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Abstract 

 

Title: DESIGN SPACE VISUALIZATION AND EXPLORATION FOR MANY GOAL 

PROBLEMS UNDER UNCERTAINTY  

Author: Niharika Balaji 

Advisor: Anand Balu Nellippallil, Ph.D. 

Designing a complex engineered system is challenging due to many conflicting goals, 

uncertainties, and multiple interactions. Traditional optimization approaches often yield 

single-point solutions, which may not be suitable for early design stages due to their 

susceptibility to changes in conditions and uncertainties. To address this challenge, a 

satisficing approach is employed. This approach enables designers to effectively navigate 

the design space and identify satisficing solutions that balance conflicting goals in the face 

of uncertainties and changes in conditions. From a systems design perspective, we view 

design as an iterative process that involves making informed decisions based on available 

information and supported by simulations. The Decision-Based Design (DBD) paradigm is 

the foundation for design methodology in this thesis, empowering designers to navigate the 

complex design landscape by making informed decisions grounded in available information. 

In this thesis, the DBD technique called compromise Decision Support Problem Technique 

(cDSP) is employed to address the issue of many (more than three) goals and uncertainty in 

the system. 

Model-based complex system design involves one crucial step: exploring and visualizing the 

solution space. This procedure provides insightful information about the system's behavior, 

enabling designers to make informed decisions. Accurately predicting future states is 
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difficult because of the intrinsic constraints of models and the inherent uncertainty in search 

methods and solvers. By exploring the solution space and displaying its complexities, 

designers find satisficing solutions relatively insensitive to uncertainties. 

In this thesis, a Decision-based Design framework is proposed. The novelty of this 

framework is that it integrates the compromise Decision Support Problem (cDSP) technique 

accounting for many conflicting goals, incorporated with robust design metrics to address 

the issue of uncertainty with a machine-learning-based visualization technique called 

interpretable Self-Organizing Maps (iSOM) to visualize and explore the solution space for 

many goals effectively. The efficacy of this framework is validated, considering vehicular 

crashworthiness problems as an example.  

Once the DBD framework has identified feasible solutions, selecting a standard satisficing 

solution proves crucial for understanding the system's behavior and performance. This thesis 

presents a systematic approach for identifying common satisficing solutions from the 

visualized plots generated by the DBD framework. The effectiveness of this approach is 

demonstrated through the design of a composite beam as an illustrative example. 
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Chapter 1 : Realization of Complex Engineered 

Systems - Navigating Solution Space through 

Visualization and Exploration 
This chapter lays the foundation for the thesis, starting with Section 1.1, discussing 

motivation for complex systems. In Section 1.2, the need for realization of complex systems 

is discussed. Section 1.3 explains the challenges in the realization of a complex system. 

Section 1.4 and Section 1.5 discuss the background of Decision-based Design (DBD) and 

solution space exploration, respectively. A detailed discussion of research gaps and 

questions is in Section 1.6. Finally, Chapter 1 is concluded by discussing the validation 

square and outline of the thesis in Section 1.7. 

 Motivation: Realization of Complex Systems 

In contemporary times, engineering problems are predominantly complex in nature. 

Complex systems are those that depend on several system components or features, with each 

component or feature having a separate set of priorities and goals. The fact that there are 

many (more than three) goals that conflict with one another, multiple ways in which various 

components interact, and the existence of uncertainties make managing these systems a 

challenging task. Interconnectivity, evolving behavior of the system, robustness, and many 

conflicting goals are all characteristics of the complex systems. The ability of one component 

or feature in a system to have an impact on other components or features is known as 

interconnectivity and, the interactions inside the system cause the system's dynamic behavior 

which also impacts the performance of the system and properties of individual components, 

these interactions are non-linear in nature i.e., any small change in a component or feature 

may result in huge behavioral changes of the system. In a complex system, variations or 

uncertainties are always present, arising from various factors. Additionally, these systems 

often involve many conflicting goals, posing a challenge for designers to identify feasible 

solutions. For effective solutions to be developed, it is crucial to comprehend and 

acknowledge the need for the realization of complex systems and their challenges. 
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 Need for Realization of Complex Systems 

In designing engineered complex systems, we come up with mathematical modeling that is 

used to model the physical systems. To make the models manageable designers must 

simplify and approximate the model. This simplification may include altering certain details, 

assuming the system to be under ideal conditions, or using linear approximations for non-

linear methods. This simplification becomes necessary as we cannot capture every detail of 

a complex system. In some cases, understanding of the complete physical system plays a 

vital role in developing the mathematical solvers used to simulate and analyze the models. 

Typically, models are imperfect but provide means of understanding, predicting, and making 

decisions about physical systems. The model must capture the key characteristics of the 

system, and it should be able to make predictions or offer insights that aid in decision-making 

while still being reasonably accurate. A British mathematician and professor of statistics 

George Box states that “Essentially, all models are wrong, but some are useful” (Box and 

Draper 1987). In recent times there has been an increase in the use of model-based complex 

system design due to growing accessibility and diversity, customization, efficiency, 

complexity of modern systems, adaptability, rapid prototyping and iterative methods, and 

cost efficiency. To further explore model-based complex system design, it is first required 

to clarify what a system is, Blanchard and co-authors define a complex system as a “ 

Combination of components that act together to perform a function not possible with any 

individual parts” (Blanchard and Stiglitz 1992). According to Shupe and co-authors complex 

system can be defined as “ Grouping of associated entities characterized by a mental 

construct” (Shupe, Muster and co-authors). Bloebaum and co-authors define the complex 

system as “Tightly coupled interacting phenomena yield a collective behavior that cannot be 

derived by simple summation of the behavior of the parts” (Bloebaum and McGowan 2012). 

Some of the characteristics of complex system are:  

• Complex systems have different components interacting with each other. 

• Complex system consists of uncertainties. 

• They have many conflicting goals. 
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Once the complex system is understood the next step is to understand the model-based 

design. A model-based design is a virtual representation of physical systems that help in 

development of new systems, implementation, and analysis, prototyping and validating a 

system. Some of the principles of the model-based design are: 

• Use of mathematical constructs to model physical complex systems. 

•  Use of computer models for testing and implementing the models. 

• Evaluation and analyzation of the models. 

The modelling of physical complex system or real world is shown in Figure 1.2. In a model-

based design the information available from a physical system is limited, every aspect of the 

physical system cannot be captured. Therefore, the mathematical models developed are the 

approximations of actual systems. In addition to knowledge limitation mathematical models 

also must deal with the solver limitations which results in the manifestation of uncertainty 

in the system. To solve this problem, the decision-making process needs to incorporate a lot 

of analysis, review, and interpretation. This is necessary in order for the end user to 

comprehend the outcome and use it to accomplish their desired goals and develop a 

structured methods (Miñón, Paternò and co-authors 2016). 

 
Figure 1.1: Representation of modelling of Physical systems (Xie, Peacock and co-

authors 2002) 
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Advantages of the model-based design are mentioned below: 

• It is helpful in the early stages of the design by reducing the prototyping cost and 

identifying errors. It also provides designers with information that helps to explore 

and analyze the system completely. 

• Facilitating a common design environment that provides data documentation, 

analysis, and visualization, model verification and interaction between the variables 

in the system. 

• The design can be reused to upgrade and modify to expand the capabilities. 

In conclusion, realization of complex engineered systems is crucial for understanding the 

world around us and for obtaining new insights, making predictions, developing, and 

optimizing systems, and managing complexity. It is essential in decision-making, risk 

assessment, risk management, and a variety of applications in many different fields of study. 

Next, in Section 1.3 the challenges faced in realization of complex systems are discussed. 

 Challenges in Complex Systems 

The key challenges and characteristics of a complex system are provided by Mexiner and 

co-authors (Meixner, Paternò and co-authors 2011), Ruiz and co-authors (Ruiz, Serral and 

co-authors 2019), Some of the challenges faced by the designers in a complex system are 

mentioned below : 

• To understand the behavior of a complex system we require intricate simulations 

and mathematical models, it becomes challenging to develop efficient models to 

account the behavior of the complex system. 

•  Identifying the type of uncertainties in the complex system and coming up with a 

robust solution that satisfies the design requirements. 

• Understanding the interactions within the system, which presents a challenge to 

designers, is important to comprehend the emergent behavior of the complex system. 

• It becomes challenging for the designers to identify feasible solutions that achieve 

an appropriate balance between many conflicting goals. 
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• Exploring the design space and visualizing feasible solutions in complex systems 

becomes challenging due to the multitude of dimensions involved. 

Considering the complexity of the engineering problems it becomes challenging for the 

designer to come up with effective solutions. Hence, the principal goal of this thesis is to 

establish a Decision-Based Design (DBD) framework for complex engineered systems 

with many conflicting goals, addressing the uncertainty in the system and use an 

effective machine learning based visualization technique to explore and visualize the 

solution space. The key characteristics of complex system are it consists of many conflicting 

goals (more than three), there are multiple interactions among variables and uncertainties, or 

variations are present, and these characteristics are shown in Figure 1.2. In the next Section 

1.4 the foundation about the Decision Based Design (DBD) is explained in detail. 

 
 

Figure 1.2: Complex system features 

 Background for Decision Based Design (DBD) 

The work of Herbert Simon (Simon 1969) serves as a foundation for Decision Based Design. 

A human designer's primary responsibility is to make decisions, hence the DBD design 

paradigm was created to help establish design methodologies to support human designers. 

In decision making process the information is converted into knowledge and some of the 

characteristics of the design decisions are discussed below (Mistree, Smith and co-authors 

1990). 
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• Design decisions are governed by multiple measures of merit and performance. 

• Decisions in design involve information coming from different sources and 

disciplines. 

• Decisions in design are invariably multidimensional and multileveled in nature. 

• All the information needed to make decisions may not be available. 

• Some of the information required to decide may be hard, that is based on scientific 

principles and some of the information may be soft, that is, based on the designer’s 

judgement and experience. 

• The problems for which design decisions are being made are invariably loosely 

defined and open and are characterized by the lack of singular, unique solution. The 

decisions are less than optimal, which represent satisficing solutions. 

Bras B A (Mistree, Smith and co-authors 1990) developed a Decision based design equation 

shown in equation 1.1 and Figure 1.2, where the I represents the information , T represents 

the transformation matrix and K represents knowledge 

 

                                                                  K = T(I)                  Equation 1.1 

 

 
Figure 1.3: Design equation (Brass 1993) 

Based on the design equation a meta equation is developed as an approximation shown in 

equation 1.2 and the equation converts the design parameters into functional requirements, 

the T function in equation 1.2 satisfies multiple decision support problems. Therefore, the 

Decision support problems represent the practical application of the design equations within 

the Decision based design framework. Figure 1.2  
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In the Decision support problem technique, one fundamental aspect is the recognition that 

the primary responsibility of an engineer during the design of an artifact is to engage in 

decision making (Muster and Mistree 1988). One way to apply decision-based design is 

through the Decision Support Problem (DSP) Technique, which is described in more detail 

in the next section. 

1.4.1 Decision Support Problem (DSP) Technique 

DSP technique is one of the ways that DBD is carried out. Muster and Mistree (Muster and 

Mistree 1988) affirm that the DSP technique helps human designers in employing human 

reasoning to make logical decisions. The designers are primarily concerned with two tasks: 

analyzing symbols and arriving at decisions and for this they need an approach or method to 

come up with satisficing solutions rather than the optimal solutions because the systems are 

complex and have uncertainties in them. The DSP technique helps designers summarize and 

formulate complex problems so that they can be solved satisfactorily while remaining near 

the real system without removing its sources of uncertainty. DSP technique consists of two 

phases: (i) Meta design and (ii) Design phase. In meta design phase the decision support 

problem is structured and separated into basic DSPs, the main goal of this phase is to develop 

the design process to be implemented. The actual DSP problem is solved in the design phase 

and analysis of the solution is carried out. Design-related decisions can be modeled using 

decision-support problems, and the resulting domain-specific mathematical models are 

known as templates or decision-support problem templates. All the decisions obtained in the 

DSP technique are classified as selection or compromise and these decisions are considered 

primary and derived decisions respectively (Mistree and Bras).  

Selection DSP - Allows the designer to choose from a variety of possible factors to be 

considered. The focus in the selection process is accepting specific alternatives while 

rejecting others based on various measures of merit, which are referred to as attributes, which 

represent the functional requirements. 

Compromise DSP – Allows the designer to identify the right combination of design 

variables to obtain the best satisficing system design considering constraints and many goals. 
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The compromise DSP is discussed in greater detail in Chapter 2, and this is the foundational 

DSP construct used in this thesis. In the next section foundational philosophy used in this 

thesis is explained in detail. 

Derived DSP – Allows the designers to use combination of both primary DSPs to model the 

complex system decision like selection/selection, compromise/compromise, 

selection/compromise (Karandikar and Mistree 1993, Simpson, Rosen and co-authors 1996, 

Sharma, Allen and co-authors 2019) 

 
Figure 1.4: Primary and derived decisions (Mistree and Allen 1997) 

 Satisficing Philosophy versus Optimizing 

In modeling of decisions there are two types of reasoning i) Optimizing philosophy and ii) 

Satisficing philosophy. Our research foundation is anchored with rationality proposed by 

Herbert A, Simon (Simon 1969) given all models are inaccurate, incomplete, and not of 

equal fidelity. We consider a “Satisficing solution” for exploring the solution space for 

design problem. A satisficing solution is the one that satisfy and suffice the requirements of 



 

 

9 

 

the designers for a conflicting goals problem. For a complex problem the characteristics and 

information are mentioned below (McDowell, Panchal and co-authors 2009): 

• Design problems could be loosely defined and open. 

• Design information may be quantifiable, and some may be qualitative. 

• There will be multifunctional requirements in design, and they are governed by 

multiple measures of merits and performances. 

• All information required for design may not be available and thus the designer may 

have to work with incomplete, inaccurate and infidel models and information. 

From the characteristics of a complex system the solutions obtained are less optimal and 

sought satisficing solutions. A complex problem can be formulated in two ways: i) Solving 

the complex problem in approximate approach and ii) Solving an approximation of complex 

problem in an exact way. 

In the first method, designer obtains optimal solutions based on simple models, the optimal 

solutions found are approximation and not optimal in reality. Whereas in the second method 

an algorithm that provide solution close to reality is used rather than simple models. The 

solutions obtained by using approximate models are closer to reality and satisficing. 

Sequential linear programming (SLIP) is used in solving cDSP formulations has it consists 

of single algorithm for solving a set of DSP’s in engineering design (Mistree, Hughes and 

co-authors 1993). The sequential linear programming (SLIP) and multilevel version 

(SLIPML) is altered resulting an algorithm called adaptive linear programming (ALP). This 

algorithm is for multilevel, multigoal features which is accounted in decision support on the 

design of engineering systems (DSIDES) (Mistree and Kamal 1985, Reddy, Smith and co-

authors 1996). The key characteristics of Adaptive linear programming are (Mistree, Hughes 

and co-authors 1993): 

• During linearization second order terms are used. 
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• The constraints and goals are normalized and are transformed into well-behaved 

convex functions in the region of interest. 

• A constraint suppression and accumulation technique that is intelligent. 

Understanding the fundamental philosophy of this thesis allows us to go on to the following 

section, which discusses background on solution space exploration. 

 Background: Solution Space Exploration and 

Visualization  

In a model-based complex system design the key step is to explore and visualize the solution 

space that provides the information and insight about the system to the designer’s that 

facilitate them in decision making. As the physical world cannot be represented completely 

and accurately it is difficult to predict the futuristic state, even the different search algorithm 

used are inaccurate and solvers used also exhibit the uncertainties in the results. By exploring 

and visualizing the solution space, a designer is able to find robust solutions, which are 

relatively insensitive to inaccuracies in the system (Triantaphyllou and Sánchez 1997). To 

go deeper into the solution space exploration instance, the concept of multi-objective 

formulation in model-based design is discussed. A multi goal formulation involves 

conflicting goals that are assessed based on different performance criteria, designers have 

the option to employ, the satisficing approach to address these conflicts (Simon 1969). On 

the contrary, when employing a single goal or multi goal formulation, disputes over the 

solution are minimized as it relies exclusively on the pre-determined criteria for making the 

choice. Consequently, the inclusion of multiple objectives elevates the complexity involved 

in the decision-making process. There exists different type of visualization techniques, but 

the question is: Is there a visualization technique that can be utilized to visualize and explore 

the solution space for complex problem with many goals and how to choose the appropriate 

visualization technique? It is also important to understand that hear of decision-making is 

the human designer leverages these process and methodologies to determine the optimal 

variable settings, design parameters and understand the system in more detail. In general 

sense, the evolution of design process and methodologies provides tools for focusing 
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attention and improving human judgment to enable well-informed, knowledge driven 

decision making. Computers and methodologies possess the capacity to enhance designer’s 

capabilities and they are commonly used to develop complex systems, for example designing 

aircraft. The significance of designers is increasingly acknowledged, where design 

methodologies play a vital role that enhances the design process and promotes concurrent 

work. Solution space needs to be visualized and explored to understand the interactions 

between the variables, the effect of each goal on one another and identify the satisficing 

solutions. Visualization techniques streamline the decision-making process for designers by 

providing straightforward means of interpreting solutions for conflicting goals problems. 

There is a need for developing techniques that can be utilized to visualize and explore the 

solution space that approximates complex systems, which is typically incomplete, 

inaccurate, and not of equal fidelity. Many visualization methods primarily used are limited 

to two-dimensional visualization leveraging the graphical optimization to facilitate intuitive 

thinking for designer’s (Nagar, Pannerselvam and co-authors 2022). However, it becomes 

challenging when a designer must visualize complex problems that involve a high number 

of dimensions. Hence there is a need to come up with new approaches where solution space 

can be visualized and explored for more than three dimensions and help designers make 

decisions on various factors such as design variables, relation between these variables and 

Region of Interest (RoI). Chapter 2 provides a more detailed discussion about existing 

visualization techniques and their limitations. Moreover, it delves into the visualization 

technique employed in this thesis, highlighting how it successfully surmounts the limitation 

encountered in existing methods. In the net section research questions and research gaps are 

discussed. 

 Identifying Gaps and Research Questions 

After discussing design choices for engineered systems, it is necessary to develop a 

framework that may help designers deal with the problem of uncertainty for robust 

performance of complex systems. Besides robust performance of the complex systems we 

need effective solution space visualization to interpret the data easily. There are some 

challenges associated with developing framework for complex system mentioned below, 
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• Defining and understanding the type of uncertainty in a complex system is a 

fundamental challenge. 

• Choosing appropriate methods to quantify the uncertainties. 

• Complex systems consist of multiple interactions, and it becomes challenging to 

analyze the effect of change in variables affecting the overall performance of the 

system. 

• Identifying appropriate data visualization techniques that facilitate the designers to 

interpret the solutions easily. 

In the context of these challenges, the focus in this thesis is to establish research questions 

and address the research gaps required for complex systems under uncertain conditions. 

Research Gaps 

Gap 1: Address many conflicting goals and understand their interrelations under 

uncertainty. 

 

Gap 2: To effectively visualize and explore robust solutions for problems involving many 

conflicting goals. 

 

Gap 3: Identifying satisficing solutions for many (more than three) conflicting goals. 

 

The main objective of this thesis is to lay the research foundations necessary for the complex 

engineered system design for many goals problem in the presence of uncertainties in design 

variables and visualization and exploration of solution space. Such systems require the 

design of information from multiple areas and the incorporation of design, production, and 

material expertise and experience. The following research topic for this thesis is thus 

prompted by the necessity of having systematic techniques in expressing such data and how 
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they interact with each other and visualizing the data effectively, which results in the 

following research questions: 

Research Question (RQ1): What are the mathematical and computational foundations 

necessary for the formulation, visualization, and exploration of problems involving 

many (more than three) conflicting goals? 

 

In decision making modelling plays an important role, designers frequently choose to 

develop models and simulate various complex systems instead of investing in costly 

prototyping and experimental work. Therefore, the approach used to model the decisions in 

complex system should enhance the decision-making process by providing a cost-effective 

and efficient means of gathering insights and improving human judgement. 

A multi-objective problem is solved with an optimization framework that minimizes the 

variation in complexity allocation and maximizing degree of modularity for train bogie 

(Sinha and Suh 2018). A pareto analysis method is used in food sector to understand the 

effect of critical factors in this system (Fotopoulos, Kafetzopoulos and co-authors 2011). 

Adaptive systems like learning systems consisting of conflicting objectives, to solve this 

problem concept of pareto optimality combined with machine learning technique (Jin, Gruna 

and co-authors 2009). A decision choice model (DCM) integrated with mixed integer linear 

programming (MILP) is used to solve a profit maximization problem of a parking service 

operator and the proposed methodology can be altered to supply related decisions to the 

users. Regression trees and gradient boosted regression trees are used in aviation domain to 

understand the turbulence forecasting at different levels of altitude. A framework is proposed 

which diagnose a car problem and a multifunction with the help of Bayesian approach and 

this is also validated with experimental results (Budiharto 2013). Topology optimization is 

used in designing of efficient car bodies for different design stages (Leiva 2011). In the 

context of improving car crashworthiness, a multi-objective task is being tackled by using 

radial basis functions and genetic algorithms to create composite absorbers (Lanzi, 

Castelletti and co-authors 2004). Parrish and co-authors present a technique that combines 



 

 

14 

 

two different fidelity models, the incremental step solver and the one-step solver to act as a 

correction function in an algorithm for artificial bee colonies. they used a sheet metal forming 

example to demonstrate this method (Parrish, Rais-Rohani and co-authors 2012). To get 

around the limitations of conventional techniques, vehicle occupant restraint systems are 

designed using a hybrid approach that combines the non-dominated sorting genetic 

algorithm (NSGA II) with the Kriging model (Gu, Sun and co-authors 2013). In order to 

construct thin-walled energy absorption tubes for crashworthiness applications, Acar and co-

authors provides a comparative examination of polynomial response surfaces, radial basis, 

and Kriging models (Acar, Guler and co-authors 2011). 

The approaches discussed in the above paragraph are different optimization techniques used 

to solve multi-objective complex problems. The optimization techniques entail 

computationally intensive iterative procedures but are intended to help designers locate 

single point solutions. As a result, these methods might not be appropriate for the preliminary 

phases of design exploration. In these early phases, the focus of designers is to quickly find 

a wide variety of solutions that meet their needs. Creating a wide range of satisficing 

solutions is more important in the early stages of design exploration than obtaining a single, 

targeted solution. Higher levels of uncertainty and flexibility characterize this phase, as 

designers try to comprehend the trade-offs and find potential routes by exploring different 

design alternatives. For this early, more experimental stage of the design process, traditional 

optimization-based techniques which require many iterations and substantial computer 

simulations are frequently time consuming and resource-intensive. Therefore, to address this 

research gap, the concept of satisficing solutions(Simon 1996) or the solutions that are good 

enough is used considering a compromise Decision Support Problem Technique in thesis. 

Robustness is a basic goal in complex systems that has become more and more important in 

the changing world. Complex systems have multiple interconnected components and 

interactions, often exhibiting emergent behaviors that are not predictable through the 

analysis of individual parts and they have many conflicting goals. In such complex systems, 

achieving robustness implies the capacity to withstand disturbances, adapt to changing 

conditions and continue functioning effectively under a variation. 
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A comparison between multi-objective optimization with single-objective optimization from 

a Pareto perspective is presented by Hou and co-authors (Hou, Li and co-authors 2009). 

