Date of Award

Fall 2023

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Chemistry and Chemical Engineering

First Advisor

Alan B. Brown, Ph.D.

Second Advisor

Andrew G. Palmer, Ph.D.

Third Advisor

Yi Liao, Ph.D.

Fourth Advisor

Jessica Smeltz, Ph.D.

Abstract

Hydrazine can currently be detected by irreversible methods, Carbazolopyridinophane (2,18-Dithia[3][1,8]carbazolo[3][2,6]pyridinophane) CP was synthesized by Brown et al. to detect hydrazine in real-time while also being reversible. The threshold for detection was 100 ppb, regulatory use requires 10 ppb as this is when permanent damage to humans can be caused. A more sensitive sensor will allow for safer workplaces for many people. A single, 3-atom bridge sensor will further examine the photophysical capabilities of carbazole-pyridine as an emitter/quencher pair. 1-Carbazole-1-methylpyridyl-2methyl sulfide SBCP will allow freedom of rotation as well as the bending of the bridge. These benefits will introduce conformers which will have varying hydrogen-bridge bonding between the hydrogen atom of the carbazole and the nitrogen atom of the pyridine. Issues with the synthetic methods to create such a molecule have been overcome in this work, allowing for a more streamlined process. This work has found conditions that fully cyclize ethyl 2-(phenylamino)benzoate to ethyl carbazole-1-carboxylate. This overcomes the great difficulties in separating the starting material from the product allowing for the multi-step synthesis to continue with fewer complications. 1-Carbazolemethanethiolacetate (6) has first been synthesized but could not be characterized due to the lingering impurities.

Share

COinS