Date of Award
6-2018
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Mechanical and Civil Engineering
First Advisor
Beshoy Morkos
Second Advisor
Chiradeep Sen
Third Advisor
James Brenner
Fourth Advisor
Hamid Hefazi
Abstract
Additive manufacturing (AM) is becoming a valuable option in medium to large scale manufacturing operations, due to the increasing technological advances and popularization of different techniques. Product development assembly costs can be greatly reduced with additive manufacturing, producing directly consumer-usable parts without the need of always rising labor costs. Entry level companies can bridge the gap between Tier 1 suppliers and Research & Development (R&D) businesses by utilizing the lower capital and reoccurring costs of modern additive manufacturing techniques, thereby avoiding the necessity for retooling and specialized machinery. The following study both explores the advantages and quantifies the cost factors, such as manufacturing, assembly costs, and material considerations, when assemblies and/or single components are replaced with an additively manufactured part, in mass produced applications. Manufacturing cost models are analyzed to show feasibility of changeover to an additive manufactured part utilizing three generic products (water pump, GoPro Mount, and stapler), and results have been subsequently compared to real world quotes and analyzed for accuracy. The results show a high correlation between manufacturing volume and part cost in two of the analyzed models (RM2003 and AS), while the HD model showed that its numerous significant cost driving variables were production volume, part volume, and material cost. An analysis of the simulated data showed that major costs drivers (over 90% of total costs per part) for low production volumes were machine costs, while for high production volume, it was the material costs. Comparison with real-world cost data revealed an average error across the models of 38.6%, which returns the conclusion that more detailed and advanced models needs to be created to better simulate AM costs, allowing for higher utilization of AM processes in large scale manufacturing.
Recommended Citation
Piazza, Andrea, "Cost Model Evaluation for Large Scale Additive Manufacturing" (2018). Theses and Dissertations. 1055.
https://repository.fit.edu/etd/1055