Using the Kriging technique, a multi-objective genetic algorithm (GA) is utilized to create 

crash-worthy cars using foam-filled bitubal structures (Zhang, Sun and co-authors 2012). 

For topological optimization of the front rail structure of a vehicle, a gradient approach is 

employed (Soto 2004). A simulation-based design framework for vehicle crashworthiness is 

presented, taking into account an effective global optimization method (Hamza and Shalaby 

2014). A comparative analysis of four meta-modeling strategies is conducted by Jin and 

coauthors (Jin, Chen and co-authors 2001) and their application to diverse objective design 

challenges is discussed. In their comparison of the deterministic and reliability-based 

approaches to vehicle crashworthiness optimization under multiple impact crashes, Gu and 

co-authors (Gu, Dai and co-authors 2017) take sampling strategies and reliability analysis 

into account. A reliability-based optimization technique is described by Youn and co-authors  

(Youn, Choi and co-authors 2004) to take into consideration the degree of uncertainty in the 

process of designing cars for side crashes. In order to address a parametric uncertainty in the 

design of foam-filled thin-walled structures, Sun and co-authors (Soto 2004) employed a 

resilient design approach. In reference to other approaches, a review of the many kinds of 

uncertainty and the usefulness of robust design approaches is provided by Aspenberg and 

co-authors (Aspenberg, Jergeus and co-authors 2013). To account for uncertainty in design 

variables and enhance the effectiveness of probabilistic design for a vehicle crashworthiness 

example during a side collision, a sequential optimization and reliability evaluation 

technique is applied (Du and Chen 2004). 

Some of the approaches discussed are deterministic approaches used in design and 

optimization of complex systems across various domains. These approaches are helpful in 

finding the best possible solution specific to input parameters, objectives, and constraints. 

However, the limitation of these approaches is their incapability to account for uncertainties 

that can affect the design process of a complex system. To enhance the reliability and 

efficiency of complex systems, it is essential to incorporate probabilistic and robust 
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approaches. These methods prepare complex systems to perform reliably and meet their 

objectives under a wide range of real, uncertain conditions. 

The robust optimization approaches discussed above address the issue of uncertainty in 

complex systems they work by optimizing system performance under various conditions. 

These approaches are useful when dealing with two or three specific goals, allowing 

designers to strike a balance between them to ensure robustness. In real world applications, 

complex systems often have a multitude of goals that go beyond the scope of two or three. 

These goals can be various aspects like performance, cost, safety, efficiency and more, 

satisfying all the goals is a formidable challenge. To address this challenge the designers, 

need to identify trade-off solutions that can balance many conflicting goals. In essence, they 

must find a compromise solution that satisfies as many of these goals as possible while 

acknowledging the prioritization on one another. To address this research gap, a framework 

is proposed in this thesis. 

The research question (RQ1) is supported by following hypothesis (H1): 

• Problems involving many conflicting goals under uncertainty could be effectively 

formulated, visualized, and explored from a decision-based design perspective 

using compromise decision support problem construct, robust design metrics and 

an effective machine learning-based solution space visualization and exploration 

technique. 

The mathematical models do not represent the physical system exactly, but the important 

features of the system are captured and give the brief information about the system to the 

designer for decision making, the compromise Decision Support Problem is used in this 

thesis to model the decisions of a complex system, which is discussed in more detail in 

Chapter 2 and the example problem are discussed in Chapter 4 and 5. 

The exploration of robustness in complex systems delves into the intricacies of developing 

resilience and adaptability into complex systems that are increasingly unpredictable. In this 

thesis the issue of uncertainty in the design variables of a complex system is addressed by 
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proposing a framework and using a mathematical construct called Design Capability Index 

(DCI) discussed in Chapter 3 and examples are discussed in Chapter 4 and 5. 

Research Question (RQ2): How can designers effectively interpret and select 

satisficing solutions for many (more than three) goals? 

 

Visualization of solution space is vital in decision making process for complex engineered 

systems with many conflicting goals. It facilitates the designer’s insights and prioritize the 

goals and helps them to choose the satisficing solutions that algin’s with design 

requirements. Effective visualization techniques enhance the decision-making process by 

making the tradeoffs and interactions between the goals more understandable. 

Some of the visualization techniques used in various domains are discussed below. A ternary 

plot is a triangular graph consisting of three axes, each axes representing one component or 

feature of a system and points on the plot represent the relative proportions or percentages 

of these components. A ternary plot is used to in visualization of earthquake determination 

problem, to understand the thrust, normal and strike-slip motion (Frohlich 1992). For 

understanding the concentration gradient, inequality constraints in designing of Yangtze 

river delta port a ternary plot is used (Feng, Grifoll and co-authors 2020). To understand the 

complex network of hardware and software in vehicle a data loggers is used and to interpret 

the data resulting from the tests parallel axis plots are used (Theissler, Ulmer and co-authors 

2010). Parallel axis plots are data visualization technique to visualize high dimensional data 

into two-dimensional data (Zhou, Yuan and co-authors 2008). To understand the weather 

prediction various climate simulations are carried out and to interpret this easily nested axis 

plots are used (Wang, Liu and co-authors 2016).  

There are many visualization techniques used to visualize and explore solution spaces. Each 

of these techniques has its own set of limitations and it’s important to understand these 

limitations while appreciating the significance of efficient visualization in problem-solving 
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and decision-making. One common limitation is to deal with high-dimensional data, as the 

number of dimensions increases, it becomes challenging to visualize the data effectively. 

Conventional two dimension or three-dimension visualizations that are not suitable for 

spaces with many dimensions. As the dimensionality increases interpreting the information 

becomes challenging, especially when complex system involves multiple interaction 

between the variables. Hence there is a need for efficient visualization technique that 

provides intuitive to understand complex data and solution spaces. They enable the discovery 

of patterns and trends that might not be apparent through other techniques. Effective 

visualization techniques allow designers to aid decision making by presenting information 

in a format that is easier for humans to comprehend. And helps decision makers to grasp 

complex problems, compare options and make informed choices. In decision-based design 

domain, visualizing solution spaces helps in identifying the satisficing solutions by 

evaluating the trade-off and choosing the suitable solutions. 

To address this research gap in exploring and visualizing the solution space, a machine 

learning based visualization technique is used. This technique is discussed in more detail in 

Chapter 2. 

The research question (RQ2) is supported by following hypothesis (H2): 

•  It is hypothesized that this could be addressed by proposing a systematic approach 

to evaluate and identify common satisficing design scenarios for many goals 

through solutions space visualization, and exploration. 

Visualization techniques are very helpful for understanding complex solution spaces. It’s 

important to be aware of their limitations. Choosing the correct visualization method for a 

given problem and understanding how to interpret the visual representations are critical. 

Efficient visualization is essential for making informed decisions, solving complex 

problems, and communicating effectively. Chapter 6 discusses the machine learning based 

visualization techniques used to visualize the solutions for the two-example problem 

considered. 
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  Verification and Validation of the Thesis Chapters 

In engineering research formal and quantitative methods are used for validation which 

involves logical thinking and deduction which is a process of concluding from standard 

principles. The conventional formal validation methods are not suitable for all design 

methods that involve subjective elements. Whereas the validation square strategy validates 

the design method by considering the knowledge validity depending on context and 

dependent on the intended purpose rather than considering standard principles.  

Pederson and co-authors (Seepersad, Pedersen and co-authors 2006)introduced the 

validation square framework which is used in this thesis for implementing the verification 

and validation strategy. This framework examines whether a design method is successful 

and efficient in its work, and whether the final solutions operate well in real-world situations 

(efficiency and operational performance). The effectiveness and efficiency of the design 

method with respect to operational performance are two important factors that determine the 

design method's overall usefulness inside the framework. The validation square construct to 

validate design methods is shown in Figure 1.4 

The process of increasing trust in the usefulness of a purpose is represented by the 

Validation Square in Figure 1.4. Philosophically speaking, verification deals with the 

justification of knowledge assertions, whereas validation pertains to internal 

consistency. But from the standpoint of modeling, validation is the defense of knowledge 

assertions, while verification is the internal consistency. 
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Figure 1.5: The validation square (Seepersad, Pedersen and co-authors 2006) 

Validation Square consists of four quadrants as explained below: 

Theoretical Structure Validity (TSV): It entails evaluating the internal consistency of the 

design methods, or the logical soundness of each individual construct. The fact that TSV is 

useful and can be applied to empirical structural validity (ESV) serves as validation for it. It 

requires the following steps:   

• The first step involves determining the design method requirements that is 

considering both the desired outcomes and the steps or process involved. 

• Thoroughly analysing the literature review which involves comprehensive review 

of existing research, knowledge and information related. 
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• Next step involves ensuring internal consistency, this involves analysing the 

coherency in design and implantation. 

 

 

Empirical Structural Validity (ESV): It involves verifying the performance or effectiveness 

of a particular process or system used in the research. In this context, it specifically involves 

using practical examples to validate and then confirm the functionality of the given 

framework. It requires the following steps:   

• First step is to ensure the sustainability of the example problems chosen for the 

design method. This involves confirming that the selected example problems are 

appropriate and relevant for evaluating the design method. 

• Next step validates the test results supporting the design method’s utility, this 

involves evaluating the efficacy and applicability of the framework or design 

method proposed. 

Empirical Performance Validity (EPV): It involves evaluating the practical efficacy of the 

framework or design method in real-world complex system applications, it is rooted in its 

potential for being employed in Theoretical Performance Validity (TPV), typically referring 

to a theoretical condition. This involves following step: 

 

• This step involves validating the practical utility and efficiency of the method in obtaining 

desired solutions. This demonstrates the design methods or framework capability in 

addressing real-world challenges.  

 
Theoretical Performance Validity (TPV): Verifying the broad applicability of the design 

method is the main goal of this step. Although it includes a hypothetical aspect, TSV, ESV, 

and EPV are its fundamental building blocks. Evidence from the three quadrants (TSV, ESV, 

and EPV) supports the verification for Theoretical Performance Validity (TPV), indicating 

a thorough approach to validation. Regarding the validity of TPV, the main point is that the 
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technique can be expanded upon or used in situations other than the ones that are discussed 

in the thesis. The goal of this procedure is to build confidence and trust in applying the design 

method outside of the thesis's particular instances. This involves following steps: 

• Validation supported by the information in TSV, ESV, and EPV. 

 

• Validating the design method’s ability to yield valuable outcomes beyond the scope 

of the example problems and demonstrating the versatility of the design method or 

framework for different design problems. 

 
Figure 1.6: Verification and Validation square for this Thesis 

Further details outlining each quadrant and its respective association with the related 

chapters are explained below. The table below shows verification and validation applied to 

the thesis chapters. 
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Table 1.1: Verification and Validation strategy applied to the Thesis chapters 

Quadrants in validation square Chapters applied 

1. Theoretical structural Validation 

Chapters 1, 2 and 3 delve into assessing the 

internal consistency to establish the logical 

soundness of the design method. In chapter 

1 the background of design methodologies, 

complex system and solution space is 

discussed. Finally, the scope of the work, 

including the research questions posed, 

hypothesis proposed, and of the present 

work is detailed. In Chapter 2 intense 

literature review is carried out and 

mathematical tools used are discussed. In 

particular, the discussion is on types of 

robust design, compromise Decision 

Support Problem (cDSP) construct and 

Design Capability Index (DCI) are 

discussed. Chapter 3 contains the detailed 

discussion about decision-based design 

framework proposed in this thesis.  

2. Empirical structural Validation 

The analysis of the suitability of the chosen 

test problem to demonstrate and validate 

the design method is discussed in Chapter 4 

& 5. In this Chapters, the results obtained 

from example problems are presented and 

discussed. The results pertaining to each 

mathematical formulations in Chapters 4 

and 5 are presented. In Chapter 4, vehicular 
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side crash example problem is formulated 

and in Chapter 5 designing of composite 

material example problem is formulated. In 

detail, the discussion about the validity and 

usefulness of the method is outlined.  

3. Empirical Performance Validation 

Chapters 4 & 5 discuss the assessment of 

the suitability of the comprehensive test 

problems chosen to demonstrate and 

validate the design method. In Chapter 4, 

design decision making in vehicular side 

crash is introduced as a design problem. 

This followed with the DSP based 

mathematical formulations and DCI 

mathematical construct for solving 

problem. In Chapter 5, decision problem in 

the design of composite structures is 

presented to validate the systematic 

approach. This step in assessing the real -

world practical effectiveness of the 

framework or design method in complex 

engineered system. In detail, the discussion 

about the validity and usefulness of the 

method is outlined.  

4. Theoretical Performance Validation 

The approach involves speculation but is 

firmly grounded in the principles 

established by TSV, ESV and EPV, the 

verification for TPV is derived from all 

three quadrants (TSV, ESV and EPV). The 
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validation of TPV is based on the notion 

that the method can be expanded, thus 

establishing the utility of the presented 

method in examples not explicitly 

addressed in the thesis. Chapter 6 focuses 

on building confidence in the generality of 

the framework. In this chapter, the results 

concerning the test problems are presented 

and their utility is discussed. Subsequently, 

the focus shifts to the broader applicability 

of the framework. The initial section 

comprises a summary of this thesis. 

Following, there is a revisit to the research 

question of the accomplishments and 

contributions made in this thesis.  

 

 Organization of the Thesis 

The purpose of Chapter 1 is to provide background information on complex engineered 

systems and to inspire the development of such systems. To set the stage for the rest of this 

thesis, the purpose of this discussion is to highlight the significance of decision making in 

model-based designed systems. In Section 1.6, the background information and relevant 

literature study on solution space exploration are covered. As seen in the thesis organization, 

a number of mathematical constructs and techniques are used for developing decision-based 

design framework are covered in the following chapter. These tools and constructs are 

utilized due to their relevance to one or more research questions posted in 1.7. The 

compromise DSP is discussed in Section 2.1, DSIDES in section 2.2, Utility of cDSP in 

complex systems is discussed in 2.3, robust design, and its types in 2.4, different types of 

visualization technique and their limitations is discussed in 2.5. 
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The tools and constructs introduced in Chapter 2 are then employed to develop the 

framework that addresses the research gaps in Chapter 3. There are different parts involved 

in this method: in Section 3.1 and 3.2 the existing framework and their limitations are 

discussed. In Section 3.3 the Decision-Based Design framework is proposed. The 

foundational mathematical construct with robust design metrics is discussed in Section 3.4. 

Solution space visualization and exploration is discussed in Section 3.5. The machine 

learning based visualization technique used in this thesis is discussed in section 3.6. 

 

The method proposed in Chapter 3 is then tested through design example. In Chapter 4, 

vehicular crashworthiness example is considered to validate the proposed framework and 

the limitation of the framework is discussed. In Chapter 5, the limitation in framework is 

addressed by developing a systematic approach and tested considering and composite design 

problem. In Chapter 6, the functionalities of the framework and summary of the thesis are 

discussed. In section 6.3 the research questions are revisited, and hypothesis is discussed. 

Finally, the chapter is concluded with future work. 
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Figure 1.7: Layout of Thesis Chapters 
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Chapter 2: Mathematical Tools and Constructs for 

Developing Decision-Based Design Framework 
 

In Chapter 1 background on complex systems, design as decision making process and 

solutions space were discussed, the mathematical constructs and tools used in thesis work 

are discussed in the current Chapter 2. In this chapter we discuss the tools used to model the 

design decisions and mathematical constructs used to address the issue of uncertainty present 

in complex systems. This chapter begins with Section 2.1 explaining about compromise 

Decision Support Problem (cDSP) used for modeling the complex engineering systems. In 

Section 2.2 DSIDES (Decision Support in the Design of Engineering Systems) are discussed. 

In Section 2.3 Robust design for complex system and their sources are discussed. In Section 

2.4 there is a discussion of and its use in complex systems.  

 Compromise Decision Support Problem (cDSP)  

The compromise Decision support problem (cDSP) is a decision model which is a 

hybrid combination of mathematical and goal programming (Mistree, Hughes and 

co-authors 1993). cDSP provides a set of satisfied design variable values that obey 

design goals and constraints. It helps designers in decision making by analyzing the 

constraints and tradeoffs between conflicting goals and coming up with design 

preferences associated with conflicting goals (Vadde 1995). compromise DSP offers 

following functionalities: 

• Can handle single objective problems or multi-objective problems. 

• Design goals can be formulated as preemptive or Archimedean. 

• Feasible solutions can be generated more frequently. 

• Results can be generated rapidly for several weight scenarios. 
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The compromise DSP has been used in many industries like aircraft designing (Lewis 

and Mistree 1995), designing of thermal energy systems (BASCARAN, MISTREE 

and co-authors 1987, Fuchs, Karandikar and co-authors 1990), designing of 

mechanisms (Mudali 1987), designing of damage tolerant structural systems (Shupe 

and Mistree 1987), designing of ships (Mistree, Smith and co-authors 1990), and 

designing of composite material (Fuchs, Karandikar and co-authors 1990). In the 

next section we discuss formulating the cDSP. 

2.1.1  Compromise DSP Formulation 

The compromise Decision Support Problem is a decision model that facilitates designers to 

model the decision [12]. Many quantified goals are modeled to find the feasible solution 

space that helps designers to make decisions [13], hence cDSP is an effective decision model 

supporting human judgement. The four key words used in cDSP are Given, Find, Satisfy and 

Minimize. The word formulation of the compromise Decision Support Problem is shown in 

Table 2.1 

Table 2.1: Compromise DSP word formulation 

Given 

 

The system parameters and goals for design 

Assumptions are used to model the domain of interest. 

 

Find 

 

System variables (describe the attributes of system) 

Deviation variables (describe the extent to which the goals can be achieved) 

 

Satisfy 

 

System constraints 

System goals 

Upper and lower bounds 

 

Minimize 

Objective function Z ( It is a measure of the deviation of the system performance to actual set of 

goals and their associated weight priorities. 
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Comparison between single objective and cDSP formulation considering a two-dimensional 

problem is shown in Figure 2.1. From the figure we can observe that both conventional single 

objective formulation and cDSP formulation represent similar feasible design space. This 

feasible design space is bounded by system bounds and system constraints of the system. 

We obtain a single objective function z (see Figure 2.1a), and this objective function can 

either be minimized or maximized. Whereas in cDSP formulation we obtain a set of 

objectives defining an aspiration space (see Figure 2.2b). We can obtain solutions that satisfy 

the goals and constraints of the given complex problems only to some extent which is 

represented by the aspiration space. The tradeoff solutions obtained between the desired 

solutions space (aspiration solution space) and achieved solution space (design space) are 

modeled using cDSP by minimizing the deviation function. The mathematical formulation 

of cDSP is shown in Table 2.2 where 𝐴𝑖(X) represents the actual goal that can be attained 

for the ith goal for a targeted value of Gi. there exist two deviation variables for each goal, 

the deviation variable 𝑑𝑖
− defines a goal that is underachieved from its target or desired value 

and 𝑑𝑖
+deviation variable defines a goal that is overachieved from its target or actual value. 

Deviation variables are always positive, and the value of these variables are determined by 

the extent the achievement function 𝐴𝑖(X) achieves the targeted value  𝐺𝑖 and they are 

dependent on the system variables X and k represents number of priority levels. 

 
 

 Figure 2.1: A single objective optimization and cDSP formulation (Mistree, Smith 

and co-authors 1990) 
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Table 2.2: Mathematical formulation of a compromise DSP (Lin, Krishnapur and 

co-authors 1999) 

Given   

An alternative to be improved, domain dependent assumptions. 

The system parameters: 

n number of system variables 

q inequality constraints 

p + q number of system constraints 

m number of system goals 

gi(X) system constrain functions 

fk(di) function of deviation variables to be 

minimized at priority level k for the 

preemptive formulation 

Find 

System variables  

        Xi   i = 1, 2, …, n       (They describe the physical attributes of an artifact.)  

Deviation variables 

       di
 -, di

+
  i = 1, 2…,m  (They indicate the extent to which the goals are achieved) 

 

Satisfy   

System constraints:  These must be satisfied for the solution to be feasible (linear, non-

linear) 

     gi(X) = 0; i = 1….p 

     gi(X) ≥ 0; i = p+1….p+q 

System goals:  These need to achieve a specified target value as far as possible (linear, 

non-linear) 

    Ai(X) + di
 - - di

+ = Gi;  i = 1…m 

Bounds:  Lower and upper limits on the system variables. 

     Xi min ≤ Xi  ≤ Xi max ; i = 1…n 

     di
 -, di

+ ≥ 0, di
-* di

+ = 0; i = 1…m 

 

Minimize 

Case a: Preemptive formulation (lexicographic minimum) 

𝐙 = [𝑓1(𝑑𝑖
−, 𝑑𝑖

+), … … , 𝑓𝑘(𝑑𝑖
−, 𝑑𝑖

+)] 
Case b: Archimedean 

𝐙 = ∑ 𝑊𝑖(𝑑𝑖
− + 𝑑𝑖

+); ∑ 𝑊𝑖 = 1

𝑚

𝑖=1

𝑚

𝑖=1
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To maximize the achievement, function the below equation can be used. 

[ 𝑨𝒊(X) / 𝑮𝒊] + 𝒅𝒊
+ - 𝒅𝒊

− = 1     Equation 2.1 

                                                                      

To minimize the achievement, function the below equation can be used. 

[ 𝑮𝒊/𝑨𝒊(X)] + 𝒅𝒊
+ - 𝒅𝒊

− = 1                                                                                Equation 2.2 

The motive of compromise DSP is to minimize the deviation function using deviation 

function. Deviation functions represent the region between the feasible solutions space and 

the aspiration space and the range pf these variables depend on the goals. Two types of 

deviation function exist in compromise DSP namely preemptive and Archimedean 

formulation. In Preemptive formulation goals are satisfied orderly according to designer’s 

requirement and there is no compulsion to assign the weights to goals whereas in 

Archimedean formulation weight for each goal must be assigned and these weights can be 

determined by using pair-wise methods or relative weighting method. 

Assigning weight to goals depends on the designer and problem requirements. Therefore, 

the weights  𝑊𝑖 assigned to goals are sequential affecting the solution space based on the 

designer’s requirement and these weight are normalized to a sum of one (Mistree, Hughes 

and co-authors 1993). The preemptive formulation and Archimedean formulation are shown 

in Table 2.2 and lexicographically minimized. After a detailed discussion about word and 

mathematical formulation the next section discusses DSP technique. 

2.1.2  Decision Support Problem Technique 

In decision making approach there are two categories selection and synthesis, corresponding 

to selection and compromise in Decision Support Problem Technique (Sen and Yang 2012). 

Multiple attribute decision making (MADM) is referred to selection, which involves 

selection from ranged set of alternatives from a catalogue according to the attributes 

priorities whereas compromise method is refereed to Multiple Objective Decision-Making 

(MODM) which involves alternatives based on the goal priorities. 
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Any complex systems can be modeled with a network of DSP (compromise and selection) 

The core constructs of the technique are the axioms described in References and the ability 

to work with the complexity of these decision networks. Typically, models can be modeled 

with no more than three DSP’s that can be coupled together (Mistree, Smith and co-authors 

1993). 

Compromise decision support has been implemented in many application like designing of 

ships, thermal energy systems, composite materials, damage tolerant structural and 

mechanical systems, designing aircraft and concurrent design of multi-scale, multi-

functional material and products (Mistree, Muster and co-authors 1990). Key applications 

specification development (Lewis, Smith and co-authors 1999), robust (Chen, Allen and co-

authors 1996, Chen, Allen and co-authors 1997, Allen, Seepersad and co-authors 2006) 

product families (Simpson, Chen and co-authors 1999, Simpson, Maier and co-authors 2001, 

Simpson, Seepersad and co-authors 2001) the integrated realization of materials and 

products (Choi, Mcdowell and co-authors 2008, Choi, McDowell and co-authors 2008, 

McDowell, Panchal and co-authors 2009) and a variety of mechanical (Chen, Meher-Homji 

and co-authors 1994, HERNANDEZ and Mistree 2000, Sinha, Bera and co-authors 2013). 

