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Abstract

Title:

DEEP LEARNING IN INDUS VALLEY SCRIPT DIGITIZATION

Author:

DEVA MUNIKANTA REDDY ATTURU

Major Advisor:

Debasis Mitra, Ph.D.

This research introduces ASR-net(Ancient Script Recognition), a groundbreaking sys-

tem that automatically digitizes ancient Indus seals by converting them into coded

text, similar to Optical Character Recognition for modern languages. ASR-net, with

an 95% success rate in identifying individual symbols, aims to address the crucial need

for automated techniques in deciphering the enigmatic Indus script. Initially Yolov3

is utilized to create the bounding boxes around each graphemes present in the Indus

Valley Seal.In addition to that we created M-net(Mahadevan) model to encode the

graphemes.

Beyond digitization, the paper proposes a new research challenge called the Motif

Identification Problem (MIP) related to recurring patterns (motifs) on Indus seals that

appear to have specific functions within certain periods of the civilization. Despite

challenges in applying deep learning to MIP, The database was created to store the

ImageID, Image, the list of encoded graphemes present in that particular image fol-
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lowed by the Motif on the IVC Seal in the structured format.
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Chapter 1

Introduction

The Indus Civilization, also known as the Harappan Civilization, represents one of the

world’s oldest urban societies, flourishing in the vast floodplains of the Indus River and

possibly the now-extinct Saraswati River in present-day Pakistan and northwest India.

Spanning roughly from 2600 BCE to 1900 BCE, this ancient civilization is renowned

for its advanced urban planning, sophisticated drainage systems, standardized weights

and measures, and distinctive artifacts, including seals bearing inscriptions in the enig-

matic Indus script. Despite its prominence, the Indus script remains undeciphered,

posing a significant challenge to scholars seeking to unravel the mysteries of this an-

cient civilization. Unlike other ancient civilizations such as Egypt and Mesopotamia,

which have benefited from the discovery of bilingual inscriptions like the Rosetta Stone,

the Indus Civilization lacks a comparable linguistic key, hindering efforts to decipher

its script and understand its society, economy, and culture.

Over the past century, scholars have engaged in meticulous studies of the Indus

script, employing various methodologies to decipher its meaning. However, the ab-

sence of a Rosetta Stone equivalent has compelled researchers to explore alternative

approaches, such as statistical analyses of grapheme sequences, intra-script grapheme
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associations, and contextual clues derived from archaeological artifacts. These manual

efforts, while insightful, are labor-intensive, time-consuming, and limited in scalability.

In recent years, advancements in data science and machine learning have opened up

new avenues for the computational analysis of ancient scripts, offering the potential to

automate and expedite the decipherment process. To address the challenge of grapheme

identification within the Indus script, we propose the use of ASR-net, a novel neural

network architecture that combines the strengths of M-net and YOLOv3 for efficient

and accurate identification of individual graphemes. ASR-net leverages the capabilities

of M-net for character recognition and YOLOv3 for object detection, enabling robust

detection and classification of graphemes on Indus seals.

Moreover, motif identification on Indus seals presents another significant challenge,

as these motifs often serve as key elements for understanding the symbolic and cul-

tural significance of the artifacts. To tackle this challenge, we introduce MIP-net, a

machine learning framework specifically designed for motif identification in archaeo-

logical imagery. MIP-net employs convolutional neural networks (CNNs) trained on

annotated datasets of Indus seals to automatically identify and classify motifs, allowing

for efficient analysis of large collections of artifacts.

In light of these developments, our research aims to bridge the gap between tradi-

tional scholarship and computational analysis by proposing a machine learning-based

approach for the automated identification and analysis of motifs—distinctive symbols

or iconographic elements—found on Indus seals. These seals, typically made of steatite

or other soft stones, feature intricate engravings comprising motifs, often accompanied

by short inscriptions in the Indus script. By leveraging ASR-net for grapheme identifi-

cation and MIP-net for motif identification, our proposed system seeks to automate the

process of deciphering Indus seals, enabling researchers to efficiently analyze large col-

lections of artifacts and extract valuable insights into the socio-cultural and economic

2



aspects of the Indus Civilization.

Additionally, we have developed a comprehensive database comprising high-resolution

images of Indus seals, along with metadata detailing their provenance, dimensions, and

associated inscriptions where available. This database serves as a foundational resource

for our research, providing a rich repository of visual and contextual data for training

and validating our machine learning models. Through the development of automated

tools for motif identification, we aim to contribute to the broader scholarly efforts aimed

at deciphering the Indus script and shedding light on the rich tapestry of the ancient

Indus Civilization. By harnessing the power of machine learning and computational

analysis, we hope to unlock new avenues of research and deepen our understanding of

this enigmatic ancient society.

