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Abstract 
 

Title: Test and Evaluation Model for Midwater Docking of Autonomous Underwater Vehicles 

 

Author: Parker Baillon 

Major Advisor: Stephen Wood, Ph.D., P.E. 

This research created a Test and Evaluation (T&E) model for midwater Autonomous Underwater Vehicle 

(AUV) capture. The creation of this model will allow for a better assessment of the feasibility of 

midwater AUV capture. To achieve this, the T&E model was exposed to various flow conditions to assess 

stability. Capturing an AUV in midwater, the area below the wave-affected zone to the sea floor, has 

many benefits for an AUV and its mission. AUVs basing missions from a midwater dock will not be 

affected by wave motions. A midwater dock can be transported to any mission site and deployed with 

similar operating procedures to surface docking stations. 

For this project, requirements and specifications were given by the Naval Surface Warfare Center, 

Carderock Division (NSWCCD). The main requirements of this project were to create a docking station 

that measured 12 ft in length, 1ft tall and 1ft wide, 200 lbs in water, and eight onboard thrusters. Each 

thruster was required to be independently controlled and set up to maintain the pitch and yaw angles of 

the docking station. The main objective given by NSWCCD was to examine the motions, limitations, and 

power requirements of the dock when subjected to ocean currents. The unit was tested at NSWCCD’s 

Circulating Water Channel (CWC) to do this. At this testing facility, the unit was exposed to different 

flow velocities, allowing the unit to try and maintain different yaw angles while stabilizing the pitch. 

Information about the time it takes to move to a position and the accuracy of the position will be 

measured with an underwater motion capture system. 

Testing revealed the unit could maintain its yaw position at all current speeds. The unit was stable in pitch 

and yaw, with ample thrust available from the onboard thrusters. This research indicated that capturing an 

AUV in the midwater would be feasible with additional control system development and advanced 

tunning profiles.   



iv 

 

Table of Contents 
 

Abstract ........................................................................................................................................................ iii 

List of Figures ............................................................................................................................................. vii 

List of Tables .............................................................................................................................................. xii 

Terminology ............................................................................................................................................... xiii 

Acknowledgement ..................................................................................................................................... xiv 

Dedication ................................................................................................................................................... xv 

Chapter 1 Introduction and Background ....................................................................................................... 1 

Introduction .............................................................................................................................................. 1 

Motivations ............................................................................................................................................... 3 

Project Requirements ................................................................................................................................ 3 

Research Objectives ................................................................................................................................. 5 

Background Information ........................................................................................................................... 6 

Chapter 2 Test & Evaluation Model Design ............................................................................................... 29 

Unit Concept Overview .......................................................................................................................... 29 

Mechanical Analysis ............................................................................................................................... 32 

Yaw Sensor ............................................................................................................................................. 38 

Pitch Sensor ............................................................................................................................................ 41 

Model Power Setup ................................................................................................................................ 42 

Model Tether Setup ................................................................................................................................ 46 

Motion Capture Integration .................................................................................................................... 48 

Chapter 3 Test & Evaluation Model Building ............................................................................................ 50 

Frame Construction ................................................................................................................................ 50 

Additive Manufactured Components ...................................................................................................... 54 



v 

 

Electronic Assembly ............................................................................................................................... 57 

Final Assembly ....................................................................................................................................... 65 

Chapter 4 Software Control of Model......................................................................................................... 67 

MATLAB Simulink Setup ...................................................................................................................... 67 

Simulink Arduino Sensor Connection .................................................................................................... 68 

Model Control Setup .............................................................................................................................. 70 

Hardware Software Integration............................................................................................................... 76 

Dry Test Trails ........................................................................................................................................ 79 

Chapter 5 Test Preparation .......................................................................................................................... 82 

Proposed Test Setup ............................................................................................................................... 82 

Data Collection Method .......................................................................................................................... 83 

Test Readiness ........................................................................................................................................ 86 

Test Procedures....................................................................................................................................... 88 

Run Matrix .............................................................................................................................................. 91 

Chapter 6 Model Testing at NSWCCD ....................................................................................................... 92 

Testing Setup .......................................................................................................................................... 92 

Motion Capture Setup ........................................................................................................................... 100 

Initial Testing Runs .............................................................................................................................. 102 

Completion of Run Matrix ................................................................................................................... 107 

Chapter 7 Model Testing Data Review ..................................................................................................... 111 

Collected Data ...................................................................................................................................... 111 

Yaw Control ......................................................................................................................................... 116 

Pitch Control ......................................................................................................................................... 125 

Additional System Observations .......................................................................................................... 129 

Chapter 8 Conclusion ................................................................................................................................ 131 



vi 

 

Overall Model Performance ................................................................................................................. 131 

Feasibility for Midwater Capture.......................................................................................................... 133 

Summary and Future Work .................................................................................................................. 133 

References ................................................................................................................................................. 136 

Appendix ................................................................................................................................................... 142 

MATLAB/Simulink Code .................................................................................................................... 142 

Camera Calibration Data ...................................................................................................................... 148 

Additional Media .................................................................................................................................. 149 

 

  



vii 

 

List of Figures 
 

Figure 1: Docking Station CAD Model ........................................................................................................ 2 

Figure 2: Research Ship Moon Pool (5) ........................................................................................................ 6 

Figure 3: ROV Garage System (4) ................................................................................................................ 6 

Figure 4: Remus 100 AUV (8) ...................................................................................................................... 7 

Figure 5: Commercial Class ROV (7)........................................................................................................... 7 

Figure 6: Slocum Glider Example Mission (10) ........................................................................................... 8 

Figure 7: Hybrid Ocean Glider with Rear Thruster (36) ............................................................................... 8 

Figure 8: Hybrid Ocean Glider Prototype (35) ............................................................................................. 9 

Figure 9: Open Loop Control Example (11) ............................................................................................... 10 

Figure 10: Basic PID loop diagram (12) ..................................................................................................... 11 

Figure 11: Ziegler-Nichols closed-loop tuning method Calculation Table (16) ......................................... 14 

Figure 12: Example PID Process Outputs (17) ........................................................................................... 14 

Figure 13: Prime 13 Camera Specifications (18) ........................................................................................ 15 

Figure 14: Reflective Marker Example – OptiTrack Marker (18) .............................................................. 16 

Figure 15: In-air Opti Track Setup (18) ...................................................................................................... 17 

Figure 16: Prime 13 Underwater Enclosure ................................................................................................ 17 

Figure 17: Active Marker Example ............................................................................................................ 18 

Figure 18: 2D Cross Section of Underwater Motion Capture ..................................................................... 19 

Figure 19: Filter Example from Motive (18) .............................................................................................. 20 

Figure 20: OptiTrack Calibration Wand (18) ............................................................................................. 20 

Figure 21: Captured Calibration data for an OptiTrack System (18) .......................................................... 21 

Figure 22: Drones with Reflective Markers (22) ........................................................................................ 22 

Figure 23: Example data recoded from Motive (18) ................................................................................... 23 

Figure 24: Underwater Vehicle Coordinate System ................................................................................... 24 

Figure 25: OptiTrack Ground Plate Coordinate System (25) ..................................................................... 25 

Figure 26: Prusa I3 (26) .............................................................................................................................. 26 

Figure 27: Any Cubic Photon Mono X (28) ............................................................................................... 27 

Figure 28: Example SLA Pressure Enclosure (27) ..................................................................................... 28 

Figure 29: Hand Drawn Initial Concept ...................................................................................................... 29 



viii 

 

Figure 30: Test and Evaluation Model CAD Design .................................................................................. 30 

Figure 31: System Connection Diagram ..................................................................................................... 31 

Figure 32: Section Bulkhead ....................................................................................................................... 32 

Figure 33: Bulkhead FEA Setup ................................................................................................................. 33 

Figure 34: FEA Bulkhead Safety Factor Result .......................................................................................... 34 

Figure 35: Bulkhead FEA Total Defections ............................................................................................... 35 

Figure 36: Swivel Hoist Ring ..................................................................................................................... 36 

Figure 37: Lift Point Safety Factor ............................................................................................................. 37 

Figure 38: Lift Point Total Deflection ........................................................................................................ 37 

Figure 39: Yaw Sensor Sketch .................................................................................................................... 38 

Figure 40: Yaw Sensor CAD Design .......................................................................................................... 39 

Figure 41: Current Vane Section View ....................................................................................................... 40 

Figure 42: Pitch Sensor Section Analysis ................................................................................................... 41 

Figure 43: Blue Robotics Thruster Power Curve (42) ................................................................................ 42 

Figure 44: Power Distribution Setup .......................................................................................................... 44 

Figure 45: Tether Connection Cable Runs .................................................................................................. 45 

Figure 46: USB - Ethernet Adapters (32) ................................................................................................... 46 

Figure 47: Motion Capture Light Test ........................................................................................................ 48 

Figure 48: Marker Bracket Section View ................................................................................................... 49 

Figure 49: Motion Capture Marker Count .................................................................................................. 49 

Figure 50: Horizontal Band Saw Cutting Frame Components ................................................................... 50 

Figure 51: Bulkhead Plate Drill Areas ........................................................................................................ 51 

Figure 52: Initial Frame Assembly ............................................................................................................. 52 

Figure 53: Lift Point .................................................................................................................................... 52 

Figure 54: Payload Tube ............................................................................................................................. 53 

Figure 55: Test Frame Hang Test ............................................................................................................... 53 

Figure 56: Pitch Mount 3D printing setup .................................................................................................. 54 

Figure 57: Encoder Mount .......................................................................................................................... 55 

Figure 58: Oring Flange Cross Section ....................................................................................................... 56 

Figure 59: Thruster Cable Mold ................................................................................................................. 57 

Figure 60: Thruster Potting ......................................................................................................................... 58 

Figure 61: Core Components of Surface Control Board ............................................................................. 59 



ix 

 

Figure 62: Final Control Board Setup Connected for Testing .................................................................... 60 

Figure 63: NEMA 6P Enclosure Sealed for Exposure Testing ................................................................... 61 

Figure 64: NEMA 6P Enclosure Deployed at 15ft ..................................................................................... 61 

Figure 65: Test Frame Electrical Distribution Box ..................................................................................... 62 

Figure 66: Assembled IMU Pitch Sensor ................................................................................................... 63 

Figure 67: Glued Oring Collar .................................................................................................................... 64 

Figure 68: Yaw Sensor ................................................................................................................................ 64 

Figure 69: Yaw Sensor Installation Ready ................................................................................................. 65 

Figure 70: Test Frame Fully Setup with Electronics .................................................................................. 66 

Figure 71: Arduino Simulink Blocks .......................................................................................................... 68 

Figure 72: IMU Read Simulink .................................................................................................................. 69 

Figure 73: Simulink Model for Encoder Position Reading ......................................................................... 70 

Figure 74: Laptop Arduino Connection Block Diagram ............................................................................. 71 

Figure 75: PID Control Loop for Pitch ....................................................................................................... 71 

Figure 76: PID Thruster Mapping ............................................................................................................... 72 

Figure 77: T200 Accelerator Nozzle ........................................................................................................... 73 

Figure 78: PWM Output to Thrusters ......................................................................................................... 74 

Figure 79: Yaw PID Controller ................................................................................................................... 75 

Figure 80: Simulation Model 1: Yaw Control ............................................................................................ 76 

Figure 81: Simulink Pannel ........................................................................................................................ 77 

Figure 82: Arduino Hardware Options ....................................................................................................... 78 

Figure 83: Yaw Stamina Run ...................................................................................................................... 79 

Figure 84: Yaw and Pitch Validation .......................................................................................................... 80 

Figure 85: Yaw Controller Checkout .......................................................................................................... 81 

Figure 86: Circulating Water Channel Scale Model and Testing Section .................................................. 82 

Figure 87: Overhead Test View .................................................................................................................. 83 

Figure 88: Motion Capture FOV Facility Overlay ...................................................................................... 84 

Figure 89: Yaw Sensor ................................................................................................................................ 85 

Figure 90: Model Broken Down for Transport ........................................................................................... 92 

Figure 91: Rear Frame Ballast .................................................................................................................... 93 

Figure 92: Forward Frame Ballast .............................................................................................................. 94 

Figure 93: Center Ballast Area.................................................................................................................... 95 



x 

 

Figure 94: Test Frame Setup for Ballast ..................................................................................................... 96 

Figure 95: Hoisting up to CWC Working Deck ......................................................................................... 97 

Figure 96: Lifting Into CWC Test Area ...................................................................................................... 98 

Figure 97: Test Frame on Lifting Sling ...................................................................................................... 98 

Figure 98: Control Board Setup on CWC bridge ........................................................................................ 99 

Figure 99: Frame control and motion capture laptops used for testing ....................................................... 99 

Figure 100: Motion Capture Frame Setup ................................................................................................ 100 

Figure 101: Motion Capture Axis Alignment ........................................................................................... 101 

Figure 102: Mean Absolute Error at 4ft water depth ................................................................................ 102 

Figure 103: Pitch Power – Nose up Orientation. ...................................................................................... 103 

Figure 104: Forced Pitch Oscillation ........................................................................................................ 104 

Figure 105: under-damped pitch response ................................................................................................ 105 

Figure 106: Final Pitch Tunning Step Response ....................................................................................... 106 

Figure 107: Broken Pitch Brackets ........................................................................................................... 107 

Figure 108: Flow Depiction over Frame Nose .......................................................................................... 108 

Figure 109: New Current Vane in Rear Position ...................................................................................... 109 

Figure 110: Yaw PID Controller Current Vane Initial Position ............................................................... 109 

Figure 111: Yaw PID Controller Post Current Vane Position Switch ...................................................... 110 

Figure 112: Event Duration Time Error .................................................................................................... 111 

Figure 113: Yaw Position Average Power ................................................................................................ 113 

Figure 114: Onboard Position Data Vs. Motion Capture Event 1 ............................................................ 114 

Figure 115: Onboard Position Data Vs. Motion Capture Event 2 ............................................................ 115 

Figure 116: Yaw Position 0.5kts full run .................................................................................................. 116 

Figure 117: Yaw Detail Position 0.5 kts ................................................................................................... 117 

Figure 118: Yaw Control Loss .................................................................................................................. 118 

Figure 119: Thruster Power Vs. Setpoint .................................................................................................. 119 

Figure 120: Exposed Surface Area to Flow 0.5 kts .................................................................................. 120 

Figure 121: Required Thrust Relationship ................................................................................................ 121 

Figure 122: Yaw Power Sweep Runs ....................................................................................................... 122 

Figure 123: Thruster Power and Yaw Rate ............................................................................................... 123 

Figure 124: Pitch Stability ........................................................................................................................ 125 

Figure 125: Pitch Power Maximum Angles .............................................................................................. 126 



xi 

 

Figure 126: Pitch Angles Negative ........................................................................................................... 127 

Figure 127: Pitch Angles Positive ............................................................................................................. 127 

Figure 128: Yaw Pitch Combination Yaw Sensor .................................................................................... 129 

Figure 129: Calibration Points Collected .................................................................................................. 148 

Figure 130: Motion Capture Reliability @ 4ft .......................................................................................... 148 

Figure 131: Fully Assembled Fame in Mechanical Shop ......................................................................... 149 

Figure 132: Model Loaded into Dry Dock at David Taylor Model Basin ................................................ 150 

Figure 133: Underwater View from CWC ................................................................................................ 150 

Figure 134: Underwater View 2 from CWC ............................................................................................. 151 

Figure 135: Observation area side of CWC .............................................................................................. 152 

Figure 136: CWC Working Area .............................................................................................................. 153 

Figure 137: Test Frame on Crane at test Conclusion ................................................................................ 153 

 

 



xii 

 

List of Tables 
 

Table 1: Power Supply Comparison ........................................................................................................... 43 

Table 2: Primary Wire Configuration ......................................................................................................... 47 

Table 3: Simulink Logged Variables .......................................................................................................... 77 

Table 4: Measurement Devices ................................................................................................................... 85 

Table 5: Initial Testing Schedule ................................................................................................................ 87 

Table 6: Initial Run Matrix ......................................................................................................................... 91 

Table 7: Yaw Controller PID Gain ........................................................................................................... 110 

Table 8: Motion Capture Error Summary ................................................................................................. 113 

Table 9: Required Thrust and Setpoint ..................................................................................................... 120 

Table 10: Yaw Rate .................................................................................................................................. 123 

Table 11: Pitch Power Maximum Angle ................................................................................................... 128 



xiii 

 

 Terminology 

AUV – Autonomous Under Water Vehicle 

T&E  - Test and Evaluation 

NSWCCD – Naval Surface Warfare Center Carderock Division 

PID – Proportional Integral Control 

ROV – Remotely Operated Vehicle  

HCWS – Heave Compensated Winch System 

IMU – Inertial Measurement Unit 

MoCap – Motion Capture 

CAD – Computer Aided Design 

COTS – Commercial off the Shelf Component 

DoF – Degree of Freedom 

FEA – Finite Element Analysis  

NEMA 6P – Nation Electrical Manufactures Association Water Resistance Rating 

SPI – Serial Peripheral Interface 

I2C – Inter-Integrated Circuit 

 

  



xiv 

 

Acknowledgement 
 

Thank you to Code 881 and NSWC Carderock Division for supporting this project. Without the support 

and expertise of the incredible staff, this research would not have been possible.  