After formulating compromise DSP, DSIDES with operations research tool adaptive linear 

programming algorithm is used to model conclusions (Mistree, Hughes and co-authors 

1993). This iterative process often requires substantial justification, particularly in instances 

where goals are conflicting. Therefore, it is crucial to articulate and comprehend the realms 

of design and aspiration, enabling the exploration of these domains. Upon considering the 

compromise Decision Support Problem (DSP), similarities can be observed with demands 

and wishes framework introduced by Pahl and co-authors (Beitz, Pahl and co-authors 1996). 

Here demands can be met by adhering to DSP constraints and bounds, similarly wishes can 

be met by satisfying goals. Solution space is the combination of both feasible and aspiration 

space, feasible region consists of constraints and bounds, and aspiration region consists of 

goals. The key words used during formulation of compromise DSP problem are Given, Find, 

Satisfy and Minimize. 
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The compromise DSP offers several advantages as a decision framework. It provides 

contextual and structural support for making decisions and remains independent of specific 

domains and remains independent of specific fields. When employing DSIDES to solve 

DSP’s, it enables the exploration of both design and solution space by considering design 

requirements and the preferences of the designer. This can be achieved through formulating 

problems in Archimedean or preemptive manner thereby enhancing the decision-making 

process. They can be formulated rapidly even with minimal information, making them 

adaptable for use at any stage within specific timeline. They also prioritize offering diverse 

viewpoints that contribute to decisions which capture the design intent. Additionally, 

conducting post-solution sensitivity analysis becomes essential to provide de3signers with 

insights when faced with uncertainties. 

  The Decision Support in the Design Engineering 

System (DSIDES) 

The principles of decision support technique are implemented in DSIDES. The conceptual 

DSP and compromise DSP are utilized in many domains like designing of aircraft, designing 

of ships, damage tolerant structural and mechanical systems (Mistree, Hughes and co-

authors 1993). For the problems involving Boolean and continuous variables and multi-goals 

DSIDES can be used with both selection and compromise formulation.  

DSIDES is a tailored computational environment for solving the compromise DSP, DSIDES 

require a user specific input file in the form of cDSP template which consists of data file and 

user supplied FORTRAN file (Reddy, Smith and co-authors 1996). The size of the problem, 

variable names, goals, constraints, bounds, and convergence criteria are defined in the input 

data file. Data file is created with a number of mandatory blocks like SYSVAR this provides 

a description of system variables name, type, bounds, and guess value and XPLORE optional 

blocks provides best initial points to explore the design space based on the pattern search. 

An example of the data file is provided in Appendix and mandatory and optional blocks used 

in creating a data file are shown in Figure 2.2. 
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The FORTRAN file consists of routines that are user specified such as USRMON for the 

user specific monitoring of the solution space. And these users specified subroutines are used 

to analyze the nonlinear constraints and goals. Constraint evaluation routines and design 

evaluation routines are used for input data similarly, for output data format routines are used. 

In some cases, we can use design analysis routines like REFPROP routine to capture 

interface like thermal properties associated with synthesis cycle. 
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Figure 2.2: Mandatory and optional blocks used in DSIDES data file. 
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Figure 2.3: User specified routines used in FORTRAN file of DSIDES. 

Adaptive Linear Programming algorithm is used in solving compromise DSP which is 

incorporated in DSIDES providing vertex solutions (Mistree, Smith and co-authors 1993) 

and other approach is zero order search which is referred to as XPLORE in DSIDES. 

Utilizing the referenced algorithm (Aird and Rice 1977), it is employed to assess various 

designs within the prescribed bounds of system variables. The top n designs are retained, 

serving as potential initial points for a more extensive search process. Initial feasible Solution 

module is used as a second method for pattern search algorithm. These methods help in 

implementing Adaptive Linear Programming algorithm more effectively and better 

understanding of solution space. The compromise DSP can be solved with different 

optimization techniques depending on the type of problem.  However, in this thesis we use 

Adaptive Linear Programming (ALP) algorithm in DSIDES which comes under the 

classification of solving the approximate problem in an exact manner. ALP algorithm solves 

the problem in linearized manner and the three main characteristics of the ALP algorithm 

are mentioned below (Mistree, Hughes and co-authors 1993): 

• The use of second-order terms is linearized.  
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• The normalization of the constraints, goals and their transformation into generally 

well-behaved convex functions are in the region of interest. 

• A “intelligent” constraint suppression and accumulation scheme. 

The modification of second order algorithm is ALP algorithm, here the values of the 

variables and derivatives of constraints and goals are required. The derivates are calculated 

numerically by central difference formula. The implementation of the Adaptive Linear 

Algorithm using computer is shown in Figure 2.4. 

 
Figure 2.4: Flowchart of implementation of ALP algorithm for solving cDSP (Mistree, 

Smith and co-authors 1993) 
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The FORTRAN routines within DSIDES are utilized for assessing nonlinear constraints and 

objectives, inputting necessary non-linear constraints and objectives, inputting necessary 

data for constraint evaluation and design analysis, and generating results in the desired user-

friendly format. The algorithm consists of two main cycles, the analysis cycle and synthesis 

cycle. Within these cycles, access to a design-analysis program library is facilitated enabling 

the utilization of both cycles and exclusively within the synthesis cycle. In Figure 2.4 the 

implementation of ALP algorithm for solving cDSP is shown, when formulating and 

evaluating the nonlinear cDSP’s through user-specified routines a linear approximation is 

employed, this approximation aids in solving the linear programming problem. The solution 

of the linear programming problem is calculated using multiplex algorithm and obtaining 

solutions, a post-solution analysis is performed (Kyprioti, Zhang and co-authors 2020). 

In solving cDSP, the Adaptive Linear Programming is very effective, but it has the limitation 

of solving only Boolean and continuous variables, suppose if a problem consists of integer 

or discrete variables then it becomes difficult to ALP algorithm to solve these types of 

problems. When system constraints are highly non-linear ALP algorithm suppress the 

constraints, in such scenarios it’s designer’s choice to whether to analyze these suppressed 

constraints. Another limitation is, sometimes the designer might not have complete 

information about constraints in actual design itself, in such cases the data file might not 

work as it requires complete information of the design problem (Mistree, Hughes and co-

authors 1993). 

In this section, the components of DSIDES and type of search method used are discussed, 

and in the next section the usefulness of compromise DSP in complex engineered systems 

are discussed. 

 The Utility of Compromise Decision Support Problem 

in Complex Systems 

The compromise DSP are used to model multiple tradeoffs and decisions (Mistree, Patel and 

co-authors 1994), the cDSP allows for the exploration and assessment of how a complex 
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system designing evolves across various design scenarios. This can be accomplished by 

employing the compromise DSP in a diverse manner. Various deviation functions within the 

compromise DSP offers tools to investigate design decisions over the course of the design 

timeline as the understanding of the design progresses. At the initial stages of design 

preemptive formulation is more beneficial as it facilitates in exploring the tradeoffs between 

goals at different levels of priorities, when the information or knowledge about the complex 

system is increased Archimedean formulation can be used to explore design priorities. 

Alternatively, you can explore the constraints at any point during the design process to learn 

more about their robustness and practicality, and then adjust the design as needed. A fast 

method of examining design space and gaining understanding of the tradeoffs in design is to 

use the DSIDES module XPLORE. Given that the analytical models are imprecise, 

inconsistent, and lacking in certain areas, this kind of investigation utilizing compromise 

DSP broadens our understanding of design. Additionally, XPLORE offers a comprehensive 

overview of the entire design space along with details on the intriguing and satisfying areas 

that warrant more investigation. Two approaches exist in modelling complex systems, first 

one is using the exact system functions to predict and explore the complex system behavior 

and second approach is accurate analysis of the system. When heuristics is used to obtain the 

solutions that are good enough or satisficing, the solutions are no longer optimal or exact. “ 

In a perfect and stable world, with perfect knowledge, designers could establish optimum 

designs for all their individual product and process requirements” (Chen, Allen and co-

authors 1996). 

Distinguishing between optimizing and satisficing, they both hold distinct perspectives on 

what constitutes an effective design across the entire design timeline. Optimization 

emphasizes seeking the best available solution at each stage of the design process, while the 

satisficing approach advocates maintaining a degree of openness at each stage to 

accommodate potential solutions that might arise. These concerns stem from the limitations 

and accuracies present in the models, leading to uncertainties, particularly in the initial stages 

of design. 
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Complex systems are complete and accurate in optimization approach and the optimal 

solution obtained for a complex system becomes less relevant for the overall design when 

variations occur during process across the timeline, causing the design to deviate from the 

originally identified optimal solution. To overcome the limitation of optimization approach, 

we consider the satisficing approach where the solutions remain satisficing even when the 

boundary conditions change. The optimization and satisficing approach are shown in Figures 

2.5 and 2.6 respectively. 

The significance of the compromise DSP in modeling decisions for complex systems lies 

within the realm of model-based system design. This approach proves particularly beneficial 

when dealing with incomplete, inaccurate and models not of equal fidelity, especially 

prevalent in the initial design process, where the information is limited. The compromise 

DSP offers the capability to identify solutions that are good enough or satisficing, which can 

later be refined and enhanced as more data and analysis are gathered throughout the design 

process. The ability to iteratively improve solutions based on the evolving information and 

analysis makes the compromise DSP a valuable tool for navigating the uncertainties inherent 

in complex designs.  

The compromise DSP is used in the two example problems that are discussed in Chapter 4 

and 5. In the next section the concept of robust design and types of uncertainties are discussed 

in detail. 

 
Figure 2.5: Optimization approach 
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Figure 2.6: Satisficing approach 

 Robust Design of Complex Engineered Systems 

In the context of this thesis, robust design is defined as the one with solutions that are 

relatively insensitive to uncertainties. In the designing of complex engineered systems, the 

challenge for designers lies in accounting for the uncertainties present in the system. It is 

important to manage these uncertainties effectively to develop a robust solution. The 

computational models used in design are the approximations and not exact representations 

of the real world. Because of this inherent abstraction, it becomes crucial to develop design 

solutions that are less sensitive to uncertainties. In this section we discuss different sources 

of uncertainty that exist in complex engineered systems and different types of robust design 

methods established to mitigate the effect of these uncertainties on the design process. 

2.4.1 Classification of Uncertainties in the Complex System 

The term uncertainty was first coined by the Greek scholar in 4th century BC which is within 

the scope of epistemology. The word epistemology originates from the Greek word’s 

“episteme”, signifying knowledge and “logy” which encompasses various meanings that 

includes “theory” (Thunnissen 2003). The study of uncertainty has attracted research from 

diverse fields such as social services, economics, engineering, medicine and more. 

Uncertainty has been categorized from management science. Within the domain of 

management science, particularly in the probabilistic risk analysis community, uncertainty 
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is defined as “that which disappears when we become certain” (Bedford and Cooke 2001). 

These classifications and their definitions are shown in Figure 2.7 and Table. 

 
Figure 2.7: Uncertainty classification for Management science (Bedford and Cooke 

2001) 

Table 2.3: Definitions for uncertainty for Management science (Bedford and Cooke 

2001) 

Uncertainty Definition 

Aleatory Arises through natural variability in a system 

Epistemic Arises through lack of information in a system 

Parameter Uncertainty about the “true” value of a parameter in a 

mathematical model 

Model Uncertainty about the truth of the model 

Volitional Uncertainty that an individual has in whether what will do he 

agreed to do. 

 

Other ways to categorize the sources of uncertainty is mentioned below (Kennedy and 

O'Hagan 2001) : 

• Parameter uncertainty: This type of uncertainty arises from the model parameters 

that are the inputs for computer based mathematical models. These parameters are 

unknown and cannot be precisely controlled in physical experiments nor can their 

values be accurately considered through statistical methods. 

• Parametric uncertainty: This uncertainty arises due to variations present in the input 

variables of the system. 

• Structural uncertainty: This uncertainty arises due to a lack of complete information 

or knowledge about the fundamental physics involved in a particular problem. It also 
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depends on how accurately a mathematical model represents the true system, 

considering the models are typically only approximations to reality. 

• Algorithmic uncertainty: This uncertainty arises from numerical errors and 

approximations during the implementation of computer model. Given that many 

models are highly complex, they often are too complex to solve precisely. This leads 

to uncertainty arising from the inherent limitations in numerical methods and 

approximations employed in computational models, introducing potential errors due 

to the complexity and computational constraints involved in solving these models 

accurately. 

• Experimental uncertainty: this uncertainty arises from variability in experimental 

measurements. It is an inevitable aspect of experimental work and becomes apparent 

when the same measurement is repeated many times under identical conditions for 

all the variables. 

• Interpolation uncertainty: This type of uncertainty arises due to a scarcity of 

available data obtained from computer simulations or experimental measurements. 

When predicting data for inputs that lack simulation data information, interpolation 

becomes necessary. The uncertainty emerges from the process of estimating or 

forecasting responses based on this interpolated information which may introduce 

uncertainties due to the assumptions and methodologies used in this process. 

It is vital to understand various types of uncertainties as it forms the foundation for 

developing methods aimed at quantifying and addressing them. These methods help in 

managing uncertainties by reducing their impact. Within uncertainty quantification there are 

two major types of problem that exist. The first type is the forward approach, which involves 

the propagation of various sources of uncertainty through the model to anticipate the overall 

uncertainty in the system’s response. This approach focusses on understanding how 

uncertainties in the system’s response. This approach focuses on understanding how 

uncertainties input parameters influence the uncertainty in the final system output or 

response. And the second type is the inverse assessment of model uncertainty and parameter 

uncertainty. In this scenario the model parameters are calibrated simultaneously using test 
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data. This method helps refine the model by adjusting its parameters based on observed data, 

aiming to reduce the discrepancy between model predictions and actual observations. 

Some of the foundational concepts of uncertainty classification and robust design methods 

are discussed in this thesis are anchored from the concepts of Chen on co-authors (Chen, 

Allen and co-authors 1996, McDowell, Panchal and co-authors 2009, Sharma, Allen and co-

authors 2021). Uncertainty quantification by Iskupalli and co-authors (Isukapalli, Spendiff 

and co-authors 2010) . And the type of uncertainties based according to choi and co-authors 

are mentioned below (Choi, Austin and co-authors 2005): 

• Natural uncertainty (NU): This uncertainty arises from inherent randomness or 

incomplete information. This type of uncertainty is fundamental and cannot be 

eliminated and can only be assessed through statistical models. 

• Model structure uncertainty (MSU): This type of uncertainty arises from model 

uncertainty during formulation due to approximations and simplifications 

considered in the system. This form uncertainty can be reduced by enhancing the 

model’s formulation. 

• Model parameter uncertainty (MPU): This uncertainty arises due to insufficient data 

or information due to inaccurate data. This form of uncertainty is reduced by 

sufficient data or accurate measurements. 

• Propagated uncertainty (PU): This uncertainty is a combination of the above two 

types of uncertainty in system. Consequently, the ultimate performance estimation 

of the sequence of models may exhibit a considerable level of uncertainty. 

We need robust design methods to address the numerous sorts of uncertainty that are 

common in complex engineered systems. One strategy would be to lessen the uncertainty 

itself, and another would be to control or lessen the effects that result from these 

uncertainties. This thesis addresses uncertainties in complex engineered systems for many 

(more than three) goals. In general, there are four types of robust design methods (Panchal, 

Choi and co-authors 2005) and these are discussed in below section. 
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2.4.2 Type I Robust Design Method in Complex Engineered 

Systems – Taguchi Method 

In robust design, the goal is to make products and processes better by making them less 

affected by differences without getting rid of these differences altogether (Taguchi 1986). 

Robust design principles, inspired by Genichi Taguchi’s philosophy, involve three main 

categories of information that effect the system: 

• Control factors (design variables): These are the variables that a designer can 

change or adjust to achieve a specific product or system. 

• Noise factors: These are the external variables that impact the process or product 

but are beyond the designer’s control. 

• Responses: These are the measurements used to evaluate how well the product or 

process is performing. 

The categories of information are shown in Figure 2.8. 

 
Figure 2.8: A P-diagram showing the categories of information in robust design. 

(Nellippallil 2018) 

Type I robust design, introduced by Taguchi, aims to find values for design variables that 

meet performance requirements even when there are variations in noise factors. Taguchi’s 

approach, widely influential in Japanese industries, focusing on reducing variability’s impact 
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without eliminating its sources. It uses experimental designs like orthogonal arrays, a quality 

loss function, and the signal to noise ratio. The quality loss function assesses the societal loss 

caused by the product from the moment it’s shipped, in Taguchi’s method, higher product 

quality means minimizing the societal loss (Perona 1998). The equation for Taguchi’s loss 

function is given as:  

𝐋 = 𝐤(𝐲 − 𝐓)𝟐 Equation 2.3 

 

In the above equation, L represents loss function, k represents cost efficient, y represents the 

value of quality characteristic and T represents the target value. The quality loss function is 

shown in the below Figure 2.9. 

 
Figure 2.9: Taguchi’s quality loss function (Choi 2005) 

The two probability distributions A and B which represent product outputs are shown in 

Figure 2.9. B has the smaller average loss of quality compared to A, this prediction is based 

on how average value of y deviates from the target (T) and the mean squared deviation of y 

around its own mean according to Phadke (Phadke 1986). Taguchi emphasizes three crucial 

stages for engineering design: System design, parameter design and tolerance design. 

Among these Taguchi particularly stresses the significance of the parameter design stage in 

identifying the best parameters to minimize quality loss. 
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In Taguchi’s robust design, the parameter design phase begins by separating parameters into 

control factors and noise factors. Control factors are adjustable, while noise factors are either 

beyond control or costly to manage. Using an experimental design called an orthogonal 

array, control factors are organized in one array, and noise factors in another. Every possible 

combination of these factors is another. Every possible combination of these factors is tested 

in the experiment. By varying noise factors constant, average responses are measured. 

Taguchi’s signal to noise ratio assesses how responses react to noise factor changes. 

Designers can then select the best level for each control factor based on mean response and 

signal-to-noise ratio. Though Taguchi’s principles like statistical methods (orthogonal 

arrays) are popular in many industries they do have limitations. Some of the limitations are 

mentioned below: 

• Taguchi’s methods, such as orthogonal arrays and signal to noise ratio, might be a 

complex to understand and implement for those unfamiliar with statistical 

techniques. 

• These methods often assume linearity in the relationships between parameters, 

which might not always hold true in practical systems. Real-world systems can be 

more complex and non-linear than Taguchi’s methods assumptions. 

• The classification of the factors into control noise might sometimes oversimplify the 

complex interrelationships between variables in a system. 

• These methods are computationally expensive and require a large number of 

experiments. 

• These methods heavily rely on the selection of specific parameters and their ranges. 

If these parameters are not chosen appropriately, it can impact the effectiveness of 

the approach. 

Taguchi's robust design theory has been widely applied in industry, producing positive 

results, despite limitations. One important accomplishment of Taguchi's robust design 

approach is the creation of designs that are less susceptible to sounds and other 

environmental variables. 
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2.4.3 Type II Robust Design Method in Complex Engineered 

Systems  

This type of robust design method deals with complex systems that are relatively insensitive 

to uncertainties in design variables (that are controllable). Mostly the robust design focuses 

on the detailed design stage, which assumes that an initial design is already established with 

specific layout and specifications, which isn’t often the case. Some researchers have 

concentrated on incorporating robustness in the early stages of the design, especially in the 

conceptual design phase. Decisions made at this early stage influence the final products 

performance and quality. When exploring ideas, designers need to deal with continuous 

design spaces. There is a need to develop solutions that are not just insensitive to variations 

in noise factors but also to control factors. To address this challenge, chen and co-authors 

introduced Type II robust design to handle variation in both control factors and noise factors. 

They have developed the Robust Concept Exploration Method (RCEM) to systematically 

identify robust solutions that are less affected by variations in both control and noise factors 

during the early stages of design. The RCEM framework is discussed in more detail in 

Chapter 3. 

Chen and co-authors classify problems pertaining to minimizing performance variations and 

reaching the target mean according to the origin of these variances (Chen, Allen and co-

authors 1996). 

• Type I - This robust design deals with minimizing variations in performance caused 

by variations in noise factors. 

• Type II – This type of robust design deals with minimizing variations in performance 

caused by variations in control factors. 

Figure 2.10 shows the robust design types developed by Chen and co-authors. The impact 

of variations in performance due to changes in both the noise and control factors are shown 

on right hand side of Figure 2.10. In robust design type II, the goal is to find solutions that 

are relatively insensitive to variations in control factors rather than aiming for optimal 
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solutions. This nearly flat region indicates less sensitivity of system performance to 

variations in control factors contrasting with the optimal solution that significantly degrades 

system performance even with slight variations in control factors. 

 
Figure 2.10: Robust design for variations in noise factors (Type I) and control factors 

(Type II) (Chen, Allen and co-authors 1996) 

2.4.4 Type III Robust Design Method in Complex Engineered 

System  

The robust design methods discussed do not address the issue of uncertainty in the models 

themselves. This uncertainty isn’t about control or noise factors but about the models used. 

It could arise from uncertain parameters, model constraints, metamodels, assumptions within 

the model, other aspects. To address this issue Type III robust design is used which deals 

with system the is insensitive to variability in the model themselves. The robust design Type 

I and II and robust design Types I, II and III along with optimal solution is shown in Figure 

2.11. 
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Figure 2.11: Robust design type I, II and III (Choi 2005) 

In Figure 2.11 the two curves represent uncertainty limits for the system response and the 

solid curve represents system response. As compared to Type I and II robust solution and 

optimal solution with Type I, II and III solutions there is a least deviation in system 

performance. Therefore, the primary goal for robust design Type III is to identify these 

adjustable ranges in design variables that not only meet specified performance requirements 

or ranges but also insensitive to uncertainties within the model.  

Type IV robust design delas with the integrated multiscale design of material and product. 

This robust design type is used to identify design variable values that satisfy a set of 

performance requirements despite the propagation of uncertainty (PU) through scales (Choi, 

Mcdowell and co-authors 2008).  

The previously mentioned methods constitute types of robust design employed in a system 

to secure solutions that remain unaffected by uncertainties. For better understanding of the 

solutions and to get insight into system performance there is a need to visualize them 

effectively. For this we need explore the existing techniques to use the appropriate technique 
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for solution space exploration and visualization. In the next section various types of 

visualization techniques that are in use are discussed in detail. 

 Visualization Techniques used for Solution Space 

Exploration. 

In complex engineered systems, decision-based design involves making informed decisions 

at various stages of the design process. Data visualization plays a vital role in this context 

for several reasons some of them are mentioned below (Thole and Ramu 2020): 

• Complex engineered systems generate large amounts of data. Visualizing the data 

helps designers to understand the behavior of various system components, 

interactions between them and their emergent behavior under different conditions. 

For example, understanding the temperature changes or pressure fluctuations in a 

complex system facilitates designers to grasp the real-world scenarios easily. 

• Visualization techniques help designers identify patterns, trends and irregularities 

within the data. They help in recognizing correlations between variables that might 

not be apparent when looking at raw data. This helps designers in understanding 

how changes in one aspect of the system might affect the other components or 

overall performance. 

