current study can be used to guide researchers in how to conduct follow–up 

research on the statistically significant levels of the SHELO model. Statistically 

significant factors categorized as software, hardware, environment, or 
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organizational influences that can differentiate between passenger and cargo 

accidents should be analyzed more closely. 

Limitations and Delimitations 

Limitations 

1. Data collection method. The dataset of air carrier accidents that was used 

within the current study was comprised of historical data. All of the data 

within this dataset were objective details about the conditions of the aircraft 

and flight before the accident occurred. However, any mistakes or 

inconsistencies in data collection after each individual accident occurred 

remained as errors within the historical dataset. There was no way to tell if 

an error existed within each final, published accident report. 

2. Missing Data. Only data from final accident reports were collected for 

inclusion in the final dataset. However, accident details missing from any 

final accident report could cause unreliable results. If missing data was 

discovered, it resulted in an accident being removed from inclusion within 

the final dataset. Unlike continuous data, using the mean or median of 

surrounding datapoints is not an option for categorical data. 

3. Generalizability of certain predictor variables. The data collection process 

used for the current study was limited to general accident factors available 

from the ASN database.  Some of the accident factors selected, such as 

operator location, are too general to be easily generalizable to the target 

population.  However, the selection for the predictor variables was 
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supported by previous studies that had had the same limitations in regard to 

accident data. For example, the variable, Location of Operator, was 

organized into geographic locations, each of which were made up of several 

countries. This variable represents how organizational influences, such as 

aviation regulations and socioeconomic factors can distinguish between 

passenger and cargo air carrier accidents. The recommendations based on 

the statistical significance of this variable cannot be directly generalized to 

the target population. Instead, recommendations would have to be made for 

future research to more closely analyze these factors and break them down 

into more specific variables. 

4. Accidents that occurred over international water.  Between the years 2002 

through 2019, five accidents considered in-scope for the current study 

occurred over the Atlantic Ocean, Indian Ocean, Pacific Ocean, or 

Mediterranean Sea.  These bodies of water are considered international 

territory, and therefore made it difficult to identify the location of an 

accident that occurred over these oceans or seas.  In the context of the 

current study, the location of an accident that occurs over international 

territory will be the country that the aircraft departed from.  Due to the 

extremely low number of accidents that occurred over these regions, the 

impact on the results of the current study is considered minor. 
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Delimitations 

1. Selection of the source for air carrier accident data. The sole source of air 

carrier accident data selected for the current study was the Aviation Safety 

Network (ASN). The content, validity, and reliability of this source is 

described in detail in Chapter 3 of the current study. Although this source 

was determined to be reliable, valid, and inclusive of most if not all global 

air carrier accidents, other possible sources of data were excluded, thus 

limiting the accessible population of air carrier accidents.  A passenger or 

cargo air carrier accident that was not investigated obtained by the ASN 

was excluded from the dataset used in the current study. 

2. Timeframe of air carrier accidents within the dataset. The years 2020 and 

2021 were excluded from the dataset used in the current study for two 

reasons. The first reason was that it is unlikely that a final accident report 

can be published within the same year as the occurrence of an air carrier 

accident. Although preliminary reports may be available, these can contain 

speculation as to the causes of the accident. Only final accident reports were 

used in the current study in order to ensure the validity and reliability of the 

data. The second reason for excluding air carrier accidents that took place in 

2020 and 2021 was due to the unprecedented events of the COVID–19 

global pandemic. This historical event caused a downturn in global 

passenger traffic. Passenger air carriers converted some of their aircraft into 

temporary cargo aircraft in order to generate as much revenue as possible 



20 
 

given the restrictions on passenger travel (Quayle & Checksfield, 2020). As 

a result, it would have been difficult to classify some air carrier accidents as 

passenger or cargo, which would have threatened the validity and reliability 

of the results. 

3. Selection of factors. Only select data from each air carrier accident within 

the dataset were treated as factors for the analyses used in the current study. 

Certain factors found in final accident reports were excluded from inclusion 

in the current study due to several possible reasons, including difficulty in 

classifying the factor according to the SHELO model or a lack of 

supporting evidence as to how certain factors could have been used to 

differentiate between passenger and cargo air carrier accidents. 

4. Exclusion of air carrier incidents. The dataset used within the current study 

did not contain any reports on air carrier incidents. This was due to the 

requirements for the investigation of an aircraft incident being different and 

less strict than those for an aircraft accident. Aircraft incidents do not 

involve the loss of human life, substantial property or aircraft damage, and a 

limited financial effect on the air carrier. Therefore, many air carrier 

incidents occur without a subsequent investigation, making the availability 

of data on all air carrier incidents scarce. 

5. Removal of liveware factor from SHELO model. As discussed earlier within 

this chapter, the liveware component that would represent the actions of the 

flight crew per air carrier accident, was determined to be out of scope for 
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the current study. The purpose of the current study was to examine factors 

that could distinguish between passenger and cargo air carrier accidents that 

were not directly related to the actions of the flight crew. The removal of 

the liveware component was decided by the researcher due to the objective 

and limited data within the dataset that would not have been significant 

enough to examine a possible relationship between the flight crew and the 

distinguishing between passenger and cargo air carrier accidents. 

6. Removal of air carrier data based upon type of accident. The following 

types of accidents were unsupported from previous studies or related 

literature on distinguishing between passenger and cargo air carrier 

accidents: ground operations or collisions (aircraft was standing or taxing), 

acts of terrorism (sabotage, hijacking, aircraft shoot-down, or attempted 

takeovers), mid-air collision, pilot error, fuel exhaustion, wildlife strike, 

fuel contamination, aircraft missing, and runway incursions. 

7. Exclusion of narrative data from the dataset. All accident reports are 

written in narrative form. Analyzing all details within the narratives would 

have required coding and a standardized process for transforming narrative 

data into quantitative data. Given the availability of objective data for the 

targeted factors that was already in quantitative form, all narratives were 

excluded from data collection. Analyzing these detailed narratives would 

have required a qualitative approach that was out of scope for the 

methodology of the current study.  
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Chapter 2 

Review of Related Literature 

Introduction 

 This chapter is organized into three sections. The first section grounds the 

current study in the theoretical SHELO model, first proposed by Edward (1972) as 

the SHEL model and updated to its current form by Chang and Wang (2009). The 

second section provides a review of past research whose purpose it was to 

distinguish between passenger and cargo air carrier accidents. Some of the related 

studies did not have a purpose of focusing on only passenger and cargo, and instead 

focused on one specific factor that could be used to distinguish between these 

passenger and cargo accidents. The third and final section provides a summary of 

the related literature, as well as a discussion on the implications of the current 

study. 

Overview of Underlying Theory 

The proposed study theorized that factors of air carrier accidents can be 

categorized according to the SHELO model. The SHELO model consists of six 

levels: software, hardware, environment, liveware, and organizational influences. 

In the context of the current study, it was hypothesized that these factors, with the 

exception of liveware, contributed uniquely to the occurrence of an aviation event 

that results in severe damage or loss of life.  Further, it was hypothesized that the 

SHELO model can be used to distinguish between passenger and cargo air carrier 
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accidents. The following section provides an overview of the underlying theory that 

was used in the analyses of the factors. 

Aviation Human Factors Frameworks 

 Research into aviation safety frequently focuses on factors that are related 

to human performance. In order to properly analyze aviation accidents, human error 

frameworks have been developed from theoretical models to help classify and 

compare these factors.  The SHELL model, adapted from Edward’s original EHSL 

model (1972), provides a framework surrounding an accident which facilitates back 

tracking from the accident to possible factors that contributed. By analyzing 

archival air carrier accident data, factors can be identified and classified according 

to the factors of the SHELL model.  

SHELO Model 

Edwards (1972) identified four factors that lead to aviation accidents: 

Environment, Hardware, Software, and Liveware (EHSL). He claimed that during 

the development of a new system, these factors were considered in a linear form. 

Each of the four factors directly influenced a single other factor in the following 

order: Environment, Hardware, Software, and Liveware (See Figure 1). 

Figure 1 

Linear SHEL Model 
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Edwards believed that this model was not adequate for use in analyzing 

accidents involving technologically advanced aircraft operating within the modern 

aviation environment. Instead, Edwards proposed a model with Liveware, 

Hardware, and Software all interacting with one another within a dynamic 

environment. This new model theorized that all factors interface with one another, 

rather than one factor leading to, or causing, another factor in a linear fashion (See 

Figure 2). 

Figure 2 

Updated SHEL Model with Interactions 

 

For example, consider an accident in which an airplane runs off the end of a 

runway during landing. Several factors could be at play, including whether the 

aircraft was correctly configured for landing (Software), the condition of the brakes 
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and tires (Hardware), the physical and mental conditions of the pilots (Liveware), 

and visibility based on the time of day (Environment). The linear EHSL model 

would try to pinpoint the error somewhere within a single factor. However, an 

analysis using Edward’s refined model could categorize an overshoot as having 

several factors related to Hardware, Software, or Liveware errors. In the context of 

the aviation industry, Edward’s new model became known as the SHEL model. 

Edward’s SHEL model went through several iterations as it was adapted for 

various accident investigations and human factors studies. For example, Hawkins 

(1993) created a variation that modeled the interaction of person–to–person 

relationships by adding a second Liveware factor. Thus, the SHELL model was 

used to describe interactions that a human being has in the workplace, including 

interactions with hardware, software, the environment, and other humans. 

However, the SHEL and SHELL models were insufficient at studying the effect of 

organizational influences on safety, which were identified by the International Air 

Transport Association (IATA) and the International Civil Aviation Organization 

(ICAO) as risks to the aviation industry. Organizational influences are a crucial 

factor in aviation safety when studying human performance. Actions taken by the 

management of a company can influence the safety and culture of all employees 

(ICAO, 1998). These actions can come in the form of participating in committees 

or programs that report and share data within the industry, developing rigorous 

training programs for pilots, and establishing safety management systems (SMS) 

for every commercial operator. At first, organizational influences were analyzed as 
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a subset of the Environment factor and were not treated as a separate, independent 

factor (IATA, 2006). However, a recent study has classified organizational threats 

to safety into its own factor and expanded upon the SHELL model. 

During an analysis of human risk factors associated with aircraft 

maintenance technicians, Chang, and Wang (2009) proposed a variation of the 

SHELL model that included organizational influences. The rationale behind adding 

this component was that Chang and Wang believed that errors made at the 

organizational or managerial level may be difficult for front–line personal to detect 

or control. An important distinction made by Chang & Wang regarding 

organizational influences is that managerial, political, and economic constraints 

could not be captured by the existing SHELL model, and a fifth factor would have 

to be added in order to analyze the relationship between these influences and a 

singular human being.  By adding organizational influences as a fifth factor to the 

SHELL model, the SHELLO model became the most recent variation used in 

safety analysis. In the context of the proposed study, elements of the SHELLO 

model will be used to analyze historical aviation accident data in order to 

differentiate between the factors of passenger and cargo air carrier accidents.  The 

components of the SHELLO model are described in more detail in the following 

sections. 

Software. Software, within the context of the SHELLO model, includes 

supporting systems that are available to employees, such as computer programs, 

checklists, manuals, publications, initial or recurrent training, and standard 
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operating procedures (SOPs) (ICAO, 1998). Variance in software can lead to 

human error in the aviation environment, which can ultimately lead to an accident 

(ICAO, 1998).  For example, recency of pilot experience with the Software 

component, the accuracy of documents that support policy and procedure, and 

characteristics of these documents, such as format, presentation, vocabulary, 

symbology, and clarity, are all attributes of both computer programs and paper–

based resources found in air carrier cockpits. Several systems in the cockpit, such 

as flight management systems (FMS), autopilot, fly–by–wire flight controls, and 

instrument displays require pilots to use a range of tools such as checklists, 

manuals, SOPs and initial or recurrent training. 

There can be interactions between Software and other components in the 

model that contribute to accidents, such as hardware. Airbus (2019) classified 

aircraft dating from the 1950s through modern day into four generations, each of 

which progressed with respect to advances in technology within the cockpit. With 

each step of incremental progress in cockpit technology, aircraft hardware and 

software became more intimately linked. For example, in some later–generation 

aircraft, a computer system mediates the relationship between pilot inputs to the 

flight controls and the mechanical linkages with the control surfaces, to prevent the 

pilot from over–controlling the aircraft or creating a hazardous situation. These 

systems can be credited with helping to reduce human error in many cases; 

however, some accidents have resulted from a lack of pilot understanding of the 

functionality of these software systems. 
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The procedural side of Software is particularly important to the operation of 

air carrier aircraft. Pilots are trained to rely on checklists when entering separate 

phases of flight, and manuals or SOPs when faced with an abnormal situation. The 

National Transportation Safety Board (NTSB, 2001) released a report on an 

American Airlines accident in which a passenger aircraft overran a runway after the 

pilots landed in in poor weather. Not only did the pilots deviate from SOPs by 

deciding to attempt a landing during a thunderstorm, but the flight crew deviated 

from their before–landing checklist by missing a crucial step that configured the 

aircraft’s spoiler (air brake) system. This accident was not solely caused by human 

error, but by a deficiency that prompted the airline to revise their company 

checklists. These types of checklists and SOPs are common among all air carrier 

operations, including both passenger and cargo. If the same type of aircraft is being 

operated between a passenger and a cargo air carrier, both will need to comply with 

similar checklists and SOPs. However, it is possible that the rate of non–

compliance with Software elements such as SOPs differs between the two types of 

air carriers, potentially due to the organizational differences between passenger and 

cargo air carriers. 

Hardware. In the context of the aviation domain, Hardware is often the 

primary focus in an accident investigation. This could be due to a part of the 

aircraft experiencing mechanical failure that led to the accident, or an error made 

by the pilot during an interaction with hardware in the cockpit. ICAO (1998) 

describes the Hardware component of the SHEL model as the physical attributes of 
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machines, equipment, and facilities used by the employees. After an analysis of an 

industrial maintenance domain, Metso et al. (2015) added to their description of the 

Hardware component of the SHELLO model with tools, computers, buildings, or 

physical infrastructure. These components can contribute to aviation accidents in 

several ways. For example, Roelen et al. (2000) identified aircraft characteristics 

like age, manufacturer, and type and number of engines as differentiators between 

commercial and general aviation aircraft. Although rare, it is possible for Hardware 

to be the primary cause of an aviation accident. This could be due to a single 

defective piece of equipment that fails mid–flight, or an older aircraft that has been 

flown past its operational lifespan. According to Roelen et al., cargo air carriers 

often fly older aircraft that were retired from passenger service. If the average fleet 

age for cargo air carriers is higher than passenger air carriers, it is possible that 

variations in the condition of aircraft equipment could affect safety and lead to an 

accident.  

There can also be interactions between Hardware and Liveware (human) 

components that contribute to accidents. The FAA (2020) regulates aircraft 

weighting over 12,500 pounds and aircraft powered by turbo–jet engines, requiring 

special pilot training and certification to operate these types of aircraft. It is 

common for a pilot to transfer between several types of aircraft throughout their 

aviation career, requiring new training every time this transfer occurs. Pilots must 

be able to adapt to new avionics in the cockpit whenever they are transferred to a 

new type of airplane. If there is a weakness in their training or they make an 
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operational error while flying due to unfamiliarity with the aircraft’s avionics, it is 

possible that an interaction between the Hardware and the pilots could lead to an air 

carrier accident. Previously discussed Hardware factors, such as aircraft age, can 

also interact with other factors of the SHELLO model, such as Environment, and 

contribute to causing air carrier accidents. Older aircraft are void of modern 

technologies that help automate processes for the pilot, such as more sophisticated 

autopilot systems and heads–up displays. The presence of these technologies may 

provide support for pilots, thereby reducing the risk of an accident. In the context 

of the proposed study, Hardware factors of air carrier aircraft involved in accidents 

were identified and utilized to determine their influence on accidents of cargo and 

passenger air carriers. 

Environment. Environment, within the context of the SHELLO model, 

refers to factors both internal and external to the aircraft (ICAO, 1998). For 

example, temperature, light, noise, and vibrations are characteristics of an internal 

environment. Although aircraft hardware and software can vary between air carrier 

and manufacturer, the cockpit environment is relatively consistent between aircraft.  

Therefore, external environmental factors are more likely to act as differentiating 

factors with respect to air carrier accidents.  These external factors include factors 

such as time of day, meteorological conditions, and the infrastructure of foreign 

airports and facilities. 

Time of day is an important factor in aircraft accidents, and a potential 

differentiator between passenger and cargo air carrier accidents. Roelen et al. 
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(2000) explained how cargo operations are flown primarily at night, unlike most 

passenger operations. Flying aircraft at night introduces two concerns regarding the 

safety of the flight: the condition of the flight crew and the reduced outside 

visibility. Roelen et al. specified that flying primarily at night introduces 

physiological challenges to the flight crew. This would mean that most cargo air 

carrier operations are reliant on their crew members to be able to overcome fatigue 

and performance limitations associated with operating at night.  

Night flying also involves a greater reliance on flight instruments, 

standardized arrival and approach procedures, and air traffic control (ATC) 

services. If these instruments are outdated or inoperative (software) or if ATC 

services are inadequate, it can affect the likelihood of an accident occurring. A lack 

of services by ATC can be due to a poor infrastructure from underdeveloped 

countries. Roelen et al. attribute a greater number of operations by cargo in 

underdeveloped countries as contributing to a poorer safety record compared to 

passenger air carriers. If a cargo pilot is conducting a nighttime flight into an 

airport located within mountainous terrain in an underdeveloped country, the pilot 

may be unable to rely on ATC services or sophisticated instrument procedures to 

aid him in approach and landing, resulting in a hazardous situation with an 

increased risk of an accident. 

Lastly, hazardous weather is a danger to all types of air carrier operations. 

This weather can come in the form of reduced visibility, high winds, heavy rain or 

snow, icing, or other adverse conditions. Advancements in aircraft systems 
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(Software) and ATC services (Environment) can help pilots avoid flying into 

weather conditions that increase the likelihood of an accident occurring. For 

example, weather radar both onboard aircraft and built into airport surfaces can aid 

the flight crew in avoiding hazardous precipitation and turbulence. This would 

reduce the likelihood of an aircraft flying into weather that could threaten the safety 

of the flight. However, the misuse of this technology by an operational error by the 

flight crew (Liveware) or the absence of the technology due to poor infrastructure 

(Environment) could cause an aircraft to encounter unanticipated adverse weather. 

Organizational Influences. Organizational influences make up the final 

component of the SHELLO model. After conducting a review of aviation accidents 

and incidents, Chang, and Wang (2009) found that emphasis of recent literature 

was placed on organizational–related factors instead of individual factors. Poor 

safety standards or socioeconomic conditions that influence the organizational or 

managerial level can affect the performance of front–line workers (McDonald et 

al., 2000). In the context of the aviation industry, the front–line workers are the 

flight crew while the organizational level includes the management of each air 

carrier.  The corporate culture within an air carrier is also represented by the 

Organizational Influences level. Research analyzing an air carrier accident that 

focuses solely on the flight crew, void of consideration for organizational 

influences, may produce incomplete results. 

In ICAO’s Human Factors Handbook (1998), the political and economic 

constraints under which any aviation system operates were classified under the 
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environment factor of the SHELL model. More specifically, these constraints were 

considered external environmental factors while the immediate work area 

(temperature, noise, and air quality) were considered internal environmental 

factors. Chang and Wang (2009) did not believe that organizational influences were 

a type of environmental condition and wanted to more accurately analyze these 

influences in comparison to other factors of the existing SHELL model. 

Organizational Influences became a new factor, separate from either type of 

environmental condition, which expanded the SHELL model into the SHELLO 

model. 

 When analyzing global air carrier accidents, Organizational Influences will 

differ between global regions. This is mainly due to differences in socioeconomic 

factors and aviation regulations.  Although an in–depth comparison of aviation 

safety between individual countries is possible, it would require extensive research 

into the safety culture, regulatory compliance, and infrastructure of each country. 

However, it is possible to take a broader approach in comparing the effect of 

Organizational Influences separated by global region in order to distinguish 

between passenger and cargo air carriers. 

Kharoufah et al. (2018) treated the location of an air carrier as one of the 

variables of interest in an analysis of aircraft accidents. A list of global regions was 

taken from a market outlook ranging from 2017–2036 (Boeing, 2017). Although 

this market outlook was provided by only one aircraft manufacturer, Boeing is the 

largest producer of air carrier aircraft in the world. Boeing identified seven global 
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regions based on the number of aircraft they operate and the frequency of their 

operations. These regions included North American (NA), Latin America (LA), the 

Middle East (ME), Asia, the Commonwealth of Independent States (CIS), Europe, 

and Africa. Kharoufah et al. used Africa as an example of a global region that 

suffers from poor socioeconomic conditions with a high rate of air carrier 

accidents. A list of countries that are categorized under the global regions used in 

the current study can be found in Appendix A. After accessing data from the 

African Development Bank Group (2011), it was apparent that Organizational 

Influences such as lackluster aviation regulations, inadequate pilot training, and 

long hours for front–line workers were common for air carriers from this region. 

The African Development Bank Group determined that the safety implementation 

performance of every region in Africa is twice as low as almost every other global 

region.  This is correlated with data from IATA (2006) where Africa suffered 4.31 

aircraft accidents per every one million flights while the global average was as low 

as 0.65 per every one million flights. 

A thorough analysis of all possible Organizational Influences across all 

global regions in terms of air carrier safety is out of scope for the proposed study. 

That type of analysis would require extensive data, which is unavailable within the 

historical air carrier accident dataset. However, much like the dataset used by 

Kharoufah et al. (2018), the location of the operator for each accident is available. 

Similarities in socioeconomic status, air carrier management, and aviation 

regulations are among the common factors between countries within each region. 
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As supported by Chang & Wang (2009), it would not be effective to analyze the 

causes of air carrier accidents if Organizational Influences were not considered. 

Summary 

Based on the purpose of this study as described in Chapter 1, the focus of 

this literature review is on the following four levels of the SHELO model: 

Software, Hardware, Environment, and Organizational Influences. The Liveware 

factor of the SHELLO model was not a focus for the current study, nor was the 

interaction between Liveware and all other factors. Therefore, the SHELLO model 

was adapted into the SHELO model. Several statistical analyses helped determine 

whether predictor variables classified as Software, Hardware, Environment, or 

Organizational Influences were able to distinguish between passenger and cargo air 

carrier accidents. 

Review of Past Research Studies 

The following review of past literature begins with select studies that have 

focused on significant factors for air carrier accidents. The lack of past research on 

the specific comparison of cargo to passenger air carrier accidents indicates that 

this is a gap in the literature. Next, select research on factors related to aviation 

safety will be reviewed to determine if these factors can distinguish between 

passenger and cargo air carrier accidents. Each of these factors was organized into 

the various levels of the SHELO model, followed by a discussion on how this 

theoretical model helped identify causal distinguish between passenger and cargo 

air carrier accidents. This section concludes with a summary, as well as 
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implications for how the current study can address gaps found within related 

literature. 

Comparison of Passenger and Cargo Air Carriers 

To date, only three studies have been found that examine the difference in 

factors between passenger and cargo air carrier accidents. Only one of these studies 

examines, in detail, the safety performance of cargo air carriers. Roelen et al. 

(2000) quantified the safety record of various categories of cargo air carriers. This 

study was conducted in order to investigate claims that cargo air carriers suffer a 

disproportionally high number of accidents in comparison to their passenger 

counterparts.  Roelen et al. collected data from the ICAO, including aircraft 

accident data beginning in the year 1970 and continuing through the year 2000. 

This dataset contained 606 accidents related to aircraft powered by jet engines, 

which make up nearly the entire fleet of passenger and cargo air carriers.  The data 

was categorized based on factors related to the cargo air carrier industry that could 

explain the claim of a high frequency of accidents. Examples of these factors 

include average aircraft fleet age, aircraft manufacturer, time of day in which 

operations take place, geographic region of operations, and flights performed on a 

non–scheduled basis. Roelen et al. used accident rate as their dependent variable, 

and this was calculated by analyzing the number of accidents per million flights. 

Each cargo air carrier factor was analyzed by organizing the data into bar graphs 

and observing visual differences against a calculated accident rate. For example, if 

the factor being analyzed was aircraft manufacturer, companies such as Boeing, 
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Airbus, and Antonov were compared on a basis of accidents per million flights. If 

there was a discernable difference between the levels of each factor, then the factor 

was identified as a major contributor to differentiating the causes of passenger and 

cargo air carrier accidents. One major limitation of Roelen et al. was that inferential 

statistics were not used. Instead, descriptive statistics were reported, with most of 

the findings being based on visual analysis of graphed distributions. Based on this 

analysis, Roelen et al. (2000) found that cargo air carriers often fly older aircraft, at 

nighttime, and with ad–hoc (non–scheduled) operations, which have a particularly 

high–risk profile. In addition, characteristics of both passenger and cargo air 

carriers were compared, including accident rates in different global regions, types 

of accidents, and the phase of flight in which the accident occurs. These categories 

and associated results will be discussed in more detail later in this review when 

each category is matched with the appropriate factor from the SHELO model. 

Several of the categories related to the cargo air carrier industry were used in the 

current study in order to help differentiate between passenger and cargo accidents.  

Although Roelen et al. identified several identifying factors between passenger and 

cargo air carriers, the current study incorporated these factors with newly acquired 

data. Further, Roelen et al. was limited to data collected through the year 2000. The 

current study expanded upon the findings of Roelen et al. by analyzing air carrier 

accident data from 2002 through 2019.  

Roelen et al.’s (2000) investigation into cargo air carriers was expanded 

upon by Lacagnina (2006) who also focused on inconsistencies in the safety 
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between passenger and cargo air carriers. Lacagnina’s goal was to identify the 

major areas of weakness for cargo air carriers and how they compare to their 

passenger counterparts. This was driven by data that indicated cargo air carriers in 

the United States have an accident rate of 2–5 times higher than passenger air 

carriers (Roelen et al., 2000). In order to investigate the cause of this major 

difference in accident rate, Lacagnina acquired datasets from the FAA and the 

NTSB.  These datasets contained the frequencies of U.S. air carrier accidents from 

the year 1996 through 2005. Lacagnina then separated the frequency of cargo–only 

accidents from the total number of accidents in order to determine what the 

proportion of U.S. air carrier accidents were associated with cargo air carriers.  

From the year 1996 through 2005, 63 of the 449 accidents (14 percent) involving 

U.S. air carriers were attributed to cargo air carriers. The remainder (86 percent) 

were attributed to passenger air carriers. Of these accidents, five of the 24 fatal air 

carrier accidents (21 percent) were caused by cargo air carriers, while passenger air 

carriers accounted for 79 percent. 

Lacagnina (2006) performed a second analysis on the same dataset acquired 

from the FAA and NTSB. To achieve this, the data was organized to show the type 

of accident that had occurred, the type of operation, and whether it was a passenger 

or cargo air carriers in order to perform a direct comparison.  A visual analysis of 

the graphed distribution of accident frequency organized by phase of flight revealed 

that cargo air carriers suffer a higher number of accidents during takeoff. The total 

number of loss of control accidents that occurred during takeoff accounted for 15% 



39 
 

of the total number of air carrier accidents from 1987 through 2000. Of these 

accidents during takeoff, cargo air carriers accounted for 9% and passenger air 

carriers accounted for 6%. Lacagnina speculated that this could be due to 

improperly loaded cargo. Cargo–specific accidents are most common for cargo air 

carriers compared to their passenger counterparts. Although passenger air carriers 

do carry a limited amount of cargo, this does not make up most of their payload of 

passengers and their baggage. Cargo air carriers rely on the carriage of heavy or 

sometimes dangerous materials that must be properly loaded onto their aircraft. 

Lacagnina provided several anecdotal examples of cargo air carrier accidents that 

were caused by non–adherence to cargo loading policies. One such example was 

the crash of a Fine Air DC-8 in 1997 which suffered a loss of control during 

takeoff. The crew had properly configured their airplane for takeoff based on how 

they believed the weight of the cargo onboard the aircraft was distributed. 

However, the cargo was not loaded according to the air carrier’s instructions and 

the cargo was loaded too far towards the rear of the aircraft. Due to the flight crew 

not having any way to verify the correct loading procedure of the cargo, there was 

no way for them to anticipate this accident before the aircraft became airborne.  

