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Abstract

Title:

Low Reynolds Number Locomotion Near Interfaces in Two-fluid Media

Author:

Avriel Rowena Mae Cartwright

Major Advisor:

Jian Du, Ph.D.

Microorganisms often swim within complex fluid environments composed of multiple

materials with very different properties. Biological locomotion, including swimming

speed, is significantly impacted by the physical composition and rheology of the sur-

rounding fluid environment, as well as the presence of phase boundaries and free inter-

faces, across which physical properties of the fluid media may vary greatly. Through

computational simulations, we first investigate the classical Taylor’s swimming sheet

problem near interfaces within multi-fluid environments using a two-fluid immersed

boundary method. The accuracy of the methodology is illustrated through comparisons

with analytical solutions. Our simulation results indicate that the interface dynamics

and phase separation in the multi-fluid mixture are closely coupled with the movement

of the swimmer. Depending on the interface location, the frictional coefficient, and

the multi-fluid composition, the swimmer can move either faster or slower than that

in a single-phase fluid. Furthermore, we investigate the movement of a finite-length
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undulatory swimmer near interfaces within a viscous two-fluid media. Our simulation

results show that significant speed-ups can be achieved only if the active swimmer has

a large body elasticity.
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Chapter 1

Introduction

In recent years, there has been increased research interest concerning the locomotion of

microorganisms within their surrounding fluid environment. This field of study delves

into the intricate movements exhibited by microorganisms as they navigate through

their habitats. From the swimming of spermatozoa which fuse with ova during fer-

tilization [3], to the navigation of the ulcer-causing Helicobacter pylori through the

gastric mucus layer [6], and the run-and-tumble dynamics of Escherichia coli in poly-

meric solutions [30], the investigation of microorganism locomotion opens a portal to

understanding fundamental biological processes and potential biomedical applications.

Microorganisms are ubiquitous, existing in diverse ecological niches ranging from

aquatic environments to living organisms. The physics governing swimming behavior

at the microscale fundamentally differ from that observed at the macroscopic level. The

significance of this difference is primarily due to the dominance of viscous damping over

inertia - a defining characteristic of low Reynolds number swimming. The investigation

of this phenomenon has both biological and pathological significance as key processes

such as reproduction and bacterial infection depend on the ability of microorganisms

to efficiently navigate their surroundings making these processes have far-reaching im-
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Figure 1.1: Illustration representing biological swimmers on different length scales.
The swimmer velocity and Reynolds number changes with length scale. [2].

plications for human health. Studies are further motivated by the potential biomedical

applications, such as the design of synthetic micro-swimmers for targeted drug delivery

and cargo towing.

While the mechanics of microorganism locomotion in a single phase Newtonian

fluid has been studied extensively, and the underlying dynamics are well understood,

the fluidic environments inhabited by microorganisms are often far from homogeneous.

Many biological fluids, such as mucus and cytoplasm, are mixtures of water and poly-

mer network. These multi-phase fluid mixtures, called complex fluids, generally exhibit

complicated non-Newtonian characteristics and have introduced new complexities to

this field of study. The composition and rheology of such fluid mixtures have a signifi-

cant impact on the speed and efficiency of biological locomotion. Recent experimental

studies have provided new insights into the mechanics behind small scale swimming in

complex fluids.

On the other hand, mathematical modeling, analysis, and computational simula-

tions are playing more important roles in the investigation of the mechanics behind

small-scale swimming in complex multiphase fluids [16][21]. Early research efforts were

centered on the effect of fluid properties, such as elasticity, on idealized swimmers who

exhibited propulsion gaits independent of the surrounding fluid. Recently, interesting
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features with more biological relevance have been revealed about the dynamics of un-

dulatory swimmers. A notable example lies in the study of viscoelastic stresses, which

have been shown to induce larger waving amplitudes and enhanced swimming speed

in flexible swimmers driven by prescribed spatio-temporal internal actuation [32]. For

finite swimmers with imposed active body moment density, the role of elasticity be-

comes even more intriguing, with the potential to either enhance or hinder swimming

motion depending on factors such as body stiffness and swimming stroke [39]. Such dis-

coveries underscore the intricate interplay between fluid properties and microorganism

dynamics, revealing a nuanced relationship that influences swimming behavior.

The presence of physical boundaries and material interfaces in the vicinity of swim-

ming microorganisms has also emerged as a crucial determinant of their swimming

behavior. The proximity to these interfaces bestows upon microorganisms a unique set

of behaviors. The bacterium, Escherichia coli, (abbreviated as E. coli), which is com-

monly found in the environment, foods, and intestines of humans and animals, has been

used as a prototypical micro-swimmer for studying these characteristics. In solution,

E. coli cells move in a run-and-tumble fashion as they swim in a random walk pattern,

characterized by approximately straight swimming trajectories alternating with rapid

re-orientations. In [22], a hydrodynamic model for the motion of E. coli near solid

boundaries is presented. Their results reveal that near a solid boundary, E. coli adopts

clockwise circular trajectories as a result of force-free and torque-free swimming and

the hydrodynamic interactions with the boundary. These interactions lead to a hydro-

dynamic trapping of cells close to the surface which further results in cells remaining

in close proximity to the surface for long time periods. This enhances the probability

of cell adhesion to substrates. This behavior is both biologically and pathologically

significant in the initial stages of biofilm formation and pathogenic infections. It also

holds practical applications in biotechnology and microfluidics. The run-and-tumble
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dynamics of E. coli is further studied in [30] with a focus on polymeric solutions. Their

results reveal that even small amounts of polymer in solution can significantly impact

E. coli swimming dynamics. Cells tumble less while velocity increases. This results

in an enhancement in cell translational diffusion and a significant decline in rotational

diffusion. The decrease of tumbling is a result of fluid viscosity while swimming speed

enhancement is primarily due to fluid elasticity. Loss of rotational diffusion ultimately

decreases the time cells spend in close proximity to the boundary and so offers the

conclusion that the material properties of a fluidic environment can control spreading

of bacteria.

Similarly, the swimming behaviors of spermatazoa near solid and free surfaces is

explored in [3]. The goal of this study is to evaluate the influence of proximity to

surfaces on the movement of sterlet spermatazoa. It was observed that sperm cells

near a liquid-solid interface swim slower than those near a liquid-gas interface and that

proximity to a surface possibly causes rotation. The investigation of microorganism

locomotion in heterogeneous fluid environments also reveals an interesting facet of

swimming dynamics - the ability of some micro-swimmers to significantly enhance

their motility by creating heterogeneous layers of fluids around them. This is evident

in the case of self-propelling helical swimmers in shear-thinning fluids. In [19], the

impact of a controlled variation of the rheological parameters of shear-thinning fluids

on well-defined swimming strategies is explored. Their results reveal that self-propelling

helical swimmers in shear-thinning fluids may move 50% faster than in a Newtonian

fluid. This speedup is believed to be a result of the viscosity stratification around

the swimmer. Similarly, the interaction between the ulcer-causing gastric pathogen,

Helicobacter pylori (abbreviated as H. pylori), and gastric mucin demonstrate how the

transition of fluid composition from a viscoelastic gel to a viscous fluid may profoundly

affect the bacteria’s locomotion. H. pylori is the only bacterium known to colonize
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the harsh acidic environment of the human stomach. In [6], the movement of H.

pylori through the viscoelastic mucus gel that coats the stomach wall is studied. This

viscoelastic gel, gastric mucin, forms a layer of protective gel for the stomach lining

against harmful bacteria. Their results reveal that to swim through the mucus layer,

H. pylori alters the rheological properties of its environment by hydrolyzing ambient

urea to produce ammonia. This results in an elevation of pH, and the transition of

local gastric mucus from a viscoelastic gel to a viscous fluid. Therefore, the bacterium

essentially swims through a pocket of fluid surrounded by mucus gel which ultimately

enables it to attach to epithelial cells and cause infection (see Figure 1.2).

Figure 1.2: H. Pylori crossing mucus layer of stomach [1]. According to [6], gastric
mucin forms a gel at pH < 4. H. pylori cannot move in mucin gels and so secretes urease
that hydrolyzes urea to produce ammonia. This elevates the pH which de-gels the
mucin, enabling the bacterium to swim in the resulting polymer solution. The picture,
not copyrighted, is reproduced from an NSF press release 09-149. https://www.nsf.gov/
news/news summ.jsp?cntn id=115409&org=NSF&from=news
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Motivated by these experimental discoveries, there have been a number of theo-

retical analyses on the dynamics of micro-swimmers near fluid interfaces. In [33], the

interaction between a swimming sheet and a plane surfactant-laden interface is inves-

tigated. Their results reveal that the uniformity of swimming speed near a surfactant-

laden interface may differ from that observed near a clean interface. This disparity

is highly contingent on the wave type traversing the sheet. Exploring the realm of

viscous fluid environments, [29] presents a theoretical locomotion model that investi-

gates the impact of heterogeneity generated by a spherical swimmer on its swimming

characteristics within a viscous fluid surrounded by a Brinkman medium. Their results

reveal that heterogeneity influences the propulsion performance of the swimmer. Ad-

ditionally, they find that depending on the surface velocities and fluid properties, there

exists a minimum threshold size of mucus gel that a swimmer must liquify in order to

achieve any enhancement in swimming speed. This threshold size can be as much as

approximately 30% of the swimmer’s size.