Thank you to my thesis committee for their expertise and support through this research. Being able to ask 

questions and receive guidance and recommendations from this group of talented professors was 

extremely valuable.  

Thank you, Dr. Wood, for all your support of me through my undergraduate and now graduate degree. 

Without the experience I gained working on your projects and hearing your stories I would not be the 

student and engineer I am today. Thank you for inviting me to your lab back in my freshman year. 



xv 

 

Dedication 
 

I dedicate this thesis research to my wife, Maria, who has always supported me through my toughest 

times and toughest projects. You are everything to me, and I am so thankful for your love and support. 



 

 

1 

 

Chapter 1  
Introduction and Background 

 

Introduction 

The primary purpose of this research was to create a physical test and evaluation (T&E) 

model of an Autonomous Underwater Vehicle (AUV) midwater docking station that will 

allow for a better assessment of technology feasibility. Current AUV docking devices are 

traditionally located on the seafloor or the ocean surface. Each of these locations presents 

its advantages and disadvantages. Mounting a docking station on the seafloor provides a 

stable, established reference point for the AUV to return to. Seafloor-mounted systems can 

interface with subsea cable networks to connect to the mainland (1), making them ideal for 

areas where continuous AUV mission coverage is desirable. However, the installation of 

these devices is complicated and expensive. Target location bathymetry may make 

installation of a seafloor dock not feasible due to depth or lack of subsea infrastructure. 

On the other hand, capturing the AUV on the ocean surface allows for maximum mission 

mobility but exposes the AUV to surface effects like wind and waves. The AUV can be 

transported to almost any target location and deployed from the surface vessel. High sea 

states can make recovery of an AUV dangerous and possibly harm the vehicle or the 

recovery crew. To maximize the deployment conditions, the technique of midwater 

docking can be used for the launch and recovery of an AUV. The unit would be suspended 

on a heave-compensated winch system (HCWS) to enhance docking further. An HCWS is 

a device located on a ship that analyzes its motion and adjusts the length of the line going 

to the unit to keep it at a level depth (2). Docking an AUV in midwater, while attached to a 

stable surface mount, allows the vehicle to be submerged below the effects of wind and 

waves, reducing the forces perturbing the AUV. 



 

 

2 

 

 

Figure 1: Docking Station CAD Model 

The above testing model was used to examine the feasibility of midwater AUV Capture. 

The customer, NSWCCD, gave the physical dimensions of the docking station and thruster 

placements. The following section outlines the requirements for which the system was 

designed. 

The docking station T&E model was used to understand how the unit will move during 

actual in-water operations. To capture an AUV with low maneuverability, the docking 

station will need to be stable and capable of holding a variety of attitudes. The more stable 

and adjustable the platform is, the easier it will be for the AUV to align and complete its 

docking sequence. Testing the T&E model allowed important control and stability 

information to be gathered. 

The T&E model proposed for this research was rigorously tested in an ideal flow 

environment at NSWCCD, ensuring the reliability and accuracy of the results. The model 

was experimentally tested through a variety of orientations and flow speeds to better 

understand and quantify the docking station's feasibility. An underwater motion capture 

system captured all 6DoF motions, providing comprehensive data for analysis. The testing 

at NSWCCD identified the system's power requirements, range of motion, and yaw/pitch 

response rates. 
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Motivations 

As AUV systems continue to advance, creating effective capturing solutions for 

performing missions in various environments will be necessary. Midwater docking has the 

potential to capture AUVs in a wide range of sea states without the need for complex 

infrastructure, which would limit mission mobility. Examining the controllability of the 

T&E model will advance the field's understanding of unstable tow bodies that utilize active 

compensation. Traditional tow bodies are naturally stable at a given orientation, such as a 

required pitch angle for a sensor like a side scan sonar. However, with an AUV, the 

recovery frame must adapt to different AUV trajectories independently of flow. The 

thrusters fully control the frame to achieve this, and there is no unpowered stable state. 

Potential end users for this technology and research are groups that deploy AUV systems 

in high wave height environments, which pose a hazard to the vehicle or recovery team 

using traditional surface methods. 

Project Requirements 

With collaboration from NSWCCD, a set of model requirements and testing requirements 

were produced. These requirements will drive the detailed design of the model and its 

control system. 

Model requirements: 

• The system will be no larger than 12ft x 1ft x 1ft. 

• Provide internal storage capacity for a 6-inch diameter x 62-inch-long payload. 

• Wet weight of 150lbs – 250lbs. 

• Dry weight not to exceed 300 lbs. 

• Include lifting mount(s) to support lifting by crane. 

• Waterproof for complete submersion up to 10m depth. 

• Maintain position at various yaw angles from 0-90 degrees port and starboard. 

• Incorporate sensors to measure yaw orientation. This may be accomplished using a 

measurement of true heading, magnetic heading, or sideslip angle relative to flow. 
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But will need to be accurate to within +-0.5 degrees and serve as feedback in the 

yaw controller. 

• Operating current 0.25kts – 1.5kts. 

• Adjustable Center of Buoyancy and Center of Gravity. 

• Active yaw and pitch compensation. 

• Adjustable Thruster Mounting locations to accommodate different thruster layouts 

for up to 8 independently controlled thrusters. 

• Each individual thruster shall be able to produce 0-8lbs of thrust in either direction 

and be controllable such that thrust output capacity can be limited if desired. 

• Configurable command and control software. 

• Surface powered for extended testing runs. 

• LED light array for visibility with underwater motion capture. 

• Removable panels to direct water flow around the unit. 

• Shippable on a single standard wood pallet. 

• The system will be able to be mounted in the Circulating Water Facility using 

existing facility infrastructure and equipment as provided by NSWC Carderock. 

Test requirements: 

• Evaluate system stability in different positions and current speeds. 

• Evaluate the performance of the closed-loop controller algorithm. 

• Collect data on the system: 

o Attitude (roll, pitch, and yaw) 

o Position (surge, sway, and heave) 

o Depth 

o Current Speed 

o Controller Performance (gain, input, and response) 

o Thruster Power 

• Simulate the heave motion of the support vessel (if existing equipment to enable 

this is available and feasible to use). 
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Research Objectives 

The goal of this master thesis research was to create a T&E model of an AUV capturing 

system. This model was adaptable for different garage sizes, thruster layouts, and control 

architectures. The model was tested in the Circulating Water Channel (CWC) at 

NSWCCD. The CWC will provide a controlled-current environment where different 

docking station attitudes can be examined for stability. The development and testing of this 

model contributed to a better understanding of the feasibility of midwater capture of AUV 

systems while also creating a platform ready for further development and testing. 

Objective 1: Create a physical working model for understanding the stability motions of 

an AUV docking system. 

Objective 2: Create configurable control software programmable through MATLAB 

Simulink. 

Objective 3: Collect data on a model’s motion and controller performance.  

Objective 4: Develop a better understanding of the feasibility of midwater AUV capture. 

Hypothesis: The creation of a T&E model of an AUV docking station will allow for a 

better assessment of the feasibility of midwater AUV capture. 
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Background Information 

Docking Stations: 

Launching underwater vehicles from depth is the preferred option for many subsea 

operations. Commercial Remotely Operated Vehicles (ROVs) have long been deployed 

from garage systems. The garage system can be deployed from a shipboard crane, A-frame, 

or moon pool. The benefit of this system is that the ROV will not be subjected to surface 

effects while docking. The cage also allows the ROV to be connected via a dual tether 

system. The main lifting tether connects to the garage and provides the lifting capacity 

needed, while a smaller, spooled tether in the garage is used to deploy the ROV onto the 

location. This smaller tether is lighter and less obtrusive. This dual combination 

dramatically increases the depth range and sea conditions in which the vehicle can operate 

(3). 

 

 

 

 

 

 

AUVs, however, present challenges for a garage-type recovery system as there is no 

operator. AUVs do not have an operator, so the onboard computer fully commands the 

motions. Due to this, the motion behavior of the garage system needs to be minimal and 

predictable so that the onboard computer system can be trained to dock with the garage. 

Additionally, AUVs generally have a different geometry than ROVs. An ROV is 

commonly used for work or exploration where precise motions are required, often fully 

controlled in 6 degrees of freedom (DoF), while an AUV will be controlled in 5 DoF. An 

Figure 3: ROV Garage System (4) Figure 2: Research Ship Moon Pool (5) 
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AUV is often designed for extended, continuous survey areas of the ocean floor, making 

their shape long, slender, and hydrodynamic (6). 

 

The difference in geometry and control authority for the AUV system necessitates a 

different type of garage system than one used for an ROV. The garage will need to be 

longer and conform to the torpedo shape of the AUV. The development of a garage system 

for an AUV will allow for a more effective launch and recovery of the AUV. 

Another unique possible use for a midwater garage capturing system is capturing 

underwater gliders. These ocean observation instruments glide up and down the water 

column with a buoyancy engine (6). The buoyancy engine adjusts the vehicle's buoyancy 

from negative to positive, causing the glider to rise or fall in the ocean. This form of 

propulsion limits the control of the vehicle, so for vehicle recovery, it floats passively on 

the surface, waiting to be captured by a crew aboard a vessel. The gliders can be captured 

with a net or attachment of a lifting line. This makes the glider susceptible to waves and 

marine traffic (9). The midwater capture garage would allow the glider to be recovered 

during a dive or ascent where the control authority is the greatest. Capturing the glider 

during its mission would prevent it from getting damaged by waves or surface traffic. This 

capture will require a predictable and highly stable platform for the vehicle to fly into for 

docking.  

Figure 5: Commercial Class ROV (7) Figure 4: Remus 100 AUV (8) 
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The system must pitch up or down for the unit to capture an underwater glider. Since a 

glider is most controllable during its dive and ascent, the dock would need to capture the 

system in the middle of this action. Since the T&E docking unit can control its pitch, it can 

be compatible with the dive paths of an underwater glider, as shown in the figure below.  

 

 

 

 

 

 

Another ocean system that could utilize the midwater docking system would be hybrid 

ocean gliders. These systems fly similarly to a standard ocean glider but also include an 

active thruster on the back that can be operated for increased control authority. An example 

of this type of system is shown in the figure below.  

 

Figure 7: Hybrid Ocean Glider with Rear Thruster (36) 

 

Figure 6: Slocum Glider Example 

Mission (10) 
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This type of ocean glider could follow the slopping path of a traditional glider or re-

position its self-level to the capturing frame. More complex hybrid systems are being 

developed for survey and inspection use. These next-generation vehicles incorporate the 

rear thruster onto the glider and add horizontal bow and stern thrusters to the glider system. 

This combination of active thrusters gives the vehicle control like a ROV. This type of 

vehicle would be able to integrate well with the underwater docking station due to its 

strong control authority. The vehicle shown below would require minimum compensation 

from the proposed AUV dock.  

 

Figure 8: Hybrid Ocean Glider Prototype (35) 
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Control Theory: 

A vital component of the AUV docking system is the control of the yaw and pitch axes. 

These two motions will have the most significant impact on the system's success. As an 

AUV goes to dock with the unit, the vehicle may collide with the unit if the yaw or pitch 

cannot remain stable. For the context of this thesis research, the goal for the unit was to 

develop a set of closed-loop controllers for yaw and pitch in a simplistic but effective 

manner. 

When creating controllers for motion control, the two main types are open-loop and 

closed-loop control. Open-loop control does not consider the system's response. In an 

open-loop setup, the actuator is commanded to move, and the system does not consider its 

resulting action. 

 

 

Figure 9: Open Loop Control Example (11) 

A closed-loop controller considers the system's response. There are several types of closed-

loop control, but the most common in underwater robotics and many industries is the 

Proportional, Integral, and Derivative controller (PID). This controller and the other 

portion of a closed-loop system are outlined and defined below. 
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Figure 10: Basic PID loop diagram (12) 

Based on the above diagram, the major sections of a closed-loop control setup are defined 

below: 

Setpoint: Targeted value for the system; this is normally set by the user, and for this T&E 

model, it will be the value for pitch/yaw that the vehicle will try to maintain.  

PID Loop Function: This loop is a summation of three different functions.  

𝑢(𝑡) =  𝐾𝑐 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝑡′)𝑑𝑡′ + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡

𝑡

0
) + 𝑏              Equation 1 

The proportional response part of Equation 1 calculates the direct error between the current 

setpoint and the measured process variable. This component of the PID controller often 

causes the majority of the response, but if the gain for this variable is too high, the system 

may oscillate rather than settle at the setpoint. The integral response of the PID loop sums 

the error of the setpoint and measured process variable over time. If error persists in the 

system, this term will help bring the system into equilibrium. The derivative response will 

cause a decrease in output if the measured process variable is changing too quickly. This 

portion of the PID loop helps make the control loop less reactive. However, the term is 

susceptible to noise in the measured process variable signal. If too much noise exists, the 

derivative response will fluctuate rapidly and cause the system to be unstable. A good 

solution to this issue is applying a filter to the measured process variable. 



 

 

12 

 

Process Variation: External forces that will act on the system. For the T&E model, these 

forces were hydrodynamic loads.  

Equipment Operation: This section is the actual operation of the equipment. This portion 

accepts the output of the PID controller and commands the equipment accordingly. For the 

testing model, the input is the error in the angle setpoint. The equipment interprets this and 

commands the thrusters on the unit to make the required adjustments.   

Process Variable: This is the quantity the setpoint tries to control. For the AUV dock, this 

will be the yaw and pitch value of the vehicle.  

Sensor: This is the equipment that will measure the process variable. For the AUV dock, 

this will be the 9 DOF Inertial Measurement Unit (IMU) and current vane.  

Measured Process Variable: The measured value of the process variable captured by the 

sensor. 

This closed-loop control was implemented with MATLAB Simulink. This program allows 

for control loops to be easily set up and tuned. Additionally, the hardware for the model is 

controlled directly through Simulink. This Simulink controller setup allowed simple 

integration with final hardware and real-time system tuning. Future control systems can be 

added with little modifications if they already exist in the Simulink environment. 

When implementing a PID controller, a transfer function will often be used to estimate the 

system's response. A transfer function is a mathematical model that converts a specified 

input to a specified output in the same way a real-life process would. Transfer functions 

can be used to model simple linear systems or complex nonlinear systems. The operation 

of the AUV docking station is likely to be complex and nonlinear, as stated in the 

Handbook of Marine Craft Hydrodynamics and Motion Control (13). Two main areas will 

need to be investigated when examining the creation of the model's transfer function for 

this docking system. Hydrodynamics and thruster mechanics will have the most significant 

effect on the system's response. Various hydrodynamic coefficients will be needed to 

predict the motion of the system to create the transfer function. Past studies have used a 
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combination of Computational Fluid Dynamics (CFD) and in-water tests. To model the 

thruster performance hardware, performance testing from Blue Robotics (14) and the thesis 

"6-DoF Modelling and Control of a Remotely Operated Vehicle" (15) could be used to 

build a thruster model. Due to the scope of the project, the creation of a complex dynamic 

model for the system was omitted from the PID tuning process.  

As seen in Equation 1, the PID function has several gains that affect each response's 

output. Tunning of a closed-loop control system is finding the best set of gains for each 

portion of the PID loop. Several different techniques can be used. If a mathematical model 

is known, the built-in tunning software found in Simulink can be utilized. This tunning tool 

will run through different sets of PID gains until the system achieves the desired 

performance. When a mathematical model of the system is not known, the PID gains can 

be tuned from the response of the real hardware. This is often not done in industry, as the 

response can be erratic and uncontrolled when tuning the system. However, tuning the gain 

on real hardware is possible in a controlled testing setting, where the equipment can be 

isolated. Most methods of tuning hardware are focused on trial and error; this research used 

the Ziegler-Nichols closed-loop tuning method. This method utilizes the ultimate gain 

value and ultimate period of oscillation to calculate the initial PID controller gains. 

In the Ziegler-Nichols closed-loop tuning method, the first goal is to find the value of Ku 

which is the ultimate gain. This proportional gain value results in the system oscillating 

indefinitely (16). From the system's oscillation, the value for the ultimate period of 

oscillation, Pu, can be measured. From Pu and Ku, the loop-tunning constants Kc, Ti, and Td 

can be calculated using the following procedure (16).  

1. Remove the response of the integral and derivative portion of the PID loop. 

2. Change the setpoint of the system to initiate a small disturbance.  

3. Adjust the gain of the proportional term until the oscillation becomes constant. 

4. Record the value of Ku and Pu 

5. Use the table below to calculate the remaining constants. 
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Figure 11: Ziegler-Nichols closed-loop tuning method Calculation Table (16) 

The performance of the PID system will be verified by tracking the process parameter 

compared to the setpoint. A graph plotting the commanded position and measured position 

will be produced. This will help determine if the controller is stable and able to fulfill its 

requirements. An example of this is shown in the figures below.  

