Date of Award
8-2020
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Biomedical and Chemical Engineering and Sciences
First Advisor
Mehmet Kaya
Second Advisor
Ersoy Subasi
Third Advisor
Linxia Gu
Fourth Advisor
Daniel Kirk
Abstract
Cardiac diseases are the most common cause of mortality in the world. The detection of cardiac arrhythmias is not a straightforward process, since minor variations in the electrocardiogram (ECG) signals cannot be easily identified manually. Therefore, automatic detection and classification of cardiac arrhythmia would shorten the diagnostic time and accelerate medical intervention resulting in reducing the mortality rate. In this thesis, I have developed a simple and low-cost computer-aided diagnostic system using MATLAB-based Graphical User Interface (GUI) to facilitate fast operation and access to the data along with the overall accuracy of the system. The acquired ECG signals are processed by wavelet-based filtering and feature extraction techniques using Daubechies (db) wavelets to determine a combination of 15 statistical features. The significant wavelet features were subsequently used as categorical inputs to perform pattern recognition of the ECG signals using artificial neural network (ANN), support vector machine (SVM), and random forest (RF) and classify the output into normal or abnormal classes. The performance of the proposed model was evaluated using Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database (MIT-BIH AD) over 46 ECG records including normal and arrhythmias signals. The overall system performance was achieved with 98.3%, 95.65%, and 100% overall accuracy using ANN, SVM, and RF, respectively.
Recommended Citation
Aldosari, Mousa Hammad S, "Development of a Graphical User Interface for ECG Signals Classification Using Statistical Features Analysis" (2020). Theses and Dissertations. 529.
https://repository.fit.edu/etd/529
Comments
Copyright held by author