Document Type

Conference Proceeding

Publication Title

Proceedings of SPIE - the International Society for Optical Engineering

Abstract

Modeled hyperspectral reflectance signatures with water wave influences are simulated using an analytical-based, iterative radiative transport model applicable to shallow or deep waters. Light transport within the water body is simulated using a fast, accurate radiative transfer model that calculates the light distribution in any layered media and incorporates realistic water surfaces which are synthesized using empirically-based spectral models of the water surface to generate water surface wave facets. The model simulated synthetic images are displayed as 24 bit RGB images of the water surface using selected channels from the simulated synthetic hyperspectral image cube. We show selected channels centered at 490, 530 and 676 nm. We also demonstrate the use of the model to show the capability of the sensor and image modeling approach to detect or “recover” known features or targets submerged within or on the shallow water bottom in a tidal inlet area in Indian River Lagoon, Florida. Line targets are simulated in shallow water and indicate the influence of water waves in different water quality conditions. The technique demonstrates a methodology to help to develop remote sensing protocols for shallow water remote sensing as well as to develop information useful for future hyperspectral sensor system developments.

First Page

194

Last Page

208

Publication Date

11-16-2004

Comments

This published article is made available in accordance with publishers policy. It may be subject to U.S. copyright law.

http://spie.org/publications/journals/guidelines-for-authors#Terms_of_Use

Share

COinS