In [10], the speed of an infinitely long swimmer in close proximity to an elastic de-

formable membrane within two layers of fluids is studied. Results reveal that differing

viscosities on either side of the flexible interface can lead to fluid pumping along or

against the swimming direction, depending on which viscosity is greater. Transition-

ing to the investigation of swimmers near stationary interfaces, [26] proposes a physi-

cal mechanism for locomotion enhancement of microscopic swimmers within complex

fluids. Their results reveal that phase-separation systematically enhances swimming

speeds, possibly by orders of magnitude. Furthermore, this phase-separation emerges

as a potential contributor to the recently measured swimming enhancement at low-

Reynolds numbers.

Theoretical studies such as those discussed offer valuable information for the loco-

motion of micro-swimmers. The discoveries enable researchers to isolate and examine
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specific factors that influence the mechanics of locomotion of these organisms. The flex-

ibility of theoretical models facilitates the exploration of a wide range of parameters,

allowing researchers to examine scenarios which may be difficult to recreate experimen-

tally. Despite the advantages, these studies are not without their drawbacks. The com-

plex interactions between fluid dynamics and microorganism locomotion can be difficult

to capture in a theoretical framework. Theoretical studies often require simplifications

and assumptions which may deviate from the complexity of real-world scenarios. These

idealizations might overlook critical aspects which influence microorganism locomotion

or may be tailored to specific microorganism types or fluid properties which can limit

the extension of findings to a broader range of organisms and environments. Further-

more, theoretical studies are limited in their biological relevance. For example, these

studies can only account for infinite swimmers with small amplitude in simple fluid

environments.

Relative to the numerous theoretical studies, there are only a few computational

investigations on locomotion of micro-organisms within a multi-component fluid. This

is mainly due to the numerical challenges associated with the simulation of multi-fluid

mixtures separated by dynamical boundaries. In [13], an extension of the classic Im-

mersed Boundary (IB) Method is presented. The interactions between elastic bound-

aries and mixtures of two fluids is simulated, with both fluids satisfying the no-slip

condition on the immersed structures. The observation was that for the classical Tay-

lor’s sheet within a two viscous fluids mixture, the swimming speed is always less than

that in a single phase viscous fluid. A more general framework based on IB Method

was developed in [24] for the investigation of elastic swimmers within viscoelastic fluid

mixtures. However, no free interfaces are included in these studies.

Computational studies such as those outlined offer numerous advantages. They

allow for the simulation of complex and realistic fluid environments, delivering a more
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accurate representation of microorganism locomotion compared to a simplified theo-

retical model. These models and simulations allow for extensive parameter exploration

providing insights into microorganism behavior under diverse scenarios. These factors,

combined with the ability to achieve high spatial and temporal resolution, allows for

detailed analysis of microorganism dynamics and their interactions with fluid media.

Furthermore, these models serve as predictive tools, guiding experimental design.

This dissertation contributes to the growing body of knowledge by delving into the

dynamics of microorganism locomotion near interfaces within a two-fluid environment.

By employing the computational method developed in [13], in our work, we investigate

the classical Taylor’s swimming sheet problem near interfaces in a heterogeneous two-

fluid environment [4]. Our mixture model provides a simple and unified framework for

the study of swimming dynamics near interfaces in a multi-fluid mixture. The swimmer

moves in a low-viscosity region surrounded by a more viscous bulk fluid, with different

fluid layers separated by interfaces. Explicit interface tracking is avoided through a

numerical regularization, which significantly simplifies the algorithm implementation,

particularly for problems involving dynamic interfaces. To the best of our knowledge,

this is the first time that such problems are simulated by a combination of the IB

method and the interface-capturing strategy. Our work also sheds light on locomotion

characteristics within heterogeneous fluid media. The results of our simulations show

that swimmers in a two-fluid mixture near free interfaces may move faster or slower than

that in a single fluid depending on their distance from the interface, the composition

of the fluid mixture, and the magnitude of the frictional force between components in

the mixture.

We have also conducted the first computational investigation on the locomotion of

a finite-length undulatory swimmer near interfaces in viscous two-fluid mixtures [5]. In

this study, the swimmer is in a low-viscosity fluid surrounded by a more viscous bulk
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flow. To drive the motion of the swimmer, we use the methodology proposed in [21].

Instead of swimming with a specified gait, the swimmer is actuated by a prescribed

active body moment density. Our simulation results reveal that relative to its motion

in a single fluid, a swimmer with large body elasticity can move much faster near

fluid interfaces in a two-fluid domain. In contrast, the speed of a soft swimmer is not

significantly affected by the presence of fluid interfaces. The computational framework

presented can be applied to the study of locomotion of microorganisms within various

biofluid media, particularly for cases where swimmers are in close proximity to free

deformable interfaces. The flexibility of our method also makes it a suitable tool to

investigate problems in which structural properties of the fluid media are altered by the

dynamic of the swimmer. One such example is the ulcer-causing pathogen H. pylori.

The rest of the dissertation is organized as follows. In Chapter 2, the model equa-

tions and numerical methods are presented. This is followed by Chapter 3 where the

results of the simulations are presented and analyzed. In Chapter 4, discussions about

the results and potential extensions of the computational method are given.
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Chapter 2

Model Equations and Numerical

Method

Many biological fluids, such as biofilms, blood clots, mucus, and cytoplasm, are com-

posed of a polymer network immersed in a solvent. In many cases, these complex fluids

are not sufficiently described as a single continuous medium due to the multiscale and

multicomponent nature of the materials. This introduces various mathematical, mod-

eling, and computational challenges that extend beyond traditional fluid mechanics.

Standard single-phase fluid models may face significant limitations when attempting

to capture the underlying biological processes, primarily because they assume that all

species move in the same velocity field. However, this assumption is not biologically

relevant as different species may move in different velocity fields. Two additional limi-

tations of these single-phase descriptions are that these processes are frequently driven

by the relative motion of the different components of the fluid, and the composition

of the material may be dynamic. As a result, modeling the fluid mechanics of this

process requires a description beyond a single velocity field and single stress tensor. A
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more suitable and biologically relevant approach to describe these problems involves

the two-phase (multiphase) flow model. In this model, both polymer network and sol-

vent coexist at each point of space simultaneously. Each phase, namely the network

and the solvent, is modeled as a distinct continuum with its own velocity field and

constitutive law. Two sets of momentum equations govern the two velocity fields with

each involving the stresses appropriate for the respective material.

2.1 Two-Fluid Mixture Model

In our work, we employ the computational methodology developed in [13]. The swim-

mer moves within a two-fluid domain where the thin fluid layer of low viscosity in

direct contact with the swimmer is enclosed by a more viscous bulk fluid. Two-fluid

models of this kind have been successfully used for the investigation of many bio-fluids

such as blood clots, bio-film, and cytoplasm [12, 8]. This type of model also holds sig-

nificant biological relevance as it relates to the study of locomotion of microorganisms

within various biofluid media, particularly for the cases where swimmers are near free

deformable interfaces and are able to alter the structural properties of the fluid media.

For example, gastric mucin transitions from a viscoelastic gel to a viscous solution,

triggered by the urease production from the ulcer-causing pathogen, H. pylori. This

localized de-gelling process essentially allows the bacterium to swim through a pocket

of fluid, surrounded by gel, and cause infection.

For simplicity of discussion, we call the less viscous fluid in the mixture as the sol-

vent phase (denoted by s), and the more viscous fluid component as the network phase

(denoted by n). We treat the fluid medium surrounding the swimmer as a mixture

of two immiscible fluids to avoid tracking the interfaces between fluid layers explicitly

(see Figure 2.1).
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Figure 2.1: Two-Fluid Mixture Model: The outer red sections represent the more
viscous fluid component, the network phase, and the inner blue section represents the
less viscous fluid, the solvent phase. The black curve represents the immersed structure
(the swimmer).

