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Abstract

Title: Existence of Smooth Solutions for the Landau Equation with Hard Potentials

Author: Shelly Ann Taylor

Major Advisor: Dr. Stanley Snelson

This dissertation is concerned with the Landau equation, an integro-differential equation

that models the particle density of a plasma as it evolves in phase space. The main topic

is the (large-data) local existence of classical solutions to the Landau equation in the case of

hard potentials (γ ∈ (0, 1]). Solutions have previously been constructed by Chaturvedi [SIAM

J. Math. Anal., 55(5), 5345–5385, 2023] for initial data in an exponentially-weighted Sobolev

space of order 10, but it is not a priori clear whether these solutions have more regularity

than the initial data. We improve Chaturvedi’s existence result in two ways: our solutions are

infinitely differentiable for positive times, and we allow initial data that is more general in terms

of regularity and decay, at the cost of requiring a mild positivity condition at time zero. We also

prove uniqueness, under the additional assumption that the initial data is Hölder continuous.

Along the way, we establish some useful results that were previously only known in the case

of soft potentials, including spreading of positivity and propagation of Hölder continuity. Many

of the proof strategies from the soft potentials case do not apply here because of the more severe

loss of velocity moments.
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Chapter 1

Introduction

We are interested in the Landau equation, a kinetic integro-differential model from plasma

physics. Let us refer to [36] for Landau’s original 1936 paper that introduced the equation, and

[9, 37, 1, 38, 46] for some general references about the equation, including physical modeling

issues. For time t ≥ 0, location x ∈ R3, and velocity v ∈ R3, the initial-boundary value problem

for the particle density f(t, x, v) ≥ 0 reads


∂tf + v · ∇xf = Q(f, f),

f(0, x, v) = f0(x, v),

f(t, ·, v) periodic in x with period 1,

(1.0.1)

where f0 is some given initial condition. Letting T3 denote the three-dimensional torus of

side length 1, since f(t, ·, v) is periodic, we may equivalently consider it as a function on T3

with periodic boundary conditions on ∂T3. We will often use this equivalence between periodic

functions on R3 and functions on T3 throughout this work.

Next, Q(f, g) is Landau’s bilinear collision operator, which acts only in the velocity variable,
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and is defined by

Q(f, g) = ∇v ·
(∫

R3

a(v − w)[f(w)∇vg(v)− f(v)∇wg(w)] dw

)
,

for any functions f, g : R3 → R, and the matrix a(z) is defined by

a(z) = aγ

(
I − z ⊗ z

|z|2

)
|z|γ+2,

where, in general, γ ∈ [−3, 1], aγ > 0 is a constant depending on γ, and I is the 3× 3 identity

matrix.

The following regimes for the parameter γ are considered in the literature:

• γ > 0: hard potentials.

• γ = 0: Maxwellian molecules.

• −2 ≤ γ < 0: moderately soft potentials.

• −3 ≤ γ < −2: very soft potentials.

• γ = −3: Coulomb potentials.

We are concerned with the case γ > 0.

Physically, the Landau equation is a kinetic model that seeks to understand the evolution

of a plasma, which is made up of many small particles, by studying the particle distribution

function f(t, x, v) rather than tracking individual particles. While f itself is not physically

observable, any average (integral) of f in (x, v) space over a set Ω ⊂ R6 gives the expected

number of particles with position and velocity in Ω at time t.

The left-hand side of (1.0.1) represents transport, and Q(f, f) describes how the particle

distribution changes as a result of binary collisions.

The model assumes that the plasma is diffuse enough that only binary collisions are frequent

enough to contribute, but not so diffuse that the approximation of discrete particles with a
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continuous density is invalid. The model also assumes that the boundary is far away enough to

be neglected—this is the justification for the periodic boundary conditions.

The standard kinetic equation for studying many-particle systems with binary collisions is

the Boltzmann equation [44]. However, the Boltzmann equation is not well-defined for Coulomb

interactions [1], and in the case of plasmas, the particles are highly charged ions, so Coulomb

interactions are the most relevant case. This was Landau’s original motivation for deriving

equation (1.0.1) in [36]. Briefly, the derivation proceeds as follows: to obtain a well-defined

collision operator, one modifies the Boltzmann collision operator by screening the Coulomb

interaction potential at some length scale λ. The Landau collision operator defined above, is

then obtained as the leading order term as λ→ ∞. This limiting process is highly involved, so

we refer to [1, 12] for more details.

Let us recall some basic properties of the Landau equation. Define the following quantities:

Mass =

∫∫
R6

f(t, x, v) dv dx,

Momentum =

∫∫
R6

vf(t, x, v) dv dx,

Energy =

∫∫
R6

|v|2 f(t, x, v) dv dx,

Entropy =

∫∫
R6

f(t, x, v) log f(t, x, v)dv dx.

For f a solution of (1.0.1), the mass, momentum, and energy are conserved, and the entropy is

decreasing. Furthermore, functions of the form c1e
−c2|v|2 (called Maxwellians) are equilibrium

solutions.

Global existence with general initial data poses a very challenging open problem. Therefore,

the scope of this dissertation focuses on the nontrivial question of local existence, which is less

understood in the case γ > 0. More specifically, our goal is to prove existence of a classical so-

lution on some time interval [0, T ], given some “large” (i.e. not necessarily close to equilibrium)

initial data f0. Other aspects of the well-posedness question (global solutions near equilibrium,

renormalized solutions, space homogeneous solutions, etc.) will be briefly surveyed in Section

1.2 below.
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Local existence for large initial data began with [27], which addressed the case γ = −3, and

[30], which addressed γ ∈ [−3, 0). The hard potentials case was established last by Chaturvedi

in [10]. This is the most difficult case for local existence because the growth of a(z) for large z

leads to a loss of velocity moments in various estimates of the collision operator. In particular,

the analysis in [10], which involves a heirarchy of weighted Sobolev norms, is noticeably more

intricate than the existence proof for the soft potentials case in [30].

Regarding the allowable spaces of initial data, all three of the mentioned works [27, 30, 10]

worked with initial data in Sobolev spaces of high degree (at least 4) with either exponential

or high-degree polynomial decay in velocity. The next step in large-data well-posedness was

to enlarge the allowable space of initial data f0 to include functions with no, or minimal,

regularity hypotheses, while still recovering smoothness of f for positive times. This is a

natural goal because the Landau equation is known to have a hypoelliptic smoothing effect

[21, 29]. This was accomplished for the case γ ∈ [−3, 0) in [31], which took initial data f0 with

(1 + |v|5)f0 ∈ L∞. Again, the proof does not extend naturally to hard potentials because of

velocity moment loss in several steps of the argument.

The only prior existence result for hard potentials is still [10], which does not imply any

smoothing for the solution. This leaves open two questions:

1. Do the solutions constructed in [10] regularize? There is an a priori smoothing theorem

for the hard potentials case [41], but it is not straightforward to apply this result to the

solutions contstructed in [10] because [41] assumes a uniform lower bound on the mass

density.

2. Can the allowable space of initial data be enlarged beyond the space used in [10], which

is essentially {f0 : eρ|v|f0 ∈ H10(R6)}?

The current work answers these questions affirmatively by constructing a solution to the

Landau equation (1.0.1) with γ ∈ (0, 1], given initial data f0 with eρ|v|
β

f0 ∈ L∞(R6) for some

β ∈ [γ, 1]. We also need to assume f0 is uniformly positive in some small ball in (x, v) space.

Therefore, our results are comparable to those in [31], except that we assume sub-exponential
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decay in v instead of polynomial. As in [31], we require additional hypotheses on f0 (Hölder

continuity and a stronger lower bound assumption) to prove uniqueness of solutions.

Parts of this dissertation appeared, in a somewhat modified form, in the article [43].

1.1 Main results

Recall the notation ⟨v⟩ =
√
1 + |v|2.

Theorem 1.1.1. Let γ ∈ (0, 1], and let f0 : R3
x × R3

v → [0,∞) be periodic in the x variable

and satisfy

∥eρ⟨v⟩
β

f0∥L∞(R6) ≤ K0,

for some ρ,K0 > 0 and β ∈ [γ, 1]. Furthermore, if γ ∈ (0, 1), assume there exist (xm, vm) ∈ R6

and δ, r > 0 such that

f0(x, v) ≥ δ, |x− xm| < r, |v − vm| < r.

If γ = 1, assume there exist δ, r, R > 0 such that for every xm ∈ R3, there exists a vm ∈ BR(0)

with

f0(x, v) ≥ δ, |x− xm| < r, |v − vm| < r.

Then there exist T, σ > 0 depending on γ, β, and K0 (but not on δ or r) and a classical

solution f to the Landau equation (1.0.1) on [0, T ]×R3×R3 such that e(ρ−σt)⟨v⟩βf(t) ∈ L∞(R6)

for each t ∈ [0, T ]. This solution is periodic in the x variable with the same period as f0, and

infinitely differentiable in (0, T ]× R3 × R3, with any partial derivative ∂f in (t, x, v) variables

bounded uniformly on any compact subset of (0, T ]× R3 × R3.

The solution f agrees with the initial data in the following sense: for any test function

ϕ ∈ C1
t,xC

2
v with compact support in [0, T )× R3 × R3,

∫
R6

f0(x, v)ϕ(0, x, v) dv dx =

∫ T

0

∫
R6

[f(∂t + v · ∇x)ϕ+Q(f, f)ϕ] dv dx dt.

Several comments on the statement of Theorem 1.1.1 are in order:
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• The assumption of periodicity in x is purely a technical condition, and could be removed

at the cost of more technical arguments. The period does not affect our estimates quan-

titatively. If the spatial domain were not periodic, one would need to assume that lower

bounds for f0 are “well-distributed” in the sense of [31], i.e. that no x location is too far

away from a location where f satisfies positive lower bounds.

• The extra lower bound condition when γ = 1 may be an artifact of our proof. However,

it is interesting to note that the existence result [10] also contains minor differences in

assumptions between the γ ∈ (0, 1) and γ = 1 cases, suggesting γ = 1 may be a genuine

borderline.

• If the initial data is continuous, then it can be shown that f(t, x, v) → f0(x, v) pointwise

as t→ 0, as expected. The proof is identical to [31, Proposition 3.1], so we omit it.

Next, we state our main uniqueness result. As in the corresponding study of the soft

potentials case [31] and the related work [33] on the Boltzmann equation, stronger assumptions

are required to prove uniqueness than existence.

Theorem 1.1.2. Let f0 : R3
x × R3

v → [0,∞) be periodic in the x variable and satisfy

∥eρ0⟨v⟩γf0∥Cα
k,x,v(T3×R3) ≤ K0,

for some ρ0,K0 > 0 and α ∈ (0, 1). Furthermore, assume there are δ, r, R > 0 such that for

every xm ∈ R3, there exists vm ∈ BR(0) with

f0(x, v) ≥ δ, |x− xm| < r, |v − vm| < r.

Let f : [0, T ] × T3 × R3 → [0,∞) be the solution to the Landau equation (1.0.1) guaranteed by

Theorem 1.1.1.

There exists TU ∈ (0, T ], depending on K0, ρ0, and α, such that for any classical solution

g ≥ 0 to (1.0.1) on [0, TU ]× T3 × R3 with g(0, x, v) = f0(x, v), there must hold f = g.
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The uniqueness or non-uniqueness of the solutions constructed in Theorem 1.1.1, when the

extra hypotheses of Theorem 1.1.2 are not satisfied, remains an open question.

1.2 Related work

1.2.1 Overview of prior work on the Landau equation

In this subsection, we present some important standard references on the Landau equation.

The Landau equation was introduced in 1936 in order to deal with the mathematical failure

of the Boltzmann equation in the case of Coulomb interactions. For the physical background,

see the treatise of Lifshitz and Pitaevskii [37].

In [1], Alexandre-Villani presented an argument that directly addresses the problem of

justifying the Landau approximation, i.e. realizing the Landau equation as an appropriate

scaling limit of the Boltzmann equation.

The article [13] presents an estimate that will bound below the entropy dissipation of the

Landau operator with Coulomb interaction by a weighted H1 norm of
√
f . In addition, the

article presents applications to existence theory.

The work [21] presents the Harnack inequality for kinetic Fokker-Planck equations with

rough coefficients and applications to the Landau equation. Specifically, this paper presents

the study of the Hölder regularity and establish a Harnack inequality for solutions to a general

linear equation of Fokker-Planck type whose coefficients are merely measurable and essentially

bounded. These general results are then applied to the non-negative essentially bounded weak

solutions of the Landau equation with inverse-power law γ ∈ [−d, 1] whose mass, energy and

entropy density are bounded, and mass is bounded away from 0, implying the Hölder regularity

of these solutions.

In the article [41], the author considers Gaussian bounds for the inhomogeneous Landau

equation with hard potential. The goal of the paper is to prove that solutions of the Landau

equation with hard potentials are bounded above and below by Maxwellians.

The article [3] rules out the existence of some self-similar blowup solutions to the Landau
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equation. However, the question of large-data global existence vs. breakdown remains open for

the inhomogeneous equation.

1.2.2 Existence theory

In this subsection, let us discuss references on the existence theory for the Landau equation.

We begin with the article [15], where the Cauchy problem is examined for the homogeneous

(i.e. x-independent) Landau equation, specifically for the case of hard potentials. For a large

class of initial data, it is proven that there exists a unique weak solution to this problem, which

becomes immediately smooth and rapidly decaying at infinity. This paper gives a detailed

discussion of the Cauchy problem and the qualitative properties of the solutions, specifically,

the smoothing effects.

In [47], the author establishes some global in time a priori estimates of the spatially ho-

mogeneous Landau equation for moderately soft potentials, meaning γ ∈ [−2, 0). The global

well-posedness results for γ ∈ [−2, 0) is deduced as an application, where the estimates include

the critical case of γ = −2.

Recently, it was shown in [24] that the space homogeneous Landau equation is globally well-

posed for large initial data, even in the case of very soft and Coulomb potentials γ ∈ [−3, 2).

Other works on existence and regularity theory for the spatially homogeneous Landau equa-

tion include [17, 40, 23, 6, 5, 20, 22, 14, 2, 19].

When the initial data f0 is sufficiently close to a Maxwellian equilibrium state M(v) =

c1e
−c2|v|2 with c1, c2 > 0, the Landau equation has a solution that is global in time. This has

been known since the work of Guo [25]. Other works on the close-to-equilibrium case include

[8, 7, 35, 16, 26, 18] and the references therein.

Global solutions close to the vacuum state f ≡ 0 were constructed in [39, 11].

A suitable notion of generalized solution, known as “renormalized solutions with defect

measure,” were shown to exist globally for the inhomogeneous equation by Villani [45]. However,

the regularity and uniqueness of these solutions are not understood.

Furthermore, we discuss the spatially inhomogeneous Landau equation with soft potentials,
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inclusive of the case of Coulomb interactions. As discussed briefly above, [30] established the

existence of solutions for a short time, with the assumption that the initial data is in a fourth-

order Sobolev space and has Gaussian decay in the velocity variable (no decay assumptions are

made in the spatial variable). Secondly, the evolution instantaneously spreads mass to every

point in its domain. The article presents the optimal result of the pointwise lower bounds for

a sub-Gaussian rate of decay.

For other works on the existence and regularity of the inhomogeneous Landau equation

without a close-to-equilibrium assumption, see [42, 34].

