"Gap-Based Estimation: Choosing the Smoothing Parameters for Probabilis" by Mingyu Zhong, Dave Coggeshall et al.
 

Document Type

Article

Publication Title

Neural Computation

Abstract

Probabilistic neural networks (PNN) and general regression neural networks (GRNN) represent knowledge by simple but interpretable models that approximate the optimal classifier or predictor in the sense of expected value of the accuracy. These models require the specification of an important smoothing parameter, which is usually chosen by crossvalidation or clustering. In this article, we demonstrate the problems with the cross-validation and clustering approaches to specify the smoothing parameter, discuss the relationship between this parameter and some of © 2007 Massachusetts Institute of Technology the data statistics, and attempt to develop a fast approach to determine the optimal value of this parameter. Finally, through experimentation, we show that our approach, referred to as a gap-based estimation approach, is superior in speed to the compared approaches, including support vector machine, and yields good and stable accuracy.

First Page

2840

Last Page

2864

DOI

10.1162/neco.2007.19.10.2840

Publication Date

10-2007

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 19
  • Usage
    • Downloads: 201
    • Abstract Views: 3
  • Captures
    • Readers: 13
see details

Share

COinS