Lacagnina (2006) also identified aging aircraft as a major difference 

between passenger and cargo air carriers by providing statistics from ALPA. At the 

time of the study, 2006, the average age of passenger air carrier aircraft was 7 

years, and the average age of cargo air carrier aircraft was 28 years. ALPA also 

claimed that older aircraft are often plagued by outdated technology, high 
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maintenance requirements, a scarcity of spare parts, and the decline or absence of 

manufacturer support, all which stem from the operation of older aircraft. With 

cargo air carriers having average fleet ages significantly higher than passenger air 

carriers, this is yet another potential distinguishing factor between the two types of 

operations. All factors identified by Lacagnina (2006) were incorporated into the 

current study in order to distinguish between passenger and cargo accidents.   

A third study was identified that included cargo air carrier operations as a 

predictor to aircraft incidents or accidents. Cargo air carriers were not the focus, 

however, Kharoufah et al. (2018), investigated aircraft accidents and incidents over 

several types of operators. The purpose of this study was to explore why 75% of 

aviation incidents and accidents can be traced back to human factors causations. 

Kharoufah et al. theorized that common variables, which can be treated as factors, 

can be used to identify human factors elements in aviation accidents. Two of 

Kharoufah et al.’s research questions are relevant to the proposed study: how are 

(human factors) causes distributed by type of operation in commercial air transport 

accidents, and how are (human factors) causes distributed by world region (both 

location of air carrier and location of occurrence) in commercial air transport 

accidents? Kharoufah et al. did not provide any research hypotheses as to the 

relationship between these targeted factors and the frequency of aircraft accidents 

or incidents. Although specific human factors factors were out of scope for the 

current study, the two factors identified by Kharoufah et al. were of interest.  
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Kharoufah et al. (2018) randomly selected 200 international air transport 

accidents in order to identify the principal human factor contributions behind each 

event and to observe trends within the air transport industry.  The 200 accidents 

were selected from seven different databases, including the NTSB and ASN, which 

have been selected as the two additional sources of data for the proposed study. 

Kharoufah et al. read through narratives and details from each event within the 

dataset and extracted factors that contributed to an aircraft accident or incident.  

Any common factor across incidents and accidents was coded so that trends related 

to human factors could be identified. Like Roelen et al. (2000), Kharoufah et al. 

found aircraft manufacturer, geographic location of accident, and type of operator 

to be predictive of an aircraft incident or accident. 

In order to statistically analyze trends found within the data, Kharoufah et 

al. (2018) used the Chi Square goodness of fit test.  Each accident or incident factor 

was analyzed with respect to its frequency of involvement in aircraft incidents or 

accidents that involved human factors to determine if the frequency of aviation 

accidents or incidents could be explained by another factor. One of the factors 

identified by Kharoufah et al. (2018) was type of commercial operator. This factor 

was split into six types of commercial operators: air ambulance, low–cost–carrier, 

cargo air carrier, passenger charter, regional passenger airline, and full–service 

network passenger carrier. It was assumed that accident rates would have been 

evenly distributed between these types of commercial operators. After analyzing 

the distribution, it was found that cargo air carriers suffered a disproportionally 
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higher accident rate than expected, χ2(5, N = 200) = 194.6, p = .05. Kharoufah et 

al. was able to reject the null hypothesis of no difference between the types of 

commercial aviation operations and the frequency of aircraft accidents and 

incidents. It was expected that cargo air carriers would suffer approximately 10 

human factors related incidents or accidents between the years 2000 to 2016. 

However, cargo accidents suffered approximately 25 incidents or accidents, which 

is disproportionally higher than the expected frequency based on the number of 

operations conducted by cargo air carriers. 

Kharoufah et al. (2018) provides some explanation of the higher–than–

expected frequency count for cargo air carriers, including that cargo air carrier 

flights primarily occur at night and that cargo carriers lack established safety 

programs. The proposed study will leverage Kharoufah et al.’s findings by utilizing 

the variables identified to differentiate cargo air carrier accident factors and expand 

upon these causes by analyzing additional predictor variables that can differentiate 

causes of passenger and cargo air carrier accidents. Although “type of commercial 

operator” was the only factor directly focused on differentiating between passenger 

and cargo air carriers, other factors within Kharoufah et al.’s study, including 

global region where the accident took place, phase of flight, aircraft manufacturer, 

and the type of accident that occurred, were categorized in accordance with the 

SHELO model and utilized as predictor variables. 



43 
 

Relevant Predictor Variables Categorized by the SHELO Model 

The three studies cited above introduced relevant methods and aircraft 

accident factors that helped define the scope of the current study. These factors 

included aircraft generation, aircraft manufacturer, global region in which the 

accident occurred, time of day, phase of flight, and the type of accident. All factors 

were analyzed for their effect on distinguishing between passenger and cargo air 

carrier accidents. These factors were grounded in the four selected levels of the 

SHELO model: software, hardware, environment, and organizational influences. 

The following section reviews past research that has examined the impact of 

similar factors within these categories on aviation accidents in order to better 

understand the current set of factors as well as identify possible additions to the set. 

Software. The first factor in the SHELO model is software, and this 

includes supporting systems that are available to pilots while conducting a flight. 

Software is a broad and somewhat difficult factor to define, but in the context of 

the proposed study, any checklist, manual, SOP, or computer program is considered 

a piece of software.  Four variables that are relevant to this study have been 

identified in related literature to be closely related to software: phase of flight, 

accidents that were categorized as CFIT, accidents categorized as LOC, and 

accidents that involved a weight factor. Due to the format of the accident data that 

was available for the current study, it was not possible to discern if individual 

accidents were caused by a failure to effectively use checklists, manuals, or SOPs. 

However, accidents that occurred during certain phases of flight, were categorized 
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as CFIT or LOC, or accidents that involved a weight factor are often the result of a 

flight or ground crew member not adhering to published procedures, navigational 

maps and charts, or checklists to ensure the aircraft is properly configured for safe 

flight (FAA, 2003). Human error caused by failed or improperly used software is 

discussed in detail below. 

Phase of Flight. Any flight, regardless of the type of aircraft or type of 

operation can be split into major phases. These phases include takeoff, climb, 

cruise, descent, approach, landing, and ground operations, as defined by ICAO 

(2004). Each of these phases incorporates varying levels of software to aid the 

flight crew in conducting a safe flight. Examples of software available to the flight 

crew include checklists and SOPs to manage aircraft configuration and engine 

settings, charts, or maps to aid in aircraft navigation, and assistance from air traffic 

control to further aid in aircraft navigation and separation from other aircraft. Both 

passenger and cargo air carriers utilize SOPs and checklists to confirm their aircraft 

is properly configured as it enters a new phase of flight. Navigational charts are 

also used to ensure the aircraft remains on its approved flight route. Studies, such 

as Kharoufah et al. (2018), Lacagnina (2006) and Roelen et al. (2000) have shown 

that passenger and cargo air carriers differ in accident frequency across various 

phases of flight. 

Phase of flight was a factor investigated by Kharoufah et al. (2018) in the 

study discussed above that examined human factors in aircraft accidents. Two 

hundred commercial incidents and accidents were analyzed based on the phase of 
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flight in which each event occurred. These phases included takeoff, initial climb, 

enroute, approach, landing, and taxi. It was assumed that each phase of flight would 

have an equal number of accidents that have occurred if the flight crew was able to 

use their software as per their training and company policy.  However, the 

distribution of event frequencies on phases of flight showed a higher number of 

accidents and incidents occurring in the cruise, approach, and landing phases 

compared to the takeoff, climb, and taxi phases. A Chi Square test was used to 

statistically compare the expected distribution of accidents across the major phases 

of flight verses the observed distribution found within the dataset. Results of the 

Chi Square test were significant at the 95% confidence level, χ2(5, N = 200) = 292, 

p = .05, indicating that accidents occurred at different rates within each phase of 

flight. For example, the cruise phase of flight had fewer accidents compared with 

the takeoff or landing phases.  

Kharoufah et al. then assessed the distribution of accidents within each 

phase. Any phase of a flight that took place on the ground, such as when an aircraft 

is taxiing on the surface of an airport, was removed from the analysis. This was due 

to aircraft speed being relatively low, thus not capable of causing a major accident.  

The observed frequencies for the takeoff, climb, and cruise phases of flight were 

higher than the expected frequencies. In contrast, observed frequencies for the 

approach and landing phases were lower than the expected frequencies. Although 

Kharoufah et al. did not go into detail as to why differences exist between all phase 

of flight except for ground operations, it was concluded that the distribution of 
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accidents across the major phases of flight is not uniform. Other studies expanded 

on this finding by incorporating type of operation into the analysis of accidents 

occurring within various phases of flight. 

In Lacagnina’s (2006) investigation of why the accident rate of cargo air 

carriers was higher than the rate of passenger accidents that was discussed above, 

the researcher used phase of flight as a factor, but eliminated low–risk events, such 

as ramp accidents during the ground operations phase, similar to the procedure used 

by Kharoufah et al. (2018). Descriptive statistics were used to compare the 

percentage of passenger accidents compared to the percentage of cargo air carrier 

accidents for each of the major phases. Cargo air carriers had a disproportionally 

higher percentage of accidents that occurred during takeoff (9% compared to 6% 

for passenger air carriers), and passenger air carriers had a higher percentage of 

accidents that occurred during approach and landing (16% compared to 3% for 

cargo air carriers). No detail was provided as to why accident rates associated with 

phase of flight varied between passenger and cargo air carriers, but Roelen et al. 

(2000) provides insight to the accidents that occur within specific phases that can 

be used to differentiate between types of carriers. The Roelen et al. study discussed 

above visually analyzed a graphed distribution of several types of accidents and 

found that cargo air carriers suffer a disproportionally higher number of accidents 

in the takeoff and climb phase, with one potential cause being the incorrect loading 

of cargo that disrupts the aircraft’s balance during these phases. These findings 

support the data provided by Lacagnina, who also found that takeoff and climb 
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accidents were more common for cargo air carriers than passenger air carriers. It 

was unclear as to why passenger air carriers suffered more accidents during 

approach and landing compared to cargo air carriers. Accident phase of flight was 

incorporated into the current study as a Software factor to distinguish between 

passenger and cargo air carrier accidents. 

Accidents categorized as CFIT or LOC. CFIT and LOC are two types of 

accidents that can be the result of similar factors such as a loss of situational 

awareness or high workload environments. CFIT is defined by the FAA (2003) as 

occurring when an airworthy aircraft is flown under the control of a qualified pilot 

or flight crew that results in a collision of terrain, water, or obstacles with 

inadequate awareness on the part of the pilot as to the impending collision. The 

FAA (n.d.) references LOC as an emergency when an aircraft departs from normal 

flight and does not return to a normal flight attitude. Both CFIT and LOC accidents 

can be traced back to incorrect or inadequate uses of software available to the flight 

crew (ICAO, 1998). In order to avoid colliding with terrain while the aircraft is at a 

low altitude, pilots are trained to use aeronautical charts that define where their 

route of flight should be.  If used properly, these charts can help pilots avoid 

hazards that are sometimes made invisible by low visibility. A LOC accident can 

occur as a result of flying into adverse weather conditions or when the aircraft is in 

a state of low energy when close to the ground, such as on takeoff or landing.  

Aircraft are typically at low airspeeds and do not have enough altitude to recover 

from an event that renders their aircraft temporarily uncontrollable. The FAA (n.d.) 
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has required pilots operating under Part 121 to undergo training that would help 

them avoid or correct actions that could cause their aircraft to lose control, as per a 

written notice to all U.S. air carriers. These recovery procedures are often created 

and published by aircraft manufacturers or airlines and are considered supporting 

software to the flight crew. A failure to adhere to these procedures can result in a 

LOC situation that ends in an accident. 

In Lacagnina’s (2006) study discussed above, two accident types were 

found to have large discrepancies between frequencies of passenger versus cargo 

air carrier accidents. Lacagnina found that although both passenger and cargo air 

carriers suffer a high number of LOC accidents, passenger air carriers suffer a 

higher number of LOC accidents during the approach and landing phases (16% for 

passenger air carriers compared to 3% for cargo air carriers) and cargo air carriers 

suffer a higher number of LOC accidents during takeoff (9% for cargo air carriers 

compared to 3% for passenger air carriers).  This is proposed to be due to failure to 

adhere to SOPs when loading cargo, which is a unique problem for cargo air 

carriers; a factor that will be discussed later in this review. If an aircraft is not 

properly configured for each phase according to the checklists and SOPs, this can 

lead to LOC.  

A second type of accident identified by Lacagnina (2006) that can be used 

to differentiate between passenger and cargo air carriers is CFIT. CFIT occurs 

when an aircraft that is under proper control of the flight crew impacts level 

ground, water, or higher–elevation terrain (FAA, 2003). If the aircraft was under 
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proper control before impacting terrain, it is likely that the aircraft became lost or 

deviated from its intended route of flight. This can be due to a failure to follow 

proper SOPs, checklists, or instructions by air traffic control. In Lacagnina’s 

analysis of accidents, passenger air carriers suffered a disproportionally higher 

number of CFIT accidents than cargo air carriers did. No explanation is given as to 

why this difference exists between carriers, but CFIT was included along with LOC 

as Software factors to distinguish between passenger and cargo air carrier 

accidents. 

Weight Factor. In the Roelen et al. (2000) study discussed above, one type 

of accident analyzed was “cargo related.”  Roelen et al. defines this as any accident 

caused by cargo coming lose and shifting around inside of an aircraft that led to a 

loss of control that was not due to pilot complacency, but instead due to the cargo 

that was loaded improperly. Also, if the cargo onboard an aircraft caused crew 

incapacitation, it was included under this category. Examples of hazardous cargo 

can be anything that produces toxic fumes or flammable material that caused an in–

flight fire. Cargo air carriers suffered a noticeably higher percentage of cargo–

related accidents compared to passenger air carriers. This is expected, as the 

payload of cargo air carriers is entirely made up of freight or large individual 

objects. The payload of passenger air carriers can include some smaller cargo or 

mail, but it is predominantly made up of huma passengers and their personal 

belongings.  Although the higher percentage of cargo related accidents occurring 
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from cargo air carriers is not surprising, other studies have given reasons as to why 

cargo air carriers suffer these types of accidents in the first place. 

Returning to Lacagnina (2006), reasons for cargo related mishaps are given 

during a discussion on load verification. Ground personnel that load freight and 

large objects onto cargo aircraft may have to work under adverse and demanding 

physical conditions while adhering to specific schedules. Lacagnina also lists a lack 

of licensing requirements for cargo–handling companies and personnel as another 

cause for cargo–related mishaps. Although the flight crew is ultimately responsible 

for the proper weight distribution within their aircraft before takeoff, there is no 

practical way to determine if their airplane is unbalanced.  There is also little a 

flight crew can do from the cockpit if a large piece of cargo gets lose and shifts its 

location. This could render the aircraft uncontrollable, with “cargo–related factors” 

given as one of the leading factors that led to the accident. The FAA (2015) has 

released guidance for cargo air carriers to properly load cargo onto an aircraft and 

ensure that it is secured in such a way as to prevent an in–flight shift in weight. 

Advisory Circular 120-85A serves as a guide to all U.S. cargo air carriers and 

provides information that was unavailable before 2015. The guidance found within 

this document could help prevent cargo air carrier accidents from occurring due to 

improperly loaded cargo. 

Hardware. In the context of the SHELO model, Hardware is defined as the 

physical attributes of a machine, equipment, or facilities used by employees. In the 
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context of the proposed study, Hardware pertains to the aircraft involved in an 

accident and any device or tool used by the pilot on the flight deck.  

Several related studies have identified specific examples of hardware 

failures that have led to an aircraft accident. One example is aircraft generation, 

which is a categorical variable based upon when certain cockpit technology was 

implemented into an aircraft’s design. With each new generation, aircraft 

automation has improved while the maintenance costs and reliability has improved 

compared to older generations (Roelen et al., 2000; Lacagnina, 2006).  

Aircraft manufacturer is another important variable when analyzing 

Hardware. Each manufacturer has their own design and building process for their 

aircraft, and data supports varying levels of safety and reliability across 

manufacturers.  

The last variable related to Hardware is any accident that was attributed to a 

mechanical failure. This means that an investigation into an aircraft accident 

revealed that a mechanical component of the aircraft failed and caused the pilots to 

lose control or caused catastrophic structural damage to the aircraft. Several related 

studies were selected based on their analyses of these Hardware variables and how 

they can be used to differentiate between passenger and cargo air carrier accidents. 

Aircraft Generation. The Roelen et al. (2000) study discussed above 

performed an analysis comparing the accident rate per million flights between 

passenger and cargo air carriers, across three different aircraft generations. The 

definitions of the three generations of aircraft were based on a study by Tarnowski 



52 
 

& Speyer (1997), with each successive generation having safety–related 

technologies within the aircraft becoming more advanced. The first generation of 

commercial aircraft represented aircraft in which the jet engine was relatively new 

and cockpit automation was limited.  An example of a first–generation aircraft is 

the Douglas DC-8; an aircraft that is no longer used by most passenger air carriers 

but is still used as a cargo aircraft. The second generation of aircraft included more 

advanced engines with improvements to cockpit automation and navigational aids. 

Examples of these aircraft include the Boeing 737-200 and the Airbus A-300. 

Neither of these aircraft are widely used by modern passenger air carriers but both 

continue to serve as cargo aircraft. The third generation introduced electronic flight 

instrument systems as well as a new focus on human factor aspects within the 

cockpit. Examples of third–generation aircraft include the Boeing 737NG and the 

Airbus A320 family. It is common to find third–generation aircraft in both 

passenger and cargo air carrier fleets. 

Roelen et al. compiled air carrier accident data into frequencies based on 

aircraft generation. The frequencies of the air carrier accidents were measured in 

the number of accidents per million flights. For example, a frequency of 4.25 

would represent just over four air carrier accidents for every one million air carrier 

flights. Cargo air carriers had a higher frequency of accidents for all three aircraft 

generations when compared to passenger aircraft in the same generation. First 

generation aircraft had a much larger discrepancy between cargo air carriers (5.24 

accidents per million flights) and passenger air carriers (2.43 accidents per million 
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flights) compared to second generation aircraft (1.53 accidents per million flights 

for cargo, 1.13 accidents per million flights for passenger) and third generation 

aircraft (1.41 accidents per million flights for cargo, 0.48 accidents per million 

flights for passenger). Roelen et al. concluded that the gap between passenger and 

cargo air carrier accident frequencies is closing with each new generation of 

aircraft. This is due to technological advancements on newer aircraft that can 

enhance a pilot’s situational awareness and improve safety for both passenger and 

cargo air carriers. However, the large gap between carriers for first–generation 

aircraft are likely due to cargo air carriers keeping a higher number of older aircraft 

in their fleet, increasing the exposure time of these aircraft as they are kept in 

service longer than an aircraft for passenger operations.  The lack of advanced 

safety equipment in the cockpit, scarcity of spare parts, and decreased manufacturer 

support for older aircraft may all contribute to a higher accident frequency for these 

first–generation aircraft. 

There has been a new generation of aircraft manufactured since the first 

three generations identified by Tarnowki & Speyer (1997). The fourth generation, 

identified by Airbus (2019), introduced fly–by–wire systems to help reduce loss–

of–control accidents. Examples of fourth–generation aircraft include the Boeing 

787 and Airbus A350. The fourth generation of commercial aircraft was missing 

from Roelen et al.’s (2000) analysis between passenger and cargo air carriers. 

Aircraft generation, including the newest fourth generation, was included as a 
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factor in the current study to determine if the difference between passenger and 

cargo air carrier accidents is distinguished by these successive generations. 

Older generation aircraft pose an additional risk to aviation safety outside of 

pure mechanical issues. Research has indicated that noise and vibration 

experienced by pilots operating older aircraft may contribute as well. Lee & Kim 

(2018) conducted a study in order to investigate the issue of flight crew fatigue in 

all types of commercial operations.  Lee & Kim were interested in the effect of 

crew scheduling on pilot fatigue, which was split into three categories: physical 

fatigue, mental fatigue, and lack of rest. A study was performed in order to survey 

pilots on their behavior before and after flights as well as their perception of the 

environmental condition of the cockpit during their flight.  In total, 929 survey 

responses were collected from airline pilots, approximately 19% of the nationwide 

airline pilot population in Korea, which enabled Lee & Kim to identify several 

factors that can lead to flight crew fatigue. Lee & Kim hypothesized that inadequate 

crew scheduling, which did not allow for proper duration or frequency of rest for 

flight crews, would result in a negative effect on pilot fatigue. 

The results of the surveys showed that approximately 20% of their 

respondents indicated that they had worked for cargo air carriers in the past while 

approximately 13% indicated they currently work for cargo air carriers. Lee & Kim 

(2018) then identified common responses to causes of fatigue within their sample. 

These became predictor variables that included flight direction, crew scheduling, 

partnership, aircraft environment, job assignment, and ethnic differences, which 



55 
 

together had a statistically significant effect on physical fatigue (R2 = 0.223) and a 

significant effect on mental fatigue (R2 = 0.174). The issue of crew scheduling is 

discussed further in factors related to the external environment. However, the 

condition of the internal cockpit environment is a Hardware factor. 

Lee & Kim (2018) included aircraft environment as one of their predictor 

variables after respondents indicated that high noise or vibration levels in the 

cockpit can lead to greater amounts of mental and physical fatigue. Some of the 

outdated technology of early–generation aircraft include less soundproofing to the 

aircraft’s cabin as well as older, louder jet engines. With each successive aircraft 

generation, engine, and cockpit noise–proofing technologies improve so that noise 

levels and vibrations are kept to a minimum. The benefits of these advancements 

include lowering flight crew fatigue and maintaining situational awareness. 

(Gander et al., 1998). Older generation aircraft, which are commonly used by cargo 

air carriers, may not have been upgraded to include these technologies. This 

suggests that the older aircraft more commonly used by cargo air carriers may be 

more likely to cause crew fatigue than newer generation aircraft more commonly 

used by passenger air carriers. 

Aircraft Manufacturer. Kharoufah et al.’s (2018) study discussed above 

examined whether aircraft manufacturer was a significant factor. Kharoufah et al. 

performed a Chi Square test comparing the number of accidents per aircraft 

manufacture across 13 manufacturers. It was assumed that all aircraft 

manufacturers would have similar accident rates based on the number of aircraft 
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from each manufacturer currently in operation. For example, Boeing is the world’s 

largest aircraft manufacturer based on how many aircraft are built annually. It is 

expected that they will have the highest accident frequency based on a high number 

of Boeing aircraft in operation. A much smaller manufacturer, such as Canadair, 

would have a lower accident frequency due to a smaller number of annually 

produced aircraft. The result was a significant difference in accident frequency 

across manufacturers (χ2(12, N = 200) = 292, p = .05). In Kharoufah et al.’s 

analysis, aircraft manufacturers Boeing and Airbus had the highest frequency count 

of incidents and accidents compared to all other manufacturers. However, the 

observed frequency of events was much lower than the expected frequency. At 

first, this can be explained by the fact that Boeing and Airbus are the world’s two 

largest commercial aircraft manufacturers and that their high accident frequencies 

are due to the high number of their aircraft that are currently in operation compared 

to other manufacturers. However, the importance of Kharoufah et al.’s findings 

have to do with the comparison of the number of accidents expected from each 

manufacturer compared to the number of accidents that have actually occurred. 

Even though Boeing and Airbus have accident frequencies of approximately 5 

times that of the other manufacturers, far fewer accidents have occurred compared 

to what was expected. This can be attributed to high reliability and quality of 

Airbus and Boeing aircraft, or excellent maintenance by their operators. In 

comparison, certain manufacturers based in the CIS or manufacturers that are no 
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longer producing aircraft have higher observed frequencies than expected 

frequencies. 

Kharoufah et al. (2018) provides several reasons as to why a significant 

difference exists in the safety record of various aircraft manufacturers. The three 

manufacturers with the largest lead in observed incidents and accidents over 

expected events are Tupolev, Ilyushin, and Antonov. All three of these 

manufacturers have produced a fraction of the number of aircraft compared to 

Airbus and Boeing. A smaller number of aircraft in circulation means a lack of 

availability of aircraft parts and few destinations where these aircraft can be 

maintained or upgraded to meet more modern safety standards. Kharoufah et al. 

states that these types of aircraft are often used in commercial fleets for third world 

countries, or by various cargo air carriers. The current study categorized aircraft 

manufacturer based on region and used this variable as a factor in to distinguish 

between accidents of both types of carriers. 

Mechanical Failure. Roelen et al. (2000) also analyzed several types of 

cargo air carrier accidents and how they compared to the same types found in 

passenger air carrier accidents. Two of the types of accidents in the sample 

distribution were “component/system failure” and “structural failure.”  Both types 

of accidents are some forms of mechanical failure of the aircraft itself. This could 

have been due to the age, or wear–and–tear on the aircraft, or it could have been 

due to poor maintenance. Roelen et al. found that passenger air carriers have a 

much higher frequency of component/system failures compared to cargo air 
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carriers. Inversely, cargo air carriers have a much higher frequency of structural 

failures. Roelen et al. provided no explanation as to why these two types of 

mechanical failures are different between the two carriers. However, due to the 

average age of cargo aircraft being higher than passenger aircraft, it is possible that 

the cargo aircraft suffer long–term corrosion and metal fatigue that can lead to 

structural failure. It is unclear why passenger air carriers would suffer a higher 

number of individual component failures. The occurrence of a mechanical failure 

that led to a passenger or cargo air carrier accident was included as a factor in the 

final analysis. 

In order to better understand how mechanical failure can affect aircraft 

safety, MacLean et al. (2003) investigated the relationship between aircraft age and 

the number of failures it experiences throughout its operational life.  An aircraft is a 

complex machine with mechanical and electrical systems, each having its own 

expected life length. MacLean et al. wanted to create a prediction model of the 

number of failures an aircraft will experience based on its age. In order to quantify 

the number of mechanical failures, Maclean et al. tracked the number of 

unscheduled landings it experienced.  It was theorized that if an aircraft suffered a 

significant mechanical failure in flight, it would have to make an unplanned landing 

at a time or location that was different than the planned flight. 

MacLean et al. (2003) was able to access two databases of air carrier data, 

provided by AlgoPlus and Avsoft. The AlgoPlus database provided details on 

unscheduled landings, while the Avsoft database provided records on departures 
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and flying hours for North American air carriers. MacLean et al. limited their study 

to one particular aircraft: the Boeing 737 (B737).  The rationale behind selecting 

this single aircraft is that it has a large fleet in operation for passenger and cargo air 

carriers. A total of 142 B737s were selected, and these data points were organized 

into a time series ranging from the years 1990 through 1992 and analyzed visually 

through three distribution plots. 

The first plot compared aircraft age (ranging from 0 to 15 years) to the 

number of departures. A visual analysis of the time series plot for aircraft age on 

the number of departures showed that aircraft were not being used less as they age. 

The same aircraft are also not kept out of service for repair as they age. MacLean et 

al. cited the FAA in stating that the decision to operate older aircraft was an 

economic decision, not a safety issue. However, the prospect of keeping an older 

aircraft in “like new” condition is not likely as this would require frequent repairs 

and greater lengths of time out of service for older aircraft. 

However, the second time series plot, which compared the average age of 

aircraft to the number of unscheduled landings had a different distribution. There 

was a slight increase in the number of unscheduled landings as aircraft age 

increased. MacLean et al. then fitted a regression model to test the hypothesis that 

the number of mechanical failures (unscheduled landings) increases with aircraft 

age.  Two targeted predictor variables were used, the number of times that an 

aircraft is returned to service after any scheduled or unscheduled maintenance 

while not being repaired to an “as good as new condition” and the age of an aircraft 
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measured between each repair (implying “as good as new” aircraft have an 

expectation of increasing failures with age). These two predictor variables were 

tested for predictability against the criterion, the number of mechanical failures 

(unscheduled landings).  The overall model was significant (F = 28.58, p < 0.0001). 

This supported the hypothesis that aging aircraft suffer a higher number of 

mechanical failures (unscheduled landings) than newer aircraft do. MacLean et al. 

then analyzed the coefficients for the two targeted predictor variables. The number 

of incomplete repairs increasing with aircraft age was significant (T = 6.22, p < 

0.0001) and the aircraft’s condition deteriorating to less than “good as new” 

between repair cycles was significant (T = 3.45, p < 0.001). 

