Date of Award
12-2023
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Ocean Engineering and Marine Sciences
First Advisor
Stephen Wood
Second Advisor
Robert J. Weaver
Third Advisor
Ryan T. White
Fourth Advisor
Richard B. Aronson
Abstract
Ocean exploration has surged in popularity and significance in recent years, including diverse areas like maritime archeology, underwater resources, and submerged structure inspection. The activities mentioned above heavily depend on vision and imagery, a challenge in the unpredictable marine world. This thesis presents a conditional generative adversarial network model for image-to-image translation problems. We designed and trained the model with the end goal of enhancing underwater images. Five metrics were employed for validation to quantify our model’s resulting enhanced images. By doing so, we aim to establish a pipeline that can leverage aerial computer vision algorithms for marine applications.
Our approach demonstrates enhanced results when utilizing aerial classification models, such as Yolov8 and VGG19, when compared to supplying raw underwater images directly. Furthermore, it was discovered that the model efficiency offers the ability for real-time image enhancement.
Recommended Citation
Lebron Rivera, Humberto, "Underwater Image Enhancement: A Pipeline for Underwater Computer Visions" (2023). Theses and Dissertations. 1386.
https://repository.fit.edu/etd/1386