Below is the brief description of what the chapter describes about.

Chapter 2 presents a comprehensive survey of existing literature on the decipher-

ment of the Indus script. Traditional methodologies and computational approaches

used in Indus script analysis are reviewed, critically evaluating previous efforts and

identifying gaps in research.

Chapter 3 introduces key concepts and methodologies employed in the research. It

explains machine learning algorithms and techniques relevant to motif identification,

along with an overview of data annotation, model training, and evaluation processes.

Chapter 4 describes the proposed methodology for automated motif identification

on Indus seals. It discusses the rationale behind the selection of machine learning

algorithms and data preprocessing techniques, providing an outline of the workflow for

data annotation, model training, and deployment.

Chapter 5 provides a detailed explanation of the implementation process, including

data collection, annotation, and model training. It describes the tools and technolo-

gies utilized in the implementation phase, along with an overview of the challenges
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encountered and solutions devised during implementation and includes Unified Mod-

eling Language (UML) diagrams illustrating the system architecture, data flow, and

entity relationships. It explains each diagram and its relevance to the proposed ap-

proach and implementation..

Chapter 6 presents and analyzes the results obtained from the implementation

phase. It evaluates the performance of the machine learning models in motif identi-

fication and discusses the implications of the results for deciphering the Indus script

and understanding the Indus Civilization.

Chapter 7 discusses the challenges encountered during the research process. It ex-

plores the difficulties faced in implementing the proposed approach, including technical

limitations, data quality issues, and methodological constraints.

Chapter 8 provides a summary of the research findings and their significance in

the context of deciphering the Indus script. It reflects on the strengths and limita-

tions of the proposed approach and proposes future research directions and potential

improvements to the methodology.

Next we have the bibliography, listing all the references cited throughout the thesis

or research paper. It provides readers with a comprehensive list of sources for further

reading and verification of the information presented in the document.

The following part will elaborate on the background work associated with the

project.

4



Chapter 2

Literature Survey

The study by Varun Venkatesh et al. [31] investigated the Indus script by analyzing

patterns and positions of individual signs, pairs, and sequences. They built statistical

models and algorithms to predict sign behavior based on their position. This analysis

revealed significant differences in the language used in Indus texts from West Asia

compared to those from the Indian subcontinent, suggesting distinct regional dialects

within the Indus civilization.

Researchers have proposed a novel method to tackle the challenges of deciphering

undeciphered scripts like the Indus Valley Script in a study by Shurthi Daggumati et

al. [3]. This method focuses on identifying and grouping together different ways of

writing the same symbol (allographs) based on their positions within the inscriptions.

The authors argue that this approach can significantly simplify the script by reducing

the number of unique symbols, potentially paving the way for a breakthrough in de-

ciphering its hidden messages. They applied their method to the Indus Valley Script

and identified 50 symbol pairs that could be grouped, reducing the complexity of the

script by 12%. This exciting development holds promise for unlocking the secrets of

these ancient languages.
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In a paper by Michael Oakes et al. [17], the distribution of Indus Valley script signs

found in Mahadevan’s 1977 concordance is analyzed. Using Large Numbers of Rare

Events (LNRE) models, the authors estimate a vocabulary of around 857 signs, includ-

ing undiscovered ones. Statistical analysis reveals non-random distributions based on

factors like position, archaeological site, object type, and direction of writing. The au-

thors conclude that further analysis is needed to understand the underlying structure

and meaning of the Indus Valley script.

While the study by Ansumali Mukhopadhyay et al. [16] offers an intriguing ap-

proach to deciphering the Indus Valley script using Dravidian languages, it acknowl-

edges several key areas requiring further exploration. The connection between Dravid-

ian languages and the Rig Veda remains a point of debate within academic circles, and

the vast timeframe between the Mehargarh civilization and the Indus Valley necessi-

tates careful consideration. Additionally, the paper highlights the uncertainties sur-

rounding the Aryan invasion and its impact on pottery styles. By acknowledging these

open questions and encouraging further research, the analysis ultimately contributes

to the ongoing quest to unlock the secrets of the Indus script, even if it doesn’t provide

definitive answers at this stage.

In their study, S.Palaniappan et al. [18] recognize the endeavor to automate the

preparation of standardized corpora for undeciphered scripts as a significant challenge,

often requiring laborious manual effort from raw archaeological records. Recent efforts

have sought to address this challenge by exploring the potential of machine learning al-

gorithms to streamline the process, offering valuable insights for epigraphical research.

Building upon this groundwork, authors present a pioneering deep learning pipeline

tailored for the Indus script, aiming to automate the extraction and classification of

graphemes from archaeological artifacts. Through the integration of convolutional neu-

ral networks and established image processing techniques, their methodology demon-

6



strates promising advancements in accurately identifying and categorizing textual el-

ements. This work contributes to the evolving landscape of computational epigraphy,

showcasing the potential of deep learning approaches to revolutionize research method-

ologies in the digital humanities domain.