Next, the article [31] presented a solution that is constructed for any bounded, measurable

initial data with uniform polynomial decay in the velocity variable. This solution also satisfies

a lower bound assumption. The assumption is made, for the uniqueness in this weak class, that

the initial data is Hölder continuous.

Finally, let us discuss the article [10] in more detail. This work focused on the spatially inho-

mogeneous Landau equation with hard potentials on the whole space R3
x. With the assumption

that the initial data is in a weighted tenth-order Sobolev space and decays exponentially in the

velocity variable, the existence and uniqueness of the solutions for a small time is proven. The

proof presented relies on a weighted hierarchy of norms that depends on the number of spatial

and velocity derivatives in an asymmetric way, in order to overcome the moment loss issue.

Thus, the hierarchy makes it possible to deal with the terms most affected by the moment loss.

As mentioned above, our goal is to improve the result of [10].

1.3 Difficulties and proof strategy

As mentioned above, the results in this paper are in a similar spirit to [31], which considered

the case of soft potentials (γ ∈ [−3, 0)) and used norms with polynomial velocity weights (as

opposed to sub-exponential decay as in the current work). In general, the current study has to

deal with the main difficulties encountered in [31] in addition to the new issues brought about

by the stronger loss of moments when γ > 0.

Let us now discuss the proof strategies for three main areas of this work.
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1.3.1 Spreading of positivity

A key tool in [31] is the positivity-spreading result of [30], which was proven via a probabilistic

argument that requires γ < 0 in an apparently essential way. In the current work (see Theorem

5.0.1), we extend positivity-spreading to γ > 0 via a deterministic barrier argument inspired

by a similar argument from the study of the Boltzmann equation [32]. The basic steps of this

argument are as follows: (i) propagate local lower bounds forward for a short amount of time,

(ii) spread lower bounds to high velocities, (iii) spread lower bounds in x, using the fact that

f has positive lower bounds at a desired velocity. All three of these steps are proven using

barriers. In the case γ > 0 considered here, the step of spreading to large v is technically more

challenging than [32] and involves localizing in both x and v.

This argument shows f has sufficient lower bounds at all x locations to use the smoothing

properties of the collision operator.

1.3.2 Existence

The fundamental lemma for local existence in [31] is an a priori estimate in the polynomially

weighted space L∞
q (R6) of the form ∥f(t)∥L∞

q (R6) ≤ C∥f0∥L∞
q (R6) for t less than some T depend-

ing only on ∥f0∥L∞
q (R6). This proof relies on the fact that h(t, v) = eβt⟨v⟩−q is a supersolution

of the linear Landau equation for suitable β and q, but this fact is false when γ > 0, because

the coefficient c̄f grows too fast in velocity.

In this work, the polynomially-decaying function h is replaced with sub-exponentially decay-

ing supersolutions ϕ(t, v) = e(ρ−σt)⟨v⟩β , for some β ∈ [γ, 1]. The benefit of ϕ is that ∂tϕ produces

a term −σ⟨v⟩βϕ, which has the right sign to absorb the extra moments produced by c̄f when

γ > 0. This provides an estimate of the form ∥e(ρ−σt)⟨v⟩βf(t)∥L∞(R6) ≤ C∥eρ⟨v⟩βf0∥L∞(R6) for

t in some time interval [0, T ].

Once this estimate is available, existence follows by an approximation argument similar to

[31, 33]. One smooths the initial data and cuts off large velocities, applies the prior existence

result of [10], and uses the estimate described in the previous paragraph to apply regularity

theory and take the limit by compactness, as the cutoff and smoothing vanish.
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1.3.3 Uniqueness

There is a fundamental difficulty, seen already in [31, 33], with proving uniqueness in the low-

regularity setting. Namely, to control the difference between two solutions f and g, one needs

some velocity regularity for one of the solutions (say f). Naively applying regularity estimates

yields a constant that blows up too fast as t→ 0 to be useful. Therefore, one must take initial

data that is Hölder continuous and free of vacuum regions. By studying the evolution of a finite

difference of the solution, one can propagate the Hölder modulus forward to positive times.

This provides enough regularity to prove uniqueness.

In the hard potentials case, the same overall strategy works, but implementing the details

requires, as usual, controlling velocity moments that are lost in the estimates. As in the proof of

existence, sub-exponential weights like e(ρ−σt)⟨v⟩β are needed because of the good term produced

by the time derivative falling on the weight.

1.4 Notation

For f, g : R3 → R, it is well-known that Landau’s collision operator Q(f, g) can be written as

a second-order diffusion operator, in either divergence form

Q(f, g) = ∇v · (āf∇vg) + b̄f · ∇vg + c̄fg,

or non-divergence form

Q(f, g) = tr(āfD2
vg) + c̄fg,

where the nonlocal coefficients are defined by

āf (v) := aγ

∫
R3

(
I − w

|w|
⊗ w

|w|

)
|w|γ+2f(v − w) dw, (1.4.1)

b̄f (v) := bγ

∫
R3

|w|γwf(v − w) dw, (1.4.2)

c̄f (v) := cγ

∫
R3

|w|γf(v − w) dw, (1.4.3)
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where I is the 3 × 3 identity matrix and aγ , bγ , cγ are constants depending on γ. When f is

a function of (t, x, v), then these coefficients naturally also depend on all three variables: t, x,

and v.

We often use the notation z = (t, x, v) to denote a point in R7.

Throughout this work, all constants may depend on the parameter γ, even when not explic-

itly noted.

We always assume the solution f and initial data f0 are periodic in x with period 1. Usually,

we write the x domain as R3, but sometimes we write T3 to emphasize this periodicity. These

points of view are equivalent, since any function on T3 can be extended by periodicity to R3.
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Chapter 2

Preliminaries and known results

2.1 Existence for regular initial data

The following existence result was proven by Chaturvedi [10]. We state a simplified version of

his theorem with less sharp hypotheses, that is sufficient for our purposes:

Theorem 2.1.1. Let M0 > 0, γ ∈ [0, 1], d0 > 0, f0 be such that

∑
|α|+|β|≤10

||∂αx ∂βv (ed0⟨v⟩ · f0)||2L2
xL

2
v
≤M0.

Then for some T > 0, depending on γ, d0 and M0, there is a non-negative solution f to the

Landau equation with f(0, x, v) = f0(x, v).

Moreover, e(d0−κt)⟨v⟩f ∈ C([0, T ], H10
x,v(R6)).

Below, we will construct a solution by smoothing our initial data and cutting off large veloc-

ities, applying Theorem 2.1.1, and deriving sufficient estimates on these approximate solutions

to take the limit.
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2.2 Coefficient bounds

There are two types of upper bounds for āf , b̄f , and c̄f we will need. The first type is based

on L1-norms of f , and are available in the literature, as in the following lemma:

Lemma 2.2.1. [41, Lemma 2.1] Let f satisfy

∫
R3

(1 + |v|γ+2)f(t, x, v) dv ≤ K0, for all t ∈ [0, T ], x ∈ R3.

Then there exist constants C1, C2 C3, depending only on K0, such that

āfij(t, x, v)eiej ≤ C1


(1 + |v|)γ+2, e ∈ Sd−1,

(1 + |v|)γ , e · v = |v|,

|b̄f (t, x, v)| ≤ C2(1 + |v|)γ+1,

c̄f (t, x, v) ≤ C3(1 + |v|)γ .

The next type of coefficient estimate is based on weighted L∞-norms of f , and is essentially

understood in the literature as well.

Lemma 2.2.2. If f ∈ L∞
q ([0, T ]× R6) for some q > γ + 5, then

āfij(t, x, v)eiej ≤ C∥f∥L∞
q ([0,T ]×R6)(1 + |v|)γ+2

|b̄f (t, x, v)| ≤ C∥f∥L∞
q ([0,T ]×R6)(1 + |v|)γ+1,

c̄f (t, x, v) ≤ C∥f∥L∞
q ([0,T ]×R6)(1 + |v|)γ ,

for a constant C > 0 depending only on γ and q.

Lemma 2.2.1 can be proven using the convolution estimate |(g ∗ | · |r)(v)| ≤ C∥g∥L∞
q (R3)⟨v⟩r

where r > 0 and q > r + 3. We omit the details.

Furthermore, we have a lower ellipticity estimate for the matrix āf . The proof is the same

as [30, Lemma 4.3].
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Lemma 2.2.3. If f : R3 → R is nonnegative and satisfies the lower bound

f(v) ≥ δ, for all v ∈ Br(v0),

for some r, δ > 0 and v0 ∈ R3, then for all v ∈ R3, the matrix āf (v) defined by (1.4.1) satisfies

āfij(v)eiej ≥ c1


(1 + |v|)γ , e ∈ S2,

(1 + |v|)γ+2, e · v = 0.

(2.2.1)

with c1 > 0 depending only on δ, r, and |v0|.

2.3 Kinetic Hölder norms

The regularity of the inhomogeneous Landau equation is most naturally measured with respect

to a metric which respects the invariance of kinetic equations with respect to rescalings of the

form (t, x, v) 7→ (r2t, r3x, rv) and Galilean shifts. In more detail, define the kinetic distance

dk(z, z
′) = |t− t′|1/2 + |x′ − x− (t′ − t)v|1/3 + |v′ − v|.

Technically, dk is not a metric on R7 because it does not satisfy the triangle inequality and

is not symmetric. However, this fact causes no issues in our analysis. For any α ∈ (0, 1) and

domain Ω ⊂ R7, we define the kinetic Hölder seminorm

[u]Cα
k (Ω) = sup

z,z′∈Ω

|u(z)− u(z′)|
dk(z, z′)α

,

as well as the norm ∥u∥Cα
k (Ω) = ∥u∥L∞(Ω) + [u]Cα

k (Ω), and the Hölder space Cα
k (Ω) = {u : Ω →

R, ∥u∥Cα(Ω) <∞}.

Let us also define the second-order space C2,α
k (Ω) using the norm

∥u∥C2,α
k (Ω) = ∥u∥L∞(Ω) + ∥∇vu∥L∞(Ω) + ∥D2

vu∥Cα
k (Ω) + ∥(∂t + v · ∇x)u∥Cα

k (Ω).
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We sometimes apply the norm ∥ · ∥C2,α to functions u where ∂tu and ∇xu may not be defined

pointwise. In this case, the differential operator (∂t + v · ∇x) has been extended by density.

Next, we recall the standard kinetic cylinders, defined for some point z0 ∈ R7 and radius

r > 0 by

Qr(z0) = {z = (t, x, v) ∈ R7 : t < t0 and dk(z, z0) < r}

= {(t, x) ∈ R4 : t0 − r2 < t < t0 and |x− x0 − (t− t0)v0| < r3} ×Br(v0).

We also use the notations Qr = Qr(0) and

Qt,x
r (z0) = {(t, x) ∈ R4 : t0 − r2 < t < t0 and |x− x0 − (t− t0)v0| < r3}.

The following is a standard result about the Hölder seminorm of a product, which we state

without proof:

Lemma 2.3.1. For any subset Ω ⊂ R7, and any f, g ∈ Cα
k (Ω), the following inequality holds:

[fg]Cα
k (Ω) ≤ ∥f∥L∞(Ω)[g]Cα(Ω) + [f ]Cα(Ω)∥g∥L∞(Ω).

2.4 Sub-exponential functions

Throughout the paper, we make use of functions of the form ϕ = eρ⟨v⟩
β

for some ρ ∈ R and

β > 0. Sometimes, ρ will be replaced by a linear function of t. Let us collect a few useful

properties:

∂viϕ = ρβϕ⟨v⟩β−2vi, i = 1, 2, 3, (2.4.1)

∂vivjϕ = ρβ⟨v⟩β−4ϕ
[
(β − 2)vivj + ⟨v⟩2δij + ρβ⟨v⟩βvivj

]
, i, j = 1, 2, 3, (2.4.2)

āgij∂vivjϕ = ρβ⟨v⟩β−4ϕ
[(
(β − 2) + ρβ⟨v⟩β

)
āgijvivj + ⟨v⟩2tr(āg)

]
, (2.4.3)

where āg is defined by (1.4.1) for any function g, and the expression in (2.4.3) is summed over

repeated indices.
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We also have two interpolation lemmas with sub-exponential weights, that will be used in

our proof of the propagation of a Hölder modulus:

Lemma 2.4.1. For any θ, α ∈ (0, 1], any z0 ∈ R7 any β ∈ [0, 1], any ρ1 ≥ ρ0 ≥ 0, and any

g : Qθ(z0) → R such that the right-hand side is finite, there holds

[e[(ρ0+ρ1)/2]⟨v⟩βg]
C

α/2
k (Qθ(z0))

≤ C[eρ0⟨v⟩βg]
1/2
Cα

k (Qθ(z0))
∥eρ1⟨v⟩βg∥1/2L∞(Qθ(z0))

, (2.4.4)

for a constant C depending on ρ, β, and α.

Furthermore, the same interpolation holds for functions defined on [0, T ]× R6:

[e[(ρ0+ρ1)/2]⟨v⟩βg]
C

α/2
k ([0,T ]×R6)

≤ C[eρ0⟨v⟩βg]
1/2
Cα

k ([0,T ]×R6)∥e
ρ1⟨v⟩βg∥1/2L∞([0,T ]×R6),

with C as above.

Proof. Define

R =

(
∥eρ1⟨v⟩βg∥L∞(Qθ(z0))

e[(ρ1−ρ0)/2]⟨v0⟩β [eρ0⟨v⟩βg]Cα
k (Qθ(z0))

)2/α

.

Taking distinct z1, z2 ∈ Qθ(z0), there are two cases. If dk(z1, z2) ≥ R, then

|g(x1, v1)− g(x2, v2)|
dk(z1, z2)α/2

≤ CR−α/2e−ρ1⟨v0⟩β∥eρ1⟨v0⟩βg∥L∞(Qθ(z0))

= Ce−[(ρ0+ρ1)/2]⟨v0⟩β [eρ0⟨v⟩βg]
1/2
Cα

k (Qθ(z0))
∥eρ1⟨v⟩βg∥1/2L∞(Qθ(z0))

.

If dk(z1, z2) < R, then with Lemma 2.3.1, we have

|g(x1, v1)− g(x2, v2)|
dk(z1, z2)α/2

≤ |g(x1, v1)− g(x2, v2)|
dk(z1, z2)α

dk(z1, z2)
α/2

≤ Ce−ρ0⟨v0⟩β [eρ0⟨v⟩βg]Cα
k (Qθ(z0))R

α/2

= Ce−[(ρ0+ρ1)/2]⟨v0⟩β [eρ0⟨v⟩βg]
1/2
Cα

k (Qθ(z0))
∥eρ1⟨v⟩βg∥1/2L∞(Qθ(z0))

.

In either case, we see that e[(ρ0+ρ1)/2]⟨v0⟩β [g]
C

α/2
k (Qθ(z0))

is bounded by the right-hand side of

(2.4.4). Conclusion (2.4.4) then follows after applying Lemma 2.3.1 again.
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To prove the interpolation inequality on the whole space, cover [0, T ]×R6 with a countable

union of kinetic cylinders with radius 1 centered at zi, and note that

∥e[(ρ0+ρ1)/2]⟨v⟩βg∥
C

α/2
k ([0,T ]×R6)

≈
∞∑
i=1

∥e[(ρ0+ρ1)/2]⟨v⟩βg∥
C

α/2
k (Q1(zi)∩([0,T ]×R6))

.

The inequality then follows from applying (2.4.4) for each zi.