• In decision-based design there always exist making trade-off decisions between 

many conflicting goals. Data visualization enables clear representation of these 

trade-offs. For example, visualization techniques can illustrate the impact of 

different choices, making it easier for designers to weigh options and make informed 

decisions. 

• Effective visualization helps simplify the communication of complex 

technical information and grasp complex data and understand the 

implications of design choices. This helps with collaboration and easy 

communication among multidisciplinary teams. 
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• Visualization assists in comparing data. By visualizing simulated or 

experimental data alongside predicted outcomes, designers can validate and 

refine their models. 

• Visualization helps designers identify the potential risk within the complex 

system and allow risk mitigation strategies to be implemented in the design. 

• Designers can observe the effects of design modifications in real time through 

data visualization. This facilitates an iterative design process, where changes 

can be made based on observed performance which leads to incremental 

improvements in the system. 

• Data visualization empowers decision makers by presenting complex 

information in an easily understandable format. This allows for informed 

decisions which are robust and efficient. 

Data visualization is the graphical representation of information and data. It utilizes 

visual elements like charts, graphs, and maps to help viewers understand complex 

data sets by displaying the data in a more accessible and easily understandable 

format. The primary goal of data visualization is to communicate information clearly 

and effectively through visual representations. It allows for the exploration, analysis 

and understanding of data patterns, trends and correlations that might not be apparent 

from raw data. By presenting information visually, data visualization enables quick 

identification of key insights, aiding in decision-making processes. Some of the basic 

visualization techniques involve charts and graphs, maps, infographics, and 

dashboards. 

In the context of design engineering that involves expensive computer models, the 

use of metamodels serves as an efficient solution to mitigate the high computational 

cost associated with running these models (Thole and Ramu 2020). Meta models, 

also known as surrogate models or response surface models are simplified 
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mathematical approximations of complex and expensive computer simulations or 

models. The meta models used depends on the basis functions, kernels and minimum 

sample size directly that influences the accuracy of the metamodel (Shan and Wang 

2004). The accuracy of the metamodel is affected by several factors, such as the 

choice of basis function, kernels in the case of kernel-based methods like support 

vector machines and the sample size used to construct the metamodel. In 

metamodeling there exists a tradeoff among metamodel accuracy, the number of 

samples, the size of the design space and the number of dimensions. Designers often 

struggle with these trade-offs when attempting to build accurate metamodels within 

constraints such as limited sizes, expansive design spaces and higher dimensions. In 

engineering design process particularly during the conceptual or early design stages, 

it's crucial to gain insights into specific regions within the design space that 

correspond to good designs. The design space refers to the range of possible 

configurations, values, or combinations of design variables that can be chosen for a 

given product or system. Identifying these regions of interest (RoI) involves 

determining sets of design parameters or variables where the system or product 

performs well or meets design requirements. This can be viewed as a phase of 

exploration, by gaining the ability to comprehend or explore design spaces, rather 

than solely seeking the single point solutions, designers can make informed 

decisions. Finding the peaks and valleys, flat regions that correlate to robust regions, 

splitting the design space into favorable and unfavorable design regions, and offering 

insights on the function variation with respect to various variables are all part of the 

process known as "Design Space Exploration" (DSE) (Koch, Evans and co-authors 

2002, López-Rubio 2013, Gan and Gu 2019). 

A designer with a lot of data or information, cross-disciplined constraints and challenges will 

be more concerned about problem formulation, design space exploration and region of 

interest. For such scenarios advanced visualization enables enhanced comprehension and 
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exploration in high dimensions. Incorporating visual techniques into a Design Space 

Exploration (DSE) method proves highly advantageous, facilitating well-informed decision-

making. Therefore, it becomes imperative to employ an effective visualization technique in 

the process of Design Space Exploration (DSE). Some of the existing visualization 

techniques and their limitations are discussed below. 

2.5.1 Tile Plot 

A tile plot is a visualization technique that depicts hierarchical structures shown in Figure 

2.12. It works especially well for displaying proportions and relationships within a dataset. 

In Tile plots a particular value, referred to as the baseline value, is selected for each 

dimension in these displays. While all other possible combinations of values across the 

remaining dimensions are investigated, this baseline value stays fixed or constant. These 

matrices represent functions or relationships between variables. Each matrix essentially 

displays the contours or shapes formed by these functions. Each cell within the matrix 

represents a value resulting from combining specific variables (Forrester, Sobester and co-

authors 2008). 

 
Figure 2.12: Tile plot (Thole and Ramu 2020) 
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The following describes how a tile plot works.: 

• The plot starts with a single, usually rectangular, frame representing the entire 

dataset. 

• This frame is then divided into smaller rectangles or tiles. The size of each tile is 

relative to the proportion of the data it represents. For example, larger tiles represent 

a larger share of the dataset, and smaller tiles represent a smaller share. 

• Tiles are further divided into smaller tiles based on subcategories or hierarchies, 

continuing until the smallest level of detail is reached. 

• Additionally, color or shading can be used to represent additional information 

within the tiles, such as a gradient for numerical values or different colors to 

represent different categories. 

For each dimension (or variable) in the plot, a particular value is chosen as the "baseline." 

This baseline value remains constant while exploring the relationships between other 

variables. This means that one dimension is held steady, allowing examination of how the 

other variables interact or change concerning this fixed baseline. While the baseline value 

within each dimension remains fixed, the plot is constructed by varying the other dimensions 

across all their possible values. This enables an exploration of how the function contours 

change concerning different combinations of these other variables, with the baseline value 

held constant. 

Limitation: In tile plot, focus is on a limited set of variables while keeping others constant, 

the visualization method may overlook or fail to represent the potential interactions between 

the fixed variables and the ones being actively plotted. Factor interactions, which could play 

a significant role in the overall relationship between variables, might not be fully captured 

in these plots due to the chosen method of visualizing only specific dimensions at a time and 

holding the remaining variables constant. 
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2.5.2 Parallel Axes Plot 

Parallel axes plot is a data visualization technique used to display multivariate data in a two-

dimensional space. Figure 2.13 shows a parallel axes plot. 

 
Figure 2.13: Parallel axes plot (Thole and Ramu 2020) 

The following describes how a parallel axes plot works: 

• The plot consists of parallel vertical axes, where each axis corresponds to a different 

variable or dimension of the dataset. These axes run parallel to each other. 

• Next, every data point in the dataset is shown as a collection of connected line 

segments or as a polyline. For each given data point, the lines connect the points on 

each axis that represent the values of the variables. 

• The values of the variables are indicated by the lines that meet the axes at various 

heights as you go horizontally across the plot. A data point's location on one axis is 

unrelated to its location on the other axes. 

• The way the lines overlap along the axes can be used to identify patterns, trends, and 

correlations between the variables. In multivariate datasets, parallel coordinate maps 

are very helpful for locating relationships, outliers, and broad patterns. 
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Limitation: Each variable has its own axis in a plot with parallel axes, and data points are 

shown as lines joining values along these axes. The probability of lines crossing and 

intersecting one another grows with the number of dimensions. This may lead to a plot that 

is visually convoluted and complex. With more axes, the density of lines on the plot grows. 

As lines overlap, it becomes challenging to distinguish individual lines and perceive the 

relationships between variables accurately. This visual overlap can obscure patterns and 

trends in the data. 

2.5.3 Nested Axes Plot 

A nested axes plot involves using multiple parallel axes to represent different variables. 

Figure 2.14 shows a nested axes plot.  

 
Figure 2.14: Nested axes plot (Thole and Ramu 2020) 

The following describes how a nested axes plot works: 

• The first step is axis alignment, each axis represents one variable, and they run 

parallel to each other. 
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• Next, each data point in the dataset is represented by a polyline, a set of connected 

line segments. Each line segment connects points on each axis corresponding to the 

values of the variables for that specific data point. 

• The next step is axes nesting, here nesting might involve plotting specific variables 

against each other while keeping others constant. For example, x1 and x4 might be 

the primary variables of interest, and the plot could show how they interact while x2 

and x3 are kept constant. 

Limitation: As the number of variables (axes) increases, the plot can become visually 

cluttered and complex. Distinguishing individual lines and interpreting patterns may become 

challenging, particularly when dealing with a high-dimensional dataset. When several lines 

overlap, it's known as overplotting and makes it challenging to distinguish between 

individual data points or lines. This problem may mask significant trends or patterns in the 

data. 

2.5.4 Ternary Plot 

Ternary plots are graphical representations used to display data with three variables, often in 

contexts where the sum of the variables is constrained to a constant. Figure 2.15 shows a 

nested axes plot. The following describes how a ternary plot works: 

• Ternary plots are typically represented by an equilateral triangle, where each corner 

of the triangle represents one of the three variables or components. 

• The triangle represents all possible combinations of the three variables, and any 

point within the triangle represents a specific composition or mixture of the three 

components. 

• One key feature of ternary plots is that the sum of the three variables always adds 

up to a constant value 1. 



 

 

60 

 

 
Figure 2.15: Ternary plot 

 

• Each data point in the ternary plot corresponds to a specific composition, and its 

position is determined by the proportion of each component. The point is located 

along the lines connecting the corners of the triangle, with the distance from a corner 

indicating the proportion of the corresponding component. 

Limitation: Ternary plots are specifically designed for visualizing data with three 

components.  While ternary plots are excellent for understanding relative proportions and 

mixtures, they are not well-suited for precise quantitative readings. Extracting exact values 

from points on the plot can be challenging, and more accurate measurements may require 

additional numerical analysis. 

There are many other visualization techniques used as well rather than the above-mentioned 

techniques.  A 3D-rad technique is used to visualize the shape of multi objective optimization 

data (Ibrahim, Rahnamayan and co-authors 2016). The techniques of hierarchical axes and 

generative topographic mapping are discussed by Holden and Keane (Holden and Keane 

2004) for visualizing huge design spaces, although they come with an additional 

computational load. 
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The number of plots needed for an effective visualization grows quadratically with the 

number of attributes in the dataset. This highlights the necessity of having a multi-

dimensional Design Space Exploration (DSE) visualization method that is easily 

implementable. A method to find Regions of Interest (RoI) and record factor interactions 

and correlations easily is needed (Thole and Ramu 2020). The goal is to create a visualization 

technique that effectively grows in complexity with the dataset, enabling a thorough 

examination of the design space while addressing the difficulties brought on by an increasing 

number of features. 

To overcome the above-mentioned limitations of visualization techniques a machine 

learning based visualization technique is used in this thesis, which is explained in detail in 

Chapter 3. This need leads us to Research Question (RQ 2), justification of this challenge is 

discussed in Chapter 5. 
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Chapter 3: Decision Based Design Framework for 

Visualization and Exploration for Problems with 

Many Goals 
 

In Chapter 3 the proposed Decision Based Design (DBD) framework is discussed addressing 

research question 1 (RQ 1). In Section 3.1 and 3.2 we discuss some of the existing 

frameworks in use and their limitations. In Section 3.3 we discuss Decision based design 

framework used in this thesis. In Section 3.4, the utility of the framework is discussed and 

in Section 3.5 we discuss the foundational mathematical construct and robust design metrics. 

In Section 3.6 we discuss the machine learning based visualization technique called 

Interpretable Self Organizing Maps (iSOM).  

 The Inductive Design Exploration Method (IDEM) 

Choi (Choi 2005), introduced the Inductive Design Exploration Method (IDEM) with the 

specific aim of attaining Type IV Robust Design, particularly for the integrated multiscale 

design of materials and products. IDEM addresses the propagation of uncertainty through 

scales (Choi, McDowell and co-authors 2008). IDEM streamlines the exploration of robust 

solutions and employs a metric called the Hyper-Dimensional Error Margin Index 

(HD_EMI) to evaluate the mapping across scales, as outlined by Choi (Choi 2005). A higher 

HD_EMI value signifies that the mapped region is distant from the boundary of the feasible 

region of interest, indicating reduced sensitivity to changes. Therefore, the HD_EMI value 

serves as an indicator of the reliability of a chosen design variable in meeting constraints and 

bounds. IDEM is formulated to furnish a range of robust solutions that account for 

propagated uncertainty (PU) and operate under model structure uncertainty (MSU). This is 

achieved by iteratively conveying the feasible solution range in an inductive manner, starting 

from the specified performance range, and extending into the design space. The IDEM 

comprises three steps, as illustrated in Figure 3.2 and are mentioned below: 
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• Concurrently conducting discrete function evaluations at each level of the design 

process, involving both bottom-up simulations and experiments. 

• In the step referred to as Inductive Discrete Constraints Evaluation (IDCE), a top-

down exploration of the feasible design space is performed using metamodels. This 

exploration leverages the Hyper-Dimensional Error Margin Index (HD_EMI) metric 

to evaluate the mapping from higher space to lower space, identifying robust 

solution ranges within the feasible space. 

• The compromise decision support problem (cDSP) is formulated to determine the 

optimal solution under model structure uncertainty (MSU). It enables designers to 

pinpoint the most desirable robust solution from the set of feasible solutions 

obtained. This is accomplished by conducting a trade-off analysis among the 

HD_EMI values acquired. The cDSP serves as the fundamental computational 

framework within IDEM for facilitating design decision-making. 

 

 
Figure 3.1: Solution search procedure in IDEM (Choi, McDowell and co-authors 

2008) 
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With the use of IDEM we can identify robust solutions ranges with the consideration of 

uncertainty that is propagated across a process chain. And with the use of IDEM we can 

reduce the design iterations. Designers can effortlessly modify or update analysis models 

since there are no computational interfaces between the models. Designers only need to 

reassess their designs based on the modified model. 

Limitation: IDEM employs a three-dimensional visualization space utilizing the HD-EMI 

metric for exploration. In this space, only a maximum of three design variables can be 

examined simultaneously, with the remaining variables assuming predefined values. This 

limitation constrains the scope of the simulation study and its outcomes. IDEM faces a 

constraint concerning the quantity of design variables applicable to a given design problem 

under examination. IDEM does not permit designers to introduce new goals or requirements 

at various levels during the design process. This restriction arises because the method relies 

on mapping to feasible spaces of 'Y' and 'X' for a given 'Z' space. 

 Robust Concept Exploration Method (RCEM-EMI) 

The Robust Concept Exploration framework with Error Margin Indices (RCEM-EMI), 

designed to address Type I, II, and III robust designs was introduced by Choi and co-authors 

(Choi, Austin and co-authors 2005). Error margin indices are mathematical constructs that 

indicate the location of the mean response and the spread of the response considering the 

variability associated with design variables and system models. EMIs represent the margin 

against failure due to uncertainty in both model and design variables. The Error Margin 

Indices (EMIs) contribute to the development of Type I, II, and III robust designs. 

Subsequently, these are integrated as goals in the cDSP formulation, aiming to design the 

system while accounting for uncertainties in both model structure and model parameters. 

The RCEM-EMI procedure, as outlined by Choi, Austin, and their coauthors in 2005, 

comprises the following steps: (a) clarification of the design task, (b) DOE and simulation, 

(c) integrated metamodel and prediction interval estimation, and (d) design space search 

using the cDSP for the RCEM-EMI. 
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Figure 3.2: The RCEM-EMI framework (Choi, Austin and co-authors 2005) 

Within the framework of RCEM-EMI, the Error Margin Indices (EMI) serve as robust design 

metrics, providing insights into the reliability level of a decision that meets system 

constraints and bounds. The comprehensive process of RCEM-EMI is illustrated in Figure 

3.1. 

One significant benefit of RCEM-EMI, distinguishing it from alternative methods, lies in its 

capacity to yield precise outcomes in the realm of design exploration. This capability stems 

from RCEM-EMI's ability to account for uncertainties related to noise factors, control 

factors, and the model itself. By doing so, RCEM-EMI aids designers in making informed 

decisions within the context of a system's stochastic variability and/or uncertainties in model 

parameters. 

Limitation: The RCEM-EMI framework is incapable to effectively handle multiple goals 

or performances that necessitate distinct types of robust design. The current form of RCEM-

EMI, as described, lacks the capability to manage the propagation of all forms of uncertainty 

throughout process chains. Additionally, it demands a substantial number of experiments for 
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uncertainty analysis even in a single evaluation during the design exploration phase, making 

it computationally expensive. In essence, these limitations underscore challenges in 

addressing diverse design objectives and managing uncertainty propagation efficiently, 

while also highlighting the computational demands associated with the methodology. 

The methods outlined above reveal a limitation by accommodating only three goals. 

However, in complex systems, the number of goals often exceeds three, necessitating a 

framework that can effectively handle this complexity. Therefore, in this thesis, we introduce 

a decision-based design framework, which will be detailed in the following section, 

specifically addressing the challenges posed by problems involving many (more than three 

goals) conflicting goals under uncertainty. This need leads us to Research Question (RQ 1), 

justification of this challenge is addressed by proposing Decision based design framework 

discussed in next section. 

 Decision Based Design Framework for Visualizing and 

Exploring for Problems with Many Goals 

In this section, we delve into the discussion of the Decision based design exploration 

framework, as depicted in Figure 3.3. The proposed framework draws inspiration from the 

Robust Concept Exploration Method (RCEM) introduced by Chen and coauthors (Choi 

2005). This framework accounts for many (more than three) goals and uncertainty in the 

complex problems. The framework's description unfolds through the Steps A to G outlined 

below. The frameworks start with identifying the design requirements as shown in Figure 

3.3. This step is an important task since design goals and strategy for design exploration are 

determined in this process. First the design goals need to be identified from the design 

requirements. This entails determining which performance criteria or responses should be 

selected. For example, considering the design of electric vehicle battery system, here one 

goal could be to enhance the system’s energy efficiency. Once goals and requirement limits 

are formulated, then the next step is identifying control and noise factors that affect the 

system performance. 
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Figure 3.3: Decision based design framework 

Step A (Identifying factors and ranges): This step involves identifying the design 

requirements which is in Step A as shown in Figure 3.3. During this step, the designer 

identifies problem-specific information related to design variables, their bounds, and 

constraints based on the given design requirements. The figure shown in step is called the P-

diagram proposed by Phadke (Phadke 1989), it represents the quality characteristics of a 

system, product or process. As shown in the figure, Phadke classifies parameters that can 

influence the quality characteristic or response of a product into the three types, which are 

signal factor (M), noise factor (x), and control factor (z).  Signal factors are the parameters 

set by a user or an operator of a product to express the intended value for the response of the 

product (Phadke 1989). For example, speed, torque or acceleration are signal or input factors. 

 
Figure 3.4: The block diagram of a product/process: P diagram (Phadke 1989) 
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The signal factors are selected by the design engineer based on the engineering knowledge 

of the product being developed. Noise factors are some parameters that cannot be controlled 

by the designer or are very expensive to control.  Only the statistical characteristics (such as 

mean and variance) of a noise factor can be known or specified, but the actual value is 

uncertain. The noise factors make the response deviate from the target specified by the signal 

factor, and lead to quality loss. Example environmental factors or system interaction. Control 

factors are parameters that can be specified freely by a designer. Designers are responsible 

for selecting (designing) the control factors. For example, hardness, density, or thickness can 

be considered as design variables. Following this, a check is carried out to identify if 

mathematical models that relate the design variable to the goals are available explicitly. The 

designer moves on to Step E if models are available. If models are unavailable, the designer 

moves on to Step B.             

Step B (Design of Experiments): In step DOE is carried out as shown in Step B of Figure 

3.3. Considering the control and noise factors identified in the preceding section, it becomes 

essential to carry out design of experiments. Design of Experiments (DOE) is a systematic 

and efficient approach used in experimentation to understand how different factors or 

variables influence the outcome of a process or system. There are different types of DOE 

techniques that can be used based on the requirement. Central composite design technique 

can be employed when the relationship between response surface of a system and the 

independent variables (factors) needs to be understood. Nevertheless, designers have the 

flexibility to utilize alternative Design of Experiments (DOE) techniques, such as two or 

three-level factorial design, Latin Hypercube sampling (LHS) (McKay 1995), Box-Behnken 

(Borror, Montgomery and co-authors 2002), and others. This allows them to obtain the most 

precise response surface model with the minimal number of experiments or simulations. 

After carrying out DOE the next step would be simulations. 

Step C (Simulations): In a decision-based design approach, simulations following Design 

of Experiments (DOE) play a crucial role in informing decision-making. Simulations allow 

designers to assess the performance of different design points identified through the DOE. 

By simulating the outcomes under various scenarios, designers can make informed 
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decisions. Common simulation techniques include Monte Carlo simulations, numerical 

simulations using mathematical models, and computer-aided simulations to mimic real-

world conditions. Simulations provide a powerful tool for analyzing and gaining insights 

into complex systems and processes. 

Step D (Surrogate modeling): In this step, the process involves surrogate modeling, where 

the developed models serve as approximate representations of the actual underlying function 

models. These surrogates are crucial tools for the designer, facilitating the mapping of the 

design space to the response or performance space. The data generated from simulations in 

Step C forms the basis for constructing these surrogate models. The primary purpose of 

surrogate modeling is to create efficient and computationally fewer demanding 

approximations of complex and resource-intensive simulations. Design space comprises all 

possible combinations of input variables, while response or performance space represents 

the corresponding system behavior or outcomes. Surrogate models serve as a mathematical 

tool to map points in the design space to their corresponding locations in the response space. 

This mapping enables designers to predict the system's behavior for unexplored design 

configurations without the need for additional resource-intensive simulations. Once the 

function models are available from next step is to formulate the problem using cDSP 

construct. 

Step E (Compromise decision support problem): In this step, the designer makes use of 

the surrogate models developed in Step D and the models identified in Step A and formulates 

the decision support problem with many goals. The compromise Decision Support Problem 

(cDSP) can be incorporated with DCI (Design Capability Index) and EMI (Error Margin 

Index) constructs into the formulation to account for uncertainties in design variables and 

model respectively. The cDSP allows designers to model problems with many conflicting 

goals. The cDSP is a hybrid of mathematical and goal programming. The problem specific 

information is captured in the cDSP using the four keywords (see Figure 3.3- Step E) - Given, 

Find, Satisfy, and Minimize. Using the cDSP the designer seeks to minimize the weighted 

sum of deviations of the goal values achieved from their targets. The designer can generate 

multiple design solutions by assigning different weights to the different goal deviations in 
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the cDSP. This is the foundational mathematical construct used in this thesis and explained 

in detail in Section 3.4. 

Step F (Exercising cDSP for different weight scenarios): Following the formulation of the 

compromise decision support problem (cDSP) in Step E, the designer proceeds to explore 

various design scenarios within this framework. Design scenarios are constructed by varying 

the weights associated with the deviation of goal values from their targets. Each scenario 

represents a specific set of preferences or priorities regarding the importance of achieving 

different goals within the design. The weights assigned to the goals indicate the designer's 

preferences for the different conflicting goals. By adjusting these weights, the designer 

expresses the relative importance of each goal in the overall decision-making process. This 

allows for a nuanced exploration of trade-offs and priorities. The outcomes of the cDSP for 

each design scenario are carefully examined and reported by the designer. These results 

provide insights into how different weightings impact the robustness and satisfaction of 

conflicting goals. Can be used to iterate through multiple design scenarios, adjusting weights 

and refining preferences based on the obtained results. This iterative process allows for a 

thorough exploration of the design space, fostering informed decision-making. 