 

Figure 12: Example PID Process Outputs (17) 

The figures above depict the stability and response of different PID process loops. The 

system's performance can be determined simplistically with three parameters: Stability, 

Response, and Overshoot/Undershoot. The stability of the system measures how much 

oscillation is occurring. The system is considered unstable if a system continues oscillating 

and can never achieve the desired setpoint. The response of the system is the time it takes 

for the process variable to reach the setpoint. Overshoot/Undershoot is the measure of how 

far the measured process variable is from the setpoint. If the loop is overshooting, then the 

measured value will be greater than the setpoint. The inverse is true for undershoot 

scenarios. The end goal of system tunning is to create a set of constants that will create the 

desired system response.  
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Underwater Motion Capture: 

During testing of the docking station at the Naval Surface Warfare Center Carderock 

Division (NSWCCD), motion capture technology was used to capture the absolute position 

of the unit. Motion capture technology utilizes a series of cameras tracking reflective 

markers. Each camera finds the position of the markers in its 2D view. Meshing the 2D 

position data across a series of cameras positioned in 3D allows for the position of each 

marker to be resolved in 3D space. The system used was the OptiTrack Prime 13 camera; 

this camera has many desirable attributes for motion capture work and has the following 

specifications, shown below in Figure 13.  

 

Figure 13: Prime 13 Camera Specifications (18) 

The OptiTrack Prime 13 camera is a good choice for motion capture as it captures in a high 

resolution at a high frame rate. High resolution allows for the camera to capture more detail 

of each marker. Frame rate controls the frequency of data collection. Higher frame rates are 

good for capturing fast-moving, high-detail systems. Another strong benefit of the Prime 
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13 camera is its exposure settings. Exposure controls the timing at which the sensor is 

open. The longer the exposure, the more light will be captured, resulting in brighter images 

for the camera to process. The form factor of the Prime 13 is compact, which allows it to 

be mounted in tight spaces. Lastly, the camera is powered and communicates through 

Power over Ethernet (PoE). This makes interfacing the camera into a test setup simple; a 

single cord can be run on each camera and back to the host computer.   

Each camera in the system has a set of IR LEDs that emit light toward the target area. This 

light is then reflected off a marker to the camera. IR is used in air systems as it travels far 

and can be distinguished from the visual light. The Prime 13 camera has a filter that will 

only allow IR wavelengths, greatly decreasing possible noise. The process of the IR light 

reflection is shown in the diagram below.  

 

Figure 14: Reflective Marker Example – OptiTrack Marker (18) 

To resolve the position of the markers, a minimum of two cameras are required. However, 

the more cameras added to the system with greater overlap between them, the better the 

calculated marker position will be. In most cases, being able to place cameras in full 360-

degree coverage is ideal as shown in Figure 15. The cameras are connected through an 

ethernet switch and a PC running the OptiTrack Motive software. This software controls 
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the timing, performance, and calibration of the cameras. In traditional fixed-position in-air 

systems, the typical resolution for this setup is < 0.5mm (19). 

 

Figure 15: In-air Opti Track Setup (18) 

When using an in-air camera system underwater, many challenges must be managed. The 

first issue is waterproofing the system. To do this, NSWCCD has created small underwater 

enclosures with Blue Robotics components to house the cameras. The camera enclosures 

are rugged and protect the camera during testing. On the rear of the enclosures are 

connectors that pass the ethernet signals. The camera enclosures to be used for testing are 

shown below.  

 

Figure 16: Prime 13 Underwater Enclosure  

The next major issue is how the cameras will see the markers on the testing unit. The built-

in IR LEDs on the camera will have extremely poor performance underwater. IR 

wavelengths 700 nm-1000 nm (20) travel less than 2m in water (21). The built-in LEDs 

will also reflect against the housing and fully blind the camera. Utilizing a visual light 



 

 

18 

 

marker system with wavelengths 400 nm- 700 nm (20) is a great choice for underwater 

use. A visual light system often uses a blue (475 nm) or green (550 nm) light source. The 

light source will be in either a reflecting or projecting layout. In a reflecting layout, the 

light source points into the capture volume. Reflective markers on the unit bounce the light 

back so the camera can see. If the visual light is placed on the target body, the light will 

shine towards the camera. In this setup, the distance traveled is half that of the reflective 

setup. Since the distance is less, along with eliminating losses due to the reflector 

projection setups will appear brighter to the camera.  

 

Figure 17: Active Marker Example 

The brighter the marker is, the better the camera system’s performance will be. A major 

factor for underwater motion capture performance is the exposure of the system for 

maximizing the light in the camera. As the capture rate is increased, the maximum 

exposure will decrease. By utilizing the active markers, the capture rate can be increased 

while still maintaining a good view of the marker positions.  

For underwater motion capture, the placement of cameras and markers is important for 

system success. Utilizing projecting markers will help the camera system isolate the 

markers. However, errors caused by the water's surface still need to be minimized. The 
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most effective way to reduce the reflection seen from the surface is to angle the camera 

system downwards so it cannot “see” the water’s surface. A 2D cross-section of an 

underwater motion capture setup with ideal camera positioning is shown below.  

 

Figure 18: 2D Cross Section of Underwater Motion Capture 

Inside the motion capture software, Motive, many different settings can be used to isolate 

the marker position and filter out the noise. The two primary filters used are the size and 

circularity filters. The size filter removes points that are either too big or too small. As the 

testing unit moves through the water some markers will appear larger/smaller to the 

cameras. Setting the correct size filter is important for system success. The circularity filter 

helps to remove reflections caused by refraction through the water surface or off the 

docking station’s structure. An example of these filtering options is shown below. Since 

the markers used for this model have a high brightness, an aggressive set of filters can be 

used. This set of filters will decrease errors in the motion capture data.  
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Figure 19: Filter Example from Motive (18) 

A major component of the motion capture setup is calibration. The camera system needs a 

calibration procedure to establish the relative position of all the cameras. To do this in the 

air, a reflective wand is waved through the capture volume. The calibration wand is a set of 

reflective markers placed at exact distances apart from one another.  

 

 

 

Figure 20: OptiTrack Calibration Wand (18) 

The Motive software captures the data as to where the calibration wand is in each camera 

view. Then, by knowing the exact distance between each marker and using the built-in 

software algorithms, the position of each camera can be resolved once enough data has 

been collected. Figure 21 below shows the collected data for an example calibration. The 
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colored section represents a time series of collected data points. The more filled in each 

camera view, the more data collected. The goal is for each camera to have a large amount 

of data points. When calibration is completed, Motive will give statistics on the calibration 

quality. 

 

Figure 21: Captured Calibration data for an OptiTrack System (18) 

Once calibrated, the position of the cameras cannot be modified, making stable placement 

and positioning especially important. For an underwater motion capture system that will be 

utilizing active markers, a different calibration tool must be used. Instead of a reflective 

wand, an LED wand connected to a long dock pole is used to sweep through the 

underwater capture volume. Like the in-air calibration, the software collects the needed 

data and resolves the position of each camera. After calibration is completed, a reference 

ground plane is placed to orientate the camera positions and establish the coordinate frame.  

After the system is set up, a post-calibration test is performed to verify the system's 

performance. This test consists of taking the calibration wand back through the capture 

volume and collecting the positions of each marker. Since the exact position of the wand 

markers is known, a difference can be calculated from the reported marker position. This 

difference is the error at a given point in the capture volume. This error can be found for 
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each axis at every point in the capture volume. Knowing what the error is throughout the 

volume is critical to ensure that the system will perform as expected and that the data 

gathered can be used.  

The final step before testing is setting up the rigid bodies the cameras will track. For this 

test, the rigid body will be the docking station. A rigid body in Motive is a set of marker 

points the software will bundle together and track the position of. To do this, markers must 

be asymmetrical and distributed throughout the body. The goal is to have multiple points 

for the camera to track so that if some become blocked, the software can still resolve the 

body's exact location. For the underwater docking station, these markers will be LED lights 

positioned at various locations along the outside of the frame. An example of marker 

placement is shown below on in-air quadcopters.  

 

Figure 22: Drones with Reflective Markers (22) 

With the system set, calibrated, and verified, it is now ready to begin recording live testing 

data. The recording is triggered manually or by a 5V high signal. Once recorded, the 

position of every marker and ridged body is saved. This data can be played back via 

Motive or exported for further processing.  
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Processing of the motion capture data begins by reconstructing the 3D data gathered by the 

system. This step goes back and solves all the rigid body information from the cameras. 

Sometimes, when a rigid body is very complex, or the system slows during capturing, 

certain frames of 3D data can be missed. Resolving the 3D data will fill these gaps and 

ensure the system outputs its most correct estimation of position (23). After completing 

this step, the data can be exported as a .csv for processing in another program. The motion 

capture data for this research was processed using a combination of Excel and MATLAB. 

Below is an example of captured data for a rigid body’s x, y, and z positions.  

 

Figure 23: Example data recoded from Motive (18) 

  



 

 

24 

 

Coordinate Systems: 

 

Figure 24: Underwater Vehicle Coordinate System 

Measurements taken from the docking stations Inertial Measurement Unit (IMU) will 

follow the Inertial Frame coordinate system with the Z-axis downward. Motions in this 

coordinate system will follow the naming convention found in Figure 24. Measurements 

that are not taken in this coordinate frame will be transformed through standard coordinate 

transformations laid out by Kris Hauser from the University of Illinois (24). A known 

system that will need transformation will be the data from the OptiTrack motion capture 

system. With a standard setup, this system utilizes a Y-up coordinate system shown in the 

figure below.  
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Figure 25: OptiTrack Ground Plate Coordinate System (25) 

The figure above shows the ground plane calibration tool. This device allows the software 

to orientate the cameras and establish the coordinate system used for measurement. If this 

system cannot be adjusted in the software, the following rotation matrixes will be used to 

transform the data.   

3D Rotation Matrix Base Form: 𝑅 =  

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

    Equation 2 

To rotate the Y-up coordinate frame to Z-down, one axis rotation will be needed. The first 

rotation will be 90 degrees around the X-axis.  

𝑅𝑥(90°) =  

1 0 0
0 cos (90°) −sin (90°)

0 sin (90°) cos (90°)
      Equation 3 

The resulting coordinate frame will follow the Z-down convention shown in Figure 24. 
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Additive Manufacturing Techniques: 

This project utilizes various additive manufacturing techniques to develop the prototype 

model. Fused Deposition Modeling (FDM) was used to construct many mounting 

structures that interface with thrusters, sensors, and other equipment. These custom 

structures can be developed quickly and cheaply by implementing this form of additive 

manufacturing. The printing system utilized was the Prusa MK3, as this printer is highly 

reliable and capable of printing a wide range of materials. This system is set up to run a 

single filament type through one extruder. Parts were sliced with the Prusa Slicer software. 

 

Figure 26: Prusa I3 (26) 

Since the docking station will be used underwater, the final parts will be made of PETG 

filament with a large wall thickness to limit water absorption. All FDM parts that will hold 

structural loads will be printed at 100% infill. 
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MSLA will be utilized to create waterproof prints for many of the electronics that will 

support the function and testing of the docking station. Following the procedure and data in 

the paper “Stereolithography 3D Printed Resin Pressure Enclosures Applied in the Marine 

Environment,” pressure enclosures for different electronic sensors and hardware will be 

produced (27). The printer to be utilized for the pressure enclosures is the Anycubic Photon 

Mono X. This Masked Stereolithography (MSLA) printer is high resolution, and it has a 

192 x 120 x 245 (mm) build volume (28). The Sryatec Sculpt Clear resin will be used to 

produce the pressure enclosures. This resin has been shown to be strong and capable of 

being used in an underwater environment (27).   

 

Figure 27: Any Cubic Photon Mono X (28) 
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Waterproof pressure enclosures will be manufactured and sealed with O-rings following 

the procedures given by the Parker O-ring manual (29). In-water trials will be used before 

placing electronics in the enclosures for testing to validate the performance of the 

enclosures. This will ensure that the enclosures will not leak at the required operational 

testing depths. An example of these enclosures is shown in the figure below.  

 

Figure 28: Example SLA Pressure Enclosure (27) 
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Chapter 2  
Test & Evaluation Model Design 

 

Unit Concept Overview 

Based on the feedback and requirements from Carderock, the proposed design is a simple, 

rectangular frame with large open sections for attaching thrusters, electronics canisters, and 

sensors. To facilitate modularity, brackets for all the components will be 3D printed and 

clamped onto the frame to allow easy reconfiguration. 

 

Figure 29: Hand Drawn Initial Concept 

The main factors that will impact the system performance will be available thrust, thruster 

positioning, power, and unit weight. During testing, isolating how much thrust is needed to 

control the unit at a specific current speed will be valuable information for building a fully 

functional system. To do this, up to 8 thrusters will be supported by the unit. Each thruster 

will be able to run above the customer requirement of 8 lbf of thrust. The weight and 

balance of the unit will be adjusted by moving steel weights along the frame of the unit.  
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Figure 30: Test and Evaluation Model CAD Design 

The figure above shows the design for the T&E unit. The frame is constructed from 2”x2” 

¼” thick aluminum tube extrusion. Centered on the frame is a load-rated, universal joint 

lifting eye. This lifting point will allow the unit to freely move in pitch, yaw, and roll. The 

tube located forward simulates the size of a payload for the system. Located at the center of 

the vehicle is an IMU that measures pitch. At the front of the vehicle is the heading sensor, 

which uses current flow to measure the yaw angle. Located near the IMU is an underwater 

enclosure that houses the connections for sensors and motion capture lights. Surface power 

supplies power all of the thrusters to reduce the risk of electrical shock through the water.  
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Figure 31: System Connection Diagram 

The block diagram above depicts the system layout of the AUV docking device. The goal 

of the device is to be effective at testing what is being investigated, while remaining simple 

and economical to build. Many system components used were COTS, and those requiring 

customization were made using additive manufacturing techniques. The control system 

was hosted onboard an Arduino Mega R3. This board is a standard microcontroller with 

robust software and community support. The Arduino board will connect to the sensors 

and motor controllers. The test unit is controlled by a topside laptop connected through a 

USB to ethernet converter. On board the unit, the primary sensors are a 9DoF IMU and a 

current vane. The combination of these sensors will feed into the control loops for pitch 

and yaw. The system records data and uses it in the overall stability analysis. Also located 

on the unit are green, underwater LEDs; these provide visibility to the underwater motion 

capture system.  
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Mechanical Analysis 

To meet the requirements set forth by NSWCCD, a module and strong test frame was 

needed. Due to the length requirement of 12ft, it was important that the model could be 

broken down into smaller sections for transport. Breaking the model into three sections 

introduced a possible point of failure in the frame. The areas shown in the figure below are 

the bulkheads where the sections meet. If this joint were not strong enough to support the 

weight of the test frame and additional ballast, the unit would be at risk of failure.  

 

Figure 32: Section Bulkhead 

Finite Element Analysis (FEA) was completed to ensure that the bulkhead would be 

suitable for use and not fail. For the analysis, the bulkhead was simplified to be just the ¼” 

aluminum plate. On the aluminum plate, the center bolts were fixed, and loads were 

applied to the corners where the frame would be pulled. A load of 200 lbs was applied in 

tension for the top corners of the aluminum plate. This load would represent the maximum 

possible load applied to the section.  
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Figure 33: Bulkhead FEA Setup 

The FEA setup above was created inside of Fusion 360. Fusion 360 is a free-to-students 

Computer Aided Design (CAD) software created by Autodesk. The FEA tools inside 

Fusion 360, utilize the Nastran FEA solver. The diagram from the figure above is 

converted into constraints, loads, and materials inside of Fusion 360. This model was then 

solved, and the following output was produced.  
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Figure 34: FEA Bulkhead Safety Factor Result 

The figure above shows the result of solving the FEA. Shown is a visual representation of 

the safety factor. The safety factor for the entire plate is above eight, indicating it will not 

yield and cause failure. The safety factor was not the only metric examined, however. The 

total deflection of the plate was also significant; if it deflected too much, the frame would 

no longer be straight and could cause adverse effects.  
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Figure 35: Bulkhead FEA Total Defections 

The figure above shows the deflection of the aluminum plate when placed under the given 

load. The maximum deflection observed was 0.021 mm. This is a low amount of deflection 

and should not interfere with the unit's operation.  

The next critical mechanical section is the lift point connection for the test frame. A swivel 

hoist ring was used to support the load of the frame and allow for pitch and rotation. The 

swivel hoist ring allowed the test frame to move freely, but a strong single mount point 

location was required. The connection of the hoist ring to the test frame is shown below.  
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Figure 36: Swivel Hoist Ring 

In the figure above, the main support holding the steel bar and hoist ring into place is held 

into place with large aluminum plates. These large aluminum plates are the weak link in 

the lifting system. Like the bulkhead section, FEA was completed to check if the plates 

would yield or deflect. To do this, a section at the top of the test frame model was isolated. 

The aluminum extrusion bars were simplified to square tubes and fixed into place on the 

ends. A load of 300 lbs was applied to the hoist ring to represent a maximum load case. 

The results of the FEA solve are shown in the figures below.  
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Figure 37: Lift Point Safety Factor 

The results for the safety factor show a minimum safety factor of 15. This indicates the 

aluminum plates and steel bar would not yield.  