Lemma 2.4.2. For g : R6 → R such that the right-hand side is finite, there holds for any

z0 ∈ R+ × R6 and any θ ∈ (0,min{1,
√
t0/2}),

∥eρ⟨v⟩
β

D2
vg∥L∞(Qθ(z0)) ≤ C[D2

vg]
1− 2α

6−α

C
2α/3
k (Qθ(z0))

∥eρ
′⟨v⟩βg∥

2α
6−α

Cα
k (Qθ(z0))

,

with ρ′ = ρ

(
6

α
− 2

)
, and C > 0 a constant depending on ρ, α, and β.

Proof. First, we apply a standard unweighted interpolation between C2, C2,α/3, and Cα norms,

obtaining

∥eρ⟨v⟩
β

D2
vg∥L∞(Qθ(z0)) ≤ [eρ⟨v⟩

β

D2
vg]

1− α
6−2α

C
α/3
k (Qθ(z0))

[eρ⟨v⟩
β

g]
α

6−2α

Cα
k (Qθ(z0))

.

Next, we apply Lemma 2.4.1 to D2
vg, with 2α/3 replacing α, and with ρ0 = 0 and ρ1 = 2ρ:

∥eρ⟨v⟩
β

D2
vg∥L∞(Qθ(z0))

≤ [D2
vg]

1
2−

α/2
6−2α

C
2α/3
k (Qθ(z0))

∥e2ρ⟨v⟩
β

D2
vg∥

1
2−

α/2
6−2α

L∞(Qθ(z0))
[eρ⟨v⟩

β

g]
α

6−2α

Cα
k (Qθ(z0))

≤ Ceρ⟨v0⟩
β(1− α

6−2α )[D2
vg]

1
2−

α/2
6−2α

C
2α/3
k (Qθ(z0))

∥eρ⟨v⟩
β

D2
vg∥

1
2−

α/2
6−2α

L∞(Qθ(z0))
[eρ⟨v⟩

β

g]
α

6−2α

Cα
k (Qθ(z0))

.

(2.4.5)
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To absorb the exponential factor, we apply Lemma 2.3.1:

eρ⟨v0⟩
β(1− α

6−2α )[eρ⟨v⟩
β

g]
α

6−2α

Cα
k (Qθ(z0))

=
(
eρ⟨v0⟩

β( 6
α−3)[eρ⟨v⟩

β(3− 6
α )eρ⟨v⟩

β( 6
α−2)g]Cα

k (Qθ(z0))

) α
6−2α

≤ C
(
[eρ⟨v⟩

β( 6
α−2)g]Cα

k (Qθ(z0))

+eρ⟨v0⟩
β( 6

α−3)[eρ⟨v⟩
β(3− 6

α )]Cα
k (Qθ(z0))∥e

ρ⟨v⟩β( 6
α−2)g∥L∞(Qθ(z0))

) α
6−2α

≤ C∥eρ⟨v⟩
β( 6

α−2)g∥
α

6−2α

Cα
k (Qθ(z0))

,

where we used the fact that [eρ⟨v⟩
β(3− 6

α )]Cα
k (Qθ(z0)) ≤ Cβ,α,ρe

ρ⟨v0⟩β(3− 6
α ), since β ≤ 1. Returning

to (2.4.5), we now have

∥eρ⟨v⟩
β

D2
vg∥L∞(Qθ(z0)) ≤ C[D2

vg]
1
2−

α/2
6−2α

C
2α/3
k (Qθ(z0))

∥eρ⟨v⟩
β

D2
vg∥

1
2−

α/2
6−2α

L∞(Qθ(z0))
∥eρ⟨v⟩

β( 6
α−2)g∥

α
6−2α

Cα
k (Qθ(z0))

.

Absorbing the middle factor on the right into the left-hand side and simplifying, we obtain the

conclusion of the lemma.
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Chapter 3

Regularity theory

3.1 Change of variables

When applying regularity estimates for the Landau equation, the ellipticity of the matrix āf

degenerate for large v. A change of variables was developed in [4] to precisely track this

degeneration.

For a fixed z0 = (t0, x0, v0) ∈ [τ, T ] × R6, if |v0| > 2, let S be the linear transformation

defined by

Sξ =


|v0|1+γ/2ξ, ξ ⊥ v0,

|v0|γ/2ξ, ξ ∥ v0.

If |v0| ≤ 2, then we define S as the identity matrix. Next, define

Tz0(t, x, v) = (t0 + t, x0 + Sx+ tv0, v0 + Sv).

Given a solution to the Landau equation (1.0.1) on [0, T ]× R6, one then defines

r1 =


|v0|−1−γ/2 min

(
1,
√
t0/2

)
, |v0| > 2,

min
(
1,
√
t0/2

)
, |v0| ≤ 2,

(3.1.1)
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and

fz0(t, x, v) := f(Tz0(δr1(z))), z ∈ Q1(0),

where δr1(z) = (r21t, r
3
1x, r1v). By direct calculation, fz0 satisfies both the divergence form

equation

∂tfz0 + v · ∇xfz0 = ∇v · (A(z)∇vfz0) +B(z) · ∇vfz0 + C(z)fz0 , (3.1.2)

and the nondivergence-form equation

∂tfz0 + v · ∇xfz0 = tr(A(z)D2
vfz0) + C(z)fz0 , (3.1.3)

in Q1(0), where the coefficients are defined by

A(z) = S−1āf (Tz0(δr1(z)))S−1,

B(z) = r1S
−1b̄f (Tz0(δr1(z)))

C(z) = r21 c̄
f (Tz0(δr1(z))).

(3.1.4)

The key properties of fz0 and the transformed equation are contained in the following lemma,

which first appeared in [4] and was originally derived for the case γ ∈ (−2, 0). However, as

pointed out in [41], the result extends to the case γ > 0 with essentially the same proof. The

lemma is as follows:

Lemma 3.1.1 ([4]). With z0 ∈ (0, T ]× R6 given, let S and Tz0 be defined as above.

(a) There exists a constant C > 0 independent of z0, such that

C−1|v0| ≤ |v0 + r1Sv| ≤ C|v0|, v ∈ B1(0).
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(b) Let f be a solution of the Landau equation on [0, T ]× R6, satisfying

āf (t, x, v)ξiξj ≈


⟨v⟩γ |ξ|2, ξ ⊥ v,

⟨v⟩γ+2|ξ|2, ξ ∥ v,
|b̄f (t, x, v)| ≲ ⟨v⟩γ+1, c̄f (t, x, v) ≲ ⟨v⟩γ .

(3.1.5)

Then the coefficients A, B, and C defined in (3.1.4) satisfy

λI ≤ A(z) ≤ ΛI,

B(z) ≤ Λ⟨v0⟩1+γ/2,

C(z) ≤ Λ⟨v0⟩γ ,

(3.1.6)

for all z ∈ Q1(0), where λ and Λ are constants depending only on the implied constants

in (3.1.5).

We also note the following properties of our change of variables, which can be verified by a

direct computation: for any z1, z2 ∈ Q1,

dk(δr1(z1), δr1(z2)) = r1dk(z1, z2), (3.1.7)

and

min{1,
√
t0/2}⟨v0⟩−1dk(z1, z2) ≤ dk(Tz0(δr1(z1)), Tz0(δr1(z2))) ≤ min{1,

√
t0/2}dk(z1, z2).

(3.1.8)

The following lemma relates the regularity of fz0 to the regularity of f :

Lemma 3.1.2. Let f : [0, T ] × R6 → R and z0 ∈ (0, T ] × R6 be given. Let r1 be defined by

(3.1.1), and let r0 = min{
√
t0/2, 1}

(a) If f ∈ L∞
q (Qt,x

r0 (z0)× R3) for some q > 0, then

∥fz0∥L∞(Q1) ≤ C⟨v0⟩−q∥f∥L∞
q (Qt,x

r0
(z0)×R3).
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(b) If fz0 ∈ Cα
k (Qθ) for some α, θ ∈ (0, 1], then

[f ]Cα
k (Qr1θ(z0)) ≤ Cmax{1, t−α/2

0 }⟨v0⟩α[fz0 ]Cα
k (Qθ).

(c) If f ∈ Cα
k (Qθ(z0)), for some α, θ ∈ (0, 1], then

[fz0 ]Cα
k (Qθ) ≤ Cmin{1, tα/20 }[f ]Cα

k (Qθ(z0)).

In all three estimates, the constant C > 0 is independent of f and z0.

Proof. First, we note that note that Qr1θ(z0) ⊂ Tz0(δr1(Qθ)) ⊂ Qr0θ(z0). Conclusion (a) then

follows from Lemma 3.1.1(a), and conclusions (b) and (c) follow by applying (3.1.8).

The purpose of the following lemma is to pass regularity of f to the coefficients A and C.

Since A and C are nonlocal in the v variable, the assumption of Hölder continuity for f must

be made on the entire velocity domain R3. The proof of this lemma is the same as [28, Lemma

3.3] or [31, Lemma 2.7].

Lemma 3.1.3. Let f be defined in Ω × R3 for some (t, x) domain Ω ⊂ R4, and let z0

be such that Qr1(z0) ⊂ Ω × R3. Assume that ⟨v⟩mf ∈ Cα
k (Ω × R3) for some α ∈ (0, 1) and

m > 5 + γ + α/3.

Then the coefficients A and C defined in (3.1.4) are Hölder continuous in Q1, and

[A]
C

2α/3
k (Q1)

≤ C⟨v0⟩2+α/3[⟨v⟩mf ]Cα
k (Ω×R3),

[C]
C

2α/3
k (Q1)

≤ C⟨v0⟩α/3[⟨v⟩mf ]Cα
k (Ω×R3).

(3.1.9)

The constant C depends only on γ, α, and m.
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3.2 Regularity estimates

3.2.1 Local C2,α estimate

The following lemma is a Schauder estimate for the Landau equation. Because of the nonlocality

of the coefficients, this estimate depends on the Hölder continuity of f over the entire velocity

domain.

Lemma 3.2.1. Let f be a solution to the Landau equation on [0, T ]×R6. Let z0 ∈ (0, T ]×R6

be given, and define

Ω(z0) = (Qt,x
r0 (z0)× R3

v),

where r0 = min{1,
√
t0/2}. For some q, m, and α with α ∈ (0, 1) and

q > m > 5 + γ + α/3,

assume that

f(t, x, v) ≤ K0⟨v⟩−q, in Ω(z0), (3.2.1)

and ⟨v⟩mf ∈ Cα
k (Ω). Assume further that

āfij(t, x, v)ξiξj ≥ λ0


⟨v⟩γ , ξ ⊥ v,

⟨v⟩γ+2, ξ ∥ v,
for all (t, x, v) ∈ Ω(z0) and ξ ∈ R3. (3.2.2)

Then

[D2
vf ]C2α/3

k (Qr1/2(z0))
+ [(∂t + v · ∇x)f ]C2α/3

k (Qr1/2(z0))

≤ C(1 + t
−1−α/3
0 )⟨v0⟩−(q+2m)/3+9+3α+6/α+2α2/9+γ ×

(
1 + [⟨v⟩mf ]3+2α/3+3/α

Cα
k (Ω(z0))

)
,

where C > 0 is a constant depending only on K0 and λ0, and r1 is defined in (3.1.1).

Proof. Defining fz0 as above, with base point z0, we will work with the nondivergence-form

equation (3.1.3). Our first step is to verify the hypotheses of Lemma 3.1.1. From Lemma 2.2.2,
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our assumption (3.2.1) provides suitable upper bounds on c̄f as in (3.1.5). The lower bound on

āf in (3.1.5) follows from (3.2.2), and the upper bound follows from Lemma 2.2.1. (Note that

the L∞
q (R3

v) norm of f bounds the quantity
∫
R3(1+ |v|γ+2)f(t, x, v) dv.) Therefore, the bounds

(3.1.6) are valid for the coefficients A and C defined in (3.1.4), with constants depending only

on λ0 and K0.

The Schauder estimate of [28, Theorem 2.9], with 2α/3 replacing α, yields

[D2
vfz0 ]C2α/3

k (Q1/2)
+[(∂t + v · ∇x)fz0 ]C2α/3

k (Q1/2)

≤ C

(
[Cfz0 ]C2α/3

k (Q1)
+ ∥A∥3+2α/3+3/α

C
2α/3
k (Q1)

∥fz0∥L∞(Q1)

)
.

Applying Lemma 2.3.1 for the product Cfz0 , and using Lemma 3.1.3 and the upper bounds on

A and C from Lemma 3.1.1, we have

[D2
vfz0 ]C2α/3

k (Q1/2)
+ [(∂t + v·∇x)fz0 ]C2α/3

k (Q1/2)

≤ C
(
∥fz0∥L∞(Q1)⟨v0⟩

α/3[⟨v⟩mf ]Cα
k (Ω(z0)) + [fz0 ]C2α/3

k (Q1)
⟨v0⟩γ

+
(
⟨v0⟩2+α/3[⟨v⟩mf ]Cα

k (Ω(z0))

)3+2α/3+3/α

∥fz0∥L∞(Q1)

)
.

(3.2.3)

Next, we use Lemma 3.1.2(c), the interpolation [f ]
C

2α/3
k (Qr0

(z0))
≤ C[f ]

2/3
Cα

k (Qr0 (z0))
∥f∥1/3L∞(Qr0 (z0))

,

and Lemma 2.3.1 to write

[fz0 ]C2α/3
k (Q1)

≤ Cmin{1, tα/30 }[f ]
C

2α/3
k (Qr0 (z0))

≤ C[f ]
2/3
Cα

k (Qr0 (z0))
∥f∥1/3L∞(Qr0 (z0))

≤ C⟨v0⟩−(q+2m)/3[⟨v⟩mf ]2/3Cα
k (Qr0

(z0))
∥f∥1/3L∞

q (Ω(z0))
.

Returning to (3.2.3), using ∥fz0∥L∞(Q1) ≲ ⟨v0⟩−q∥f∥L∞
q (Ω(z0)), absorbing the norm ∥f∥L∞

q
into
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the constant, and keeping only the largest powers of ⟨v0⟩ and [⟨v⟩mf ]Cα
k
, we obtain

[D2
vfz0 ]C2α/3

k (Q1/2)
+[(∂t + v · ∇x)fz0 ]C2α/3

k (Q1/2)

≤ C⟨v0⟩−(q+2m)/3+7+7α/3+6/α+2α2/9
(
1 + [⟨v⟩mf ]3+2α/3+3/α

Cα
k (Ω(z0))

)
,

(3.2.4)

Finally, we translate from fz0 to f , using the chain rule and (3.1.8). In particular, with ∥S∥

denoting the operator matrix norm of S, we have

[D2
vf ]C2α/3

k (Qr1/2(z0))
≤ Cr−2

1 ∥S∥−2(1 + t
−α/3
0 )⟨v0⟩α[D2

vfz0 ]C2α/3
k (Q1/2)

≤ C(1 + t
−1−α/3
0 )⟨v0⟩2+2α/3[D2

vfz0 ]C2α/3
k (Q1/2)

,

and

[(∂t + v · ∇x)f ]C2α/3
k (Qr1/2(z0))

≤ Cr−2
1 (1 + t

−α/3
0 )⟨v0⟩α[(∂t + v · ∇x)fz0 ]C2α/3

k (Q1/2)

≤ C(1 + t
−1−α/3
0 )⟨v0⟩2+γ+2α/3[(∂t + v · ∇x)fz0 ]C2α/3

k (Q1/2)
,

which, combined with (3.2.4), imply the conclusion of the lemma.

