Document Type
Article
Publication Title
Neural Computation
Abstract
Probabilistic neural networks (PNN) and general regression neural networks (GRNN) represent knowledge by simple but interpretable models that approximate the optimal classifier or predictor in the sense of expected value of the accuracy. These models require the specification of an important smoothing parameter, which is usually chosen by crossvalidation or clustering. In this article, we demonstrate the problems with the cross-validation and clustering approaches to specify the smoothing parameter, discuss the relationship between this parameter and some of © 2007 Massachusetts Institute of Technology the data statistics, and attempt to develop a fast approach to determine the optimal value of this parameter. Finally, through experimentation, we show that our approach, referred to as a gap-based estimation approach, is superior in speed to the compared approaches, including support vector machine, and yields good and stable accuracy.
First Page
2840
Last Page
2864
DOI
10.1162/neco.2007.19.10.2840
Publication Date
10-2007
Recommended Citation
Mingyu, Z., Coggeshall, D., Ghaneie, E., Pope, T., Rivera, M., Georgiopoulos, M., Anagnostopoulos, G.C., Mollaghasemi, M., Richie, S. Gap-based estimation: Choosing the smoothing parameters for probabilistic and general regression neural networks (2007) Neural Computation, 19 (10), pp. 2840-2864.