At any given spatial location x, the relative quantities of the solvent and network are

represented by their volume fractions, denoted by θs(x, t) and un(x, t). The solvent

and network fluids move with their own velocity fields, us(x, t) and un(x, t):

∂θs
∂t

+∇ · (θsus) = 0, (2.1)

∂θn
∂t

+∇ · (θnun) = 0. (2.2)

Since θn + θs = 1, adding (2.1) and (2.2) gives the volume averaged incompressibility

condition:

∇ · (θsus + θnun) = 0. (2.3)

For a small Reynolds number, the force balance equations for the two fluids are given
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by:

∇ · (θsσs)− θs∇p+ ξθnθs(un − us) + fs = 0, (2.4)

∇ · (θnσn)− θn∇p+ ξθnθs(us − un) + fn = 0. (2.5)

Here, σs and σn are the viscous stress tensors for the solvent and network fluids,

respectively. p is the pressure. The frictional drag force between the two fluids due to

relative motions is calculated as ξθnθs(un − us) with ξ being the frictional coefficient.

The force densities generated by immersed elastic structures, which in our work is the

swimmer, on the two fluids are denoted by fs and fn. The viscous stress tensors are

taken to be those of the Newtonian fluids:

σs = µs(∇us +∇uT
s ) + (λs∇ · us)I, (2.6)

σn = µn(∇un +∇uT
n ) + (λn∇ · un)I. (2.7)

Here, I is the identity tensor. The shear viscosities for the solvent and network are

denoted as µs and µn, respectively. λs,n+2µs,n/d is the bulk viscosity of the solvent and

network (d is the space dimension). We set the second viscosity coefficients of the two

fluids as λs,n = −µs,n so that the bulk viscosities for both fluids are zero. Conceptually,

we have θn = 0 for the inner fluid layer surrounding the swimmer and θn = 1 for the

bulk fluid. Due to the degeneracy of equations (2.4) and (2.5) from these conditions,

we use approximated general conditions for all simulations as discussed later. We

nondimensionalize all model equations using the characteristic length scale of L = 1

µm, time scale of T = 1 second, and stress scale of µs/T . The viscosity of the solvent,

µs, is taken as the viscosity of water.
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2.2 Immersed Boundary Method for Multi-Fluid

Mixture

The Immersed Boundary (IB) Method is a powerful computational tool for handling

the dynamic interactions between fluids and immersed elastic structures [31]. The

simplicity and robustness of the IB method has resulted in its numerous applications

in biological problems (see [38]-[18]). In [13], an extension of this method to a two-

phase fluid is developed. We employ this computational methodology in our work, in

which a two-phase IB scheme is used for the simulation of interactions between elastic

structures and a two-fluid mixture.

In our work, we investigate the movement of two types of swimmers - swimmers of

infinite length and swimmers of finite length. Although the concept of swimmers with

infinite length may not hold biological relevance, we include them in our study due to

existing theoretical studies, specifically those presented in [10] and [23], with which we

can directly compare our findings. This comparative analysis serves as a means to gauge

the accuracy and validity of our model. In addition to the infinite swimmers, we also

investigated the dynamics of finite swimmers near fluid interfaces, whose movements

are driven by a prescribed target curvature. The swimming gait of these swimmers is

a direct result of the fluid-structure interactions of the swimmer with its surrounding

fluid environment, making the study of these swimmers more biologically relevant.

The following sections will provide a more comprehensive exploration of each of our

swimmer models.

2.2.1 Model of Infinite Swimmer

In the two-phase IB scheme, an Eulerian description is used for the fluid variables

such as velocity and pressure, while a Lagrangian description is used for the immersed
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structures. Each immersed structure is represented by two immersed boundaries, de-

noted by Γn (network IB) and Γs (solvent IB), respectively. As shown in Figure 2.2,

the spatial locations of IB points on Γn and Γs are represented by the vector functions

Xn(q, t) and Xs(q, t) respectively. Here, q ∈ [0, L] is the Lagrangian coordinate and L

represents the length of the swimmer. At initial time, we have Xn(q, 0) = Xs(q, 0).

n

Γ

Γ
s

Figure 2.2: Dual IB representation of a swimmer. • −Xn(q, t), ◦ −Xs(q, t).

In our work investigating the movement of a swimmer of infinite length [4], both

the solvent and the network satisfy the non-slip condition on the immersed structure.

That is, the IB points on Γn move with the local network velocity un, while the IB

points on Γs move with the local solvent velocity us. To prevent Γn and Γs from

separating, the pairs of corresponding IB points on them is connected by a stiff spring

with zero rest length (see Figure 2.2). Penalty forces equal in magnitude with opposite

directions are generated at these two points when their spatial locations differ. The

penalty force density at Xn is computed by Fp
n = kp(Xs−Xn), where kp is the penalty

spring constant. The penalty force density Fp
s at Xs is computed in a similar way.

In addition to the penalty forces, other types of forces are exerted at each IB point

to simulate locomotion problems. First, to specify the internal elastic property of the

swimmer, each IB point is connected by elastic springs to its two neighboring points

on the same immersed boundary. Second, each IB point is connected by a stiff spring
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to a corresponding “tether” point with imposed track of motion. The movements of

the tether point describe the specific gait of swimming.

In addition to the penalty force densities Fp
n and Fp

s, we denote the densities of

other force components (sum of elastic force and tether force) on the two boundaries

by Fo
n and Fo

s. Following the classical IB method, the coupling between the fluids and

the immersed boundaries is through the integral relations:

f ij(x, t) =

∫
Γj

Fi
j(q, t)δ(x−Xj(q, t))dq (2.8)

∂Xj(q, t)

∂t
=

∫
Ω

uj(x, t)δ(x−Xj(q, t))dx (2.9)

Here i = o, p and j = n, s. Ω is the fluid domain. f ij(x, t) represents the Eulerian

force density at x contributed by the Lagrangian force Fi
j. δ(x) = δ(x)δ(y) is the

two-dimensional Dirac delta function. Equation (2.8) describes how the Lagrangian

forces at each IB point are transmitted to the corresponding fluid phase. Equation

(2.9) reflects the fact that each IB object moves with the local fluid velocity. With

Eulerian force densities defined above, the force densities in Equations (2.4) and (2.5)

are calculated as:

fn = θnf
o
n + θnθsf

p
n, (2.10)

and

fs = θsf
o
s + θnθsf

p
s . (2.11)

Within each fluid, the Eulerian contributions from Fo
j is scaled by the volume fraction

of that fluid. On the other hand, the penalty forces are scaled by the product of

the volume fractions θnθs after they are transmitted to each of the fluids. Therefore,

no penalty force is generated if either of the volume fractions go to zero. This also

ensures that at each location, the total net penalty forces applied to the two fluids
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approximately add up to zero, provided that Γn and Γs are close enough.

2.2.2 Model of Finite Swimmer

We extend our study to the investigation of swimmers of finite length. In this model,

our primary focus is on the solvent immersed boundary, Γs. As shown in Figure 2.3,

the swimmer moves in a low-viscosity region, the solvent phase, surrounded by a more

viscous bulk fluid, the network phase, with different fluid layers separated by interfaces.

Since the swimmer is surrounded by a solvent phase, the forces from the network on the

network immersed boundary, Γn, are negligible and so do not need to be considered.

Figure 2.3: Model of Finite Swimmer: The swimmer (represented by the black curve)
moves in a low-viscosity region, solvent phase (represented by the blue region), sur-
rounded by a more viscous bulk fluid, network phase (represented by the red region).
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The movement of Γs is driven using a prescribed target curvature κ0(q, t) which has

the waving form

κ0 = Ak2sin(kq + ωt) (2.12)

Both the inextensibility and the shape of the swimmer are enforced by forces that are

designed to penalize extension and deviation from the prescribed curvature. A similar

model was proposed by [21]. These forces are derived from expressions for the bending

energy Eb and stretching energy Es of the swimmer:

Es =
ks
2

∫
Γs

(⏐⏐⏐⏐∂Xs

∂q

⏐⏐⏐⏐− 1
)2
dq, (2.13)

Eb =
kb
2

∫
Γs

(κ(q, t)− κ0(q, t))
2dq. (2.14)

Here, ks and kb are the tensile and bending stiffness of the swimmer, respectively. The

elastic force densities on Γs are computed using the variation derivative of the total

energy:

Fe
s = − δ

δXs

(Es + Eb). (2.15)

Similar to our previous model, to prevent Γn and Γs from separating, pairs of cor-

responding IB points on them is connected by a stiff spring with zero rest length.

