Date of Award
8-2020
Document Type
Thesis
Degree Name
Master of Science (MS)
Department
Biomedical and Chemical Engineering and Sciences
First Advisor
Ted A. Conway
Second Advisor
Linxia Gu
Third Advisor
Kenia P. Nunes Bruhn
Fourth Advisor
Daniel Kirk
Abstract
Nitinol is a functional material with superelastic and shape memory properties derived from its unique molecular structure. The purpose of this thesis is to explore how the material and mechanical properties of self-expanding Nitinol stents affects the forces applied to arterial walls during stent deployment compared to the traditional balloon-expanding stainless steel stents, in addition to contrasting thin and thick-walled pressure vessel mathematical models. Nitinol’s mechanical properties can be optimized for stent applications by tailoring its processing procedures. Nitinol stents demonstrated a reduced circumferential hoop stress on the vessel wall and greater factor of safety with respect to vessel rupture compared to the stainless steel balloon-expanding stents. Nitinol’s unique properties and biocompatibility has led to Nitinol being increasingly utilized for stent applications.
Recommended Citation
Eichler, Ariana Solis, "Mechanical and Material Properties of Nitinol and its Application to Stents" (2020). Theses and Dissertations. 556.
https://repository.fit.edu/etd/556