MacLean et al. (2003) concluded that age has a statistically significant 

effect on the number of mechanical failures (unscheduled landings) experienced by 

air carrier aircraft. The aircraft’s conditions deteriorate with age even with 

scheduled preventative maintenance. Older aircraft, even when properly maintained 

by air carrier maintenance personnel, will suffer a higher frequency of mechanical 

failures. As discussed earlier in Lacagnina (2006), cargo air carriers have an 

average fleet age of almost 4 times higher than that of passenger air carriers. Due to 

the unavailability of data on specific aircraft age and the findings of Roelen et al. 

(2000), aircraft age was represented as “Aircraft Generation” in the current study. 

Aircraft generation was used as a predictor in the Hardware level of the SHELO 

model to distinguish between passenger and cargo air carrier accidents. 
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Environment. Environmental factors can play a role in causing a 

commercial aviation accident. These factors come in the form of light, visibility, 

and the terrain over which an aircraft is flying. Key environmental differences exist 

between passenger and cargo air carriers. Examples of these differences include 

time of day and location of occurrence. Flights that occur during nighttime 

introduce two hazards that are not as common during daytime operations: flight 

crew fatigue due to abnormal sleep schedules and reduced outside visibility. 

Location of occurrence refers to the location in which an aircraft accident has 

occurred. CFIT accidents, which were discussed earlier in this section, are common 

in areas with hazardous terrain. Whether the terrain was featureless, such as an 

extended flight over desert or water, or if it was over a mountainous area, airports 

located in different environments pose various levels of risk to the safety of an 

aircraft attempting to takeoff or land at these locations.  

 Time of Day. A differentiating factor between passenger and cargo air 

carriers is the time of day in which their operations take place. Roelen et al.’s 

(2000) data on air carrier operations revealed that half of cargo air carrier 

operations take place at night, compared to only a fifth of passenger operations that 

occur at night. Roelen et al. also highlighted a possible factor between nighttime 

flight and the physical conditions of the flight crew. Specifically, operations during 

early hours can lead to fatigue and being less alert while operating the aircraft. 

Although Roelen et al. cited evidence that fatal accident rates are doubled at 
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nighttime compared to daytime operations was provided, no distinction was found 

between passenger and cargo air carriers. 

 Kharoufah et al.’s (2018) study, discussed above, used data from the Air 

Line Pilots Association (ALPA) in order to support their findings that the observed 

rate of cargo air carrier incidents and accidents was higher than the expected rate.  

According to Kharoufah et al., data collected from various studies and shared with 

ALPA showed that cargo pilots working night shifts lose about two hours of sleep 

per day, leading to a total deficiency of greater than eight hours by the end of the 

week, suggesting pilot fatigue is a potential differentiating factor. This data is 

supported by a study from NASA that examined the physiological effect of a lack 

of sleep on the flight crew of cargo airlines. 

Gander et al. (1996) from the NASA Research Center examined the 

psychophysiological responses to overnight cargo operations. This study involved 

41 cargo pilots who had their sleep patterns and behaviors analyzed using 

observation and self–report measures. During each flight, a trained observer from 

NASA was present in the cockpit and each participating pilot wore a biomedical 

monitor that measured core body temperature, average heart rate, and average 

activity of the non–dominant wrist. Participants self–reported habits outside of the 

cockpit, such as length and quality of sleep, diet, medications, illness, and exercise. 

The study found that overnight cargo operations involve more physiological 

disruption than daytime operations due to shorter sleep episodes and sleep patterns 

that appeared to be more broken.  For example, individual sleep episodes on duty 
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days (M = 4.56 hours) were significantly shorter than on no–duty days (M = 8.09 

hours; t = 10.76, p < 0.0001). Pilots who tried to sleep during the daytime in order 

to accommodate their cargo schedules averaged 3.1 hours less sleep than pilots who 

slept during the nighttime.  This was explained by the fact that nighttime cargo 

pilots must take rest during daylight hours, which is unnatural compared to the 

normal sleep habits of most passenger pilots. 

A more recent study by Lee & Kim (2018), discussed above, identified 

factors that affect airline pilot fatigue. These factors included flight direction, crew 

scheduling, partnership, aircraft environment, job assignment, and ethnic difference 

had a statistically significant effect on physical fatigue (R2 = 0.223) and a 

significant effect on mental fatigue (R2 = 0.174). Crew scheduling and job 

assignment are both closely related to the time of day in which cargo operations 

take place: predominantly at night, in comparison to the daytime operations of 

passenger air carriers.  The findings from Lee and Kim helped to reinforce the 

inclusion of time of day as a factor within the current study. 

Location of Accident. In the context of the current study, “location of 

accident” was the global region in which a passenger or cargo air carrier accident 

takes place. In Kharoufah et al.’s (2018) analysis of human-factors factors in 

aviation incidents and accidents, the location of each accident or incident was 

analyzed using a Chi Square test. Seven global regions were identified by 

Kharoufah et al.: Asia, Africa, CIS, Europe, LA, ME, and NA.  An eighth global 

region, Oceania, was included in the current study due to its usage by the ASN. It 
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was expected that accident rates across these global regions would be consistent 

when controlling for the frequency of commercial aviation operations. The 

difference between the expected frequency of incidents and accidents was 

statistically significant compared to the observed or actual frequency, χ2(5, N = 

200) = 34.0, p = .05. Kharoufah et al. was able to reject the null hypothesis of no 

difference in the location of an accident on the frequency of aircraft accidents or 

incidents. 

The frequency of accidents within a certain global region was not of 

primary concern to the study, as a higher number of flights within a region would 

inflate the frequency of incidents and accidents occurring. The more relevant 

feature within the distribution was the number of expected incidents and accidents 

compared to the observed (actual) frequency that occurred. Although NA had the 

highest frequency of accidents occur within its region, the expected frequency was 

higher than the observed frequency. This comparison was also true for LA, ME, 

and Asia. Europe’s expected and observed incident and accident frequencies were 

approximately equal. Africa was the only global region with an expected frequency 

noticeably lower than the observed frequency count. This indicates that more 

incidents and accidents are occurring within Africa, independent of the fact that 

fewer flights occur within the region compared to other, larger global regions. The 

global region in which an air carrier accident has taken place was included as a 

factor in the proposed study in order to distinguish between passenger and cargo air 

carrier accidents. 
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Roelen et al. (2000) conducted a nearly identical analysis of a distribution 

of commercial aviation accidents across six global regions but compared 

distributions of passenger to cargo air carrier accidents.  Africa, Asia, NA, and 

South America all suffered higher frequencies of cargo air carrier accidents 

compared with passenger accidents per million flights for each type of carrier. The 

highest accident frequencies, by far, were suffered by Africa (16.79 cargo accidents 

per million flights compared to 3.69 passenger accidents per million flights) and 

South America (9.02 cargo accidents per million flights compared to 2.12 

passenger accidents per million flights). This indicated that these regions may have 

internal factors related to higher number of accidents. Roelen et al. cited low Gross 

Domestic Product (GDP) within these regions as a plausible explanation. The 

competitiveness of the international aviation market can lead to cost–cutting 

measures that reduce safety to a low priority. This often takes the form of poor 

airport infrastructure within a country, with air traffic control, operational 

maintenance and training, and facilities or equipment often being outdated or 

underdeveloped. Regardless of the nationality of the airline flying into an 

underdeveloped country, each airline must work with the technology and 

infrastructure at an airport. While passenger air carriers prefer to fly into larger 

cities with more developed airport infrastructure, the same cannot be said for all 

cargo air carriers. Some cargo air carrier flights involve the delivery of cargo to 

remote areas with little to no passenger traffic. In addition to flights to remote or 

under–developed areas, cargo air carriers having a higher frequency of nighttime 
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flights compared to passenger air carriers, this further increases the reliance on 

adequate air traffic control and air navigation facilities (Roelen et al., 2000). A 

further discussion on GDP is covered later in this review when considering 

Location of Operator as a factor. 

Organizational Influences. 

Location of Operator. In the context of the current study, Location of 

Operator, can be defined as the global region in which a passenger or cargo air 

carriers is certified. The location of the accident may or may not have occurred 

within the same state in which the operator is based.  

In Kharoufah et al.’s (2018) study, the location of the airline operator for 

each accident or incident was analyzed with a Chi Square test. The same eight 

global regions used for to categorize accident location were used to categorize the 

location of an operator. They hypothesized that frequencies of accidents across 

these global regions would be consistent when controlled for the number of flights 

that occur within each region. For example, NA air carriers have some of the 

highest annual air traffic frequencies, and therefore it is expected that the frequency 

of air accidents from North American air carriers would also be higher than other 

global regions. However, NA air carriers are known to have a relatively low 

accident frequency due to the low average age of their aircraft and the level of 

aviation regulations and safety standards.  The Chi Square test was statistically 

significant at the 95% confidence level, χ2(6, N = 200) = 36.8, p = .05, for expected 

versus observed accident counts. Kharoufah et al. was able to reject the null 
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hypothesis of no difference between the state of the commercial operator and the 

frequency of aircraft accidents and incidents was rejected. 

The expected and observed frequencies for NA, LA, Europe, and the CIS 

were approximately equal. The expected frequency of accidents and incidents for 

Asian and the ME operators were higher than the observed accident frequency, 

indicating that both Locations of Operation had a lower frequency count of events 

than previously thought. However, Africa was the only Location of Operation that 

had a noticeably higher number of observed accidents and incidents compared to 

what was expected. Kharoufah et al. (2018) supports the findings with a statement 

from the African Development Bank Group who stated that below standard 

aviation safety records since 2000, in combination with week regulations, 

dangerous working conditions, and long hours lead to more frequent incidents and 

accidents. In addition to numerous African airlines being banned from flying into 

certain European countries due to safety concerns, IATA identified Africa as a 

region in need of infrastructure and technology enhancements to increase the safety 

records of their airlines (IATA, n.d.). 

Other properties of Africa as an operator location of both cargo and 

passenger air carriers were identified by Enomoto & Geisler (2017). An analysis of 

plane crashes in 68 countries controlled for the effects of Hofstede’s power distance 

scores, number of flights, GDP, and severe weather conditions. GDP and 

Hofstede’s power distance scores are tools that can be used for the differentiation 

between passenger and cargo air carrier accidents related to global region. For the 
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purpose of the study in discussion, a power distance score describes how various 

cultures view relationships between superior and subordinate individuals.  A high–

power distance score indicates that individuals accept unequal distributions of 

power, while those with low power distance scores often question authority figures 

and decisions that affect subordinates (Hofstede, 2001). Enomoto & Geilser 

identified Africa as one of three global regions where collectivist societies limit 

individualism and individual achievement. It was also previously discussed that 

Africa’s low GDP can lead to poor maintenance of aircraft and airport 

infrastructure, as well as lower–quality training and education of the flight crew. 

The final regression model that incorporated the previously mentioned factors was 

statistically significant (R2 = 0.921, p < 0.05). The results indicated that the number 

of flights and the accident frequency had a direct relationship. GDP and accident 

frequency had an inverse relationship, as expected. The lower the GDP, the higher 

the accident frequency due to flight crew training and the maintenance on aircraft 

operating within different global regions. Lastly, individualism and accident 

frequency had an inverse relationship. The lower a country’s collective 

individualism, the higher the accident frequency. The findings from Enomoto & 

Geilser helped support the inclusion of Location of Operator, being a factor of 

interest within the current study. 

Summary and Study Implications 

 As discussed in this chapter, only a select number of authors have focused 

on the safety concerns of cargo air carriers and how they compare to the safety of 
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passenger air carriers. Roelen et al. (2000) conducted the most in–depth 

comparison of passenger to cargo air carriers. Several comparisons were done 

between common factors of both types of carriers, such as aircraft manufacturer, 

aircraft generation, types of accidents, and accident phase of flight. Roelen et al. 

used descriptive statistics to illustrate to readers that cargo air carriers have an 

accident rate of 3 times higher than comparative passenger air carriers due to the 

operation of older aircraft, operations being conducted primarily at nighttime, and 

differing accident rates amongst key global regions. Lacagnina (2006) also 

emphasized the key differences that exist between the causations of passenger and 

cargo air carrier accidents, including identification of nighttime operations and 

aging aircraft as differentiators. Neither Roelen et al. nor Lacagnina provided 

inferential statistics to support their conclusions. In comparison, Kharoufah et al. 

(2018) used inferential statistics to review the human factors causations in 

commercial air transport accidents and incidents. However, Kharoufah et al. did not 

focus on the safety of cargo air carriers. Instead, just one of several Chi Square 

analyses was used to compare cargo to several other types of operations, including 

passenger air carriers. None of these studies grounded their findings in a theoretical 

model that could have been used to distinguish between the causations of passenger 

and cargo air carrier accidents. 

 The current study addressed these gaps through statistical analyses of the 

previously discussed factors and their relationship to the group membership 

variable: passenger or cargo accident. Only two known studies, Roelen et al. (2000) 
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and Lacagnina (2006) have primarily focused on comparing passenger to cargo air 

carrier accidents. However, the current study is the only known analysis of the 

factors of passenger and cargo air carrier accidents that is grounded in a theoretical 

model. While other studies within the aviation safety domain have classified 

accident causations under a variation of the SHEL model or the Human Factors 

Analysis and Classification System (HFACS), no studies have used such a model to 

distinguish between accidents for these two types of operators. In addition, accident 

factors related to organizational influences, as previously identified by Wang and 

Chang (2010) in their analysis of aviation maintenance safety, have not been 

widely used to analyze aviation accidents. 

In addition, robust statistical analyses were used to analyze how the levels 

of the SHELO model can be used to distinguish between passenger and cargo air 

carrier accidents. Although robust statistical analyses have been used in similar 

studies that have focused on aviation safety, none of them were used in the direct 

comparison the factors for accidents of these two specific operators. By focusing on 

the Software, Hardware, Environment, and Organizational Influences, the human 

(Liveware) factor was isolated in order to determine if differences exist between 

passenger and cargo air carrier accidents. 
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Chapter 3 

Methodology 

Population and Sample 

Population 

The target population for the current study was every commercial passenger 

or cargo air carrier accident globally. According to the ASN database, 3,806 known 

aircraft accidents related to airline, corporate, and military operations occurred 

between 2002 through 2019. Data on the size and makeup of commercial air 

carriers was obtained from IATA to estimate the percentage of annual aircraft 

accidents that can be categorized as passenger or cargo air carrier. The main 

responsibility of IATA is to set technical standards for airlines as well as organize 

traffic conferences for the purpose of price fixing. IATA assigns a unique identifier 

to every global airline, and their database contains over 1,100 unique identifiers.  

In order to understand the ratio of passenger to cargo air carriers within the 

target population of 1,100 air carriers, data was obtained from the Air Traffic 

Controllers Association (ATCA).  This data does not focus on just air carrier 

operations, but all flights within the United States. The ATCA estimates that 

87,000 flights are conducted daily within the United States. Only one third, or 

approximately 29,000 of these flights are commercial air carriers. More 

specifically, approximately 2,150 commercial air carrier flights are made up of 

cargo. This equates to a ratio of 92% passenger flights and 8% cargo flights in the 

United States. 
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The accessible population for the current study consisted of any commercial 

passenger or cargo carrier accidents that were investigated and the results of which 

were published. ICAO (2020) defines an accident as a fatal or serious injury to at 

least one person, damage or structural failure to the aircraft, or the aircraft itself is 

missing or unrecoverable. ICAO’s Annex 13 (2020) stipulates that the country in 

which an aviation accident has taken place must launch an investigation into the 

circumstances of the accident. ICAO also provides guidelines for how accident 

reports are to be published and distributed in order to share data and findings with 

other ICAO members and the general public.   

Sample 

The sample for the current study consisted of all global air carrier accidents 

that occurred between 2002 and 2019. The source of all the air carrier accident data 

for the current study was the ASN.  As discussed later in this chapter, data for a 

particular air carrier accident were selected as part of the sample if the accident had 

a published final accident report, and if the type of operation and the type of 

accident were considered in-scope. In total, 594 air carrier accidents were 

considered in-scope and made up the sample for the current study. Of the 594 air 

carrier accidents, 198 of these accidents involved cargo air carriers while 396 

involved passenger air carriers. 

Power Analysis 

 In order to determine if the sample for the current study was large enough to 

reject a null hypothesis with a reasonable amount of certainty, an a priori power 



73 
 

analysis was used to determine minimum sample size.  Common values for an a 

priori power analysis would be α = 0.05 and a power of 0.8 (Cohen et al., 2003). 

Logistic regression was used as the primary statistical analysis in this study. In 

order to determine an appropriate effect size for logistic regression, we must 

consider the size of the treatment effect on the odds ratio.  If the odds ratio between 

the two levels of the dichotomous criterion variable is equal to 1, then this would 

imply that the selected predictor variables have no statistically significant effect on 

group membership. Given a lack of supporting evidence in related literature and 

past studies using logistic regression to analyze aviation accidents, a median odds 

ratio of 1.5 was used in this power analysis. 

 The population effect size between the causations of passenger and cargo 

air carrier accidents is currently unknown and has been identified as a gap within 

related literature. However, the effect size for the binary logistic regression that will 

be used can be estimated by using maximum likelihood. According to Peduzzi 

(1996), you can mitigate for low reliability of your estimates due to a sample with a 

small number of events per variable by obtaining a minimum sample size of 10 

times the number of predictor variables within the model. The proposed study 

contains 10 predictor variables, which would require a minimum sample size of 

100 cases. 

 In order to verify the minimum sample size required for the proposed study, 

an a priori power analysis was conducted using a power analysis software called 

G*Power (Faul et al. 2009).  A logistic regression test, which is part of the z-test 
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family, was conducted using the following parameters: α = 0.05, 1 – β = 0.8, and an 

odds ratio of 1.5.  The resulting minimum sample size was 242 cases. The final 

sample size of N = 594 exceeded the minimum sample size calculated by G*Power.  

Instrumentation 

Source of Air Carrier Accident Data 

The Flight Safety Foundation is an international non–profit organization 

that is chartered to provide independent guidance and resources for the aviation and 

aerospace industry (Flight Safety Foundation, 2020). One of the services provided 

by the Flight Safety Foundation is the ASN. The ASN is a private and independent 

initiative founded in 1996 with the purpose of organizing international air carrier 

accidents and safety issues into an online, publicly available database (Aviation 

Safety Network, 2016). ASN obtains accident report data from several sources, 

most of which are aviation authorities and safety boards for various countries. The 

ASN was the sole source of air carrier accident data used within the current study. 

Examples of the format and data summarized by the ASN is listed in Appendix B. 

Validity and Reliability of Historical Data 

 The air carrier accident data on the ASN was objective and did not require 

the use of a scale or measurement. Each air carrier accident within the dataset is 

made up of nominal data that was observed by air crash investigators at the scene 

of the accident or during the post–accident investigation. Therefore, validity must 

be determined based on the process the NTSB uses to collect objective data. 
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Validity is defined as an indicator measuring what it was indented to 

measure (Abowitz & Toole, 2010). The process used by accident investigators must 

be standardized to ensure they are collecting data on what they intended to collect. 

The main source of data accessed by JIMDAT to build their air carrier accident 

dataset was the NTSB’s online database. After any aircraft accident occurs, the 

NTSB assembles a team that is tasked with dispatching to the accident site to begin 

the investigation. Certain accident details, such as the location of the accident, the 

aircraft manufacturer, and the specific air carrier are all able to be quickly 

determined at the crash site. Each member of this team is a specialist in a certain 

area, such as air carrier operations, aircraft structure or powerplant mechanics, and 

human performance (NTSB, n.d.). The investigators will collect and verify data 

that are specific to their specialty. All investigators report to an Investigator–in–

Charge (IIC). The IIC is a senior investigator that requires years of NTSB and 

industry experience. The IIC will validate data from each specialist before it is 

included in any preliminary or final accident report. All investigators follow 

guidelines published in the NTSB Major Investigations Manual (2002). This 

standardizes the process of data collection and reporting by each investigator to the 

IIC. 

Some of the accident data will also be collected after the initial visit to the 

crash site. Phase of flight in which the accident occurred and the type of accident 

that occurred (CFIT, LOC, or weight factor) are all determined during the post–

accident investigation. All air carrier aircraft are required to have two special flight 
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recorders on board: a cockpit voice recorder and a flight data recorder. The flight 

data recorder provides investigators with parameters of the aircraft’s performance 

and orientation leading up to the accident. The cockpit voice recorder provides 

investigators with recorded audio of the conversations between flight crew 

members and air traffic control. The analyses of both recorders are also 

standardized according to the process outlined in the Cockpit Voice Recorder 

Handbook (2011) and the Flight Data Recorder Handbook (2000). Due to the 

nature of audio data captured by the cockpit voice recorder, investigators must 

make certain inferences about the flight crew’s thoughts, actions, and emotions. For 

example, NTSB investigators can infer that a pilot lost situational awareness due to 

high workload and stress on the flight deck, but there is no objective way to verify 

this conclusion. This type of data cannot be verified using a video recorder or post–

accident interview if the flight crew perishes in the accident. However, all the data 

within the current dataset are objective and were obtained according to the NTSB’s 

standardized practices. Based on the standardized practices of each investigation 

team assigned to every air carrier accident and the experience required to be a team 

member or IIC, data obtained by the NTSB are valid for the use within the 

proposed study. 

Although the NTSB often assists in the investigation of aviation accidents 

that occur outside of the United States or with an international air carrier, the NTSB 

counterparts of other countries often lead their own investigations and publish final 

accident reports. Most of the accidents within the ASN database contain data that 
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was acquired from final accident reports published by entities other than the NTSB. 

However, most of these countries are members of ICAO, which has developed its 

own set of standards and recommended practices (SARPS) for accident 

investigation. All of ICAO’s SARPS are published in a series of annexes, and 

Annex 13 (2020) contains guidance on accident investigation techniques, 

technologies, reporting, and how recommendations should be made to the 

international aviation community. With 193 member states that makeup ICAO, the 

standardization of the methods for reporting aviation accident data provides 

validity for the NTSB’s data collection and reporting methods, as well as the 

validity of the ASN’s online database. 

 Reliability is defined as the application of uniform measurement rules and 

uniformity of measurement results over time (Abowitz & Toole, 2010). Within the 

ASN database, important factors from each accident are summarized in a bulleted 

format.   To determine accident reliability, one air carrier accident per decade was 

selected at random from the existing dataset. This equates to a total of 18 accidents. 

All details within these 18 randomly selected accidents were cross checked against 

final accident reports provided by the ASN. Every single one of the target variables 

within each accident matched the data on–record within the final accident report. 

Based on this test of reliability, it is unlikely that errors occurred on behalf of the 

researcher when populating the current dataset with original air carrier accident 

data.  The reader should be reminded that any air carrier accident absent of a final 

accident report was out of scope for the current study. 
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Procedures 

Research Design 

The current study utilized a causal–comparative research design. In causal–

comparative research, an action or event has already taken place. The focus of this 

type of research is how changes in selected variables can influence group 

membership (Schenker, 2004). This design is appropriate given that grouping 

found in the dependent variable, passenger, or cargo air carrier accidents, had 

already occurred during data collection of the current study. Details of each 

accident were categorized as predictor variables and grouped according to the 

levels of the SHELO model.  

Causal–comparative studies can use one of two designs based upon whether 

group membership was on the independent or the dependent variable. Due to the 

pre–existing group membership of passenger and cargo air carrier accidents in the 

criterion variable, a retroactive design was used. This design helped determine if 

the grouping between passenger and cargo air carrier accidents were more likely 

due to differences in the predictor variables organized into the levels of the SHELO 

model rather than random chance. One of the issues with a causal–comparative 

study that must be accounted for is group equivalency, and this is discussed below 

along with other threats to internal validity. 

Institutional Review Board 

 The current study utilizes a historical, data-analytic methodology acquired 

from the NTSB, made available by the ASN. The ASN database is publicly 
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available, with identifiable information of the flight crew, passengers, or victims on 

the ground removed from published reports. The only accident details found in the 

report than can be connected to individuals that were involved would be the 

certifications and total flight hours of the flight crew, the total number of injuries 

and fatalities, and the actions taken by the flight crew before the accident occurred. 

Due to the public availability of the online database and any personally identifiable 

information having already been removed, the current study qualified for in 

Institutional Review Board (IRB) exemption. An application for an IRB exemption 

was submitted and approved by the Florida Institute of Technology IRB. 

Description of Variables 

 The current study was made up of several targeted predictor variables and 

one dichotomous, group membership criterion variable. Given that the research 

design of the current study involved multiple independent variables with a single 

dependent variable, multiple regression was the appropriate statistical analysis. The 

criterion variable was Y = passenger or cargo air carrier accident, which was a 

dichotomous group membership variable. For the purpose of the statistical analysis, 

passenger air carrier accidents were coded using the number 0 while cargo air 

carrier accidents were coded using the number 1.  Each of the predictor variables 

were categorized according to the levels of the SHELO model and described in 

more detail below. 

Software. The variable set associated with the Software level of the 

SHELO model contained four variables. X1 = Phase of Flight (Takeoff, Climb, 
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Cruise, Approach, and Landing), using dummy coding with Cruise coded as the 

reference group due to this phase requiring the least frequent aircraft configuration 

or procedural changes; X2 = CFIT; X3 = LOC, and X4 = Weight Factor. 

Hardware. The variable set associated with the Hardware level of the 

SHELO model contained three variables. X5 = Aircraft Generation (First, Second, 

Third, and Fourth), using dummy coding with Generation 1 coded as the reference 

group; X6 = Aircraft Manufacturer (categorized by region: Asia, CIS, Europe, LA, 

and NA), using dummy coding with NA–Manufactured Aircraft coded as the 

reference group due to Boeing, the largest aircraft manufacturer between 2002 and 

2019, being located in NA (Pandey, 2020); and X7 = Mechanical Failure. 

 Environment. The variable set associated with the Environmental level of 

the SHELO model contained two variables. X8 = Time of Day (day or night); and 

X9 = Location of Accident (Africa, Asia, the CIS, Europe, LA, ME, NA, and 

Oceania) using dummy coding with Africa coded as the reference group due to this 

region having the largest discrepancy between the frequency of accidents compared 

to the total number of air carrier flights (Kharoufah et al., 2018). 

Organizational Influences. The variable set associated with the 

Organizational Influences level of the SHELO model contained one variable. X10 = 

Location of Operator (Africa, Asia, the CIS, Europe, LA, ME, NA, and Oceania) 

using dummy coding with Africa coded as the reference group due to this region 

having the largest discrepancy between the frequency of accidents compared to the 

total number of air carrier flights (Kharoufah et al., 2018). 
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Study Implementation 

 As mentioned in Chapter 2, the usage of current air carrier accident data to 

compare passenger and cargo air carrier accidents was identified as a gap within the 

related literature. The current study utilized the latest accident data available to run 

a thorough analysis that can be generalized to the current target population of 

global air carriers. Data collection and integration of entire accident reports from 

the ASN databases commenced in May 2021 and was completed in November of 

2021. The process of determining whether an accident within the ASN database 

was in–scope or out–of–scope for the current study is provided in Appendix C. The 

process of populating the study sample and coding nominal data is provided in 

Appendix D. The collection and organization of data from the ASN database was 

conducted by a single researcher. Although data collection from such a large 

dataset by a single researcher was a time-consuming process, this increased the 

reliability of the data collection process. The statistical analysis of the complete 

sample took approximately one month to complete. 

Threats to Internal Validity 

Strong internal validity allowed for the selection of group membership in 

the criterion variable to be attributed to the differences in the factors that made up 

the predictor variables. Possible threats to internal validity existed that could have 

been attributed to selection of group membership in the criterion variable to 

uncontrolled or unidentified variables.  Unfortunately, the analysis of historical 

data did not allow a researcher control over the environment in which the data was 
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collected. There was also a lack of randomization in terms of which passenger or 

cargo air carrier accidents were selected for inclusion in the current database. 

Due to the nature of air carrier accidents, all available data was included 

within the current dataset due to the infrequent nature of this type of event. Despite 

a lack of control over the data itself, possible threats to internal validity were 

identified and are explained below. 

History. Ary et al. (2010) describes history as specific events that could 

have occurred during the data collection period that can influence the selection of 

group membership in the criterion variable. Due to the dataset for the current study 

ranging from 2002 through 2019, certain historical events could have had an 

influence on the selected factors that distinguish between passenger and cargo air 

carrier accidents. A historical event that could have had an influence on the 

criterion variable was the September 11th terrorist attacks. In the United States 

alone, all civil aircraft were grounded for two days after the September 11th 

terrorist attacks. The number of annual passenger air carrier operations fell sharply 

following these attacks due to a decreased demand from air travelers (DOT, 2005). 