Penalty forces (with densities of Fp
s and Fp

n) are generated at these points when their

spatial locations differ. The coupling between the fluids and the immersed boundaries

is through the integral relations:

f ij(x, t) =

∫
Γj

Fi
j(q, t)δ(x−Xj(q, t))dq, (2.16)

∂Xj(q, t)

∂t
=

∫
Ω

uj(x, t)δ(x−Xj(q, t))dx. (2.17)
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Here, i = e, p and j = n, s. The fluid domain is represented by Ω. The Eulerian

force density at x is represented by f ij(x, t). δ(x) = δ(x)δ(y) is the two-dimensional

Dirac delta function. Equation (2.18) describes how the Lagrangian forces at each IB

point are transmitted to the corresponding fluid phase while equation (2.19) reflects

the fact that each IB object moves with the local fluid velocity. Using the Eulerian

force densities as defined above, we calculate the force densities as defined in Equations

(2.4) and (2.5) as:

fn = θnθsf
p
n (2.18)

fs = θsf
e
s + θnθsf

p
s . (2.19)

2.3 Computational Discretization

All fluid variables (un,us, p, θn, θs) are discretized using a Cartesian grid, with constant

grid space h. Each immersed boundary object is represented using a discrete set of

IB points indexed by the integer q. Time is discretized into steps of ∆t, and the

locations of the IB points at time tk = k∆t are denoted by Xj(q, tk) for j = n, s.

Fluid quantities at an Eulerian grid point xlm at this time are identified by uj
lm(tk) and

similar expressions. For communication between the Eulerian grid and the IB point

locations, we use discrete versions of Equations (2.8)-(2.9). More specifically, we use

f ji (xlm, tk) =
∑
q

Fj
i (q, tk)δh

(
xlm −Xj(q, tk)

)
∆q, (2.20)

Uj
(
Xj(q, tk), tk

)
=

∑
l,m

uj
lm(tk)δh

(
xlm −Xj(q, tk)

)
h2 (2.21)

where δh is an approximation to the two-dimensional Dirac delta function. In the IB

method, this function plays a significant role in the interaction of fluids and bound-
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aries. Namely, it is used for the interpolation and spreading of values between these

structures. For our work, δh is defined as

δh(xlm −Xj(q, tk)) = δh(xlm −Xj(q, tk))δh(ylm − Y j(q, tk))

=
1

h
ϕ

(
xlm −Xj(q, tk)

h

)
1

h
ϕ

(
ylm − Y j(q, tk)

h

) (2.22)

One key property of this function that guides the spreading of forces in our work is

that ϕ(r) = 0 for |r| ≥ 2. To satisfy property 2 given above, we need

|r| < 2,

=⇒
⏐⏐⏐⏐xlm −Xj(q, tk)

h

⏐⏐⏐⏐ < 2

=⇒
⏐⏐xlm −Xj(q, tk)

⏐⏐ < 2h

(2.23)

This property specifies that the displacement of the spatial locations of the Eulerian

fluid points and the Lagrangian points on the immersed boundary must be less than

2h in both the x and y direction. These conditions must be met simultaneously to

ensure the spread of a non-zero force from the swimmer to the fluid.

The process of the force spreading from the immersed boundary points on the

swimmer to the fluid is illustrated in Figures 2.4 and 2.5. In these figures, the red dot

represents the location of an arbitrary immersed boundary point on the Lagrangian

grid, located at a given cell center, while the green dots represent an arbitrary im-

mersed boundary point on the Lagrangian grid from which the force will be spread.

As illustrated in the figures, the location of these green points vary and may be lo-

cated either to the right or left, and above or below, the cell-centered IB point. The

blue arrows, located at the centers of the cell edges on the Eulerian grid, illustrate the

location of points on the Eulerian grid to which the forces on the Lagrangian grid are

spread (either in the x-direction or y-direction). In each case, we obtain a 4×4 stencil.
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Figure 2.4 illustrates the spreading of forces in the x-direction. We observe that

the support is bounded to a 2-grid shift on each side (left and right) of the immersed

boundary point from which the force is being spread. Additionally:

• if the immersed boundary point from which the force is being spread is located

below the cell center, the support is bounded by a 2-grid shift below and 1-grid

shift above the point.

• if the immersed boundary point from which the force is being spread is located

above the cell center, the support is bounded by a 1-grid shift below and 2-grid

shift above the point.

(a) down-right (b) up-left

(c) down-left (d) up-right

Figure 2.4: Spreading of force in the x-direction.
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Similarly, Figure 2.5 illustrates the spreading of the forces in the y-direction. Here,

we observe that the support is also bounded to a 2-grid shift on each side (above or

below) of the immersed boundary point from which the force is being spread. Further:

• if the immersed boundary point from which the force is being spread is located

to the right of the cell center, the support is bounded by a 2-grid shift right and

1-grid shift left of the point.

• if the immersed boundary point from which the force is being spread is located

to the left of the cell center, the support is bounded by a 1-grid shift right and

2-grid shift left of the point.

(a) down-right (b) up-left

(c) down-left (d) up-right

Figure 2.5: Spreading of force in the y-direction.
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Once we determine where to spread the force, we calculate the weights using the

Dirac-Delta function. The weights for spreading the x-force is given as

δ(x) =

⎧⎪⎪⎨⎪⎪⎩
1+cos(πx

2h
)

4h
, x ≤ 2h

0, x > 2h

(2.24)

and for the y-force we have

δ(y) =

⎧⎪⎪⎨⎪⎪⎩
1+cos(πy

2h
)

4h
, y ≤ 2h

0, y > 2h

(2.25)

This spreading process is done for both the solvent and the network.

Once the forces are spread from the Lagrangian grid to the Eulerian grid, we proceed

with the interpolation of the fluid velocity to the immersed boundary point (ie. from

the Eulerian grid to the Lagrangian grid). To ensure the conservation of energy, the

interpolation functions used in both the spreading of forces and the interpolation of

fluid velocity, must be the same at each time step. This requires the support (stencil)

of any arbitrary immersed boundary point to be identical in both the spreading and

interpolation processes. Interpolating the fluid velocity to the immersed boundary

point requires essentially the reverse of the spreading process described above. To

interpolate the x-velocity from the fluid to the immersed boundary point, our support,

as well as, our weights remain identical to those used for the spreading process. We

use the support and weights, in both the x and y directions to update the velocity

of the immersed boundary points and other immersed boundary sheet points. This

interpolation process is done for both the solvent and the network.

23



A MAC-type staggered computational grid is used for spatial discretization where

scalars are located at the grid centers and vectors are located at the grid edges (see

Figure 2.6).

Figure 2.6: MAC-Type Staggered Computational Grid.
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2.4 Numerical Solutions

We discretize Equations (2.3)-(2.5) as described in detail in [41]. We write the equations

in matrix-vector form as:⎡⎢⎢⎢⎢⎣
Ln − C C −Gn

C Ls − C −Gs

DT
n DT

s 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
un

us

p

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
fn

f s

0

⎤⎥⎥⎥⎥⎦ , (2.26)

where

Ln,s =

⎡⎢⎣αn,s∂x(θ
n,s∂x) + µn,s∂y(θ

n,s∂y) µn,s∂y(θ
n,s∂x) + λn,s∂x(θ

n,s∂y)

µn,s∂x(θ
n,s∂y) + λn,s∂y(θ

n,s∂x) αn,s∂y(θ
n,s∂y) + µn,s∂x(θ

n,s∂x)

⎤⎥⎦,

C =

⎡⎢⎣ξθnθs 0

0 ξθnθs

⎤⎥⎦, Gn,s =

⎡⎢⎣θn,s∂x
θn,s∂y

⎤⎥⎦, Dn,s =

⎡⎢⎣∂xθn,s
∂yθ

n,s

⎤⎥⎦,
αn,s = (2µn,s+λn,s). f

j = θjf jo + θnθsf jp for j = n, s. All equations in the above system

are discretized using second-order, centered finite differences. When discretized, these

equations lead to a large, sparse linear system of saddle point type. A multigrid

preconditioned GMRES solver is used to solve the system of equations. The transport

equation (2.2) is then solved by the second order corner transport upwind (CTU)

scheme as described in [9]. In addition to the discretized version of (2.1)-(2.5), the

location of the IB points is updated by:

Xk+1
n = Xk

n +∆tS∗
h(u

k
n), (2.27)

Xk+1
s = Xk

s +∆tS∗
h(u

k
s), (2.28)

Here the symbol with superscript k represents the value of the corresponding variable
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at time step tk. S∗
h is the discretized version of the interpolation operator as defined

in (2.9) and (2.17). The time iteration for the proposed numerical method can be

summarized as following:

1. Based on the geometric configuration of IB curves Γn and Γs at tk, compute

the total elastic force densities Fn and Fs on them. Compute the corresponding

Eulerian forces fkn and fks by spreading Fn to the network and Fs to the solvent.