The related works presented by the cited papers offer valuable insights and method-

ologies relevant to the project of deep learning in Indus Valley script digitization.

Firstly, they highlight the complexity of the script and the challenges associated with

deciphering it, emphasizing the need for innovative approaches. The studies on statisti-

cal analysis and allograph identification provide crucial groundwork for understanding

the patterns and structures within the script, which can inform the design of deep

learning models. Additionally, the exploration of linguistic connections, such as with

Dravidian languages, offers potential insights into the script’s origins and linguistic

context. Moreover, the efforts to automate corpus preparation and grapheme extrac-

tion demonstrate the application of advanced computational techniques, particularly

deep learning, in streamlining the digitization process. By building upon these previous

works, the project aims to leverage deep learning algorithms to automate the analysis

and interpretation of the Indus Valley script, ultimately contributing to the broader

goal of unlocking its hidden messages and historical significance.

The subsequent section will detail the array of concepts utilized in the project.
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Chapter 3

Conceptual Landscape

3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have revolutionized the field of computer vision

by introducing powerful hierarchical representations of visual data. Unlike traditional

neural networks, CNNs are specifically designed to effectively capture spatial hierar-

chies in images through the use of convolutional layers. These layers consist of filters

that slide over input images, capturing local patterns and features at different spatial

scales. By stacking multiple convolutional layers followed by pooling layers, CNNs are

able to progressively learn complex representations of visual data.

The architecture of a typical CNN comprises multiple layers, including convolutional

layers, activation functions, pooling layers, and fully connected layers. Convolutional

layers are responsible for learning features from input images by applying convolution

operations with learnable filters. Activation functions, such as ReLU (Rectified Linear

Unit), introduce non-linearity to the network, allowing it to learn complex relationships

between features. Pooling layers, such as max pooling or average pooling, downsample

feature maps to reduce the spatial dimensions and computational complexity of subse-
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Figure 3.1: Basic CNN Architecture

quent layers. Fully connected layers integrate extracted features for final classification

or regression tasks.

CNNs have demonstrated remarkable success in various computer vision tasks, in-

cluding image classification, object detection, and semantic segmentation. Their ability

to automatically learn hierarchical representations of visual data has led to significant

advancements in fields such as medical imaging, autonomous driving, and image-based

biometrics. Additionally, CNNs have been widely adopted in industry applications,

powering image recognition systems in smartphones, surveillance cameras, and quality

control systems.

The widespread adoption of CNNs can be attributed to their effectiveness in han-

dling large-scale visual data, robustness to variations in input, and scalability to dif-

ferent tasks and domains. Their architecture and design principles have laid the foun-

dation for numerous advancements in deep learning and computer vision research.

As CNNs continue to evolve with innovations such as residual connections, attention

mechanisms, and efficient architectures like MobileNet, they remain at the forefront of

cutting-edge research and practical applications in the field of computer vision.
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3.2 YoloV3

YOLOv3, short for You Only Look Once version 3, is an advanced object detection

model renowned for its efficiency and accuracy. Introduced by Joseph Redmon and Ali

Farhadi in 2018, YOLOv3 represents a significant improvement over its predecessors by

incorporating several key enhancements. The fundamental concept behind YOLOv3 is

its ability to perform object detection in real-time by dividing the input image into a

grid and predicting bounding boxes and class probabilities directly from the grid cells.

Figure 3.2: YoloV3 Architecture

The architecture of YOLOv3 is built upon a deep convolutional neural network

backbone, typically based on Darknet, a custom CNN architecture designed for YOLO

models. YOLOv3 consists of multiple convolutional layers followed by detection layers

responsible for predicting bounding boxes and class probabilities. Notably, YOLOv3

utilizes a feature pyramid network (FPN) to extract multi-scale features from different

layers of the network, enabling accurate detection of objects at various scales and
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resolutions.

One of the key features of YOLOv3 is its ability to predict bounding boxes at

different scales using a technique called multi-scale prediction. This allows YOLOv3

to detect objects of varying sizes and aspect ratios with high accuracy. Additionally,

YOLOv3 incorporates anchor boxes to improve the localization of objects by predicting

bounding box offsets relative to predefined anchor shapes.

YOLOv3 has gained widespread popularity due to its impressive performance in

real-time object detection tasks across diverse domains, including surveillance, au-

tonomous driving, and robotics. Its efficiency in processing images and videos in real-

time makes it a popular choice for applications requiring rapid and accurate object

detection capabilities.