The following local estimate is used to take the limit in our approximation procedure when

proving existence:

Proposition 3.2.1. Let f be a solution to the Landau equation on [0, T ] × R6. Let z0 ∈

(0, T ]×R6 be given, and define Ω(z0) as in Lemma 3.2.1. For some q > 5+2γ+4α/3, assume

that

f(t, x, v) ≤ K0⟨v⟩−q, in Ω(z0),

and

āfij(t, x, v)ξiξj ≥ λ0


⟨v⟩γ , ξ ⊥ v,

⟨v⟩γ+2, ξ ∥ v,
for all (t, x, v) ∈ Ω(z0) and ξ ∈ R3. (3.2.5)

Then there exist α ∈ (0, 1) and C > 0 depending only on K0 and λ0, and p1, p2 > 0 depending
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on α and γ, such that

[D2
vf ]C2α/3

k (Qr1/2(z0))
+ [(∂t + v · ∇x)f ]C2α/3

k (Qr1/2(z0))
≤ C

(
1 + t−p1

0

)
⟨v0⟩−q+p2 ,

where r1 is defined in (3.1.1).

Proof. Once again, we work with the transformed function fz0 . As in the proof of Lemma

3.2.1, our hypotheses imply that Lemma 3.1.1 is satisfied, which in particular implies the

bounds (3.1.6) for the coefficients A, B, and C defined in (3.1.4). This allows us to apply the

Cα estimate of [21], which applies to the divergence-form equation (3.1.2) and yields

∥fz0∥Cα
k (Q1/2(0)) ≤ C

(
∥fz0∥L2(Q1) + ∥C(z)fz0∥L∞(Q1)

)
,

with C > 0 and α ∈ (0, 1) depending only on λ0 and K0. From our bounds on C(z) and fz0

(which come from Lemmas 3.1.1 and 3.1.2(a) respectively), this implies

∥fz0∥Cα
k (Q1/2(0)) ≤ C⟨v0⟩−q+γ .

Undoing the change of variables via Lemma 3.1.2(b), we have

∥f∥Cα
k (Qr1/2(z0)) ≤ ∥f∥L∞(Qr1/2(z0)) + C

(
1 + t

−α/2
0

)
⟨v0⟩α[fz0 ]Cα

k (Q1/2)

≤ C
(
1 + t

−α/2
0

)
⟨v0⟩−q+γ+α,

(3.2.6)

since f ∈ L∞
q . To get an estimate for the Cα

k norm of f on the larger cylinder Qr0(z0), we use

the straightforward interpolation

∥f∥Cα
k (Qr0 (z0))

≤ C

(
r−α
1 ∥f∥L∞(Qr0 (z0))

+ sup
z1∈Qr0 (z0)

∥f∥Cα
k (Qr1 (z1))

)
,
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and replace z0 with z1 ∈ Qr0(z0) in (3.2.6). This yields

∥f∥Cα
k (Qr0 (z0))

≤ C
(
1 + t

−α/2
0

)
⟨v0⟩α(1+γ/2)∥f∥L∞(Qr0 (z0))

+ sup
z1∈Qr0

(z0)

∥f∥Cα
k (Qr1

(z1))

≤ C
(
1 + t

−α/2
0

)(
⟨v0⟩−q+α(1+γ/2) + ⟨v0⟩−q+γ+α

)
≤ C

(
1 + t

−α/2
0

)
⟨v0⟩−q+γ+α.

Applying Lemma 2.3.1 with g = ⟨v⟩q−γ−α, we have

[⟨v⟩q−γ−αf ]Cα
k (Qr0

(z0)) ≤ C
(
1 + t

−α/2
0

)
.

The same estimate holds with arbitrary z ∈ Ω(z0) replacing z0, so we have [⟨v⟩q−γ−αf ]Cα
k (Ω(z0)) ≤

C
(
1 + t

−α/2
0

)
. This allows us to apply the Schauder estimate of Lemma 3.2.1 with m =

q − γ − α > 5 + γ + α/3, to conclude

[D2
vf ]C2α/3

k (Qr1/2(z0))
+[(∂t + v · ∇x)f ]C2α/3

k (Qr1/2(z0))

≤ C(1 + t
−5/2−11α/6−α2/3
0 )⟨v0⟩−q+5γ/3+9+11α/3+6/α+2α2/9,

as claimed.

3.2.2 Global C2 estimate

Proposition 3.2.2. Let f be a solution the Landau equation on [0, T ] × R6, and for some

τ ∈ (0, T ], ρ0 > 0, β ∈ [γ, 1], and α ∈ (0, 1), assume that

eρ0⟨v⟩βf ∈ Cα
k ([0, τ ]× R6).
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and

āfij(t, x, v)ξiξj ≥ λ0


⟨v⟩γ , ξ ⊥ v,

⟨v⟩γ+2, ξ ∥ v,
for all (t, x, v) ∈ [0, τ ]× R6 and ξ ∈ R3. (3.2.7)

Then

∥eρ⟨v⟩
β

D2
vf∥L∞([τ/2,τ ]×R6) ≤ C

(
1 + τ−1+ α2

6−α

)(
1 + ∥eρ0⟨v⟩βf∥P (α)

Cα
k ([0,τ ]×R6)

)
,

where ρ =
α

6− 2α
ρ0, P (α) > 1 is an exponent depending only on α, and C > 0 is a constant

depending only on ρ0, β, α, λ0, and ∥eρ0⟨v⟩βf∥L∞([0,τ ]×R6).

Proof. Let z0 ∈ [τ/2, τ ]×R6 be fixed, and let r1 be defined by (3.1.1) and r0 = min{1,
√
t0/2}.

As in Lemma 3.2.1, define Ω(z0) = Qt,x
r0 (z0)×R3

v. Since our assumption on f implies polynomial

decay of all orders, we choose m > 5+ γ+α/3 arbitrarily, and choose q > m large enough that

the exponent of ⟨v0⟩ in Lemma 3.2.1 is negative, i.e.

−(q + 2m)/3 + 9 + 3α+ 6/α+ 2α2/9 + γ ≤ 0.

We apply the weighted interpolation of Lemma 2.4.2 (note that ρ′ = ρ0 with our choice of ρ),

followed by Lemma 3.2.1 with our choices of m and q:

∥eρ⟨v⟩
β

D2
vf∥L∞(Qr1/2(z0))

≤ C[D2
vf ]

1− 2α
6−α

C
2α/3
k (Qr1/2(z0))

∥eρ0⟨v⟩βf∥
2α

6−α

Cα
k (Qr1/2(z0))

≤ C
[(

1 + t
−1−α/3
0

)
(1 + [⟨v⟩mf ]3+2α/3+3/α

Cα
k (Ω(z0))

)
]1− 2α

6−α ∥eρ0⟨v⟩βf∥
2α

6−α

Cα
k (Qr1/2(z0))

≤ C

(
1 + t

−1+ α2

6−α

0

)(
1 + ∥eρ0⟨v⟩βf∥(3+2α/3+3/α)(1− 2α

6−α )+ 2α
6−α

Cα
k (Ω(z0))

)

where in the last line, we used Qr1/2(z0) ⊂ Ω(z0) and the crude upper bound [⟨v⟩mf ]Cα
k (Ω(z0)) ≤

∥eρ0⟨v⟩βf∥Cα
k (Ω(z0)). Since z0 ∈ [τ/2, τ ] × R6 was arbitrary, and t0 ≈ τ , the proof is complete.

Note that the constant C depends on ∥eρ0⟨v⟩βf∥L∞([0,τ ]×R6) due to the dependence on K0 in
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Lemma 3.2.1.

3.3 Regularity in time

The following proposition says that (x, v) regularity implies t regularity, for solutions of a class

of linear kinetic equations that include the (linear) Landau equation. A similar result was

shown in [31, Proposition A.1], under a stronger assumption on the coefficients, namely that

the zeroth-order coefficient c is uniformly bounded. To prove the more general form that we

state here, one can modify the proof in [31] in a straightforward way to account for a c(t, x, v)

that grows polynomially in v. Therefore, we omit the proof.

Proposition 3.3.1. Suppose that f : [0, T ]×R6 → [0,∞) is a solution of the linear equation

∂tf + v · ∇xf = tr(aD2
vf) + cf,

where the coefficients a and c satisfy

∥⟨v⟩γ+2aij∥L∞([0,T ]×R6) + ∥⟨v⟩γc∥L∞([0,T ]×R6) ≤ K0.

Furthermore, assume f is locally Hölder continuous in (x, v) variables, and that ⟨v⟩γf is

bounded. Then f is locally Hölder continuous in all three variables, and the estimate

∥f∥Cα
k (Q1(z0)∩[0,T ]×R6) ≤ C⟨v0⟩α(1+γ/2)+γ

∥f |L∞
γ ([0,T ]×R6) + sup

0≤t≤t0
t0−t≤1

[f(t, ·, ·)]Cα
k,x,v(B2(x0,v0))


holds, where C > 0 is a constant depending only on γ and K0.
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Chapter 4

Decay estimates for large velocity

Our first decay estimate shows that sub-exponential decay in velocity is propagated forward in

time.

Lemma 4.0.1. Let f be a classical solution to the Landau equation (1.0.1) on [0, T ] × R6,

periodic in the x variable, such that

f(0, x, v) ≤ K0e
−ρ⟨v⟩β , x ∈ R3, v ∈ R3,

for some ρ,K0 > 0 and β ∈ [γ, 1], and such that

∥f∥L∞
q ([0,T ]×R6) ≤ L0,

for some q > 5 + γ and L0 > 0.

Then there exists σ > 0, depending only on γ, ρ, q, and L0, so that f satisfies

f(t, x, v) ≤ K0e
−(ρ−σt)⟨v⟩β , 0 ≤ t ≤ min

{
T,

ρ

2σ

}
, x ∈ R3, v ∈ R3.

In fact, the conclusion holds for any σ > CL0ρ(1 + ρ), where C > 0 is a constant depending

only on γ and q.
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Proof. With σ, κ > 0 to be chosen later, and ε > 0 an arbitrary small number, define the barrier

ϕ(t, v) = ϕ1(t, v) + εϕ2(t, v),

ϕ1(t, v) = K0e
−(ρ−σt)⟨v⟩β ,

ϕ2(t, v) = eκt⟨v⟩γ .

The purpose of the error term εϕ2(t, v) is to ensure the existence of a first crossing point at a

positive time. Later, we will send ε→ 0.

We want to show that

f(t, x, v) ≤ ϕ(t, v), 0 ≤ t ≤ min
{
T,

ρ

2σ

}
, x ∈ R3, v ∈ R3. (4.0.1)

If this inequality is false, then we claim there is a point (t0, x0, v0), with t0 > 0, where f and

ϕ touch for the first time. Indeed, f(0, x, v) < ϕ(0, v) by construction, and since f is bounded,

there is some M > 0 (depending on ε) so that f(t, x, v) < ϕ(t, v) whenever |v| > R. Since f is

periodic in x, the existence of z0 = (t0, x0, v0) then follows from the compactness of the domain

[0, T ]× T3 ×BR(0) and continuity in t.

To keep the notation clean, for the remainder of this proof, evaluations of f , āf , and c̄f are

assumed to be at z0 unless otherwise noted, and evaluations of ϕ, ϕ1, and ϕ2 are at (t0, v0).

At the first crossing point z0, we have ∂t(ϕ − f) ≤ 0, ∇x(ϕ − f) = 0, and D2
v(ϕ − f) ≥ 0.

These inequalities imply

σ⟨v0⟩βϕ1 + εκϕ2 = ∂tϕ ≤ ∂tf = tr(āfD2
vf) + c̄ff ≤ tr(āfD2

vϕ) + c̄fϕ, (4.0.2)

since āf is non-negative definite. By linearity, this right-hand side equals

[
tr(āfD2

vϕ1) + c̄fϕ1
]
+ ε

[
tr(āfD2

vϕ2) + c̄fϕ2)
]
.

Let us treat the ϕ1 and ϕ2 terms in this expression separately. First, with (2.4.3) and Lemma

32



2.2.2, we have

tr(āfD2
vϕ1) + c̄fϕ1

≤ −(ρ− σt0)β⟨v0⟩β−4ϕ
[(
(β − 2)− (ρ− σt0)β⟨v0⟩β

)
āfij(v0)i(v0)j + ⟨v0⟩2tr(āf )

]
+ c̄fϕ1

≤ (ρ− σt0)βCL0⟨v0⟩γ+β−2ϕ
(
2− β + (ρ− σt0)β⟨v0⟩β

)
+ CL0⟨v0⟩γϕ1

≤ (1 + ρ2)CL0

(
⟨v0⟩γ+2β−2 + ⟨v0⟩γ

)
ϕ1

≤ CL0ρ(1 + ρ)⟨v0⟩γϕ1,

since β ≤ 1. Here, C is a constant depending only on γ and q, as in Lemma 2.2.2. Next, a

direct calculation shows that

(D2
vϕ2(t, v))ij = eκt

[
γ(γ − 2)⟨v⟩γ−4vivj + γ⟨v⟩γ−2δij

]
,

so that, after discarding negative terms,

tr(āfD2
vϕ2) + c̄fϕ2 ≤ eκt0

(
γ⟨v0⟩γ−2tr(āf ) + c̄f ⟨v0⟩γ

)
≤ CL0γe

κt0⟨v0⟩2γ

= CL0γ⟨v0⟩γϕ2.

Returning to (4.0.2), we have, at the crossing point z0,

σ⟨v0⟩βϕ1 + εκϕ2 ≤ CL0ρ(1 + ρ)⟨v0⟩γϕ1 + εCL0γ⟨v0⟩γϕ2

Since β ≥ γ, this inequality is a contradiction if σ is chosen greater than CL0ρ(1 + ρ) and κ is

chosen greater than CL0γ. We have established (4.0.1), and the proof is complete after sending

ε→ 0.

Next, we assume that the initial data f0 satisfies uniform Gaussian upper bounds:

f0(x, v) ≤ C0e
−ρ|v|2 , (x, v) ∈ R6,
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for some ρ, C0 > 0. As our next result shows, these upper bounds are also propagated forward

in time, i.e. f(t, x, v) ≤ Ceβte−ρ|v|2 for t > 0. We prove it using a maximum principle argument

similar to [41, Lemma 3.1(a)].

The following is an a priori estimate for solutions with qualitative decay that is sufficiently

fast. Later, this a priori estimate will be combined with an approximation argument to extend

the estimate to solutions that are not assumed to decay rapidly.

Lemma 4.0.2. For f ≥ 0 a smooth, rapidly decaying solution of the Landau equation on

[0, T ]× R6, with eρ|v|
2

f0(x, v) ∈ L∞(R6) for some ρ > 0, there holds

f(t, x, v) ≤ Neβte−ρ|v|2 ,

with N and β depending only on ∥f∥L∞
q ([0,T ]×R6) for some q > γ + 5 and the initial data.

Proof. Define the barrier

g(t, x, v) = Neβte−ρ|v|2 ,

with N, β, ρ > 0 to be chosen later. We want to show f < g everywhere in the domain

[0, T ]× T3 × R3. We will proceed by contradiction.

We claim f < g everywhere in [0, T ] × R6. If this is false, then f and g must cross for

the first time at some location (t0, x0, v0). From our assumption on f0, and by choosing N >

∥eρ|v|2f0∥L∞ , we have f0(x, v) < g(0, x, v). By continuity in t and the rapid decay of f , we

must have t0 > 0. At the first crossing location, g − f is decreasing, so we have

∂tg(t0, x0, v0)− ∂tf(t0, x0, v0) ≤ 0.

