Document Type

Article

Publication Title

Journal of Applied Mathematics and Stochastic Analysis

Abstract

This paper analyzes the behavior of a point process marked by a two-dimensional renewal process with dependent components about some fixed (two-dimensional) level. The compound process evolves until one of its marks hits (i.e. reaches or exceeds) its associated level for the first time. The author targets a joint transformation of the first excess level, first passage time, and the index of the point process which labels the first passage time. The cases when both marks are either discrete or continuous or mixed are treated. For each of them, an explicit and compact formula is derived. Various applications to stochastic models are discussed.

DOI

10.1155/S1048953394000365

Publication Date

1994

Included in

Mathematics Commons

Share

COinS