2. Solve discretized versions of (2.3)-(2.5) to get fluid velocities un, us at t
k.

3. Update the positions of the IB points at tk+1 according to (2.27) and (2.28).

4. Compute θn at tk+1 from discretized version of (2.2).

5. Repeat step 1 at next time level tk+1.

Further details about the computational algorithm are given in [13].
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Chapter 3

Results

3.1 Locomotion of Infinite Swimmer Near Inter-

faces

3.1.1 Problem Setup

For the model of the swimmer of infinite length, the problem is motivated by the

classical Taylor’s swimming sheet problem [37]. The swimmer is modeled as an infinite

extensible thin sheet, which is a curve in the two dimensional plane. In the reference

frame with its swimming speed, the sheet has a waving profile:

y = b sin(kx− ωt). (3.1)

In all 2D plots, the x-axis and y-axis are along the horizontal and vertical directions,

respectively. We choose k = ω = 2π. The computational domain is over the rectangular

region [0, 1]× [−1.5, 1.5]. Periodic boundary conditions are imposed in the x-direction

for all model variables to simulate the movement of an infinite swimmer. No-slip
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conditions are imposed for all velocity components at y = ±1.5. The size of the

computational grid is 128 × 384. A constant time step ∆t = 10−4 is used for all

simulations. The swimming sheet is represented by two IB objects (Γn and Γs) each

with 256 IB points. The swimming speed of the sheet is computed by averaging the x-

velocity of all the IB points over one wave period. We assume a steady value is obtained

when the swimming speed varies less than 5% between two consecutive periods.

Since our main focus is to study locomotion within layers of fluid separated by

interfaces, we choose the initial profile of the network volume fraction θn as a piece-

wise constant function in the y-direction:

θn(x, y, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
θinn if |y| ≤ H

θoutn if |y| > H.

(3.2)

Here, the value of H defines the initial location of the fluid interface. θinn is the network

volume fraction in the thin fluid layer in direct contact with the swimmer. This inner

layer is surrounded by a bulk fluid with a network volume fraction of θoutn . Notice that

the location of the fluid interfaces may change due to the movement of the swimming

sheet. To solve the equations of motion with free boundaries between different phases

of materials numerically, interface tracking methods can be used. The location of the

interface is followed explicitly, and different PDEs coupled by matching conditions are

solved on each side of the interface [40]. In our work, we use an interface capturing

strategy [14] in which the same two-fluid Equations (2.3) and (2.4) are solved every-

where throughout the domain. The fluid interface is implicitly represented by the

spatial distribution of the volume fraction θn, which may be regularized numerically

to make computational solutions feasible. There is no need to explicitly track the dy-

namic interface and enforce the interface conditions. Because of the capturing strategy
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and numerical smearing, our simulations essentially approximate the fluid interface by

a spatial region (in 2D) over which the values of θn exhibit sharp transitions.

3.1.2 Comparison with Analytic Solutions

In this section, we illustrate the accuracy of the numerical algorithm by comparing

our simulation results with analytical solutions. In [10, 26], the swimming speed is

calculated for an infinite waving sheeet in a viscous two-fluid domain, where a low-

viscosity fluid layer near the swimmer is surrounded by a more viscous bulk fluid.

For reasonable comparisons with asymptotic solutions, we choose b = 0.012 so that

bk ≪ 1. As the inital profile, we set θinn = 0 and θoutn = 1 so that the inner fluid layer

only contains a single fluid. Note that the force balance Equations (2.4) and (2.5)

become degenerate over the region with θs = 0 or θn = 0. To avoid this difficulty,

we regularize the discrete equations by temporarily adding a small positive constant

δθn = 1.0e− 5 to θn throughout the entire domain and solve the same set of two-fluid

equations everywhere. The value of θs is reduced by the same constant to maintain

the condition θn + θs = 1. A large frictional coefficient ξ = 1010 is chosen so that the

two velocity fields un and us are approximately the same.

3.1.3 Swimming Near Non-Deformable Fluid Interface

In [26], the interface between the two fluids remains flat. Across the interface, the

component of the fluid velocities is zero. The x-component of the fluid velocities

is continuous. To enforce such interface conditions, we introduced two horizontal IB

walls initially located at y = ±H. Each wall is composed of two IB objects as described

in the previous chapter. To approximate a flat interface during the simulation, every

IB point (x, y) on the walls is connected by a stiff spring to a tether point at (x,H).
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Penalty forces are generated at IB points on the walls with y ̸= H caused by vertical

motions of the fluids. The simulation setup is shown in Figure 3.1. In the plot, the

distributions of θn and us (as well as un) are shown for two simulations with different

interface locations at t = 0.5. The viscosity ratio is set to β = µs

µn
= 0.5. The horizontal

black lines in the plot are the IB walls that simulate fluid interfaces. The black curves

in the middle represent the swimming sheet. For the simulation in which the fluid

interfaces are far away from the sheet (Figure 3.1a, H = 0.3), the largest fluid velocity

(along the y-direction) appears near the swimmer. The value of ||us||max is close to

the largest vertical velocity of the sheet. As shown in Figure 3.1b, the largest fluid

velocity appears away from the swimmer along the x-direction in the simulation with

H = 0.16. Due to the confinement effect from the flat interfaces, the counter-rotating

vortices are much stronger for the simulation with smaller H. The net effect is that

the waving sheet closer to the interfaces tends to move faster along the negative x-axis.

In Figure 3.2a,b, the simulated swimming speed (scaled by the swimming speed

in a single phase Newtonian fluid U0) is plotted as a function of the nondimensional

interface height kH for two sets of simulations with viscosity ratios β = 0.5 and β = 0.1,

respectively. For a fixed value of kH, the sheet swims faster with more significant

viscosity differences between the two fluid layers. The simulations agree well with the

2nd order analytic results in [26]. In Table 3.1, the relative errors for the results of

our simulations compared with the results of the analytical solutions are shown for

β = 0.5 and β = 0.1 and different nondimensional interface height kH. The relative

errors increase slightly with the increase of β.
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(a) H = 0.3, ||us||max = 0.07565. (b) H = 0.16, ||us||max = 0.1033.

Figure 3.1: Distribution of network volume fraction θn and fluid velocity us at t = 0.5
for different H. All vectors have the same scale. The viscosity ratio between the two
fluids is β = 0.5.
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(b) β = 0.1

Figure 3.2: The scaled swimming speed vs. the nondimensional interface height kH for
different β. The fluid interfaces are non-deformable. The analytical solutions are from
[26].
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Table 3.1: Relative errors of the simulated swimming speed for different β and nondi-
mensional interface height kH. The fluid interfaces are non-deformable. The analytical
solutions are from [26].

Relative Error

kH β = 0.5 β = 0.1

0.32π 6.3% 7.5%
0.5π 6.0% 7.8%
0.6π 5.6% 6.1%
0.8π 5.3% 5.8%
π 6.2% 6.0%

1.5π 5.9% 5.9%
2π 6.0% 6.2%

3.1.4 Swimming Near Deformable Fluid Interface

The assumption that the fluid interfaces remain flat near a waving sheet is only valid for

large H or small β. In [10], the locomotion of an infinite swimmer close to a deformable

interface between two viscous fluids is investigated analytically. The interface condition

is given by the continuity of stress and velocity. To illustrate the accuracy of our

interface-capturing scheme, we remove the IB walls at y = ±H and redo the simulations

as described in the previous section. In Figures 3.3 and 3.4, the distributions of θn and

us are plotted for simulations with β = 0.5 and β = 0.1, respectively. As an indication

of the interface locations, the jump in θn is slightly smeared over 1− 2 mesh blocks at

t = 0.5 relative to its initial sharp profile. The interfaces deform from their horizontal

configurations due to the waving motion of the swimmer. For interfaces closer to the

swimmer, the deformations are more significant. Comparing Figure 3.4 with Figure

3.3, there are less interface deformations in the simulation with a smaller viscosity

ratio β. Because of the smearing effect, we choose to visualize the fluid interfaces using

the countour lines of θn = 0.5, a value in the middle of the network volume fractions

within the inner and outer layers of fluids. The swimming sheet, the “fluid interfaces”,
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and the fluid velocity are plotted in Figure 3.5 for two simulations with β = 0.5 and

β = 0.1 at different times. The initial swimmer-interface distance is H = 0.16. It

can be noticed that for the simulation with a smaller viscosity ratio (right column of

Figure 3.5), the less deformed fluid interfaces provide more effective confinements to

the swimmer. Thus, the fluid velocity exhibits stronger counter-rotating vortices than

those in the simulation with a larger β (left column of Figure 3.5). By the time at

t = 1.0 (which is exactly one wave period), all fluid interfaces return approximately

back to their initial horizontal positions.