The crossing point is a minimum of g − f in x, v variables, so we have

∇vf(t0, x0, v0) = ∇vg(t0, x0, v0), ∇xf(t0, x0, v0) = ∇xg(t0, x0, v0) = 0, (4.0.3)
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since g is constant in x. From this, we obtain, at the crossing point,

∂tg ≤ ∂tf + v · ∇xf = Q(f, f), (4.0.4)

from the equation satisfied by f . We will use this inequality to derive a contradiction. For the

left side, we have ∂tg = βNeβte−ρ|v|2 . For the right side, since g − f has a local minimum at

(t0, x0, v0), we have D2
vf ≤ D2

vg, and using āf ≥ 0, we have

Q(f, f) = tr(āfD2
vf) + c̄ff ≤ tr(āfD2

vg) + c̄fg =

3∑
i=1

3∑
j=1

āfij∂vi∂vjg + c̄fg,

where we have used f(t0, x0, v0) = g(t0, x0, v0) in the last term.

Overall, we have

βNeβte−ρ|v|2 ≤
3∑

i=1

3∑
j=1

āfij∂vi∂vjg + c̄fg, (4.0.5)

at the point (t0, x0, v0). By direct calculation,

D2
vg = (∂vi∂vjg)i,j=1,2,3

= Neβt∂vi

(
∂vje

−ρ(v2
1+v2

2+v2
3)
)

= Neβt∂vi

(
−2ρvje

−ρ|v|2
)

= Neβt
(
−2ρδije

−ρ|v|2 + 4ρ2vivje
−ρ|v|2

)
,

where

δij =


1 if i = j,

0 if i ̸= j.

In order to use the anisotropic lower bounds for āf given by (2.2.1), we need to write D2
vg in

terms of directions perpendicular to v and parallel to v. Namely, we have

∂vj
∂vjg = Neβte−ρ|v|2 [−2ρ(δij − |v|−2vivj) + (4ρ2 − 2ρ|v|−2)vivj

]
.
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Returning to (4.0.5), we now have

βNeβte−ρ|v|2 ≤
3∑

i=1

3∑
j=1

āfijNe
βt
[
−2ρ(δij − |v|−2vivj) + (4ρ2 − 2ρ|v|−2)vivj

]
e−ρ|v|2

+ (c̄f + v · ∇xφR + C∥f∥L∞
q
)Neβte−ρ|v|2 .

After cancelling like terms, we get

β ≤
3∑

i=1

3∑
j=1

āfij(−2ρ(δij − |v|−2vivj) + (4ρ2 − 2ρ|v|−2)vivj) + c̄f .

Applying the lower and upper bounds for āf from (2.2.1) and Lemma 2.2.1, we obtain

β ≤ −ρc1(1 + |v|)γ+2 + |4ρ2 − ρ|v|−2|C1∥f∥L∞
q
(1 + |v|)γ+2 + C∥f∥L∞

q
(1 + |v|)γ ,

for some constants c1, c2, C1 > 0.

Now we consider the case of large |v|. Choosing ρ < c1/(2C1∥f∥L∞
q
), we see that the term

proportional to |v|γ+2 will predominate for large |v|, and this term is negative by our choice of ρ.

More precisely, there is some R0 > 0 such that the right-hand side of our inequality is negative

whenever |v| > R0, which contradicts β > 0, so we conclude a crossing point cannot happen

when |v| > R0. Next, to rule out a crossing point with |v| ≤ R, we see that the right-hand side

is bounded by 4C(1+R0)
γ+2+C3(1+R0)

γ . Choosing β larger than this number, we conclude

the inequality must be false in this case as well, and we conclude there is no crossing point, and

our desired upper bound holds.
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Chapter 5

Lower bounds

In this step, let f be a smooth solution of (1.0.1) on [0, T ] × R6. We assume the initial data

has a core of mass:

f0(x, v) ≥ δ, x ∈ Br(x0), v ∈ Br(v0),

for some r, δ > 0 and x0, v0 ∈ R3. Our goal is to show that this positive lower bound is

propagated forward in time. The statement is similar to [30, Theorem 1.3], but we need to use

a different proof.

The following lemma is inspired by [32, Lemma 3.1], which applied to the Boltzmann equa-

tion, but we need to adapt the argument for the Landau equation.

Lemma 5.0.1. Let f ≥ 0 solve (1.0.1) on [0, T ]× R6, and assume f ∈ L∞
q ([0, T ]× R6).

If f(0, x, v) ≥ δ1|x−x0|<r,|v−v0|<r/σ for some (x0, v0) ∈ R6 and δ, r, σ > 0, then the lower

bound

f(t, x, v) ≥ δ

2

holds whenever 0 ≤ t ≤ min{T, σ} and, for a universal constant C,

|v − v0|2

r2/σ2
+

|x− x0 − tv|2

r2
<

1

4
, and t <

C∥f∥−1
L∞

q
(r/σ)2

⟨|v0|+ r/σ⟩γ+2
.
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Proof. Consider the function

f(t, x, v) := −c1t+ c2

(
1− |v − v0|2

r2/σ2
− |x− x0 − tv|2

r2

)
(5.0.1)

with c1, c2 > 0 chosen later.

We wish to show that f is a subsolution to the linear Landau equation, at least at points

where it is positive. Assume that (t, x, v) is such that f > 0. We clearly have tr(āfD2
vf) =

tr(āfD2
v(f + c1t)), so that (5.0.1) implies

∂tf = −c1 + c2 ·
2

r2
(x− x0 − tv) · v,

v · ∇xf = c2
2

r2
(x− x0 − tv) · v,

∂tf + v · ∂xf = −c1.

(5.0.2)

Next, by direct calculation,

∣∣∂ijf(v)∣∣ = |4C2r
−4(σ2(v − v0)− t(x− x0 − tv))i(σ

2(v − v0)− t(x− x0 − tv))j

+ 2C2r
−2δij(σ

2 + t2)|

≤ Cc2((t
2 + σ2)r−2 + r−2σ2)

≤ Cc2σ
2r−2.

(5.0.3)

We have used t ≤ T , and that f ≤ 0 if |v−v0|2
r2/σ2 + |x−x0−tv|2

r2 > 1. Using (5.0.3), Lemma 2.2.1,

and c̄ff ≥ 0, we have, at points where f is positive,

Q(f, f) = tr(āfD2
vf) + c̄ff

≥ −
∣∣tr(āfD2

vf)
∣∣

≥ −C ∥f∥L∞
q
⟨v0⟩γ+2σ2r−2.

(5.0.4)

Combining this with (5.0.2) gives

∂tf + v · ∇xf = −c1 < −C∥f∥L∞
q
⟨v⟩γ+2σ2r−2 ≤ Q(f, f), (5.0.5)
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if we make the choice

c1 = 2C∥f∥L∞
q
⟨|v0|+ r/σ⟩γ+2σ2r−2. (5.0.6)

Thus,

∂tf + v · ∇xf = −c1 < Q(f, f) for all v ∈ Br(v0) (5.0.7)

Now, we claim f > f for all (t, x, v) such that f(t, x, v) > 0. By choosing c2 = 3δ
4 ,

this claim is true for t=0. If the claims fails, then there is a first crossing point (tc, xc, vc)

with f(tc, xc, vc) > 0, such that f(tc, xc, vc) = f(tc, xc, vc) and f(t, x, v) > f(t, x, v) whenever

f(t, x, v) > 0 and t < tc.

The strict positivity of tc follows from the compact support of f(t, ·, ·) for each t. We also

have f(tc, x, v) ≥ f(tc, x, v) for all (x, v) ∈ R6.

Letting g = f − f , we have ∂tg(tc, xc, vc) ≤ 0 and ∇xg(tc, xc, vc) = 0, so that (5.0.7) implies

0 ≥ (∂t + vc · ∇x)g(tc, xc, vc) > Q(f, g). (5.0.8)

Next, since g has a local minimum in v at the crossing point, we have

tr(āfD2
vg)(tc, xc, vc) ≥ 0.

Since we also have g = 0 at the crossing point, we in fact have Q(f, g) ≥ 0, contradicting (5.0.8).

This contradiction implies f ≥ f whenever f(t, x, v) > 0. The conclusion then follows by

choosing C according to the constant in (5.0.6) and using the definition of f .

The purpose of the next lemma is to spread lower bounds to large velocities.

Lemma 5.0.2. Let f be a solution of the Landau equation (1.0.1) on [0, T ]× R6, such that

sup
t,x

∫
R3

f(t, x, v)(1 + |v|γ+2) dv ≤ K0,
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and for some δ, r > 0, τ ∈ (0, 1], and x0, v0 ∈ R3, assume that f satisfies the lower bound

f(t, x, v) ≥ δ, t ∈ [0, τ ], x ∈ Br(xm), v ∈ Br(vm).

Then, for any R > 1, f also satisfies the lower bound

f(t, x, v) ≥ δ

4
e−κt−1|v−vm|2 , t ∈ [0, τ ′], x ∈ Br/4(xm + tvm), v ∈ BR(vm),

where κ > 0 depends on δ, K0, and r, and τ
′ = min{τ, Cr/R} for a constant C > 0 depending

on K0.

Proof. First, we recenter around the origin by defining

f̃(t, x, v) = f(t, xm + x+ tvm, vm + v).

A direct calculation shows that f̃ satisfies the Landau equation in [0, τ ]×R6. Our assumptions

for f imply

f̃(t, x, v) ≥ δ, t ∈ [0, τ̃ ] , x ∈ Br/2(0), v ∈ Br(0), (5.0.9)

where τ̃ = min{τ, r/(2|vm|)}. For the remainder of the proof, we write f instead of f̃ .

Define ζ(x) = 1 − |x|2/(r/2)2, and note that ζ(x) ≤ 1Br/2
(x). Let ξR : R3 → [0,∞)

be a smooth, radially decreasing cutoff with ξR = 1 in BR and ξR = 0 outside B2R, with

|∇ξR| ≤ CR−1 and |D2ξR| ≤ CR−2 globally in R3, for some universal constant C. Next, define

ψ(t, x, v) = δ(ζ(x)−A1t)(ξR(v)−A2t)e
−κt−1|v|2 ,

where κ,A1, A2 > 0 are constants to be chosen later. For some small ε > 0, we claim that

f(t, x, v) > ψ(t, x, v)− ε, in Ω := [0, τ̃ ]× R3
x × {|v| ≥ r/2}, (5.0.10)

where we extend ψ smoothly by zero on {t = 0} × R3
x × {|v| ≥ r/2}.
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First, let us show that f > ψ − ε on the (parabolic) boundary of Ω. When t = 0 and

|v| ≥ r/2, we have ψ(0, x, v) = 0 and f(0, x, v) ≥ 0 > ψ(0, x, v)− ε.

When |v| = r/2 and t ∈ [0, τ̃ ], since ζ(x) ≤ 1Br/2
(x) and ξR(v) = 1Br

(v) = 1, we have

ψ(t, x, v) ≤ δ1Br/2
(x)ξR(v)e

−κt−1r2/4 < δ1Br/2
(x) = δ1Br/2

(x)1Br (v) ≤ f(t, x, v) < f(t, x, v)+ε,

where we used (5.0.9) and the fact that e−κt−1r2/4 < 1.

Next, we claim that if (5.0.10) is false, there is a point z0 = (t0, x0, v0) where f and ψ − ε

cross for the first time, with t0 > 0. This follows from the fact that f ≥ 0 > ψ − ε for all (x, v)

outside of a compact domain. Naturally, the crossing point satisfies |x0| ≤ r/2 and |v0| ≤ 2R.

At the crossing point z0, as above we have

∂t(f − ψ) ≤ 0, ∇x(f − ψ) = 0, D2
v(f − ψ) ≥ 0,

which implies

∂tψ + v0 · ∇xψ ≥ ∂tf + v0 · ∇xf = tr(āfD2
vf) + c̄ff ≥ tr(āfD2

vψ), (5.0.11)

since c̄ff ≥ 0 and āf is nonnegative definite. To bound the right side of (5.0.11) from below,

we first find via direct calculation

∂vivjψ(t, x, v) = δ(ζ(x)−A1t)e
−κt−1|v|2 [(4κt−2vivj − 2κt−1δij)(ξR −A2t)

−2κt−1
(
vj∂viξR + vi∂vjξR

)
+ ∂vivj

ξR
]
.

Therefore, at z0 we have

tr(āfD2
vψ) = δ(ζ(x0)−A1t0)e

−κt−1
0 |v0|2

[
(4κt−2

0 āf (v0)i(v0)j − 2κt−1
0 tr(āf ))(ξR(v0)−A2t0)

−4κt−1
0 āfij(v0)j∂viξR + āfij∂vivjξR

]
.

Since ξR is radially decreasing and āf is positive-definite, we have −āfij(v0)j∂viξR(v0) ≥ 0.
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Next, using Lemmas 2.2.3 and 2.2.1 and |D2
vξR| ≤ CR−2, we have

tr(āfD2
vψ) ≥ δ(ζ(x0)−A1t0)e

−κt−1
0 |v0|2

[
κt−1

0

(
c1⟨v0⟩γκt−1

0 |v0|2 − C2⟨v0⟩γ+2
)
(ξR(v0)−A2t0)

−C2⟨v0⟩γ+2R−2
]
,

where c1 is the constant from Lemma 2.2.3, which depends on δ and r, and C2 is the constant

from Lemma 2.2.1, which depends onK0. Since |v0| ≥ r/2, we have |v0|2 ≥ r
r+1 ⟨v0⟩

2. Therefore,

we can choose κ sufficiently large, depending only on c1, C2, and r, such that c1κt
−1
0 |v0|2 ≥

c1κ|v0|2 ≥ 2C2⟨v0⟩2. Using this, as well as |v0| ≤ 2R, we obtain

tr(āfD2
vψ) ≥ δ(ζ(x0)−A1t0)e

−κt−1
0 |v0|2

[
c1κ

2t−2
0 Rγ+2(ξR(v0)−A2t0)− C2R

γ
]
. (5.0.12)

For the left side of (5.0.11), we have

∂tψ + v0 · ∇xψ = δe−κt−1
0 |v0|2 [(−A1 + v0 · ∇xζ(x0))(ξR(v0)−A2t)

+ (−A2 + κt−2
0 |v0|2(ξR(v0)−A2t0))(ζ(x0)−A1t0)

]
.

With A1 ≥ 4R/r, we have

−A1 + v0 · ∇xζ(x0) ≤ −A1 − 2
v0 · x0
r2

≤ −A1 +
4R

r
≤ 0,

so that

∂tψ + v0 · ∇xψ ≤ δ(ζ(x0)−A1t0)
[
4κt−2

0 R2(ξR(v0)−A2t0)−A2

]
e−κt−1

0 |v0|2 .

Combining this with (5.0.11) and (5.0.12), we obtain

(ζ(x0)−A1t0)
[
c1κ

2t−2
0 Rγ+2(ξR(v0)−A2t0)− C2R

γ
]

≤ (ζ(x0)−A1t0)
[
4κt−2

0 R2(ξR(v0)−A2t0)−A2

]

42



or

[c1κR
γ − 4]κt−2

0 R2(ξR(v0)−A2t0) + [A2 − C2R
γ ] ≤ 0,

which is a contradiction if κ > 4/(c1R
γ) and A2 > C2R

γ . We have established (5.0.10), and

after sending ε→ 0, we have shown f(t, x, v) ≥ ψ(t, x, v) in Ω. In more detail,

f(t, x, v) ≥ δ(ζ(x)−A1t)(ξR(v)−A2t)e
−κt−1|v|2 ,

with A1, A2, and κ as above. If z = (t, x, v) is such that

|x| ≤ r/4, t ≤ min

{
1

4A1
,

1

2A2

}
, and

r

2
≤ |v| ≤ R,

then we clearly have f(t, x, v) ≥ δ

4
e−κt−1|v|2 . Transforming from f̃ back to the original solution

f , we obtain the statement of the lemma.