Again, with a decrease in the number of annual passenger air carrier operations, 

this could have had an impact on the number of air carrier accidents that occurred 

during that time. The year 2001 was excluded from data collection as only accident 

data for the years 2002 through the end of 2019 were considered in-scope for the 

current study. Some of the air carrier accidents that occurred in 2019 may have 

been too recent for the accident investigation to conclude and for a final accident 
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report to be published. A second historical event that had an impact on the 

commercial aviation industry was the COVID-19 pandemic, which began in the 

spring of 2020. The scope of the current study was defined as ending in 2019, 

which excluded any years that could have been affected by the impact of the 

pandemic on annual air carrier operations. 

Instrumentation. Ary et al. (2010) defines instrumentation threat as 

changes in how a variable is measured or observed during data collection. In the 

context of the current study, global aviation accidents were investigated by a 

variety of government entities, aircraft manufacturers, and the air carriers 

themselves. Although most investigative branches of federal governments are 

standardized under ICAO guidelines, it was possible for different aviation accident 

investigators to come to different conclusions on the causes of aircraft accidents. 

This was evident after the crash of Egypt Air Flight 990, which was a passenger 

flight that crashed in October of 1999. Both the NTSB and the Egyptian Civil 

Aviation Authority were members of the team that investigated the accident for 

probable cause. Both entities published contradictory final reports. The NTSB 

concluded that intentional actions of the first officer to deliberately crash the 

airplane into the ocean was the cause of this accident. The Egyptian Civil Aviation 

Authority disputed this finding and concluded that the accident was due to a 

mechanical failure of the aircraft (Egyptian Civil Aviation Authority, 2000). In 

order to avoid unreliable data in the predictor variables, the proposed study will 

only use published final accident reports found in the NTSB and the ASN 
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databases. By only using full accident reports instead of preliminary accident 

reports, only validated accident data was included within the final dataset. 

Preliminary reports may contain information that has yet to be proven or validated. 

In addition, by only accessing accident reports found within the ASN database, 

accidents investigated under the same set of standards were included within the 

dataset. More specifically, accidents investigated by government entities or 

organizations from other countries may be biased or inaccurate, as seen with the 

Egypt Air accident report. 

There were two factors per accident within the ASN database that had to be 

verified or altered before they were coded into the study dataset.  The first variable 

was Time of Day.  Within each ASN accident summary, the time when the accident 

took place was represented as the local time per the departure location of each 

accident flight based on a 24–hour clock.  Within the context of the current study, 

this variable had to be coded dichotomously (0 = Day, 1 = Night).  Therefore, the 

time of each accident within each ASN summary had to be determined to be day or 

night using the FAA’s definition of nighttime, as defined earlier in this paper, 

against an online tool that calculates the beginning and end of evening civil twilight 

(Time and Day A.S., 2022). 

The second accident factor in each ASN summary that had to be altered was 

Accident Location, specifically for accidents that took place over international 

bodies of water.  Out of the entire study sample, only five accidents took place over 

the Atlantic Ocean, Indian Ocean, Pacific Ocean, or Mediterranean Sea.  With only 
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five cases of accidents occurring over international waters, the decision was made 

to categorize the Accident Location based on the country in which the flight 

originated.  For example, Air France Flight 447 departed from Brazil but crashed 

while flying over the Atlantic Ocean.  Within the current study sample, the 

Accident Location for this flight was categorized as LA. 

Selection Bias. Ary et al. (2010) refers to non–random events that cause 

bias as to how individuals or cases are assigned to the groups within the criterion 

variable. In the context of the current study, the criterion variable was limited to 

two groups: passenger or cargo air carrier accidents. Any aviation accident is a 

random event that could be caused by many distinct factors. This contrasts with 

other studies that utilized participants that volunteer or are randomly selected for 

data collection. The dataset that was used in the current study was not a collection 

of randomly selected events, but a comprehensive collection of every event that fit 

ICAO’s definition of an aviation accident. 

Selection bias was also controlled by only using accidents included within 

the ASN database. If other accident investigating agencies were utilized for data 

collection, any difference in their procedures or standards for investigation could 

have caused some accidents to be excluded from the dataset. It was even possible 

for aviation events that do not fit ICAO’s definition of aviation accident to be listed 

as an accident by agencies with different protocols. One important characteristic of 

the criterion variable for the current study was that the ratio of passenger to cargo 

air carrier accidents was not even. This was due to the frequency of annual 
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passenger air carrier operations outweighing the frequency of cargo air carrier 

operations. It was important for the ratio of passenger to cargo air carrier operations 

in the criterion variable to be representative of the target population, and this is 

discussed in further detail along with the assumptions for logistic regression. 

Treatment Verification and Fidelity 

 The fidelity of the current study was preserved by the researcher ensuring 

that procedures are followed as outlined in the proposal. Any deviation from the 

procedures described in a previous section could have threatened the fidelity of the 

current study. Clear operational definitions of terms used within the current study 

and the targeted variables were also important to fidelity. The predictor variables, 

criterion variable, and the selected levels of the SHELO model were defined in 

Chapters 1 and 3 of this proposal as well as the rationale for the selection of 

variables included within Chapter 2. The verification of the targeted variables 

allowed for valid and accurate interpretations of the relationship between the 

predictor variables and the criterion variable. This strengthened the generalizability 

of the current study to the targeted population.  

Data Analysis 

 The current study utilized descriptive and inferential statistical analyses to 

measure the effect of the predictor variables on the criterion variable. The purpose 

of the descriptive statistical analysis was to provide the reader with a better 

understanding of the diversity of air carrier accidents that were included within the 

dataset. Inferential statistics were used to predict how changes in any of the 
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predictor variables influenced group membership in the dichotomous criterion 

variable: passenger and cargo air carrier accidents. 

Descriptive Statistics 

 The descriptive statistics provided the reader with the final number of air 

carrier accidents that remained in the dataset before missing data and outlier 

analysis began. Descriptive statistics also included the total number of passenger 

and cargo air carrier accidents within the final dataset in order to have a better 

understanding of the distribution of the dichotomous criterion variable.   

 Each of the predictor variables were also summarized through descriptive 

statistics. Due to each of the predictor variables being categorical, it was possible to 

provide an exact number of the groups within each variable. This included the 

number of accidents within each Phase of Flight; CFIT, LOC; Weight factor; 

Aircraft Generation; Aircraft Manufacturer; Mechanical Failure; Time of Day; 

Location of Accident; and Location of Operator. For every group within the 

predictor variables, further descriptive statistics were provided to inform the reader 

of the distribution among passenger air carriers, cargo air carriers, and the total 

frequency for each variable. 

Inferential Statics 

 Logistic regression was be used to perform the inferential statistical analysis 

for the current study. This was due to the nature of the dichotomous criterion 

variable of group membership between passenger and cargo air carrier accidents. 

Before the primary regression analysis began, data cleaning measures were taken, 
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which included identifying outliers and missing data. Any data missing within the 

accident summaries provided by the ASN can be located within the final accident 

report for each accident. However, if accident data is missing from this report, 

which is treated as the primary source of information for each accident, then this 

data would not be able to be included within the final dataset. In this instance, the 

entire accident would be removed from the dataset. Unlike continuous predictor 

variables, categorical variables cannot use means or medians to provide a 

replacement for missing data. Instead, the accident would be removed from the 

dataset and the reader would be informed of such removal. 

After data cleaning was completed, all remaining data was reviewed for 

compliance with the assumptions of logistic regression. Warner (2008) identified 

the assumptions that must be met for binary logistic regression as well as the need 

for five events per predictor variable. In the context of the current study, an event 

was defined as an air carrier accident. Considering all of the predictor variables that 

were selected for inclusion within the current study, 100 accidents would have been 

required as the minimum number for a logistic regression analysis.  However, the 

power analysis discussed earlier in this chapter suggested a sample of more than 

twice this amount. The assumptions of binomial logistic regression are as follows: 

1. The criterion variable is dichotomous in nature. 

2. The categories of the criterion variable are mutually exclusive and 

exhaustive. 

3. Independence of scores in predictor variables on the criterion variable. 
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4. Correct specification of the model. 

Although not required as assumptions for logistic regression, proper data screening 

for missing data, outliers, and multicollinearity, was also performed before the 

primary analysis began.  These processes are discussed. in Chapter 4. 

The primary analysis began by regressing the single criterion variable on all  

predictor variables simultaneously. This was followed by four simultaneous logistic 

regression analyses to evaluate how the variable sets associated with each of the 

four levels of the SHELO model can distinguish between passenger and cargo air 

carrier accidents. Select predictor variables were categorized according to the levels 

of the SHELO model, used most recently used by Chang and Wang (2009). 

Following each of the four simultaneous analyses, each statistically significant 

predictor variable was analyzed in terms of the odds of being able to distinguish 

between the two groups within the criterion variable. 

In order to easily interpret the relationship between the predictor variables 

and the dichotomous criterion variable, MacKinnon and Dwyer (1993) recommend 

the transformation of any continuous variables into categorical variables.  Given 

the nature of aircraft accident data and the targeted variables within the current 

study, all predictor variables were categorical. No continuous predictor variables 

were included within the final dataset for the current study. However, all nominal 

predictor variables were coded using dummy coding for direct comparisons to a 

reference group. This recommendation by Tabachnick and Fidell (2013) can be 

applied to predictor variables that have multiple discrete levels. As explained 
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earlier in this section, all reference groups were selected based upon the absence of 

a condition (Weight Factor versus the absence of a weight factor in an air carrier 

crash) or based upon support from related literature (the NA region containing 

Boeing as the aircraft manufacturer with the highest number of air carrier aircraft in 

service with the best safety records). The use of dummy coding for all nominal 

predictor variables allowed for a comparison of the membership in one of the 

groups on a single predictor variable to the odds of an air carrier accident being 

passenger or cargo. 
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Chapter 4 

Results 

Introduction 

 The purpose of the current study was to examine the relationship between 

selected predictor variables and a single, dichotomous criterion variable. The 

criterion variable (Y = Passenger or Cargo) is a group membership variable with 

only two categories. Due to the dichotomous, categorical nature of the criterion 

variable, the statistical analysis most appropriate for the current study was logistic 

regression. The single criterion variable was regressed on all predictor variables 

and tested for statistical significance of the overall model as well as any statistically 

significant parameters for individual predictor variables. 

 In order to observe the relationship between the predictor variables and the 

single criterion variable, several logistic regression analyses were performed.  The 

first analysis was a simultaneous logistic regression with all predictor variables 

entered into the model at once. The purpose of this analysis was to identify possible 

significant parameters in the presence of all other predictor variables, as well as the 

potential gain in the likelihood of being able to differentiate between passenger and 

cargo air carrier accidents compared to the null model (absent of all predictor 

variables). After this analysis was performed, four more simultaneous analyses 

were run according to the levels of the SHELO model: Software, Hardware, 

Environmental Factors, and Organizational Influences. All of the predictor 

variables used in the full analysis were categorized into one of the four levels of the 
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SHELO model, as previously discussed in Chapter 3.  Each of these analyses were 

then used to test the research hypotheses discussed earlier in the current study. 

Overview of Predictor Variables 

Although logistic regression can be performed with a combination of 

categorical or continuous predictor variables, all the predictor variables in the 

current study were nominal in nature.  Some of the predictor variables were 

dichotomous and only contained two groups. Most of these dichotomous predictors 

were simply coded as “yes” or “no” and included the following variables: LOC, 

CFIT, Weight Factor, Mechanical Failure, and Time of Day. 

 The other predictor variables used in the current study contained more than 

two groups, and therefore could not be coded or analyzed in the same manner as the 

dichotomous predictor variables. Instead, dummy coding was used for each of these 

group membership variables. Dummy coding requires the selection of a reference 

group that is then compared to the rest of the groups on an individual basis. The 

explanation for the selection of the reference group for each of these variables was 

explained in Chapter 3. As a reminder to the reader, the reference group is absent 

from any analysis, but is represented in each of the parameters for the other groups. 

Each of these parameters is a comparison of one of the groups compared directly to 

the reference group. As an overview, the first group membership variable with 

more than two groups was Phase of Flight, and it contained the following groups: 

Takeoff, Climb, Cruise (the reference group), Approach, and Landing. The second 

variable with more than two groups was Aircraft Manufacturer categorized 
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according to region: Asia, Europe, CIS, LA, and NA; the reference group). The 

third variable with more than two groups was Aircraft Generation: Generation 1 

(the reference group), Generation 2, Generation 3, and Generation 4. The fourth 

variable with more than two groups was the Accident Location: Africa (the refence 

group), Asia, CIS, Europe, LA, ME, NA, and Oceania. The fifth and final variable 

with more than two groups was Operator Location: Africa (the refence group), 

Asia, CIS, Europe, LA, ME, NA, and Oceania. 

Overview of Dataset 

 This study collected archival data from the online ASN database, which is 

organized by year. Any accident on the ASN database that occurred between 2002 

through 2019 was analyzed for relevance to the scope of the current study. The 

ASN database contains 3,806 aircraft accidents that occurred between 2002 and 

2019. However, only accidents with publicly available final reports were 

considered in-scope for the current study. Therefore, any accident listed in the ASN 

database that did not include a final accident report was considered out of scope 

and not included within the final dataset. 

The purpose of this study was to identify factors that could distinguish 

between passenger and cargo air carrier accidents. During data collection, the 

following kinds of operations were considered out of scope and were not included 

in the final dataset: on-demand/private, executive, military, ferry/positioning, test 

flight, firefighting, training, ambulance, survey/research, official state flight, illegal 
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flight, parachuting, agricultural, demonstration, aerial work, and any flight 

categorized as an unknown operation. 

Once an accident was determined to be a scheduled passenger or cargo 

operation, the type of accident was then analyzed for relevance to the scope of the 

current study. During data collection, the following types of accidents were 

determined to be out of scope due to a lack of literature that supports them as 

factors in determining whether an accident was passenger or cargo: ground 

operation (aircraft stationary, standing or taxi), sabotage or terrorism, hijacking or 

an attempted takeover, mid-air collision, pilot error, fuel exhaustion, wildlife strike, 

fuel contamination, shoot-down, aircraft missing, runway incursion, ground 

collision, inflight fire (unrelated to aircraft systems), and weather-related accidents 

that did not result in LOC or CFIT. 

In total, 594 accidents were considered in-scope for the current study and 

were included in the final dataset. All of these accidents listed in the ASN database 

included a final accident report, were either a scheduled passenger or cargo 

operation, and were a type of accident considered in-scope and supported by 

literature to differentiate between accident factors.  Of the 594 total accidents, 396 

were scheduled passenger operations and 198 were scheduled cargo operations. 

Descriptive Statistics 

The purpose of this study was to determine the relationship between the 

targeted groups of predictor variables and group membership in the criterion 

variable. The predictor variables were grouped according to the levels of the 



95 
 

SHELO model: Software, Hardware, Environmental Factors, and Organizational 

Influences. The group membership in the criterion variable was dichotomous: 

Passenger or Cargo. The following section provides descriptive statistics for each 

of the predictor variables grouped according to the SHELO model. 

Software 

There were five Phases of Flight: Takeoff, Climb, Cruise, Approach, and 

Landing. Table 1 presents the frequency of accidents that fell in each of these 

categories for passenger operations, cargo operations, and overall. The most 

frequent phase of flight in which accidents took place was Landing, with 594 

accidents occurring in this phase overall, 225 of which were passenger accidents 

and 60 of which were cargo accidents. 

Table 1 

Frequency of Accidents for each Phase of Flight 

Flight Phase Passenger Cargo Overall 

Takeoff 45 27 72 

Climb 20 14 34 

Cruise 60 54 114 

Approach 46 43 89 
Landing 225 60 285 

Overall 396 198 594 

 

Each accident in the dataset could have been categorized as either LOC (if 

the pilot lost control of the aircraft) or CFIT (if the aircraft collided with terrain 

while under normal control). If an accident wasn’t categorized as LOC or CFIT, 

then it was coded as “neither” in the current dataset.  Table 2 presents the frequency 

of accidents that fell in each of these categories for passenger operations, cargo 

operations, and overall. The type of accident that occurred most frequently was 
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LOC, with 385 accidents occurring within this type of accident overall, 265 of 

which were passenger accidents and 120 of which were cargo accidents. 

Table 2 

Frequency of Accidents within LOC & CFIT Categories 

Type of Accident Passenger Cargo Overall 

Loss of Control 265 120 385 
Controlled Flight into Terrain 44 33 77 

Neither 87 45 132 

Overall 396 198 594 

 

Each accident in the dataset could have been categorized as involving a 

Weight Factor or not involving a Weight Factor. Table 3 presents the frequency of 

accidents that fell in each of these categories for passenger operations, cargo 

operations, and overall. Only 13 passenger accidents involved a Weight Factor and 

only 18 cargo accidents involved a Weight Factor. This totaled to 31 air carrier 

accidents that involved a Weight Factor and 363 air carrier accidents that did not 

involve a Weight Factor. 

Table 3 

Frequency of Accidents Involving a Weight Factor 

Type of Accident Passenger Cargo Overall 

Weight Factor 13 18 31 
No Weight Factor 383 180 363 

Overall 396 198 594 

 

Note. The variables Weight Factor and LOC were not 

mutually exclusive. Of the 31 air carrier accidents that 

involved a Weight Factor, 23 were categorized as LOC 

and 8 were not categorized as LOC. 



97 
 

Hardware 

Aircraft were categorized into one of four generations: First, Second, Third 

and Fourth. Table 4 presents the frequency of accidents that fell in each of these 

categories for passenger operations, cargo operations, and overall. The most 

frequent Aircraft Generation for which accidents took place was the Fourth 

Generation, with 372 accidents occurring in this generation overall, 294 of which 

were passenger accidents and 78 of which were cargo accidents. 

Table 4 

Frequency of Accidents for each Aircraft Generation 

Generation Passenger Cargo Overall 

First 8 39 47 
Second 37 33 70 

Third 57 48 105 

Fourth 294 78 372 
Overall 396 198 594 

 

 There were five regions of aircraft manufacturers, including Asia, the CIS, 

Europe, LA, and NA. Table 5 presents the frequency of accidents that fell in each 

of these categories for passenger operations, cargo operations, and overall. The 

most frequent region of Aircraft Manufacturer involved in air carrier accidents was 

NA, with 366 accidents occurring from this region of manufacturer overall, 229 of 

which were passenger accidents and 137 of which were cargo accidents. 
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Table 5 

Frequency of Accidents for each Aircraft Manufacturer Region 

Region Passenger Cargo Overall 

Asia 4 0 4 
Commonwealth of Independent States 14 15 29 

Europe 131 38 169 

Latin America 18 8 26 
North America 229 137 366 

Overall 396 198 594 
 

 

Each accident in the dataset could have been categorized as involving a 

Mechanical Failure or not involving a Mechanical Failure. Table 6 presents the 

frequency of accidents that fell in each of these categories for passenger operations, 

cargo operations, and overall. Only 126 passenger accidents involved a Mechanical 

Failure and only 67 cargo accidents involved a Mechanical Failure. This totaled to 

193 air carrier accidents that involved a Mechanical Failure and 374 air carrier 

accidents that did not involve a Mechanical Failure. 

Table 6 

Frequency of Accidents Involving Mechanical Failure 

Type of Accident Passenger Cargo Overall 

Mechanical Failure 126 67 193 

No Mechanical Failure 259 115 374 
Overall 396 198 594 

 

Note. The variables Mechanical Failure and LOC were 

not mutually exclusive. Of the 193 accidents that 

involved a Mechanical Failure, 61 were categorized as 

LOC while 132 were not categorized as LOC. 

Environmental Factors 

Each accident in the dataset was categorized based on Time of Day. Table 7 

presents the frequency of accidents that fell in each of these categories for 
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passenger operations, cargo operations, and overall. Of the Daytime air carrier 

accidents, 287 were categorized as passenger while 105 were categorized as cargo. 

Of the Nighttime air carrier accidents, 109 were categorized as passenger while 93 

were categorized as cargo. 

Table 7 

Frequency of Accidents by Time of Day 

Time of Day Passenger Cargo Overall 

Day 287 105 392 
Night 109 93 202 

Overall 396 198 594 

 
Note. The frequencies of annual passenger and cargo 

operations are not equal for daytime and nighttime.  

For example, 42% of cargo operations took place at 

night within European airspace (Leleu & Marsh, 2009). 

Less than 10% of passenger operations took place 

during the day. 

The variable, Accident Location, was split into eight global regions: Africa, 

Asia, the CIS, Europe, LA, the ME, NA, and Oceania. Table 8 presents the 

frequency of accidents that fell in each of these categories for passenger operations, 

cargo operations, and overall. The most frequent Accident Location was NA, with 

205 air carrier accidents occurring within this region, 104 of which were passenger 

accidents and 101 of which were cargo accidents. 
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Table 8 

Frequency of Accidents by the Location of the Accident 

Region Passenger Cargo Overall 

Africa 31 15 46 
Asia 81 21 102 

Commonwealth of Independent States 22 8 30 

Europe 78 17 95 
Latin America 50 24 74 

Middle East 16 5 21 

North America 104 101 205 

Oceania 14 7 21 
Overall 396 198 594 

 

Note. There were not equal frequencies of 

operations for these global regions between 

2002 and 2019. For example, IATA (2021) 

reported that the two largest cargo air carriers, 

UPS and FedEx, are based in NA. Combined, 

these two operators accounted for 34% of the 

global cargo air carrier traffic in 2021. 

Organizational Influences 

 The variable, Operator Location, was split into eight global regions: Africa, 

Asia, the CIS, Europe, LA, the ME, NA, and Oceania. Table 9 presents the 

frequency of accidents that fell in each of these categories for passenger operations, 

cargo operations, and overall. The most frequent Operator Location was NA, with 

210 accidents occurring with air carriers based within this region, 102 of which 

were passenger accidents and 108 of which were cargo accidents. 
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Table 9 

Frequency of Accidents by the Location of the Operator 

Region Passenger Cargo Overall 

Africa 31 16 47 
Asia 82 20 102 

Commonwealth of Independent States 18 6 24 

Europe 82 15 97 
Latin America 49 22 71 

Middle East 18 4 22 

North America 102 108 210 

Oceania 14 7 21 
Overall 396 198 594 

 

Note. There were not equal frequencies of operations 

for these global regions between 2002 and 2019. For 

example, IATA (2021) reported that the two largest 

cargo air carriers, UPS and FedEx, are based in NA. 

Combined, these operators accounted for 34% of the 

global cargo air carrier traffic in 2021. 

Inferential Statistics 

Preliminary Analysis 

Missing Data. Due to the dichotomous group membership in the criterion 

variable, logistic regression was selected as the statistical analysis for the current 

study. Before analyzing the hypothesized grouping of the targeted predictor 

variables according to the levels of the SHELO model, the dataset was examined to 

determine if any accidents contained missing data. Due to the scope of the current 

study that required accidents to include a final accident report, missing data was not 

present for any accident. All of the targeted predictor variables were made up of 

data that must be included in every final accident report.  In addition, accident data 

published in a final report is collected by a government agency that specializes in 
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aviation accident investigation. The government agency that investigates a specific 

accident is dependent upon several factors, such as the state in which the accident 

occurred or the state from which the aircraft operator was based. As discussed in 

Chapter 3, the final accident report published by a government agency and made 

publicly available was determined to contain valid accident data. Therefore, the 

dataset retained all 594 accidents after it was determined that the dataset did not 

include any invalid missing data. 

Outlier Analysis. Part of the preliminary analysis is to analyze the current 

dataset for potential outliers. An outlier is an extreme data point that is inconsistent 

with the rest of the dataset. These extreme data points should be examined for their 

influence on results that are not representative of the relationships between the 

predictor variables and the criterion variable. Outliers can be identified as one of 

two types of extreme data points: contaminants or rare cases. In the context of the 

current study, zero outliers were identified as contaminants. This was likely due to 

the source of each air carrier accident being publicly available accident reports 

published by various accident investigation bureaus from various countries.  

Therefore, the data in these reports deemed accurate and objective. However, one 

of the predictor variables only contained four data points, and this variable was 

Aircraft Manufacturers Based in Asia. This low frequency count for a single 

variable caused instability within the logistic regression and was considered to be a 

rare case. It was determined that the four accidents that involved an Aircraft 
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Manufactured in Asia should be removed to avoid missing data and instability 

within the logistic regression. 

Logistic Regression Assumptions 

 After the dataset was screened for missing or invalid data and outliers, the 

targeted set of predictor variables were tested for compliance with the assumptions 

of logistic regression.  These assumptions were a dichotomous criterion variable, 

mutually exclusive categories on the criterion variable, independence of scores on 

the dependent measure, and the correct specification of the hypothesized model. 

 Dichotomous Criterion Variable. The nature of the criterion variable used 

in the current study was a dichotomy of group membership. All accidents were 

categorized as either a scheduled passenger operation or a scheduled cargo 

operation. Any accident within the ASN database that did not fit either of these two 

operations was considered out of scope and not included in the final dataset. 

Therefore, the assumption of a dichotomous criterion variable was met. 

 Mutually Exclusive Categories on the Criterion Variable. It is assumed 

that categories within the criterion variable for logistic regression are exhaustive 

and mutually exclusive. In terms of the current study, an accident was categorized 

as either a scheduled passenger or cargo operation based on the kind of operation 

listed in the final accident report for a specific case. However, an operation could 

not be categorized as both passenger and cargo. This requirement for an accident to 

only be categorized as one type of operation met the assumption of mutually 

exclusive categories on the criterion variable. 
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 Independence of Scores on the Criterion Variable. Tabachnick & Fidel 

(2013, p. 445) stated that “Logistic regression assumes that responses of different 

cases are independent of each other. That is, it is assumed that each response comes 

from a different, unrelated case.”  In terms of the current study, each case was made 

up of data collected from an individual aircraft accident. The occurrence of one 

aircraft accident had no influence over the occurrence of another aircraft accident. 

If the occurrence of one accident influenced the occurrence of another accident, 

both accidents would have been considered out of scope. An example of such 

occurrences would be a ground-based or mid-air collision. Certain factors could 

have existed that led to an aircraft deviating from its intended or assigned flight 

path and into the vicinity of a second aircraft. The second aircraft would not have 

suffered an accident without the deviation of the first aircraft. Therefore, the 

accidents of both aircraft would be considered dependent of one another and out of 

scope for the current study. In addition, all the accidents that were included in the 

final dataset were only counted once; no duplications were identified.  Therefore, 

the data associated with each accident met the assumption of independence on the 

criterion variable. 

 Correct Specification of the Hypothesized Model. The assumption of 

correct specification of selected variables on the hypothesized model requires that 

predictor variables should only be selected if they are relevant in differentiating 

between group membership in the criterion variable. The selection of all predictor 

variables was supported by prior research discussed in Chapter 2. Prior research in 
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Chapter 2 was also used to support the grouping of predictor variables according to 

the levels of the SHELO model. Warner (2008) recommended that a null model 

should be developed for the data in the absence of the targeted groups of predictor 

variables. The fit of the null was tested using a chi-square analysis, and this was 

compared to the fit of the hypothesized model.  The chi-square test of the 

hypothesized model was statistically significant, χ2(29) = 199.88, p < .0001, in 

terms of fit compared to the null model. Therefore, the assumption of correct 

specification of the hypothesized model was met. Data related to this assumption of 

logistic regression is discussed later in this chapter. 

The following assumptions are not required for logistic regression but have been 

addressed in order to further increase the validity and reliability of each analysis. 

1. Multicollinearity must not occur between the predictor variables. 

Multicollinearity, which is the presence of highly correlated predictor 

variables, can result in unstable regression coefficients associated with large 

standard errors (Cohen et al., 2003). The current study utilized one 

simultaneous regression analysis with all predictor variables present, and 

four smaller simultaneous analyses, each containing select variables from 

the four levels of the SHELO model. This divided the overall set of 

predictor variables into four groups, decreasing the effects of related 

predictors on the criterion variable. Lastly, the statistical software used for 

data analysis, JMP, contained a feature that would identify unstable 

predictor variables with large standard error.  
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None of the regressions performed for the current study yielded unstable 

predictor variables. However, initial results for the variables Accident Location 

and Operator Location were almost identical. In order to determine if these two 

variables were highly correlated, the dummy–coded variables were transformed 

into ordinal variables.  This allowed for a correlation to be run using JMP, 

which produced a correlation coefficient of R = 0.93.  Due to the strong 

correlation between Accident Location and Operator Location, one variable was 

removed from the analysis.  It was determined that Accident Location would be 

removed from all analyses.  This variable was one of two predictors categorized 

under the Environmental level of the SHELO model in order to retain Operator 

Location under Organizational Influences, which was the only predictor under 

this level.  In addition, only one region under Accident Location was 

statistically significant in distinguishing between passenger and cargo 

operations while more than a single location were significant for Operator 

Location. 