Step G (Exploration and Visualization of Design Space): The exploration and 

visualization of the design space are essential aspects of the design process, serving as pivotal 

tools for informed decision-making. Visualization facilitates the interpretation of complex 

relationships and patterns within the design space, providing designers with valuable insights 

into trade-offs and sensitivities. By comprehensively exploring and visually representing the 

design space, designers can identify robust solutions, uncover areas for improvement, and 

navigate the intricate interdependencies among design variables. This thesis uses a machine 

learning-based visualization technique called Interpretable Self-Organizing Maps (iSOM) to 

explore and visualize complex problems with many (more than three) goals. iSOM is 

discussed in detail in Section 3.5. 
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 Compromise Decision Support Problem (Foundational 

Mathematical Construct) with Robust Design Metrics 

This thesis employs the compromise decision support problem (cDSP) to address the many 

goal problems under uncertainty. The DSP is a hybrid formulation incorporating concepts 

from traditional mathematical programming and goal programming. cDSP is a mathematical 

formulation to identify compromised design solutions with many conflicting goals. The 

similarities between mathematical programming and the cDSP lie in how they address 

system constraints that need to be met for practicality. The way they model the deviation or 

goal function varies. Like goal programming, the cDSP models the deviation function using 

deviation variables rather than system or decision variables. Multiple objectives are stated 

as system goals, including deviation variables. Nevertheless, the cDSP is different from goal 

programming because it is designed to manage typical engineering design scenarios where 

physical constraints show up as bounds on the system variables and system constraints 

(mainly inequalities). 

 
Figure 3.5: Mathematical construct of compromise decision support problem 
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3.4.1 Robust Design Metrics  

This section discusses the idea of robustness metrics, namely the Error Margin Index (EMI) 

and Design Capability Index (DCI), to control and lessen the consequences of uncertainty. 

The uncertainty bounds resulting from changes in the model and design variable are depicted 

in the following two images, along with the creation of mathematical constructs to deal with 

these uncertainties (Choi, Austin and co-authors 2005).  

 
Figure 3.6: Mathematical constructs of EMIs and DCIs (Choi, Austin and co-authors 

2005) 

In Figure 3.7, the mathematical formulations for implementing EMIs or DCIs as a goal in 

DSPs are shown. “Smaller is better” means that we are looking to minimize the targeted 

function, while “Larger is better” means that we are looking to maximize the targeted 

process. Further, “Nominal is better” means that we are interested in getting a value as nearer 

as possible to the target set, that is, we want to avoid underachievement and 

overachievement. 

3.4.2 Design Capability Index (DCI) 

DCIs represent the safety margin against systems failure due to uncertainty in design 

variables. In particular, DCIs mean the degree of reliability by measuring the capability of 

design decisions (Sharma, Allen and co-authors 2021): 
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(i) To satisfy the design requirements. 

(ii) To tolerate the effect of uncertainty in design variables. 

The system model's uncertainty bounds are represented by two adjacent dotted curves in 

Figure 3.6, while the model's mean response (𝜇) is shown as a solid red curve. The mean 

response model predicts that at x, with a variation of + Δx in the design variable, the 

expected variation in response is ΔY0. Similarly, as the figure illustrates, the predicted 

variation in response for the two uncertainty bounds for the identical change in design 

variable at x is ΔY1 and ΔY2, respectively. This will enable us to determine the highest 

possible predicted deviation in the response for every given combination of x and Δx. 

 
Figure 3.7: Formulation of uncertainty bounds due to variations in a design variable 

and a model (Choi, Austin and co-authors 2005) 

Steps for formulating Goals as DCIs : 

Step 1: Using a first order Taylor series expansion, the response variation due to variation 

in the design variable vector x = {x1, x2……, xn} is estimated. The response variation(ΔY) 

for small variations in design variables is as 
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∆𝑌 =  ∑ |
𝜕𝑓

𝜕𝑥𝑖

𝑛

𝑖=1

|. ∆𝑥𝑖 
 

Equation 3.1 

 

where, ∆𝒀 represents function model equation, 
𝝏𝒇

𝝏𝒙𝒊
 represents the differentiation of the 

function equation, and ∆𝒙𝒊 represents the variance allowed in design variable. 

Step 2: Using the mean response (𝜇𝑦) obtained from the mean response model (𝑓0(𝑥)) and 

the response variation due to variation in design variables (𝛥Y), calculate the DCIs. For a 

‘Larger is Better’ case, the DCI is calculated as  

DCI = (µy – LRL) / ∆Y Equation 3.2 

 

where, LRL is the lower requirement limit. A DCI ≥ 1 means that the ranged set of design 

specifications satisfies a ranged set of design requirements, and the system is robust against 

uncertainty in design variables. The higher the value of DCI, the higher is the measure of 

safety against failure due to uncertainty in design variables. 

Example Calculation for DCI (Vehicular side crash example problem) 

The total energy absorption calculation for a vehicular side crash problem used in Chapter 4 

is illustrated below, 

Step 1: Establish the functional relationship of total energy absorption in terms of design 

variables. 

ETotal = 0.55646 – 0.10339𝑥1 +  0.09375𝑥2  +0.30379𝑥3  + 0.86088𝑥4  + 0.36049𝑥5  + 

0.10462𝑥1
2 + 0.00639𝑥1𝑥2 + 0.0843𝑥1𝑥3 + 0.3121𝑥1𝑥4 +  0.2085𝑥1𝑥5 + 0.07593𝑥2

2 – 

0.0329𝑥2𝑥3 – 0.04357𝑥2𝑥4 – 0.04462𝑥2𝑥5  – 0.07953𝑥3
2  – 0.08116𝑥3𝑥4+ 0.06229335𝑥3𝑥5 

- 0.39304𝑥4
2 - 0.36104𝑥4𝑥5 -  0.0392𝑥5

2 

Step 2: Evaluate the partial differentiation of ETotal  with respect to the design variables 



 

 

75 

 

𝜕ETotal

𝜕𝑥1
       = - 0.10339 – 0.20924𝑥1 + 0.00639𝑥2 + 0.0843𝑥3 + 0.3121𝑥4 + 0.2085𝑥5   

𝜕ETotal

𝜕𝑥2
       = 0.09375 + 0.00639𝑥1 + 0.15186𝑥2 – 0.0329𝑥3 – 0.04357𝑥4 – 0.04462𝑥5 

𝜕ETotal

𝜕𝑥3
       = 0.30379 + 0.00843𝑥1 – 0.0329𝑥2 – 0.159𝑥3 – 0.08116𝑥4 + 0.06229𝑥5 

𝜕ETotal

𝜕𝑥4
       = 0.8608 + 0.3121𝑥1 – 0.0435𝑥2  – 0.08116𝑥3 – 0.786𝑥4 – 0.36104𝑥5 

𝜕ETotal

𝜕𝑥5
       = 0.3604 + 0.2085𝑥1 – 0.0446𝑥2   + 0.0622𝑥3  – 0.36104𝑥4 – 0.0784𝑥5 

Step 3: Using a first order Taylor series expansion, estimate the response variation due to 

variation in the design variables. The response variation (ΔY) for small variations in design 

variables is 

Y = |
∂ETotal

𝜕𝑥1
| . Δ𝜕𝑥1 + |

∂ETotal

𝜕𝑥2
| . Δ𝜕𝑥2  +  |

∂ETotal

𝜕𝑥3
| . Δ𝜕𝑥3 + |

∂ETotal

𝜕𝑥4
| . Δ𝜕𝑥4 + |

∂ETotal

𝜕𝑥5
| Δ𝜕𝑥5 

Step 4: Using the mean response obtained from the mean response model (Equation derived 

in Step 1) and the response variation due to variation in design variables (𝛥Y), calculate the 

DCI. For a ‘Larger is Better’ case, the DCI is calculated as 

DCI = 
ETotal−𝐿𝑅𝐿

ΔY
 

where, LRL is the lower requirement limit, which can be set based on the design requirement. 

3.4.3 Error Margin Index (EMI) 

EMIs represent the amount of safety margin against system failure due to uncertainty in the 

design model itself. They represent the degree of reliability by measuring the capability of 

design decisions (Sharma, Allen and co-authors 2021): 

(i) To satisfy the design requirements. 
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(ii) To tolerate the effect of uncertainty in design models. 

The solid curve in Figure 3.8 represents the mean response (μ) of the model, while the 

adjacent dotted curves depict the uncertainty bounds associated with the system model. 

When there is a variation of +ΔX in the design variable at a specific point X, the mean 

response model predicts an expected variation in the response denoted as ΔY. Similarly, for 

the same change in the design variable at X, the expected variations in response within the 

two uncertainty bounds are ΔY1 and ΔY2. This graphical representation aids in determining 

the maximum anticipated deviation in response for any given value of X and ΔX, offering 

insights into the potential variability considering the uncertainties inherent in the system 

model. 

 
Figure 3.8: Formulation for uncertainty bounds due to variations in a model (Choi, 

Austin and co-authors 2005) 
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Steps for formulating Goals as EMIs: 

Step 1: If a system model incorporates uncertainty bounds, the calculation of response 

variation (ΔY) for each of these bounds, considering minor variations in design variables, is 

carried out as: 

                

 

Equation 3.3 

 

 

Step 2: After evaluating various response variations from both the mean response function 

and uncertainty bound functions due to changes in design variables, the minimum and 

maximum responses are computed. These calculations factor in the variability in design 

variables and the uncertainty bounds surrounding the mean response. 

 
 

Equation 3.4 

Where j=0,1,2, ... , n,  is the mean response model and  are uncertainty 

bound functions.  

Step 3: Calculate upper and lower deviations, which are the deviations from the mean 

response to the maximum and minimum responses, respectively, are represented as 

 
Equation 3.5 

Where is the mean response,  is the maximum response,  is the minimum response, 

 is the upper deviation, and is the lower deviation. 

Step 4: Using the mean response obtained, the mean response model, and the upper and 

lower deviations, the EMIs are calculated. 

 

EMI = (µy – LRL) / ∆Y (Larger is the better case) Equation 3.6 
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 Visualization and Exploration of Design Space 

In design space exploration (DSE), efficient visual representation is crucial for making 

informed decisions. The common approaches discussed in Chapter 3 involve using 

projections of axes for visualization. However, these projections have limitations, especially 

when capturing interactions between different factors and dealing with higher dimensions. 

In simpler terms, visualizing complex design spaces using axis projections may only 

partially represent how various factors interact, particularly in situations involving many 

goals. Other visualization techniques are in use, like Radial coordinate visualization 

(RadVis,) which maps high-dimensional data into two dimensions (Ibrahim, Rahnamayan 

and co-authors 2016). Holden and Keane (2004) explore generative topographic mapping 

and hierarchical axes technique to visualize extensive design spaces. However, these 

methods introduce extra computational demands. A bubble chart utilizes color and bubble 

size as additional features to depict different dimensions. Nonetheless, bubble charts are 

effective only for up to five dimensions. Typically, a grid of scatter plots is employed to 

analyze the connection between various attributes. As the number of attributes grows, the 

number of plots increases significantly. Therefore, it's beneficial to create a straightforward 

method for visualizing design space in Design Space Exploration (DSE) that works 

regardless of the number of dimensions. This approach should help identify the Region of 

Interest (RoI) and enable the capture of factor interactions and correlations. To overcome the 

specified limitation, this thesis employs a visualization technique called iSOM, which is 

based on machine learning. A detailed discussion of iSOM will follow in the next section. 

However, before delving into iSOM's functioning, it's essential to comprehend how Self-

Organizing Maps operate discussed in next section. 

3.5.1 Self-Organizing Maps 

A Self-Organizing Map (SOM) is a type of artificial neural network that operates on the 

principle of unsupervised learning. When given high-dimensional data as input, SOM 

generates a typically two-dimensional representation of this input data. What sets SOM apart 

is its ability to preserve the topology of the original high-dimensional space. In this context, 
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topology preservation means that the mapping from high dimension to low dimension 

maintains the relative distances between different points in the input data. Additionally, 

SOM exhibits generalization capability, implying that the map can effectively characterize 

inputs it has never encountered before. This allows SOM to create a condensed, organized 

representation of complex data while preserving its structural relationships. 

SOM Structure consists of a two-dimensional grid as shown in Figure. The features of SOM 

structure are discussed below, 

 
Figure 3.9: SOM structure (Thole and Ramu 2020) 

Structure 

• Each node corresponds to a set of values called codebook vectors. 

• Codebook vectors have a size equal to the number of dimensions in the dataset. 

• Nodes can be connected in a rectangular or hexagonal topology. 

Input data representation 

• If there are n design variables (x1, x2, ..., xn) and a response variable y, each input 

vector for SOM is represented as 𝑣𝑖 = [𝑥𝑖1, 𝑥𝑖2,, ..., 𝑥𝑖𝑛,, 𝑦𝑖,]. 
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• Each SOM node 𝑤𝑗,  has weight vectors [𝑚𝑗1,, 𝑚𝑗2,, ..., 𝑚𝑗𝑛, 𝑚𝑗𝑜𝑢𝑡]. 

• First n weights correspond to design variables, and the last weight corresponds to 

the response. 

Initialization of weight 

• Values of weights are initialized using linear initialization. 

• Linear initialization involves setting weights in the space spanned by two 

eigenvectors with the highest eigenvalues. 

SOM organizes and understands high-dimensional data in a visually meaningful way and 

helps identify patterns, relationships, and clusters in the data. 

3.5.2 Working of SOM Algorithm 

Working of Self-Organizing Maps (SOM) involves a process of training and adaptation to 

organize and represent high-dimensional data in a lower-dimensional space. Here are the 

key steps in the working of SOM: 

Step 1 (Initialization): First step is to start with a two-dimensional grid of nodes, where each 

node represents a potential cluster or group in the data and assign random initial values 

(weights) to the nodes. These weights represent the features of the data. 

Step 2: To calculate the Euclidean distance or Best Matching Unit (BMU) between input 

data and weight of each node and next identifying the closest weights to the input nodes. 

These nodes are the winning nodes. 

Step 3 (Updating weight): Weight of the winning and neighboring nodes are updated 

according to the winning nodes. The weights of the neighboring nodes are pulled in the 

direction of the input data point throughout the updating process. The farther you are from 

the winning node, the less updated. 
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Step 4 (Iteration): The calculation of the Euclidean distance is repeated for each dataset and 

each iteration refines the input space representation. 

3.5.3 Limitation Of Self Organizing Maps (SOM) 

One of the major limitations of SOM is self-folding. Self-folding is a process where each 

input node in SOM grid is mapped to multiple output grids. In SOM high dimensional data 

points are mapped to two-dimensional grid points and each of these grid points are associated 

with weights representing a position in input space. Ideally, each input node should be 

associated with a specific SOM grid which helps in interpreting the relationships between 

the input data. But in SOM there exists self-folding resulting where one input node associated 

with multiple nodes on the SOM grid. Due to this limitation visualizing the plots becomes 

challenging and the interaction between the variables cannot be interpreted. The Figure 3.10 

and 3.11 show the with and without self-folding of the function z = x2 + y2 respectively, 

consisting of 20 Latin hyper cube sampling points and corresponding response variables 

(Thole and Ramu 2020). 

 
Figure 3.10: SOM plot without self-folding for the given function (Thole and Ramu 

2020) 
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Figure 3.11: SOM plot with self-folding for the given function (Thole and Ramu 2020) 

In order to address the challenges posed by self-folding in conventional Self-Organizing 

Maps (SOM), a specialized machine learning technique known as Interpretable Self-

Organizing Maps (iSOM) is employed in this thesis. The operation of iSOM closely mirrors 

that of traditional SOM, with an alteration in the selection process for the Best Matching 

Unit (BMU). The details of this adjustment are explained in the next section, highlighting 

how iSOM helps make visualizations clearer and more understandable by dealing with self-

folding. 

 Interpretable Self-Organizing Maps (iSOM) 

 iSOM is a machine learning based visualization technique used to address issues related to 

SOM. Self-intersections and other problems are avoided, and inherently interpretable outputs 

are obtained by iSOM. The key distinction in iSOM's implementation lies in how it selects 

data for estimating the Best Matching Unit (BMU). The output data is not considered by 

iSOM, in contrast to SOM, which solely takes into account the input data while considering 

the BMU. Additionally, iSOM deletes the input variables during the update stage and only 
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uses the answer value. In iSOM, these modifications avoid folding or self-intersection. 

Component plane plots that are produced have an ordered structure, which is a benefit that 

has been noted and makes component planes easier to interpret. The Figures 3.12 and 3.13 

show the iSOM input plots and output plots respectively. The iSOM plots provide insights 

into the trends of the goals and their interconnections. They also allow us to comprehend the 

impact of input plots on the output plots. 

  
Weight 1(W1) Weight 2(W2) 

Figure 3.12: iSOM input (weight) plots 

  
Goal 1(G1) Goal 2(G2) 

Figure 3.13: iSOM output (goal) plots 

The initial set of plots showcases the input, with each plot (Figure 3.12) representing the 

weight assigned to goals. For instance, W1 signifies the weightage assigned to the first goal 

(G1), and W2 indicates the weightage for the second goal (G2). These plots provide insights 

into how the output influences the input; for example, a high W1 corresponds to high G1 and 

low G2, while a low W2 leads to low G1 and high G2. 
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The second set of plots illustrates the output, specifically the goal plots (Figure 3.13). In 

iSOM plots, it's straightforward to interpret the interconnections among the goals. For 

instance, a high value of G1 corresponds to a low value of G2, indicating a conflict between 

these two goals. iSOM proves particularly beneficial in scenarios with numerous goals, as it 

simplifies the interpretation of relationships. 

In order to validate the proposed DBD framework outlined in this chapter, a specific scenario 

related to vehicular crashworthiness has been chosen for detailed examination. Further 

insights into this example can be found in the subsequent Chapter 4. 
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Chapter 4: Vehicular Crashworthiness Example 
 

In Chapter 4 a vehicular side crash test example is presented to evaluate the effectiveness 

and applicability of the decision-based design framework. In section 4.1 a brief introduction 

of the problem is discussed and in Section 4.2 the problem is defined in detail. After defining 

the problem, utility of the framework is discussed in Section 4.3. In Section 4.4 limitation of 

the proposed framework is discussed. In summary, Chapter 4 follows a structured approach, 

starting with an introduction to the problem, defining the problem, discussing the utility of 

the decision-based design framework, and finally, addressing the limitations associated with 

the proposed framework. 

 Introduction to the Vehicular Crashworthiness  

In the automotive industry, the ongoing pursuit is to enhance the performance of vehicles 

and their components, with a primary focus on safety, efficiency, and economy. Improved 

vehicle design, particularly in terms of safety and fuel efficiency, is a key objective. Despite 

the advantages of lightweight designs in terms of performance and emissions, there is a 

constant challenge to strike a balance between achieving efficiency and ensuring safety. In 

the drive for fuel efficiency and economy, designers often turn to the use of lighter materials. 

However, this emphasis on lightweight designs can pose a potential conflict with safety 

considerations. Safety in vehicle design is assessed through the concept of 'crashworthiness,' 

which refers to a vehicle's ability to protect occupants from injury or fatality during 

collisions. As regulatory safety standards become more stringent, manufacturers face the 

imperative to create cars that not only meet efficiency goals but also prioritize occupant 

safety in the event of a crash. The study of vehicle crashworthiness has thus become pivotal 

in evaluating the safety aspects of vehicle and component design. Designers working on 

crashworthiness strive to develop robust, crush-resistant components capable of absorbing 

and dissipating maximum energy in a controlled manner during a collision. However, the 

pursuit of maximum energy absorption often leads to designs with increased thickness and 

subsequently greater mass. Thus, there arises a crucial imperative to facilitate the 
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development of vehicle designs and vehicular components that successfully navigate the 

conflicting goals of safety and lightweight construction. Automobile crashworthiness is a 

difficult problem for designers to solve, and the rapid improvements in technology have 

made this much more complex. Achieving this balance necessitates a deliberate trade-off, 

wherein designers must preserve the structural integrity of vehicle components while 

enabling the vehicle's framework to absorb maximal energy through controlled deformation, 

ensuring occupant safety in the event of an accident. 

An established method to ascertain the safety of lightweight vehicular and component 

designs is through vehicular experimental crash testing. However, this approach, while 

effective, is characterized by its high cost and time-intensive nature, making it a 

consideration primarily in the final stages of the design process. To overcome these 

obstacles, a different approach makes use of computer simulations. Although simulation-

based approaches offer relative cost efficiency, they are not without their constraints. These 

limitations stem from factors such as a) constraints on computational resources, b) the 

inherent complexity of simulations, and c) design-related challenges. These design 

challenges encompass the necessity to reconcile many (more than three) conflicting goals, 

address uncertainties in design variables, and effectively visualize and explore the intricate, 

high-dimensional design spaces. 

It becomes essential to methodically handle the related difficulties while managing these 

complexities, carefully considering the trade-offs involved in each strategy. Achieving an 

effective balance of safety and lightweight design through creative techniques emerges as a 

crucial goal in the constantly changing vehicle engineering scene as technology continues 

its rapid advancement. When this problem is considered from an optimization approach, a 

single-point solution is obtained, such as minimizing weight or maximizing fuel efficiency. 

However, in real-world vehicle design, multiple objectives, such as crashworthiness, 

performance, and aesthetics, need to be considered simultaneously. These goals often 

conflict with each other, requiring designers to make trade-offs. conventional deterministic 

optimization approaches assume that all design parameters are known with certainty. 

However many design parameters are uncertain due to factors such as material properties, 
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manufacturing tolerances, and environmental conditions. Deterministic optimization 

methods fail to account for these uncertainties, leading to designs that may not perform as 

expected in real-world scenarios. Optimization methods are computationally expensive, 

requiring numerous iterations of simulations and calculations to find a single optimal 

solution. This makes them unsuitable for early-stage design exploration, where designers 

need to quickly generate a wide range of potential solutions to explore the design space.  

To address these challenges, the decision-based design framework proposed in Chapter 3 is 

employed for a vehicular side crash problem. This framework stands out by considering 

many conflicting goals, uncertainties in the design process and effectively visualize and 

explore solution space. Unlike traditional approaches that focus on finding a single optimal 

solution through computationally intensive iterations, this framework enables designers to 

efficiently explore a broad range of potential solutions, making it well-suited for the early 

stages of design where a variety of solutions need to be quickly identified and evaluated. In 

the next section the vehicular side crash problem considered is described in detail. 

 Problem Definition 

Vehicular crash tests are usually done to make sure that a car's design meets the required 

safety standards. One important is to check how much energy the car absorbs during a crash. 

When a crash happens, some of the energy is taken in by the car's structure and parts, but the 

rest gets transferred to the car's components. This transfer of energy can make the car bounce 

back after a crash and can lead to serious injuries or even death for the people inside. The 

more energy the car structure and parts can absorb in the early stages of a crash, the less 

harm is likely to happen to the people inside.  

This thesis focuses on problems considering both light and safe during side crashes. When 

we make a vehicle lighter, it might affect its safety in certain ways. Designing cars that are 

both lightweight and safe is tricky because these goals often conflict with each other. To 

achieve this balance, we need to explore ways to reduce weight while ensuring the car can 

absorb energy effectively during a crash. The structure that absorbs energy during a collision 
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plays a big role, and this thesis specifically looks at a 1996 Dodge Neon car model. The 

energy-absorbing structures that have been identified consist of five components, which are 

illustrated in Figure 4.1 and detailed in Table 4.1. 

 
Figure 4.1: Five components considered for vehicle crashworthiness. 