Finally, we prove our main lower bounds result:

Theorem 5.0.1. Assume that f : [0, T ]× R6 → [0,∞) is periodic in x and satisfies

f(0, x, v) ≥ δ, |x| < r, |v| < r,

for some δ, r > 0, and

sup
t,x

∫
R3

(1 + |v|γ)f(t, x, v) dv ≤ K0,

for some K0 > 0. Then there exists T ′ ∈ (0, T ] and R(t) > 0 such that for every t ∈ (0, T ′] and

x ∈ R3, there exists a vx ∈ BR(t) such that

f(t, x, v) ≥ η(t) > 0, |v − vx| < r′,

where the function η is uniformly positive on any compact subset of (0, T ′]. The time T ′ and

the functions η(t), R(t) depend on δ, r, and K0.
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Proof. Using Lemma 5.0.1 with σ = 1 and x0 = v0 = 0, we obtain lower bounds of the form

f(t, x, v) ≥ δ

2
, t ∈ [0, τ ], x ∈ Br/3(0), v ∈ Br/3(0),

where τ ≤ Cr2 for a constant C > 0 depending on ∥f∥L∞
q
.

Now, let (t1, x1) ∈ (0, τ ] × (R3 \ Br) be fixed, and let v1 = x1/t1. Lemma 5.0.2 with

R = max{1, 4|v1|} gives, with τ ′ = min{τ, Cr/R},

f(t, x, v) ≥ δ

8
e−κ|v|2/t, 0 < t ≤ τ ′, |x| ≤ r/12, |v| ≤ R, (5.0.13)

where κ is the constant from Lemma 5.0.2, and depends on δ, r, and ∥f∥L∞
q
. Let t∗ =

min{τ ′, t1/2}. Letting v∗ = x1/(t1 − t∗), we then have |v∗| ≤ 2|x1|/t1 ≤ R/2.

For the next step, spreading lower bounds to the neighborhood of (t1, x1), we further restrict

the time domain by defining

σ = max

{
1,

r

12

√
2C

t1K0Rγ+2

}
, (5.0.14)

where C is the constant from Lemma 5.0.1, and requiring that t1 satisfy the inequality

t1 ≤ min

{(
2C(r/12)2

2K0Rγ+2

)1/3

,
36C

K0Rγ

}
. (5.0.15)

Since R = max{1, 4|x1|/t1}, this inequality means that t1 has to be smaller than a constant

times |x1|−(γ+2)/(1−γ), which we can always guarantee because our x domain is bounded, result-

ing in a condition t1 ≤ τ ′′, where τ ′′ depends on K0, r, C, and the size of the spatial domain1.

This step is the only reason we require γ < 1.

We would like to apply Lemma 5.0.1 to f(t∗ + t, x, v), with x0 = 0, v0 = v∗, and r/12

replacing r, and we would like the resulting lower bound to hold up to time t1/2 ≥ t1 − t∗. For

this, we need to check three conditions:

1In the case of an unbounded spatial domain where f0 satisfies a “well-distributed” hypothesis as in [30],
τ ′′ would depend on the maximal distance from any x location to a location where f0 satisfies suitable positive
lower bounds.
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• t1/2 ≤ σ, which holds as a result of (5.0.15).

• r/(12σ) ≤ R/2, so that Br/(12σ)(v∗) ⊂ BR(0). With our choice of σ, this inequality is

equivalent to

t1 ≤ 36C

K0Rγ
,

which is true because of (5.0.15).

• t1/2 ≤ CK−1
0 (r/(12σ))2

⟨|v∗|+ r/(12σ)⟩γ+2
, where C is the constant from Lemma 5.0.1. This holds

because of (5.0.15) and the previous bullet point.

We are now able to apply Lemma 5.0.1 with (5.0.13) and obtain

f(t1, x, v) ≥
δ

16
e−κR2/t∗ , if

|v − v∗|2

r2/σ2
+

|x− t1v|2

r2
<

1

4
.

In particular, recalling that x1 = t1v1 and σ ≥ 1, we have that if |x− x1| < r/8 and |v − v∗| <

r/(8σ), then |x− t1v| < r/4. Therefore,

f(t1, x, v) ≥
δ

16
e−κR2/t∗ , |v − v∗| <

r

8σ
, |x− x1| <

r

8
. (5.0.16)

Recall that R = max{1, 4|x1|/t1} and t∗ = min{τ ′, t1/2}, so that, after tracing the de-

pendence on all constants, we obtain η(t1) and r′ as in the statement of the theorem. Since

(t1, x1) ∈ T3 × [0, τ ′′] was arbitrary, the proof is complete.
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Chapter 6

Proof of existence

6.1 Approximating the initial data.

Let ψ(x, v) ≥ 0 be a standard smooth mollifier on R6 satisfying
∫
B1(0)

ψdxdv = 1 and ψ = 0

outside B1(0). For any ε > 0, let

ψε(x, v) = ε−6ψ(x/ε, v/ε).

Also, for any r > 0, let ζr(v) be a smooth, radially decreasing cutoff function with ζ = 0 outside

Br and ζ = 1 in Br/2. Now define the approximate initial data

fε0 (x, v) = ζ1/ε(v)[ψε ∗ f0](x, v),

where ∗ denotes convolution in (x, v) variables. By standard arguments, fε0 → f0 pointwise as

ε→ 0.

6.2 Applying existence theory for regular initial data

We need to apply the main result of [10], quoted above as Theorem 2.1.1.
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Since we defined our fε0 as the product of ζ1/ε(v), which is further defined as radially

decreasing cutoff function with ζ = 0 outside Br and ζ = 1 in Br/2 for r > 0. This causes

the exponential function ed0⟨v⟩ to be bounded by ed0⟨1/ε⟩. Moreover, the L2 norm of ∂αx ∂
β
v f

ε
0 is

bounded by its L∞ norm, which is finite because the convolution kernel ψε is C∞.

Therefore, our fε0 satisfies the hypothesis of the theorem, thus giving us some solution on a

time interval [0, Tε]. This solution is called fε. Note that the time of existence is ε-dependent.

6.3 Applying a priori estimates to fε

Apply both the pointwise lower bounds (Theorem 5.0.1) and the sub-exponential upper bounds

(Lemma 4.0.1) to fε. To do this, it is necessary to check that the hypotheses are all satisfied.

The following conditions need to be checked for the lower bounds theorem:

• fε ∈ L∞
q ([0, Tε]× R6).

• fε0 (x, v) ≥ δ1|x|<r,|v|<r for some r > 0.

Firstly, to prove fε ∈ L∞
q ([0, Tε]×R6): fε ∈ L∞

q ([0, Tε]×R6) if and only if |⟨v⟩q ·fε(t, x, .v)| ≤

K.

We know that due to Sobolov embedding, we have H10
x,v(R

6) ⊂ H4
x,v(R

6) ⊂ L∞([0, Tε]×R6).

Since e(d0−κt)⟨v⟩f ∈ H10
x,v(R6) ⊂ L∞(R6), then for t < d0/(2κ), we would have f ≤

Ke−(d0−κt)⟨v⟩ ≤ Ke−(d0/2)⟨v⟩, and therefore

⟨v⟩q · f ≤ ε(d0/2)⟨v⟩ · f ≤ K.

Therefore, fε ∈ L∞
q .

Secondly, we know from the lower bound lemma that f0(x, v) ≥ δ1|x|<r,|v|<r for some

r > 0, therefore, since the convolution fε0 (x, v) coverges to f0(x, v) uniformly, we conclude that

fε0 (x, v) ≥ δ1|x|<r/2,|v|<r/2, for ε small enough.

The hypotheses of Lemma 4.0.1 are satisfied by assumption.
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6.4 Extending fε to a uniform time interval

We want to show that the approximate solutions fε exist on a uniform time interval [0, T ]. For

this, we use the smoothing estimate of [41, Corollary 1.2], which says: if a solution f satisfies

0 < m0 ≤
∫
R3

f(t, x, v)dv ≤M0,

∫
R3

|v|2f(t, x, v)dv ≤ E0,∫
R3

f(t, x, v) log f(t, x, v)dv ≤ H0,

(6.4.1)

uniformly in t and x, then f is C∞ with regularity estimates depending only on m0,M0, E0,

and H0. To apply this result, we need to show fε satisfies all four of these inequalities on

[Tε/2, Tε]× R3, using the upper and lower bounds above.

First, we want to prove that
∫
R3 f

ε
0 (t, x, v)dv ≤M0.

From above, fε ≤ Ke−ρ⟨v⟩β for some ρ > 0. Hence,

∫
R3

fε(t, x, v)dv ≤
∫
R3

Ke−ρ⟨v⟩βdv

= K ·
∫ ∞

0

e−ρ⟨r⟩β · r24πdr

= 4π ·K
∫ ∞

0

e−ρ⟨r⟩β · r2dr ≤ CρK,

for some Cρ depending only on ρ.

Secondly, we want to prove that 0 < m0 ≤
∫
R3 f(t, x, v)dv. From the previous section, we

know that we can apply Theorem 5.0.1, implying that for all x0 ∈ T3 and t ∈ [Tε/2, Tε], the

lower bound f(t, x0, v) ≥ δ1|x−x0|<r,|v−v0|<r holds for some v0 ∈ R3 and δ, r > 0. So, since

fε ≥ 0,
∫
R3 f

ε(t, x, v)dv ≥
∫
Br(v0)

fε(t, x, v)dv ≥
∫
Br(v0)

δ
2dv = δ

2 · 4
3πr

3 =: m0.

Thirdly, we want to prove
∫
R3 |v|2f(t, x, v)dv ≤ E0.
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As above, we have eρ⟨v⟩
β

fε(t) ≤ K for some ρ > 0. Hence,

∫
R3

|v|2fε(t, x, v)dv ≤
∫
R3

|v|2Ke−ρε⟨v⟩βdv

= K ·
∫ ∞

0

e−ρ⟨r⟩β · r44πdr

= 4π ·K
∫ ∞

0

e−ρ⟨r⟩β · r4dr ≤ CρK,

for some Cρ > 0 depending on ρ.

The fourth goal is to show
∫
R3 f(t, x, v) log f(t, x, v)dv ≤ H0. Note: We only integrate over

the space when f > 1, because integrating over the spacef < 1 results in a negative function.

∫
R3

f · log fdv ≤
∫
f>1

f · log fdv

≤
∫
f>1

Ke−ρ⟨v⟩β · log(Ke−ρ⟨v⟩β )dv

≤
∫
f>1

Ke−ρ⟨v⟩β · (logK + log e−ρ⟨v⟩β )dv

≤
∫
f>1

Ke−ρ|v|2 · (logK − ρ⟨v⟩β)dv

=

∫
f>1

Ke−ρ⟨v⟩β · logK −
∫
f>1

Ke−ρ⟨v⟩β · ρ|v|2)dv.

Note: −
∫
f>1

Ke−ρ⟨v⟩β · ρ⟨v⟩βdv yields a negative value, hence it will be disregarded. So,

∫
f>1

Ke−ρ⟨v⟩β · logK ≤ K logK ·
∫
f>1

e−ρ⟨v⟩βdv ≤ K logK ·
∫
R3

e−ρ⟨v⟩βdv.

Next, we re-apply the existence theorem of Chaturvedi quoted above, with initial data

f(Tε, x, v), to show f can be extended to a time interval [0, Tε + T1], with T1 depending on the

H10 norm of eρ|v|f(Tε, x, v). This quantity is independent of ε, by [41] and our above estimates

of the mass, energy, and entropy densities. Therefore, we have shown the approximate solutions

fε exist on some uniform time interval [0, T ].
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6.5 Limit as ε → 0

Since fε solves the Landau equation, we can apply the regularity estimate of Proposition 3.2.1.

The hypotheses of this proposition are satisfied, by our upper and lower bounds for fε and

Lemma 2.2.3.

Next, we use the following compactness theorem: If a sequence of functions fε is uniformly

bounded in the norm

∥fε∥C2,β
k (Ω) = [D2

vf
ε]Cβ

k (Ω) + [(∂t + v · ∇x)f
ε]Cβ

k (Ω) + ∥fε∥L∞(Ω),

for some bounded subset Ω ⊂ R7, then they converge in C2,β′

k (Ω) for any β < β′ to a limit

f . Since Ω is arbitrary, f is defined on all of (0, T ] × R6. In particular, this implies pointwise

convergence as ε → 0. In fact, by the smoothness result of [41], fε is C∞ for positive times,

and this is preserved in the limit as ε→ 0.

Next, we need to show the limit f solves the Landau equation. This follows from the

pointwise convergence of D2
vf

ε → D2
vf , (∂t + v · ∇x)f

ε → (∂t + v · ∇x)f , and the convergence

of the coefficients āf
ε

and c̄f
ε

(which follows from the Dominated Convergence Theorem).

Finally, we establish that f matches the initial data in the sense of integration against test

functions, as in the statement of Theorem 1.1.1. This is established by multiplying the equation

for fε by the test function ϕ, integrating by parts, and using the above convergence facts to

take the limit as ε→ 0.
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Chapter 7

Propagation of Hölder regularity

In the next two chapters, with the goal of proving uniqueness, we place stronger assumptions

on the initial data f0 of our solution: for some δ, r, R > 0, assume that for all x ∈ R3, there is

a vx ∈ BR so that

f0(x, v) ≥ δ, v ∈ Br(vx). (7.0.1)

Furthermore, we assume

eρ0⟨v⟩βf0 ∈ L∞(R6). (7.0.2)

for some ρ0 > 0 and β ∈ [γ, 1], and

eρ⟨v⟩
β

f0 ∈ C3α
k (R6), (7.0.3)

for some α ∈ (0, 1/3) and ρ > 0.

The purpose of the current section is to show that the Hölder continuity that we assume

at time zero is propagated forward to positive times. For technical reasons, we work with

the specific solution that we constructed above in Theorem 1.1.1 (which has an approximating

sequence fε → f , with each fε smooth and rapidly decaying) rather than a general classical

solution. The precise statement of the result is as follows:
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Theorem 7.0.1. Let f0(x, v) ≥ 0 satisfy the lower bound condition (7.0.1) for some δ, r, R >

0, as well as the pointwise upper bound (7.0.2) for some ρ0 > 0, and the Hölder continuity

assumption (7.0.3) for some α ∈ (0, 1/3), β ∈ [γ, 1], and

ρ =
4α

24− 9α
ρ0.

Let f : [0, T ]× R6 → [0,∞) be the classical solution to the Landau equation (1.0.1) guaranteed

by Theorem 1.1.1.

Then there exists TH > 0 such that

∥e(ρ/4)⟨v⟩
β

f∥Cα
k ([0,min(T,TH)]×R6) ≤ C,

The constants TH and C depend on ρ0, α, β, δ, r, R, ∥eρ⟨v⟩
β

f0∥C3α
k,x,v(R6), and ∥eρ0⟨v⟩βf0∥L∞(R6).