 

Figure 38: Lift Point Total Deflection 

The total deflection at the lifting point was 0.21mm. This was a small deflection compared 

to the total length of the frame rails. This small deflection would not cause adverse effects 

during the unit testing.  

Overall, the mechanical analysis for the test system revealed that the section design would 

not weaken the strength of the frame and that the lift point would be strong enough for 

lifting and testing. This step of the design process was critical to ensure the test unit would 

perform as expected and not suffer any debilitating mechanical failures.  
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Yaw Sensor 

When operating from a ship in open water, a full suite of sensors will be available to track 

the position of the unit. A Doppler Velocity Logger (DVL) and Inertial Navigation System 

(INS) can be used to have an accurate measurement for the heading and location of 

underwater systems (34). Implementing a DVL and INS is impractical for this system due 

to cost and development effort. To supply the model with accurate heading information, a 

different method needs to be implemented. The solution utilized is a current vane that will 

measure the offset between the device and the current. Since the CWC creates a uniform 

current flow, the difference in angle will be the yaw angle of the device.  

 

Figure 39: Yaw Sensor Sketch 

A detailed model for the current sensor was developed from the above concept. To 

decrease the manufacturing time, a pre-made aluminum enclosure from Bud Industries (37) 

was used to protect the encoder. A hole was drilled into the top of the case, and a 3D-

printed flange was used to seal the shaft entering the case. This assembly was then bolted 

to the bottom of the current plate via a 3D-printed mount.  
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Figure 40: Yaw Sensor CAD Design 

Dual bearings were used to support the shaft in connecting the current vane to the encoder. 

Bearings located inside the top plate and at the bottom of the sensor housing provide 

support for the shaft. Supporting the shaft minimizes deflection while under load, which 

ensures the integrity of the O-ring shaft seal. The O-ring seal was designed in accordance 

with the Parker O-Ring handbook (29). The O-ring groove profile and support bearings can 

be seen in the section analysis located below.  
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Figure 41: Current Vane Section View 

The encoder used in this sensor was the AMT22 from CUI Devices. This encoder has a 16-

bit resolution, which allows it to measure angular change of 0.2 degrees (38). The encoder 

was connected to the control setup through an SPI connection. 

An SPI connection is a synchronous data bus, which uses separate lines for data and a 

clock signal. This aims to keep both the host and peripheral in sync. The clock signal lets 

the host controller know when to sample the data line. An SPI connection is great for 

connections that require time synchronization and a robust connection between the host 

and peripheral. The SPI connection utilizes the following pins to communicate with the 

Arduino (39). 

MISO – Master In Slave Out – Pin where the Arduino sends output when acting as the 

controller 

MOSI – Master Out Slave In – Pin where the sensor sends output when acting as the 

peripheral 

CS – Chip Select – This pin tells the peripheral when to wake and begin transmitting on the 

data lines. Since this research only uses a single SPI connection, the CS line will be set 

statically.   

Encoder 
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Pitch Sensor 

An IMU was placed at the model's center to measure the testing model's pitch angle. When 

located here, the IMU can measure the pitch angle of the vehicle and report this to the 

controller as Euler angles. Euler angles are used to describe the rotation of a body with 

respect to a fixed coordinate frame (40). The IMU connects to the Arduino through an 

Inter-Integrated Circuit (I2C), a communication method known for its simplicity and ease 

of integration. The I2C connection, consisting of two signals, Serial Data (SDA) and Serial 

Clock (SCL), is controlled by the bus controller (41). These two lines allow peripherals to 

communicate with the host with just two wire connections, simplifying the integration 

process. Data is transmitted by pulling the clock line high and then pulling SDA to low. 

The address of the sensor is sent then, followed by data. The host device reads the address 

and data, making the system's integration straightforward. 

The pitch sensor was housed in an underwater housing made by Bud Industries. Inside the 

housing was a 3D-printed bracket to hold the IMU in place. An additional mount was 

created to adjust the enclosure's position on the testing model. This mount was easily 

removable and allowed for sensor calibration before final system testing. Below, a cross-

section view shows the components of the pitch sensor. 

 

Figure 42: Pitch Sensor Section Analysis 

IMU 
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Model Power Setup 

To support extended testing efforts required for this test, where the unit may be in the 

water for 4-6 hours, powering the unit through batteries would not be a realistic or cost-

effective solution. Additionally, batteries in the CWC workspace need special permissions 

to ensure environmental safety. To work around these issues, a surface power-supplied unit 

was required. Due to safety concerns from Carderock, the power supplies used to run the 

test frame must be located above the waterline so no 120V AC power goes into the CWC 

testing basin. Following this requirement will ensure that those supporting the test are not 

at risk for fatal electric shock. 

To calculate the surface power needed to run the system at the required capacity, thruster 

performance tables from blue robotics were used to identify maximum current draws.  

 

Figure 43: Blue Robotics Thruster Power Curve (42) 

Based on the system's thrust requirements, the unit must have 2000w of 20v DC power 

available, which will be split between the thrusters and the control system. This powering 

specification will allow the unit to exceed the thrust requirement of each motor, giving 

ample room to ramp the thrusters up and down to test different power configuration setups.  
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Power supply selection required balancing power demands, cost, and simplicity. While a 

single or dual power supply setup would result in a small topside and less wiring, 

implementing this equipment would have been more costly than using multiple lower-

capacity power supplies. The following table compares the difference between a 2 and 8 

power supply setup.  

Table 1: Power Supply Comparison 

 2 Power Supplies 8 Power Supplies 

Individual Power 1000w 400w 

Total Power 2000w 3200w 

Price $500 $312 

 

Due to the difference in cost, the eight individual power supply option was selected. The 

power supply used for this research was the Dork 24V 480W (43). This unit features user-

settable voltage from 0V-24V with a maximum current 20 amps. Blue Robotics’ basic 

Electronic Speed Controller (ESC) are connected to each power supply. The basic ESC can 

drive brushless motors up to a maximum power of 780W (44). 
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Figure 44: Power Distribution Setup 

The power setup locates AC-DC power supplies above the waterline along with 

corresponding motor controllers. The output from the motor controllers will be passed 

down to the test frame. The positioning of the power supplies above the water is needed to 

ensure safety during testing. Heavy gauge tri-plex wire connects the power supplies and 

motor controllers to the test frame. Each tri-plex wire is rated for 60amps of current 

throughput. While this current rating is far higher than what was required for an individual 

thruster, the larger AWG wire was needed to reduce voltage loss over the wire run. The 

diagram below shows how the wires run from the test frame to the support board.  
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Figure 45: Tether Connection Cable Runs 

Wires connecting to each thruster were 25ft long. The following calculations were used to 

find voltage loss for 12AWG wires carrying the output from the Blue Robotics’ basic ESC.  

𝑉𝑑𝑟𝑜𝑝 = √3 ∗ 𝐼𝑤𝑖𝑟𝑒(𝐴) ∗ 𝑅𝑤𝑖𝑟𝑒(𝛀) = 1.732 ∗ 20𝐴 ∗ 0.0397(𝛀) = 𝟏. 𝟑𝑽 

Based on the calculations above, it is shown that the power setup for this test did not limit 

the system's performance. At the maximum power loss of 6%, the unit can still output a 

thrust of 8lbs from each thruster.  
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Model Tether Setup 

Several different options exist to connect the unit to the surface laptop. The conventional 

technique for ROVs is to use a network interface that can link the ROV and topside via a 

differential signal like ethernet (31). While this technique allows for communication up to 

100m, a more cost-effective method can be used for this testing. This method utilizes 

COTS Universal Serial Bus (USB to ethernet adapters); these devices are driverless and are 

not seen by the host computer or Arduino. This allows Simulink to connect directly to the 

Arduino located on the unit. This method of connection is suitable for applications less 

than 50m (32).  

 

Figure 46: USB - Ethernet Adapters (32) 

A structural tether is required to secure the docking unit to the surface and suspend its 

weight in the water. This tether must be able to support the maximum wet weight of the 

unit, 200 lbs. The tether selected was a wire cable with a ¼” diameter. This cable had a 

working load of 300 lbs, which was greater than the vehicle's maximum weight. The wire 

cable held the weight of the unit during testing.  
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To connect the sensors and onboard motion capture LEDs to the topside power board, dual 

CAT 6 ethernet cables were repurposed. The conductors of the cables were wired 

according to the following wiring table. For the motion capture system, dual wire pairs 

were used to increase the maximum current the lighting system could carry. To limit noise 

that may be induced by the high-powered thrusters, shielded cables were used to connect 

the testing unit. The cable chosen was flexible for ease of rigging but also tough to limit 

the risk of a hole being punctured into the jacket. The wiring and cable setup for this 

research provided a strong, yet cost effective strategy for connecting an underwater vehicle 

to the surface.  

Table 2: Primary Wire Configuration 

Pin Wire Color Function 

1 Green – White Sensor Power (+) 

2 Green Sensor Power (-) 

3 Blue - White SDA 

4 Blue SCL 

5 White - Orange Chip Select 

6 Orange MISO 

7 Brown – White MOSI 

8 Brown SCLK 
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Motion Capture Integration 

When designing the motion capture system for this testing model, a key feature was the 

type of green light that would be attached to the system. To support the motion capture 

system, the green light needed to be bright and rated for underwater use. After searching 

through COTS databases, the green light from FXC was chosen for its luminosity, cost, 

and simple mounting method. This green light was tested in a pool prior to installation on 

the testing frame. The purpose of this pool test was to evaluate the brightness of the light in 

a gray-scale image. The images below are from the pool test.  

 

Figure 47: Motion Capture Light Test 

The gray-scale images above show the LED on the right side of the bar as being the 

brightest. This hot spot shown on the gray-scale image indicates the motion capture system 

will be able to identify each marker well.  

Mounting the markers was accomplished with 3D-printed L brackets. The light had a 

rubber sleeve that fit inside the L bracket, securing it into place, as shown in the section 

view below.  
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Figure 48: Marker Bracket Section View 

The placement of the markers onboard the testing unit was aimed at being asymmetric. To 

allow the cameras to resolve the position of the rigid body better, markers should be placed 

with little symmetry, which could allow for an incorrect position to be resolved. Markers 

were more concentrated toward the rear of the unit as the rear section would be closer to 

the cameras. The distributions of markers along the body followed the count shown in the 

diagram below. 

 

Figure 49: Motion Capture Marker Count 

Based on the vehicle's geometry, there will be differences in levels of accuracy between 

different measurements of the marker's position. The motion capture is more accurate when 

the separation between markers increases. Due to the unit's 12ft length, the measurements 

of yaw and pitch will be very accurate. Roll measurements will be the least accurate as the 

distance between markers in this position is the smallest. 

The motion capture lights were strategically wired into light strings, allowing for their 

distribution along the frame in various directions. This thoughtful design ensured that the 

motion capture lights were connected inside the electrical distribution box, conveniently 

located near the center of the testing unit.  

LED 
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Chapter 3  
Test & Evaluation Model Building 

 

Frame Construction 

The assembly of the test frame was completed using a variety of hand- and computer-

controlled tools. Building and assembly of the unit followed the order described below.  

Materials for this project were procured and cut using a combination of tools. The 

aluminum extrusions were cut using a horizontal band saw. The horizontal band saw is a 

very effective tool for cutting bar stock.  

 

Figure 50: Horizontal Band Saw Cutting Frame Components 

The next major component that needed to be cut was the plates for the bulkhead section 

connections. These plates were cut and drilled using a combination of the water jet and a 

hand drill. Due to the plates’ size, the water jet could not cut the holes along the outside 

edges of the connection plates. These outside holes were drilled using a template and 

match drilling. The center hole that allowed the payload tube to pass through was cut using 

the water jet. The following diagram shows the areas cut by the water jet and those drilled 

by hand. 
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Figure 51: Bulkhead Plate Drill Areas 

With all the frame sections and connection plates cut, the test frame could be bolted 

together and assembled. Assembly was aided by using drop-in slider brackets in the 

aluminum extrusion. These slide-in mounts allowed for additional support and hardware to 

be located anywhere along the extrusion. This construction method facilitated the quick 

initial assembly of the test frame, as shown in the figure below.  

Hand Drill Water Jet  
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Figure 52: Initial Frame Assembly 

After the initial assembly of the test frame, the next step was to fabricate the lifting point 

section. This section had to be manufactured with extra care as it would support the entire 

weight of the unit while lifting and testing. The lifting point was tapped into steel bar stock 

and secured to the test frame with aluminum plates.  

 

Figure 53: Lift Point 

After the lift point was installed, the payload tube was installed in the front section. The 

payload tube was constructed from a 6” PVC pipe and secured onto the unit with hose 

clamps. The figure below shows the installed payload tube.  
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Figure 54: Payload Tube 

The final step in the mechanical assembly for the unit was to hang it with an engine hoist 

to ensure it was secure and stable, along with gathering an initial dry weight of the frame. 

 

Figure 55: Test Frame Hang Test 

The hang test proved the lifting point was secure, and the test frame had an initial dry 

weight of 130 lbs. Additional ballast weight would need to be added during testing at 

NSWCCD. The fully assembled lift test represents the conclusion of the mechanical frame 

assembly.  
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Additive Manufactured Components 

To support the fast construction of the test frame, many parts that would have been 

difficult to machine were manufactured with 3D printing. 3D printing was used in almost 

every area of the test frame. Thruster mounts, sensor components, and cable molds were 

manufactured using the Prusa Mk3, as described in the introduction section of this 

research. Below, the process for creating several vital components will be examined in 

detail. 

Thruster mounts were a major component built with 3D printing. The figure below shows 

the slicing setup for a pitch thruster mount.  

 

Figure 56: Pitch Mount 3D printing setup 

All 3D-printed parts were printed in an orientation that would be best for their load case. 

For the pitch mount, the layer lines run perpendicular to the direction of the load. This 

makes the part less likely to split and fail when under load. This process of orientating the 

load lines was completed for each of the 3D-printed parts support loads.  
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Another group of printed parts were brackets and supports for the sensors located on the 

test frame. For the yaw sensor, a plate was printed to mount the IMU and bear it inside the 

waterproof case. The setup for this part is seen in the figure below.  

 

Figure 57: Encoder Mount 

A critical parameter for the encoder mount and other sensor mounting parts was the hole 

and part size tolerances. If the holes were sized incorrectly, the encoder would not interface 

correctly or be misaligned. To correct for tolerance issues, the parts were printed, and then 

the printed dimensions were measured and compared to CAD. If the dimensions were 

incorrect, an offset would be applied in CAD to result in a part with the desired 

dimensions.  

To support sealing the shaft on the yaw sensor, an Oring collar had to be produced. Since 

this part needed to stop water intrusion into the case, it needed to be printed using MSLA. 

MSLA printers can create solid parts that are not penetrable by water. The process 

followed for printing with MSLA is found in the introduction section of this research. The 

Oring collar was first created in CAD using the specifications in the Parker Oring Manual 

(29). The figure below shows a cross-section of the Oring collar. 
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Figure 58: Oring Flange Cross Section 

In printing this part, it was critical that the Oring cut-out was dimensionally correct within 

the tolerances given by the handbook. Like the FDM printed parts, an initial print was 

completed, and tolerances were adjusted through CAD. The result was an MSLA part, 

which an Oring was installed into. The part passed a vacuum check, which stressed the 

shaft Oring gland. Utilizing 3D printing for this part decreased manufacturing time and 

allowed for quick modification compared to making it on a lathe by hand. 

Overall, 3D printing was critical to the assembly and function of the test frame. Many 3D 

printed parts were created, modified, and installed onto the frame. Since 3D printed parts 

can often be brittle and susceptible to drops or impacts, spare parts for every 3D printed 

part were made before transport to NSWCCD. This ensured that if any parts were to break, 

a spare would be ready to install to keep the testing going.  

  



 

 

57 

 

Electronic Assembly 

The first step in creating the electrical system for the test frame was to prepare the 

thrusters. The thrusters used had short 18” power leads. These leads needed to be extended 

to larger, longer wires for connection to the surface. To do this, a cable mold was created. 

The cable mold was a 3D printed block that adapted the smaller thruster power wire to the 

larger tether wire. The block was then filled with adhesive to waterproof and strengthen the 

connection.  

 

Figure 59: Thruster Cable Mold 

The figure above shows the cables soldered together prior to potting. Before inserting the 

adhesive, it was important to ensure no solder connections were touching and test the 

operation of the thruster. After each of the eight thrusters were prepared, they were filled 

with adhesive during one mix-and-pour operation, as shown in the following figure.  
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Figure 60: Thruster Potting 

After potting, the thrusters were retested before installation onto the test frame. All 

thrusters passed testing, and each cable mold was well sealed for underwater use. 

The primary electrical component of the test frame is the surface control board. The 

surface control board needed to have space for the power supplies, motor controllers, and 

microcontrollers. A large sheet of finished wood was used as a backing plate for all the 

components. Initial assembly of the board included mounting the core components.  
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Figure 61: Core Components of Surface Control Board 

In the figure above, the core components are installed on the backing board. The power 

supplies are each directly connected to a motor controller. The motor controllers are 

connected to screw terminals for easy connection to the thruster cables. The Arduino 

microcontroller and USB-to-ethernet converter are on the board's right side.  