In Figure 3.6, the simulated swimming speed is compared with the 2nd order ana-

lytical result in [10]. The agreement is very good. In Table 3.2, the relative errors for

the results of our simulations compared with the results of the analytical solutions are

shown for β = 0.5 and β = 0.1 and different nondimensional interface height kH. Based

on the computed relative errors, we observe that generally, as the value of β decreases,

the relative errors increase. We also observe for both β = 0.5 and β = 0.1, the relative

error for the deformable interface is significantly less than that of the non-deformable

interface.

33



(a) H = 0.3, ||us||max = 0.0756. (b) H = 0.16, ||us||max = 0.0758.

Figure 3.3: Distribution of network volume fraction θn and fluid velocity us at t = 0.5
for different H. All vectors have the same scale. The viscosity ratio between the two
fluids is β = 0.5.

(a) H = 0.3, ||us||max = 0.0757. (b) H = 0.16, ||us||max = 0.0777.

Figure 3.4: Distribution of network volume fraction θn and fluid velocity us at t = 0.5
for different H. All vectors have the same scale. The viscosity ratio between the two
fluids is β = 0.1.
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(a) t = 0.25, ||us||max = 0.0757. (b) t = 0.25, ||us||max = 0.0768.

(c) t = 0.5, ||us||max = 0.0758. (d) t = 0.5, ||us||max = 0.0777.

(e) t = 0.75, ||us||max = 0.0757. (f) t = 0.75, ||us||max = 0.0768.

(g) t = 1.0, ||us||max = 0.0756. (h) t = 1.0, ||us||max = 0.0761.

Figure 3.5: H = 0.16. Distributions of us, the profiles of swimming sheet (black curves)
and fluid interfaces (red curves) for different β. (a,c,e,g) are for β = 0.5. (b,d,f,h)
are for β = 0.1. All vectors have the same scale.
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Figure 3.6: The scaled swimming speed vs. the nondimensional interface height kH for
different β. The fluid interfaces are deformable. The analytical solutions are from [10].

Table 3.2: Relative errors of the simulated swimming speed for different β and nondi-
mensional interface height kH. The fluid interfaces are deformable. The analytical
solutions are from [10].

Relative Error

kH β = 0.5 β = 0.1

0.32π 0.20% 2.1%
0.5π 0.19% 3.2%
0.6π 1.0% 4.8%
0.8π 0.43% 4.8%
π 0.01% 3.5%

1.5π 0.01% 0.6%
2π 0.03% 0.2%

3.1.5 Force Analysis

For a Stokes swimmer, the swimming speed is determined by a balance of thrust and

drag forces [23]. Here the thrust FT is defined as the anchoring force applied so that

the undulating sheet is prevented from swimming. The drag is the force FD required to

tow the sheet with a frozen shape at the swimming speed U . Due to linearity of Stokes
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flow, the drag force can be expressed as FD(U) = γU , where the magnitude of the drag

coefficient γ is equal to FD(1). To compute the thrust force, we carry out simulations

in which tether points are used to prevent IB points on a waving sheet from moving in

the x direction. FT is computed as the total tethering force on the sheet, averaged over

one wave period. Similarly, for simulations in which IB points on a frozen sheet are

connected to tether points moving with velocity of 1 along the x direction, γ can be

calculated from the time averaged towing force on the sheet. From the force balance

equation FT + FD = 0, the swimming speed is given by U = −FT

γ
. To confirm the

accuracy of the thrust and drag calculation from the simulations, we list the simulated

results in Tables 3.3 and 3.4 for non-deformable and deformable interfaces, respectively.

The viscosity ratio is β = 0.5 for all calculations. As seen from the tables, the ratio

between the thrust force and the drag coefficient from the simulations is very close to

the swimming speed of the sheet.

Table 3.3: Non-deformable interface (β = 0.5): thrust force, drag coefficent, their ratio,
and the simulated swimming speed.

kH Thrust Force (FT) Drag Coefficient (γ) −FT

γ
Swimming Speed U

0.16 3.03× 10−2 2.43× 10−1 −1.247× 10−1 −1.262× 10−1

0.25 1.41× 10−2 2.3× 10−1 −6.130× 10−2 −6.151× 10−2

0.4 7.36× 10−3 2.12× 10−1 −3.472× 10−2 −3.479× 10−2

Table 3.4: Deformable interface (β = 0.5): thrust force, drag coefficient, their ratio,
and the simulated swimming speed.

kH Thrust Force (FT) Drag Coefficient (γ) −FT

γ
Swimming Speed U

0.16 1.23× 10−2 2.43× 10−1 −5.062× 10−2 −5.073× 10−2

0.25 9.54× 10−3 2.3× 10−1 −4.147× 10−2 −4.151× 10−2

0.4 6.63× 10−3 2.12× 10−1 −3.127× 10−2 −3.124× 10−2
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In Figure 3.7, we plot the thrust force and the drag coefficient for different values

of kH from the simulations with non-deformable interfaces. Both FT and γ increase

as the fluid interfaces get closer to the swimmer. The variation is approximately

linear for γ and superlinear for FT . As a result, swimmers near non-deformable fluid

interfaces always move faster than those in a single fluid, as observed in Figure 3.2. The

enhancement of the swimming speed is more dramatic at smaller values of kH, where

the thrust force increases more significantly. For simulations in which the interfaces

are deformable, the value of FT and γ are plotted in Figure 3.8 for β = 0.5 and 0.1.

Comparing Figure 3.8a,b with Figure 3.7, we see that for a fixed viscosity ratio, the

drag coefficient is almost identical for simulations with non-deformable and deformable

interfaces. On the other hand, close to kH = 1, the thrust force is much smaller in the

simulations with deforming interfaces. Physically, a swimmer can move much faster

near non-deformable interfaces than near deformable ones, due to the larger thrust

force from the stronger confinement effect. Comparing the thrust and drag curves for

different values of β in Figure 3.8, it is noticed that for the same value of kH, both FT

and γ increase with the decrease of β. Compared with the drag coefficient, the rate of

increase is higher for the thrust force. As a result, the sheet can move faster within

two fluid layers where there is a greater viscosity difference.
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(b) drag coefficient

Figure 3.7: Thrust and drag coefficient vs. the nondimensional interface height kH.
β = 0.5. The fluid interfaces are not deformable.
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Figure 3.8: Thrust and drag coefficient vs. the nondimensional interface height kH for
different β. The fluid interfaces are deformable.
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Figure 3.9: Comparison of the effect of interface rigidity: Thrust force vs. the nondi-
mensional interface height kH for non-deformable vs. deformable interface. β = 0.5.

Although the drag coefficient shows little sensitivity to interface rigidity, as evident

in Figures 3.7b and 3.8b, the thrust force varies depending on the rigidity. Figure 3.9

illustrates this effect. Notably, we observe an increase in thrust force for non-deformable

interfaces compared to deformable interfaces.

3.1.6 Swimming Near Deformable Interface in Fluid Mixtures

For all simulations presented so far, the continuum medium on each side of the interface

is modeled as a single phase viscous fluid. Such models may not be suitable for some

applications. For example, many biological fluids such as gastric mucus are mixtures

composed of a polymer network immersed in a fluid solvent. The mixture can not

be adequately described as a single phase homogeneous medium if the composition of

the mixture has large spatial variations, or when there is significant relative motions

between different components in the mixture. In this section, we investigate problems

for which analytical solutions are not available. Specifically, we study the dynamics of
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the swimming sheet in mixtures of fluid separated by free interfaces. The main focus

is on the effect of fluid composition and frictional drag on the swimming motion. A

relatively large wave amplitude b = 0.048 is chosen for the swimming sheet. At the

initial time, the network volume fraction in the bulk fluid away from the swimmer is

set to θoutn = 0.8. The values of θinn for the mixture around the swimmer is varied

between simulations. We also vary the frictional coefficient, ξ, between the network

and the solvent to investigate the influence of phase separation on locomotion. For all

simulations in this section, the viscosity ratio between the solvent and the network is

β = 0.25.

In Figure 3.10, the distributions of θn and un are plotted at different times for the

simulation in which H = 0.16, ξ = 100, and θinn is set to 0.2 at the initial time. To give a

better contrast, white color is used to fill regions with θn > θin,max
n , where θin,max

n = 0.26

is the largest value of θn observed near the sheet during the simulation. In Figure 3.10

(b)–(e), the boundaries of the colored region (contour lines of θn = θin,max
n ) are referred

to as the ”fluid interfaces”. As time progresses, spatial inhomogeneities in θn and

deformations of fluid interfaces appear with the waving motion of the sheet. Compared

with the plots at t = 0.25 and t = 0.75, there are more significant inhomogeneities in

the spatial distribution of θn at the half wave period t = 0.5. Interestingly, it is also at

t = 0.5 that the fluid interfaces and the swimmer have approximately the same phase.