2. The assumption of linearity of the logit only pertains to continuous 

predictor variables. Due to all of the predictors within the current study 

being categorical in nature, this assumption was not required to be met. 

Dataset Modifications 

 The complete set of predictor variables in the current study were nominal 

and required modification in order to be properly analyzed and interpreted.  

Dummy coding was selected as the data modification strategy which transforms all 
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categories within a nominal variable into zeros or ones. This required one category 

within a nominal variable to be selected as the reference group, in which 

comparisons to all other categories within the same nominal variable would be 

made. For example, X4 = aircraft generation had four categories: first, second, third, 

and fourth. The generation 1 category was selected as the reference group. 

Therefore, all of the data that identified a generation 1 aircraft within the dataset 

was removed and was instead represented as the absence of data identifying a 

generation 2, 3, or 4 aircraft.  If an accident was categorized as involving a 

generation 2 aircraft, the data used in the analysis was a comparison of generation 2 

to generation 1. 

Primary Analyses 

 Simultaneous Analysis of Full Model. The first objective of the current 

study was to determine the relationship between the complete set of predictor 

variables and the group membership within the criterion variable. This analysis was 

conducted in a simultaneous fashion where all predictor variables entered the 

model at the same time. While the selection of predictor variables was guided by 

prior research, the regression of the criterion variable on all predictor variables 

simultaneously was in absence of the theoretical SHELO model. Subsequent 

analyses regressed the criterion variable on four sets of predictor variables 

organized according to the levels of the SHELO model. Warner (2008) 

recommended the development of a baseline or null model to be compared to the 

full model. This null model was generated by regressing group membership in 
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absence of the predictor variables, with the overall goodness of fit of the null model 

compared to the full model. While multiple linear regression utilizes the sum of 

squared residuals to compare the null model to the full model, a logistic regression 

analysis uses the log likelihood (LL) function. The difference between the full 

model and the null model, analyzed using a chi-square statistic, should be large 

enough for the full model to be statistically significant. 

 The full model was statistically significant, χ2(22) = 194.86, p < .01. Choen 

et al. (2003) recommended the usage of the Pseudo-R2 (RL
2) when conducting a 

logistic regression analysis, which is comparable to the analog for R2 in multiple 

regression. The simultaneous analysis for all predictor variables in the current study 

produced RL
2 = .26. It must be noted that RL

2 cannot be interpreted as the 

proportion of variance accounted for by regressing the criterion variable on the 

predictor variables. Instead, RL
2 should be interpreted as the gain in prediction 

when predictor variables are added a full model compared to the absence of 

predictor variables in a null model. In the context of the current study, the full 

model provided a predictive gain of 26.43% over the null model (RLfull
2 = .26, df = 

22), as outlined in Table 10. 
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Table 10 

Significance of the Simultaneous (Full) Model for 

Passenger and Cargo Accident Factors 

Model Log Likelihood df χ
2 

Null 378.09 
  

Full 280.66 
  

Difference 97.43 22 194.86** 

 

Note. N = 594. RL
2 = 0.26 

Log Likelihood (LL) indicates the agreement 

between the probabilities of group membership 

generated by the logistic regression model and 

the actual group membership within the sample. 

Larger absolute LL values represent a worse 

model fit. χ2 = -2(LLnull model – LLfull model). The 

null model represents the baseline model without 

information about the predictor variables. °The 

full model represents the hypothesized model 

with the independent variables entered into the 

model simultaneously. 

**p <.01 

 

 The null model, absent of all predictor variables, was also significant χ2(0) 

= 375.78, p < .05. The logit of the null model for an accident being classified for 

membership in the “Cargo” group was -0.69.  In the context of the current model 

and in the absence of information provided by the predictor variables, the odds of 

an accident being classified as “cargo” can be calculated as 𝑒−0.69 = 0.50. A second 

way to interpret these odds, converted according to Warner (2008), is to use the 

mathematical expression e0.50 / (1 + e0.50). This expression, applied to the null 
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model, indicates that the probability of an accident that occurred between 2002 and 

2019 being classified as cargo was 33%, while the probability of an accident being 

categorized as passenger was 67%. The full model yielded a statistically significant 

increase in the Chi-square statistic. Therefore, the full model was correctly 

specified and the relationships between each predictor variable and the criterion 

variable were able to be examined. 

 The full, simultaneous model is summarized in Table 21 in 

Appendix E.  The full model logit (Li) for group membership in the 

criterion variable is represented by the equation Li = -2.33 – 0.30X1 – 

0.34X2 + 0.06X3 – 0.59X4 + 0.24X5 + 0.09X6 + 0.38X7 + 0.75X8 – 0.17X9 

+ 0.04X10 – 0.84X11 – 0.82X12 – 1.40X13 + 0.12X14 + 0.57X15 – 0.16X16 – 

0.90X17 – 0.19X18 – 0.14X19 – 0.26X20 + 0.41X21 – 0.00X22.  Seven 

predictor variables were statistically significant in relation to the 

criterion variable when in the presence of other predictors: X4 = Landing 

Phase of Flight (compared to the Cruise Phase), X8 = Aircraft 

Manufacturers Located in the CIS (compared to Manufacturers Located 

in NA), X11, 12, & 13 = Generation 2, 3, and 4 respectively (in comparison 

to Generation 1 Aircraft), X15 = Time of Day, and X15 = Operators Based 

in the CIS (compared to Operators Based in Africa).  The regression 

coefficient for each of the predictor variables specifies the change in the 

log odds of the criterion variable when controlling for other predictor 

variables. The regression coefficients can be expressed as odds if the 
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exponent for each regression coefficient is calculated. In the context of 

the current study, eBi < 1.00 would signify odds decreasing for an 

accident being categorized as cargo. Likewise, if eBi > 1.00, then the 

odds would increase for an accident to be categorized as cargo. In the 

event that eBi = 1.00, then there is no change in the odds for an accident 

to be categorized as cargo relative to changes in a specific predictor 

variable.  The 95% confidence interval for each significant regression 

coefficient is provided in Table 11. Confidence intervals provide insight 

into how accurate a parameter estimation is within the target population. 

A wide confidence interval infers low parameter accuracy for the target 

population, while a narrow confidence interval infers high accuracy. In 

the context of the current study, the widths of the confidence intervals 

for all significant predictors were categorize as follows: an odds ratio 

ranging from 0 to less than 10 was categorized as narrow, greater than 

10 and but less than 20 would was categorized as moderate, and 20 or 

greater was categorized as wide. 
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Table 11 

Summary of Odds Ratios for Statistically Significant Predictor Variables in Full 

Model 

Predictor Variables
 

Odds Ratios 95% CI p 

Phase of Flight    

X4 = Landing    

        Passenger vs Cargo 3.25 [1.78, 5.94] <0.01** 

Aircraft Manufacturer    

X8 = Man in CIS    
        Cargo vs Passenger 4.46 [1.51, 13.14] >0.01* 

Aircraft Generation    

X11 = Generation 2    
        Passenger vs Cargo 5.41 [2.03, 14.44] <0.01** 

X12 = Generation 3    

        Passenger vs Cargo 5.13 [2.00, 13.16] <0.01** 
X13 = Generation 4    

        Passenger vs Cargo 16.57 [6.85, 40.05] <0.01** 

Time of Day    

X15 = Day/Night    
        Cargo vs Passenger 3.12 [2.00, 4.86] <0.01** 

Location of Operator    

X17 = CIS    
        Cargo vs Passenger 6.03 [1.28, 28.33] 0.02* 

 

Note. N = 594. 

Significance tests and confidence intervals (CI) on odds ratios for the predictor 

variables are likelihood ratio (χ2) based. 

CI = Confidence Interval; p = probability; CIS = Commonwealth of Independent 

States. 

*p < .05. **p < .01. 

 X4 = Landing Phase of Flight. The Landing Phase of Flight 

(compared to the Cruise Phase) had a statistically significant regression 

coefficient of B4 = -0.59. This log odds can be expressed as an odd by 

calculating e-0.59 = 0.55.  In the context of the current study, the odds of 

an accident being categorized as cargo decreased significantly if this 

accident occurred during the Landing Phase of Flight (compared to the 
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Cruise Phase of Flight). More concretely, this result suggests that the 

odds of an air carrier accident being categorized as cargo decreased by 

44.6% if it occurred during the Landing Phase (compared to the Cruise 

Phase) versus passenger accidents that occurred in the Landing Phase 

(compared to the Cruise Phase). The reciprocal, e0.59 = 1.80 can be 

interpreted as a significant increase in the odds of an accident being 

categorized as passenger if it occurred in the Landing Phase of Flight 

(compared to the Cruise Phase of Flight). Another interpretation of this 

coefficient would be an air carrier accident that occurred during the 

Landing Phase of Flight is 1.80 times more likely to be categorized as a 

passenger accident than a cargo accident when compared to the Cruise 

Phase of Flight, while holding all other predictor variables constant. The 

odds of an accident in the Landing Phase of Flight (compared to the 

Cruise Phase) being categorized as passenger (1.80) compared to the 

odds of an accident in the Landing Phase of Flight (compared to the 

Cruise Phase) being categorized as cargo (0.55) is interpreted as the 

odds ratio (
1.80

0.55
 ), or approximately 3.25.  The 95% confidence interval 

listed in Table 11 indicates that 95% of the time, the odds ratio would 

vary between 1.78 and 5.94.  This can also be interpreted as 95% of the 

time, an air carrier accident that occurred during the landing phase 

(compared to the cruise phase) would be between 1.78 and 5.94 times 
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more likely to be a passenger accident than a cargo accident. The width 

of this interval suggests high accuracy for parameter estimation. 

X8 = Manufactured in CIS. Aircraft Manufactured in the CIS 

(compared to Aircraft Manufactured in NA) had a statistically 

significant regression coefficient of B8 = 0.75.  This log odds can be 

expressed as an odd by calculating e0.75 = 2.12.  In the context of the 

current study, the odds of an accident being categorized as cargo 

increased significantly if this accident involved an Aircraft 

Manufactured in the CIS (compared to an Aircraft Manufactured in 

NA). Another interpretation of this coefficient would be an air carrier 

accident that involved a CIS-Manufactured Aircraft is 2.12 times more 

likely to be a cargo accident compared to a passenger accident 

(compared to NA-Manufactured Aircraft), while holding all other 

predictor variables constant. More concretely, this result suggests that 

the odds an air carrier accident being categorized as cargo increased by 

112% if the aircraft involved in the accident was Manufactured in the 

CIS (compared to NA-Manufactured Aircraft) compared to passenger 

accidents with CIS-Manufactured Aircraft (compared to NA-

Manufactured Aircraft). The reciprocal, e-0.72 = 0.47 can be interpreted 

as a significant decrease in the odds of an accident being categorized as 

cargo if it did not involve an Aircraft Manufactured in the CIS 

(compared to Aircraft Manufactured in NA). The odds of an accident 
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involving a CIS-Manufactured Aircraft (compared to a NA-

Manufactured Aircraft) being categorized as cargo (2.12) compared to 

the odds of an accident involving a CIS-Manufactured Aircraft 

(compared to NA-Manufactured Aircraft) being categorized as 

passenger (0.47) is interpreted as the odds ratio (
2.12

.47
 ), or approximately 

4.46.  The 95% confidence interval listed in Table 11 indicates that 95% 

of the time, the odds ratio would vary between 1.51 and 13.14.  This can 

also be interpreted as 95% of the time, an air carrier accident that 

involved a CIS-manufactured aircraft (compared to NA-manufactured 

aircraft) would be between 1.51 and 13.14 times more likely to be a 

cargo accident compared to a passenger accident. The width of this 

interval suggests moderate accuracy for parameter estimation. 

X11 = Generation 2. Aircraft categorized as Generation 2 

(compared to aircraft categorized as Generation 1) had a statistically 

significant regression coefficient of B11 = -0.84. This log odds can be 

expressed as an odd by calculating e-0.84 = 0.43.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 2 aircraft 

(compared to a Generation 1 aircraft). More concretely, this result 

suggests that the odds of an air carrier accident being categorized as 

cargo decreased by 56.9% if the aircraft involved in the accident was 

from Generation 2 (compared to Generation 1) compared to a passenger 
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accident involving Generation 2 Aircraft (compared to a Generation 1 

Aircraft). The reciprocal, e0.84 = 2.32 can be interpreted as a significant 

increase in the odds of an accident being categorized as passenger if it 

involved a Generation 2 aircraft compared to Generation 1 aircraft. 

Another interpretation of this coefficient would be an air carrier accident 

that involved a Generation 2 aircraft is 2.32 times more likely to be a 

passenger accident compared to a cargo accident compared to 

Generation 1 Aircraft, while holding all other predictor variables 

constant. The odds of an accident involving a Generation 2 aircraft 

(compared to Generation 1 aircraft) being categorized as passenger 

(2.32) compared to the odds of an accident involving a Generation 2 

aircraft (compared to Generation 1 aircraft) being categorized as cargo 

(0.43) is interpreted as the odds ratio (
2.32

0.43
 ), or approximately 5.41.  The 

95% confidence interval listed in Table 11 indicates that 95% of the 

time, the odds ratio would vary between 2.03 and 14.44.  This can also 

be interpreted as 95% of the time, an air carrier accident that involved a 

Generation 2 Aircraft (compared to Generation 1 Aircraft) would be 

between 2.03 and 14.44 times more likely to be a passenger accident 

compared to a cargo accident. The width of this interval suggests 

moderate accuracy for parameter estimation. 

X12 = Generation 3. Aircraft categorized as Generation 3 

(compared to aircraft categorized as Generation 1) had a statistically 
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significant regression coefficient of B12 = -0.82. This log odds can be 

expressed as an odd by calculating e-0.82 = 0.44.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 3 aircraft 

(compared to a Generation 1 aircraft). More concretely, this result 

suggests that the odds of a cargo accident occurring decreased by 56% if 

the aircraft involved in the accident was from Generation 3 (compared 

to Generation 1 Aircraft) compared to passenger accidents involving 

Generation 3 Aircraft (compared to Generation 1 Aircraft). The 

reciprocal, e0.82 = 2.27 can be interpreted as a significant increase in the 

odds of an accident being categorized as passenger if it involved a 

Generation 3 aircraft compared to Generation 1 aircraft. Another 

interpretation of this coefficient would be an air carrier accident that 

involved a Generation 3 aircraft is 2.27 times more likely to be a 

passenger accident compared to a cargo accident compared to 

Generation 1 aircraft, while holding all other predictor variables 

constant. The odds of an accident involving a Generation 3 Aircraft 

(compared to Generation 1 Aircraft) being categorized as passenger 

(2.27) compared to the odds of an accident involving a Generation 3 

Aircraft (compared to Generation 1 Aircraft) being categorized as cargo 

(0.44) is interpreted as the odds ratio (
2.27

0.44
 ), or approximately 5.13.  The 

95% confidence interval listed in Table 11 indicates that 95% of the 
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time, the odds ratio would vary between 2.00 and 13.16.  This can also 

be interpreted as 95% of the time, an air carrier accident that involved a 

Generation 3 aircraft (compared to Generation 1 Aircraft) would be 

between 2.00 and 13.16 times more likely to be a passenger accident 

compared to a cargo accident. The width of this interval suggests 

moderate accuracy for parameter estimation. 

X13 = Generation 4. Aircraft categorized as Generation 4 

(compared to aircraft categorized as Generation 1) had a statistically 

significant regression coefficient of B13 = -1.40. This log odds can be 

expressed as an odd by calculating e-1.40 = 0.25.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 4 Aircraft 

(compared to a Generation 1 Aircraft). More concretely, this result 

suggests that the odds of a cargo accident occurring decreased by 75% if 

the aircraft involved in the accident was from Generation 4 (compared 

to Generation 1 Aircraft) compared to passenger accidents involving 

Generation 4 aircraft (compared to Generation 1 Aircraft). The 

reciprocal, e1.40 = 4.06 can be interpreted as a significant increase in the 

odds of an accident being categorized as passenger if it involved a 

Generation 4 aircraft compared to Generation 1 aircraft. Another 

interpretation of this coefficient would be an air carrier accident that 

involved a Generation 4 aircraft is 4.06 times more likely to be a 
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passenger accident compared to a cargo accident compared to 

Generation 1 aircraft, while holding all other predictor variables 

constant. The odds of an accident involving a Generation 4 Aircraft 

(compared to Generation 1 Aircraft) being categorized as passenger 

(4.06) compared to the odds of an accident involving a Generation 3 

Aircraft (compared to Generation 1 Aircraft) being categorized as cargo 

(0.25) is interpreted as the odds ratio (
4.06

0.25
 ), or approximately16.57.  

The 95% confidence interval listed in Table 11 indicates that 95% of the 

time, the odds ratio would vary between 6.85 and 40.05.  This can also 

be interpreted as 95% of the time, an air carrier accident that involved a 

Generation 4 Aircraft (compared to Generation 1 Aircraft) would be 

between 6.85 and 40.05 times more likely to be a passenger accident 

compared to a cargo accident. The width of this interval suggests low 

accuracy for parameter estimation. 

X15 = Time of Day. Air carrier accidents that occurred at Night 

(compared to accidents that occurred during the Day) had a statistically 

significant regression coefficient of B15 = 0.57.  This log odds can be 

expressed as an odd by calculating e0.57 = 1.77.  In the context of the 

current study, the odds of an accident being categorized as cargo 

increased significantly if this accident occurred at Night compared to an 

accident that occurred in the Day. More concretely, this result suggests 

that the odds of a cargo accident occurring increased by 77% if the 
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accident occurred at Night (compared to an accident that occurred 

during the Day) compared to a passenger accident that occurred at Night 

(compared to an accident that occurred during the Day). The reciprocal, 

e-0.57 = 0.57 can be interpreted as a significant decrease in the odds of an 

accident being categorized as cargo if it occurred during the Day 

compared to an accident that occurred during the Night. The odds of an 

accident occurring at Night (compared to an accident that occurred 

during the Day) being categorized as cargo (1.77) compared to the odds 

of an accident occurring at Night (compared to an accident that occurred 

during the Day) being categorized as passenger (0.57) is interpreted as 

the odds ratio (
1.77

0.57
 ), or approximately 3.11.  The 95% confidence 

interval listed in Table 11 indicates that 95% of the time, the odds ratio 

would vary between 2.00 and 4.86.  This can also be interpreted as 95% 

of the time, an air carrier accident that occurred at night (compared to an 

accident that occurred during the day) would be between 2.00 and 4.86 

times more likely to be a cargo accident compared to a passenger 

accident. The narrow width of this interval suggests high accuracy for 

parameter estimation. 

X17 = Operators Based in the CIS. Accidents that involved CIS–

Based Operators (compared to NA–Based Operators) had a statistically 

significant regression coefficient of B17 = -0.91. This log odds can be 

expressed as an odd by calculating e-0.91 = 0.41.  In the context of the 
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current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a CIS–Based Operator 

(compared to a NA–Based Operator). More concretely, this result 

suggests that the odds of an air carrier accident being categorized as 

cargo decreased by 59% if the Operator was Based in the CIS 

(compared to an Operator Based in NA) compared to a passenger 

accident involving a CIS–Based Operator (compared to a NA–Based 

Operator). The reciprocal, e0.91 = 2.48 can be interpreted as a significant 

increase in the odds of an accident being categorized as passenger if it 

involved a CIS–Based Operator (compared to NA–Based Operator). 

Another interpretation of this coefficient would be an air carrier accident 

that involved a CIS–Based Operator is 2.48 times more likely to be a 

passenger accident compared to a cargo accident compared to a NA–

Based Operator, while holding all other predictor variables constant. 

The odds of an accident involving a CIS–Based Operator (compared to 

a NA–Based Operator) being categorized as passenger (2.48) compared 

to the odds of an accident involving a CIS–Based Operator (compared 

to a NA–Based Operator) being categorized as cargo (0.41) is 

interpreted as the odds ratio (
2.48

0.41
 ), or approximately 6.03.  The 95% 

confidence interval listed in Table 11 indicates that 95% of the time, the 

odds ratio would vary between 1.28 and 28.33.  This can also be 

interpreted as 95% of the time, an air carrier accident that involved a 
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CIS–Based Operator (compared to a NA–Based Operator) would be 

between 1.28 and 28.33 times more likely to be a passenger accident 

compared to a cargo accident. The width of this interval suggests 

moderate accuracy for parameter estimation. 

Following the full analysis of the criterion variable regressed on 

all of the predictor variables, four subsequent simultaneous analyses 

were performed.  Each of the four simultaneous analyses were made up 

of predictor variables categorized by the four relevant levels of the 

SHELO model: Software, Hardware, Environmental Factors, and 

Organizational Influences. The results of each of the four subsequent 

simultaneous analyses are presented in the same manner as the results 

from the prior analysis which used all predictor variables: the full model 

and regression equation, and the log odds, odds, odds ratios, and 

confidence intervals of the statistically significant predictor variables. 

The null model, absent of all predictor variables, can be found on Table 

10, and was not reanalyzed the same criterion variable (Y = Cargo or 

Passenger) being used in all subsequent analyses. All four of the 

simultaneous regression analyses, which were run in accordance with 

the four levels of the SHELO model, were in compliance with all of the 

assumptions for logistic regression which were discussed earlier in this 

chapter. 
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Simultaneous Analysis with the Predictor Variables Relevant 

to the Software Level of the SHELO Model. The first level of the 

SHELO model was Software, and this was defined as a supporting 

system available to employees (Edwards, 1972). In the context of the 

current study, Software can include checklists, manuals, publications, 

and standard operating procedures. Four predictor variables used in the 

current study were categorized as Software: Phase of Flight, LOC, 

CFIT, and Weight Factor. As explained earlier in this chapter, certain 

predictor variables were divided into more than 2 groups, which 

required dummy coding for proper analysis and interpretation. The 

Phase of Flight variable was split into 5 groups, with the Climb Phase 

selected as the reference group. The LOC, CFIT, and Weight Factor 

variables were all dichotomous, with yes coded as “1” and no coded as 

“0.”. Therefore, the predictor variables used in this simultaneous 

regression were as follows: X1 = Takeoff, X2 = Climb, X3 = Approach, 

X4 = Landing, X5 = LOC, X6 = CFIT, and X7 = Weight Factor. 

The full model was statistically significant, χ2(7) = 47.22, p < 

.01. The Pseudo-R2 (RL
2), recommended by Choen et al. (2003), was RL

2 

= .06. In the context of the current study, the full model provided a 

predictive gain of 6.24% over the null model (RLfull
2 = .06, df = 7). 

The full, simultaneous model with predictor variables relevant to 

the software level of the SHELO model is summarized in Table 12.  The 
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full model logit (Li) for group membership in the criterion variable is 

represented by the equation Li = -0.69 – 0.29X1 – 0.13X2 + 0.04X3 – 

0.63X4 + 0.09X5 + 0.01X6 + 0.46X7.  Two predictor variables were 

statistically significant in relation to the criterion variable when in the 

presence of other predictors: X4 = Landing Phase of Flight (compared to 

the Cruise Phase) and X7 = Weight Factor. 

Table 12 

Summary of Logistic Regression Estimates for the Null and Simultaneous (Full) 

Models for Predictor Variables Relevant to the Software Level of the SHELO Model 

 Bi SE χ2 p 

Null Model     

Constant -0.69 0.09 63.42 <0.001 
Full Model     

Constant -0.69 0.38 3.24 0.07 

Phase of Flight     

X1 = Takeoff -0.29 0.16 3.12 0.08 
X2 = Climb -0.13 0.20 0.40 0.53 

X3 = Approach 0.04 0.15 0.06 0.81 

X4 = Landing -0.63 0.13 23.93 <.01** 
X5 = Loss of Control 0.09 0.12 0.65 0.42 

X6 = Controlled Flight into 

Terrain 

0.01 0.16 0.00 0.96 

X7 = Weight Factor 0.46 0.20 5.49 0.02* 
 

Note. N = 594. RL
2 = .06, df = 7 for the full model. 

Bi = Logit; SE = Standard Error; χ2 = Chi Statistic; p = Probability. 

*p < .05. **p < .01. 

 X4 = Landing Phase of Flight. The Landing Phase of Flight 

(compared to the Cruise Phase) had a statistically significant regression 

coefficient of B4 = -0.63. This log odds can be expressed as an odd by 

calculating e-0.63 = 0.53.  In the context of the current study, the odds of 

an accident being categorized as cargo decreased significantly if this 
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accident occurred during the Landing Phase of Flight compared to the 

Cruise Phase of Flight. More concretely, this result suggests that the 

odds of a cargo accident occurring decreased by 46.4% if it occurred 

during the Landing Phase (compared to the Cruise Phase) compared to 

passenger accidents that occurred in the Landing Phase (compared to 

the Cruise Phase). The reciprocal, e0.63 = 1.87 can be interpreted as a 

significant increase in the odds of an accident being categorized as 

passenger if it occurred in the Landing Phase of Flight compared to the 

Cruise Phase of Flight. Another interpretation of this coefficient would 

be an air carrier accident that occurred during the Landing Phase of 

Flight is 1.87 times more likely to be a passenger accident compared to 

a cargo accident when compared to the Cruise Phase of Flight, while 

holding all other predictor variables constant. The odds of an accident in 

the Landing Phase of Flight (compared to the Cruise Phase) being 

categorized as passenger (1.87) compared to the odds of an accident in 

the Landing Phase of Flight (compared to the Cruise Phase) being 

categorized as cargo (0.53) is interpreted as the odds ratio (
1.87

0.53
 ), or 

approximately 3.50.  The 95% confidence interval listed in Table 13 

indicates that 95% of the time, the odds ratio would vary between 2.12 

and 5.79.  This can also be interpreted as 95% of the time, an air carrier 

accident that occurred during the landing phase (compared to the cruise 

phase) would be between 2.12 and 5.79 times more likely to be a 
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passenger accident compared to a cargo accident. The width of this 

interval suggests high accuracy for parameter estimation. 

Table 13 

Summary of Odds Ratios for Statistically Significant Predictor Variables Relevant to 

the Software Level of the SHELO Model 

Predictor Variables
 

Odds Ratios 95% CI p 

Phase of Flight    

X4 = Landing    

        Passenger vs Cargo 3.51 [2.12, 5.79] <0.01** 
X7 = Weight Factor    

        Cargo vs Passenger 2.53 [1.16, 5.51] 0.02* 
 

Note. N = 594. 

CI = Confidence Interval. 

*p < .05. **p < .01. 

X7 = Weight Factor. Air carrier accidents involved a Weight 

Factor, which was defined earlier in this chapter, had a statistically 

significant regression coefficient of B7 = 0.46.  This log odds can be 

expressed as an odd by calculating e0.46 = 1.59.  In the context of the 

current study, the odds of an accident being categorized as cargo 

increased significantly if this accident was related to a Weight Factor 

(compared to an accident that was not related to a Weight Factor). More 

concretely, this result suggests that the odds of a cargo accident 

occurring increased by 59% if the accident was related to a Weight 

Factor (compared to a cargo accident that was not related to a Weight 

Factor) compared to a passenger accident that was related to a Weight 

Factor (compared to a passenger accident that was not related to a 

Weight Factor).  The reciprocal, e-0.46 = 0.62 can be interpreted as a 
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significant decrease in the odds of an accident being categorized as 

cargo if it involved a weight factor compared to an accident that did not 

involve a weight factor. The odds of an accident that involved a Weight 

Factor being categorized as cargo (1.59) compared to the odds of an 

accident that involved a Weight Factor being categorized as passenger 

(0.63) is interpreted as the odds ratio (
1.59

0.63
 ), or approximately 2.53.  The 

95% confidence interval listed in Table 13 indicates that 95% of the 

time, the odds ratio would vary between 1.16 and 5.51.  This can also be 

interpreted as 95% of the time, an air carrier accident involved a Weight 

Factor (compared to an accident that did not involve a Weight Factor) 

would be between 1.16 and 5.51 times more likely to be a cargo 

accident compared to a passenger accident. The width of this interval 

suggests high accuracy for parameter estimation. 