Additional equipment was installed to fully support the test frame's function, including 

sensor and motion capture light connections. The figure below shows the final 

configuration of the electronics board with callouts for the major components.  



 

 

60 

 

 

Figure 62: Final Control Board Setup Connected for Testing 

Three different modules had to be constructed for use onboard the test frame. The central 

distribution box connected the sensors and motion capture lights to the model tethers. This 

box was made using a NEMA 6P-rated aluminum enclosure. These NEMA 6P enclosures 

are rated from the factory for continuous exposure at 6ft. Additional depth validation was 

completed at the Florida Tech Port Canaveral test site. A NEMA 6P enclosure was left in 

15ft of water for five days. This test validated the performance of the enclosures and 

ensured they would not leak during testing at NSWCCD.  

Motor 

Controllers 

Power Supplies 

Arduino 

Tether 

Computer 

Connection 
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Figure 63: NEMA 6P Enclosure Sealed for Exposure Testing 

 

Figure 64: NEMA 6P Enclosure Deployed at 15ft 

After testing of the enclosure revealed no leaks over the 5-day exposure period, the 

hardware for connecting the sensors and motion capture lights was installed.  
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Figure 65: Test Frame Electrical Distribution Box 

In the figure above, the components inside the distribution box can be seen. On the left side 

of the box, a screw terminal distribution strip is used to connect all the motion capture 

lights to the power leads in the model tethers. On the right-hand side is another screw 

terminal, but it is set up as a pass-through to connect the tether to the yaw and pitch sensor. 

Setting up the sensors through this screw terminal block allowed for easy wire 

reconfigurations and uninstalling of systems.  

The pitch sensor was assembled into its NEMA 6P case using a 3D printed mount and 

connection wires. The sensor was connected with removal wire connections, so if a new 

IMU needed to be installed or tested, it could be simply swapped in. The figure below 

shows the IMU installed into the case.  
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Figure 66: Assembled IMU Pitch Sensor 

The final assembly of the yaw sensor included gluing the Oring collar into place. To find 

the correct alignment for the Oring collar, the encoder was first installed into the 3D 

printed bracket and case. Then, the shaft and Oring collar were set into place and glued. 

Installing the encoder allowed the alignment to be checked as the glue set. Aligning the 

shaft well with the encoder reduced friction and allowed the sensor to be more responsive 

to yaw motion. The figure below shows the Oring collar glued into place.  
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Figure 67: Glued Oring Collar 

With the encoder mounted and collar glued into place the wiring of the enclosure could be 

completed. Similar to the pitch sensor, connectors were used for the sensor to make 

swapping out the encoder easy. The final yaw sensor enclosure is shown below.  

 

Figure 68: Yaw Sensor 
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Final Assembly 

After all the system components were assembled and finalized, they were mounted onto 

the test frame. The yaw sensor was mounted to its plate and installed onto the front of the 

frame. The figure below shows the current vane fully ready for installation.  

 

Figure 69: Yaw Sensor Installation Ready 

In addition to installing the distribution box and yaw/pitch sensors, the motion capture 

lights were installed on the test frame and wired into the electrical box. The motion capture 

lights were wired into four different strings to facilitate wire management better. The 

markers were placed asymmetrically, as described previously in this research.  
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Figure 70: Test Frame Fully Setup with Electronics 

With all the electronics assembled onto the frame, each system was tested and validated. 

The motion capture lights were powered up, and each light was checked for correct 

function. The yaw and pitch sensor outputs were checked for correct function. All thrusters 

were also tested to ensure correct performance and rotational direction. With all systems 

installed and tested, the frame was ready for transport to NSWCCD. 

  

 



 

 

67 

 

Chapter 4  
Software Control of Model 

 

MATLAB Simulink Setup 

One of the critical elements for the testing unit is to be simplistic but capable of running 

different control configurations. The ability to modify the control system will allow other 

control types to be tested on the unit during future testing. Based on feedback from 

NSWCCD, many control systems have been developed and built through Simulink. Based 

on the use of Simulink, the Arduino microprocessor Mega R3 was selected. Arduino is 

connected to Simulink with the Arduino support package library. With this package, the 

board can be run in two different modes. The first mode takes the Simulink model and 

uploads it directly to the Arduino for code execution. Simulink can view the results and 

parameters of this model. The second mode allows the Arduino to act as input and output 

while the model computations are done onboard the computer hosting the model (30). 

Running the Arduino as IO will allow for quick execution of different Simulink blocks but 

does not result in a robust data connection. For longer simulation deployment, the Monitor 

and Tune function is recommended. Through this setup, different simulation parameters 

are controllable during the simulation. The ability to quickly change parameters will allow 

for successful system tunning during the in-water trials.   
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Simulink Arduino Sensor Connection 

The Simulink library currently has several blocks that will aid in creating the control 

system. The following blocks will be used to easily interact with the Arduino and the 

connected sensors.  

 

Figure 71: Arduino Simulink Blocks 

The SPI block is used to interface with the current vane encoder. The BNO055 block will 

provide all the necessary data for vehicle pitch. This data can be pulled either from the 

sensor fusion algorithm as Euler angles or as raw values of the nine onboard sensors. 

Lastly, the PWM output block sends signals to each thruster’s Electronic Speed Controllers 

(ESC). By utilizing logic controls in Simulink, the arming process of the ESCs can be 

executed before starting the full control loop and thrust outputs to the motors. These 

combinations of blocks will allow for effective sensing and control of the unit while 

connected to the topside laptop. The topside laptop will be able to monitor and record the 

sensor values and control loop performance.  

A Simulink model was made to interface with each sensor and pull the required values 

from each data bus into the main simulation. For the IMU, the built-in BNO055 library 

block shown in Figure 37 was utilized. 
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Figure 72: IMU Read Simulink 

In the model shown above, the output of the IMU was set to sensor fusion and Euler 

angles. This method of pulling data from the IMU applies a sensor fusion Kalman filter. 

This filter improves the overall output from the block. The output of the block was set to 

Euler angles. The quaternion output would typically be preferred when interfacing with an 

IMU. Due to the reduced motion range of the testing frame, having a coordinate fixed 

Euler angle was more straightforward to work with. The Simulink block outputs a [1x3] 

matrix of Euler angles. The pitch value is the second Euler angle; the MATLAB function 

block shown in the model above pulls this portion of the matrix. The same method is used 

to gather the calibration status of the IMU. The portion of the matrix that outputs 

accelerometer calibration is pulled out separately with a MATLAB function. Both the 

calibration status and current pitch position are passed back upwards to the main Simulink 

model running the vehicle control. 

There was no existing Simulink library for the encoder to retrieve data from the current 

vane sensor. The encoder works over the SPI data bus through a send/receive protocol. A 

read command must be sent to the encoder, and then the device responds with its current 

position. To do this, the SPI Write/Read block was utilized. Similar to the IMU read 

model, a separate model for encoder position reading was used. 
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Figure 73: Simulink Model for Encoder Position Reading 

From the diagram above, the model begins with creating a 16-unit vector of the read 

command. For this encoder, the read command is [0]. This read command is sent to the SPI 

block in Simulink. This block transmits the read command and records the encoder's 

response. When the encoder responds, the position is included in the data packet as a 14-bit 

precision number and a check sum (38). For use with this system, the check sum portion is 

ignored, and the positional data is retrieved by the extract bit block. The extracted bits are 

then converted to a numerical value. This numerical value can then be mapped to the 

encoder's 360-degree rotation range and transmitted to the main simulation model.  

Model Control Setup 

As described in the introduction for this project, a closed-loop control system was needed 

to maintain pitch and yaw angles. To improve system performance, these controllers were 

decoupled into separate Simulink simulations that ran onboard separate Arduinos. The 

implementation of this is shown in the following system diagram.  
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Figure 74: Laptop Arduino Connection Block Diagram 

 

The primary goal of the PID control loops is to take the current pitch/yaw of the vehicle 

and use it to control how much power the unit needs to apply to hold the setpoint. The PID 

loop used to control the vehicle pitch is shown in the figure below.  

 

Figure 75: PID Control Loop for Pitch 

In the figure shown above, the main function is to take the difference between the pitch 

setpoint and the current pitch position. This results in a measurement of error in pitch. This 

error is passed to the Simulink PID block, which uses Equation 1 to compute the output of 
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the PID block. The output of the PID block has a saturation limit of +-90; this output 

bound is used by the Thrust mapping block to scale the PID output to the force of the 

thrusters. If the PID block outputs +90, the thrusters will be actuated at their maximum set 

force. If the PID block values are between the max/min, then the value is scaled against the 

maximum thrust value set. The figure below shows the thruster mapping setup for the 

vehicle.  

 

Figure 76: PID Thruster Mapping 

In the figure above, the model for thruster mapping is shown. The Blue Robotics T200 

thrusters used on the testing model do not output symmetric thrust. Due to the 

directionality of their accelerator nozzle, the thrusters output more force when running in 

the forward direction.  
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Figure 77: T200 Accelerator Nozzle (14) 

Two different PID-to-thrust blocks were created to account for this difference in thrust. A 

different mapping function will be used based on whether the PID value is positive or 

negative. If the PID function calls for forward thrust, then the forward block is used. The 

same process happens when reverse thrust is commanded. This step ensures the vehicle 

responds with equal thrust, allowing the unit to operate consistently. Since the thrust 

mapping blocks all accept the thruster power limit, the system can be easily modified for 

different maximum thrust settings. The gains inside the PID block, along with maximum 

thrust values, can be tuned while the model is running. The PWM output from the thruster 

mapping functions is given to a set of blocks that will output the correct PWM frequency 

to the thrusters. The command set used for this is shown below.  
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Figure 78: PWM Output to Thrusters 

Returned from the PID section is the called thruster output. The PWM value called by the 

PID loop is referenced to the Blue Robotics T200 data table for PWM vs. Thruster Output. 

This output is displayed to the user and assists with tuning and diagnosing the system.  

The PID control loops for the pitch and yaw control are very similar, as shown in the figure 

below. The main difference between the setups is that a separate derivative term was 

created for the Yaw controller to bypass the built-in MATLAB PID block. The PID model 

setup for the Yaw control loop is shown in the figure below.  



 

 

75 

 

 

Figure 79: Yaw PID Controller 

The setup for PID control over the yaw position of the test frame is shown in the figure 

above. Due to limitations with the Simulink derivative term inside the standard PID block, 

a separate D term had to be added. Testing revealed that the D term was not able to become 

negative, which would aid in slowing down the system’s response. Further explanation of 

this behavior is discussed in Chapter 6. Since the D term was pulling directly from the 

calculated error between the pitch setpoint and the current pitch position, a filter needed to 

be applied so the D term would not act erratically. A low pass filter of 5HZ was applied to 

the signal; this smoothed the signal going into the derivative block, resulting in a more 

accurate D term response for the model. Since the derivative was separate from the 

Simulink PID block, saturation limits had to be applied so its effect on the overall PID 

output would be within the parameters set for the PI terms. The output of this PID 

controller setup was then passed into the same thruster mapping blocks as shown 

previously in this section.  

Overall, the PID controller setup for the test frame was set up to effectively and simply 

control the test frame’s yaw and pitch position. The control loops utilized real-time sensor 

feedback for control while passing important information back to the user to assist in the 

tuning process.  
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Hardware Software Integration 

The individual models discussed in the sections above were combined into two models. 

Model 1 controlled the yaw position of the vehicle and logged corresponding signals. 

Model 2 controlled the pitch position of the vehicle and logged the corresponding signals 

for pitch. The figure below shows Model 1 setup in Simulink.  

 

Figure 80: Simulation Model 1: Yaw Control 

The figure above shows how the yaw sensor is used as input to the PID controller and 

thruster mapping block. From the model blocks, different outputs are mapped to a data bus, 

which is then recorded in the MATLAB workspace. This setup of inputs and outputs is the 

same between Model 1 and Model 2. The variables logged for Model 1 and Model 2 are 

shown in the following table.  
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Table 3: Simulink Logged Variables 

Model 1 Model 2 Description 

YawSetPoint PitchSetPoint Controller setpoint 

YawMaxThrust PitchMaxThrust Max thrust allowed for individual motor 

YawThrust PitchThrust Commanded thrust from controller 

YawPos PitchPos Orientation data 

PGain  gain setting 

IGain  gain setting 

DGain  gain setting 

 

The data collected from the model can be used to tune the system in real-time and in data 

processing to better understand the motion observed by the motion capture system. A 

Simulink panel was created for each model to easily access critical parameters. The panels 

created for Model 1 is shown in the figure below.  

 

Figure 81: Simulink Panel 

Simulink panels float in the workspace and can be easily accessed anywhere in the model, 

making them a great choice for displaying data to the user and receiving user input. For 

each model, a gauge was used to display the relative position of the test frame. A PID loop 
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activation switch was included to enable/disable the control loop. An input for setpoint was 

located on the panel; editing this parameter would change the desired orientation for the 

respective control loop. Lastly, there is an output box for the commanded thruster force. 

This box lets the user quickly see how much force the thrusters actuate. Working with 

these Simulink panels allowed for real-time testing and monitoring of the system.  

To deploy the model to the Arduino controller, Simulink will compile the code into .hex 

files which are uploaded to the controller along with the Simulink server software. The 

code will execute on the Arduino based on parameters set in the simulation, the 

corresponding output is displayed back to the user.   

In Simulink, different settings can be used to optimize the controller performance through 

the “Hardware Settings” work pane. The figure below shows the Arduino hardware 

settings that can be changed.  

 

Figure 82: Arduino Hardware Options 
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During system optimization, it was found that the I2C bus and SPI bus clock speeds 

needed to be adjusted for the best data integrity. Due to overhead caused by the Simulink 

model loaded onto the Arduino, a lower clock speed and slower data collection rate was 

used to reduce the possibility of communication errors. Both the SPI bus and I2C bus were 

set to 1000Hz. The sample rate of the onboard sensors was set to 8.3Hz, as found using the 

equation below.  

𝐹 =
1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑚𝑒
        Equation 5 

Dry Test Trails 

The system was validated with dry runs of the electronics/software system at Florida Tech 

before transfer to NSWCCD. The dry checkouts' goal was to check sensor input, control 

responses, and stamina. 

 

Figure 83: Yaw Stamina Run 

The figure above shows a stamina run completed for the yaw sensor. The purpose of this 

test was to ensure the system was able to run a long data collection without sensor or 

control errors. In the graph above, the sensor values stay constant except near the 450-
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second mark, where the sensor oscillates back and forth to check for proper response. The 

same process was completed for the pitch controller. The figure below shows a windowed 

view of the motion of the yaw and pitch controller. 

 

Figure 84: Yaw and Pitch Validation 

The final assessment of the controller models was to validate that sensor motion would 

result in PID output to the thrusters. To do this, the yaw sensor and setpoint were adjusted 

to cause a thruster response. The same procedure was completed for the pitch controller. 

The figure below shows the output from the yaw output check.  
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Figure 85: Yaw Controller Checkout 

From the figure above, it can be seen that when the position and setpoint of the controller 

were adjusted, a response to the thrusters was generated. The maximum thruster output 

matched what was set as the limit in the Simulink control panel. Completing these tests for 

the yaw and pitch controller indicated that the software and hardware were working as 

expected and ready for testing at NSWCCD.  
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Chapter 5  
Test Preparation 

 

Proposed Test Setup 

Testing was performed with NSWCCD in the CWC to analyze and evaluate the stability of 

the AUV capture system. This facility is a large water circulator that can produce uniform 

currents across a test section. The water flow is controlled by a constant-speed, motorized 

impeller with adjustable flow vanes.  

 

Figure 86: Circulating Water Channel Scale Model and Testing Section 

The water flows through the large open working section; this section has many features to 

facilitate model testing. Lighting and mounting points are placed along the working 

section. Adjustable bridge sections are located atop the working section on rolling tracks 

for quick model positioning. This is where the test frame will be mounted along with the 

needed sensors. The figure below shows a top-down view of the testing setup.  
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Figure 87: Overhead Test View 

Underwater motion capture will be used to capture the exact motions of the device. This 

system is being analyzed and developed by the Unmanned System Hydrodynamics 

Division at Carderock, Code 881. This system utilizes OptiTrack Prime 13W cameras 

located inside underwater housings. To work with the underwater motion capture system, 

green LED lights were placed along the body, which will be tracked by the motion capture 

system. Based on previous testing by Code 881, the estimated resolution of the underwater 

camera system is <5.0 mm. The body's motions can be exported for further analysis with 

software such as MATLAB.  

Data Collection Method 

The goal of the instrumentation is to monitor the position and controller output of the test 

frame during each trial. For each test of the Frame, the primary data source will be an 

underwater motion capture system. This motion capture system will consist of six cameras 

placed along the rear carriage of the CWC. The six cameras will be focused inward, toward 

the center of the testing section. All cameras will also be angled 25 degrees downwards to 

prevent reflections from the water’s surface, which could impact the motion capture’s 

performance. The cameras’ field of view (FOV) was placed into a 3D model of the CWC 

testing channel to visualize the motion capture environment. 
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Figure 88: Motion Capture FOV Facility Overlay 

Located onboard the test frame is a heading sensor and IMU. The data captured from the 

frame will include pitch, yaw, and controller output. Sensors will be time synchronized 

after testing using key events. 
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Figure 89: Yaw Sensor 

The yaw sensor shown above uses the constant current of the CWC to monitor the angular 

deflection of the test frame against the current direction. This measurement will track the 

yaw position of the frame and feed into the closed loop PID yaw controller.  