The strategy to prove Theorem 7.0.1 is based on bounding a weighted finite difference of

f via a barrier argument. For (t, x, v) ∈ R7 and h, k ∈ B1(0) ⊂ R3, and some σ > 0 to be

determined, define

τf(t, x, v, h, k) = f(t, x+ h, v + k)

δf(t, x, v, h, k) = τf(t, x, v, h, k)− f(t, x, v),

g(t, x, v, h, k) = e(ρ−σt)⟨v⟩γ |δf(t, x, v)|2

(|h|2 + |k|2)α
,

(7.0.4)

where ρ and α are the exponents appearing in (7.0.3).

The function g is chosen in order to control a weighted Hölder seminorm of f in (x, v) vari-

ables. This seminorm controlled by g is with respect to the Euclidean distance dE((x1, v1), (x2, v2)) =√
|x1 − x2|2 + |v1 − v2|2, rather than the kinetic distance dk. For any Ω ⊂ R6, let us introduce

the notation

[h]Cα
E,x,v(Ω) = sup

(x1,v1),(x2,v2)∈Ω

|h(x1, v1)− h(x2, v2)|
dE((x1, v1), (x2, v2))α

,

for the Hölder seminorm with respect to the standard Euclidean metric, as well as the norm

∥h∥Cα
E,x,v(Ω) = ∥h∥L∞(Ω) + [h]Cα

E,x,v(Ω). Euclidean Hölder norms are used only in the current

52



section. They are needed because of the specific form of the denominator of g, which is imposed

on us by the proof of Lemma 7.0.2. A quick calculation shows that

c1[h]Cα
k,x,v(R6) ≤ [h]Cα

E,x,v(R6) ≤ C2[h]C3α
k,x,v(R6). (7.0.5)

for constants c1, C2 depending on α. The second inequality here is the reason for the loss of

Hölder exponent from 3α to α in Theorem 7.0.1, since the proof is based on propagating the

Cα
E seminorm of f .

The key property of the function g, that it controls a weighted Hölder seminorm of f , is

made precise by the following elementary lemma:

Lemma 7.0.1. For any ρ, σ > 0, T ∈ [0, ρ
2σ ], α ∈ (0, 1], and β ∈ [0, 1], the function g defined

by (7.0.4) satisfies

c1 sup
0≤t≤T

[e(ρ/2)⟨v⟩
β

f(t)]Cα
E,x,v(R6) ≤ ∥g∥L∞([0,T ]×R6×B1(0)2) ≤ C2 sup

0≤t≤T
[eρ⟨v⟩

β

f(t)]Cα
E,x,v(R6),

where the constants c1 and C2 depend on ρ, β, and α.

A direct calculation shows that g satisfies the equation

(∂t + v · ∇x + k · ∇h)g + σ⟨v⟩γg + 2αh · k
|h|2 + |k|2

g

= 2
e(ρ−σt)⟨v⟩γ δf(t, x, v)

(|h|2 + |k|2)α
[
tr(āδfD2

vτf + āfD2
vδf) + c̄δfτf + c̄fδf

] (7.0.6)

Using this equation, we will show that g(t, x, v, h, k) is bounded above by a certain barrier

function G(t) up to a certain time value. The exact form of G will be dictated by the estimates

that are available for g at a first crossing point. Therefore, we derive these estimates first:

Lemma 7.0.2. Let f0 be as in Theorem 7.0.1, and let f be a solution of the Landau equation

(1.0.1) on [0, T ]× R6 for some T > 0, with initial data f0. Let g be defined by (7.0.4), with

ρ =
4α

24− 9α
ρ0,
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where ρ0 is the constant from (7.0.2).

There exists σ0 > 0 sufficiently large, such that if σ ≥ σ0, and ζ0 = (t0, x0, v0, h0, k0) ∈

[0, T ]×R6×B1(0)
2 is a point with t0 ≤ min

{
1,

ρ

2σ

}
and such that g(t0, ·) achieves its maximum

over R6 ×B1(0)
2
at (x0, v0, h0, k0), then

∂tg ≤ C0

(
g + t

−1+µ(α)
0 g1+ν(α)

)
at ζ0,

where µ(α) ∈ (0, 1) and ν(α) > 0 depend only on α, and C0 > 0 and σ0 depend on ρ0, β, δ, r,

R, and ∥eρ0⟨v⟩βf0∥L∞(R6).

Proof. First, the assumption (7.0.2) for f0 implies, via Lemma 4.0.1, the decay estimate

∥eρ0⟨v⟩βf∥L∞([0,T ]×R6) ≤ K0,

for some K0 depending only on T and the initial data. Here, we may assume T ≤ 1, since

the proof only needs this bound on f up to time t0 ≤ 1. Throughout the proof, we absorb

dependence on this K0 into constants.

Furthermore, because of our assumption that t ≤ t0 ≤ ρ

2σ
, we have e(ρ−σt0)⟨v⟩γ ≥ e(ρ/2)⟨v⟩

γ

for any v ∈ R3. This will be used repeatedly.

For the remainder of this proof, all evaluations of g, τf , and δf are assumed to be at ζ0,

and all evaluations of f are assumed to be at z0 = (t0, x0, v0) unless otherwise noted.

Since ζ0 is a local maximum point of g, we have

∇xg = ∇vg = ∇hg = ∇kh = 0, D2
vg ≤ 0, D2

kg ≤ 0, at ζ0. (7.0.7)

Therefore, evaluating (7.0.6) at ζ0 results in

∂tg+σ⟨v⟩γg ≤ − 2αh · k
|h|2 + |k|2

g+2
e(ρ−σt)⟨v⟩γ δf(t, x, v)

(|h|2 + |k|2)α
[
tr(āδfD2

vτf + āfD2
vδf) + c̄δfτf + c̄fδf

]
.

(7.0.8)

We want to bound the expression on the right by a power of g(ζ0). First, we have the simple
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estimate

− 2αh · k
|h|2 + |k|2

g ≤ αg.

Next, recalling that

0 = ∇vg =
[
γ(ρ− σt)⟨v⟩γ−2v|δf |2 + 2δf∇v(δf)

] e(ρ−σt)⟨v⟩γ

(|h|2 + |k|2)α
,

we see that

∇v(δf) = −1

2
γ(ρ− σt)⟨v⟩γ−2v(δf). (7.0.9)

We also calculate

D2
vg =

[
γ⟨v⟩γ−2(ρ− σt)(I + (γ − 2)v ⊗ v⟨v⟩−2)(δf)2 + γ2(ρ− σt)2⟨v⟩2γ−4v ⊗ v(δf)2

+4γ(ρ− σt)⟨v⟩γ−2v ⊗∇v(δf)δf + 2∇v(δf)⊗∇v(δf) + 2δfD2
v(δf)

] e(ρ−σt)⟨v⟩γ

(|h|2 + |k|2)α
,

which implies

2δftr(āfD2
vδf) =

(|h|2 + |k|2)α

e(ρ−σt)⟨v⟩γ tr(āfD2
vg)− γ⟨v⟩γ−2(ρ− σt)[tr(āf ) + (γ − 2)v · (āfv)⟨v⟩−2](δf)2

− γ2(ρ− σt)2⟨v⟩2γ−4(δf)2v · (āfv)− 4γ(ρ− σt)⟨v⟩γ−2δfv · (āf∇v(δf))

− 2∇v(δf) · (āf∇v(δf)).

Since āf ≥ 0 and D2
vg ≤ 0 (recall (7.0.7)), several of the terms in the last expression have a

good sign, and we are left with

2δftr(āfD2
vδf) ≤ γ(2− γ)(ρ− σt)⟨v⟩γ−4v · (āfv)(δf)2 − 4γ(ρ− σt)⟨v⟩γ−2δfv · (āf∇v(δf)).

For the second term in this right-hand side, we use (7.0.9), yielding

2δftr(āfD2
vδf) ≤ γ(2− γ)(ρ− σt)⟨v⟩γ−4v · (āfv)(δf)2 + 2γ2(ρ− σt)2⟨v⟩2γ−4(δf)2v · (āfv)

=
[
γ(2− γ)(ρ− σt)⟨v⟩γ−4 + 2γ2(ρ− σt)2⟨v⟩2γ−4

]
(δf)2v · (āfv).
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With Lemma 2.2.2, this gives

2δftr(āfD2
vδf) ≤ C∥f∥L∞

q ([0,t0]×R6)⟨v⟩2γ−2(1 + ⟨v⟩γ)(δf)2,

for some arbitrarily chosen q > 5 + γ. Absorbing ∥f∥L∞
q ([0,T ]×R6) ≤ CK0 into the constant, we

then have

2
e(ρ−σt)⟨v⟩γ δf(t, x, v)

(|h|2 + |k|2)α
tr(āfD2

vδf) ≤ C
e(ρ−σt)⟨v⟩γ

(|h|2 + |k|2)α
⟨v⟩3γ−2(δf)2 ≤ C⟨v⟩γg,

since γ ≤ 1.

Next, we address the term in (7.0.8) with tr(āδfD2
vτf). Noting that δf = g1/2(|h|2 +

|k|2)α/2e−(ρ−σt)⟨v⟩γ/2, we have

|āδf (ζ0)| ≤ C

∫
R3

|w|γ+2|δf(t0, x0, v0 − w, h0, k0)|dw

= C

∫
R3

|w|γ+2g1/2(t0, x0, v0 − w, h0, k0)
(|h0|2 + |k0|2)α/2

e(ρ−σt)⟨v0−w⟩γ/2 dw

≤ C∥g(t0, ·)∥1/2L∞(R6×B2
1)
(|h0|2 + |k0|2)α/2

∫
R3

|w|γ+2

e(ρ−σt)⟨v0−w⟩γ/2 dw,

≤ Cg(ζ0)
1/2(|h0|2 + |k0|2)α/2⟨v0⟩γ+2,

(7.0.10)

for a constant depending on ρ. We have used the fact that g(ζ0) is the maximum value of

g(t0, ·) over R6 ×B1(0)
2. This implies

2
e(ρ−σt)⟨v⟩γ δf

(|h|2 + |k|2)α
tr(āδfD2

vτf) ≤ 2Cg(ζ0)
1/2⟨v0⟩γ+2|D2

vτf(ζ0)|
e(ρ−σt)⟨v⟩γ δf

(|h0|2 + |k0|2)α/2

≤ Cg(ζ0)∥⟨v⟩γ+2e(ρ−σt0)⟨v⟩γ/2D2
vf(t0, ·)∥L∞(R6).

(7.0.11)

To bound this second-order norm of f , we apply Proposition 3.2.2 with α/2 replacing α. We

can apply Proposition 3.2.2 because of the lower bounds satisfied by f0, which imply suitable
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lower ellipticity estimates for āf via Theorem 5.0.1 and Lemma 2.2.3. We therefore have

∥⟨v⟩γ+2e(ρ−σt0)⟨v⟩γ/2D2
vf(t0, ·)∥L∞(R6)

≤ ∥e(ρ/2)⟨v⟩
β

D2
vf(t0, ·)∥L∞(R6)

≤ Ct
−1−α2/(24−2α)
0

(
1 + ∥e(3/α−1)ρ⟨v⟩βf∥P (α/2)

C
α/2
k ([0,t0]×R6)

)
.

Since the weight e(3/α−1)ρ⟨v⟩β grows too fast for us to close our estimates, we interpolate via

Lemma 2.4.1, then apply Proposition 3.3.1 to translate to a Hölder norm in (x, v) variables:

∥⟨v⟩γ+2e(ρ−σt0)⟨v⟩γ/2D2
vf(t0, ·)∥L∞(R6)

≤ Ct
−1−α2/(24−2α)
0

(
1 + ∥e(ρ/4)⟨v⟩

β

f∥P (α/2)/2
Cα

k ([0,t0]×R6)∥e
(6/α−9/4)ρ⟨v⟩βf∥P (α/2)/2

L∞([0,t0]×R6)

)
≤ Ct

−1−α2/(24−2α)
0

(
1 + ∥e(ρ/2)⟨v⟩

β

f∥P (α/2)/2
L∞([0,t0],Cα

k,x,v(R6)

)
,

where we absorbed ∥e(6/α−9/4)ρ⟨v⟩βf∥L∞ ≤ K0 into the constant, since (6/α − 9/4)ρ = ρ0.

From (7.0.5) and Lemma 7.0.1, we have

∥e(ρ/2)⟨v⟩
β

f∥L∞([0,t0],Cα
k,x,v(R6)) ≤ ∥e(ρ/2)⟨v⟩

β

f∥L∞([0,t0],Cα
E,x,v(R6))

≤ g(ζ0)
1/2,

since ζ0 is the location of the maximum value of g over [0, t0] × R6 × (B1(0))
2. Returning to

(7.0.11), we have shown

2
e(ρ−σt)⟨v⟩γ δf

(|h|2 + |k|2)α
tr(āδfD2

vτf) ≤ Ct
−1−α2/(6−α)
0 (g(ζ0) + g(ζ0)

1+P (α)/4).

We now address the zeroth-order terms in (7.0.8). First, with Lemma 2.2.2,

2
e(ρ−σt)⟨v⟩γ δf

(|h|2 + |k|2)α
c̄fδf = 2c̄fg ≤ C∥f∥L∞

q ([0,T ]×R6)⟨v⟩γg ≤ C⟨v0⟩γg,

where q > 5 + γ is arbitrary, and ∥f∥L∞
q

≤ CK0 is absorbed into the constant as above. Next,
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proceeding in a similar way to (7.0.10), we have

|c̄δf (ζ0)| ≤ C

∫
R3

|w|γ |δf(t0, x0, v0 − w, h0, k0)|dw

= C

∫
R3

|w|γ (|h0|
2 + |k0|2)α/2

e(ρ−σt)⟨v0−w⟩γ/2 dw

≤ Cg(ζ0)
1/2(|h0|2 + |k0|2)α/2⟨v0⟩γ ,

and

2
e(ρ−σt)⟨v⟩γ δf

(|h|2 + |k|2)α
c̄δfτf ≤ 2Cg(ζ0)

1/2⟨v0⟩γτf(ζ0)
e(ρ−σt)⟨v⟩γ δf

(|h0|2 + |k0|2)α/2

≤ Cg(ζ0)∥⟨v⟩γe(ρ−σt)⟨v⟩γ/2τf∥L∞([0,T ]×R6)

≤ Cg(ζ0)∥eρ⟨v⟩
γ/2f∥L∞ ≤ Cg(ζ0),

since ρ/2 ≤ ρ0. Overall, we have shown that, at the point ζ0,

∂tg + σ⟨v⟩γg ≤ C⟨v⟩γg + Ct
−1−α2/(24−2α)
0 (g + g1+P (α/2)/2),

and the proof is complete after choosing σ = C.

We are now ready to prove the main result of this section:

Proof of Theorem 7.0.1. First, we may assume f is smooth and decaying exponentially as |v| →

∞, by passing to the approximating sequence fε from the proof of Theorem 1.1.1. These

qualitative properties are used only to get a first crossing point in our barrier argument, so they

do not quantitatively affect the estimate we are proving. Therefore, the estimate is preserved

in the limit as ε → 0, since fε → f pointwise. For simplicity, we write f instead of fε in this

proof.