At one wave period t = 1.0, the distribution of network volume fraction roughly returns

to its initial value of 0.2 over the entire inner layer. At t = 1.0, although the fluid

interfaces do not fully return to their horizontal positions, their vertical deformations

are the smallest within the wave period. Relative to the results at earlier time, the

network velocity, un, tends to have smaller x-components at t = 1.0. The distributions

of θn over the outer layers of fluid and the solvent velocity, us, are plotted in Figure 3.11.

Here white color is used to fill the region where θn > θin,outn , with θin,outn = 0.72 being
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approximately the smallest value of θn in the outer layer. The fluid interfaces and θn

in the plot exhibit similar periodic patterns in time as observed in Figure 3.10. Notice

that due to the numerical smearing , there is a small vertical displacement (about 2

grid blocks) between the fluid interfaces visualized in Figures 3.10 and 3.11. At one

wave period t = 1.0, x-components of the solvent velocity have smaller magnitude than

those at an earlier time. Due to its low viscosity, the solvent has greater motion than

the network in the vicinity of the swimmer.

In Figure 3.12, we plot the distributions of θn and the velocity difference un−us for

two simulations with ξ = 100 and ξ = 1000, at t = 0.5. With a 10-fold increase of the

frictional coefficient, there is a drastic reduction in both the extent of phase separation

and the relative motion between the two fluids. The region with the largest velocity

difference is near the fluid interfaces. A close look at the plot indicates that the interface

deformation is larger than in the simulation with a larger frictional coefficient (not

shown). In Figure 3.13, we show the distributions of θn and us from two simulations

with H = 0.32 and H = 0.5 at t = 0.5 and t = 1. Regions with θn > 0.25 are filled

with white color. Comparing the plots in Figure 3.13a,b, we see that with the locations

of the fluid interfaces further away from the swimmer, both the interface deformation

and the extent of phase separation are reduced. The vortices of us for the simulation

with H = 0.32 are stronger than those in the simulation with H = 0.5. As indicated in

Figure 3.13c,d, at one wave period t = 1, the distributions of θn return approximately

to their initial profile for both simulations. Furthermore, at this moment, all fluid

interfaces are horizontal approximately, especially for the simulation with the larger

value of H.
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(a) t = 0. (b) t = 0.25, ||un||max = 0.3.

(c) t = 0.5, ||un||max = 0.314. (d) t = 0.75, ||un||max = 0.31.

(e) t = 1.0, ||un||max = 0.306.

Figure 3.10: H = 0.16, β = 0.25, ξ = 100, θinn = 0.2, and θoutn = 0.8. Distributions of
θn and un at different times. All vectors have the same scale.
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(a) t = 0.25, ||us||max = 0.308. (b) t = 0.5, ||us||max = 0.313.

(c) t = 0.75, ||us||max = 0.309. (d) t = 1.0, ||us||max = 0.304.

Figure 3.11: H = 0.16, β = 0.25, ξ = 100, θinn = 0.2, and θoutn = 0.8. Distributions of
θn and us at different times. All vectors have the same scale.

(a) ξ = 100, ||un − us||max = 0.254. (b) ξ = 1000, ||un − us||max = 0.106.

Figure 3.12: Effect of frictional coefficient: H = 0.16, β = 0.25, θinn = 0.2, and
θoutn = 0.8. Distributions of θn and velocity difference un − us at t = 1.0. All vectors
have the same scale.
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(a) H = 0.32, t = 0.5, ||us||max = 0.304. (b) H = 0.5, t = 0.5, ||us||max = 0.304.

(c) H = 0.32, t = 1.0, ||us||max = 0.304. (d) H = 0.5, t = 1.0, ||us||max = 0.304.

Figure 3.13: Effect of interface locationH: β = 0.25, ξ = 100, θinn = 0.2, and θoutn = 0.8.
Distributions of θn and us at different times. All vectors have the same scale.

In Figure 3.14, the scaled swimming speed U
U0

is plotted as a function of the network

volume fraction θinn for H = 0.5, H = 0.32, and H = 0.16. The value of θoutn is 0.8

for all simulations. For all values of H, the swimming speed always increases with

the increase of the frictional coefficient for a given θinn . This is consistent with the

45



conclusion from [15], in which the swimming sheet problem is investigated in a two-

fluid mixture without interfaces. In the simulations with the largest drag of ξ = 105,

the network and the solvent move approximately with the same velocity. Therefore,

the inner fluid layer behaves like a single phase fluid with the effective viscosity of

µin
eff = θinn µn + (1 − θinn )µs. Similarly, the effective viscosity of the outer layer is given

by µout
eff = θoutn µn + (1− θoutn )µs. Based on the viscosity ratio β =

µin
eff

µout
eff

, we can use the

analytical formula from [10] to compute the swimming speed. The results are plotted

as the solid black curves in Figure 3.14. Despite the relatively large amplitude of the

waving sheet and large interface deformations, the simulation results agree very well

with the analytical solutions. Notice that for the simulations with the largest drag, the

swimming speed in a single phase fluid is recovered ( U
U0

≈ 1) when θinn = θoutn = 0.8.

For all other values of θinn < 0.8, the sheet always swims faster than that in a single

fluid, due to the confinement effect from the interfaces.

In the simulations with ξ = 102 and ξ = 103, the relations between the swimming

speed and θinn exhibit different trends depending on the value of H. When the fluid

interfaces are close to the swimmer (H = 0.16), the swimming speed always decreases

with the increase of θinn . This is illustrated in Figure 3.14a. The increase of the network

volume fraction near the swimmer reduces the viscosity difference between the inner

and outer fluid layers. This tends to weaken the confinement effect of the interfaces and

reduce the swimming speed. For some values of θinn , the scaled swimming speed is less

than one. For a much larger swimmer-interface distance H = 0.32 (Figure 3.14b), the

swimming speed in the simulations with intermediate frictional coefficient of ξ = 103

still goes down as the values of θinn increase. The swimming speed U is less than U0

if the value of θinn is close to 0.8. By contrast, a non-monotone dependence of the

swimming speed on θinn is observed for the simulation with ξ = 102. In this case, the

ratio of U
U0

is always less than one. With interfaces further away from the swimmer
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(c) H = 0.5.

Figure 3.14: The scaled swimming speed vs. θinn for different H and ξ. β = 0.25 and
θoutn = 0.8. The analytical solutions are from [10].

(Figure 3.14c, H = 0.5), the swimming speed demonstrates non-monotone variations

with the increase of θinn for both simulations with the intermediate and small values of

ξ. In these simulations, the swimmer always moves slower in the mixture than in a

single fluid.
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3.2 Locomotion of Finite Swimmer Near Interfaces

3.2.1 Problem Setup

For our second model, the swimmer is modeled as a finite inextensible curve with

body length L = 1. For target curvature, κ0, we choose A = 0.12, k = 2π and

ω = 4π. The computational domain is over the square domain [−0.2, 1.8] × [−1, 1].

Periodic boundary conditions are imposed in the x-direction for all model variables.

No-slip conditions are imposed for all velocity components at y = ±1. The size of the

computational grid is 256 × 256. A constant time step of ∆t = 10−4 is used for all

simulations. Each IB object contains 256 IB points. Since the goal of this work is to

study locomotion within layers of fluids separated by interfaces, we choose the initial

profile of θn as a piece-wise constant function in the y-direction:

θn(x, y, t = 0) =

⎧⎪⎪⎨⎪⎪⎩
δθn, y < H

1− δθn, y ≥ H

(3.3)

Here, the value of H which is set to 0.25 for all simulations, defines the initial location

of the fluid interface. We choose δθn = 10−4 so that the initial value of θn is slightly

above zero near the swimmer and slightly less than 1 for the bulk fluid, making it

possible to solve (2.4) and (2.5) numerically. Based on this setup, the fluid interface is

implicitly approximated by the spatial distribution of θn. We choose a large frictional

coefficient, ξ = 1010, so that the two velocity fields, un and us, are approximately

the same. The viscosity of the solvent fluid in contact with the swimmer is chosen as

µs = 1 while the network viscosity, µn, is varied in the simulations. For all simulations,

we use a large tensile stiffness, ks = 104, so that the length variation of the swimmer

is less than 3%. We investigate the movement of two types of swimmers with bending
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stiffness values set to 2 and 10. Swimmers with kb = 2 are referred to as “soft”,

while those with kb = 10 are referred to as “stiff”. Note that for both soft and stiff

swimmers, the realized shape is the result of complicated fluid-structure interactions

and therefore different from that prescribed by the time-dependent value of κ0. The

swimmer is aligned horizontally at initial time, with the centroid located at x = 0.5.

The net locomotive displacement is in the positive x-direction, opposite to the traveling

wave propagating along the swimmer. We run all simulations up to t = 5.0. This is 10

periods of the swimming strokes.