Control of the test frame is done through a Simulink controller and data acquisition (DAQ) 

setup, as described in the previous chapter. Dual Simulink simulation models connect to 

the dual Arduino MEGA 2560s in real-time. Using the data from the Arduino, Simulink 

PID controller blocks are used to command outputs to the frame’s onboard thrusters. 

During testing, real-time tunning was completed by adjusting parameters within the 

floating control panels of each model.  

Table 4: Measurement Devices 

Equipment Measurement Accuracy Significance  

Natural Point 

MoCap 

3-dimension body 

motions 

~0.4 in Critical to test 

data collection 

IMU Pitch 0.8 deg Critical to Pitch 

control loop 

performance 

Heading Sensor Yaw 0.2 deg Critical to Yaw 

control loop 

performance 

 

The table above outlines the different sensors used during testing and their relative 

accuracies. Each sensor is critical to the success of the experiment's testing.  
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Test Readiness 

To best prepare for testing at NSWCCD, a test plan outlines major test milestones, risks, 

procedures, and logistics. This test plan is reviewed during the Test Readiness Review 

(TRR). During the TRR, many personnel familiar with the project and facility discussed 

the test plan and suggested adjustments. The goal of the TRR was to ensure that the test 

was set up for success and to give feedback on any areas that needed improvement before 

testing. Action items that followed the TRR were sensor calibration, run matrix 

adjustments, and rigging procedure changes. 

As part of the TRR and test plan, criteria must be established for when the test can begin 

and end. The purpose of creating the test entrance and exit criteria is to put in place the 

framework that outlines how the test will begin and what needs to be accomplished to 

conclude testing. Without these guidelines, the test could continue to other goals and stray 

from the original test plan. The following entrance and exit criteria were established with 

NSWCCD. 

Test Entrance Criteria 

• The test frame is functioning and shows proper controls response. 

• The instrumentation on board frame is calibrated and functioning. 

• Simulink control space is functioning and recording data. 

• All required personnel are available. 

• Test plan and matrix approved. 

• TRR conducted and approved. 

Test Exit Criteria 

• Control loops turned for successful vehicle control. 

• Yaw/pitch position tests completed for configuration 0. 

• Estimates for power requirements obtained. 

Another key area of the test plan is outlining the testing schedule and daily Go/No-Go 

criteria. The following schedule was the original estimate for the completion of the 

research testing.  
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Table 5: Initial Testing Schedule 

Day Title  Description CWC Water 

Level 

Monday 3/4 Rigging, Frame Setup Assemble motion 

capture in CWC and 

calibrate. Assemble 

test frame and check 

system function. 

Full 

Tuesday 3/5 Frame tunning Complete setup of 

frame and work on 

PID control loop 

tunning. 

Full 

Wednesday 3/6 Testing Runs Complete testing for 

Yaw/Pitch Goals with 

initial test 

configuration. 

Full 

Thursday 3/7 Back-up testing runs, 

additional 

configuration runs 

Complete any missed 

runs from 

Wednesday. Time 

permitting try 

additional weight and 

buoyancy layouts or 

thruster positions. 

Full 

Friday 3/8 Tear down  Disassemble system 

and pack back onto 

crate. Disassemble 

motion capture from 

CWC. 

Full 

 

The goal was to complete testing within one week and run the facility with flow for a total 

of 3 days. The requested water level in the CWC is shown on the right-hand side of the 

table. It was important to mark down this as filling and draining the basin can take up to 1 

day, depending on water availability. Due to this, it was determined that rigging up the 

motion capture setup while the water was full would be the best option to minimize 

downtime. An additional consideration for keeping the water of the CWC full is the 

maximization of water clarity. Filters run at the bottom of the basin to clean particulates 

from the water; filling and draining the facility would remove any progress made by the 

filters to improve clarity.  
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Each day before flow can begin, the following set of Go/No-Go procedures are used to 

determine if testing can continue for the day.  

Daily Go Criteria 

• CWC and carriages are operational and safe, according to facilities personnel. 

• Essential test personnel are present and ready. 

• Test frame is in good condition, and all systems operate. 

• Instrumentation is set up, calibrated, and communicates with DAQ properly. 

Daily No-Go Criteria 

• CWC nonoperational 

• Required test personnel not present. 

• Damaged or incorrect operation of test frame systems. 

• Motion capture cameras moved or out of calibration. 

• DAQ and Simulink control nonfunctioning. 

If any no-go criteria is met, it must be correct before testing can continue in the facility.  

Test Procedures 

The following test procedures were used to conduct successful testing at NSWCCD.  

Test Progression: 

1. Weight and buoyancy 

2. Sensor calibration 

a. Find the minimum speed current vane is effective. 

b. Check function of IMU 

c. Check function of Motion capture system 

3. PID gain tuning 

a. Utilize Ziegler–Nichols tuning method 

b. Fine tune using Simulink control knobs 

4. 0/0 runs 

a. Evaluate performance at 0 deg yaw and 0 deg pitch 

5. Yaw positions 0, 1, 2, 3, 4, 5, 10, 15, 20, 25, 45, 90 both sides  

6. Pitch Positions 0, 5, 10 Yaw setpoint 0 
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Weight and Buoyancy Procedures 

1. Place estimated flotation and ballast onto vehicle. 

2. Connect load gauge to hoist. 

3. Lower unit into the water until fully below water surface. 

4. Pitch frame up and down to ensure all trapped air is released. 

5. Measure weight and pitch angle using motion capture and IMU. 

6. Use trim weights/flotation foam to correct angle and system weight. 

7. Stop adjustments when 200lbs negative and 0-degree pitch is achieved. 

Gain Tunning Procedures 

1. Place the frame into water.  

2. With no current use Ziegler–Nichols method for tuning 

3. Use table to estimate parameters for initial trail. 

4. Hold unit into place with dock hook to allow flow to fully develop.  

5. Enable PID controllers and monitor system behavior. 

a. Use dock hook to prevent extreme motion if observed. 

6. Removed dock hook and fine tune PID gains to optimize system using real time 

monitoring. 

7. Run 0/0 test to validate system baseline performance. 

Daily Procedures 

1. Overview of test plan for day 

2. Check seals of all underwater chambers 

3. Power on system and check function of all sensors and motors out of water 

4. Check function of motion capture system 

5. Check function of CWC facility 

Run Procedure Yaw 

1. Use dock hook to hold frame steady until current has stabilized at run speed.  

2. Enable PID control at 0/0. 

3. Enable system logging after system stabilizes. 

4. Input new test setpoint. 

5. Allow system to move to setpoint. 

6. After system settles hold position for 60 seconds to record thruster power 

performance 

7. Use dock hook to perturb system in yaw 

8. Input 0/0 set point and allow vehicle to move back center. 

9. Disable logging after vehicle settles at 0/0. 

10. Repeat test procedure for all yaw positions. 
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Run Procedure Pitch 

1. Use dock hook to hold frame steady until current has stabilized at run speed.  

2. Enable PID control at 0 degree pitch only 

3. Enable system logging after system stabilizes. 

4. Use dock hook to perturb system in pitch 

5. Disable system logging after system stabilizes. 

Run Procedure Pitch 

1. Hold test frame at 0 yaw position with PID loops disabled. 

2. Enable system logging. 

3. Input % yaw thrust until system reaches max tether length. 

4. Allow the system to stop motion and disable logging. 
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Run Matrix 

The initial run matrix for the experiment is shown in the following table. 

Table 6: Initial Run Matrix 

Run # Configuration CWC Current 

Speed 

Details 

1 – 5 0 0.0 kts / 1.0 kts Yaw and Pitch Power Runs 

6 – 10  0 1.0 kts Tune PID Parameters 

11 - 

26 

0 0.5 kts Yaw movement validation. Check unit 

can move to multiple yaw positions  

27 – 

42 

0 0.5 kts Sweep through yaw targets 

43 - 

58 

0 1.0 kts Sweep through yaw targets 

59-66 0 1.5 kts Sweep through yaw targets 

67 0 0.0 kts Pitch perturbation 

*All run numbers are approximate to the duration planned for each test goal 

The run matrix above aims to set up how the experiment will progress. The experiment 

begins with yaw and pitch power runs. These experiments aim to assess how the unit will 

move in these directions. If the test frame acted uncontrolled during this testing, additional 

precautions would be needed for the following tests. The next portion of the run matrix 

focused on tuning the PID control loops and validating their performance. After each 

controller had been tested, the main experiment could begin with testing different yaw 

positions. The procedures found in the previous section were used during the yaw position 

tests. The last task on the run matrix was to introduce perturbation in pitch. Completing the 

run matrix is crucial to ensuring test goals are met and the experiment follows a logical 

order. 
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Chapter 6  
Model Testing at NSWCCD 

 

Testing Setup 

At NSWCCD the test model had to be reassembled. The unit was broken down into three 

sections for transport, as shown in the figure below.  

 

Figure 90: Model Broken Down for Transport 

The model was unpacked and set up in the Code 881 mechanical lab. Set up of the test 

frame first began by reconnecting the wiring of the sensors and motion capture lights back 

into the electrical distribution box. After the electrical system was set up, the function of all 

the lights and sensors were validated. Validation testing was not initially successful. The 

connection to the IMU sensor was not stable. After 5-10 seconds, the encoder would enter 

an error mode that would stop data transfer on the I2C bus. To examine this problem, an 

oscilloscope was used to view the Serial Data (SDA) line.  

The oscilloscope showed that at 30ft, there was excess noise on the data bus. This noise 

was causing the IMU to enter an error state where all outputs were set to zero. Shortening 

the length of the cable resulted in less noise as the capacitance of the cable decreased. The 
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I2C data bus can more easily transmit data and detect fewer errors with a lower noise level. 

This shortening of the cable resulted in a more stable system performance.  

After the validation of all electrical systems, the unit was fully assembled and bolted 

together. All mechanical interfaces were tightened and checked. The lift point was torqued 

to spec using an adjustable torque wrench. After the mechanical setup was completed, 

ballast weight was added to the frame to increase its water weight.  

The ballast weights used were steel blocks weighing 34 lbs. These blocks were placed into 

three different sections along the test frame. One block was placed in the forward and aft 

sections. Two blocks were placed near the center of the frame. Due to the frame 

construction, each group of ballast had to be mounted using a different type of ballast 

mount.  

The rear ballast was clamped onto the short spans of frame running in between the main 

frame rails. The benefit of this mount was its easy mobility to move forward and aft.  

 

Figure 91: Rear Frame Ballast 
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Forward ballast was attached to the frame using drop-in T nuts. This method of fastening 

required no reconfiguration of the test frame. The forward weight is seen attached in the 

figure below.  

 

Figure 92: Forward Frame Ballast 

Ballast in the center of the model was added along the frame rails with hose clamps. These 

weights could be easily shifted forward and aft to adjust the trim of the unit.  
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Figure 93: Center Ballast Area 

After the installation of all the ballast weights, the test frame was lowered into the water 

for weighing. The total wet weight of the unit was 175 lbs; this weight was within the 

customer's requirements, so no additional ballast was added. The dry weight of the unit 

was 280 lbs. This operation also served as a hang test for the lift point on the model. The 

model observed no deflection or adverse effects with all ballast added.  
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Figure 94: Test Frame Setup for Ballast 

The photo above shows the setup used to weigh and balance the model. The dry dock 

located at the end of the tow tank was used due to its proximity to the mechanical lab. An 

overhead crane moved the test frame in and out of the water. While lifting, the unit was 

well-balanced and easy to control.  
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To transport the test frame to the CWC, the unit had to be placed onto a side loader. The 

side loader transported the fully assembled and ballasted frame to the loading bay at the 

CWC. In the loading bay, the unit had to be hoisted up four floors to the working deck of 

the test facility. The figure below shows this lifting operation.  

 

Figure 95: Hoisting up to CWC Working Deck 
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For rigging the test frame in the CWC, the unit was connected to a wire cable and lifting 

sling. The lifting sling was connected to the overhead crane. Once near the water, the cable 

was attached to the tow point, and the load was transferred. With the unit suspended in the 

water, the tethers were run so that there was slack for the unit to move freely. The position 

of the unit and tethers can be seen in the figure below.  

 

Figure 96: Lifting Into CWC Test Area 

 

Figure 97: Test Frame on Lifting Sling 
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Tethers from the unit were connected to the topside control unit using screw terminals and 

RJ-45 connectors. The board was positioned near the side of the CWC so that it could 

easily connect to the required computers. The setup for the computers and control board 

are shown in the figures below.  

 

Figure 98: Control Board Setup on CWC bridge 

 

Figure 99: Frame control and motion capture laptops used for testing 
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Motion Capture Setup 

The setup of the motion capture system was completed by NSWCCD Code 881 personnel. 

This process began by assembling a large, sturdy frame to which the motion capture 

camera struts were attached. Due to the water flow, fairings were added to the struts to 

reduce drag and limit turbulence. Turbulence around the struts could cause oscillations that 

reduce the system's accuracy. The motion capture frame and camera struts are shown in the 

figure below.  

 

Figure 100: Motion Capture Frame Setup 

After the cameras were mounted and lowered into the water, the next process was 

calibration and setting up the ground plane. A calibration light wand was used to calibrate 

the system. This calibration wand has LED markers at a set distance. The calibration 

procedure captures the marker position from each camera. Then, the software uses this data 

to solve where the cameras are in 3D space. After this step occurs, it is important not to 

move the cameras from their positions.  
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After the camera’s calibration was completed, the next step was to align the ground plane. 

The ground plane is the reference plane for how all the measurements will be taken. To 

align the ground plane for this experiment, the windows inside the CWC were used. These 

windows allowed for alignment of the X and Y axis, as shown in the figure below.  

 

Figure 101: Motion Capture Axis Alignment 

After calibration and alignment were completed, a process called “post calibration” was 

used to examine the capture volume and plan for where the model would be placed in the 

CWC.  

  

X 

Y 
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The post calibration uses the LED marker wand from the calibration procedure. Using this 

known marker arrangement, details about marker accuracy and placement can be plotted 

for the capture volume. The following plots show the accuracy of the capture volume.  

 

Figure 102: Mean Absolute Error at 4ft water depth 

The figure above shows the accuracy at 4ft of water depth with the test frame overlayed 9ft 

from the cameras. The test frame is well within the areas with the highest accuracy. Based 

on the post calibration results, the test frame will be well-tracked with minimal errors.  

Initial Testing Runs 

In the dry dock basin, the unit was submerged about 6ft below the water’s surface. With 

the unit submerged, the pitch thrusters were run up to 80% thrust to capture the pitch 

response motion. The result was quick but controlled motions. The unit would power up 

Test Frame 
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and then reach a settling point when the pitching thrust equaled the resorting force of the 

test frame.  

 

Figure 103: Pitch Power – Nose up Orientation. 

Tuning of the pitch controller was completed using the Zeigler-Nicholas PID tuning 

method (16). This method forces the unit into a continual oscillation state; the period of 

this oscillation is used to derive an estimate for PID tuning parameters. The following 

graph shows the oscillation that developed using the Zeigler-Nicholas method.  
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Figure 104: Forced Pitch Oscillation 

As shown in the figure above, the unit was moved to a 10-degree setpoint and then back to 

a 0-degree setpoint to initiate the forced oscillation. From this disturbance, the P gain 

parameter was increased until the oscillation became consistent. 0-degree was chosen as it 

would be the most common setpoint at which the test frame would be set during testing in 

the CWC.  

From the forced oscillation, the period was found to be 2.3 sec. From this period, the 

following set of equations was used to obtain the initial PID values.  

𝑃𝑈 = 2.3𝑠𝑒𝑐 𝐾𝑐 = 45 

𝑷 =
𝟒𝟓

𝟏. 𝟕
= 𝟏𝟕 | 𝑻𝒊 =

𝟐. 𝟑

𝟐
= 𝟏. 𝟏𝟓 | 𝑻𝒅 =

𝟐. 𝟑

𝟖
= 𝟎. 𝟑𝟐𝟓 
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The initial PID tune parameters located above performed well. The unit was able to 

maintain different pitch setpoints and respond to perturbations. It was observed that the 

first set of PID parameters resulted in the system being under-damped. This behavior is 

seen in the graph below.  

 

Figure 105: under-damped pitch response 

The response from the unit is under-damped as it takes several oscillations to return to its 

setpoint. This indicates that the damping forces were not great enough, causing additional 

time for motion to reduce and the setpoint to be reached. To address this, the system was 

tuned with trial and error. The following set of PID values was chosen for the best pitch 

response.  

𝑷 =  𝟑 | 𝑰 =  𝟕| 𝑫 = 𝟒𝟎 
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The goal of these new parameters was to cause the system to be critically damped. With 

this characteristic, the unit will approach the setpoint with minimal overshoot and no 

oscillations. The effect of the final PID values is shown in the figure below.   