With g defined as in (7.0.4) with ρ as in the statement of the theorem, and σ as in Lemma

7.0.2, we note that

∥g(0, ·)∥L∞(R6×B1(0)2) <∞,

as a result of (7.0.5) and our assumption (7.0.3) on f0.
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We want to show that g is bounded on some positive time interval. To show this, define the

barrier G(t) as the solution to the initial value problem


∂tG = 2C0(G+ t−1+µ(α)G1+ν(α)),

G(0) = 1 + ∥g(0, ·)∥L∞(R6×B1(0)) + 4∥e(ρ/2)⟨v⟩βf∥2L∞([0,T ]×R6),

(7.0.12)

where C0 > 0, µ(α) ∈ (0, 1), and ν(α) > 0 are the constants from Lemma 7.0.2. The norm

∥e(ρ/2)⟨v⟩βf∥L∞ is finite from (7.0.2) and Lemma 4.0.1

The solution G(t) to (7.0.12) exists on a time interval [0, TG], with TG depending on α,

C0, and G(0). Let T ∗ = min{TG, T, ρ/(2σ)}. We want to show that g(t, x, v, h, k) < G(t)

whenever t ∈ [0, T ∗]. If this is false, then there must be a point ζ0 = (t0, x0, v0, h0, k0) ∈

[0, T ∗]×R6 ×B1(0)
2
, with t0 > 0, where g and G cross for the first time. The existence of this

point follows in a standard way from the compactness of the domain in the (t, x, h, k) variables

(recall that f and g are periodic in x), as well as the decay of g for large |v| (which follows by

the qualitative rapid decay and smoothness of f).

Next, we point out that the crossing point ζ0 occurs with both h0 and k0 in the interior of

B1(0), since if |h0|2 + |k0|2 ≥ 1, the definition (7.0.4) of g would imply, since t0 ≤ T ∗ ≤ ρ/(2σ),

G(t0) = g(ζ0) ≤ e(ρ−σt0)⟨v0⟩β (δf)2(ζ0) ≤ 4∥e(ρ/2)⟨v0⟩
β

f∥2L∞([0,T ]×R6) ≤ G(0),

which is impossible since G(t) is strictly increasing.

Since ζ0 is the first crossing point between g and G, we have

∂tG(t0) ≤ ∂tg(ζ0),

and because G is independent of (x, v, h, k), the point (x0, v0, h0, k0) is a maximum point for

g(t0, ·), and we can apply Lemma 7.0.2:

∂tG(t0) ≤ C0

(
g(ζ0) + t

−1+µ(α)
0 g(ζ0)

1+ν(α)
)
= C0

(
G(t0) + t

−1+µ(α)
0 G(t0)

1+ν(α)
)
< ∂tG(t0),

59



by (7.0.12). This contradiction implies g(t, x, v, h, k) < G(t) whenever t ∈ [0, T ∗]. There is a

time T2 ∈ (0, TG) depending on α, C0, and G(0), such that G(t2) = 2G(0). Define

TH = min
{
T2,

ρ

2σ

}
,

and T ∗∗ = min{T, TH}. With Lemma 7.0.1 and Lemma 4.0.1, we have

sup
0≤t≤T∗∗

[e(ρ/2)⟨v⟩
β

f(t)]2Cα
E,x,v(R6) ≤ 2G(0)

≤ C
(
∥g(0, ·)∥L∞(R6×B1(0)) + ∥e(ρ/2)⟨v⟩

β

f∥2L∞([0,T∗∗]×R6)

)
≤ C

(
∥eρ⟨v⟩

β

f0∥2Cα
E,x,v(R6) + ∥e(ρ/2)⟨v⟩

β

f0∥2L∞(R6)

)
.

Next, we translate this inequality to kinetic Hölder norms with (7.0.5):

sup
0≤t≤T∗∗

[e(ρ/2)⟨v⟩
β

f(t)]2Cα
k,x,v(R6) ≤ C∥eρ⟨v⟩

β

f0∥C3α
k,x,v(R6).

Finally, we apply Proposition 3.3.1 to obtain

∥e(ρ/4)⟨v⟩
β

f(t)∥2Cα
k,x,v([0,T

∗∗]×R6) ≤ C∥eρ⟨v⟩
β

f0∥C3α
k,x,v(R6).

as desired. The weight on the left side has been changed to e(ρ/4)⟨v⟩
β

to absorb the polynomial

moments lost when applying Proposition 3.3.1.

Finally, we recall that TH depends on ρ, σ, α, C0, and G(0). Since G(0) is bounded in terms

of [eρ⟨v⟩
β

f0]C3α
k (R6) and ∥eρ0⟨v⟩βf0∥L∞(R6), the proof is complete.
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Chapter 8

Uniqueness

This chapter proves the uniqueness of classical solutions. First, let us prove an auxiliary lemma:

Lemma 8.0.1. Let ϕ(v) = eρ⟨v⟩
γ

. For any µ > 0, there holds

∥∥∥∥h ∗ | · |µ√
ϕ

∥∥∥∥
L2

v(R3)

≤ C∥
√
ϕh∥L2

v(R3),

whenever h is such that the right-hand side is finite. Here, C is a constant depending only on

ρ, γ, and µ.

Proof. From Hölder’s inequality, we have

∫
R3

1

ϕ
(h ∗ | · |µ)2(v) dv =

∫
R3

1

ϕ

(∫
R3

|v − w|µh(w) dw
)2

dv

=

∫
R3

1

ϕ

(∫
R3

|v − w|µ√
ϕ(w)

√
ϕ(w)h(w) dw

)2

dv

≤ C

∫
R3

1

ϕ(v)

∥∥∥∥ |v − w|µ√
ϕ(w)

∥∥∥∥2
L2

w(R3)

∥
√
ϕh∥2L2(R3) dv

≤ C∥
√
ϕh∥2L2(R3)

∫
R3

1

ϕ(v)
⟨v⟩2µ dv ≤ C∥

√
ϕh∥2L2(R3),

with C as in the statement of the lemma.

Now we are ready to prove our main uniqueness result:
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Proof of Theorem 1.1.2. The difference h = f − g satisfies the equation

∂th+ v · ∇xh = Q(f, f)−Q(g, g) = Q(h, f) +Q(g, h). (8.0.1)

Let ρ ∈ (0, ρ0) and σ > 0 be constants to be determined later, and define the weight ϕ(t, v) =

e(ρ−σt)⟨v⟩γ . We assume throughout the proof that 0 ≤ t ≤ TU = min{ρ/(2σ), TH}, where TH is

the constant from Theorem 7.0.1. In particular, this implies that ϕ ≤ e(ρ/2)⟨v⟩
γ

.

Multiplying (8.0.1) by hϕ and integrating over T3×R3, the term
∫∫

ϕhv ·∇xhdv dx vanishes

since ϕ is independent of x, yielding

1

2

d

dt
∥
√
ϕh∥2L2 +

σ

2

∫
T3

∫
R3

⟨v⟩γϕh2 dv dx =

∫
T3

∫
R3

ϕh[Q(h, f) +Q(g, h)] dv dx (8.0.2)

Looking at the terms on the right, we start with
∫∫

ϕhQ(h, f) dv dx. For this term, we use the

non-divergence form of the collision operator:

∫
T3

∫
R3

ϕhQ(h, f) dv dx =

∫
T3

∫
R3

ϕhtr(āhD2
vf) dv dx+

∫
T3

∫
R3

ϕhc̄hf dv dx = I1 + I2.

For I1, we first boundD
2
vf by combining Proposition 3.2.2 and Theorem 7.0.1 with α/3 replacing

α:

∥(ϕD2
vf)(t)∥L∞(T3×R6) ≤ C∥e(ρ/2)⟨v⟩

γ

D2
vf(t)∥L∞(T3×R6)

≤ C(1 + tκ(α))∥eρ
′⟨v⟩γf∥

C
α/3
k ([0,t]×R6)

≤ C(1 + tκ(α)),

where κ(α) = −1 + (α/3)2/(6 − α/3) and ρ′ = (9/α − 1)ρ. From Theorem 7.0.1, we see that

the constant C depends on ∥eρ′′⟨v⟩γf0∥L∞(R6), where ρ
′′ = (24 − 9α)/(α)ρ′. We choose the

parameter ρ in the definition of our weight ϕ by setting ρ′′ = ρ0 and solving for ρ.
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Returning to the term I1, we bound āh using Lemma 8.0.1 with µ = γ + 2, giving

∫
T3

∫
R3

ϕhtr(āhD2
vf) dv dx ≤ ∥(ϕD2

vf)(t)∥L∞(T3×R6)

∫
T3

∫
R3

√
ϕh

|āh|√
ϕ
dv dx

≤ C(1 + tκ(α))

∫
T3

∥
√
ϕh∥L2

v(R3)

∥∥∥∥ |āh|√
ϕ

∥∥∥∥
L2

v(R3)

dx

≤ C(1 + tκ(α))

∫
T3

∥
√
ϕh∥2L2

v(R3) dx

≤ C(1 + tκ(α))∥
√
ϕh∥2L2(T3×R3).

For I2, we have

∫
T3

∫
R3

ϕhc̄hf dv dx ≤ ∥(ϕf)(t)∥L∞(T3×R3)

∫
T3

∫
R3

√
ϕh

c̄h√
ϕ
dv dx

≤ ∥(ϕf)(t)∥L∞(T3×R3)

∫
T3

∥
√
ϕh∥L2

v(R3)

∥∥∥∥ c̄h√ϕ
∥∥∥∥
L2

v(R3)

dx

≤ C∥ϕf∥L∞

∫
T3

∥
√
ϕh∥2L2

v(R3) dx = C∥ϕf∥L∞∥
√
ϕh∥2L2 ,

by Lemma 8.0.1 with µ = γ.

Next, we address the term
∫∫

ϕhQ(g, h) dv dx in (8.0.2). Here, we use the divergence form

of the collision operator:

∫
T3

∫
R3

ϕhQ(g, h) dv dx =

∫
T3

∫
R3

ϕh[∇v · (āg∇vh) + b̄gh+ c̄gh] dv dx = J1 + J2 + J3.

For J1, we integrate by parts in v:

J1 = −
∫
T3

∫
R3

[ϕ∇vh+ h∇vϕ] · (āg∇vh) dv dx.

Since āg is a postive-definite matrix, we have (∇vh+ε∇vϕ) · [āg(∇h+ε∇vϕ)] ≥ 0 for any ε > 0,

which implies the following inequality:

−∇vϕ · (āg∇vh) ≤
ε

2
∇vϕ · (āg∇vϕ) +

1

2ε
∇vh · (āg∇vh).
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Choosing ε = h/(2ϕ), this gives

−
∫
T3

∫
R3

h∇vϕ · (āg∇vh) dv dx

≤
∫
T3

∫
R3

ϕ∇vh · (āg∇vh) dv dx+
1

4

∫
T3

∫
R3

h2
∇vϕ

ϕ
· (āg∇vϕ) dv dx,

(8.0.3)

and

J1 ≤ 1

4

∫
T3

∫
R3

h2
∇vϕ

ϕ
· (āg∇vϕ) dv dx.

From the upper for āg in Lemma 2.2.1, we have

J1 ≤ γ2

4

∫
T3

∫
R3

h2ϕ⟨v⟩2γ−4v · (āgv) dv dx

≤ Cg

∫
T3

∫
R3

h2ϕ⟨v⟩3γ−2 dv dx ≤ Cg∥
√
ϕh∥2L2

γ/2
(T3×R3).

For J2, the growth of b̄g ≈ ⟨v⟩γ+1 presents a difficulty, since the good term on the left side of

(8.0.2) only allows us to absorb a weight like ⟨v⟩γϕ. To get around this, we integrate by parts

repeatedly and use the facts that b̄gi = −
∑3

j=1 ∂vj ā
g
ij and ∇v · b̄g = c̄g:

J2 =
1

2

∫
T3

∫
R3

ϕb̄g · ∇v(h
2) dv dx

=
1

2

∫
T3

∫
R3

h2

 3∑
j=1

∂vj ā
g
ij

 · ∇vϕ dv dx− 1

2

∫
T3

∫
R3

ϕc̄fh2 dv dx

= −
∫
T3

∫
R3

h∇vϕ · (āg∇vh) dv dx− 1

2

∫
T3

∫
R3

h2tr(āgD2
vϕ) dv dx− 1

2

∫
T3

∫
R3

ϕc̄gh2 dv dx.

In this right-hand side, the first term is equal to the term handled above in (8.0.3), and we

estimate it in the same way. The third term is equal to − 1
2J3. For the middle term, we use the
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expression (2.4.3) (with ρ− σt replacing ρ) for tr(āgD2
vϕ) and discard negative terms to obtain

−1

2

∫
T3

∫
R3

h2tr(āgD2
vϕ) dv dx

= − (ρ− σt)γ

2

∫
T3

∫
R3

h2ϕ⟨v⟩γ−4[
(
(γ − 2) + (ρ− σt)β⟨v⟩β

)
v · (āgv) + ⟨v⟩2tr(āg)] dv dx

≤ (ρ− σt)γ(γ − 2)

2

∫
T3

∫
R3

h2ϕ⟨v⟩γ−4v · (āgv) dv dx

≤ Cg

∫
T3

∫
R3

⟨v⟩2γ−2h2ϕ dv dx = Cg∥
√
ϕh∥2L2(T3×R3),

after using Lemma 2.2.2. For J3, Lemma 2.2.2 implies

∫
T3

∫
R3

ϕh2c̄g dv dx ≤ C∥g∥L∞
q

∫
T3

∫
R3

⟨v⟩γϕh2 dv dx ≤ C∥g∥L∞
q
∥
√
ϕh∥2L2

γ/2
(T3×R3).

Putting everything together, we have

1

2
∥
√
ϕh∥2L2 +

σ

2

∫
T3

∫
R3

⟨v⟩γϕh2 dv dx ≤ C
(
1 + t

κ(α)
0

)
∥
√
ϕh∥2L2(T3×R3) + C∥

√
ϕh∥2L2

γ/2
(T3×R3).

The constant in this inequality depends only on α, ρ0, and ∥eρ0⟨v⟩γf0∥Cα
k,x,v(R6). Choosing

σ = C and applying Gronwall’s inequality, we obtain

∥
√
ϕ(t)h(t)∥L2(T3×R3) ≤ ∥

√
ϕ(0)h(0)∥L2(T3×R3) exp(C(t0 + t

1+κ(α)
0 ) = 0,

so that h(t, x, v) = 0 for all t and almost every (x, v). By continuity, h(t, x, v) = 0 everywhere,

and we conclude f = g pointwise. Since TU depends on ρ, σ, and TH , we conclude the proof.
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Chapter 9

Conclusion

In this dissertation, the Landau equation from plasma physics in the case of hard potentials

was analyzed. In particular, a solution was constructed for the initial-boundary value problem

with periodic boundary conditions in the x variable.

The key contributions were: an existence result on a time interval [0, T ] with initial data that

is much more general than was allowed by previous work in the literature, (ii) a uniqueness

result in the case that the initial state is vacuum-free and Hölder continuous, (iii) results

about the spreading of positivity, which imply both that vacuum regions in the initial data are

instantly filled, and that vacuum cannot spontaneously form, (iv) a result showing that Hölder

continuity at time zero is propagated forward in time, which was used as a lemma in the proof

of uniqueness but is also interesting in its own right.

The broader question of global-in-time existence (i.e. replacing the time interval [0, T ] with

[0,∞) in our results) is a difficult unsolved problem, but the results in this dissertation may

shed some light on this problem, either by providing tools that could be used on the way to

proving global existence, or by ruling out some possible types of singularities. The strategies

developed here could also potentially be adapted to the non-cutoff Boltzmann equation with

hard potentials.
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