Date of Award

7-2021

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Aerospace, Physics, and Space Sciences

First Advisor

Csaba Palotai

Second Advisor

Steven Lazarus

Third Advisor

Saida Caballero-Nieves

Fourth Advisor

Jérémy A. Riousset

Abstract

Jupiter’s atmosphere features a variety of clouds that are formed from the interplay of chemistry and atmospheric dynamics, from the deep red of the Great Red Spot to the high altitude white ammonia clouds present in the zones. Beneath these upper level clouds, water condensation occurs, and sporadically leads to the formation of towering convective storms, driven by the release of large amounts of latent heat. These storms result in a widespread disruption of the cloud and dynamical structure of the atmosphere at the latitude where they form, making the study of these events paramount in understanding the dynamics at depth, and the role of water in the jovian atmosphere. In this work, we use the Explicit Planetary hybrid-Isentropic Coordinate (EPIC) General Circulation Model (GCM) to study the jovian atmosphere, with a focus on moist convective storm formation from water condensation. We present the addition of a sub-grid scale moist convective module to model convective water cloud formation. We focus on the 24° N latitude, the location of a high speed jetstream, where convective upwellings have been observed every 4-5 years. We find that the convective ability, and vertical mass and energy flux of the atmosphere is strongly correlated with the amount of water, and determine an upper limit of the amount of water in the atmosphere as twice the solar [O/H] ratio.

Share

COinS