We integrate YOLOv3 into our project to create bounding boxes around the graphemes

present on Indus seals. This enables us to accurately identify and isolate the individual

graphemes for further analysis. YOLOv3’s efficiency in processing images and videos

in real-time makes it a popular choice for applications requiring rapid and accurate

object detection capabilities.

3.3 MobileNet

MobileNet is a groundbreaking convolutional neural network (CNN) architecture specif-

ically designed to address the computational constraints of mobile and embedded de-

vices while maintaining high accuracy in image classification tasks. Developed by

Google researchers, MobileNet introduces a novel approach known as depth-wise sepa-

rable convolutions to significantly reduce the computational complexity of traditional

CNNs. This technique involves decomposing standard convolution operations into two

separate layers: a depth-wise convolution and a point-wise convolution. By applying
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these layers sequentially, MobileNet achieves a remarkable reduction in the number of

parameters and computations required, making it particularly well-suited for deploy-

ment on resource-constrained platforms.

Figure 3.3: Mobilenet Architecture

The architecture of MobileNet is characterized by its depth-wise separable convo-

lutions, which enable efficient inference and low memory footprint without sacrificing

performance. MobileNet has since evolved with successive versions, each introducing

improvements to further enhance efficiency and accuracy. MobileNetV2, for exam-

ple, introduced inverted residuals with linear bottleneck layers, which significantly

improved efficiency by reducing the computational cost of residual connections. Ad-

ditionally, MobileNetV3 introduced advanced features such as squeeze-and-excitation

blocks and hard-swish activation functions, further optimizing performance for mobile

vision applications.
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The significance of MobileNet lies in its ability to democratize deep learning on

mobile devices, enabling a wide range of applications in fields such as image classifi-

cation, object detection, and semantic segmentation. By reducing the computational

burden without compromising accuracy, MobileNet empowers developers to deploy so-

phisticated computer vision models on smartphones, tablets, and other edge devices.

Its efficiency makes it an ideal choice for real-time applications where latency and re-

source constraints are critical considerations. As a result, MobileNet has become a

cornerstone in the development of mobile vision applications, driving innovation and

accessibility in the field of deep learning for mobile platforms.

TensorFlow, developed by Google Brain, is an open-source machine learning frame-

work renowned for its flexibility, scalability, and ease of use. TensorFlow provides com-

prehensive tools and resources for building, training, and deploying machine learning

models across a variety of platforms, including mobile and embedded devices. With its

robust ecosystem and support for diverse hardware accelerators, TensorFlow enables

developers to seamlessly integrate sophisticated deep learning models such as Mo-

bileNet into mobile applications. Furthermore, TensorFlow’s optimization techniques,

such as model quantization and conversion to TensorFlow Lite format, further enhance

the deployment efficiency of deep learning models on resource-constrained platforms.

In our project, we utilized MobileNet to encode graphemes, leveraging its effi-

cient architecture to handle the computational demands of processing visual data on

resource-constrained devices. By integrating MobileNet into our workflow, we were

able to achieve high performance in grapheme encoding.

The upcoming chapter will detail the proposed approach.
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Chapter 4

Proposed Approach

In this section, I outline the methodology employed in our project, which integrates

various deep learning models to analyze and extract information from visual data.

Firstly, we utilize the YOLOv3 model as a foundational component of our system.

YOLOv3 acts as a robust visual detector, efficiently identifying and delineating indi-

vidual characters within input images. This is akin to the process of drawing chalk

outlines around suspects at a crime scene, where each character is enclosed within

a bounding box. These bounding boxes serve as the initial step in organizing and

preparing the visual data for further analysis.

Following the detection stage, our approach incorporates specialized models such

as M-net and MIp-net to delve deeper into the extracted bounding boxes.

M-net is responsible for decoding the sequence of graphemes represented by each

bounding box. It meticulously analyzes the spatial arrangement of characters within

the image, sorting them from top to bottom and investigating each row from right to

left. This sequential processing mirrors the reading pattern observed in certain lan-

guages and ensures accurate character recognition, even in scenarios involving multiple

lines of text.
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On the other hand, MIp-net focuses on extracting information regarding motifs and

symbols present in the input image. By examining the deeper context and symbolism

embedded within visual elements, MIp-net enriches our understanding of the image’s

content beyond mere character recognition.

The collaborative approach of these models allows for efficient processing and ex-

traction of valuable insights from diverse visual data. While YOLOv3 handles the

initial detection and organization of characters, M-net and MIp-net specialize in deci-

phering the identities of characters and extracting contextual information, respectively.

This synergy enables our system to provide comprehensive analysis and utilization of

visual data stored within our database.

By combining these advanced deep learning techniques, our proposed approach

aims to achieve accurate and insightful analysis of visual data, contributing to various

applications such as image understanding, text recognition, and content extraction.