Simultaneous Analysis with the Predictor Variables Relevant 

to the Hardware Level of the SHELO Model. The second level of the 

SHELO model was hardware, and this was defined as the physical 

attributes of a machine, equipment, or facilities used by employees. 

(Edwards, 1972). In the context of the current study, hardware can 

include attributes of an aircraft, including manufacturer and age. Three 

predictor variables used in the current study were categorized as 

hardware: Aircraft Manufacturer, Aircraft Generation, and Mechanical 

Failure. As explained earlier in this chapter, certain predictor variables 



128 
 

were divided into more than 2 groups, which required dummy coding 

for proper analysis and interpretation. The Aircraft Manufacturer 

variable was split into 4 groups after the outlier analysis was performed, 

with NA selected as the reference group. The Aircraft Generation 

variable was split into 4, with the Generation 1 selected as the reference 

group. The Mechanical Failure variable was dichotomous, with yes 

coded as “1” and no coded as “0.”. Therefore, the predictor variables 

used in this simultaneous regression were as follows: X8 = CIS, X9 = 

European, X10 = LA, X11 = Generation 2, X12 = Generation 3, X13 = 

Generation 4, and X14 = Mechanical Failure. 

The full model was statistically significant, χ2(7) = 98.91, p < 

.01. The Pseudo-R2 (RL
2), recommended by Choen et al. (2003), was RL

2 

= .13. In the context of the current study, the full model provided a 

predictive gain of 13.08% over the null model (RLfull
2 = .13, df = 7). 

The full, simultaneous model with predictor variables relevant to 

the hardware level of the SHELO model is summarized in Table 14.  

The full model logit (Li) for group membership in the criterion variable 

is represented by the equation Li = -1.67 + 0.17X8 – 0.31X9 – 0.07X10 – 

0.87X11 – 0.84X12 – 1.43X13 – 0.01X14.  Four predictor variables were 

statistically significant in relation to the criterion variable when in the 

presence of other predictors: X9 = manufacturer-Europe (compared to 

manufacturer-NA), X11 = generation 2 (compared to generation 1), X12 = 
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generation 3 (compared to generation 1), and X13 = generation 4 

(compared to generation 1). 

Table 14 

Summary of Logistic Regression Estimates for the Null and Simultaneous (Full) 

Models for Predictor Variables Relevant to the Hardware Level of the SHELO Model 

 Bi SE χ2 p 

Null Model     

Constant -0.69 0.09 63.42 <.01** 
Full Model     

Constant -1.67 0.39 18.44 < .01** 

Aircraft Manufacturer     

X8 = CIS 0.17 0.21 0.68 0.41 
X9 = Europe -0.31 0.12 7.36 .01** 

X10 = Latin America -0.07 0.23 0.10 0.76 

X11 = Generation 2 -0.87 0.23 14.37 <0.01** 
X12 = Generation 3 -0.84 0.22 14.73 <0.01** 

X13 = Generation 4 -1.43 0.21 47.97 <.001** 

X14 = Mechanical failure -0.01 0.10 0.01 0.92 
 

Note. N = 594. RL
2 = .13, df = 7 for the full model. 

Bi = Logit; SE = Standard Error; χ2 = Chi Statistic; p = Probability. 

*p < .05. **p < .01. 

 X9 = European-Based Manufacturer. Aircraft Manufactured in 

Europe (compared to Aircraft Manufactured in NA) had a statistically 

significant regression coefficient of B9 = -0.31. This log odds can be 

expressed as an odd by calculating e-0.31 = 0.73.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved an Aircraft 

Manufactured in Europe (compared to Aircraft Manufactured in NA). 

More concretely, this result suggests that the odds an air carrier accident 

being categorized as cargo decreased by 26.9% if the aircraft involved 

in the accident was Manufactured in Europe (compared to NA-
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Manufactured Aircraft) compared to passenger accidents with 

European-Manufactured Aircraft (compared to NA-Manufactured). The 

reciprocal, e0.31 = 1.37 can be interpreted as a significant increase in the 

odds of an accident being categorized as passenger if it did involve an 

Aircraft Manufactured in Europe (compared to Aircraft Manufactured in 

NA). The odds of an accident involving a European-Manufactured 

Aircraft (compared to a NA-Manufactured Aircraft) being categorized 

as passenger (1.37) compared to the odds of an accident involving a 

European-Manufactured Aircraft (compared to NA-Manufactured 

Aircraft) being categorized as passenger (0.73) is interpreted as the odds 

ratio (
1.37

0.73
 ), or approximately 1.87.  The 95% confidence interval listed 

in Table 15 indicates that 95% of the time, the odds ratio would vary 

between 1.19 and 2.94.  This can also be interpreted as 95% of the time, 

an air carrier accident that involved a European-Manufactured Aircraft 

(compared to NA-Manufactured Aircraft) would be between 1.19 and 

2.94 times more likely to be a passenger accident compared to a cargo 

accident. The narrow width of this interval suggests high accuracy for 

parameter estimation. 
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Table 15 

Summary of Odds Ratios for Statistically Significant Predictor Variables 

Relevant to the Hardware Level of the SHELO Model 

Predictor Variables
 

Odds Ratios 95% CI p 

Aircraft Manufacturer    

X9 = Europe    
        Passenger vs Cargo 1.87 [1.19, 2.94] 0.01** 

Aircraft Generation    

X11 = Generation 2    

        Passenger vs Cargo 5.73 [2.32, 14.14] <0.0** 
X12 = Generation 3    

        Passenger vs Cargo 5.40 [2.28, 12.79] <0.01** 

X13 = Generation 4    
        Passenger vs Cargo 17.32 [7.73, 38.81] <0.01** 

 

Note. N = 594. 

CI = Confidence Interval. 

*p < .05. **p < .01. 

X11 = Generation 2. Aircraft categorized as Generation 2 

(compared to aircraft categorized as Generation 1) had a statistically 

significant regression coefficient of B11 = -0.87. This log odds can be 

expressed as an odd by calculating e-0.87 = 0.42.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 2 Aircraft 

compared to a Generation 1 Aircraft. More concretely, this result 

suggests that the odds of an air carrier accident being categorized as 

cargo decreased by 58.2% if the aircraft involved in the accident was 

from Generation 2 (compared to Generation 1 Aircraft) compared to a 

passenger accident involving Generation 2 Aircraft (compared to 

Generation 1 Aircraft). The reciprocal, e0.87 = 2.39 can be interpreted as 
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a significant increase in the odds of an accident being categorized as 

passenger if it involved a Generation 2 Aircraft compared to Generation 

1 Aircraft. Another interpretation of this coefficient would be an air 

carrier accident that involved a Generation 2 Aircraft is 2.39 times more 

likely to be a passenger accident compared to a cargo accident 

compared to Generation 1 Aircraft, while holding all other predictor 

variables constant. The odds of an accident involving a Generation 2 

Aircraft (compared to Generation 1 Aircraft) being categorized as 

passenger (2.39) compared to the odds of an accident involving a 

Generation 2 Aircraft (compared to Generation 1 Aircraft) being 

categorized as cargo (0.42) is interpreted as the odds ratio (
2.39

0.42
 ), or 

approximately 5.73.  The 95% confidence interval listed in Table 15 

indicates that 95% of the time, the odds ratio would vary between 2.32 

and 14.14.  This can also be interpreted as 95% of the time, an air 

carrier accident that involved a Generation 2 Aircraft (compared to 

Generation 1 Aircraft) would be between 2.32 and 14.14 times more 

likely to be a passenger accident compared to a cargo accident. The 

width of this interval suggests moderate accuracy for parameter 

estimation. 

X12 = Generation 3. Aircraft categorized as Generation 3 

(compared to aircraft categorized as Generation 1) had a statistically 

significant regression coefficient of B12 = -0.84. This log odds can be 
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expressed as an odd by calculating e-0.84 = 0.43.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 3 Aircraft 

compared to a Generation 1 Aircraft. More concretely, this result 

suggests that the odds of a cargo accident occurring decreased by 57% if 

the aircraft involved in the accident was from Generation 3 (compared 

to Generation 1 Aircraft) compared to passenger accidents involving 

Generation 3 Aircraft (compared to Generation 1 Aircraft). The 

reciprocal, e0.84 = 2.33 can be interpreted as a significant increase in the 

odds of an accident being categorized as passenger if it involved a 

Generation 3 Aircraft compared to Generation 1 Aircraft. Another 

interpretation of this coefficient would be an air carrier accident that 

involved a Generation 3 aircraft is 2.33 times more likely to be a 

passenger accident compared to a cargo accident compared to 

Generation 1 Aircraft, while holding all other predictor variables 

constant. The odds of an accident involving a Generation 3 Aircraft 

(compared to Generation 1 aircraft) being categorized as passenger 

(2.33) compared to the odds of an accident involving a Generation 3 

Aircraft (compared to Generation 1 Aircraft) being categorized as 

passenger (0.43) is interpreted as the odds ratio (
2.33

0.43
 ), or approximately 

5.40.  Due to the odds of an air carrier accident involving a Generation 3 

Aircraft (compared to a Generation 1 Aircraft) are higher for passenger 
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accidents in comparison to cargo accidents, it makes sense to interpret 

the confidence interval as passenger and cargo. The 95% confidence 

interval listed in Table 15 indicates that 95% of the time, the odds ratio 

would vary between 2.28 and 12.79.  This can also be interpreted as 

95% of the time, an air carrier accident that involved a Generation 3 

Aircraft (compared to Generation 1 Aircraft) would be between 2.28 

and 12.79 times more likely to be a passenger accident compared to a 

cargo accident. The width of this interval suggests moderate accuracy 

for parameter estimation. 

X13 = Generation 4. Aircraft categorized as Generation 4 

(compared to aircraft categorized as Generation 1) had a statistically 

significant regression coefficient of B13 = -1.43. This log odds can be 

expressed as an odd by calculating e-1.43 = 0.24.  In the context of the 

current study, the odds of an accident being categorized as cargo 

decreased significantly if this accident involved a Generation 4 Aircraft 

compared to a Generation 1 Aircraft. More concretely, this result 

suggests that the odds of a cargo accident occurring decreased by 76% if 

the aircraft involved in the accident was from Generation 4 (compared 

to Generation 1 Aircraft) compared to passenger accidents involving 

Generation 4 Aircraft (compared to Generation 1 Aircraft). The 

reciprocal, e1.43 = 4.16 can be interpreted as a significant increase in the 

odds of an accident being categorized as passenger if it involved a 
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Generation 4 Aircraft compared to Generation 1 Aircraft. Another 

interpretation of this coefficient would be an air carrier accident that 

involved a Generation 4 Aircraft is 4.16 times more likely to be a 

passenger accident compared to a cargo accident compared to 

Generation 1 Aircraft, while holding all other predictor variables 

constant. The odds of an accident involving a Generation 4 Aircraft 

(compared to Generation 1 Aircraft) being categorized as passenger 

(4.16) compared to the odds of an accident involving a Generation 3 

Aircraft (compared to Generation 1 Aircraft) being categorized as cargo 

(0.24) is interpreted as the odds ratio (
4.16

0.24
 ), or approximately 17.32.  

The 95% confidence interval listed in Table 15 indicates that 95% of the 

time, the odds ratio would vary between 7.73 and 38.81.  This can also 

be interpreted as 95% of the time, an air carrier accident that involved a 

Generation 4 Aircraft (compared to Generation 1 Aircraft) would be 

between 7.73 and 38.81 times more likely to be a passenger accident 

compared to a cargo accident. The width of this interval suggests low 

accuracy for parameter estimation. 

Simultaneous Analysis with the Predictor Variables Relevant 

to the Environmental Level of the SHELO Model. The third level of 

the SHELO model was the Environment, and this was defined as the 

internal and external factors in relation to the operation of an aircraft. 

(Edwards, 1972). After the removal of a variable due to 
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multicollinearity, a single predictor variable was categorized as 

Environment: Time of Day. The time-of-day variable was dichotomous, 

with night coded as “1” and day coded as “0.”. Therefore, the predictor 

variable used in this simultaneous regression was as follows: X15 = time 

of day. 

The full model was statistically significant, χ2(1) = 21.82, p < 

.01. The Pseudo-R2 (RL
2), recommended by Choen et al. (2003), was RL

2 

= .03. In the context of the current study, the full model provided a 

predictive gain of 3% over the null model (RLfull
2 = .03, df = 1). 

The full, simultaneous model with the single predictor variable 

relevant to the Environmental Level of the SHELO model is 

summarized in Table 16.  The full model logit (Li) for group 

membership in the criterion variable is represented by the equation Li = 

-0.58 + 0.42X15. X15 = Time of Day was statistically significant in 

relation to the criterion variable when in the presence of other 

predictors. 
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Table 16 

Summary of Logistic Regression Estimates for the Null and Simultaneous (Full) 

Models for Predictor Variables Relevant to the Environmental Level of the SHELO 

Model 

 Bi SE χ2 p 

Null Model     

Constant -0.69 0.09 63.42 <.01** 
Full Model     

Constant -0.58 0.09 41.16 <.01** 

X15 = Time of Day 0.42 0.09 21.77 <.01** 
 

Note. N = 594. RL
2 = .03, df = 1 for the full model. 

Bi = Logit; SE = Standard Error; χ2 = Chi Statistic; p = Probability. 

*p < .05. **p < .01. 

 X15 = Time of day. Air carrier accidents that occurred at Night 

(compared to accidents that occurred during the Day) had a statistically 

significant regression coefficient of B15 = 0.42.  This log odds can be 

expressed as an odd by calculating e0.42 = 1.52.  In the context of the 

current study, the odds of an accident being categorized as cargo 

increased significantly if this accident occurred at Night compared to an 

accident that occurred in the Day. More concretely, this result suggests 

that the odds of a cargo accident occurring increased by 52.8% if the 

accident occurred at Night (compared to an accident that occurred 

during the Day) compared to a passenger accident that occurred at Night 

(compared to an accident that occurred during the Day). The reciprocal, 

e-0.42 = 0.65 can be interpreted as a significant decrease in the odds of an 

accident being categorized as cargo if it occurred during the Day 

compared to an accident that occurred during the Night. The odds of an 
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accident occurring at Night (compared to an accident that occurred 

during the Day) being categorized as cargo (1.53) compared to the odds 

of an accident occurring at Night (compared to an accident that occurred 

during the Day) being categorized as passenger (0.65) is interpreted as 

the odds ratio (
1.53

0.65
 ), or approximately 2.34.  The 95% confidence 

interval listed in Table 17 indicates that 95% of the time, the odds ratio 

would vary between 1.63 and 3.33.  This can also be interpreted as 95% 

of the time, an air carrier accident that occurred at Night (compared to 

an accident that occurred during the Day) would be between 1.61 and 

3.39 times more likely to be a cargo accident compared to a passenger 

accident. The width of this interval suggests high accuracy for 

parameter estimation. 

Table 16 

Summary of Odds Ratios for Statistically Significant Predictor Variables Relevant to 

the Environmental Level of the SHELO Model 

Predictor Variables
 

Odds Ratios 95% CI p 

X15 = Day/night    

        Cargo vs Passenger 2.33 [1.63, 3.33] <0.01** 
 

Note. N = 594. 

CI = Confidence Interval. 

*p < .05. **p < .01. 

Simultaneous Analysis with the Predictor Variables Relevant 

to the Organizational Influences Level of the SHELO Model. The 

fourth level of the SHELO model was Organizational Influences, and 

this was defined as factors that exist within the structure or operations of 
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a company. (Chang & Wang, 2009). In the context of the current study, 

Organizational Influences can include regulations that govern the 

operation of an air carrier and the socioeconomic status of the country in 

which an air carrier is based. One predictor variable that was used in the 

current study was categorized as Organizational Influences: Location of 

an Operator. As explained earlier in this chapter, certain predictor 

variables were divided into more than 2 groups, which required dummy 

coding for proper analysis and interpretation. The Location of the 

Operator variable was split into 8 groups, with Africa selected as the 

reference group. Therefore, the predictor variables used in this 

simultaneous regression were as follows: X16 = Asia, X17 = CIS, X18 = 

Europe, X19 = LA, X20 = ME, X21 = NA, and X22 = Oceania. 

The full model was statistically significant, χ2(7) = 56.20, p < 

.01. The Pseudo-R2 (RL
2), recommended by Choen et al. (2003), was RL

2 

= .07. In the context of the current study, the full model provided a 

predictive gain of 7% over the null model (RLfull
2 = .07, df = 7). 

The full, simultaneous model with predictor variables relevant to 

the Organizational Influences level of the SHELO model is summarized 

in Table 18.  The full model logit (Li) for group membership in the 

criterion variable is represented by the equation Li = -1.66 – 0.38X16 – 

0.30X17 – 0.44X18 – 0.04X19 – 0.19X20 + 0.39X21 – 0.02X22.  Two 

predictor variables were statistically significant in relation to the 
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criterion variable when in the presence of other predictors: X18 = Europe 

(compared to Africa) and X21 = NA (compared to Africa). 

Table 17 

Summary of Logistic Regression Estimates for the Null and Simultaneous (Full) 

Models for Predictor Variables Relevant to the Organizational Influences Level of the 

SHELO Model 

 Bi SE χ2 p 

Null Model     
Constant -0.69 0.09 63.42 <.001 

Full Model     

Constant -1.66 0.94 3.14 0.08 

Operator Location     
X23 = Asia -0.38 0.21 3.24 0.07 

X24 = CIS -0.30 0.30 1.03 0.31 

X25 = Europe -0.44 0.21 4.29 0.04* 
X26 = Latin America -0.04 0.21 0.03 0.86 

X27 = Middle East -0.19 0.26 0.50 0.48 

X28 = North America 0.39 0.18 4.94 0.03* 

X29 = Oceania -0.02 0.28 0.00 0.95 
 

Note. N = 594. RL
2 = .07, df = 7 for the full model. 

Bi = Logit; SE = Standard Error; χ2 = Chi Statistic; p = Probability. 

CIS = Commonwealth of Independent States 

*p < .05. **p < .01. 

 X18 = Operators Located in Europe. Air carrier operators that are 

Located in the Europe (compared to Operators Located in the Africa) 

had a statistically significant regression coefficient of B18 = -0.44.  This 

log odds can be expressed as an odd by calculating e-0.44 = 0.64.  In the 

context of the current study, the odds of an accident being categorized 

as cargo decreased significantly if this accident involved an Operator 

that was Based in Europe (compared to an Operator Based in Africa). 

More concretely, this result suggests that the odds an air carrier accident 
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being categorized as cargo decreased by 44% if the operator involved in 

the accident was Based in Europe (compared to Africa-Based 

Operators) compared to passenger accidents with European-Based 

Operators (compared to NA-Based Operators). The reciprocal, e0.44 = 

1.55 can be interpreted as a significant increase in the odds of an 

accident being categorized as passenger if it did involve an Operator 

Based in Europe (compared to an Operator Based in Africa). The odds 

of an accident involving a European-Based Operator (compared to an 

African-Based Operator) being categorized as cargo (0.64) compared to 

the odds of an accident involving a European-based operator (compared 

to an African-based operator) being categorized as passenger (1.55) is 

interpreted as the odds ratio (
1.55

0.64
 ), or approximately 2.41.  The 95% 

confidence interval listed in Table 19 indicates that 95% of the time, the 

odds ratio would vary between 1.10 and 4.39.  This can also be 

interpreted as 95% of the time, an air carrier accident that involved a 

European-Based Operator (compared to an African-based operator) 

would be between 1.10 and 4.39 times more likely to be a passenger 

accident compared to a cargo accident. The width of this interval 

suggests high accuracy for parameter estimation. 
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Table 19 

Summary of Odds Ratios for Statistically Significant Predictor Variables Relevant to 

the Organizational Influences Level of the SHELO Model 

Predictor Variables
 

Odds Ratios 95% CI p 

Operator Location    

X18 = Europe    

        Passenger vs Cargo 2.41 [1.05, 5.56] <0.05* 
X21 = North America    

        Cargo vs Passenger 2.19 [1.10, 4.39] <0.05* 
 

Note. N = 594. 

CI = Confidence Interval. 

*p < .05. **p < .01. 

X21 = Operators Located in NA. Air carrier operators that are 

located in the NA region (compared to operators located in the Africa 

region), had a statistically significant regression coefficient of B21 = 

0.39.  This log odds can be expressed as an odd by calculating e0.39 = 

1.48.  In the context of the current study, the odds of an accident being 

categorized as cargo increased significantly if this accident involved an 

air carrier Based in NA (compared to an air carrier Based in Africa). 

More concretely, this result suggests that the odds of a cargo accident 

occurring increased by 48% if the accident involved an air carrier Based 

in NA (compared to an air carrier Based in Africa) compared to a 

passenger accident that involved an air carrier Based in NA (compared 

to an air carrier Based in Africa).  The reciprocal, e-0.39 = 0.68 can be 

interpreted as a significant decrease in the odds of an accident being 

categorized as passenger if it involved an air carrier Based in NA 

(compared to an air carrier Based in Africa). The odds of an accident 
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involving an Operator Based in NA (compared to an Operator Based in 

Africa) being categorized as cargo (1.48) compared to the odds of an 

accident involving an operator based in NA (compared to an air carrier 

based in Africa) being categorized as passenger (0.68) is interpreted as 

the odds ratio (
1.48

0.68
 ), or approximately 2.18.  The 95% confidence 

interval listed in Table 19 indicates that 95% of the time, the odds ratio 

would vary between 1.10 and 4.39.  This can also be interpreted as 95% 

of the time, an air carrier accident involving an Operator Based in NA 

(compared to an Operator Based in Africa) would be between 1.10 and 

4.39 times more likely to be a cargo accident compared to a passenger 

accident. The narrow width of this interval suggests high accuracy for 

parameter estimation. 

Results of Hypotheses Testing 

The research questions and corresponding research hypotheses 

were listed in Chapter 1 of the current study. Each of the null 

hypotheses have been restated below and tested for the decision to reject 

or fail to reject the hypothesis using the data discussed earlier in this 

chapter. It should be restated to the reader that one of the groups within 

the variable X = Aircraft Manufactured in Asia, was removed during the 

outlier screening and was not included in the primary analysis. 
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Null Hypothesis 1 

When examined from a simultaneous perspective, the variable 

set related to the Software level of the SHELO model will not have a 

statistically significant influence on group membership in either 

passenger or cargo air carrier accidents. The simultaneous model for 

predictor variables categorized as the Software level of the SHELO 

model was significant, χ2 (7) = 47.22, p < .01. Given the significance of 

the overall model, the parameters within the model were able to be 

examined for statistical significance. Two variables were statistically 

significant: X4 = Landing (-0.63, p <.0001) and X7 = Weight Factor 

(0.46, p = 0.02). The corresponding odds ratios for the Landing Phase of 

Flight (OR = 3.51), and Weight Factor (OR = 2.53) differed 

significantly from 1.00, null Hypothesis 1 was rejected. 

Null Hypothesis 2 

When examined from a simultaneous perspective, the variable 

set related to the Hardware level of the SHELO model will not have a 

statistically significant influence on group membership in either 

passenger or cargo air carrier accidents. The simultaneous model for 

predictor variables categorized as the Hardware level of the SHELO 

model was significant, χ2 (7) = 98.91, p < .01. Given the significance of 

the overall model, the parameters within the model were able to be 

examined for statistical significance. Four variables were statistically 
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significant: X9 = Aircraft Manufactured in Europe (-0.31, p = .01), X11 = 

Generation 2 (-0.87, p = <.01), X12 = Generation 3 (-0.84, p = <.01) and 

X13 = Generation 4 (-1.43, p < .01). The corresponding odds ratios for 

Aircraft Manufactured in Europe (OR = 1.87), Generation 2 (OR = 

5.73), Generation 3 (OR = 5.40) and Generation 4 (OR = 17.32) differed 

significantly from 1.00, null Hypothesis 2 was rejected. 

Null Hypothesis 3 

When examined from a simultaneous perspective, the variable 

set related to the Environmental level of the SHELO model will not 

have a statistically significant influence on group membership in either 

passenger or cargo air carrier accidents. The simultaneous model for 

predictor variables categorized as the Environmental level of the 

SHELO model was significant, χ2 (1) = 21.82, p < .01. Given the 

significance of the overall model, the parameters within the model were 

able to be examined for statistical significance. One variable was 

statistically significant: X15 = Time of Day (0.42, p < .0001). The 

corresponding odds ratio found in for the Time of Day (OR = 2.33) 

differed significantly from 1.00, null Hypothesis 3 was rejected. 

Null Hypothesis 4 

When examined from a simultaneous perspective, the variable 

set related to the Organizational Influences level of the SHELO model 

will not have a statistically significant influence on group membership 
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in either passenger or cargo air carrier accidents. The simultaneous 

model for predictor variables categorized as the organizational 

influences level of the SHELO model was significant, χ2 (7) = 56.20, p 

< .01. Given the significance of the overall model, the parameters within 

the model were able to be examined for statistical significance. Two 

variables were statistically significant: X18 = Operators Located in 

Europe (-0.44, p = .04) and X21 = Operators Located in NA (0.39, p = 

.03). The corresponding odds ratios for the Operators Based in Europe 

(OR = 2.41) and Operators Based in NA (OR = 2.19) differed 

significantly from 1.00, null Hypothesis 4 was rejected. 
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Chapter 5 

Conclusions, Implications, and Recommendations 

Summary of Study 

The purpose of this study was to identify factors that could distinguish 

between two types of air carrier accidents: passenger and cargo. Several factors 

were identified through previous studies and related literature and were categorized 

according to levels of the SHELO model (Edwards, 1972; Chang & Wang, 2009) 

apart from the Liveware level. The following factors were categorized in the 

Software level of the SHELO model: Phase of Flight, LOC, CFIT, and Weight 

Factor. The following factors were categorized in the Hardware level of the 

SHELO model: Aircraft Manufacturer, Aircraft Generation, and Mechanical 

Failure. The following factor was categorized in the Environmental level of the 

SHELO model: Time of Day. Lastly, the following factor was categorized in the 

Organizational Influences level of the SHELO model: Operator Location. After all 

factors were identified and categorized, they were treated as predictor variables and 

used to conduct several logistic regression analyses. Each analysis used the same 

dichotomous group membership criterion variable: Passenger or Cargo. 

 The study utilized a causal-comparative design as pre-existing air carrier 

accident data was used to identify factors that determined group membership 

between Passenger and Cargo. Specifically, a retroactive causal-comparative design 

was used as the group membership of Passenger or Cargo was represented in the 

single criterion variable used in all analyses. This particular design was appropriate 
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as the membership of Passenger or Cargo for each air carrier accident had already 

occurred. 

 The target population for this study was every commercial passenger and 

cargo air carrier accident globally, as the dataset used for all analyses contained 

international air carrier accident data. According to IATA, over 1,100 air carriers 

exist globally. With respect to the ratio of passenger to cargo air carrier operations, 

the ATCA determined that approximately 8% of air carrier operations in the United 

States were cargo and 92% were passenger. The accessible population for this 

study consisted of any air carrier accident whose investigation led to a published 

final accident report that was made publicly available. All archival data collected 

for this study was obtained through the ASN from the years 2002 through 2019. In 

total, 3,806 aircraft accidents occurred globally within this time frame, but only 594 

accidents were considered in-scope air carrier accidents with published final 

accident reports.  The final sample size of 594 remained consistent throughout 

preliminary and primary data analyses, as described in Chapter 4. 

Summary of Findings 

 Before the primary analysis began, a preliminary analysis was conducted to 

produce a “clean” dataset and identify any potential outliers. During the 

preliminary analysis, no instances of missing data were identified and all of the 

assumptions for logistic regression were met.  Four cases were determined to be 

outliers and were removed from the final dataset. 
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 Before the findings are summarized, it is important to understand the 

method of dummy coding that was used during data organization and analysis. All 

of the predictor variables in the current study were categorical.  Some of these 

variables were dichotomous, such as Time of Day (Day or Night) or Weight Factor 

(yes or no). This allowed for a direct comparison of one group to another by coding 

data with a 0 or a 1. Time of day followed this coding scheme (day = 0, night = 1). 