 

Table 4.1: Component’s description 

Part No. Part Description 

235 
OB-DOOR-FT-I-R 

(Outer body door inner reinforcement) 

237 
OB-DOOR-FT-O-R 

(Outer body door outer reinforcement) 

329 
CH-B-PILLAR-MID-R 

(B Pillar Mid) 

353 
CH-CBN-FLOORBRD-FT 

(Floorboard) 

357 
CH-CBN-SEAT-REINF-FT 

(Seat Reinforcement) 
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The design problem considered aims to maximize the energy absorbed by each of the first 

three components—Parts 235, 237, and 353 (first three goals) and decrease the total mass of 

all five components (the fourth goal). 

The selection of the three components is determined by two main factors: i) the potential for 

achieving the highest reduction in mass, and ii) the components capability to absorb more 

energy. This evaluation is based on data obtained from a simulated side crash trial, where 

the mass and total energy absorption of car components were measured. Components were 

chosen if they had either higher mass, absorbed more energy, or fulfilled both criteria. This 

selection is crucial because having these specific parts offers greater potential to enhance the 

vehicle design in alignment with the problem's goals. The details of the chosen five 

components for the vehicular side crash problem are provided in Table 4.1. 

The process of creating a lightweight, safe vehicle is difficult for two primary reasons: first, 

there are numerous design variables and their intricate interactions; second, there are many 

conflicting things to take into account. There may be thousands of possible designs as a result 

of these considerations, particularly in the early stages of design. It becomes impractical to 

rely only on a design engineer's experience or to carry out expensive and time-consuming 

physical tests. Rather, we use simulations to come up with ideas for designs or fixes. 

Subsequently, we investigate these design or solution spaces in order to find "satisficing 

solutions" that reconcile the conflicting goals. 

Uncertainties in design variables resulting from manufacturing variations, random noises 

associated with variations in material properties, and uncertainties in the models used, arising 

from approximations made in representing the true relationships between design variables 

and responses, all impact the process of designing safe lightweight vehicles. As a result, it 

becomes essential to take these uncertainties into account and deal with them while designing 

safe, lightweight cars using simulation. More than three goals are frequently involved in the 

design of complex systems, such as the development of lightweight, safe automobiles. As 

such, it is necessary to enable the comprehensive investigation of design issues involving 

many (more than three) goals. Therefore, a Decision-Based Design (DBD) framework 
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designed for problems with many goals is employed for this example. With the help of this 

framework, designers can: i) robust solution space for the complex systems; and ii) visualize 

and explore the solution space to identify satisficing solutions. 

In the next section a detailed discussion about the use of decision-based design framework 

for vehicular crashworthiness problem is demonstrated. 

 Utilization of the Decision Based Design Framework for 

Vehicular Crashworthiness 

The steps to be followed are presented in the decision-based design framework discussed in 

Chapter 3. Designers begin by specifying the design requirements specific to the problem, 

and the subsequent steps of the framework are outlined below. 

Step A: The four goals considered are to maximize energy absorption (first three goals) 

during a side impact scenario while minimizing overall mass (fourth goal) by controlling the 

thickness of the five identified vehicle components and the design variables considered are 

thickness of the five components. Additionally, the design must be robust to uncertainties in 

component thickness arising from manufacturing defects, geometric tolerances, and human 

error. Subsequently, an examination is conducted to determine whether the function models 

are explicitly available. If not, we move on to Step B. 

Step B: In this step Design of Experiments (DOE) is carried out. DOE is carried out to find 

the design points at which simulation can be done. In this thesis a Latin Hypercube Sampling 

(LHS) is used to find the design points. Latin Hypercube Sampling is a systematic and 

efficient method for sampling multidimensional parameter spaces in a way that ensures a 

representative coverage of the input space while minimizing correlations between variables. 

Latin Hypercube Sampling (LHS), DoE is used to create a set of points for conducting 

computer simulations of car crashes. In this thesis, 44 LHS design points are generated for a 

car side crash scenario (see Appendix). These 44 points represent various combinations of 

values for the five thickness variables, staying within their allowed upper and lower limits. 
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Step C: In this FE simulations are carried out. Finite Element (FE) simulations are 

computational techniques used to analyze and predict the behavior of complex structures and 

systems. A Finite Element (FE) simulation is carried out to gather data needed for creating 

a surrogate model. The car model used for simulating side crashes comes from the United 

States National Crash Analysis Center, and it was adjusted by researchers at the Center for 

Advanced Vehicular Systems (CAVS) at Mississippi State University (Horstemeyer, Ren 

and co-authors 2009) . In Figure 4.2, the Dodge Neon FE simulation in a side-crash scenario 

is shown. Inside the vehicle model, a dashboard, door paneling, steering wheel, driver's seat, 

and under-the-hood parts are included. This modified FE car model has a total of 221,049 

elements and 433,287 nodes. The simulation involves a moving deformable barrier (MDB), 

which is a model developed by Fang and co-authors(Fang, Rais-Rohani and co-authors 

2005), acting as the impacting vehicle. In this thesis, the focus is on side crash scenarios for 

the car model. The LS-Dyna software is used to simulate vehicular side crashes. 

 
Figure 4.2: LS dyna FE car crash simulation 
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Step D: In this step surrogate models are developed. Surrogate models are the approximate 

models of actual models. In this thesis Response Surface Methodology (RSM) is used to 

create second-order polynomial models that predict the outcomes for the four goals based on 

the design variables. The Finite Element (FE) simulations, as described in Step C, are 

conducted for the Latin Hypercube Sampling (LHS), Design of Experiments (DOE) points 

identified in Step B. Polynomial response surface models of various orders (first, second, 

and third) for all four goals are generated. After evaluating the goodness of fit using metrics 

like the coefficient of determination (R2) and Cross-Validation Mean Absolute Error (CV-

MAE), the second-order model is identified as the most accurate among the different orders. 

The second-order polynomial response model is expressed as shown in Equation 4.1. 

�̂�= β0 + β1 t1 + β2 t2 + β3 t3 + β4 t4 + β5 t5 + β11 t1
2 + β12 t1t2 + β13t1t3 + β14t1t4 

+ β15t1t5 + β22t2
2 + β23t2t3 + β24t2t4 + β25t

2t5 + β34t3t4 + β35t3t5 + β44t4
2+ 

β45t4t5 + β55t5
2
 

 

Equation 4.1 

 

Table 2 shows the R² values corresponding to the second order fit. Figure 4.3, 4.4, 4.5, 4.6 

illustrates the mean response models for all goals while keeping three variables constant. 

The surrogate models developed is mentioned in Appendix. 

Table 4.2: R2 values 

Components R2 Value 
Part 235 0.9200 
Part 237 0.9955 
Part 329 0.9985 
Part 353 0.8609 
Part 357 0.9821 

Total Mass 0.9813 
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Figure 4.3: Energy absorption for part 235 

 
Figure 4.4: Energy absorption for part 237 
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Figure 4.5: Energy absorption for part 353 

 

 
Figure 4.6: Total mass of five components 

Step E: After developing surrogate models in Step D, the next Step is formulating the 

problem in cDSP construct. Compromise decision support problem is a combination of both 

mathematical programming and goal programming. This differs from conventional 
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mathematical programming, which models numerous goals as a weighted function of only 

the system variables. cDSP helps in minimizing the deviation function, which is 

mathematically the weighted sum of deviation on of the goal values achieved from their 

target values. The four important keywords: Given, Find, Satisfy and Minimize capture the 

problem specific information. Formulating and solving the given problem for robust design 

as cDSP construct. A robust design formulation consists of two metrics: i) Design Capability 

Index (DCI), or ii) Error Margin Index (EMI). DCI is incorporated while considering 

uncertainty in design variables and EMI is considered when there is uncertainty in the model 

itself. In this paper we use the cDSP in conjunction with DCI construct discussed in chapter 

3. DCI is a metrics developed for evaluating how well a variety of design criteria may be 

satisfied by a variety of design specifications considering uncertainty in design variables 

themselves. DCI is employed as goal formulation in the cDSP for the car design problem, 

the word and mathematical formulation is shown in Table 4.3 and 4.4 respectively. 

Table 4.3: Data file for vehicular crashworthiness problem 

NUMSYS  : Number of system variables: real, integer, boolean 

    5    0   0 

 

SYSVAR   : System variable information 

T1    1  0.389  1.167  0.778   : Thickness of part 235 

T2    2  0.473  1.419  0.946   : Thickness of part 237 

T3    3  0.353  1.059  0.706   : Thickness of part 329 

T4    4  0.352  1.059  0.705   : Thickness of part 353 

T5    5  0.341  1.023  0.682   : Thickness of part 357 

 

NUMCAG  : Number of constraints and goals 

 0  8  0  0  4  :  nlinco, nnlinq, nnlequ, nlingo, nnlgoa  

 

ACHFUN  : Achievment function 

   1    : level 

   1 4  : level 1, 4 terms 

  (-1,1)  (-2,0)  (-3,0) (-4,0) 

      

STOPCR  : Stopping criteria 

1  0  100  0.005  0.005  : perfm cal, prt intereslts, Mcyles,sta dev, sta var 

 

NLINCO  : Names of nonlinear constraints 

E1const 1 : Energy absorption Constraint for part 235 

E2const 2 : Energy absorption Constraint for part 237 

E3const 3 : Energy absorption Constraint for part 329 
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Mconst  4 : Total mass Constraint 

DCICT1  5 : DCI value for part 235 

DCICT2  6 : DCI value for part 237 

DCICT3  7 : DCI value for part 329 

DCICM  8 : DCI value total mass 

 

NLINGO  : Names of the nonlinear goals 

DCIT1 1 : Maximum Energy absorption for part 235 

DCIT2 2 : Maximum Energy absorption for part 237 

DCIT3 3 : Maximum Energy absorption for part 329 

DCIM 4 : Minimize the total mass 

 

ALPOUT   : Output Control 

     1   1   1   1   0   0   0   0  1  1 

 

USRMOD  : User module flags 

    1   0   0   0 

 

OPTIMP  : Optimization parameters 

   -0.05   0.5  0.005 : VIOLIM, REMO, STEP 

 

ADPCTL : 1 
 

Table 4.4: Fortran file for vehicular crashworthiness problem 

REAL T1, T2, T3, T4, T5 

REAL DCIT1, DCIT2    

REAL DCIT3, DCIM,F1,F2,F3,F6,F1a,F1b,F1c,F1d,F1e,F1f 

REAL F2a,F2b,F2c,F2d,F2e,F3a,F3b,F3c,F3d,F3e,F2f 

REAL A1, A2, A3, A4, A5, B1, B2, B3, B4, B5,F3f 

REAL C1,C2,C3,C4,C5,G1,G2,G3,G4,G5,G6 

REAL Y1,Y2,Y3,Y6 

     

1.0 Set the values of the local design variables (optional) 

 

T1 = DESVAR(1) 

T2 = DESVAR(2) 

T3 = DESVAR(3) 

T4 = DESVAR(4) 

T5 = DESVAR(5) 

    

2.0 Perform analysis relevant to non-linear constraints and goals 

E1const = 0.23*10**6 

E2const =0.22*10**6 

E3const = 0.21*10**6 

Mconst = 26   

  

Individual energy absorbed for part235 

F1a = 0.19739 + 0.14887*T1 + 0.02670*T2 - 0.05124*T3 

F1b = -0.08292*T4 + 0.01850*T5 - 0.08935*T1**2 + 0.02951*T1*T2 
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F1c = - 0.00579*T1*T3 + 0.07720*T1*T4 - 0.02256*T1*T5 

F1d = - 0.02076*T2**2 - 0.0874*T2*T3 - 0.00806*T2*T4 

F1e =  0.00479*T2*T5 + 0.03565*T3**2 + 0.04727*T3*T4 

F1f = -0.01389*T3*T5 + 0.06025*T4**2 - 0.0511*T4*T5+0.04532*T5**2 

F1 = (F1a + F1b + F1c + F1d + F1e + F1f)*10**6 

A1=(0.148-0.178*T1+0.0295*T2-0.0057*T3+0.0772*T4-0.02253*T5)*10**6 

A2=(0.0267-0.0415*T2-0.087*T3-0.008*T4+0.00479*T5+0.0295*T1)*10**6 

A3=(-0.0512-0.0057*T1-0.087*T2+0.0713*T3+0.0472*T4-0.013*T5)*10**6 

A4=(-0.0829+0.0772*T1-0.0080*T2+0.0472*T3+0.120*T4-0.051*T5)*10**6 

A5=(0.0185-0.0225*T1+0.0047*T2-0.0138*T3-0.051*T4+0.0906*T5)*10**6 

Y1=(abs(A1)+abs(A2)+abs(A3)+abs(A4)+abs(A5))*0.01 

DCIT1 = (F1 - 0.23*10**6) / Y1 

    

Individual energy absorbed for part237 

F2a = 0.1366+0.00607*T1+0.09939*T2+0.03214*T3 

F2b = 0.002319*T4-0.02941*T5+0.008624*T1**2-0.04545*T1*T2 

F2c = 0.0214*T1*T3-0.00618*T1*T4+0.0287*T1*T5+0.0663*T2**2 

F2d =-0.0321*T2*T3+0.031315*T2*T4-0.00037*T2*T5-0.01601*T3**2 

F2e=(0.0013*T3*T4)-(0.0001*T3*T5)-(0.0133*T4**2) 

F2f = (0.017*T4*T5)+(0.003*T5**2) 

F2 = (F2a + F2b + F2c + F2d + F2e+F2f)*10**6 

B1=(0.006+0.0172*T1-0.0454*T2+0.0214*T3-0.0061*T4+0.0287*T5)*10**6 

B2=(0.099-0.0454*T1+0.1327*T2-0.0321*T3+0.0313*T4-0.0003*T5)*10**6 

B3=(0.0321+0.0214*T1-0.032*T2-0.0320*T3+0.0013*T4-0.0001*T5)*10**6 

B4=(0.0023-0.00618*T1+0.031*T2+0.0013*T3-0.0267*T4+0.017*T5)*10**6 

B5=(-0.029+0.0287*T1-0.0003*T2-0.0001*T3+0.017*T4+0.0006*T5)*10**6 

Y2 = (abs(B1) + abs(B2) + abs(B3) + abs(B4) + abs(B5))* 0.01 

DCIT2 = (F2 - 0.22*10**6) / Y2 

 

Individual energy absorbed for part329 

F3a= 0.015484 - 0.02342*T1 + 0.0294195*T2 + 0.23875*T3 

F3b=-0.0417*T4 + 0.011807*T5 + 0.005085*T1**2 - 0.013*T1*T2 

F3c=-0.0312*T1*T3 + 0.0513*T1*T4 + 0.01696*T1*T5 +0.001905*T2**2 

F3d=(-0.03205*T2*T3)+(0.011237*T2*T4)+(0.000675*T2*T5) 

F3e=(0.08*T3*T4)+(0.041*T3*T5)+(0.0006*T4**2) 

F3f= -(0.06*T4*T5)-(0.005*T5**2)-(0.03904*T3**2) 

F3= (F3a + F3b + F3c + F3d + F3e+F3f)*10**6 

C1=(-0.023+0.0101*T1-0.013*T2-0.0312*T3+0.051*T4+0.0169*T5)*10**6 

C2=(0.024-0.013*T1+0.00038*T2-0.032*T3+0.0112*T4+0.00067*T5)*10**6 

C3=(0.2387-0.0312*T1-0.0320*T2-0.0780*T3+0.0808*T4+0.041*T5)*10**6 

C4=(-0.041+0.051*T1+0.011*T2+0.08*T3+0.00012*T4-0.060*T5)*10**6 

C5=(0.0118+0.01696*T1+0.00067*T2+0.041*T3-0.060*T4-0.010*T5)*10**6 

Y3=(abs(C1) + abs(C2) + abs(C3) + abs(C4) + abs(C5))*0.01 

DCIT3=(F3 - 0.21*10**6) / Y3 

    

Total mass  

F6a = 6.90989 - 3.708636*T1 - 1.850079*T2+6.84746*T3 + 13.566*T4 

F6b=1.251*T5 + 4.57118*T1**2 + 0.007921*T1*T2+5.538308*T1*T3 

F6c=-1.3646*T1*T4-1.6955*T1*T5+3.1740*T2**2+1.0138*T2*T3 

F6d=2.582*T2*T4 - 1.7904*T2*T5 - 6.903*T3**2-7.156*T3*T4 

F6e= 6.10069*T3*T5+2.253031*T4**2+7.952*T4*T5-4.5043*T5**2 

F6=F6a+F6b+F6c+F6d+F6e 

G1=-3.708636+9.14236*T1+0.007921*T2+5.38308*T3-1.3646*T4-1.6955*T5 

G2=-1.85007+0.007921*T1+6.348*T2+1.0138*T3+2.5582*T4-1.7904*T5 



 

 

98 

 

G3=6.8474+5.38308*T1+1.0138*T2-12.186*T3-7.156*T4+6.10069*T5 

G4=13.566-1.364*T1+2.582*T2-7.156*T3+5.066*T4+7.952*T5 

G5=1.251-1.6955*T1-1.7904*T2+6.1006*T3+7.952*T4-9.008*T5 

Y6=(abs(G1)+ abs(G2)+ abs(G3)+ abs(G4)+abs(G5))*0.01 

DCIM =(26-F6)/Y6 

 

3.0 Evaluate non-linear constraints 

           

FOR PART 235 

CONSTR(1) = F1-E1const 

FOR PART 237 

CONSTR(2) = F2-E2const 

FOR PART 329 

CONSTR(3) = F3-E3const 

FOR TOTAL MASS 

CONSTR(4) = Mconst - F6 

DCI CONSTRAINTS 

CONSTR(5)  = DCIT1 - 1 

CONSTR(6)  = DCIT2 - 1 

CONSTR(7)  = DCIT3 - 1 

CONSTR(8)  = DCIM - 1 

 

END IF 

 

 4.0 Evaluate non-linear goals 

Maximize individual energy absorption 

Part 235 

GOALS(1) = (DCIT1)/(10) - 1 

Part 237 

GOALS(2) = (DCIT2)/(10) - 1 

Part 329 

GOALS(3) = (DCIT3)/(10) - 1 

Minimize Total MASS 

GOALS(4) = (DCIM)/(10) – 1 

 

END IF       

 

Step F: The cDSP formulation presented in previous Step is exercised for different design 

scenarios to generate different solutions. 44 design scenarios are considered to explore the 

design space and to obtain robust solutions for the given vehicular crashworthiness problem. 

The different weight scenarios represent different preferences for the 4 goals. Selected design 

scenarios and corresponding weights assigned to goals are shown in Table 4.5. When 

designers focus on maximizing just one goal, Scenarios 1 through 4 are used, see Table 4. 

For instance, when we want to maximize goal 3 then scenario 3 is considered where the full 

weightage is given to the third goal. Scenario 5 represents a situation where all the goals are 

given equal priority. 
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Table 4.5: Weight scenarios for the four goals 

Scenarios Weight 1 Weight 2 Weight 3 Weight 4 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 0.25 0.25 0.25 0.25 

6 0.46 0.23 0.23 0.08 

7 0.24 0.17 0.28 0.31 

- - - - - 

15 0.3 0.26 0.19 0.25 

16 0.26 0.02 0.07 0.65 

- - - - - 

43 0.12 0.14 0.39 0.35 

44 0.03 0.48 0.35 0.14 

 

Step G: Next step is to visualize and explore the solution space. In this thesis a machine 

learning based visualization technique is used to explore and visualize the solution space 

discussed in Chapter 3. The two-dimensional component planes of the iSOM for the weights 

(inputs) and goals (outputs) of the vehicular crashworthiness problem illustrate the 

relationship between the design variables (components thicknesses) and the corresponding 

responses (energy absorption and total mass). The input and output plots are shown in Figure 

4.7 and 4.8 respectively. 

  

W1 W2 
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W3 W4 

Figure 4.7: Input plots 

In Figure 4.7 Weight 1(W1) refers to the weightage assigned to Goal 1 (maximize DCI value 

for component 235), Weight 2 (W2) refers to the weightage assigned to Goal 2 (maximize 

DCI value for component 237), Weight 3 (W3) refers to the weightage assigned to Goal 3 

(maximize DCI value for component 353), and Weight 4 (W4) refers to the weightage 

assigned to for Goal 4 (maximize DCI value for total mass). 

 

  
                              G1                               G2 
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                              G3                               G4 

Figure 4.8: Output plots 

The scales on the goal plots represent the achieved Design Capability Index (DCI) values. A 

high DCI value indicates that the average value of the goal is far from the Lower 

Requirement Limit (LRL) or Upper Requirement Limit (URL) and has minimal variance 

around its mean. From iSOM plots, the designer can observe the trends of the goals with 

varying weights. It is evident that high DCI values for Goal 1 are achieved when the weight 

W1 is high. Similarly, the DCI values for each goal increase with an increase in their 

respective weights. Analyzing the iSOM plots reveals the conflicting nature of the car side 

crash problem's goals, as regions satisfying the DCI values of one goal conflict with the high 

DCI regions for another goal. Using iSOM plots simplifies exploring and interpreting 

solutions when designers aim to maximize or minimize specific goals. 

 

  
(a) DCI Goal 1 (Energy absorption for 

part 235) 

(b) DCI Goal 2 (Energy absorption 

for part 237) 
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(c) DCI Goal 3 (Energy absorption for 

part 235) 

(d) DCI Goal 4 (Total mass) 

Figure 4.9: iSOM plots highlighted for high DCI values 

 
Figure 4.10: Node numbering 

Figure 4.9 shows the iSOM plots for vehicular crashworthiness problems considering high 

DCI values (highlighted hexagons). The red dots in iSOM plots are called hits, they represent 

the samples mapped to the grids. The node numbers of the iSOM grid points are shown in 

Figure 4.10. From the iSOM plots in Figure 4.9, it can be concluded that there are no 

common satisficing solutions for all the four goals and hence the nodes with high DCI values 

are chosen as satisficing solutions shown in Table 4.6. The maximum DCI values for all 

goals considered are: 

i. Goal 1 DCI values ≥ 20 

ii. Goal 2 DCI values ≥ 25 
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iii. Goal 3 DCI values ≥ 50  

iv. Goal 4 DCI values ≥ 30 

Table 4.6: Weight scenarios and design variables with high DCI values 

Goals Grids No of 

scenarios 

Weight 

scenarios 

Design variables (thickness) 

Part 

235(t1) 

Part 

235(t2) 

Part 

235(t3) 

Part 

235(t4) 

Part 

235(t5) 

Goal 1 
49 1 24 0.794759 0.785839 0.397125 0.913072 0.383625 

48 1 1 0.999904 0.578394 0.377797 0.5714 0.407019 

Goal 2 21 1 30 0.953159 0.776908 0.579186 1.01582 0.343664 

5 2 
8 0.88638 0.822095 0.465883 0.735803 0.468546 

2 0.9725 0.826967 0.5295 0.600292 0.5115 

Goal 3  

27 

 
3 

36 0.988117 0.776135 0.582469 1.01565 0.343664 
33 0.957301 0.83545 0.3621080 0.73001 0.517434 
14 0.792591 0.785477 0.397125 0.913072 0.383625 

 

35 

 
4 

6 0.747891 0.800108 0.397125 0.823183 0.383625 
18 0.794759 0.785839 0.397125 0.913072 0.383625 
20 0.633364 0.804622 0.364031 0.808268 0.573625 
32 0.792591 0.785477 0.397125 0.913072 0.383625 

21 1 30 0.692604 0.835467 0.360528 0.563781 0.343664 
Goal 4 

43 2 
4 0.583963 0.604725 0.355451 0.53114 0.437419 
6 0.632911 0.626524 0.357554 0.602653 0.344142 

 

Taking into account high DCI values, all the design variable values listed in Table 4.6 are 

deemed satisfactory. Based on the requirements, the design variable values for each goal can 

be chosen. For instance, considering Goal 3, any of the identified design variable value sets 

mapped to weight scenarios corresponding to grids 27, 35, and 21 can be selected. However, 

upon examining the grids chosen for all four goals, it becomes apparent that there are no 

common regions for the given problem, indicating a trade-off between the conflicting 

objectives. 
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 Limitations of the Proposed Decision Based Design 

(DBD) Framework 

The proposed Decision-Based design (DBD) framework addresses the challenges in 

Complex Problem such as: 

• Comprehensive Consideration of Goals and Uncertainties: The framework 

effectively incorporates many conflicting goals and uncertainties into the system, 

providing a more realistic representation of real-world design scenarios. 