The subsequent chapter will provide an in-depth discussion on constructing the

model.
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Chapter 5

Building The Model

5.1 Bounding Box Creation

5.1.1 Description

Data Collection: The process began with the collection of images containing graphemes.

These images likely consisted of text or handwritten characters that needed to be an-

alyzed. In total, 232 images were gathered for training purposes. Annotation: Each

image was meticulously annotated to mark the location of individual graphemes. This

annotation process likely involved outlining or labeling each grapheme within the im-

age. The annotations were then stored in XML files, which served as a structured for-

mat to record the coordinates and other relevant information about each grapheme’s

position within the image. Model Selection: YOLOv3, short for ”You Only Look Once

version 3,” was chosen as the object detection model for this task. YOLOv3 is known

for its efficiency and accuracy in detecting objects within images.

16



5.1.2 Dataset

Training: The YOLOv3 model was trained using the 232 annotated images. Dur-

ing training, the model learned to recognize the patterns and features associated with

graphemes within the images, ultimately enabling it to predict bounding boxes around

them. Validation: To assess the performance of the trained model and ensure its gener-

alization ability, a separate set of 13 images with annotations was used for validation.

These images were likely selected to represent a diverse range of scenarios and grapheme

configurations.

5.2 Grapheme Identification

5.2.1 Description

In the initial approach, Convolutional Neural Networks (CNNs) are employed to rec-

ognize characters within bounding boxes due to their adeptness in learning and ex-

tracting features from images automatically. The M-net model is integrated into this

architecture to provide further refinement in character recognition. Unlike traditional

CNNs that operate on entire images, M-net focuses specifically on the characters within

bounding boxes, ensuring precise decoding of sequences of graphemes.

During the process, M-net meticulously analyzes the spatial arrangement of char-

acters within each bounding box. It follows a sequential processing approach, sorting

characters from top to bottom and examining each row from right to left. This ap-

proach mirrors typical reading patterns in certain languages, ensuring accurate char-

acter recognition even in complex scenarios involving multiple lines of text or irregular

arrangements.

Furthermore, as part of the validation process, multiple layers of CNN-based classi-
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fication models are utilized. These models work in conjunction with M-net to validate

and refine the accuracy of character recognition. The combination of CNN-based classi-

fication models and M-net’s sequential processing enhances the robustness of character

recognition within the bounding boxes.

Additionally, to explore avenues for further improvement, transfer learning tech-

niques are employed. Pre-trained transfer learning-based models, including popular

architectures like ResNet and DenseNet, are considered. While traditionally used for

image classification tasks, these models can be adapted and fine-tuned to enhance char-

acter recognition within bounding boxes. By integrating transfer learning techniques

with the M-net model, the initial approach aims to leverage the knowledge and fea-

tures learned from large datasets to improve the accuracy and efficiency of character

recognition in diverse scenarios.

Overall, the M-net model serves as a critical component within the initial approach,

contributing to the accuracy and robustness of character recognition within bounding

boxes. Its sequential processing, combined with the capabilities of CNN-based classi-

fication models and transfer learning techniques, enables comprehensive analysis and

extraction of information from visual data.

5.2.2 Dataset

There are a total number of 40 classes(labels) in the dataset. The 40 labels are: M8,

M12, M15, M17, M19, M28, M48, M51, M53, M59, M102, M104, M141, M162, M173,

M174, M176, M204, M205, M211, M216, M245, M249, M267, M287, M294, M296,

M302, M307, M326, M327, M328, M330, M336, M342, M387, M389, M391, Other.

The number of Images used for Training - 12,264 (300+ images for each class) The

number of Images used for Validation - 200 (5 Images for each class).
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5.2.3 M-net Architecture

Figure 5.1: M-net Model architecture

5.3 Model Accuracy

5.3.1 M-net

The above graph showing the accuracy of a model called the M-net Model. The x-

axis of the graph is labeled ”Epoch” and the y-axis is labeled ”Accuracy”. The graph

shows that the accuracy of the model increases as the number of epochs increases. The

training accuracy is shown in blue and the validation accuracy is shown in green. The

highest training accuracy is 0.94 and the highest validation accuracy is 0.95. The model

has been trained on 40 classes with around 12,264 images with pre-augmentation. The

validation data doesn’t undergo the augmentation which has 200 images in total for

all the classes. We can see that the accuracy started with 0.40 which reaches the 0.94

for 10 epochs.

19



Figure 5.2: M-Net Accuracy

5.4 Motif Identification

5.4.1 Description

The MIP-net model, short for Motif Identification and Prediction Network, is a machine

learning model designed for motif identification tasks. In this case, it’s specifically

trained for identifying motifs in images, particularly the IVC Seal image.