3.2.2 Soft Swimmer Near Fluid Interface

First, we study the effect of fluid interfaces on a soft swimmer with bending stiffness

kb = 2. The results are plotted in Figure 3.15. In Figure 3.15 (a)-(c), the distribution

of network volume fraction and the fluid velocity are plotted for three simulations with

varying µn values. For the simulation with µn = µs = 1 (Figure 3.15a), the swimmer

essentially moves in a single fluid. As viscosity of the bulk fluid increases from 1 to 5,

the fluid velocity is significantly reduced. In simulations with higher values of µn, the

fluid motion is more confined to the inner fluid layer. The perturbation of the interface

caused by swimming is also reduced with increased viscosity. As a result of numerical

dissipation, the fluid interface is smeared over 2-3 grid blocks during the simulation.

The time evolution for the centroid of the swimmer is shown in Figure 3.15d. It is

clear that over one stroke (time duration of 0.5), all swimers exhibit both forward and

backward movements. Such movements decrease with the increase of fluid viscosity.

Interestingly, despite their very different movements in the forward and backward di-

rections, the centroids of the swimmers with the smallest and intermediate network

viscosities coincide approximately at full swimming periods (see the solid and dash-

dotted curves in Figure 3.15d). The swimmer that is surrounded by the most viscous
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fluid moves the slowest (dotted curve in Figure 3.15d). The swimmer profiles are shown

in Figure 3.15e. From this, we see that waving amplitude decreases systematically as

viscosity increases.

3.2.3 Stiff Swimmer Near Fluid Interface

Next, we study the effect of fluid interfaces on a stiff swimmer with bending stiffness

kb = 10. The results are plotted in Figure 3.16. From the distributions of network

volume fraction and fluid velocity in Figure 3.16 (a)-(c), we observe that the body

deformation for stiff swimmers is much larger than that for soft swimmers. The undu-

latory movement of stiff swimmers also drives more significant fluid flow around them,

causing larger deformations to the fluid interface. In simulations with larger µn, we see

that there are less deformations of the interface. Figure 3.16, in which the x component

of the swimmer centroid is plotted as a function of time, provides better understanding

of the swimming motion. Similar to soft swimmers, stiff swimmers exhibit periodic

forward and backward movements. We see in Figure 3.16a over one swimming stroke,

the stiff swimmer in a single fluid (µn = 1) has the largest forward motion. However,

this forward movement is greatly canceled out by a backward slippage of almost the

same size resulting in the swimmer moving the slowest. Alternatively, there is consider-

able decrease in the forward movement of swimmers with larger µn in the simulations.

Despite this effect, the swimming motion is still greatly enhanced by the increase of

viscosity due to a more drastic reduction in backward slippage. The swimmer profiles

at t = 5 are plotted in Figure 3.16e. Increased fluid viscosity results in reduced waving

amplitude of the swimmer, and increased net displacement.
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(a) θn and µs at time = 2.5, µn = 1,
||µs||max = 0.23

(b) θn and µs at time = 2.5, µn = 2,
||µs||max = 0.17

(c) θn and µs at time = 2.5, µn = 5,
||µs||max = 0.13
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(d) The horizontal position for the centroid of
the swimmer at different times.
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Figure 3.15: Soft Swimmer
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(a) θn and µs at time = 5, µn = 1, ||µs||max =
0.93

(b) θn and µs at time = 5, µn = 2, ||µs||max =
0.69

(c) θn and µs at time = 5, µn = 5, ||µs||max =
0.48
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Figure 3.16: Stiff Swimmer
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Chapter 4

Conclusion

In our work, we have conducted a computational investigation of the classical swimming

sheet problem within heterogeneous media, utilizing a two-fluid mixture model and the

Immersed Boundary Method. The swimmer moves in a low-viscosity region surrounded

by a more viscous bulk fluid, with different fluid layers separated by interfaces. When

dealing with the scenario in which the volume fraction of one fluid vanishes in part

of the domain, we utilize numerical regularization to solve the model equations. The

mixture model and numerical regularization eliminates the necessity to explicitly track

the interface and enforce the interface conditions. This significantly simplifies the

computational algorithm, particularly for problems involving dynamic interfaces. Our

numerical simulations closely align with analytical results for locomotion in layers of

single phase fluids. To the best of our knowledge, this is the first time that such

problems are simulated by a combination of the IB method and the interface-capturing

strategy. Our numerical findings reveal that both the thrust and the drag on the

swimmer increase with the increased viscosity differences between fluid layers and the

decrease of the interface-swimmer distance. The rate of increment for the thrust is

greater than that for the drag. This always leads to faster swimming, an effect more
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substantial for swimmers near non-deformable interfaces.

We also explore the locomotion of swimmers within layers of fluid mixtures. Rela-

tive motion and phase separation between components in the mixture can be induced

by the waving swimmer. The results reveal that the swimming speed depends in a

non-trivial way on several parameters. With other conditions being the same, greater

frictional forces lead to reduced relative motion and phase separation within the mix-

ture. This always makes the swimmer move faster. For swimming in close proximity to

the interface, the confinement effect dominates. The reduction of viscosity for the mix-

ture near the swimmer, achieved by the increase of θs or the decrease of θn, strengthens

the confinement effect from the surrounding bulk fluid, leading to an acceleration in

swimming motion. The situation is more complicated, however, if the interfaces are

further away from the swimmer. Depending on the values of H and ξ, lowering the

network fraction near the swimmer can either enhance or reduce the swimming speed.

Consequently, swimmers in a two-fluid mixture near free interfaces may move faster

or slower than those in a single fluid, contingent on their distance from the interface,

the composition of the fluid mixture, as well as the magnitude of the frictional force

between components in the mixture. This observation can be potentially related to

the disparity of experimental results on microorganism swimming [34, 17].

Our work also investigates the locomotion of an undulatory swimmer with finite

length within a low-viscosity fluid surrounded by a more viscous bulk flow. Rather

than moving with a prescribed swimming gait, the swimmer’s movement is actuated

by a prescribed active body moment density. Our simulation results demonstrate

that near a fluid interface, significant swimming enhancement is achieved only for

relatively stiff swimmers. It is well know that locomotive speed-ups near fluid interfaces

are a result of the confinement effect provided by the surrounding bulk fluid. As

the viscosity difference between the two fluids separated by the interface increases,
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the confinement effect strengthens. This allows a swimmer to induce greater fluid

vorticity for increased swimming speed. As a result, in the vicinity of a fluid interface,

swimmers with prescribed gaits always move faster with an increased viscosity ratio

µn

µs
. Conversely, stronger confinement, attributed to an increase in µn, typically hinders

the swimming motion by reducing the beating amplitude of an active swimmer with a

given body moment density. The speed-up or slow-down of the swimmer is contingent

on the interplay between these two effects. Our simulations demonstrate that the effect

of the fluid interface in favor of swimming dominates exclusively for stiff swimmers.

The computational framework presented in the paper can be applied to the study of

the locomotion of microorganisms within various biofluid media, especially for the cases

where swimmers are in close proximity to free deformable interfaces. The versatility

of the method also makes it a suitable tool to investigate problems in which structural

properties of the fluid media are altered by the dynamic of the swimmer. For instance,

a notable observation is the phase transition of gastric mucin from a viscoelastic gel to

a viscous solution, triggered by the urease production from the ulcer-causing pathogen

H. pylori [6]. This localized de-gelling process allows the bacterium to navigate through

a fluidic pocket, surrounded by gel, and cause infection. While prior analytical work

in [27], based on a simplified model, highlights the significance of the role of the size

of the fluid zone in determining the physics of motility, it overlooks the dynamics of

the gel-sol transition, chemical reactions, and mucus transport. Further expansion of

our computational model can provide a comprehensive framework for the investigation

of such locomotive problems in multi-fluid heterogeneous media. The kinetics of rhe-

ological changes for gastric mucus may be modeled through the choice of appropriate

functional forms for the network stress tensor, which are dependent on the deforma-

tion history and chemical concentrations. The process of mucin degradation can be

simulated through the addition of reaction terms in equations for θn and θs.
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In addition to viscosity differences and bending stiffness, it would interesting to

conduct a systematic investigation into the influences of other model parameters, such

as interface position and target curvature. Expanding on our model could shed light on

how these factors interact with a change in swimmer alignment. For instance, instead

of the conventional horizontal swimmer alignment parallel to the interface, we can

explore a vertical alignment that is perpendicular to the interface. Furthermore, our

computational model can be extended to study locomotion problems near interfaces in

viscoelastic fluids. Such problems have significant biological implications as it relates

to bacteria motility and infection. Finally, it would be interesting to apply an implicit

time-stepping method to improve the computational efficiency of our work and explore

the potential benefits of this type of method.
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