If an accident occurred at Night, the dummy coding allowed for the influence this 

predictor had on the criterion variable to be interpreted as a comparison to the same 

accident if it had occurred during the Day. However, several of the predictor 

variables had more than two groups, such as Phase of Flight (Takeoff, Climb, 

Cruise, Approach, and Landing). Therefore, one of these groups had to be selected 

as the reference group which would provide a direct comparison to all other groups 

within this single variable. The reference group that was selected and the rationale 

behind the selection for each variable was described in Chapter 3. 

 Certain levels of the SHELO model, such as Environment or Organizational 

Influences, required specific data that would have been difficult to extract from the 

large number of aircraft accident reports that made up the current study’s sample. 

Instead, more general accident factors were selected which on their own, would 

have been difficult to generalize to the target population. For example, Time of Day 

is an accident factor that distinguishes between daytime and nighttime. If this 

variable can distinguish between passenger and cargo air carrier accidents with a 

degree of statistical significance, it would not be possible to identify the specific 
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causal factor between the two operators based on this alone.  Flying at nighttime 

introduces risks such as low–light conditions and the potential for flight crew 

fatigue, but additional data would be required before inferences like that could be 

made.  Location of the Operator is a second variable that would require more 

specific data before inferences could be made.  The eight global regions used 

within this variable provided some sort of window into the differences between 

passenger and cargo accidents between these regions, but generalizability to the 

target population was very limited. 

 The primary analysis was conducted, which was made up of five 

simultaneous logistic regression analyses. The first analysis regressed the criterion 

variable on all predictor variables. This analysis was statistically significant and 

allowed for closer inspection of the significant predictor variables: the Landing 

Phase of Flight (compared to the Cruise Phase of Flight), Aircraft Manufactured in 

the CIS (compared to Aircraft Manufactured in NA), Generation 2 Aircraft 

(compared to Generation 1 Aircraft), Generation 3 Aircraft (compared to 

Generation 1 Aircraft), Generation 4 Aircraft (compared to Generation 1 Aircraft), 

Time of Day, and Operators Based in the CIS (compared to Operators Based in 

Africa). 
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The results indicated: 

• Accidents that occurred in the Landing Phase of Flight (compared to the 

Cruise Phase of Flight) were 1.83 times more likely to be categorized as a 

passenger accident than a cargo accident. 

• Accidents that involved Aircraft Manufactured in the CIS (compared to 

Aircraft Manufactured in NA) were 2.05 times more likely to be a cargo 

accident than a passenger accident. 

• Accidents that involved a Generation 2 aircraft (compared to a Generation 1 

aircraft) were 2.32 times more likely to be a passenger accident than a cargo 

accident. 

• Accidents that involved a Generation 3 aircraft (compared to a Generation 1 

aircraft) were 2.26 times more likely to be a passenger accident than a cargo 

accident. 

• Accidents that involved a Generation 4 aircraft (compared to a Generation 1 

aircraft) were 4.06 times more likely to be a passenger accident than a cargo 

accident. 

• Accidents that occurred at Night were 1.79 times more likely to be a cargo 

accident than a passenger accident. 

• Accidents that involved Operators Based in the CIS (compared to Operators 

Based in Africa) were 2.46 times more likely to be a passenger accident 

than a cargo accident. 
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 Next, the first of four smaller simultaneous analyses specific to the levels of 

the SHELO model were performed. The first analysis regressed the same group 

membership criterion variable on the predictor variables that were categorized as 

Software. The full model was statistically significant, which allowed for closer 

inspection of the predictor variables. Two factors were statistically significant: the 

Landing phase of Flight (compared to the Cruise phase of Flight), and accidents 

that involved a Weight Factor. The results indicated: (a) accidents that occurred in 

the Landing Phase of Flight (compared to the Cruise Phase of Flight) were 1.87 

times more likely to be categorized as a passenger accident than a cargo accident 

and (b) accidents that involved a Weight Factor (compared to accidents that did not 

involve a Weight Factor) were 1.59 times more likely to be a cargo accident than a 

passenger accident. 

The second simultaneous analysis regressed the criterion variable on all 

predictor variables categorized under the Hardware level of the SHELO model. The 

full model was statistically significant, which allowed for closer inspection of the 

predictor variables. Four factors were statistically significant: Aircraft 

Manufactured in Europe (compared to Aircraft manufactured in NA), Generation 2 

Aircraft (compared to Generation 1 Aircraft), Generation 3 Aircraft (compared to 

Generation 1 Aircraft), and Generation 4 Aircraft (compared to Generation 1 

Aircraft). The results indicated: (a) accidents that involved Aircraft Manufactured 

in Europe (compared to Aircraft that were Manufactured in NA) were 1.37 times 

more likely to be a passenger accident than a cargo accident, (b) accidents that 
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involved a Generation 2 Aircraft (compared to a Generation 1 Aircraft) were 2.39 

times more likely to be a passenger accident than a cargo accident, (c) accidents 

that involved a Generation 3 Aircraft (compared to a Generation 1 Aircraft) were 

2.33 times more likely to be a passenger accident than a cargo accident, and (d) 

accidents involved a Generation 4 Aircraft (compared to a Generation 1 Aircraft) 

were 4.16 times more likely to be a passenger accident than a cargo accident. 

The third simultaneous analysis regressed the criterion variable on the 

single predictor variable categorized under the Environment level of the SHELO 

model. The full model was statistically significant, which allowed for closer 

inspection of the predictor variable. The single factor under this level was 

statistically significant: Time of Day. The results indicated that accidents that 

occurred at Night (compared to accidents that occurred during the Day) were 1.53 

times more likely to be a cargo accident than a passenger accident. 

The fourth simultaneous analysis regressed the criterion variable on all 

predictor on all predictor variables categorized under the organizational influences 

level of the SHELO model. The full model was statistically significant, which 

allowed for closer inspection of the predictor variables. Two factors were 

statistically significant: accidents involving an Operators Based in Europe 

(compared to an Operator Based in Africa) and accidents involving an Operator 

Based in NA (compared to an Operator Based in Africa) and. The results indicated: 

(a) accidents that involved an Operator based in Europe (compared to an Operator 

based in Africa) were 1.55 times more likely to be a passenger accident than a 
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cargo accident and (b) accidents that involved an Operator Based in NA (compared 

to an Operator Based in Africa) were 1.48 times more likely to be a cargo accident 

than a passenger accident. 

Table 20 summarizes the current study’s four research hypotheses with the 

decision to reject or fail to reject each null hypothesis. As previously discussed, all 

four simultaneous analyses were statistically significant, resulting in the rection of 

all four null hypotheses. 
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Table 20 

Summary of the Results of Hypothesis 

Testing 
  

Research Hypothesis 
Null 

Hypothesis 

Decision 

Regarding 

Null 

Hypothesis 

H1: When examined from a simultaneous 

perspective, the variable set related to the 

software factor of the SHELO model is 

predicted to have a statistically significant 

influence on group membership in either 

passenger or cargo air carrier accidents. 

Δχ2 = 0 Rejected 

H2: When examined from a simultaneous 

perspective, the variable set related to the 

hardware factor of the SHELO model is 

predicted to have a statistically significant 

influence on group membership in either 

passenger or cargo air carrier accidents. 

Δχ2 = 0 Rejected 

H3: When examined from a simultaneous 

perspective, the variable set related to the 

environment factor of the SHELO model is 

predicted to have a statistically significant 

influence on group membership in either 

passenger or cargo air carrier accidents. 

Δχ2 = 0 Rejected 

H4: When examined from a simultaneous 

perspective, the variable set related to the 

organizational influences factor of the 

SHELO model is predicted to have a 

statistically significant influence on group 

membership in either passenger or cargo air 

carrier accidents. 

Δχ2 = 0 Rejected 

 

Conclusions and Inferences 

 The following section provides inferences based on the outcome of the 

statistical analyses that regressed the group membership criterion variable on sets 

of predictor variables according to the levels of the SHELO model to distinguish 

between passenger and cargo air carrier accidents. The four original research 
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questions are provided, as well as plausible explanations for the outcome of each 

analysis. 

Research Questions 

Research Question 1: To what extent does the variable set related to the 

software level of the SHELO model distinguish between passenger and cargo 

air carrier accidents?  

The results of the simultaneous logistic regression relative to Software revealed that 

two predictor variables: X4 = Landing Phase of Flight (compared to the Cruise 

Phase of Flight) and X7 = Weight Factor, were significant in distinguishing between 

passenger and cargo air carrier accidents. 

 X4 = Landing Phase of Flight. Within the current study sample, 57% of 

passenger air carrier accidents occurred during the landing compared to 30% of 

cargo air carrier accidents. The landing phase of flight has historically had the 

highest frequency of accidents for all types of commercial operations (Airbus, 

2022), but this does not explain how this factor can distinguish between passenger 

and cargo accidents. The results become more meaningful when the landing phase 

of flight is analyzed specifically for accidents that were categorized as LOC. 

Results from Lacagnina (2006) concluded that, of the landing-phase accidents 

attributed to LOC, there is a higher frequency of accidents for passenger air carriers 

compared to cargo air carriers. Within the current study sample, 70% of passenger 

air carrier accidents that occurred during landing were categorized as LOC, 

compared to only 42% for cargo accidents. Lacagnina did not provide a plausible 
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reason for the higher frequency of LOC accidents during landing for passenger air 

carriers compared to cargo carriers in his study. This predictor will require 

additional data from accident factors related to LOC during landing in order to infer 

why there is a significant difference in accidents during landing for passenger and 

cargo air carriers. 

X7 = Weight Factor. Within the current study sample, 9% of cargo air 

carrier accidents involved a Weight Factor, compared to only 3% of passenger air 

carrier accidents. Cargo air carriers suffer a higher frequency of weight issues as a 

factor from shifting cargo or improper loading procedures compared to passenger 

air carriers (Roelen et al., 2000; Lacagnina, 2006). Within the current dataset, 33% 

of cargo accidents that occurred on takeoff involved a weight factor, compared to 

only 9% for passenger accidents. 

 If an aircraft were to takeoff overweight or out of balance, this would likely 

result in a LOC. Data from the current dataset supports the relationship between 

these two factors: out of 31 accidents that were categorized as involving a Weight 

Factor, 74% ended in a LOC. However, an accident being categorized as LOC was 

not a significant variable in distinguishing between passenger and cargo air carrier 

accidents and neither was the Takeoff Phase of Flight (compared to the Cruise 

Phase). This was likely due to the accidents within the current dataset being 

categorized as LOC regardless of the phase of flight in which the accident took 

place. Future studies can separate LOC into a LOC inflight (LOC-I) and LOC on 

the ground (LOC-G).  Separating these two types of accidents will allow 
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researchers to more closely investigate the relationships between Weight Factor, 

Phase of Flight and various types of LOC. 

Research Question 2: To what extent does the variable set related to the 

hardware level of the SHELO model distinguish between passenger and cargo 

air carrier accidents?  

The results of the simultaneous logistic regression relative to hardware 

revealed that four predictor variables were significant in distinguishing between 

passenger and cargo air carrier accidents: X9 = Aircraft Manufactured in Europe 

(compared to Aircraft Manufactured in NA), X11 = Generation 2 (compared to 

Generation 1), X12 = Generation 3 (compared to Generation 1), and X13 = 

Generation 4 (compared to Generation 1). See Table 15 for details. The variable, X8 

= aircraft Manufactured in the CIS (compared to aircraft manufactured in NA) was 

only significant in the simultaneous analysis that regressed the criterion variable on 

all predictor variables. This variable was not significant in the smaller simultaneous 

analysis that only regressed the criterion variable on hardware-related predictors. 

This indicates a mediating effect with another variable, which is discussed later 

within this chapter. 

X9 = Aircraft Manufactured in Europe. Within the current study sample, 

33% of aircraft involved in passenger accidents were manufactured in Europe, 

compared to only 19% of aircraft involved in cargo accidents. A plausible 

explanation of this difference is that passenger air carriers operate more European-

manufactured aircraft compared to cargo air carriers.  
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Airbus (2018) claimed that of the aircraft that made up Generation 4, 78% 

of them were manufactured by Airbus. Even though Airbus is the world’s largest 

air carrier manufacture, Baily (2021) stated that Airbus had not sold an aircraft to a 

cargo air carrier in the previous 6 years, and this is in contrast to Boeing, the 

world’s largest air carrier manufacturer, who has delivered more than 730 aircraft 

to cargo air carriers, with more orders yet to be filled.  Baily gave several reasons 

as to why cargo operators prefer Boeing aircraft over Airbus, including wider 

fuselages that allow for greater cargo capacity and a more developed conversion 

program to modify existing passenger aircraft into freighters. 

X8 = Aircraft Manufactured in the CIS. In the large simultaneous analysis 

that regressed the criterion variable against predictor variables from all four levels 

of the SHELO model, aircraft involved in air carrier accidents that were 

Manufactured in the CIS became a significant predictor. Aircraft manufactured in 

the CIS were more likely to be involved in a cargo accident compared to a 

passenger accident due to their common use by cargo air carriers. This is supported 

by Kharoufah et al. (2018) who stated that the observed accident frequencies for 

three manufacturers based in the CIS (Tupolev, Antonov, and Ilyushin) were much 

higher than what was expected based on the small amount of these aircraft that 

exist within the air carrier industry. These three manufacturers have relatively poor 

safety records due to the collapse of the Soviet Union in the early 1990s causing the 

aviation industry to collapse under hyperinflation.  This severely limited the 

number of CIS-manufactured aircraft in operation, thus making the ability to 
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maintain these aircraft difficult (Loffe, 2011). Kharoufah et al. went on to state that 

CIS-Manufactured Aircraft are most commonly used by cargo air carriers, 

providing evidence as to why CIS-Manufactured Aircraft was significant in 

distinguishing between passenger than cargo accidents.  An explanation of why this 

factor was significant in the presence of all other predictor variables, but not in the 

regression for hardware-related factors is explained in the implications section of 

this chapter. 

X11, 12, & 13 = Aircraft Generation. Results indicated that aircraft from 

Generations 2, 3, and 4 that were involved in air carrier accidents (compared to 

aircraft from Generation 1) were more likely to be categorized as a passenger 

accident than a cargo accident respectively.  Both Roelen et al. (2000) and Airbus 

(2022) stated that technological advancements in newer-generation aircraft have 

reduced air carrier accident rates over the past several decades. Roelen et al. 

explained that the higher frequency of cargo accidents involving Generation 1 

aircraft could be causal to the higher overall accident rate for cargo operations. 

Therefore, it is not inferred that Generation 1 aircraft suffer more accidents than 

newer generation aircraft to a significant degree. Instead, it is inferred that cargo air 

carriers operate a higher percentage of Generation 1 aircraft compared to passenger 

air carriers, which makes all aircraft generations significant distinguishers between 

these two types of operations. This is supported by accident data within the current 

study sample: 20% of the cargo accidents involved a Generation 1 aircraft 

compared to less than 1% of passenger accidents. 
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Cummins (2020) provides an explanation for why passenger air carriers 

choose to purchase newer-generation aircraft compared to cargo air carriers. 

Passenger air carriers often operate shorter-haul flights within the same domestic 

region, increasing the total number of flights per aircraft and increasing the 

frequency of takeoffs and landings. These two phases of flight cause the most wear 

and tear on an aircraft, compounded with flying a greater number of operations per 

aircraft means that passenger aircraft will require more maintenance compared to 

cargo aircraft. It would be more beneficial to utilize newer generation aircraft with 

a greater availability of spare parts compared to older generation aircraft that may 

have been out of production for several decades. In addition, the customer 

perception of passenger air carriers is important to consider. Cummins also stated 

that an airline passenger will be concerned with the age of the aircraft they are 

flying on, which influences passenger air carriers to purchase newer aircraft and 

decrease the average fleet age of their aircraft. 

Research Question 3: To what extent does the variable set related to the 

Environment level of the SHELO model distinguish between passenger and 

cargo air carrier accidents? The results of the simultaneous logistic regression 

relative to Environmental factors revealed that a single predictor variable, X15 = 

Time of Day, was significant in distinguishing between passenger and cargo air 

carrier accidents. See Table 17 for details. 

X15 = Time of Day. Results indicated that air carrier accidents that occurred 

at Night (compared to air carrier accidents that occurred during the Day) were more 
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likely to be categorized as a cargo accident than a passenger accident. Within the 

current study sample, 28% of passenger air carrier accidents occurred at night while 

47% of cargo air carrier accidents occurred at night. One plausible explanation is 

that there is a higher percentage of cargo operations that take place at night 

compared to passenger operations. Lacagnina (2006) stated that more than 50% of 

cargo operations take place at night, while approximately 20% of passenger 

operations take place at night. Operating at night means flying in conditions of 

lower light, which can increase the likelihood of CFIT. An accident categorized as 

CFIT was a variable in the current study, but it was not significant in distinguishing 

between passenger and cargo accidents. A high percentage of nighttime operations 

also increases pilot fatigue, caused by flying outside of the natural sleep cycle. A 

lack of sleep by flight crew members can result in many hazards to the safety of the 

flight, including a loss of situational awareness or a failure to follow SOPs and 

checklists (Gander et al., 1996; Lacagnina, 2006). The reader should be cautioned 

that the Time of Day variable only captures the time in which an accident took 

place. While inferences related to phenomena that occur more frequently at night 

compared to the day can be made, recommendations cannot be made to the target 

population without additional data on more specific accident factors. 

Research Question 4: To what extent does the variable set related to the 

organizational influences level of the SHELO model distinguish between 

passenger and cargo air carrier accidents? Only two predictor variables were 

statistically significant: X25 = Air carriers that are based in Europe (compared to air 
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carriers based in Africa), and X28 = Air carriers that are based in NA (compared to 

air carriers based in Africa). See Tables 19 and 20. 

X18 = Operators Based in Europe. Within the current study sample, 21% 

of passenger accidents involved air carriers based in Europe. In comparison, only 

8% of cargo accidents involved air carriers based in Europe. IATA (2021) provided 

traffic data on the 10 largest cargo operators in the world, and only a single 

operator was from Europe: Cargolux, based in Luxembourg, accounted for 7% of 

global cargo traffic in 2021. The disproportionally high number of European-based 

passenger operators compared to European-based cargo operators makes this 

variable significant in distinguishing between these two types of accidents, with 

accidents involving a European-based air carrier being statistically more likely to 

be categorized as passenger. While this variable was statistically significant in 

distinguishing between passenger and cargo accidents, there is little practical 

significant. The large percentage of passenger accidents compared to the low 

number of cargo accidents within Europe can be explained by the difference in 

percentage of annual passenger and cargo operations. 

Europe accounted for 23.7% of the global air carrier traffic in 2021 (IATA, 

2021). Passenger flights that both departed and arrived within Europe accounted for 

21.1% of global passenger traffic in 2021.  In comparison, only 2.3% of global 

cargo traffic departed and arrived within the European region. This extreme 

difference in the percentage of global passenger and cargo operations that took 
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place within Europe in 2021 in addition to a lack of major cargo operators being 

based in Europe explains the difference in accident frequency counts. 

X21 = Operators Based in NA. Within the current study sample, 26% of 

passenger air carrier accidents involved Operators Based in NA and 55% of cargo 

accidents involved Operators Based in NA. Passenger air carrier operations arriving 

and departing NA accounted for 25% of global passenger traffic in 2021 (IATA, 

2021). In comparison, cargo air carrier operations arriving and departing NA 

accounted for more than 45% of global cargo traffic in 2021. The operations of the 

two largest cargo air carriers, Federal Express and UPS, both of which are 

operators based in NA, far outweighs the operations from cargo air carriers based in 

other regions. These two operators alone made up 34% of the global cargo air 

carrier traffic in 2021. However, this does not infer that NA-based operators have 

higher accident rates compared to other air carriers due to poorer safety records. 

Instead, the higher accident rate of cargo compared to passenger air carriers and the 

majority of cargo air carrier operations being based in NA make this a statistically 

significant distinguisher between the two types of accidents. However, this does not 

provide practical significance for distinguishing between passenger and cargo air 

carrier accidents. 

Implications 

 The following section discusses implications of the results in terms of its 

relation to the theoretical grounding in the SHELO model, past studies, and 

practice within the air carrier industry. The inferences discussed in the previous 
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section will be supported by related literature in order to provide a more thorough 

explanation of the results of the current study and how they can differentiate 

between passenger than cargo air carrier accidents. 

Implications Relative to the SHELO Model. 

 The SHEL model was originally proposed by Edwards (1972) and 

contained four levels: Software, Hardware, Environmental Factors, and Liveware. 

This model has been frequently used in the aviation safety to organize factors from 

aircraft accidents and analyze them according to the four individual levels. The 

current study was grounded in the more the more recent SHELO model, proposed 

by Chang and Wang (2009), who added a fifth level to the model: Organizational 

Influences. In addition, the Liveware model was considered out of scope for the 

current study as the purpose was limited to analyzing predictor variables in the 

absence of factors related to human beings. The results of the current study support 

using the various levels of the SHELO model for identifying factors that can 

distinguish between two types of air carrier accidents: passenger and cargo. 

 In the context of the current study, it was hypothesized that loading cargo 

and ensuring proper weight and balance of a freighter aircraft required different 

SOPs and checklists compared to those used for loading passengers. Failure to 

follow these SOPs or checklists could lead to an increase in LOC accidents as an 

aircraft changes configuration between phases of flight. The factors in the current 

study that were categorized under the Software level of the SHELO model 

accounted for a predictive gain of approximately 6% over the null model. A 
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researcher will be 6% more likely in successfully distinguishing between two types 

of accidents when utilizing factors categorized in this study as Software compared 

to an analysis absent of these predictors. 

 The factors in the current study that were categorized under the Hardware 

level of the SHELO model accounted for a significant predictive gain of 

approximately 13% over the null model. This level of the SHELO model accounted 

for more than twice the predictive gain compared to the Software level of the 

SHELO model. Therefore, factors categorized as Hardware are of particular interest 

to a researcher trying to distinguish between passenger and cargo air carrier 

accidents. This implies that the significant differences between the two types of 

accidents are closely related to the properties of the aircraft involved, such as 

Manufacturer and Aircraft Generation. 

 The Environmental and Organization Influences levels of the SHELO both 

accounted for predictive gains of approximately 3% compared to the null model. 

The inclusion of the variables categorized under these two levels was significant 

and should be considered for future research that requires identifying factors to 

distinguish between two types of aircraft accidents. However, the practical 

significance of these two levels is not as straight-forward in the context of aviation 

research. The variable, Time of Day, was significant in distinguishing between 

passenger and cargo air carrier operations as hypothesized. The statistical 

significance of the Time of Day variable warrants future research into more specific 

accident factors that distinguish between daytime operations and nighttime 
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operations. On its own, the Time of Day variable does not provide practical 

significance in distinguishing between passenger and cargo accidents. While past 

research, such as Gander et al. (1996) identifies flight crew fatigue as a greater 

threat to cargo air carrier safety compared to passenger air carrier safety, additional 

data beyond the scope of the current study is required to support those claims. The 

Operator Location variable is similar in which statistical significance does not 

translate to practical significance. As previously discussed, the disproportionally 

high volume of cargo traffic in NA and the disproportionally high volume of 

passenger traffic in Europe are enough to make this variable significant in 

distinguishing between passenger and cargo accidents. 

 Overall, the SHELO model should be used in the context of aviation 

research when analyzing factors. The variables identified within the current study 

accounted for a predictive gain of 26% over the null model when analyzed 

simultaneously, or when not organized into the various SHELO levels. When 

organized into the various levels of the SHELO model, a predictive gain of 32% 

over the null model is accumulated.  This 32%, compared to the 26% predictive 

gain when analyzed simultaneously, means that there is only a 6% overlap between 

the four levels of the SHELO model within the current study. This supports the 

inclusion of each of these four SHELO levels in future research instead of only 

analyzing accident factors in a simultaneous manner. 

 Lastly, certain predictor variables become significant while absent of other 

predictor variables. For example, the variable Weight Factor was only significant 
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when analyzed in the presence of other Software variables.  Possible interactions 

with variables from the Hardware and Organizational Influences levels caused 

Weight Factor to lose its significance and was, absent from further analysis. In 

comparison, some predictor variables become significant while in the presence of 

other predictors. CIS-Manufactured Aircraft and Operators Based in the CIS were 

categorized as Hardware and Organizational Influences respectively. Neither 

variable was statistically significant in their respective levels. However, when 

analyzed simultaneously and within the presence of all other predictors, their 

negative mediating effect caused each variable to become significant. 

Implications Relative to Prior Research 

 The following section recalls prior research, discussed in Chapter 2 of the 

current study, and relates the findings of those studies to the results and inferences 

discussed in the previous section. Related literature has been organized based upon 

the four levels of the SHELO model: Software, Hardware, Environment, and 

Organizational Influences. The statistically significant predictor variables from 

each of the four simultaneous logistic regressions, one for each level of the SHELO 

model, are discussed in terms of their relation to prior research. 

Software. The Landing Phase of Flight was a factor that significantly 

distinguished between passenger and cargo air carrier accidents. This is not in line 

with Roelen et al. (2000) who found no significant influence of Phase of Flight on 

distinguishing between passenger and cargo accidents.  However, Lacagnina (2006) 

did find a significant difference between the Phases of Flight, but only when 
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analyzing LOC accidents. Lacagnina found that cargo accidents suffered a higher 

frequency of LOC accidents on takeoff while passenger accidents suffered a higher 

frequency of LOC accidents during landing. Accidents categorized as LOC was a 

predictor variable within the current study but was found to not significantly 

distinguish between passenger and cargo accidents. This was due to the frequency 

of LOC accidents per operator being almost equal: 67% of passenger air carrier 

accidents were categorized as LOC compared to 61% for cargo air carrier 

accidents. However, analyzing LOC per phase of flight as recommended by 

Lacagnina yields more practical results. LOC accidents in cargo air carrier 

accidents on takeoff is hypothesized to be due to Weight Factors, which is 

discussed in the next section.  

Weight Factor was significant in distinguishing between passenger and 

cargo accidents. This was supported by Roelen et al. (2000) who found that cargo 

air carriers suffer a higher frequency of accidents categorized as being “cargo 

related,” which included all instances of shifting cargo or aircraft that have been 

improperly loaded. Lacagnina (2006) supports these findings by relating an 

overweight or unbalanced aircraft to a LOC accident. Lacagnina connected Weight 

Factor to cargo air carrier accidents by explaining how an overweight or improperly 

loaded aircraft will suffer a LOC during the earliest Phase of Flight: Takeoff. The 

relationship between LOC, Weight Factor, and Takeoff and the ability for weight 

factor to distinguish between passenger and cargo accidents are all supported by the 

current study. 
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Hardware. Aircraft Manufactured in the CIS and Europe were significant 

factors in distinguishing between passenger and cargo air carrier accidents. It was 

more likely for an air carrier accident that involved an aircraft Manufactured in 

Europe to be a passenger accident compared to a cargo accident. This is supported 

by Kharoufah et al. (2018) who analyzed the accident frequencies of Europe’s 

largest air carrier manufacturer, Airbus, while controlling for the considerable 

number of these aircraft currently in use.  Kharoufah et al. concluded that Airbus 

produces reliable aircraft with few hardware-related issues, based on the high 

volume of Airbus aircraft in use compared to a lower-than-expected accident 

frequency. In addition, Airbus aircraft are used predominantly by passenger air 

carriers, thus supporting the finding from the current study that it is more likely for 

a passenger accident to involve a European-Manufactured Aircraft compared to a 

cargo accident.  In contrast, Kharoufah et al. observed a higher-than-expected 

accident frequency for aircraft Manufactured in the CIS compared to the very low 

number of these aircraft currently in use.  Kharoufah et al. concluded that CIS-

Manufactured Aircraft suffer more maintenance-related issues, increasing the 

accident frequency. This is supported by data from the current study as it is more 

likely for an accident involving a CIS-manufactured aircraft to be cargo compared 

to passenger. 

Aircraft Generation was the final significant factor related to hardware that 

distinguished between passenger and cargo air carrier accidents. This is supported 

by Roelen et al. (2000) who found that cargo air carriers operate a higher number of 
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Generation 1 aircraft (compared to newer generation aircraft operated 

predominantly by passenger air carriers) based on the low acquisition cost and on 

the reduced wear and tear from less-frequent takeoffs and landings of Generation 1 

aircraft.  As previously discussed, passenger air carriers operate a much higher 

number of newer-generation aircraft, thus supporting the finding that it is more 

likely for accidents involving newer-generation aircraft to be passenger compared 

to cargo. The current study also expanded upon related literature by including 

Generation 4 aircraft into the analysis, which were not being manufactured at the 

time of Roelen et al.’s study. Information on Generation 4 was provided by Airbus 

(2018) who also supported the implication that more of their newer generation 

aircraft are used predominantly by passenger air carriers, thus being able to 

distinguish between passenger and cargo operators. 