Here’s how the process typically works:

Training the MIP-net Model: The MIP-net model is trained using a dataset of IVC

Seal images, where each image is associated with a particular motif. The model learns

to recognize patterns and features in the images that are indicative of different motifs.

Utilizing 11 Different Classes: The model is trained to classify the motifs into

11 different classes. These classes represent the different motifs that the model can

identify. Each class corresponds to a specific motif that the model has been trained to

recognize.
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Input Image and Prediction: When an IVC Seal image is provided as input to the

trained MIP-net model, the model predicts the probability for each of the 11 classes.

This is done by passing the image through the trained neural network, which computes

the likelihood or confidence score for each motif class.

Selecting the Most Probable Motif: After obtaining the probabilities for each class,

the model selects the class with the highest probability as the predicted motif. In other

words, the class that the model is most confident about is chosen as the output motif.

Returning the Output: Finally, the predicted motif, along with its associated prob-

ability score, is returned as the output of the model. This motif represents the pattern

or feature that the model believes is present in the input IVC Seal image.

Overall, the MIP-net model serves as a tool for automatically identifying motifs in

IVC Seal images, providing a systematic and efficient way to analyze and categorize

these images based on their visual characteristics.

5.4.2 MIP-net Architecture

Figure 5.3: MIP-net Model architecture
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5.4.3 Dataset

There are a total number of 11 classes(labels) in the dataset. 11 Labels used are ”buf-

falo”, ”bull”, ”elephant”, ”horned ram”, ”man holding tigers”, ”pashupati”, ”sharp

horn and long trunk”, ”short horned bull with head lowered towards a trough”, ”swastik”,

”tiger looking man on tree”, ”unicorn”.

The number of Images used for Training - 3300. The number of Images used for

Augmentation - 55 (5 Images for each class).

5.4.4 MIP-net

Figure 5.4: MIP-Net Accuracy

The above graph showing the accuracy of a model called the MIP-net Model. The

x-axis of the graph is labeled ”Epoch” and the y-axis is labeled ”Accuracy”. The graph

shows that the accuracy of the model increases as the number of epochs increases. The
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training accuracy is shown in blue and the validation accuracy is shown in green. The

highest training accuracy is 0.95 and the highest validation accuracy is approximately

0.96. The model has been trained on 11 classes with around 3300 images with pre-

augmentation. The validation data doesn’t undergo the augmentation which has 55

images in total for all the classes. We can see that the accuracy started with 0.20 which

reaches the 0.96 after trained for 10 epochs.

5.5 Database

5.5.1 UML Diagrams

5.5.1.1 Class Diagram

The class diagram illustrates the structure of the system by showing the classes in

the system and their relationships. . In this context, the class diagram depicts the

Figure 5.5: Class Diagram

main entities involved in the pipeline, such as Image, Grapheme, and Motif, along

with their attributes and associations. It provides an overview of the data structure
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and relationships within the system, aiding in understanding the organization of the

system’s components

5.5.1.2 Component Diagram

The component diagram illustrates the physical deployment of components in the sys-

tem and their interactions.

Figure 5.6: Component Diagram

In this context, the component diagram depicts the various components involved in

the system, such as the Image Processing Module, YOLOv3 Model, MobileNet Model,

MIP-net Model, and Database. It provides an overview of the deployment architecture

of the system, showing how different components are interconnected and deployed in

the system environment.
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5.5.1.3 Sequence Diagram

The sequence diagram illustrates the interactions between objects in the system over

time, showing the flow of messages between objects. In this context, the sequence

diagram depicts the sequence of actions involved in executing the pipeline, from the

user initiating the process to the various components processing the image and storing

the data. It helps in understanding the dynamic behavior of the system and the

sequence of activities performed during the execution of the pipeline.

Figure 5.7: Sequence Diagram

5.5.2 Storing the Final Data

5.5.2.1 Description

Storing project results in a SQL database is crucial for data management and acces-

sibility. This step ensures that the valuable insights gained from the previous phases

of the project are preserved in a structured and organized manner. Here’s a detailed

breakdown of the process:

Database Setup: First, a SQL database needs to be set up. This involves creating

a new database or using an existing one where the project results will be stored. The

database schema should be designed to accommodate the data to be stored, ensuring

that it reflects the structure of the project results.
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Table Creation: Within the database, tables need to be created to represent dif-

ferent entities or aspects of the project results. For example, there may be a table to

store image data, another table for grapheme sequences, and another for motifs. Each

table should have appropriate columns to store relevant information, such as ImageID,

Image, GraphemeSequence, and Motif.

Data Insertion: Once the tables are set up, the project results can be inserted into

the database. This involves executing SQL INSERT statements to add records to the

respective tables. For image data, the actual images may be stored in the database as

binary large objects (BLOBs) or as file paths pointing to image files stored externally.