 

Figure 106: Final Pitch Tunning Step Response 

The response above was caused by pushing down onto the test frame. Compared to the first 

response shown in Figure 91, this response damped out quicker and had less oscillation. 

This indicates that the additional dampening was effective at better controlling the pitch 

motions of the unit.  
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While in the dry dock basin, an attempt was made to tune the yaw controller. Due to 

limited width, the test frame contacted the side of the frame, breaking off the rear thrusters. 

 

Figure 107: Broken Pitch Brackets 

Completion of Run Matrix 

The run matrix in Chapter 5 was completed while testing at the CWC. Several changes 

were made to the procedures and equipment configuration during testing to facilitate more 

effective testing. The first change was to perform multiple yaw setpoint locations in a 

single data collection because the system had to be restarted after each data collection time 

was saved, including multiple test frame positions in a single file. Due to the logistics of 

the test frame’s location, it was more effective to combine pitch power runs and pitch PID 

tunning together at the dry dock basin. Yaw power and yaw PID tuning were still 

performed in the CWC as initially planned. The last significant change to occur during the 
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run matrix completion was two modifications to the current vane. The initial current vane 

geometry was not experiencing uniform flow from the CWC. The flat front of the test 

frame caused a dead zone to form along the top front of the system. To address this, a 

larger current vane was manufactured from a flat sheet and bar stock. 

 

Figure 108: Flow Depiction over Frame Nose 

 After the taller current vane was installed, the sensor was able to record changes in angle. 

While it initially appeared that the sensor effectively identified the unit's angle to current, it 

was soon discovered that the yaw motion of the unit on the sensor caused it to deflect faster 

and act as an accelerator for the PID controller. This caused the unit to oscillate 

uncontrollably. To combat this, the current vane was moved behind the pivot point of the 

unit. With the vane behind the pivot point, the reaction force of the unit moving through 

the water will be opposite the direction of travel. This acted as a natural damping force, 

which was handled better by the PID controller.  

Flow 
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Figure 109: New Current Vane in Rear Position 

 

Figure 110: Yaw PID Controller Current Vane Initial Position 
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Figure 111: Yaw PID Controller Post Current Vane Position Switch 

From the figures above, it can be seen how relocating the position of the current vane 

resulted in better unit performance. Even with the change of sensor location, the position 

hold performance for yaw was not perfect. The unit would still have oscillations. It was 

determined that improving performance was limited by the yaw sensor and PID controller. 

The following set of gains was used during the testing of the system.   

Table 7: Yaw Controller PID Gain 

 

Current Speed (kts) P I D
0.5 10 - 2
1.0 20 0.25 2
1.5 30 0.5 2
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Chapter 7  
Model Testing Data Review 

 

Collected Data 

Data for this research was collected from two different sources: on board the test frame and 

the motion capture system. Data from onboard the test frame was collected at 8.3Hz, while 

the motion capture system was collected at 100Hz. When preparing the data for analysis, 

the motion capture data had to be time synced to the onboard sensor data. To do this, key 

events in each data set were matched together. During analysis, it was found that certain 

data sets experienced a timing error. This timing error began during the yaw PID tuning 

runs. The error caused the reported sample time to be less than real-time. When compared 

to motion capture, events captured by the yaw onboard sensors had different durations.  

 

Figure 112: Event Duration Time Error 

 

84 sec 

120 sec 



 

 

112 

 

The event duration captured by the motion capture system was used as the ground truth, as 

there were multiple ways to validate the time reported by the system. Sample time from 

motion capture was validated by cross-referencing the frame time stamps, elapsed time, 

and frame rate. To correct the lower than real time sample time reported by the onboard 

unit, the data was remapped at a new frequency. Doing this added more time in between 

measurements. Fourier Analysis was used to convert certain events into the frequency 

space to validate that the corrected data was adjusted correctly. When examining the 

frequencies, the corrected data showed maximum power at the same frequencies as the 

motion capture data. This indicated that the adjusted data correctly displayed the test 

frame's response. While the data sets where the test frame’s sample time was incorrect 

were identified, an exact cause was not found. Additional examination will be required to 

find what change in the Simulink code caused this to happen. The graphs in this research 

will indicate what sensor the data came from. Those containing data from the onboard unit 

will have the correction applied. Data dependent on time, such as velocity, were taken 

directly from the motion capture system to eliminate possible errors in sample time.  

With the data aligned, the primary analysis tool was graphing the data to observe 

overshoot, steady error, and thruster commands. In addition to graphing the data with 

controller data overlays, the average power used at each setpoint was calculated by taking 

the average power over the duration of the setpoint hold. The figure below shows an 

example of the data range utilized for average power.  
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Figure 113: Yaw Position Average Power 

The transparent green bounding box in the prior figure shows the area where the average 

power would be calculated for this setpoint.  

The motion capture system gives a more accurate recording of position values. Reported 

error was low during this research. Error for a yaw position run is shown in the table 

below.  

Table 8: Motion Capture Error Summary 

 

 

Error (in) Error (deg)
X 0.0147 Roll 1.66
Y 0.0127 Pitch 0.19
Z 0.0054 Yaw 0.40



 

 

114 

 

The motion capture data was of higher resolution and did not contain any of the sensor 

errors experienced by the onboard unit. The difference in these two data sets can be 

observed in the following figures.  

 

Figure 114: Onboard Position Data Vs. Motion Capture Event 1 

In the figure above, the main advantage of motion capture is that it does not capture the 

errors in the sensor where the position was momentarily reported as -0.625 deg. This 

results in a more accurate data set tracking the frame position.  
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Figure 115: Onboard Position Data Vs. Motion Capture Event 2 

The figure above shows how motion capture can track the unit's pitch position more 

accurately. The motion capture system has the resolution to track the small oscillations 

after they are no longer seen on the IMU.   

The motion capture system is a valuable tool for tracking the motion of a body with high 

accuracy. The system is responsive and provided tracking with high accuracy for this 

research.  
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Yaw Control 

Yaw control for the test frame was evaluated at three different current speeds: 0.5 kts, 1.0 

kts, and 1.5 kts. Yaw control decreased as the current speed increased. The following set of 

graphs shows the range of motion and controller performance for the test frame in Yaw.  

 

Figure 116: Yaw Position 0.5 kts full run 

The figure above was collected during the unit test at 0.5 kts. From this plot, it can be seen 

that the unit struggled to maintain setpoints of 0 degrees. At this setpoint, the unit was 

prone to excess oscillation. This oscillation was likely caused by the limited response of 

the current vane at low speeds. A more accurate yaw sensor would reduce these 

oscillations and result in better control. At the 0.5 kts current speed, the unit was able to 

reach a maximum angle of 90 degrees in yaw.  
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Figure 117: Yaw Detail Position 0.5 kts 

The graph above shows a detailed view of the yaw response when adjusting setpoints. This 

detailed view shows how the unit transitions to a new setpoint with overshoot and eventual 

dampening. After dampening out, the unit settles out to constant thrust to maintain the 

current setpoint position.  

When increasing the current speed to 1.0 kts, the maximum yaw position achieved 

decreased to 45 degrees. This was due to the increase in drag from the increased flow 

speed. More drag on the unit caused it to rotate, resulting in the thrusters working harder to 

maintain setpoint position. This trend continued when moving to 1.5 kts where the 

maximum yaw angle decreased to 20 degrees. At both 1.0 kts and 1.5 kts, it was observed 

that the unit was very sensitive to overshooting. Even though the thrusters were not 

reaching saturation holding the maximum yaw positions the unit was limited in the 

maximum angle achived by the pressence of overshoot. When overshooting occurred the 

thrusters would saturate and were unable to recover the vehicle back to the setpoint.  
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Figure 118: Yaw Control Loss 

The figure above shows the position and thruster power for the test frame in 1.5 kts of 

current. The unit loses control when moving from the 10-degree setpoint to the 20-degree 

location. While the unit is moving to the setpoint, the thrusters begin to increase power to 

slow the unit and return to the setpoint. But due to the high inertia of the frame and moving 

into the flow, the thrusters are too slow to react, and the vehicle continues to move away 

from the setpoint despite the thrusters being fully saturated. This shows that while the unit 

has ample power to hold setpoints at higher angles, the process of moving and slowing the 

frame down requires higher thruster power. Finding this control loss location is highly 

important, as if the model was being used for a recovery mission and control loss occurred, 

the unit would have to be slowed down and reset. This process would be time-consuming, 

and the control loss could put the unit and AUV at risk of damage.  
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The following graphs and tables were produced to show the power needed at each setpoint 

based on the response and thruster power required to hold yaw setpoints.  

 

Figure 119: Thruster Power Vs. Setpoint 

The graph above shows the total thrust required at each current speed to maintain different 

setpoints. Due to the control loss behavior detailed prior in this section not all yaw values 

could be tested for each current speed. The current speed of 0.5 kts allowed the unit to 

maintain yaw angles from 0-90 degrees. This allowed for an interesting trend to be seen in 

thruster power. The required thruster power maxes out at the 40-degree position and then 

decreases to near zero as the unit approaches 90 degrees. When in the 0/90 degree position, 

the unit has a limited amount of natural stability, allowing the thruster power to be near 0 

lbs. However, when at the 40-degree position, the unit is furthest from either resting point, 

with a large surface area exposed to the current. This situation creates a large amount of 

drag, which tries to pivot the unit toward 90 degrees. While going past this yaw position, 

the total drag will increase with surface area, the required power to hold the yaw angle 

decreases as the setpoint becomes closer to 90 degrees.  
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Figure 120: Exposed Surface Area to Flow 0.5 kts 

This same behavior occurs for the 1.0 kts current speed. The maximum thrust required 

occurs at 35 degrees. Moving past this location, the required thrust decreases in a similar 

manner to that of the 0.5 kts trail. However, due to the control loss behavior associated 

with the higher current speeds, no data past 45 degrees was able to be collected. If more 

overhead in thruster power allowed the unit to maintain angles past 45 degrees, the 

required thrust should continue to reduce as the unit approaches 90 degrees. The following 

tables summarize the thrust required at each setpoint and current speed. 

Table 9: Required Thrust and Setpoint 

 

Yaw Position (deg) 0.5 1.5 1
0 0.24 3.12 0.08
5 - - 3.08

10 1.6 2.8 7
20 3.52 5.2 -
30 4.8 10 -
35 - 26.4 -
40 8.4 17.92 -
45 - 14 -
50 5.6 - -
60 4.8 - -
70 3.92 - -
80 2.92 - -
90 0.08 - -

Thrust (lbs)
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The drag on the unit will increase greatly due to the velocity component of the drag 

equation.  

𝐹𝑑 =
1

2
𝜌𝑣2𝐶𝑑𝐴 

For the equation above, since all values except velocity are constant when at equivalent 

angles of yaw, the expected increase in drag and the resulting thrust will increase by a 

factor of 𝑣2. The required total thrust can be plotted with the current speed with a trendline 

passing through a Y-int of zero to visualize this relationship.  

 

Figure 121: Required Thrust Relationship 

The figure above plots the three data points on the graph with a base two polynomial line 

of best fit. This line of best fit follows the data points very well with an 𝑅2 of 0.96, 

indicating that the trend line captures all the features of the original data points. This result 

shows that this experiment's drag relationship with velocity holds true, indicating that 

thrust measurements have been recorded correctly.  
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Different power settings were used to sweep the unit side to side to quantify the maximum 

yaw rates for the test frame. From these side-to-side motions, the angular rate could be 

calculated. 

 

Figure 122: Yaw Power Sweep Runs 

The maximum velocity reported by the motion capture system was used to calculate the 

yaw. The velocity represents the maximum speed the frame reached. The goal was to allow 

the frame to reach a constant velocity; however, due to tether limitations, the frame could 

not always reach a steady velocity.  
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Table 10: Yaw Rate  

 

 

Figure 123: Thruster Power and Yaw Rate 

The figure above shows the relationship between thruster power and yaw rate. To produce 

the figure above, two outliers from Table 8 were removed. When removed, a polynomial of 

order 2 trend line was fitted. These trend lines represent the estimated angular rate at a 

given thruster value. In the reverse thruster direction (clockwise), the 𝑅2value was 0.95 

and 0.98 for forward (counterclockwise), respectively.  

Thuster Power % Rvs. Angular Velocity (deg/sec) Fwd. Angular Velocity (deg/sec)
10 6.2 8.4
20 10.1 10.38
30 12.7 14.98
40 13.3 13.47
50 13.7 13.81
60 14.1 15
70 9.2 14.21
80 14.2 14.4

Yaw Power Sweep

y = -0.0029x2 + 0.3555x + 3.6376
R² = 0.9513

y = -0.002x2 + 0.2625x + 5.9683
R² = 0.9861
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Overall, the performance of the system in yaw was controllable but not ideal. The yaw 

sensor and PID gain tuning limited the performance of the system. However, despite not 

holding position with the utmost accuracy, the system could hold near the setpoints, 

allowing the required thruster power to be gathered. The required thruster power revealed 

an interesting behavior, where the maximum power is located between 40 and 45 degrees. 

Additionally, yaw rates for the frame at different thruster powers were documented. This 

information will assist in creating a digital hydrodynamic model for future research. Lastly, 

the drag equation current speed relationship was used to validate the trends observed in the 

required thruster power for the 10-degree yaw angle.  
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Pitch Control 

The pitch control for the test frame was found to be highly effective at stabilizing the 

system and holding different angles. After PID tuning, the system was set to a 0-degree 

setpoint for most of the yaw position tests. In this configuration, the pitch controller 

worked to maintain a level system. The following graph shows the stability of pitch during 

a yaw position run.  

 

Figure 124: Pitch Stability 

The graph above shows the pitch position of the test frame over the duration of a yaw data 

collection run. As seen in the graph, there are small oscillations in pitch centered around 

zero. The average pitch value for this run was -0.67 degrees, with a standard deviation of 

0.29 degrees. This indicates that the controller and thrusters did an effective job of 

maintaining the 0-degree setpoint.  
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A pitch power angle test was completed to evaluate the performance of the pitch thrusters. 

This power test ran the thrusters at different power settings and recorded the angle at which 

the unit rotated to.  

 

Figure 125: Pitch Power Maximum Angles 

From the graph above, the unit had a resting state of just above 0 degrees of pitch. With no 

thrusters engaged, the unit rested at 3.5 degrees of pitch. Due to this offset, the graph does 

not have symmetry about 0 degrees. The pitch thrusters had ample power to move the unit 

in pitch. The data points in the figure above were limited due to the test frame's submersion 

depth. At the maximum pitch angles, a portion of the frame would be close to contacting 

the water’s surface. If the unit had been suspended in deeper water, it would have likely 

been able to achieve high angles of pitch due to the combined power of the four pitch 

thrusters far from the pivot point of the frame.  
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Figure 126: Pitch Angles Negative 

 

Figure 127: Pitch Angles Positive 
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Table 11: Pitch Power Maximum Angle 

 

Overall, the pitch control of the vehicle was very well controlled. The thrusters located on 

the back had ample control authority to position and maintain the desired setpoints. Due to 

the weight and natural pitch stability, the test frame was able to remain stable in still water 

without the need for PID control. When applying thrust, the unit would adjust pitch and 

then naturally dampen out. This dampening is shown in Figures 123 and 124. The behavior 

observed assisted the PID loop by providing a natural damping force.  

  

Thuster Power % Max Angle
45 31
40 24
35 20
30 15
20 7.5
10 1.5

0 3.5
-10 2
-20 -4
-30 -14
-35 -19

Pitch Power 
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Additional System Observations 

In addition to the testing laid out in the run matrix, an experiment was conducted where the 

pitch setpoint was changed in combination with yaw. This aimed to show whether the unit 

could maintain yaw and pitch angles offset to the current. This setup would challenge both 

controllers.  

 

Figure 128: Yaw Pitch Combination Yaw Sensor 

The figure above shows the output from the yaw sensor during the combination position 

hold. This run was completed with a current flow of 1.5 kts with the pitch position set to 5 

degrees. The unit behaved very similarly to when the pitch setpoint was 0 degrees. This 

indicated that small pitch adjustments would not adversely affect yaw position hold 

performance even at the high current speed. When moved to the 5-degree setpoint, the 

average pitch over the duration of the setpoint was 3.8 degrees, with a standard deviation 
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of 0.33 degrees. The results of this trial show that at nonzero pitch values, the controller 

suffered from a minor increase in error. The pitch controller can control the pitch angle of 

the frame well and in higher current states.  

The testing of the capturing frame in the CWC revealed several interesting behaviors. The 

first observation was the presence of sensor feedback errors. During some trials, the yaw or 

pitch sensor would return incorrect values for a single time step. This could sometimes 

cause a fast reaction from the PID controller, which perturbs the model. To limit the effect 

of these sensor errors, a low-pass filter with a cutoff frequency of 5 Hz was used. 