• Visualizing Trade-offs: The framework utilizes a machine learning based 

visualization technique, called iSOM to effectively communicate the trade-offs 

between different goals and effectively visualize many goals. This allows designers 

to make informed decisions based on their preferences and requirements. 

Despite addressing the challenges in complex system, this framework has a limitation: 

• Lack of a systematic approach for identifying and selecting common satisficing 

solutions for many goals: The framework does not provide a systematic approach 

for selecting satisficing solutions from the visualized plots for many goals. This 

leaves designers to make subjective decisions based on their interpretation of the 

visualizations. 

The proposed framework's limitations lead to Research Question 2 (RQ2) in Chapter 1, 

which sought to address these limitations by developing a systematic approach method for 

choosing satisficing solutions. An example problem is used in Chapter 5 to test the 

effectiveness of the proposed systematic approach. 
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Chapter 5 : Designing of Composite Structure 

Problem 
 

This chapter presents a test problem related to the design of composite structures. Section 

5.1 provides a brief introduction to the problem and then establishes the mathematical 

foundation for designing composite structures in Section 5.2. In Section 5.3 the systematic 

approach proposed is discussed in detail. In this chapter the efficacy of the proposed 

systematic approach is evaluated through composite design problem. 

 Designing of Composite Structure: Problem Definition 

Composite materials are a combination of two or more materials on a macroscopic level and 

each material exhibits different characteristics. Designing composite materials is a complex 

process that involves making numerous decisions at the microstructural level, such as 

determining the fiber orientation, fiber volume fraction, matrix material distribution, and 

porosity. These decisions have a significant impact on the overall properties of the composite 

material, such as its strength, stiffness, and weight. In addition to microstructural 

considerations, composite material designers must also consider a many conflicting 

objectives, such as maximizing strength while minimizing weight. Composites offer dual 

advantages first, they provide a remarkable combination of high strength and low weight 

second, they allow for customization to meet specific needs. Customization involves 

tailoring or modifying both the constituent materials and microstructural properties of the 

composites to achieve the structural requirements. Tailoring constituent materials entails 

selecting the matrix and fiber according to the specific requirements of the intended 

applications. Tailoring composite materials at the microstructural level is a complex task that 

involves managing various properties like fiber orientation, fiber volume fraction, matrix 

material distribution, and porosity. The design process is further complicated by the need to 

balance multiple and often conflicting objectives, such as maximizing strength while 

minimizing weight. Traditionally, composite material designers have relied on their 

experience and judgment to make these decisions. However, advancements in heuristics and 
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theoretical models have provided valuable tools for tackling the challenges of composite 

material design. However, these approaches often have limitations, as they may be tailored 

to specific problems and may not be easily adaptable to new design configurations. 

In this thesis a sandwich composite problem is considered as an example problem. Sandwich 

materials represent a class of composite structures characterized by two outer layers (skin) 

made of stiff and strong materials and an intermediate core layer shown in Figure. The skin 

serves as the primary load-bearing component, providing strength and rigidity to the 

structure by absorbing and transmitting external forces. The core, situated between the skin 

layers, plays a crucial role in supporting the skin against buckling, preventing excessive 

deflections under load, and aiding in dissipating shear stresses. Common skin materials 

include thin metallic sheets, such as aluminum or steel, or fiber-reinforced composites, 

where reinforcing fibers, like carbon fiber or glass fiber, are embedded within a matrix 

material, such as epoxy or polyester resin. Core materials, on the other hand, typically consist 

of honeycomb structures, characterized by a hexagonal arrangement of cells, or closed-cell 

foam structures, where gas bubbles are trapped within a solid matrix.  

 
Figure 5.1: Composite sandwich structure 
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The mechanical performance of a sandwich beam is governed by two key properties: bending 

rigidity and shear rigidity. Bending rigidity, also known as flexural rigidity, determines the 

beam's resistance to bending deformation under applied loads. Shear rigidity, on the other 

hand, characterizes the beam's ability to withstand shear forces, which tend to cause the 

layers of the beam to slide relative to each other. Both bending and shear rigidities are 

influenced by the thickness and material properties of the skin and core layers.  

Designing an effective sandwich structure involves striking a balance between many 

conflicting design goals. Increasing the thickness of the skin and core materials can enhance 

both bending and shear rigidities, leading to a stiffer and stronger beam. However, this 

approach comes at the cost of increased weight, which can be a critical consideration in many 

applications. Therefore, sandwich design often involves seeking satisficing solutions, where 

the design goals are met to a satisfactory level rather than achieving absolute optimality. 

Satisficing solutions become particularly relevant in applications where weight constraints 

are paramount. Sandwich materials offer a versatile and efficient solution for constructing 

lightweight yet strong and stiff structures. The interplay of skin and core materials, along 

with their respective thicknesses, dictates the mechanical performance of sandwich beams. 

Designing effective sandwich structures involves carefully considering the conflicting 

objectives of strength, stiffness, and weight, often leading to satisficing solutions that meet 

the design requirements within acceptable trade-offs. 

In this thesis focus is on designing a sandwich composite beam with a predefined length of 

1500mm and a width of 750mm, as illustrated in Figure 5.2. Throughout the design process, 

the same set of materials with their corresponding properties is employed for both the skin 

and core layers, as detailed in Table 5.1. 
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Figure 5.2: Sandwich composite beam 

Table 5.1: Material description 

Material Density (kg/𝑚3) Modulus (MPa) 

 

Skin (carbon epoxy) 

Fiber Matrix Fiber Matrix 

1760  1280 230000 3700 

Core (Aluminum) 2700 26000 

 

In this thesis designing a composite beam that fulfills specific performance or design criteria 

by tailoring the microstructural characteristics of the composite laminate, as depicted in 

Figure 5.3 are discussed. These microstructural properties encompass volume fraction for 

the skin and wall angle, wall thickness, and wall height for the core. The design variables 

considered in this problem are enumerated in Table 5.2. 

 
Figure 5.3: Microstructural properties 
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Table 5.2: Design variables for composite beam problem. 

Material Design variable 

Skin Volume fraction (𝑉𝑓) 

 

Core 

Wall angle(θ) 

Wall length (h) 

Wall thickness (t) 

 

This problem delves into enhancing the performance of a composite beam by tailoring the 

microstructural characteristics of both the skin and core layers. Four goals considered are: 

minimizing the density of both the skin and core (Goals 1 and 3) while concurrently 

maximizing the modulus and elastic and shear modulus of the skin and core, respectively 

(Goals 2 and 4). This problem at hand has been formulated using four design variables: 

volume fraction, wall angle, wall height, and wall thickness. For the design variables 

considered there are different sources of uncertainties such as, density of the fiber material 

variation due to impurities or manufacturing defects. This can affect the volume fraction of 

fibers in the skin layer, which in turn affects the beam's stiffness and strength, manufacturing 

tolerances can affect the wall angle of the core cells. This can affect the core's stiffness and 

strength. 

The equations for density of skin, modulus of skin, density of core and shear modulus of 

core are given below, 

ρ𝑠 = ρ𝑓𝑉𝑓 + ρ𝑚 ( 1 − 𝑉𝑓)     Equation 5.1 

𝐸𝑠 = 𝑉𝑓𝐸𝑓 + (1 - 𝑉𝑓) 𝐸𝑚 

 

Equation 5.2 

ρ𝑐 = 
2

(1+𝑐𝑜𝑠θ)𝑠𝑖𝑛θ 

𝑡

ℎ
 ρ 

 

Equation 5.3 

𝐺𝑐 = 
1+𝑐𝑜𝑠2θ

(1+𝑐𝑜𝑠θ)𝑠𝑖𝑛θ 

𝑡

ℎ
 𝐺 Equation 5.4 

 

Where,  ρ𝑠 is density of skin. 

 ρ𝑓 is density of fiber. 
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 𝑉𝑓 is Volume fraction. 

 ρ𝑚 is density of matrix. 

 𝐸𝑠  is modulus of skin. 

 𝐸𝑓 is modulus of fiber. 

 𝐸𝑚 is modulus of matrix. 

 ρ𝑐 is density of core. 

 𝐺𝑐 is shear modulus of core. 

To tackle the complexities of composite material design, this thesis employs a Decision-

Based Design framework introduced in Chapter 3. This framework begins by identifying the 

specific design requirements for the problem at hand. These requirements are then 

formulated using the compromise decision support problem (cDSP) construct, which 

explicitly considers uncertainty as discussed in detail in the following section. 

 Developing a compromise Decision Support Problem 

Construct (cDSP) for Designing of Composite Structure  

The composite design problem is formulated using cDSP. Compromise decision support 

problem is a combination of both mathematical programming and goal programming. This 

differs from conventional mathematical programming, which models numerous goals a 

weighted function of only the system variables. cDSP helps in minimizing the deviation 

function, which is mathematically the weighted sum of deviation on of the goal values 

achieved from their target values. The four important keywords: Given, Find, Satisfy and 

Minimize capture the problem specific information. To address the issue of uncertainties in 

design variables a mathematical construct called DCI (Design capability index) is used. In 

this problem cDSP with DCI robust design metrics is used to address the issue of uncertainty 

present in design variables. DCI is employed as goal formulation in the cDSP for the 
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composite beam design problem. The cDSP word and mathematical formulation for 

composite beam problem is shown in Table 5.3 and 5.4 respectively. 

Table 5.3: Data file for designing of composite problem 

NUMSYS : Number of system variables: real, integer, boolean 

    4    0   0 

 

SYSVAR  : System variable information 

Vf        1  0.4   0.7  0.55    

a          2  30  60  45    

h          3  2  25  13    

t          4  0.01   0.11  0.06    

 

NUMCAG  : Number of constraints and goals 

 0  4  0  0  4  :  nlinco,nnlinq,nnlequ,nlingo,nnlgoa  

 

ACHFUN  : Achievment function 

    1    : level 

   1 4  : level 1, 4 terms 

  (-1,0.03) (-2,0.48) (-3,0.35) (-4,0.14) 

      

STOPCR  : Stopping criteria 

1  0  100  0.05  0.05  : perfm cal, prt intereslts, Mcyles,sta dev, sta var 

 

NLINCO  : Names of nonlinear constraints 

DDsmin  1 : Minimum DCI density of skin  

DEsmax  2 : Minimum DCI modulus of skin  

DDcmin  3 : Minimum DCI density of core  

DGcmax  4 : Minimum DCI modulus of core  

 

NLINGO  : Names of the nonlinear goals 

DCIDs 1 : DCI value for density of skin 

DCIEs 2 : DCI value for modulus of skin 

DCIDc 3 : DCI value for density of core 

DCIGc 4 : DCI value for shear modulus of core 

 

ALPOUT  : Output Control 

     1   1   1   0   0   0   0   0  1  1 

 

USRMOD  : User module flags 

    1   0   0   0 

  

OPTIMP  : Optimization parameters 

   -0.05   0.5  0.005 : VIOLIM, REMO, STEP 
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Table 5.4: Fortran file for designing of composite problem 

REAL     Vf, a, h, t 

REAL     DCIDs, DCIEs, DCIDc, DCIGc 

REAL     F1, F2, F3, F4, F4a, F4b, pi 

REAL     A1, B1, C1, C2, C3, D1, D2, D3 

REAL     C1a, C1b, C1c, D1a, D1b, D1c, D1d, D1e, D2a, D2b, D3a, D3b 

REAL      delY1, delY2, delY3, delY4, delVf, dela, delh, delt, D1a1, D1a2 

 

1.0 Set the values of the local design variables (optional) 

 

Vf = DESVAR(1) 

a = DESVAR(2) 

h = DESVAR(3) 

t = DESVAR(4) 

 

 2.0 Perform analysis relevant to non-linear constraints and goals 

pi= 3.14 

delVf= 0.05 

dela= 0.1 

delh= 0.1 

delt= 0.005 

    

Goal 1: Maximize DCI density of skin (Min density of skin) 

F1 = 1760*Vf + 1280 - 1280*Vf 

A1 =  480 

delY1 = (abs(A1))*delVf 

DCIDs = (1700-F1)/delY1 

DCIDs = (F1-1200) 

 

Goal 2: Maximize DCI modulus of skin (Maximize modulus of skin) 

F2 = Vf*230000+(1-Vf)*3700 

B1 = 226300 

delY2 = (abs(B1))* delVf 

DCIEs = (F2 -60000)/delY2 

DCIEs=(F2-60000) 

           

Goal 3: Maximize DCI density of core (Minimize density of core) 

F3 =((5400*t)/((sin(pi*a/180))*(1+cos(pi*a/180))*h)) 

C1a = 2*h*t*2700*(cos(pi*a/180)+cos(pi*a/180)**2) 

C1b = 2*h*t*2700*(-sin(pi*a/180)**2) 

C1c = (((1+cos(pi*a/180))**2)*(sin(pi*a/180)**2)*(h**2)) 

C1 = (C1a + C1b)/C1c 

C2 = -(10800*t)/(h**2*(sin(pi*a/90)+2*sin(pi*a/180))) 

C3 = (10800)/(h*(sin(pi*a/90)+2*sin(pi*a/180))) 

delY3 = (abs(C1)*dela + abs(C2)*delh + abs(C3)*delt) 

DCIDc = (30- F3)/delY3 

DCIDc = (F3-15) 
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Goal 4: Maximize DCI shear modulus of core (Maximize shear modulus of core) 

F4a = (26000*t*(1+cos(pi*a/180)**2)) 

F4b = ((1+cos(pi*a/180))*sin(pi*a/180)*h) 

F4 = F4a/F4b 

D1a1 = (h*t*26000) 

D1a2 = (sin(pi*a/180)*(sin(2*pi*a/180))*(1+cos(pi*a/180))) 

D1a = D1a1*D1a2 

D1b = ((h*t*26000)*(1+cos(pi*a/180)**2)*(cos(pi*a/180))) 

D1c = (cos(pi*a/180)**2) 

D1d = (-sin(pi*a/180)**2) 

D1e = (((1+cos(pi*a/180))**2)*(sin(pi*a/180)**2)*(h**2)) 

D1 = (D1a+D1b+D1c+D1d)/D1e 

D2a = (26000*t*(cos(pi*a/180)**2+1)) 

D2b = ((h**2)*(sin(pi*a/180))*(cos(pi*a/180)+1)) 

D2 = D2a/D2b 

D3a = (26000*(cos(pi*a/180)**2+1)) 

D3b = (h*(sin(pi*a/180))*(cos(pi*a/180)+1)) 

D3 = D3a/D3b 

delY4= (abs(D1)*dela + abs(D2)*delh + abs(D3)*delt) 

DCIGc = (F4-5)/delY4 

DCIGc =(F4-100) 

 

3.0 Evaluate non-linear constraints 

DCI CONSTRAINTS 

CONSTR(1) = DCIDs - 1 

CONSTR(2) = DCIEs - 1 

CONSTR(3) = DCIDc - 1 

CONSTR(4) = DCIGc - 1 

 

END IF 

 

4.0 Evaluate non-linear goals 

 

Density of skin 

GOALS(1) = (DCIDs)/(10) - 1 

 

Modulus of skin 

GOALS(2) = (DCIEs)/(10) - 1 

 

Density of core 

GOALS(3) = (DCIDc)/(10) - 1 

 

Shear modulus of core 

GOALS(4) = (DCIGc)/(10) - 1 

 

END IF 
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After obtaining the feasible solutions from cDSP, the next stage involves exploring and 

visualizing the design space to identify the Region of Interest (RoI). iSOM is employed to 

effectively visualize the solutions, and a systematic approach for selecting satisficing 

solutions from the visualized plots is proposed in the subsequent section. 

 Solution Space Visualization and Exploration and 

Results 

Visualization plays a crucial role in assisting designers in systematically exploring the design 

space to identify reliable and satisfactory solutions problems with many goals. In this thesis, 

interpretable Self-Organizing Maps (iSOM), a machine learning-based visualization 

technique, to effectively visualize the solution space for many goals is employed. The ability 

to visualize the design space provides designers with a valuable tool for exploring and 

understanding the complex interplay between many goals. Through methodical exploration, 

designers can identify regions of interest (ROIs) that contain solutions that satisfy the design 

requirements. iSOM, with its ability to effectively visualize high-dimensional data, proves 

to be an efficient visualization technique. 

The iSOM plots for the sandwich composite beam are shown in Figure 5.4. First set of plots 

(W1, W2, W3, W4) represent the weightage given to the goals. W1 represents the weightage 

give to goal 1 (to maximize the DCI density value for skin) and W2 represents the weightage 

given to goal 2 (to maximize the DCI modulus value for skin). Similarly, W3 indicates the 

weightage given to goal 3 (to maximize the DCI density value for core) and W4 indicates 

the weightage given to goal 4 (to maximize the DCI shear modulus value for core). Second 

set of plots represent the output plots (goals) and the scales of these output plots indicate the 

achieved DCI values. Higher DCI value indicate that the mean value of goal is away from 

lower requirement limit (LRL) and upper requirement limit (URL) which means that there 

is minimum deviation. From iSOM plots, we can comprehend the influence of input factors 

on output factors and gain insights into the interdependencies among many objectives. 
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W1 W2 

 
 

W3 W4 

Figure 5.4: Input plots for composite problem 

 

 
 

G1(DCI goal for density of skin) G2(DCI goal for elastic modulus of skin) 
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G3(DCI goal for density of core) G4(DCI goal for shear modulus of core) 

Figure 5.5: Output plots for composite problem 

Figure 5.5 shows the input plots for the composite problem, providing valuable insights into 

the interrelationships between the objectives. The first two plots reveal a conflicting nature 

between the goals, indicating that achieving one may necessitate compromising the other. 

This interplay is further evident in the effect of input parameters on output metrics. For 

instance, an increase in W1 leads to a decrease in the DCI value for both goals 3 and 4. Upon 

careful examination of the plots, it becomes apparent that there is no common satisficing 

solutions for all the four goals. This highlights the inherent trade-offs involved in designing 

composite problem. 

5.3.1 Systematic Approach for Identifying Common Satisficing 

Solutions 

A systematic approach is proposed to identify the common satisficing solutions for all the 

four goals of sandwich composite problem shown in Figure 5.6. The proposed approach 

commences by identifying satisfying solutions with high DCI (Design Capability Index) 

values for each individual goal, as depicted in Step A. High DCI values are preferred when 

designers seek solutions that exhibit greater robustness. This step also involves identifying 

the node numbers for the selected grids, as illustrated in Figure 5.7. Subsequently, Step B 

involves checking for grids that possess high DCI values and are common to most of the 

goals. If such grids are identified, the process proceeds to Step C; otherwise, it advances to 
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Step E. In Step E, the satisficing DCI limits are relaxed for specific goals, termed 

"appropriate goals," based on the designer's requirements. These appropriate goals represent 

objectives for which DCI limits can be relaxed without compromising the overall design. 

Step C entails verifying whether the design solutions corresponding to the identified grids 

meet the designer's specifications. If the designer's requirements are satisfied, these solutions 

are selected as satisficing solutions, and the corresponding weight scenarios and design 

variables are identified. If the designer's requirements are not met, the process returns to Step 

E, and the loop iterates until satisfactory solutions are found. 

 
Figure 5.6: Systematic approach 

 
Figure 5.7: Node numbering 
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To demonstrate the effectiveness of this methodology, we employ a composite beam with 

three distinct scenarios as an illustrative example. In Scenario 1, the process begins with Step 

A, where grids with the highest DCI values for all four goals are considered. These grids are 

highlighted in red in Figure 5.8. The corresponding high DCI values for the four goals are: 

i) Goal 1 DCI values ≥ 8.5; ii) Goal 2 DCI values ≥ 8; iii) Goal 3 DCI values ≥ 9; iv) Goal 4 

DCI values ≥ 7. The next step, Step B, involves identifying grids with high DCI values for 

most of the goals. In this case, a region highlighted in black in Figure 5.9 is identified, 

containing grids highlighted in red that exhibit high DCI values for goals 2, 3, and 4. 

Correspondingly, grids for goal 1 are chosen as shown in Figure 5.9. Grids 36 and 23 are 

common to all four goals, each mapped with two design scenarios. The corresponding weight 

scenarios and design variables are presented in Table 5.5. Since Step B is successful, the 

process moves to Step C, where the designer verifies whether the design solutions identified 

for the grids meet the specified requirements. If these requirements are satisfied, the solutions 

are selected as satisficing solutions, and the corresponding weight scenarios and design 

variables are identified as shown in Table 5.5. 

  

G1 (DCI goal for density of skin) G2 (DCI goal for elastic modulus of skin) 

  
G3 (DCI goal for density of core) G4 (DCI goal for shear modulus of core) 

Figure 5.8: Highlighted grids for high DCI values 
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G1 (DCI goal for density of skin) G2 (DCI goal for elastic modulus of skin) 

  
G3 (DCI goal for density of core) G4 (DCI goal for shear modulus of core) 

Figure 5.9: Highlighted grids with most common high DCI values 

Table 5.5: Weight scenarios and design variables considering most common high DCI 

values. 

 

Goals 

 

Grids 

 

No of 

scenarios 

 

Weight 

scenario 

Design variables 

Volume 

fraction 

(𝑉𝑓) 

Wall 

angle 

(θ) 

Wall 

length  

(h) 

Wall 

thickness 

(t) 

Goal 

1, 2, 

3 and 

4 

36 2 27 0.690625 59.062500 22.614200 0.105833 

39 0.690625 59.062500 22.614200 0.105833 

23 2 10 0.409375 59.062500 22.614200 0.105833 

43 0.690625 59.062500 22.614200 0.105833 

 

Moving on to Scenario 2, we apply Steps A and B of the proposed approach. If Step B is not 

successful, meaning there are no commonly found grids with high DCI values, we proceed 
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to Step E. In this step, the designer has the flexibility to relax the DCI requirements for 

specific goals, termed "appropriate goals," based on the characteristics of each goal. This 

relaxation of DCI limits allows for the exploration of a broader range of design solutions. 

The loop from Step B through Step D is continued until the satisficing solutions are found. 

Scenario 3 involves executing Steps A to C of the proposed approach. If Step C is 

unsuccessful, meaning the designer is not satisfied with the DCI values or the required 

compromises between goals, the process transitions to Step E. In this step, the DCI limits are 

specified for relaxation for each goal, guided by the priority of the goals and the need to 

satisfy the design requirements, as shown in Figure 5.10. For example, if the designer cannot 

compromise on the weight of the sandwich beam, particularly the density of the skin and 

core, then goals 1 and 3 should be considered for maximum DCI ranges, while reduced DCI 

limits can be chosen for goals 2 and 4. The relaxed DCI limits are as follows: i) Goal 1 DCI 

values ≥ 7; ii) Goal 2 DCI values ≥5.5; iii) Goal 3 DCI values ≥9; iv) Goal 4 DCI values ≥ 

7. Upon relaxing the DCI limits, grids 26 and 33 emerge as common satisficing solutions for 

all four goals. Their corresponding weight scenarios and design variables are presented in 

Table 5.6. By utilizing iSOM, designers can effectively explore and visualize the design 

space, facilitating the interpretation of solutions for problems with many goals. 