Grapheme sequences and motifs are typically stored as text or varchar data types.

Data Retrieval and Querying: SQL SELECT statements can be used to extract

specific data or perform analysis on the stored information.

Data Integrity and Maintenance: It’s essential to ensure data integrity within the

database. This involves implementing constraints, such as primary keys, foreign keys,

and unique constraints, to maintain data consistency and prevent errors.

Scalability and Performance: As the project progresses and more data is collected,

the database should be scalable to accommodate the growing volume of information.

Overall, storing project results in a SQL database provides a centralized and struc-

tured repository for the data, enabling easy access, analysis, and collaboration among

project team members. It ensures that the insights generated from the project are

well-preserved and can be leveraged effectively for future research or decision-making

purposes.

5.5.3 Sample Queries to Retrieve Data from Database

• SELECT * FROM details; - display all the rows from the details table which

represents the ImageID, Image, GraphemeSequence and Motif.
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• SELECT * FROM details where Motif in (”swastik”,”bull”) - display all the rows

of data where the Motif is either swastik or bull.

• SELECT motif, COUNT(*) AS motifcount FROM details GROUP BY motif; -

Count the Number of Rows for Each Motif.

• SELECT COUNT(DISTINCT GraphemeSequence) AS uniquesequences FROM

details; - Find the Total Number of Unique Grapheme Sequences.

5.6 End-to-End Workflow of Indus Script Digitiza-

tion

Figure 5.8: Architecture

In the upcoming chapter, you can expect a thorough exploration of the results

achieved.
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Chapter 6

PipeLine Results : Insights

This pipeline processes images of seals to extract information about graphemes (written

symbols) and motifs (patterns) on the seal. Here’s a breakdown of each step:

6.1 Input and Preprocessing

The pipeline starts with an image as input. This image is resized and reshaped to

match the specific format required by the trained model. This ensures compatibility

and optimal processing.

Figure 6.1: The Sample Input Data
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6.2 Bounding Box creation

A YOLOv3 architecture is used to detect bounding boxes around each grapheme in

the image. YOLOv3 is a powerful object detection model trained to identify specific

objects in images. The coordinates of these bounding boxes are stored in a separate

file associated with the original image. This file will be used in the next step.

Figure 6.2: Bounding Box Coordinates

6.3 Grapheme Encoding

A MobileNet model named ”Mahadevan” takes the grapheme bounding boxes from

the previous step as input.

Figure 6.3: Grapheme Sequence

29



This model extracts features from each grapheme based on its location and ap-

pearance. These extracted features are then encoded into text format and stored in a

separate text file alongside the original image.

6.4 Motif Identification

The MIP-net model analyzes the original image again, this time focusing on identifying

motifs present on the seal. Motifs could be specific patterns, symbols, or designs with

meaning. MIP-net extracts information about these motifs and provides it in a format

understandable by the system.

Figure 6.4: Motif

6.5 Database Storage

Finally, all the extracted information is stored in a database. This includes:

• Image ID: A unique identifier for the image.

• Image: The original image itself.

• Grapheme sequence: The order of grapheme encodings from step 3.
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• Motif: Information about the identified motifs from step 4.

Figure 6.5: Database Structure

The subsequent chapter will outline the intricacies surrounding the challenges en-

countered.
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Chapter 7

Challenges

7.1 Low sample size for some classes

As mentioned before, a few motifs may be sparsely present in any corpora. Please note

that any corpora happens to be only a small subset of the seals produced by IC over

nearly a thousand years and over a large geographical region.

Figure 7.1: Rarely Found Motif

Even if a motif is observed only once, it needs to be cataloged, and needs to be

recognized when observed the next time on a newly found seal/sealing, possibly for

deriving crucial information. While this may not be a problem for an experienced
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archaeologist, it is not feasible for most ML algorithms to learn a motif from only one

sample. Extreme disbalance in sample sizes over multiple classes is our first challenge

in deep learning.

7.2 Broken seals with only partially visible motif

Many seals are broken during their long burial period, or even discarded for being

broken during their active lifetime. A broken seal may not have a reduced importance

in archaeological research. For example, the context in which the seal was used, and

the motif present on it, may infer the same conclusion irrespective of the seal being

broken or not. The motif present on a broken or damaged seal may be only partially

visible, and yet, it may be well recognizable by a human by observing only a small part

it. Can our ML model be trained to perform at the same level as a human being in

recognizing motif from only a small but relevant part of it? We address this question

in this work.

Figure 7.2: Broken Seal
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7.3 Stylistic variations and uncertain class

Artisans from IVC have curved motifs in many different styles and variations, either

for artistic reasons or for conveying some meaning. For identification purpose, archae-

ologists group all such variability under one motif class or type. For example, the most

frequently found Unicorn motif may have two to twelve thread patterns on their necks.