Testing of the unit revealed the complex dynamics the system faced. The high inertial of 

the system, along with the current direction, could create more and less favorable 

conditions for approaching setpoints. The worst case condition is when the unit swings 

from one side to the other, for example, -45 to 45 degrees. During this action, the unit has 

to provide high thrust to push into the current and cross the 0-degree yaw position. After 

crossing zero, the unit then uses the thrusters to push in the current's direction, further 

accelerating the motion. This accelerated motion makes it difficult for the unit to stop due 

to the high inertia and continuing to move the frame. Due to this, the PID controller 

derivative gain needed to be set properly. With the gained tunned correctly, the unit could 

apply reverse thrust before approaching the setpoint when moving in the direction of the 

current. This was achieved by having a high D gain, which would work to cap the 

maximum rate at which the unit moved. This system was not perfect, and in some cases, 

the system still needed to react faster. To compensate for this problem, a more refined yaw 

controller could be developed, which would use a different set of gains when moving in or 

away from the current direction. 
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Chapter 8  
Conclusion 

 

Overall Model Performance 

Testing in the CWC at NSWCCD revealed many promising and interesting operational 

characteristics of the test frame. The pitch control of the test frame was very strong, and the 

controller was easily tuned using the Zeigler-Nickolas method. Tests where the model was 

perturbed in pitch showed a strong and fast recovery response. During testing in flow, the 

unit was able to hold the pitch setpoint of 0 degrees with high accuracy and little 

fluctuation. In addition to success at the 0 degrees setpoint, the pitch controller was also 

able to hold setpoints of 0, 10, and -10 degrees without issue. This performance indicates 

that the positioning and power of the pitch thrusters were more than adequate to control the 

model's motion.  

Yaw performance was limited by the accuracy and performance of the current vane. Due to 

the current vane being a flat plate, it had little corrective moment from hydrodynamic 

forces. This caused the vane to oscillate as it reacted to current contacting the sides of the 

plate rather than hydrodynamic stability. The limitation of this sensor can be seen in the 

yaw setpoint performance. At all setpoints, the unit suffered from small oscillations driven 

by the sensor. However, even with the oscillations, it was observed that the unit had the 

required power to hold yaw positions. The maximum yaw position the unit is able to 

maintain is driven by the current speed. At 0.5 kts of current, the unit was able to maintain 

a maximum angle of 90 degrees. At 1.0 kts, this value was limited to 45 degrees and at 1.5 

kts this value lowered to 20 degrees. In addition to lowering the maximum yaw angle at 

higher current speeds, the unit became very sensitive to overshoot. When approaching the 

maximum yaw angle, if overshoot occurs, the unit may not be able to recover back to the 

setpoint due to a rapid nonlinear increase in the hydrodynamic drag forces. In this research, 

an attempt to stop overshoot was done, making the derivative term more significant. Due to 

limitations in the sensor and controller tunning time, overshoot was not able to be 

eliminated.  
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The motion capture setup used for this research performed very well. The camera rig was 

rigid and stable, requiring no maintenance during testing. The cameras provided a large 

capture volume with low error for data collection. The positioning of the lights along the 

unit performed excellent. The system was able to resolve the rigid body reliably with high 

accuracy. Data was easily gathered from the system, and the great operational capability of 

the motion capture system was demonstrated. The system was able to provide a reliable 

method of measuring 6 DoF motion without costly sensors installed on the test frame. 

The mechanical structure and electronics setup for the test model performed excellent. 

There were no mechanical failures during CWC testing. The unit was able to successfully 

support all the ballast weight needed. All pressure enclosures remained dry, and no ill 

effects were seen on the onboard sensors. Connection to the surface through motor and 

data tethers was excellent. The chosen cables had ample strength and ruggedness to 

perform through multiple rig and de-rig procedures. Power supplies connected to the 

thrusters were able to provide all the needed power for the system without tripping any 

breakers in the CWC.  

The Simulink control software setup was extremely valuable for tunning the model 

controllers and running the data collection runs. The ability to quickly reformat the control 

software allowed for the reconfiguration of the yaw PID controller, resulting in tuning 

success. The model setup allowed for real-time graphing of vehicle position, setpoint, and 

thruster values. These readouts, along with real-time tuning of the PID parameters, allowed 

for quick and efficient tuning of the control loops. The real-time tuning facilitated a great 

learning opportunity for the researcher, along with successful PID tuning.   
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Feasibility for Midwater Capture 

Based on the observed controllability for Yaw and Pitch, capturing an AUV midwater with 

a garage-type structure would be feasible. While the test unit did not demonstrate a perfect 

yaw position hold, the yaw sensor performance limited this action. For creating an open 

water deployed AUV capturing device, accurate measurement of yaw position will be 

critical to the unit's success. Along with this, the control system will need to have a wide 

variety of inputs that can consider parameters such as current speed and direction of travel 

to adjust the PID settings accordingly. Increasing the amount of data going into the PID 

loop could also increase performance. In this research, only the yaw position was used for 

feedback. Adding yaw rate would improve the dampening performance of the controller. 

Addressing the issue of overshooting and required damping would be critical to a frame 

deployed in the ocean, as if overshooting occurs at higher current speeds, the unit would be 

unrecoverable. If this happens during an AUV recovery operation, the AUV would have to 

reset course, and the unit would need to be fully reset back to a stable position. Due to the 

system being naturally unstable with no fins or other corrective surfaces present, losing 

control of the system would introduce many undesirable behaviors that may damage the 

capturing device or AUV. With a more robust control system and additional sensor inputs, 

the precise control of an AUV garage has a strong likelihood of success based on the 

experiments in this research. 

Summary and Future Work 

Overall, this research proved the feasibility of midwater AUV capture and demonstrated 

the testing possibilities provided by a controlled flow facility. Performing these 

experiments in the facility allowed for a controlled current environment to be used. In the 

current controlled CWC environment, the pitch and yaw controllers' performance was well 

observed and optimized. Based on the performance of this research, two areas of future 

research can be proposed.  
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Model Testing 

For the testing of this model, the performance was limited by the yaw sensor. To overcome 

this limitation inside the facility, the OptiTrack motion capture system could be used as a 

PID controller input. The OptiTrack motion capture system can export a real-time UDP 

data stream of rigid body position. Utilizing this output, the yaw controller would get a 

highly accurate and responsive yaw position for vehicle control. This type of system 

should be straightforward to implement as Simulink real-time can read a UDP stream and 

pull required values. These values could be mapped to the corresponding PID subsystem, 

where they would replace onboard sensor values. Future tests could also use a smaller 

tether section for the surface connection. While the tethers used in this experiment were 

rugged and performed well, they were bulky. This made working with them heavy, and 

their effects on the model had to be managed. If smaller tethers were used, there would be 

less impact on the model's motion. Like the tethers, a different lifting setup could also be 

implemented with a smaller connection point on the swivel hoist. The equipment used in 

this research limited the ability of the swivel hoist to move freely. While the hoist was still 

able to move, reducing the forces that can cause motion in the frame will improve the 

model's response. Lastly, a more robust communication method could be used to bring data 

from onboard sensors to the surface. While the SPI and I2C connections performed well 

during CWC testing, a more robust setup like CAN or RS-485 would have provided 

additional tether length and fewer sensor errors.  

AUV Garage Feasibility 

Based on the model's performance tested, future research should include the production of 

a fully dynamic simulation of the system. Developing a hydrodynamic model for the 

system and running it in a virtual environment would allow PID parameters and different 

control systems to be tested prior to in-water experiments. Due to the high nonlinearity of 

the forces experienced by the model while exposed to current, building this computer 

model would provide valuable insights into how best to control the system in difficult-to-

control conditions. To make this hydrodynamic model, several areas must be refined and 

modeled in a computer environment. The distribution of all mass on the model would need 

to be known to calculate the Center of Buoyancy (CB), Center of Gravity (CG), and 
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Moment of Inertial. In addition to this, a hydrodynamic model of the vehicle geometry 

would need to be analyzed with Computational Fluid Dynamics (CFD) to develop various 

hydrodynamic coefficients, such as the drag coefficient for the unit at different 

orientations. Lastly, a model for the performance of the thrusters would need to be known. 

The combination of these studies could be used as input to a dynamic simulation based on 

the equations of motion present in Fossen's “Marine Craft Hydronamics and Motion 

Control” (13). Completing this work would allow for this complex system's controls 

development and PID tuning. 

Overall, this research successfully examined the feasibility of AUV midwater capture. A 

physical model was developed and tested in a unique facility, revealing many interesting 

control and hydrodynamic attributes. 
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Appendix 
 

MATLAB/Simulink Code 

Pitch Plot Creator:  

clear all  
close all  
clc 
 
load("MoCap\YawHighPositions_002.mat") 
load("PitchDataFiles2\YawPitchCombinationRun_002.mat") 
 
%Create Time table of Frame Pitch 
FramePitch = timeseries2timetable(TestDataPitch.PitchPos); 
FramePitch.PitchPos = FramePitch.PitchPos*-1;  
 
%Move Elasped Time into Time Collum of Timetable 
FIT_Test_Frame_2.Body.Time = seconds(FIT_Test_Frame_2.Body.Time_Elapsed); 
 
%Remove Data Error from IMU output 
FramePitch(any(FramePitch.PitchPos == -0.0625,2), :) = []; 
FramePitch(any(FramePitch.PitchPos == 0.0625,2), :) = []; 
 
figure(1) 
plot(FramePitch,"PitchPos") 
hold on  
plot(FIT_Test_Frame_2.Body,"Pitch") 
legend("Onboard","MotionCapture") 
title("PID Tune Initial Unaligned") 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Insert Offsets for time delay and IMU 
tMFP = seconds(76); 
offset = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Apply Adjustments to MoCap 
FIT_Test_Frame_2.Body.Time = FIT_Test_Frame_2.Body.Time + tMFP; 
FIT_Test_Frame_2.Body.Pitch = FIT_Test_Frame_2.Body.Pitch + offset; 
 
%Plot to check results align 
figure(2) 
plot(FramePitch,"PitchPos") 
hold on  
plot(FIT_Test_Frame_2.Body,"Pitch") 



 

 

143 

 

plot(TestDataPitch.PitchSetPoint) 
legend("Onboard","MotionCapture","SetPoint") 
title("PID Tune Inital Aligned Sensor Comparison") 
ylabel("Position (deg)") 
grid on 
 
%Plot Figure for Thesis Doc 
figure(3) 
hold on  
plot(FIT_Test_Frame_2.Body,"Pitch") 
plot(TestDataPitch.PitchSetPoint) 
legend("MoCap Pitch","PitchSetPoint") 
title("Pitch Position Yaw Run") 
ylabel("Position (deg)") 
grid on 
 
figure(4) 
hold on  
plot(FIT_Test_Frame_2.Body,"Pitch") 
legend("MoCap Pitch") 
title("Pitch Position Yaw Run") 
ylabel("Position (deg)") 
grid on 
 
%Average Position Hold Values 
FIT_Test_Frame_2.Body = rmmissing(FIT_Test_Frame_2.Body); 
TR = timerange(seconds(100),seconds(300)); 
Avg = mean(FIT_Test_Frame_2.Body.Pitch(TR)); 
Std = std(FIT_Test_Frame_2.Body.Pitch(TR)); 
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Power Plot Creator 

clear all  
close all  
clc 
 
 
load("MoCap\YawPowerRun_002.mat") 
load("YawDataFiles\YawPowerRun_002.mat") 
 
%Create Time table of Frame Yaw 
YawPower.Data = squeeze(YawPower.Data); 
FrameYaw = timeseries2timetable(YawPower); 
 
%Create Time from Elasped Time 
FIT_Test_Frame.Body.Time = seconds(FIT_Test_Frame.Body.Time_Elapsed); 
 
figure(2) 
plot(FrameYaw,"YawPos") 
hold on  
plot(FIT_Test_Frame.Body,"Yaw") 
legend("Onboard","MotionCapture") 
title("PID Tune Run") 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Insert Offsets for time delay and IMU 
tMFP = seconds(0); 
offset = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
FIT_Test_Frame.Body.Time = FIT_Test_Frame.Body.Time + tMFP; 
FIT_Test_Frame.Body.Pitch = FIT_Test_Frame.Body.Pitch + offset; 
 
figure(4) 
hold on  
plot(FIT_Test_Frame.Body,"Yaw") 
plot(FIT_Test_Frame.Body,"Yaw_Vel") 
legend("MoCapYawPos(deg)","MoCapYawVelocity(deg/s)") 
title("Yaw Power Run") 
grid on  
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Yaw Plot Creator 

clear all  
close all  
clc 
 
 
load("MoCap\YawHighPositions_002.mat") 
load("YawDataFiles\YawPitchCombinationRun_003Y.mat") 
 
%Create Time table of Frame Yaw 
FrameYaw = timeseries2timetable(TestDataYaw.YawPos); 
FrameYaw.YawPos = FrameYaw.YawPos; 
 
%Create Time from Elasped Time 
FIT_Test_Frame_2.Body.Time = seconds(FIT_Test_Frame_2.Body.Time_Elapsed); 
 
figure(1) 
plot(FrameYaw,"YawPos") 
hold on  
plot(FIT_Test_Frame_2.Body,"Yaw") 
legend("Onboard","MotionCapture") 
title("Yaw 0.5Kts Positions Unaligned") 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Insert Offsets for time delay and IMU 
tMFP = seconds(53); 
offset = 0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%Apply offsets to data 
FIT_Test_Frame_2.Body.Time = FIT_Test_Frame_2.Body.Time + tMFP; 
FIT_Test_Frame_2.Body.Yaw = FIT_Test_Frame_2.Body.Yaw + offset; 
 
%Create Array to Be used for retime 
FrameArray = FrameYaw.YawPos; 
SetPointArray = TestDataYaw.YawSetPoint.Data; 
ThrustArray = TestDataYaw.YawThrust.Data; 
 
%Re time Frequency 
Fq = 140; 
 
%Retime data sets 
ReTimedFrameYaw = array2timetable(FrameArray,"SampleRate",Fq); 
ReTimedSetPoint = array2timetable(SetPointArray,"SampleRate",Fq); 
ReTimedThrust = array2timetable(ThrustArray,"SampleRate",Fq); 
 
figure(2) 
plot(ReTimedFrameYaw,"FrameArray") 



 

 

146 

 

hold on  
plot(FIT_Test_Frame_2.Body,"Yaw") 
legend("Onboard","MotionCapture") 
title("PID Tune Final Aligned") 
 
figure(5) 
hold on  
plot(FIT_Test_Frame_2.Body,"Yaw") 
plot(ReTimedSetPoint,"SetPointArray") 
plot(ReTimedFrameYaw,"FrameArray") 
legend("MoCap Pitch","YawSetPoint","CurrentSensor") 
title("PID Tune Final Sensor Comparison") 
 
figure(6) 
hold on  
plot(FIT_Test_Frame_2.Body,"Yaw") 
plot(ReTimedSetPoint,"SetPointArray") 
plot(ReTimedThrust,"ThrustArray") 
legend("MoCap Yaw","YawSetPoint","Thrust(lbs)") 
ylabel("Position (deg)") 
title("1.5kts Yaw Control Loss") 
grid on 
 
figure(7) 
hold on  
plot(FIT_Test_Frame_2.Body,"Yaw") 
plot(FIT_Test_Frame_2.Body,"Pitch") 
plot(ReTimedSetPoint,"SetPointArray") 
legend("MoCap Yaw","MoCap Pitch","YawSetPoint") 
title("Yaw/Pitch Combination 1.5kts") 
ylabel("Position (deg)") 
grid on 
 
FIT_Test_Frame_2.Body = rmmissing(FIT_Test_Frame_2.Body); 
TR = timerange(seconds(70),seconds(221)); 
Avg = mean(FIT_Test_Frame_2.Body.Pitch(TR)); 
Std = std(FIT_Test_Frame_2.Body.Pitch(TR)); 
 
%% Use Power Spectrum To Match Frequency of Events 
FIT_Test_Frame_2.Body = rmmissing(FIT_Test_Frame_2.Body); 
 
%Select Time Range for Events to Compare 
MTime = timerange(seconds(310),seconds(359)); 
FTime = timerange(seconds(246),seconds(284)); 
 
MoCapArray = FIT_Test_Frame_2.Body.Yaw(MTime,:); 
YawArray = FrameYaw.YawPos(FTime,:); 
[p1,f1] = pspectrum(MoCapArray,100); 
[p2,f2] = pspectrum(YawArray,140); 
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%Plot Power 
figure(10) 
plot(f1,p1); 
hold on 
plot(f2,p2); 
legend("MoCapYaw","OnboardYaw") 
title("Frequency Analysis") 
ylabel("Power") 
xlabel("Frequency") 
grid on 
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Camera Calibration Data 

 

Figure 129: Calibration Points Collected 

 

Figure 130: Motion Capture Reliability @ 4ft 
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Additional Media 

 

Figure 131: Fully Assembled Fame in Mechanical Shop 
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Figure 132: Model Loaded into Dry Dock at David Taylor Model Basin 

 

Figure 133: Underwater View from CWC 
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Figure 134: Underwater View 2 from CWC 
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Figure 135: CWC Observation Area 
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Figure 136: CWC Working Area 

 

Figure 137: Test Frame on Crane 
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