  
G1 (DCI goal for density of skin) G2 (DCI goal for elastic modulus of skin) 
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G3 (DCI goal for density of core) G4 (DCI goal for shear modulus of core) 

Figure 5.10: Highlighted grids after relaxing DCI limits 

Table 5.6: Weight scenarios and design variables values after relaxing DCI limits 

 

Goals 

 

Grids 

 

No of 

scenarios 

 

Weight 

scenario 

Design variables 

Volume 

fraction 

(𝑉𝑓) 

Wall 

angle 

(θ) 

Wall 

length (h) 

Wall 

thickness 

(t) 

Goal 

1, 2, 

3 and 

4 

26 7 14 0.409375 59.062500 22.614200 0.105833 

15 0.409375 59.062500 22.614100 0.105833 

21 0.690625 59.062500 22.614100 0.105833 

28 0.409375 59.062500 22.614100 0.105833 

29 0.409375 59.062500 22.614200 0.105833 

32 0.690625 59.062500 22.614200 0.105833 

36 0.690625 59.062500 22.614200 0.105833 

33 2 23 0.409375 59.062500 22.614100 0.105833 

30 0.690625 59.062500 22.614100 0.105833 

 

The systematic approach proposed in this Chapter facilitates the designers in choosing the 

common satisficing solutions effectively from visualized iSOM plots. This enables the 

informed decision-making. The approach proposed is tested by a composite beam problem. 

The subsequent chapter delves into the detailed functionalities of the decision-based design 

framework and the systematic approach, outlining the potential areas for future research and 

development within the context of this thesis. 
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Chapter 6: Summary of thesis, Closure and Way 

Forward 
 

This chapter thoroughly examines the functionalities of the proposed decision-based design 

framework, revisits and elaborates on the research questions and hypothesis, and concludes 

by outlining directions for future research. In Section 6.1 the summary of the thesis and 

generic functionalities of the framework are discussed. In Section 6.2 the research questions 

and hypothesis are highlighted. The way forward and future research are discussed in Section 

6.3. 

 Summary of the Thesis 

Complex engineered systems often involve many conflicting goals, uncertainties, and 

intricate interactions, making them challenging to design effectively. This thesis addresses 

these challenges by introducing a decision-based design (DBD) framework that utilizes 

compromise decision-based design construct (cDSP) and machine learning-based 

visualization techniques to visualize and explore the design space efficiently. 

The DBD framework provides a structured approach for handling many conflicting goals 

and uncertainties in the design process. It incorporates cDSP with robust design metrics 

accounting for uncertainties and interpretable self-organizing maps (iSOM), which 

effectively visualize the relationships between many goals. This visualization enables 

designers to explore the design space and identify solutions that meet their preferences and 

requirements. 

The thesis also proposes a systematic approach for selecting satisfactory solutions from the 

visualized plots generated by the DBD framework. This approach involves defining 

satisficing solutions and developing an interactive selection approach to guide the designer's 

decision-making process. 
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The effectiveness of the DBD framework and the systematic selection method is 

demonstrated through the application to example problems involving many conflicting goals 

and uncertainties. The results show that the framework can effectively identify satisfactory 

solutions and enhance the decision-making process for complex design problems.  

In Chapter 1, the foundation for the thesis is established. In this chapter, the need for 

realization of complex system and motivation for this thesis is discussed. The need for 

effective visualization is discussed in this chapter. Finally, the research gaps, questions and 

hypothesis are highlighted. 

In Chapter 2, there is detailed discussion of the constructs and tools used in this thesis. The 

foundational construct compromise Decision Support Problem (cDSP) is discussed in detail. 

And the robust design metrics used in thesis that accounts uncertainty is explained in detail. 

Finally, the existing visualization techniques in use and their limitations are discussed. 

In Chapter 3, the Decision Based Design framework is proposed, addressing research 

question 1. The need for this framework and its utility is discussed. The formulation of cDSP 

and working of machine learning based visualization technique iSOM is discussed in detail. 

In Chapter 4, the proposed framework is tested considering a vehicular crashworthiness 

problem and the utility of the framework is discussed in detail. 

In Chapter 5, the research question 2 is addressed by considering a test problem for designing 

composite beam. In this chapter a systematic approach is proposed to effectively choose the 

solutions from the visualized plots and validated with test problem. 

In this chapter, a summary of the thesis is given first and then the functionality of the 

framework is discussed. The research questions and discussion on the research hypotheses 

are made. Further, the achievements and contributions made on the thesis are summarized. 

Finally, the future research is discussed. 
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6.1.1 Functionalities of the DBD Framework 

In the field of designing complex systems, the existence of many goals and uncertainty in 

design factors can make it difficult to find the robust satisficing solutions. To address these 

issues, the Decision-Based Design (DBD) framework is proposed in this thesis. The 

functionality of the framework is discussed in this section. 

Formulation of many (more than three) goals problems 

• The DBD framework provides a systematic approach to formulate and address 

many-goal problems. In engineering design, systems are often characterized by more 

than three goals, leading to intricate interactions and conflicting goals. DBD offers 

a structured methodology for designers to define and navigate through a multitude 

of goals, fostering a holistic understanding of the design problem at hand. 

Managing uncertainty with robust design metrics 

• One of the key strengths of the DBD framework lies in its ability to address the issue 

of uncertainty in design variables and model. The Design Capability Index (DCI) is 

used in this thesis accounting uncertainties in design variables. DCI plays a crucial 

role in quantifying how well a variety of design criteria can be satisfied, considering 

uncertainties in the design variables themselves. 

Solution space visualization and exploration using iSOM 

• Visualizing and exploring the solution space for many conflicting goals requires 

advanced visualization and exploration techniques. The integration of Interpretable 

Self-Organizing Maps (iSOM) visualization technique within the DBD framework 

enhances designer’s capabilities to explore and understand the complex solution 

space. With the use of iSOM the intricate interrelations between design goals be 

understood. And also, how the priorities given to each goal affect the others.  



 

 

125 

 

DBD framework offers a unique capability to unravel the interdependencies, providing 

designers with valuable insights into the complex relationships between different design 

goals. By fostering a holistic understanding of how various goals interact, DBD enables 

designers to make informed decisions and strike a balance between many conflicting goals. 

 Functionality of the Systematic Approach 

The systematic approach is proposed to facilitate the designers in selecting satisfactory 

solutions from the visualized plots. This approach helps designers to make informed 

decisions based on the visualization’s plots. The functionality of the systematic approach is 

discussed below: 

• Developing a systematic approach for choosing satisficing solutions is a crucial step 

towards understanding the system's performance. This approach offers designers a 

structured way to find common satisfying solutions in addition to helping them 

methodically identify solutions that balance all specified requirements. Therefore, 

use of the systematic approach helps designers easily choose the satisficing solutions 

from visualized plots.  

 Answering Research Question and Validating the 

Hypothesis 

The two research questions addressed in this thesis can be broadly classified into two 

research areas such as, 

i. Decision Based design Framework for complex system. 

ii. Systematic approach for identifying common solutions. 
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6.3.1 Answering Research Question 1 (RQ 1) 

The primary research question is formulated as: 

Research Question (RQ1): What are the mathematical and computational foundations 

necessary for the formulation, visualization, and exploration of problems involving many 

(more than three) conflicting goals? 

The primary research question in this thesis deals with modeling decisions in a complex 

system with many conflicting goals. A decision-based framework is proposed to address this 

research question. The hypothesis to this research question is given as: 

Hypothesis H1: Problems involving many conflicting goals under uncertainty could be 

effectively formulated, visualized, and explored from a decision-based design perspective 

using compromise decision support problem construct, robust design metrics and an 

effective machine learning-based solution space visualization and exploration technique. 

From the hypothesis, the framework proposed facilitates formulating the complex problem 

with many goals using cDSP technique which is discussed in detail in Chapter 2. The cDSP 

approach is particularly well-suited for early design stages, where uncertainties and 

incomplete information are prevalent. The robust design metrics play a crucial role in 

addressing uncertainties inherent in complex systems. These metrics quantify the sensitivity 

of design solutions to variations in input parameters and environmental conditions. By 

incorporating robust design metrics into the DBD framework, designers can identify 

solutions that are less susceptible to performance degradation under uncertain conditions 

which is discussed in detail in Chapter 3. The combination of cDSP, robust design metrics, 

and machine learning-based visualization techniques within the DBD framework provides a 

comprehensive approach for effectively formulating, visualizing, and exploring problems 

involving many conflicting goals under uncertainty. This framework is generic and can be 

applied to a wide range of complex design problems with many goals. This framework is 

tested using a vehicular crashworthiness problem discussed in Chapter 4. 
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Theoretical Structural Validation 

Theoretical structural validation is the process of ensuring that the constructs used in a model 

are logically sound and that the model is well-defined and consistent. This involves checking 

that the constructs are clearly defined and that they are not circular or contradictory. It also 

involves checking that the relationships between the constructs are well-defined and that 

they are consistent with the theory being modeled. 

Chapters 1, 2, and 3 focus on evaluating the internal consistency to establish the logical 

soundness of the design method. Chapter 1 provides an overview of design methodologies, 

complex systems, and the solution space visualization and exploration. It also outlines the 

scope of the work, including the research questions, proposed hypotheses, and the 

significance of the present work. Chapter 2 conducts an extensive literature review and 

discusses the mathematical tools employed. It specifically discusses different types of robust 

design, the compromise Decision Support Problem (cDSP) construct, and the Design 

Capability Index (DCI). Chapter 3 provides a detailed explanation of the decision-based 

design framework proposed in this thesis. 

Empirical Structural Validation 

Empirical structural validation is the process of evaluating the effectiveness of a model or 

framework by comparing its predictions or outputs to real-world data. It is a crucial step in 

the development and validation of any model or framework, as it provides evidence of its 

ability to accurately represent and predict real-world phenomena. In this thesis, empirical 

structural validation can be used to evaluate the effectiveness of the DBD framework in 

identifying and selecting suitable solutions for complex design problems. This can be done 

by comparing the solutions identified by the DBD framework to real-world solutions that 

have been implemented and evaluated. 

Chapter 4 delves into the suitability of the chosen test problems for showcasing and 

validating the decision-based design framework. The outcomes from example problems are 

presented and discussed in this chapter, emphasizing the method's validity and effectiveness. 
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A vehicular side crash example problem is formulated in Chapter 4 validating the 

effectiveness of DBD framework. 

Empirical Performance Validation 

Empirical performance validation is the process of evaluating the effectiveness of a model, 

framework, or technique by comparing its predictions or outputs to real-world data. It is a 

crucial step in the development and validation of any model, framework, or technique, as it 

provides evidence of its ability to accurately represent and predict real-world phenomena. 

Chapter 4 the suitability of the selected comprehensive test problem for demonstrating and 

validating the design method is considered. In Chapter 4, vehicular side crash design is 

presented as an example design problem. This is followed by a discussion of DSP-based 

mathematical formulations and the DCI mathematical construct for solving the problem.  

6.3.2 Answering Research Question 2 (RQ 2) 

The secondary research question is formulated as: 

Research Question (RQ2): How can designers effectively interpret and select satisficing 

solutions for many (more than three) goals? 

Designing with many goals can be a complex task, especially when the goals are conflicting. 

To effectively navigate this challenge, designers can employ a satisficing approach, seeking 

solutions that meet a minimum level of satisfaction for each goal rather than aiming for an 

unattainable optimization of all goals simultaneously. This approach involves several key 

steps: clearly defining and prioritizing the goals, identifying trade-offs between them, 

exploring the solution space through various design concepts, evaluating these concepts 

against the goals, selecting solutions that meet the minimum satisfaction criteria, and 

continuously iterating and refining the designs. By employing a systematic approach 

designers can effectively interpret and select satisficing solutions that address the 

complexities of many conflicting goals. 



 

 

129 

 

Hypothesis H2: It is hypothesized that this could be addressed by proposing a systematic 

approach to evaluate and identify common satisficing design scenarios for many goals 

through solutions space visualization, and exploration. 

Navigating the complexities of designing with many conflicting goals can be overcome by 

proposing a systematic approach that emphasizes identifying common satisficing design 

scenarios. The DBS framework involves visualizing the solution space to understand the 

trade-offs between goals, exploring the solution space to locate regions containing satisficing 

solutions, and identifying common patterns or clusters of satisficing solutions within the 

solution space. By employing this approach, designers can effectively tackle the challenge 

of many conflicting goals and identify common satisficing solutions that are both practical 

and achievable. 

Theoretical Structural Validation 

Theoretical structural validation is the process of ensuring that the constructs used in a model 

are logically sound and that the model is well-defined and consistent. This involves checking 

that the constructs are clearly defined and that they are not circular or contradictory. It also 

involves checking that the relationships between the constructs are well-defined and that 

they are consistent with the theory being modeled. 

The importance of effective visualization is emphasized in Chapter 1. Chapter 2 delves into 

solution space visualization and exploration, examining existing visualization techniques, 

their limitations, and Chapter 3 discusses the need to use iSOM (interpretable self-organizing 

maps) in this thesis. 

Empirical Structural Validation 

Empirical structural validation entails evaluating the effectiveness of a model or framework 

by comparing its predictions or outputs to real-world data. This critical step in developing 

and validating any model or framework provides evidence of its capability to accurately 

represent and predict real-world phenomena. Within this thesis, empirical structural 



 

 

130 

 

validation can be employed to assess the effectiveness of the DBD framework in identifying 

and selecting appropriate solutions for intricate design problems. This can be accomplished 

by comparing the solutions identified by the DBD framework to real-world solutions that 

have been implemented and evaluated. 

Chapter 5 delve into the suitability of the chosen test problems for showcasing and validating 

the systematic approach. The outcomes from example problems are presented and discussed 

in this chapter, emphasizing the method's validity and effectiveness. A composite design 

problem is formulated in Chapter 5 validating the systematic approach. 

Empirical Performance Validation 

Empirical performance validation serves as an essential step in evaluating the effectiveness 

of a model, framework, or technique. This process involves comparing the model's 

predictions or outputs to real-world data, providing insights into its ability to accurately 

represent and predict real-world phenomena. By comparing the model's predictions or 

outputs to actual observations, empirical performance validation helps to establish its 

validity and usefulness in practical applications. 

Chapter 5 the suitability of the selected comprehensive test problem for demonstrating and 

validating the design method is considered. Chapter 5 explores a decision problem in 

composite structure design to validate the systematic approach. This step evaluates the 

practical effectiveness of the framework or design method in real-world complex engineered 

systems. A comprehensive discussion of the method's validity and usefulness is also 

provided. 

Theoretical Performance Validation (TPV) 

The proposed approach embraces speculative elements while remaining firmly grounded in 

the established principles of theoretical structural validation (TSV), empirical structural 

validation (ESV), and empirical performance validation (EPV). The verification of the 

proposed method draws upon insights from all three validation quadrants (TSV, ESV, and 
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EPV). The validation of the method is rooted in the concept of its extensibility beyond the 

specific examples explicitly addressed in the thesis, thus demonstrating its utility in a wider 

range of applications. Chapter 6 focuses on establishing confidence in the generalizability of 

the framework. This chapter presents and discusses the functionality and the broader 

applicability of the framework.  

 Way forward 

This section of the thesis aims to expand the discussion on the future of product development, 

delving into the implications of this research for shaping design methodologies and 

innovation. Building upon the foundation of the work presented, this section explores the 

potential impact of this research on the future. Some of the futuristic scope of this thesis is 

discussed below: 

• In the current scope of research primarily focuses on uncertainties in the input 

parameters of the design problem. To further broaden the applicability and 

robustness of the Decision-Based Design framework, it is crucial to consider other 

forms of uncertainties that may arise in the design process. To address this challenge, 

future research can explore the incorporation of model uncertainty into the Decision-

Based Design framework with incorporating EMI robust metrics that address the 

uncertainty in the model itself. This could involve developing methods for 

quantifying and propagating model uncertainty through the EMI calculations, 

enabling a more comprehensive assessment of solution satisficing under various 

model scenarios. 

• The proposed framework has demonstrated its effectiveness in addressing single-

level design problems. However, in many real-world design scenarios, multiple 

stakeholders with different perspectives and priorities collaborate to develop a 

product or system. Co-design scenarios involve the active participation of these 

stakeholders in the design process, requiring a framework that can effectively 

manage interactions and integrate diverse inputs. Expanding the framework to 

handle multiple levels of decision-making would facilitate the flow of information 
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across different levels of decision-making, account for interdependencies and trade-

offs between decisions made at different levels by ensure consistency and coherence 

between decisions made at different levels. 

• The current framework uses the machine learning based visualization technique to 

visualize and explore solution space. This can be extended to evolving cyber-

physical systems. In dynamic environments where system characteristics and 

requirements may change over time, the framework could benefit from predictive 

capabilities to anticipate potential changes in solutions. Extending the framework 

with predictive features would enable proactive adaptation to ensure the continued 

effectiveness of the selected solutions. To achieve this predictive capability, iSOM 

can be employed as a forecasting tool. By analyzing the trends and patterns present 

in the iSOM plots, potential changes in the solution space can be identified. This 

information can then be used to preemptively update the framework's internal 

models and decision-making processes, ensuring that the selected solutions remain 

valid and effective even as the Cyber Physical System environment evolves. 
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APPENDIX 

Surrogate Models – Vehicular Crashworthiness problem 

Function Response Surface Model 

Energy Absorption for Part 235 (N-mm) E235 = (0.19739 + 0.14887x 𝑡1 +0.02670x 𝑡2 – 0.05124x 𝑡3– 

0.08292 x 𝑡4 + 0.01850 x 𝑡5– 0.08935x 𝑡1
2+ 0.02951 x 𝑡1x 𝑡2- 

0.00579 x 𝑡1 x 𝑡3 + 0.07720 x 𝑡1 x 𝑡4 – 0.02256 x 𝑡1 x 𝑡5 – 0.02076 

x 𝑡2
2 – 0.01874x 𝑡2 x 𝑡3  – 0.00806 x 𝑡2 x 𝑡4 + 0.00479x 𝑡2 x 𝑡5 

+0.03565x 𝑡3
2 + 0.04727 x 𝑡3 x 𝑡4– 0.01389 x 𝑡3 x 𝑡5+ 0.06025 x 𝑡4

2– 

0.0511 x 𝑡4 x 𝑡5+ 0.04532 x 𝑡5
2) x 106 

Energy Absorption for Part 237 (N-mm) E237 = (0.13666 + 0.00607x 𝑡1 +0.09939x 𝑡2 + 0.321x 𝑡3 + 

0.02319x 𝑡4 - 0.02941x 𝑡5 + 0.005624x 𝑡1
2 − 0.04545 x 𝑡1x 𝑡2 + 

0.21449 x 𝑡1 x 𝑡3 - 0.0618 x 𝑡1 x 𝑡4 + 0.02878 x 𝑡1 x 𝑡5 + 0.06637 x 

𝑡2
2 – 0.0321x 𝑡2 x 𝑡3  + 0.31315 x 𝑡2 x 𝑡4 - 0.00037x 𝑡2 x 𝑡5 -0.01601x 

𝑡3
2 + 0.001301 x 𝑡3 x 𝑡4– 0.00013 x 𝑡3 x 𝑡5 − 0.01339 x 𝑡4

2 + 0.01777 

x 𝑡4 x 𝑡5+ 0.003009 x 𝑡5
2) x 106 

Energy Absorption for Part 329 (N-mm) E329 = (0.015484 - 0.02342x 𝑡1 +0.024195x 𝑡2 + 0.238752x 𝑡3 − 

0.0417x 𝑡4 + 0.011807x 𝑡5 + 0.005085x 𝑡1
2 − 0.013 x 𝑡1x 𝑡2 − 

0.0312 x 𝑡1 x 𝑡3 + 0.0513 x 𝑡1 x 𝑡4 + 0.01696 x 𝑡1 x 𝑡5 + 0.001905 

x 𝑡2
2 – 0.03205x 𝑡2 x 𝑡3  + 0.011237x 𝑡2 x 𝑡4 + 0.000675x 𝑡2 x 𝑡5 -

0.03904x 𝑡3
2 + 0.080816 x 𝑡3 x 𝑡4 + 0.041151 x 𝑡3 x 𝑡5 + 0.000641 

x 𝑡4
2 −0.06095 x 𝑡4 x 𝑡5 − 0.00502 x 𝑡5

2) x 106 

Energy Absorption for Part 353 (N-mm) E353 = (0.080989 - 0.05628x 𝑡1 -0.03778x 𝑡2 + 0.09809x 𝑡3 + 

1.05099x 𝑡4 + 0.114237x 𝑡5 − 0.02441x 𝑡1
2 − 0.02385 x 𝑡1x 𝑡2 − 
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0.087018 x 𝑡1 x 𝑡3 + 0.0509 x 𝑡1 x 𝑡4 + 0.116148 x 𝑡1 x 𝑡5 + 0.015803 

x 𝑡2
2 + 0.060604x 𝑡2 x 𝑡3  - 

0.0333x 𝑡2 x 𝑡4 − 0.00434x 𝑡2 x 𝑡5 - 0.11714x 𝑡3
2 - 0.08324 x 𝑡3 x 

𝑡4 − 0.02029 x 𝑡3 x 𝑡5 − 0.48092 x 𝑡4
2 −0.14211 x 𝑡4 x 𝑡5 − 0.7409 

x 𝑡5
2) x 106 

Energy Absorption for Part 357 (N-mm) E357 = (0.124979 - 0.17563x 𝑡1 - 0.01787x 𝑡2 -  0.0144x 𝑡3 − 

0.06605x 𝑡4 + 0.2426x 𝑡5 − 0.00679x 𝑡1
2 + 0.05797 x 𝑡1x 𝑡2 + 

0.012006x 𝑡1 x 𝑡3 + 0.140194 x 𝑡1 x 𝑡4 + 0.071128 x 𝑡1 x 𝑡5 + 

0.012219x 𝑡2
2 – 0.00968x 𝑡2 x 𝑡3  - 0.0443x 𝑡2 x 𝑡4 − 0.04542x 𝑡2 x 

𝑡5 + 0.0568x 𝑡3
2 + 0.1267 x 𝑡3 x 𝑡4 + 0.055 x 𝑡3 x 𝑡5 + 0.0384 x 

𝑡4
2 −0.1261 x 𝑡4 x 𝑡5 − 0.0072x 𝑡5

2) x 106 

Total mass of all parts Mass = 6.90989 – 3.708636 x 𝑡1 – 1.850079 x 𝑡2 +  6.84746 x 𝑡3 + 

13.566x 𝑡4 + 1.251x 𝑡5 + 4.57118x 𝑡1
2 + 0.007921 x 𝑡1x 𝑡2 + 

5.538308x 𝑡1 x 𝑡3 -1.3646 x 𝑡1 x 𝑡4 – 1.6955 x 𝑡1 x 𝑡5 + 3.1740 x 𝑡2
2 

+ 1.0138x 𝑡2 x 𝑡3  + 2.582x 𝑡2 x 𝑡4 − 1.7904x 𝑡2 x 𝑡5 – 6.903x 𝑡3
2 – 

7.156 x 𝑡3 x 𝑡4 +  6.10069 x 𝑡3 x 𝑡5 + 2.253031x 𝑡4
2 + 7.952 x 𝑡4 x 

𝑡5 − 4.5043x 𝑡5
2 
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