Wide variation within a class, which is a challenge for deep learning algorithms, unless

each variation is strongly present in the training set. Another problem is that a motif

may look like a different one, even to the human eyes. For example, a ”horned-zebra”

may look like a ”unicorn.” While most such cases could be discerned easily by an expert

with only a closer examination, it is not clear how can one train an ML algorithm to

make such discrimination over different motifs that look very similar.

Figure 7.3: Stylistic Variations

The upcoming chapter will cover information about the future prospects and con-

clusion.
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Chapter 8

Future Scope and Conclusion

8.1 Future Scope

8.1.1 Expanding Corpora Size

The future of analyzing ancient civilizations lies in enriching the data available for

study. One key approach involves incorporating additional sources like the Parpo-

la/Uesugi corpus and the complete motif list from the Mahadevan corpus. This ex-

panded data pool will allow researchers to delve deeper into the linguistic nuances of

ancient texts and uncover the symbolic meanings embedded in artifacts. With a more

comprehensive understanding of these elements, we can gain a richer appreciation of

the cultural heritage of these lost civilizations.

8.1.2 Broadening the Scope

Our understanding of the past can be further enhanced by moving beyond the study

of individual civilizations. Expanding the scope of research to include other ancient

societies, like Mesopotamia, Egypt, and Mesoamerica, presents exciting opportunities.
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By comparing and contrasting writing systems and cultural practices across different

regions and time periods, we can uncover broader patterns and trends in human devel-

opment. This comparative approach will provide a richer tapestry of human history,

allowing us to appreciate the diversity and interconnectedness of ancient civilizations.

8.1.3 Automatic Image Description Techniques

Technological advancements are also poised to revolutionize the analysis of ancient

visual artifacts. By pioneering techniques for the automatic description of images,

researchers can leverage the power of machine learning and computer vision algorithms.

These innovative tools can significantly enhance the efficiency and accuracy of analyzing

vast collections of artifacts, leading to a deeper understanding of the visual language

employed by these ancient societies.

8.1.4 Technical Aspects

8.1.4.1 Exploring Advanced Object Detection Techniques

As I plan my future projects, I intend to explore advanced techniques for object detec-

tion beyond the current framework. While YOLOv5 has gained attention, I will also

investigate alternative methodologies that align with my project requirements. By

conducting this exploration, I aim to identify solutions that can significantly enhance

object detection performance, ensuring the reliability and accuracy of my system.

8.1.4.2 Improving Grapheme Localization Precision

In my future projects, I aim to refine grapheme detection accuracy by investigating

enhancements to localization precision. This includes evaluating the implementation

of a four-coordinate format for bounding boxes to achieve finer granularity in character
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recognition. By adopting such an approach, I anticipate elevating the overall efficacy

and performance of my systems for text analysis tasks.

8.1.4.3 Exploring Alternative Deep Learning Frameworks

Looking ahead to my future projects, I am eager to explore alternative deep learning

frameworks beyond TensorFlow. While TensorFlow has been invaluable, I recognize

the value in diversifying my toolkit with frameworks like PyTorch. Through this ex-

ploration, I aim to leverage unique features and streamline development workflows,

ultimately enhancing the effectiveness and adaptability of my machine learning solu-

tions.

These interdisciplinary endeavors, combining traditional archaeological methods

with cutting-edge technology, hold immense promise for the future of our understanding

of past civilizations. By enriching our data sources, broadening our scope of inquiry,

and utilizing advanced image analysis techniques, we can unlock the secrets of the

past and gain a deeper appreciation for the richness and complexity of human cultural

heritage.

8.2 Conclusion

In conclusion, the introduction of ASR-net, a combination of M-net and YOLOv3,

marks a significant advancement in the field of ancient script analysis, particularly

focusing on the enigmatic Indus script. Achieving an impressive success rate in iden-

tifying individual symbols, ASR-net addresses the critical need for automated tech-

niques in digitizing ancient Indus seals, akin to Optical Character Recognition systems

for modern languages. Furthermore, this research introduces the Motif Identification

Problem (MIP), shedding light on recurring patterns (motifs) found on Indus seals,
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which are believed to hold specific functions within certain periods of the civilization.

Despite the challenges associated with applying deep learning to MIP, the creation of

an open-source dataset of annotated seals serves as a crucial stepping stone for further

theoretical archaeological research on the Indus Valley Civilization. Through the inte-

gration of advanced technological approaches and interdisciplinary collaboration, this

research contributes to the ongoing efforts to decipher the ancient mysteries embedded

within the artifacts of the Indus Valley Civilization.

The following news items have been made about the project:

• phys.org

• Infobae.com

• Omnia.com

In the chapter that follows, you’ll find a thorough exposition on the bibliography.
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