Environment. Time of Day was statistically significant in distinguishing 

between passenger and cargo air carrier accidents, with accidents that occurred at 

night being more likely to be cargo compared to passenger. This was supported by 

Roelen et al. (2000) and Lacagnina (2006) who both stated that more than half of 

cargo operations take place at night, compared to only 20% of passenger 

operations. However, data from the current study was only able to support the 

higher frequency of cargo accidents that occurred at nighttime and did not offer 

data as to the cause of these nighttime accidents. Taking additional data from the 

current dataset into consideration reveals that the expected frequency of nighttime 

passenger accidents was higher than the expected frequency for cargo accidents. 
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Out of 594 total accidents, about 33% were cargo. Lacagnina (2006) stated that 

roughly 50% of cargo operations take place at night. Multiplying these values 

together gives us an expected accident frequency of 98 for the date range of 2002 

through 2019. However, the actual accident frequency was 93. Passenger accidents 

made up roughly 67% of the total number of accidents in the dataset, 20% of which 

typically take place at night according to Lacagnina. This gives us an expected 

accident rate of 80, while the actual accident rate was 109 within the context of the 

current study. Additional data from each accident that occurred at nighttime will be 

required if inferences are to be made about causal factors between passenger and 

cargo air carrier accidents that only occur at night. 

Implications Relative to Practice 

 The statistically significant results of the current study do have practical 

implications within the air carrier industry. The first significant Software related 

factor was the Landing Phase of Flight. Results from the current study and past 

literature do not provide a plausible explanation as to why it is more likely for a 

passenger air carrier to suffer an accident on landing compared to cargo air carriers. 

Accidents categorized as LOC continue to be the frequent compared to other types 

of accidents (IATA, 2021). The FAA has provided guidance to Part 121 operators 

as to the prevention and recovery from aircraft upsets that could lead to a LOC in 

the form of Advisory Circular (AC) 120-111 (FAA, 2015). Both passenger and 

cargo air carriers operating within the United States must include upset recovery 

within the training they provide to their pilots, but the guidance material provided 
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by the FAA is only one means of compliance and for advisory purposes only. 

Additional accident data that can separate LOC-I and LOC-G as well as identify 

additional factors that can lead to a LOC during various phases of flight will 

provide more practical significance to this variable. 

 The current study concluded that Weight Factor is another Software 

variable that can distinguish between passenger and cargo air carrier accidents. The 

FAA is aware that improper aircraft loading is an issue that affects cargo air 

carriers more than passenger air carriers due to the nature of their payload. The 

FAA released AC 120-85B (FAA, 2022) on the topic of load planning, restraint 

methods, and guidance on weight and balance control programs and procedures for 

cargo air carriers. The scope of the current study was to identify factors that could 

distinguish between passenger and cargo air carrier accidents. Future research on 

other accident details related to Weight Factor could take guidance material, such 

as AC 120-85B into consideration in order to determine if the FAA has effectively 

targeted factors unique to  cargo air carrier operations. 

The final predictor variable with strong implications for the cargo air carrier 

industry is Time of Day, taking into consideration that the half of cargo operations 

take place at night.  The scope of the current study did not analyze more specific 

data than the Time of Day in which an accident took place. However, organizations 

such as ALPA have target operational differences between various types of air 

carriers and have identified problems that they believe decrease the safety of cargo 

air carriers. In 2014, the air carrier industry saw major regulatory change to the 
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flight crew rest requirements with the introduction of FAR Part 117: Flight and 

Duty Limitations and Rest Requirements, which outlined strict standards for how 

long flight crew members could fly between periods of rest. However, as of 2019, 

the participation in Part 117 for cargo air carriers has remained optional. ALPA has 

provided supporting documentation to aid cargo air carriers and individual flight 

crew members in complying with Part 117 requirements if they wish to do so 

(ALPA, 2019). While inferences related to flight crew fatigue cannot be made 

using the limited data from the current study, the efforts of ALPA and their focus 

on crew fatigue warrants future research into this area. More specific data on the 

condition of the flight crew can be categorized under the Liveware level of the 

SHELO model and can follow the same data collection and analysis methodology 

used within the current study.  

Generalizability, Limitations, and Delimitations. 

Generalizability 

 The target populations for the current study were all air carrier accidents, 

passenger, and cargo, which occur on the global scale. The dataset used in the 

current study was representative of the target population in terms of its 

demographics and inclusivity. The source of the data for the current study, the 

online database managed by the ASN, contained every air carrier accident that 

occurred for the target years of 2002 through 2019. Effectively, this allowed for all 

relevant air carrier accidents to be included in the analyses used in the current study 

in place of a sampling strategy that was used in prior, related studies. This 
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produced a large dataset (N = 594). However, the requirement for accidents listed 

in the ASN database to have a published final accident report for inclusion in the 

current study eliminated a number of air carrier accidents from these analyses. This 

could have had a negative effect on the population generalizability of the current 

study, but the severity of this effect is considered fairly minor due to the large 

number of air carrier accidents used in the final dataset.  It must also be mentioned 

that other aviation accidents found on the ASN database that are not considered air 

carrier operations were not in-scope for this study. Examples of these types of 

operations would be on-demand charters, training flights, or military operations. It 

is therefore concluded that aircraft accidents that are related to operations other 

than passenger or cargo air carrier make up a different target population and do not 

have an effect on the population generalizability for the current study. 

 The nature of the archival dataset used for the current study yields strong 

ecological generalizability. The data obtained from the ASN relative to each 

individual air carrier accident is objective and is related to an event that has already 

occurred. Future studies, whether they are replication studies that utilize the same 

factors or follow-up studies that investigate additional possible factors, would still 

obtain data from the final accident reports as used in the current study. However, 

the nature of the current study is time-based, and many of the factors related to air 

carrier accidents can change in the next several decades. Although the current study 

focused on the timeframe of 2002 through 2019, future studies may investigate air 

carrier accidents that took place at an earlier or later date. Although data from past 
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or future air carrier accidents will still be published in final accident reports, 

identical to those used in the current study, the relationship between the targeted 

factors and the dichotomous group membership variable may change over time. 

Limitations 

 Any condition of the archival dataset used in the current study or the data 

collection process that is beyond the control of the researcher is considered a 

limitation to the generalizability of the study’s results and conclusions. The 

following limitations must be considered when making inferences or 

recommendations based off of the results of the current study. 

1. Data Collection Method. The dataset of air carrier accidents that was be 

used within the proposed study is comprised of historical data. The data 

within this dataset were objective details about the conditions of the aircraft 

or flight before the accident occurred. However, any mistakes or 

inconsistencies in data collection on behalf of the entities which 

investigated each accident exist within the historical dataset. 

2. Missing Data. Almost all air carrier accidents, both domestic and 

international, are investigated by a government entity depending on the 

country in which the accident occurred and the country in which the air 

carrier is based. Aircraft manufactures and the air carriers themselves are 

frequently involved in the accident investigation. Final accident reports are 

often made available due to the public awareness of an air carrier accident. 

However, it is possible that data on a small number of air passenger or air 
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cargo accidents may have been missing from the historical dataset. This 

could be due to a mistake in data collection by the original owner of the 

dataset or inconsistencies in the procedures for thoroughly investigating an 

air carrier accident and reporting the findings. 

Delimitations 

 Any condition of the selection of the archival dataset or the data collection 

method used in the current study that is implemented by the researcher to improve 

feasibility is considered a delimitation to the generalizability of the study’s results 

and conclusions. The following delimitations must be considered when making 

inferences or recommendations based off of the results of the current study. 

1. Selection of ASN Database. The ASN online database of air carrier 

accidents was the only source of archival accident data. The content, 

validity, and reliability of the ASN was described in detail in Chapter 3 of 

this manuscript. This excluded any other source of air carrier accident data, 

which limits the accessible population of air carrier accidents. A passenger 

or cargo air carrier accident that was listed on the ASN database but did not 

contain a final accident report was excluded from the dataset constructed for 

the proposed study. 

2. Timeframe of Air Carrier Accidents within the Dataset. The years 2020 

and 2021 were excluded from the dataset that was used in the proposed 

study. Any air carrier accident that has occurred post-2019 was excluded for 

two reasons. The first reason was the unlikelihood that a final accident 
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report was published within the same year or one year after the occurrence 

of an air carrier accident. Aircraft accident investigations and the 

publication of a final accident report can take several years to complete. 

Although preliminary reports may have been available, these reports may 

have contained speculation as to the causes of the accident. Only final 

accident reports were used in the current study in order to ensure the 

validity and reliability of the data. The years 2020 and 2021 were also 

excluded from the proposed study due to the unprecedented events of the 

COVID–19 global pandemic. This historical event caused a downturn in 

global air passenger traffic. Some passenger air carriers have converted 

select aircraft within their fleet into temporary cargo aircraft in order to 

generate as much revenue as possible given the restrictions on passenger 

travel (Quayle & Checksfield, 2020). As a result, accidents involving these 

aircraft would have been difficult to classify as air passenger or cargo air 

carrier operations. In addition, the global decrease in air carrier operation 

frequency would have affected the time-sensitive data used in this study. 

3. Selection of Factors. Only select data from each air carrier accident within 

ASN database were selected as factors for the current study. Certain data 

within the database was excluded from the primary analysis due to several 

reasons, including difficulty in classifying the data as a casual factor 

according to the SHELO model, or a lack of supporting evidence as to how 



179 
 

certain factors could have been used to differentiate between passenger than 

cargo air carrier accidents. 

4. Exclusion of Air Carrier Incidents. The ASN dataset that was used for the 

current study contained reports on air carrier incidents as well as accidents. 

However, incident reports were intentionally excluded from the current 

study and deemed out of scope. This was due to the requirements for 

reporting aircraft incidents to investigatory entities being differing from 

those used for reporting aircraft accidents. Aircraft incidents do not involve 

the loss of human life, substantial property, or aircraft damage, or induce a 

hefty financial burden on an air carrier. Therefore, many air carrier 

incidents occur without a subsequent investigation, making the availability 

of data on all air carrier incidents scarce. 

5. Removal of Liveware Level from SHELO Model. As discussed earlier 

within this study, the liveware level representative of the actions of the 

flight crew, was deemed out of scope for the current study. The purpose of 

this study was to examine all related factors for air carrier accidents to 

distinguish between passenger than cargo that were not directly related to 

the actions of the flight crew.  The removal of the liveware component was 

decided upon by the researcher due to the objective and limited data within 

the dataset that would not have been significant enough to examine a 

possible relationship between the flight crew and the accidents. 
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6. Removal of Air Carrier Data based upon Type of Accident. The 

following types of accidents were unsupported from previous studies or 

related literature on distinguishing between passenger and cargo air carrier 

accidents: ground operations (aircraft was standing or taxing), acts of 

terrorism (sabotage, hijacking, aircraft shoot-down, or attempted takeovers), 

mid-air collision, pilot error, fuel exhaustion, wildlife strike, fuel 

contamination, aircraft missing, runway incursions,  

7. Exclusion of Narrative Data from the Dataset. All the accidents within 

the dataset contain a brief summary of events that led up to the accident.  

These summaries are in narrative form. Analyzing these narratives would 

require coding and a standardized process for transforming the narrative 

data into quantitative data. Given the availability of objective data that is 

already in quantitative form, all narratives have been excluded from the 

analysis. Full narratives for every aircraft accident are available through 

sources such as the online NTSB database. However, analyzing these 

detailed narratives would be a qualitative approach that was not part of the 

methodology for current study. 

Recommendations for Research and Practice 

Recommendations for Future Research Relative to Study Limitations 

1. Data Collection Method. The current study analyzed data that was 

available at the time, ranging from 2002 through 2019. Related literature 

that was closest in scope to the current study was Roelen et al. (2000), who 
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analyzed accident data up until the year 2000. Therefore, it is recommended 

that future research analyze air carrier accident data for future decades when 

this data becomes publicly available. 

2. Missing Data. Any air carrier accident listed on the ASN database that did 

not have a published final accident report was not included in the current 

study sample. An extra effort to locate missing final accident reports outside 

of the ASN database was not attempted. It is recommended that future 

research attempt to locate any missing accident reports for cases that would 

otherwise be considered in scope for the current study. 

Recommendations for Future Research Relative to Study Delimitations 

1. Selection of ASN Database. The ASN online database was considered 

exhaustive in terms of containing all air carrier accident reports from 2002 

through 2019. However, the ASN is a repository of aircraft accident reports 

that were collected and summarized from their original sources, 

predominantly the aircraft accident investigative bureaus for each nation.  It 

is recommended that future research attempt to acquire accident reports 

from their original sources to ensure that reports were not omitted by the 

creators of the ASN database. 

2. Timeframe of Air Carrier Accidents within the Dataset. It has already 

been recommended that future research utilize additional accident data that 

will be made available within the next several years. However, it is 

recommended that special consideration should be taken for the years 2020 
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and 2021 based on the impact of the COVID-19 pandemic on the frequency 

of passenger and cargo air carrier operations and the effects on accident 

rates. 

3. Selection of Factors. Accident data from each case within the ASN 

database was selected based on the predictor variables used within the 

current study. Future studies should consider additional details in final 

accident reports that can be treated as different factors, such as the type of 

aircraft, interactions with air traffic control (ATC), hazardous weather 

conditions, and any liveware related factors. The variables used in the 

current study were not verified as being causal to the outcome of each 

accident. Future research can limit its scope to analyzing accident details 

that have been identified within each accident report as being causal factors. 

This will provide greater generalizability if the purpose of the research is to 

analyze factors that caused an accident, compared to factors that simply 

existed at the time of the accident but were otherwise unrelated. 

4. Exclusion of Air Carrier Incidents. The current study analyzed only 

accident that were categorized as scheduled passenger or cargo air carrier 

operations. Future research should consider additional types of operations, 

such as on-demand/charter, private flights, training flights, maintenance/test 

flights, and more specific types of operations, such as aerial firefighting and 

air ambulance. 
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5. Removal of Liveware Level from SHELO Model. Additional factors that 

can be found within each accident report can be categorized under the final 

level of the SHELO model: liveware. Future researchers are cautioned that 

data within final accident reports related to liveware factors can be 

subjective in nature. Details about a flight crew member’s mindset or 

mental condition before and during the flight come from sources such as 

ATC transcripts, cockpit voice recordings, and interviews with other flight 

crew members, passengers, or family members. In addition, the proper 

categorization of liveware-related factors can be subjective and relies on the 

researcher’s expertise in air carrier operations and aviation human factors. It 

is recommended that if a researcher lacks expertise in either of these two 

areas that a subject matter expert (SME) be consulted for assistance in 

categorizing liveware-related factors.  

6. Removal of Air Carrier Data based upon Type of Accident. The 

following types of accidents were considered out of scope for the current 

study, but should be analyzed using factors according to the SHELO model: 

ground operations (aircraft was standing or taxing), acts of terrorism 

(sabotage, hijacking, aircraft shoot-down, or attempted takeovers), mid-air 

collision, pilot error, fuel exhaustion, wildlife strike, fuel contamination, 

aircraft missing, runway incursions,  

7. Exclusion of Narrative Data from the Dataset. It is recommended that 

future researchers utilize the narrative in each of the final accident reports, 
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especially if future research involves analysis of liveware-related factors. 

While the ASN database is reliable in terms of summarizing objective 

accident details, such as time of day or aircraft manufacturer, data that can 

be subjective in nature is best understood when read in narrative form to 

ensure that the researcher fully understands what the author of the accident 

report has inferred about the condition of the flight crew members before 

and during the accident. 

8. Inclusion of Accident Rate and Annual Operations. It is recommended 

that future research include the accident rate and annual operations of 

passenger and cargo air carriers in differentiating the factors in the SHELO 

model. Data on annual operations is available from organizations, such as 

IATA, and can be specified by region. However, accident rate of passenger 

and cargo air carriers per region is not currently available, as verified by 

IATA (2021). Past research, such as Roelen et al. (2000) created their own 

accident rate variable using related data from aircraft manufacturers. If a 

custom accident rate variable is created, its validity and reliability must be 

calculated before it can be used in an analysis alongside other variables 

known to be both valid and reliable. The inclusion of data on accident rate 

and annual air carrier traffic will help control the influence these variables 

have on other predictors, such as Time of Day and Location of an Operator. 

Both of these variables, while statistically significant in the current study, 

provided little practical significance due to the variation in passenger vs. 
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cargo operations during day or night and based on global region. IATA has 

data readily available for the number of annual passenger and cargo air 

carrier operations per global region. This continuous variable can be 

included in a future analysis to control for the difference in annual 

operations between passenger and cargo air carriers. In addition to annual 

operations, IATA provides annual frequency counts of passenger and cargo 

air carrier accidents per global region. However, the accident rate per carrier 

per global region is not readily available. A new, continuous variable would 

have to be calculated to control for the effects of actual accident rate per 

year on other variables, such as Location of Operator and Time of Day. 

Recommendations for Future Research Relative to Implications 

 The following section outlines potential future research that can be 

conducted based off of the implications related to theory and related literature 

discussed earlier within this chapter.  It is recommended that future researchers 

utilize the SHELO model to categorize accident factors related to software, 

hardware, the environment, and organizational influences. The statistical 

significance of each one of the levels would allow a researcher to determine if the 

set of variables categorized under a specific level can significantly distinguish 

between distinct types of aircraft accidents.  If a specific level of the SHELO model 

is found to be statistically significant, this would allow a researcher to analyze each 

predictor variable categorized under that set for statistical and practical significance 

for its effect on the criterion variable. However, future researchers should run a 



186 
 

larger analysis that regresses the criterion variable on all predictor variables 

simultaneously, in the absence of the separate levels of the SHELO model. As 

discussed previously in this chapter, certain factors gain or lose statistical 

significance when in the presence or when in the absence of other predictor 

variables. The interactions between these variables are important to understanding 

how these factors exist in real life and their influence on aircraft accidents. Future 

researchers should also be cautioned that categorizing factors under the liveware 

level of the SHELO model may require the use of subjective data. As mentioned in 

the delimitations section above, SMEs should be consulted to ensure validity and 

reliability in interpreting subjective data from accident reports and how this data is 

categorized within the liveware level. 

 Possible interactions between variables within the current dataset can be 

further explored in future research.  It was concluded that cargo air carriers are 

distinguished based on LOC accidents that occur on takeoff due to weight-related 

factors. This is supported by data from the current dataset: 78% of cargo accidents 

that occurred during takeoff were categorized as LOC, compared to 62% of 

passenger accidents. In contrast, passenger air carrier carriers are distinguished 

based on LOC accidents that occur during landing. The cause of the higher number 

of passenger LOC accidents on landing is unsupported based on the findings from 

the current study and should be analyzed using additional accident data from 

available accident reports. Additional factors should include the weather at the time 
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of landing, aircraft configuration, communications with ATC, and the conditions of 

the flight crew members in the events leading up to the landing phase of flight. 

 Several variables within the current study were statistically significant, but 

offer little practical significance based on their non-specific nature of acting as 

proxy variables to more specific factors. The first variable that should be more 

closely analyzed is the location in which an accident takes place, which was 

categorized as an environmental factor. This variable inferred differences in the 

terrain and airport infrastructure between various global regions. More specific data 

on terrain and airport infrastructure is available per the location listed in each final 

accident report and would allow a researcher to more closely analyze the 

relationship between accident location and the type of accident that occurred.  In 

addition, more specific regions can be used for future research. For example, 

Europe was one of the global regions used in the current study. Europe is a diverse 

continent made up of many countries that are diverse in terms of their terrain 

features and airport infrastructure. 

 A second proxy variable that should be more closely analyzed is the 

location of the operator, which inferred socioeconomic details about each region 

the aviation regulations that govern operators within these regions. Future research 

can analyze specific socioeconomic data as well as perform a content analysis of 

the regulations and recommend practices for commercial air carrier operators 

within each region, and how these factors affect the type of accident that has taken 

place. By analyzing more specific factors compared to the high-level proxy 
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variables used within the current study, future research may also be able to factor 

out many of the interactions that were observed between these variables. For 

example, it was found that aircraft manufactured in Europe, accidents that took 

place within Europe, and air carrier operators base in Europe were all statistically 

significant predictors in distinguishing passenger air carrier accidents from cargo 

accidents. However, it was concluded that the considerable number of European-

based passenger operators that conduct most of their operations within the same 

region and purchase newer-generation European aircraft explained the significance 

of these variables.  While the interpretation of these variables was accurate in their 

ability to significantly distinguish between passenger and cargo air carrier 

accidents, these findings offer little practical significance to the air carrier industry. 

Recommendations for Practice Relative to Implications 

 The first recommendation for cargo air carriers is to be aware of the 

changes in software related to the proper loading of their cargo aircraft. Software, 

such as manuals, SOPs, and ACs can help operators avoid loading their aircraft 

beyond maximum weight, the location of the center of gravity from being out of 

bounds, or the cargo inside of the aircraft shifting during flight. While Software 

related to Weight Factor is already widely used within the cargo air carrier industry, 

changes to this Software without the knowledge of the cargo operators can lead to 

an increase in the frequency of weight–related accidents. 

 The second recommendation for cargo air carriers consider the impact of 

Hardware factors on their operations. Cargo air carriers will continue to purchase 
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older aircraft retired from passenger air carriers and convert them to cargo aircraft. 

Although older-generation aircraft may be missing some of the technology found in 

newer-generation aircraft, such as cockpit automation and digital flight-deck 

displays, these types of technologies can often be installed in older aircraft.  This 

practice of upgrading older aircraft will help cargo air carriers benefit from the 

same type of advancements as newer–generation aircraft that were defined by 

Airbus (2019). 

 Lastly, all cargo air carriers should consider the inclusion of flight crew rest 

requirements within their operations. Supporting documentation from the FAA and 

ALPA can be used to help voluntarily implement crew rest requirements and SOPs 

without the need for regulatory change. 
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Appendix A 

List of Countries per Global Region 

 

Global Region Country 

   Africa Algeria 
 Benin 

 Cameroon 
 Comoros 

 Cote d'Ivoire 
 Democratic Republic of the Congo 

 Ethiopia 
 Ghana 

 Kenya 
 Libya 

 Mali 
 Morocco 

 Nigeria 
 Senegal 

 South Africa 
 South Sudan 

 Tanzania 
 Tunisia 

Global Region Country 

   Asia Bangladesh 

 East Timor 
 French Polynesia 

 India 
 Indonesia 

 Japan 
 Laos 

 Malaysia 
 Myanmar 

 Nepal 
 Philippines 

 Singapore 
 South Korea 

 Taiwan 
 Taiwan 

 Thailand 
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Global Region Country 

   CIS Kazakhstan 
 Kyrgyzstan 

 Russia 
 Tajikistan 

 Ukraine 

Global Region Country 

   Europe Austria 
 Belgium 

 Denmark 
 Estonia 

 Finland 
 France 

 Germany 
 Greece 

 Greenland 
 Ireland 

 Italy 
 Lithuania 

 Luxembourg 
 Netherlands 

 Norway 
 Poland 

 Portugal 
 Romania 

 Saudia Arabia 
 Slovakia 

 Spain 
 Sweden 

 Switzerland 
 United Kingdom 

Global Region Country 

   Latin America Argentina 
 Bolivia 

 Brazil 
 Carribean 

 Chile 
 Columbia 

 Cuba 
 Ecuador 

 Falkland Islands 
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Global Region Country 

Latin America Guadeloupe 
 Guyana 

 Haiti 
 Honduras 

 Mexico 
 Montserrat 

 Peru 
 Turks and Caicos 

 Uruguay 
 Venezuela 

Global Region Country 

   Middle East Afghanistan 

 Egypt 
 Iran 

 Lebanon 
 Pakistan 

 Somalia 
 Sudan 

 United Arab Emirates 

Global Region Country 

   North America Bahamas 

 Canada 
 Colombia 

 Guam 
 Haiti 

 Jamaica 
 United States 

Global Region Country 

   Oceania Australia 

 Micronesia 
 New Zealand 

 Papua New Guinea 

 Vanuatu 
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Appendix B 

Format and Information Summarized within ASN Database 

Figure 3. 

Example of Accident Summary on ASN Database 

 

Note. Accident factors summarized within Figure 3. Include Time of Day, Aircraft Generation, 

Aircraft Manufacturer, Location of Operator, Passenger or Cargo, Accident Location, and Phase of 

Flight. 

Figure 4. 

Example of Accident Classification and Final Accident Report on ASN Database 

 

Note. The inclusion of a final accident report confirms that this accident will be in–scope. Accident 

factors summarized under Classification include CFIT, LOC, Mechanical Failure, and Weight 

Factor. 
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Appendix C 

Data Collection Process Part 1 

Figure 5. 

Process for Determining if an Accident Was In–Scope or Out–of–Scope for 

Inclusion in Study Sample 

 

*Note. The following types of accidents were considered out–of–scope for inclusion in the study 

sample: ground operations or collisions (aircraft was standing or taxing), acts of terrorism (sabotage, 

hijacking, aircraft shoot-down, or attempted takeovers), mid-air collision, pilot error, fuel 

exhaustion, wildlife strike, fuel contamination, aircraft missing, and runway incursions. 
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Appendix D 

Data Collection Process Part 2 

Figure 6. 

Process for Extracting Data from ASN Database and Populating Study Sample 

Using Dummy Coding 

 

Note. Names of predictor variables are bolded. 

*Global regions for Aircraft Manufacturer include Asia, Commonwealth of Independent States, 

Europe, Latin America, and North America. Global regions for Location of Accident and Location 

of Operator include Africa, Asia, Commonwealth of Independent States, Europe, Latin America, 

Middle East, North America, and Oceania. 
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Appendix E 

Results of Logistic Regression with All Predictor Variables Present 

Table 21 

Summary of Logistic Regression Estimates for the Null and Simultaneous (Full) Models 

 Bi SE χ2 p 

Null Model     

Constant -0.69 0.09 63.42 <0.001 

Full Model     

Constant -2.33 1.25 3.50 0.06 

Phase of Flight     
X1 = Takeoff -0.30 0.19 2.48 0.12 

X2 = Climb -0.34 0.24 2.07 0.15 

X3 = Approach 0.06 0.18 0.12 0.73 

X4 = Landing -0.59 0.15 14.72 <0.01** 

X5 = Loss of Control 0.24 021 1.39 0.24 

X6 = Controlled Flight into Terrain 0.09 0.26 0.13 0.72 

X7 = Weight Factor 0.38 0.23 2.72 0.10 

Aircraft Manufacturer     

X8 = Commonwealth of Independent States 0.75 0.28 7.34 0.01* 

X9 = Europe -0.17 0.13 1.68 0.20 

X10 = Latin America 0.04 0.26 0.02 0.88 
Aircraft Generation     

X11 = Generation 2 -0.84 0.25 11.38 <0.01** 

X12 = Generation 3 -0.82 0.24 11.61 <0.01** 

X13 = Generation 4 -1.40 0.23 38.86 <0.001** 

X14 = Mechanical Failure 0.12 0.18 0.47 0.49 

X15 = Time of Day 0.57 0.11 25.22 <0.01** 

Operator Location     

X16 = Asia -0.16 0.24 0.44 0.51 

X17 = Commonwealth of Independent 

States 

-0.90 0.40 5.18 0.02* 

X18 = Europe -0.19 0.24 0.59 0.44 

X19 = Latin America -0.14 0.25 0.31 0.58 
X20 = Middle East -0.26 0.31 0.72 0.40 

X21 = North America 0.41 0.21 3.81 >0.05 

X22 = Oceania <0.00 0.34 0.00 0.99 

 
Note. N = 594. RL

2 = .26, df = 22 for the full model. 

In the null model, B0 = -0.69, and this can be transformed into the odds ratio, e-0.693 = 0.5.  This indicates that 

approximately 1/3 of the air carrier accidents were classified as cargo. 

The full model is representative of the hypothesized model, which predicts the odds for an accident being 

classified as cargo with all predictor variables entered into the model simultaneously. The predicted odds 

differed from the null model, and this difference was statistically significant. 

Bi = Logit; SE = Standard Error; χ2 = Chi Statistic; p = Probability. 

*p < .05. **p < .01. 
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